Chapter 6

Get straight

We owe it to a book to withhold judgment until we reach
page 100.

—Henrietta McNutt, George Johnson’s seventh-
grade English teacher

coordinates to an action-angle coordinate frame where liasepspace
dynamics is described by motion on circles, one circle fahedegree
of freedom. In the same spirit, a natural description of aehngplic, unstable
flow would be attained if one found a change of coordinates énframe where
the stabl@unstable manifolds are straight lines, and the flow is aloygehbolas.
Achieving this globally for anything but a handful of conet examples is too
much to hope for. Still, as we shall now show, we can make sosaelliay on
straightening out the flow locally. dq@

Even though such nonlinear coordinate transformationsvang important,
especially in celestial mechanics, we shall not necegsase them much in
what follows, so you can safely skip this chapter on the fiesiding. Except,
perhaps, you might want to convince yourself that cycle iktiels are indeed
metric invariants of flows (sec.6), and you might like transformations that turn
a Keplerian ellipse into a harmonic oscillator (exampl&) and regularize the
2-body Coulomb collisions (sed.3) in classical helium.

fast track:
W chapter 14, p. 235

A Hawmrronian system is said to be ‘integrable’ if one can find a change of

6.1 Changing coordinates

Problems are handed down to us in many shapes and forms, epnduth not
always expressed in the most convenient way. In order tolgjnamiven problem,
one may stretch, rotate, bend and mix the coordinates, llding so, the vector
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field will also change. The vector field lives in a (hyper)@atangent to state
space and changing the coordinates of state sp@eetsithe coordinates of the
tangent space as well, in a way that we will now describe.

Denote byh theconjugation functiowhich maps the coordinates of the initial
state spaceV into the reparameterized state spae® = h(M), with a point
x € M related to a poiny € M’ by

Yy =h(x) = (y1(x). y2(3). - ... ya(x)) -

The change of coordinates must be one-to-one and spanMbathd M’, so given
any pointy we can go back t = h~1(y). For smooth flows the reparameterized
dynamics should support the same number of derivativeseasitial one. Ifhis

a (piecewise) analytic function, we referi@s asmooth conjugacy

The evolution ruleg'(yo) on M’ can be computed from the evolution rule
f!(xo) on M by taking the initial pointyy € M’, going back toM, evolving, and
then mapping the final poingt) back toM’:

y(t) = d'(yo) = ho f' o h™(yo). (6.1)

Here @’ stands for functional compositioh o f(x) = h(f(x)), so 6.1) is a
shorthand fow/(t) = h(f{(h~2(yo))).

The vector fieldk'= v(x) in M, locally tangent to the flow?, is related to the
flow by differentiation .5) along the trajectory. The vector figjd= w(y) in M’,

t H .
locally tangent tay' follows by the chain rule: [exercise 6.1]

wy) = G - Shefonie)
-0 =
() VL) = RV 62

In order to rewrite the right-hand side as a functiog,afote that théy differentiation
of h(h(y)) = y implies

ont
ay

oh

ohy oht
X

1
S (y)} , 6.3)

oh
=1 - a—)((X):[

so the equations of motion in the transformed coordinatéh,the indices reinstated,
are

-1
i) (6.4)
ij

1
§i = wi(y) = [%(y)

Imagine that the state space is a rubber sheet with the fl@s inawn on it.
A coordinate changé corresponds to pulling and tugging on the rubber sheet
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smoothly, without cutting, gluing, or self-intersection$ the distorted rubber e
sheet. Trajectories that are closed loopsphwill remain closed loops in the o
new manifold M’, but their shapes will change. Globallydeforms the rubber €
sheet in a highly nonlinear manner, but locally it simplycaes and shears the N r
tangent field by the Jacobian matixh;, hence the simple transformation law r,
(6.2) for the velocity fields. °
. . . o . . . Figure 6.1: Coordinates for the helium three body ++
The time itself is a parametrization of points along flow §ine@nd it can problem in the plane. He

also be reparameterized,= s(t), with the attendant modification o64). An
example is the 2-body collision regularization of the helitlamiltonian 7.6), to

. The Jacobian matrix of the transformation is
be undertaken in sedi.3below.

cost  sind
o[ s cow | 9
6.2 Rectification of flows ot

resulting in (6.4) of rectified form )
[exercise 5.1]

A profitable way to exploit invariance of dynamics under sthomonjugacies is cosd  sing

to use it to pick out the simplest possible representativenoéquivalence class. ( ; ) :[ _sing  cosd }( g ):( _01 ) . (6.9)
In general and globally these are just words, as we have eohdw to pick such r r

‘canonical’ representative, but for smooth flows we can gwdo it locally and

for suficiently short time, by appealing to thectification theorema fundamental In the new coordinates the radial coordinate r is constant, and the angular coordinate

6 wraps around a cylinder with constant angular velocity. There is a subtle point in

the_orem of o_rdinary dierential equatiqns. _The theorem assures _us that there this change of coordinates: the domain of the map h™* is not the plane R?, but rather
?X'Sts a SOIUt!qn (_at least for a Short_ time Int(.%rval) and Mha solution looks the plane minus the origin. We had mapped a plane into a cylinder, and coordinate
like. The rectification theorem holds in the neighborhoogaifts of the vector transformations should not change the topology of the space in which the dynamics
field v(x) that are not singular, that is, everywhere except for theiliegum takes place; the coordinate transformation is not defined on the equilibrium point x =
points @.8), and points at whiclv is infinite. According to the theorem, in a (0,0), orr = 0.

small neighborhood of a non-singular point there existsangk of coordinates
y = h(X) such thatx'= v(x) in the new,canonicalcoordinates takes form

V1= S{z = =¥a-1=0 6.5) 6.3 Classical dynamics of collinear helium
Ya=1,

with unit velocity flow alongyy, and no flow along any of the remaining directions. (G. Tanner)

This is an example of a one-parameter Lie group of transfooms, with finite
So far much has been said about 1-dimensional maps, gamelfilpand other

time T action

curious but rather idealized dynamical systems. If you le@me impatient and

v = i i=12....d-1 started wondering what good are the methods learned so faliing real life
physical problems, good news are here. We will apply hereeats of nonlinear

Yo = Ya+T. dynamics to nothing less than the helium, a dreaded thrdg-Boulomb problem.

[exercise 9.7] . . . . .

Can we really jump from three static disks directly to threarged particles

Example 6.1 Harmonic oscillator, rectified: As a simple example of global moving under the influence of their mutually attracting opetting forces? It
rectification of a flow consider the harmonic oscillator turns out, we can, but we have to do it with care. The full peablis indeed
) ) not accessible in all its detail, but we are able to analyzeraesvhat simpler
4=p.  P=-0. (6.6) subsystem—collinear helium. This system plays an impbrta in the classical

The trajectories X(t) = (q(t), p(t)) circle around the origin, so a fair guess is that the and quantum dynamics of the full three-body problem.

system would have a simpler representation in polar coordinates 'y = (r, 6):

h’lz{ q
p
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The classical helium system consists of two electrons osmmasnd charge

hX(r,0) = r cosd 6.7) —emoving about a positively charged nucleus of magsand charger2e.
hyX(r.6) = rsing ’
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Figure 6.2: Collinear helium, with the two electrons
on opposite sides of the nucleus. 1 2

The helium electron-nucleus mass ratige/me = 1836 is so large that we
may work in the infinite nucleus mass approximatiog = oo, fixing the nucleus
at the origin. Finite nucleus masfexrts can be taken into account without any
substantial dficulty. We are now left with two electrons moving in three sglat
dimensions around the origin. The total angular momenturthefcombined
electron system is still conserved. In the special case gfilan momentum
L = 0, the electrons move in a fixed plane containing the nucl€hs.three body
problem can then be written in terms of three independentdocates only, the
electron-nucleus distancesandr; and the inter-electron angl see figures. 1

This looks like something we can lay our hands on; the probtes been
reduced to three degrees of freedom, six phase space caieglim all, and the
total energy is conserved. But let us go one step furtherléwrons are attracted
by the nucleus but repelled by each other. They will tenddg at far away from
each other as possible, preferably on opposite sides ofitieus. It is thus worth
having a closer look at the situation where the three pagiate all on a line with
the nucleus being somewhere between the two electrons,, Ihaedition, let the
electrons have momenta pointing towards the nucleus asurefig2, then there
is no force acting on the electrons perpendicular to the comimterparticle axis.
That s, if we start the classical system on the dynamicadjsabe® = r, d%@ =0,
the three particles will remain in thiollinear configuratiorfor all times.

6.3.1 Scaling

In what follows we will restrict the dynamics to this collmesubspace. It is a
system of two degrees of freedom with the Hamiltonian

Sl g 288 262 @
Mo (PR T

E. (6.10)

whereE is the total energy. As the dynamics is restricted to the fewatgy shell,
the four phase space coordinates are not independent;etgyeshell dependence
can be made explicit by writing{, r2, p1, p2) = (r1(E), r2(E), p1(E), p2(E)) .

We will first consider the dependence of the dynamics on theeggrE. A
simple analysis of potential versus kinetic energy tellshat if the energy is
positive both electrons can escaperito— oo, i = 1,2. More interestingly, a
single electron can still escape evelkifs negative, carrying away an unlimited
amount of kinetic energy, as the total energy of the remgiiminer electron has no
lower bound. Not only that, but one electraill escape eventually for almost all
starting conditions. The overall dynamics thus dependially on whethelE >
0 or E < 0. But how does the dynamics change otherwise with varyireygs?
Fortunately, not at all. Helium dynamics remains invariantler a change of
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energy up to a simple scaling transformation; a solutiome&quations of motion
at a fixed energyg = —1 can be transformed into a solution at an arbitrary energy
E < 0 by scaling the coordinates as

ri(E>:(_ez—E)n, p(E) = V-ME p, =12,

together with a time transformatiofE) = e?my/*(-E)~3/2t. We include the
electron mass and charge in the scaling transformationderdo obtain a non—
dimensionalized Hamiltonian of the form

2 2
H-P, P 2 2, 1
2 2 rh 1rI2 ri+rp

-1. (6.11)

The case of negative energies chosen here is the most tirigrese for us. It
exhibits chaos, unstable periodic orbits and is respomsislthe bound states and
resonances of the quantum problem.

6.3.2 Regularization of two—body collisions

Next, we have a closer look at the singularities in the Hamién 6.11). Whenever
two bodies come close to each other, accelerations becogee faumerical routines
require lots of small steps, and numerical precisioffiess. No numerical routine
will get us through the singularity itself, and in collindalium electrons have no
option but to collide with the nucleus. Henceegularizationof the diferential
equations of motions is a necessary prerequisite to any mcethgork on such
problems, both in celestial mechanics (where a spaceshiputes close approaches
both at the start and its destination) and in quantum mechkgmihere much of
semiclassical physics is dominated by returning classichits that probe the
quantum wave function at the nucleus).

There is a fundamental fierence between two—body collisions= 0 orrp =
0, and the triple collisiom; = r, = 0. Two-body collisions can be regularized,
with the singularities in equations of motion removed by #afile coordinate
transformation together with a time transformation preiser the Hamiltonian
structure of the equations. Such regularization is notiplesfor the triple collision,
and solutions of the éfierential equations can not be continued through the sirigula
at the origin. As we shall see, the chaos in collinear helivigirtates from this
singularity of triple collisions.

A regularization of the two—body collisions is achieved bgans of the Kust-
aanheimo-Stiefel (KS) transformation, which consists obardinate dependent
time transformation which stretches the time scale neawtiilgen, and a canonical
transformation of the phase space coordinates. In ordeotivate the method,
we apply it first to the 1-dimensional Kepler problem

2
H=-p’--=E. 12
P 5 (6.12)

conjug - 3nov2007.tex



CHAPTER 6. GET STRAIGHT 99

Example 6.2 Keplerian ellipse, rectified: To warm up, consider the E = 0O case,
starting at x = 0 att = 0. Even though the equations of motion are singular at the initial
point, we can immediately integrate

1., 2
5%—;_0
by means of separation of variables
Vxdx= V2dt,  x= (303, (6.13)

and observe that the solution is not singular. The aim of regularization is to compensate
for the infinite acceleration at the origin by introducing a fictitious time, in terms of which
the passage through the origin is smooth.

A time transformation dt = f(q, p)dr for a system described by a Hamiltonian
H(q, p) = E leaves the Hamiltonian structure of the equations of motion unaltered, if
the Hamiltonian itself is transformed into H(q, p) = f(9, p)(H(q, p) — E). For the 1-
dimensional Coulomb problem with (6.12) we choose the time transformation dt = xdr
which lifts the |x| — O singularity in (6.12) and leads to a new Hamiltonian

1
’H:ipo—Z—Ex:O. (6.14)
The solution (6.13) is now parameterized by the fictitous time dr through a pair of
equations
1
x=12, t= 573

The equations of motion are, however, still singular as x — 0:

d®x 1 dx P XE

dr2 ~ 2xdr ’
Appearance of the square root in (6.13) now suggests a canonical transformation of
form

P
2
= = — 1
x=Q%. p 20 (6.15)

which maps the Kepler problem into that of a harmonic oscillator with Hamiltonian
1.
HQP) =gP*-EQ =2, (6.16)

with all singularities completely removed.

We now apply this method to collinear helium. The basic idghat one seeks
a higher-dimensional generalization of the ‘square roptal’ trick (6.15), by
introducing a new vecto® with propertyr = |QJ?. In this simple 1-dimensional
example the KS transformation can be implemented by

Py P>

=—, = — 6.17
P1 20, P2 20, (6.17)

2 2
= Qla r2:Q25
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a) b)

Figure 6.3: (a) A typical trajectory in therf, r;] B
plane; the trajectory enters here along thexis |

and escapes to infinity along the axis; (b)
Poincaré mapr{=0) for collinear helium. Strong
chaos prevails for small near the nucleus.

and reparameterization of time loly = dt/rir,.  The singular behavior in the
original momenta at; or r, = 0 is again compensated by stretching the time
scale at these points. The Hamiltonian structure of thetemsaof motions with
respect to the new timeis conserved, if we consider the Hamiltonian

Heo = (0397 + Q2P ~ 2R, + QRGH(E + /R = 0 619

with Rz = (Q2 + Q3)Y/2, and we will takeE = -1 in what follows. The equations
of motion now have the form

. P2 Q2 . 1

P1=2Q [2——2—Q2(1+ —2]]; Q1= >P1Q2 (6.19)
1 1 ) 2 qu 1 2 12

. p? 2 .

R o |

12

Individual electron-nucleus collisions &t = Q¢ = 0 orr, = Q3 = 0 no
longer pose a problem to a numerical integration routinee &guations.19
are singular only at the triple collisioR;> = 0, i.e., when both electrons hit the
nucleus at the same time.

The new coordinates and the Hamiltoni&nl@ are very useful when calculating
trajectories for collinear helium; they are, however, lessitive as a visualization
of the three-body dynamics. We will therefore refer to the abordinates, ra
when discussing the dynamics and the periodic orbits.

To summarize, we have brought a 3-body problem into a formrevhiee
2-body collisions have been transformed away, and the phzsee trajectories
computable numerically. To appreciate the full beauty oétias been attained,
you have to fast-forward to quantum chaos part @faosBook.org; we are
already ‘almost’ ready to quantize helium by semiclassicathods.

fast track:
@ chapter 5, p. 83
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6.4 Rectification of maps

O

In sect.6.2we had argued that nonlinear coordinate transformatiomgegrofitably
employed to simplify the representation of a flow. We shalrapply the same
idea to nonlinear maps, and determine a smooth nonlineagehaf coordinates
that flattens out the vicinity of a fixed point and makes the riagar in an
open neighborhood. In its simplest form the idea can be imetged only for
an isolated nondegenerate fixed point (otherwise are neadéé normal form
expansion around the point), and only in a finite neighbodhaiba point, as the
conjugating function in general has a finite radius of cogeace. In sec6.5we
will extend the method to periodic orbits.

6.4.1 Rectification of a fixed point in one dimension
[exercise 6.2]
Consider a 1-dimensional map.1 = f(X,) with a fixed point atx = 0, with
stability A = f/(0). If |A| # 1, one can determine term-by-term the power series
for a smooth conjugatioh(x) centered at the fixed point(0) = 0, that flattens
out the neighborhood of the fixed point

f(x) = h"1(Ah(X) (6.20)

and replaces the nonlinear mé&fx) by alinear mapyn.1 = Ayn.

To compute the conjugatioh we use the functional equatidm(Ax) =
f(h~1(x)) and the expansions

F) = Ax+Xf+xCf3+...
hlx) = x+xhy+x°hs+... . (6.21)

Equating the caiéicients of x¢ on both sides of the functional equation yields
hy order by order as a function dp, fs,.... If h(x) is a conjugation, so is any
scalingh(bx) of the function for a real numbdy. Hence the value df’(0) is not
determined by the functional equatioh Z0); it is convenient to seit’(0) = 1.

The algebra is not particularly illuminating and best lefcomputers. In any
case, for the time being we will not use much beyond the firgar term in these
expansions.

Here we have assumetl # 1. If the fixed point has firsk—1 derivatives
vanishing, the conjugacy is to th& normal form

In several dimensions\ is replaced by the Jacobian matrix, and one has to
check that the eigenvaluéd are non-resonant, that is, there is no integer linear

relation between the Floquet exponerisyy. [remark 6.3]
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6.5 Rectification of a 1-dimensional periodic orbit

In sect.6.4.1we have constructed the conjugation function for a fixed ppdilere
we turn to the problem of constructing it for periodic orbiEach point around the
cycle has a dierently distorted neighborhood, withfi#iring second and higher
order derivatives, so we need to compute fedent conjugation functioh, at
each cycle pointx,. We expand the maj around each cycle point along the
cycle,

Ya(®) = fa(¢) — Xas1 = ¢fa1 + ¢2 fa2+... (6.22)

wherex, is a point on the cyclefa(¢p) = f(xa + ¢) is centered on the periodic
orbit, and the indexk in fax refers to thekth order in the expansiors (21).

For a periodic orbit the conjugation formulé.20) generalizes to

fa(@) = L (F0ha(¢)),  a=12---,n,

point by point. The conjugationg functiorg, are obtained in the same way as
before, by equating cdiécients of the expansior6(21), and assuming that the
cycle Floguet multiplierA = Hg;é f’(xa) is not marginal|A| # 1. The explicit
expressions foh, in terms of f are obtained by iterating around the whole cycle,

(X + ¢) = N3 (Aha(¢)) + Xa. (6.23)

evaluated at each cycle poiat Again we have the freedom to gg{0) = 1 for

remark 6.2
alla [ :

6.5.1 Repeats of cycles

We have traded in our initial nonlinear mégor a (locally) linear map\y and an
equally complicated conjugation functitm What is gained by rewriting the map
f in terms of the conjugacy function? Once the neighborhood of a fixed point
is linearized, the repeats of it are trivialized; from thajegation formula §.21)
one can compute the derivatives of a function composed teigf i times:

(%) = " }{(A"h(x)).

One can already discern the form of the expansion for arpitepeats; the answer
will depend on the conjugacy functidi{x) computed for asinglerepeat, and all
the dependence on the repeat number will be carried by &agilynomial in
A", a considerable simplification. The beauty of the idea fiadilt to gauge at
this stage—an appreciation only sets in when one starts wiimgpperturbative
corrections, be it in celestial mechanics (where the methasl born), be it the
guantum or stochastic corrections to ‘semiclassical’ axipnations.
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6.6 Cycle Floguet multipliers are metric invariants

In sect.5.2we have established that for a given flow the cycle Floquetiptiglrs
are intrinsic to a given cycle, independent of the startingnipalong the cycle.
Now we can prove a much stronger statement; cycle Floqueiptiers aresmooth
conjugacyor metric invariantsof the flow, the same iany representation of the
dynamical system.

That the cycle Floguet multipliers are an invariant propefthe given dynamical
system follows from elementary considerations of sgdt. If the same dynamics
is given by a mayf in x coordinates, and a mayin they = h(x) coordinates, then
f andg (or any other good representation) are relatedshd) (a reparameterization
and a coordinate transformatign= ho f o ™. As both f andg are arbitrary
representations of the dynamical system, the explicit fofthe conjugacy is of
no interest, only the properties invariant under any tramsétionh are of general
import. Furthermore, a good representation should notlatetthe datah must
be asmooth conjugacyhich maps nearby cycle points éfinto nearby cycle
points ofg. This smoothness guarantees that the cycles are not ordiotppal
invariants, but that their linearized neighborhoods ase ahetrically invariant.
For a fixed pointf (x) = x of a 1-dimensional map this follows from the chain rule
for derivatives,

g = h’(foh*(y))f'(h*l(y))Wlx)
- h’(x)f’(x)Wlx):f’(x). (6.24)

In d dimensions the relationship between the mapstiiedint coordinate representations

is againgo h = ho f . We now make the matrix structure of relaticdhd) explicit:

oh » oht
k() = — and L) =— .
ik(X) i ik () W Iy

i.e., T'ik(X) is the matrix inverse ol“&l(x). The chain rule now relatddl’, the the
fundamental matrix of the magpto the fundamental matrix of mafa

M/, (h(¥)) = Tie(f ()M (T (¥ . (6.25)

If xis a fixed point then@.25 is asimilarity transformation and thus preserves
eigenvalues: itis easy to verify that in the case of pengdycle againM’P(h(x))
andMP(x) are related by a similarity transformation (note that thisot true for
M'(x) with r # np). As stability of a flow can always be reduced to stability of a
Poincaré section return map, a Floquet multiplier of argleyfor a flow or a map
in arbitrary dimension, is a metric invariant of the dynaahisystem.

in depth:
” appendix B.3, p. 667
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Résum é

Dynamics M, f) is invariant under the group of all smooth conjugacies
M, f) - (M,g) = (h(M),ho foh™).

This invariance can be used to (i) find a simplified represimtdor the flow and
(ii) identify a set of invariants, numbers computed withipaaticular choice of
(M, f), but invariant under alM — h(M) smooth conjugacies.

The D-dimensional phase space of an integrable Hamiltoniaresysif D
degrees of freedom is fully foliated Hy-tori. In the same spirit, for a uniformly
hyperbolic, chaotic dynamical system one would like to ¢jeaimto a coordinate
frame where the stabjlenstable manifolds form a set of transversally intersgctin
hyper-planes, with the flow everywhere locally hyperbolibat cannot be achieved
in general: Fully globally integrable and fully globally abtic flows are a very
small subset of all possible flows, a ‘set of measure zeroh&world of all
dynamical systems.

What wereally care about is developping invariant notions of what a given
dynamical system is. The totality of smooth one-to-one inealr coordinate
transformation$ which map all trajectories of a given dynamical systewt, (')
onto all trajectories of dynamical system(,g") gives us a huge equivalence
class, much larger than the equivalence classes famitiar fhe theory of linear
transformations, such as the rotation graDfd) or the Galilean group of all
rotations and translations iRY. In the theory of Lie groups, the full invariant
specification of an object is given by a finite set of Casimianients. What a good
full set of invariants for a group of general nonlinear snhomtnjugacies might be
is not known, but the set of all periodic orbits and their 8igbeigenvalues will
turn out to be a good start.

Commentary

Remark 6.1 Rectification of flows. See Section 2.2.5 of reflf] for a pedagogical
introduction to smooth coordinate reparameterizatiompligit examples of transformations
into canonical coordinates for a group of scalings and aeoduotations are worked out.

Remark 6.2 Rectification of maps. The methods outlined above are standard in the
analysis of fixed points and construction of normal formdiiéurcations, see for example
ref. [22, 2,4, 5,6, 7, 8,9, 9]. The geometry underlying such methods is pretty, and we
enjoyed reading, for example, Percival and Richard$, [chaps. 2 and 4 of Ozorio de
Almeida’s monograph1[1], and, as always, Arnol'd1].

Recursive formulas for evaluation of derivatives needeeltduate §.21) are given,

for example, in Appendix A of ref.q]. Section 10.6 of Ref.13] describes in detail the
smooth conjugacy that relates the Ulam map to the tent map.
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Remark 6.3 A resonance condition. In the hyperbolic case there is a resonance
condition that must be satisfied: none of the Floquet expsnmeay be related by ratios
of integers. Thatis, i1, Ap2, ..., Apg are the Floquet multipliers of the fundamental
matrix, then they are in resonance if there exist integers ., ng such that

(Ap,l)n](/\p,z)n2 o (Ap,d)n'j =1.

If there is resonance, then one may get corrections to the basjugation formulas in
the form of monomials in the variables of the map. (R. Maiier
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Exercises

6.1. Coordinate transformations.  Changing coordinates

is conceptually simple, but can become confusing when

carried outin detail. The diculty arises from confusing
functional relationships, such agt) = h™(y(t)) with
numerical relationships, such agy) = h(X)v(x).
Working through an example will clear this up.

(a) The diferential equation in theé\l space isx' =
{2x4, X2} and the change of coordinates frovito

point at the origin and analytic there. By manipule
power series, find the first few terms of the niatha
conjugated to az, thatiis,

(2 = h'i{(ah(2).
There are conditions on the derivative foéit the origi

to assure that the conjugation is always possible.
you formulate these conditions by examining the se

M ish(Xa, X2) = {2X1+ X2, X1 — X2}. Solve forx(t).

Findh-1. (difficulty: medium)
(b) Show that in the transformed spacel, the g3 Ulam and tent maps.
differential equation is conjugacy 6.1)
dfyi |_ 1 Syi+2y
dt| Y2 | 3| Yi+4y2
Solve this system. Does it match the solution in y =
the M space?

conjugates the tent map(x) = 1 — 2|x — 1/2| intc
4y(1 — y). (Continued ¢

6.2. Linearization for maps. Letf : C — C be a map the Ulam mapg(y)
from the complex numbers into themselves, with a fixed exercisel2.1)

References
[6.1] V.I. Arnol'd, Ordinary Differential EquationgSpringer-Verlag, New York
1992).

[6.2] C. Simo, “On the analytical and numerical approxiroatiof invariant
manifolds,” in D. Baenest and C. Froeschlé, Les Méthodesidrines de
la Mécanique Céleste (Goutelas 1989), p. 285.

[6.3] C. Simo, inDynamics and Mission Design Near Libration Poinl. 1-4,
(World Sci. Pub., Monograph Ser. Math., 2000-2001).

[6.4] C. L. Siegel. Iteration of analytic functionfinn. Math, 43:607-612, 1942.

[6.5] J. Moser.Ann. Scuola Norm. Super. Pis20:265-315, 1966; 20:499-535,
1966.

[6.6] S. SternbergAmer. J. Math.79:809, 1957; 80:623, 1958; 81:578, 1959.
[6.7] K.-T. Chen.Amer. J. Math.85:693-722, 1963.
[6.8] G.R. Belitski. Russian Math. Survey81:107-177, 1978.

[6.9] A.D. Brjuno. Trans. Moscow Math. Sqc25:131-288, 1971; 26:199-238,
1972.

refsConjug - 2mar2003.tex

Show that the smoc

g(o) = hofoh™(yo)
h(x) = sirf(7x/2),



