Chapter 8

Billiards

HE DYNAMICS that we have the best intuitive grasp on, and find easiest to
T grapple with both numerically and conceptually, is the dgits of billiards.
For billiards, discrete time is altogether natural; a géatmoving through

a billiard sufers a sequence of instantaneous kicks, and executes sirptanm
in between, so there is no need to contrive a Poincaré secil® have already
used this system in sect.3 as the intuitively most accessible example of chaos.
Here we define billiard dynamics more precisely, anticipgtihe applications to
come.

8.1 Billiard dynamics

A billiard is defined by a connected regiéh c RP, with boundarydQ c RP1
separatingQ from its complemen®RP \ Q. The regionQ can consist of one
compact, finite volume component (in which case the billipithse space is
bounded, as for the stadium billiard figusel), or can be infinite in extent, with
its complementR® \ Q consisting of one or several finite or infinite volume
components (in which case the phase space is open, as fodibkk Binball game
figure 1.1). In what follows we shall most often restrict our attentimnplanar
billiards.

A point particle of massnand momentunp, = mv, moves freely within the
billiard, along a straight line, until it encounters the bdary. There it reflects
specularly gpecular = mirrorlike), with no change in the tangential component
of momentum, and instantaneous reversal of the momentumpauant normal to
the boundary,

p =p-2(p- ), (8.1)

with A the unit vector normal to the bounda#() at the collision point. The angle
of incidence equals the angle of reflection, as illustratefigure8.2. A billiard is
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Figure 8.1: The stadium billiard is a 2-
dimensional domain bounded by two semi-circles
of radiusd = 1 connected by two straight walls
of length 22 At the points where the straight
walls meet the semi-circles, the curvature of the
border changes discontinuously; these are the only
singular points of the flow. The lengtts the only
parameter.

Figure 8.2: (a) A planar billiard trajectory is fixed
by specifying the perimeter length parametrized
by s and the outgoing trajectory anglg both
measured counterclockwise with respect to th
outward normah” (b) The Birkhdf phase space
coordinate pairg, p) fully specifies the trajectory,
wherep = |p|sing is the momentum component
tangential to the boundary As the pinball kinetic
energy is conserved in elastic scattering, the
pinball mass and the magnitude of the pinball
momentum are customarily setro= |p| = 1. (a)
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a Hamiltonian system with al2dimensional phase spage- (g, p) and potential
V(q) =0forge Q, V(q) = = for g € Q.

A billiard flow has a natural Poincaré section defined by Bafk coordinates
Sy, the arc length position of th&th bounce measured along the billiard boundary,
and p, = |plsing,, the momentum component parallel to the boundary, where
¢n is the angle between the outgoing trajectory and the norantde boundary.
We measure both the arc lengthand the parallel momentumcounterclockwise
relative to the outward normal (see figuBe2 as well as figure8.3). InD = 2,
the Poincaré section is a cylinder (topologically an ans)lfigure8.3, where the
parallel momentunp ranges for—|p| to |p|, and thes coordinate is cyclic along
each connected componenta®. The volume in the full phase space is preserved
by the Liouville theorem {.32). The Birkhdf coordinatesx = (s, p) € P, are
the natural choice, because with them the the Poincarenratap preserves the
phase space volume in thg p) parameterize Poincaré section (a perfectly good

coordinate setg ¢) does not do that). [exercise 8.6]

Without loss of generality we set = || = |p| = 1. Poincaré section condition>**"°" &2

eliminates one dimension, and the energy conservipicn 1 eliminates another,
so the Poincaré section return mRys (2D — 2)-dimensional.

The dynamics is given by the Poincaré return map

P2 (S Pn) & (Sh+1, Prs1) (8.2)

from thenth collision to the (1 + 1)st collision. The discrete time dynamics map
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Figure 8.3: In D = 2 the hilliard Poincaré section
is a cylinder, with the parallel momentumranging pg
over p € {—1,1}, and with thes coordinate is cyclic
along each connected componend@. The rectangle
figure 8.2 (b) is such cylinder unfolded, with periodic ~* —
boundary conditions glueing together the left and the

right edge of the rectangle.
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P is equivalent to the Hamiltonian flow (1) in the sense that both describe the
same full trajectory. Let, denote the instant afth collision. Then the position
of the pinballe Q at timet, + 7 < tp,1 iS given by D — 2 Poincaré section

coordinates ¢, pn) € P together withr, the distance reached by the pinball along
the nth section of its trajectory.

Example 8.1 3-disk game of pinball: In case of bounces off a circular disk, the
position coordinate s = r@ is given by angle 6 € [0, 2x]. For example, for the 3-disk
game of pinball of figure 1.6 and figure 3.3 we have two types of collisions:

[exercise 8.1]
Po: {¢ /: —6+ Zaar.CSIr)p back-reflection (8.3)
p = —p + R SII’I¢
=g -2 [ 2n/3
p, 1= N arcsinp + 2/ reflect to 3rd disk. (8.4)
p = p- &sing’

Here a = radius of a disk, and R = center-to-center separation. Actually, as in this
example we are computing intersections of circles and straight lines, nothing more
than high-school geometry is required. There is no need to compute arcsiris either -
one only needs to compute a square root per each reflection, and the simulations can

be very fast.
y [exercise 8.2]

Trajectory of the pinball in the 3-disk billiard is generated by a series of Py’s and
P1’s. At each step on has to check whether the trajectory intersects the desired disk
(and no disk inbetween). With minor modifications, the above formulas are valid for any
smooth billiard as long as we replace a by the local curvature of the boundary at the
point of collision.

8.2 Stability of billiards

We turn next to the question of local stability of discretmei billiard systems.
Infinitesimal equations of variationgl.) do not apply, but the multiplicative
structure ¢.44) of the finite-time fundamental matrices does. As they areemo
physical than most maps studied by dynamicists, let us waitktle billiard
stability in some detail.

On the face of it, a plane billiard phase space is 4-dimeasidtiowever, one
dimension can be eliminated by energy conservation, anothie by the fact that
the magnitude of the velocity is constant. We shall now show going to a local
frame of motion leads to a §2] fundamental matrix.
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Consider a 2-dimensional billiard with phase space coatdsx = (qz, 02, P1, P2)-
Let tx be the instant of th&th collision of the pinball with the billiard boundary,
andt = tx + €, € positive and infinitesimal. With the mass and the velocityadq
to 1, the momentum direction can be specified by aéigle= (g1, 0, Sind, cosy).
Now parametrize the 8-neighborhood of a trajectory segment&y = (6z 66),
where

6z = 60y COSH — 6Qp Sing, (8.5)

60 is the variation in the direction of the pinball motion. Doeshergy conservation,
there is no need to keep track &y, variation along the flow, as that remains
constant. {qi, 6¢p) is the coordinate variation transverse to ktfesegment of the
flow. From the Hamilton’s equations of motion for a free paejdg;/dt = p;,
dpi/dt = 0, we obtain the equations of motiofi {) for the linearized neighborhood

d d
&69 =0, &(52 =006. (86)

Let 66k = 66(t)) andéz = 6z(t}) be the local coordinates immediately after the
kth collision, andse,, = 66(t, ), 6z, = oz(t,) immediately before. Integrating the
free flight fromt’ , tot, we obtain

0Z-1 + Tk00k-1, Tk =tk — 1tk
00k_1, (8.7)

07
56,

and the fundamental matri¥ @3 for thekth free flight segment is

M (%) =( é ¥ ) (8.8)

At incidence anglepy (the angle between the outgoing particle and the outgoing
normal to the billiard edge), the incoming transverse Vnesz, projects onto an
arc on the billiard boundary of lengtiz, / cos¢x. The corresponding incidence
angle variatiom¢x = 67 /px oS¢k, pk = local radius of curvature, increases the
angular spread to

5% = -6%
2

06 = —-06, — 0z, , 8.9
“ k kaOS¢ka 8.9)

so the fundamental matrix associated with the reflection is

Lo ) , 2 (8.10)

M) = _( e 1 K= prcose
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Figure 8.4 Defocusing of a beam of nearby
trajectories at a billiard collision. (A. Wirzba)

The full fundamental matrix fon, consecutive bounces describes a beam of
trajectories defocused byt along the free flight (thex terms below) and defocuskeefocused

at reflections byMg (thery terms below) [exercise 8.4]

1
Mp = (1) l—[( é b )( rlk g’) (8.11)

wherery is the flight time of thekth free-flight segment of the orbit, = 2/px cos@k
is the defocusing due to thah reflection, andgpy is the radius of curvature of
the billiard boundary at thkth scattering point (for our 3-disk game of pinball,
p = 1). As the billiard dynamics is phase space volume presgndetM = 1,
and the eigenvalues are given by42).

This is still another example of the fundamental matrix ohaile @.51) for
discrete time systems, rather similar to the Henon magilisyalt.52). Stability of
every flight segment or reflection taken alone is a shear withuinit eigenvalues,

T

detMTzdet(é h ) detMR:det( L O), (8.12)

e 1

but acting in concert in the intervowen sequeria () they can lead to a hyperbolic

deformation of the infinitesimal neighborhood of a billidrdjectory. [exercise 9.3]

As a concrete application, consider the 3-disk pinball esysbf sect.1.3.
Analytic expressions for the lengths and eigenvalue3, @fand10 cycles follow
from elementary geometrical considerations.  Longer cyobguire numerical

[ i i ise 9.4
evaluation by methods such as those described in chapter [exercise 9.4]

[exercise 8.3]
[chapter 12]

Résumé

A particulary natural application of the Poincaré sectinethod is the reduction
of a billiard flow to a boundary-to-boundary return map.
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Commentary

Remark 8.1 Billiards.  The 3-disk game of pinball is to chaotic dynamics what a
pendulum s to integrable systems; the simplest physicahgte that captures the essence
of chaos. Another contender for the title of the ‘harmonigitestor of chaos’ is the baker’s
map which is used as the red thread through Ott’s introdn¢tichaotic dynamicslfi.
The baker’'s map is the simplest reversible dynamical systéch is hyperbolic and
has positive entropy. We will not have much use for the bake@dp here, as due to its
piecewise linearity it is so nongeneric that it misses athefsubtleties of cycle expansions
curvature corrections that will be central to this treatise
[chapter 18]

That the 3-disk game of pinball is a quintessential exampléeterministic chaos
appears to have been first noted by B. Eckhatiit [The model was studied in depth
classically, semiclassically and quantum mechanicallPbgaspard and S.A. Ric€][
and used by P. Cvitanovic and B. Eckhard} fo demonstrate applicability of cycle
expansions to quantum mechanical problems. It has beentastady the higher order
h corrections to the Gutzwiller quantization by P. Gaspard Bn Alonso Ramirez ],
construct semiclassical evolution operators and entegetspl determinants by P. Cvitanovi¢
and G. Vattay §], and incorporate the firaction dfects into the periodic orbit theory by
G. Vattay, A. Wirzba and P.E. Rosenqvisf.[ Gaspard’s monograpt¥], which we
warmly recommend, utilizes the 3-disk system in much moggtdehan will be attained
here. For further links checkhaosBook. org.

A pinball game does miss a number of important aspects oticrdymamics: generic
bifurcations in smooth flows, the interplay between regiohstability and regions of
chaos, intermittency phenomena, and the renormalizatieory of the ‘border of order’
between these regions. To study these we shall have to fatwenopch harder challenge,
dynamics of smooth flows.

Nevertheless, pinball scattering is relevant to smoothigals. The game of pinball
may be thought of as the infinite potential wall limit of a srittopotential, and pinball
symbolic dynamics can serve asaering symbolic dynamics in smooth potentials. One
may start with the infinite wall limit and adiabatically rglan unstable cycle onto the
corresponding one for the potential under investigationf things go well, the cycle
will remain unstable and isolated, no new orbits (unacoedifdr by the pinball symbolic
dynamics) will be born, and the lost orbits will be accourftadby a set of pruning rules.
The validity of this adiabatic approach has to be checkeeffaly in each application, as
things can easily go wrong; for example, near a bifurcatimnsame naive symbol string
assignments can refer to a whole island of distinct perioddds.

[section 27.1]

Remark 8.2 Stability analysis. The chapter 1 of Gaspard monogragh$ recommended
reading if you are interested in Hamiltonian flows, and aitlis in particular. A. Wirzba
has generalized the stability analysis of s&c2to scattering & 3-dimensional spheres
(follow the links in ChaosBook.org/extras). A clear discussion of linear stability for
the generatl-dimensional case is given in Gaspa¥il gect. 1.4.

Exercises
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8.1

8.2.

8.3.

8.4.

. A pinball simulator.

Implement the disk— disk

maps to compute a trajectory of a pinball for a
given starting point, and a giveRia = (center-to-

center distance):(disk radius) ratio for a 3-disk system.
As this requires only computation of intersections of
lines and circles together with specular reflections,
implementation should be within reach of a high-school
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matrix associated with the reflection is given By10.
Here we takey = —1 for the semicircle sections of the
boundary, and cag remains constant for all bounces
in a rotation sequence. The time of flight between two
semicircle bounces isx = 2cosgx. The fundamental
matrix of one semicircle reflection folowed by the flight
to the next bounce is

student. Please start working on this program now;

it will be continually expanded in chapters to come, J = (—1)( é chl)s‘bk )( iy <::Los¢ g )
incorporating the Jacobian calculations, Newton root— K
finding, and so on. _ (_1)( -3 2 cospy )

Fast code will use elementary geometry (only one 2/ cosgi 1 '

/-~ per iteration, rest are multiplications) and eschew
trigonometric functions. Provide a graphic display of
the trajectories and of the Poincaré section iterates. To
be able to compare with the numerical results of coming
chapters, work withR:a = 6 andor 2.5 values. Draw the
correct versions of figuré.9or figure10.4for R.a= 2.5
andor 6.

Trapped orbits. Shoot 100,000 trajectories from one
of the disks, and trace out the strips of figur® for
various R:a by color coding the initial points in the
Poincaré section by the number of bounces preceding
their escape. Try als&a = 6:1, though that might
be too thin and require some magnification. The initial
conditions can be randomly chosen, but need not -
actually a clearer picture is obtained by systematic scan
through regions of interest.

Pinball stability. Add to your exercise3.1 pinball
simulator a routine that computes the thg?2?Jacobian
matrix. To be able to compare with the numerical
results of coming chapters, work witRa = 6 andor
2.5 values.

Stadium billiard. Consider theBunimovich
stadium [9, 10] defined in figure8.1. The fundamental

8.5.

8.6.

A shift must always be followed bk = 1,2,3,---
bounces along a semicircle, hence the natural
symbolic dynamics for this problem isary, with the
corresponding fundamental matrix given by shear (
the eigenvalues remain equal to 1 throughout the whole
rotation), andk bounces inside a circle lead to

K= (_1)k( -2k-1 2kcosg )

2k/cosp 2k-1 (8.13)

The fundamental matrix of a cycfeof lengthn,, is given

by
1 0
nre 1

Adopt your pinball simulator to the stadium billiard.

Np

Jp = (=1)x™ I_l( é le_(

k=1

) . (8.14)

A test of your pinball smulator. Test your
exercise3.3pinball simulator by computing numerically
cycle stabilities by tracking distances to nearby orbits.
Compare your result with the exact analytic formulas of
exercised.3and9.4.

Birkhoff coordinates. Prove that the Birkhfd
coordinates are phase space volume preserving.
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