Chapter 8

Billiards

grapple with both numerically and conceptually, is the dyits of billiards.
For billiards, discrete time is altogether natural; a pétimoving through
a billiard sufers a sequence of instantaneous kicks, and executes simfitnm
in between, so there is no need to contrive a Poincaré secile have already
used this system in sect.3 as the intuitively most accessible example of chaos.
Here we define billiard dynamics more precisely, anticipathe applications to
come.

THE pynamics that we have the best intuitive grasp on, and find easiest to

8.1 Billiard dynamics

A billiard is defined by a connected regi@ c RP, with boundarydQ c RP-*
separatingQ from its complemen®RP \ Q. The regionQ can consist of one
compact, finite volume component (in which case the billiplthse space is
bounded, as for the stadium billiard figugel), or can be infinite in extent, with
its complementRP \ Q consisting of one or several finite or infinite volume
components (in which case the phase space is open, as fodtbk ginball game
figure 1.1). In what follows we shall most often restrict our attentionplanar
billiards.

A point particle of massnand momentunp, = mv,, moves freely within the
billiard, along a straight line, until it encounters the hdary. There it reflects
specularly ¢pecular = mirrorlike), with no change in the tangential component
of momentum, and instantaneous reversal of the momenturpaeent normal to
the boundary,

P =p-2(p- AN, (8.1)

with f the unit vector normal to the bounda®( at the collision point. The angle
of incidence equals the angle of reflection, as illustratefibure8.2. A billiard is
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Figure 81: The stadium billiard is a 2-
dimensional domain bounded by two semi-circles
of radiusd = 1 connected by two straight walls
of length 2. At the points where the straight
walls meet the semi-circles, the curvature of the
border changes discontinuously; these are the only
singular points of the flow. The lengéhs the only
parameter.

Figure 8.2: (a) A planar billiard trajectory is fixed
by specifying the perimeter length parametrized
by s and the outgoing trajectory anglg both
measured counterclockwise with respect to th
outward normah’ (b) The Birkhdf phase space
coordinate pairg p) fully specifies the trajectory,
wherep = |p|sing is the momentum component
tangential to the boundary As the pinball kinetic
energy is conserved in elastic scattering, the
pinball mass and the magnitude of the pinball
momentum are customarily setro= |p| = 1. (a)

" )

a Hamiltonian system with al2dimensional phase spage= (g, p) and potential
V(q) =0forge Q,V(q) = o for g € dQ.

A billiard flow has a natural Poincaré section defined by Bafk coordinates
Sy, the arc length position of theth bounce measured along the billiard boundary,
and p, = |plsing,, the momentum component parallel to the boundary, where
¢n is the angle between the outgoing trajectory and the norontile boundary.
We measure both the arc lengihand the parallel momentumcounterclockwise
relative to the outward normal (see figuBe2 as well as figure3.3). InD = 2,
the Poincaré section is a cylinder (topologically an ansylfigure8.3, where the
parallel momentunp ranges for—|p| to |pl, and thes coordinate is cyclic along
each connected componeni®. The volume in the full phase space is preserved
by the Liouville theorem{.32. The Birkhdt coordinatesx = (s, p) € P, are
the natural choice, because with them the the Poincarénretap preserves the
phase space volume in thg p) parameterize Poincaré section (a perfectly good

coordinate setg ¢) does not do that). [exercise 8.6]

Without loss of generality we set = V| = |p| = 1. Poincaré section condition®*" 2!

eliminates one dimension, and the energy conservipioa 1 eliminates another,
so the Poincaré section return mRjs (2D — 2)-dimensional.

The dynamics is given by the Poincaré return map

P2 (Sn, Pn) = (Sne1, Posa) (8.2)
from thenth collision to the § + 1)st collision. The discrete time dynamics map
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1
Figure 83: In D = 2 the billiard Poincaré section
is a cylinder, with the parallel momentumranging pg
over p € {-1,1}, and with thes coordinate is cyclic

along each connected componend@. The rectangle

figure 8.2 (b) is such cylinder unfolded, with periodic ~
boundary conditions glueing together the left and the
right edge of the rectangle. —

1 s/

-1

P is equivalent to the Hamiltonian flows () in the sense that both describe the
same full trajectory. Let, denote the instant afth collision. Then the position
of the pinballe Q at timet, + 7 < ty;1 is given by D - 2 Poincaré section
coordinates $,, pn) € P together withr, the distance reached by the pinball along
thenth section of its trajectory.

Example 8.1 3-disk game of pinball: In case of bounces off a circular disk, the
position coordinate s = r is given by angle 6 € [0,2x]. For example, for the 3-disk
game of pinball of figure 1.6 and figure 3.3 we have two types of collisions:
= —¢ + 2arcsi
Po : ¢ o+ aa _csmp back-reflection (8.3)
p =-p+ gsing’
' = ¢ —2arcsinp + 2r/3
p, ;| ¥ =0~ 2arcsinp+2n/ reflect to 3rd disk. (8.4)
P =p-gsing’

Here a = radius of a disk, and R = center-to-center separation. Actually, as in this
example we are computing intersections of circles and straight lines, nothing more
than high-school geometry is required. There is no need to compute arcsinis either -
one only needs to compute a square root per each reflection, and the simulations can
be very fast.

Trajectory of the pinball in the 3-disk billiard is generated by a series of Py’s and
P1's. At each step on has to check whether the trajectory intersects the desired disk
(and no disk inbetween). With minor modifications, the above formulas are valid for any
smooth billiard as long as we replace a by the local curvature of the boundary at the

[exercise 8.1]

[exercise 8.2]

point of collision.

8.2 Stability of billiards

We turn next to the question of local stability of discretaei billiard systems.
Infinitesimal equations of variationst.¢) do not apply, but the multiplicative
structure ¢.44) of the finite-time fundamental matrices does. As they areemo
physical than most maps studied by dynamicists, let us watktlee billiard
stability in some detail.

On the face of it, a plane billiard phase space is 4-dimeasidtiowever, one
dimension can be eliminated by energy conservation, anotties by the fact that
the magnitude of the velocity is constant. We shall now show foing to a local
frame of motion leads to a {2] fundamental matrix.

billiards - 24apr2005.tex

CHAPTER 8. BILLIARDS 123

Consider a 2-dimensional billiard with phase space coatdsx = (q1, 02, P1, P2)-
Let tx be the instant of th&th collision of the pinball with the billiard boundary,
andty = tx = ¢, € positive and infinitesimal. With the mass and the velocityatq
to 1, the momentum direction can be specified by afgle= (qi, g, Sind, cosb).
Now parametrize the 8-neighborhood of a trajectory segmentdy = (6z 66),
where

6z = 601 cosh — 6gz sind , (8.5)

66is the variation in the direction of the pinball motion. Doeshergy conservation,
there is no need to keep track &, variation along the flow, as that remains
constant. §g;, 6cp) is the coordinate variation transverse to ktiesegment of the
flow. From the Hamilton’s equations of motion for a free paedg;/dt = py,
dp;/dt = 0, we obtain the equations of motiof {) for the linearized neighborhood

d d
F00=0. Joz=00. (8.6)

Let 66k = 66(t)) andéz = 5z(t;) be the local coordinates immediately after the
kth collision, andsg, = 66(t,), 6z, = dz(t,) immediately before. Integrating the
free flight fromt,_, to t, we obtain

0z, = 0Zc1+ TkObk-1, Tk =t —ta
56, 561, (8.7)

and the fundamental matri¥ @3 for thekth free flight segment is

M (%) :( 5 ) 8.8)

At incidence anglepy (the angle between the outgoing particle and the outgoing
normal to the billiard edge), the incoming transverse anmesz, projects onto an
arc on the billiard boundary of lengtiz, / cos¢x. The corresponding incidence
angle variations¢x = §7 /pk CoS¢, px = local radius of curvature, increases the
angular spread to

8% = —0Z
2
6 = -0 - —o7, 8.9
« K picosgx % 9
so the fundamental matrix associated with the reflection is

Lo ) . 2 (8.10)

MR(xk)=—( R
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Figure 8.4: Defocusing of a beam of nearby
trajectories at a billiard collision. (A. Wirzba)

The full fundamental matrix fon, consecutive bounces describes a beam of
trajectories defocused it along the free flight (thex terms below) and defocuseefocused

at reflections byMg (thery terms below) [exercise 8.4]

Mp = (-1)" ﬁ( 5w )( rlk 2) (8.11)

k=np

wherery is the flight time of thekth free-flight segment of the orbity, = 2/ cosgx
is the defocusing due to theh reflection, ancpy is the radius of curvature of
the billiard boundary at th&th scattering point (for our 3-disk game of pinball,
p = 1). As the billiard dynamics is phase space volume presgndetM = 1,
and the eigenvalues are given byZ2).

This is still another example of the fundamental matrix nhaile @.51) for
discrete time systems, rather similar to the Henon maglisgalat.52). Stability of
every flight segment or reflection taken alone is a shear withunit eigenvalues,

_ 1 7 _ 10
detMt = det( 0 1 ) , detMg = det( ne 1 ) R (8.12)

but acting in concert in the intervowen sequer&é {) they can lead to a hyperbolic

deformation of the infinitesimal neighborhood of a billidréjectory. )
[exercise 9.3]

As a concrete application, consider the 3-disk pinball esysbf sect.1.3.
Analytic expressions for the lengths and eigenvalues, @fand10 cycles follow
from elementary geometrical considerations.  Longer syabgjuire numerical

) - . ise 9.4
evaluation by methods such as those described in chapter [exercise 9.4]

[exercise 8.3]
[chapter 12]

Résumé

A particulary natural application of the Poincaré sectioethod is the reduction
of a billiard flow to a boundary-to-boundary return map.
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Commentary

Remark 8.1 Billiards.  The 3-disk game of pinball is to chaotic dynamics what a

pendulum s to integrable systems; the simplest physicahgte that captures the essence

of chaos. Another contender for the title of the ‘harmoniciketor of chaos’ is the baker’s

map which is used as the red thread through Ott’s introdnd¢tiachaotic dynamicsifj.

The baker’'s map is the simplest reversible dynamical systémsh is hyperbolic and

has positive entropy. We will not have much use for the bakesxap here, as due to its

piecewise linearity itis so nongeneric that it misses athefsubtleties of cycle expansions

curvature corrections that will be central to this treatise ,

[chapter 18]

That the 3-disk game of pinball is a quintessential exampléeterministic chaos

appears to have been first noted by B. Eckhatilt [The model was studied in depth

classically, semiclassically and quantum mechanicallPb§aspard and S.A. Ricé][

and used by P. Cvitanovic and B. Eckhard} fo demonstrate applicability of cycle

expansions to quantum mechanical problems. It has beentais¢ddy the higher order

h corrections to the Gutzwiller quantization by P. Gaspard BnAlonso Ramirezf],

construct semiclassical evolution operators and entietspl determinants by P. Cvitanovit

and G. Vattay §], and incorporate the firaction dfects into the periodic orbit theory by

G. Vattay, A. Wirzba and P.E. Rosenqvisf.] Gaspard’s monograpi], which we

warmly recommend, utilizes the 3-disk system in much mopghdthan will be attained

here. For further links checkhaosBook. org.

A pinball game does miss a number of important aspects oftictdymamics: generic
bifurcations in smooth flows, the interplay between regiohstability and regions of
chaos, intermittency phenomena, and the renormalizatiory of the ‘border of order’
between these regions. To study these we shall have to facenupch harder challenge,
dynamics of smooth flows.

Nevertheless, pinball scattering is relevant to smootbm@ils. The game of pinball
may be thought of as the infinite potential wall limit of a srtfopotential, and pinball
symbolic dynamics can serve asavering symbolic dynamics in smooth potentials. One
may start with the infinite wall limit and adiabatically r&lan unstable cycle onto the
corresponding one for the potential under investigationf things go well, the cycle
will remain unstable and isolated, no new orbits (unaccedifdr by the pinball symbolic
dynamics) will be born, and the lost orbits will be accourf@tby a set of pruning rules.
The validity of this adiabatic approach has to be checkeeffally in each application, as
things can easily go wrong; for example, near a bifurcati@nsame naive symbol string
assignments can refer to a whole island of distinct periodiéts.

[section 27.1]

Remark 8.2 Stability analysis. The chapter 1 of Gaspard monograghi§ recommended
reading if you are interested in Hamiltonian flows, and ailiis in particular. A. Wirzba
has generalized the stability analysis of s&c®.to scattering & 3-dimensional spheres
(follow the links in ChaosBook.org/extras). A clear discussion of linear stability for
the generatl-dimensional case is given in Gaspa#{l fect. 1.4.

Exercises
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. A pinball simulator.

Implement the disk— disk
maps to compute a trajectory of a pinball for a
given starting point, and a giveRa = (center-to-
center distance):(disk radius) ratio for a 3-disk system.
As this requires only computation of intersections of
lines and circles together with specular reflections,
implementation should be within reach of a high-school
student. Please start working on this program now;
it will be continually expanded in chapters to come,
incorporating the Jacobian calculations, Newton root—
finding, and so on.

Fast code will use elementary geometry (only one
/-~ per iteration, rest are multiplications) and eschew
trigonometric functions. Provide a graphic display of
the trajectories and of the Poincaré section iterates. To
be able to compare with the numerical results of coming
chapters, work witliR:a = 6 andor 2.5 values. Draw the
correct versions of figurg.9or figure10.4for Ra= 2.5
andor 6.

Trapped orbits.  Shoot 100,000 trajectories from one
of the disks, and trace out the strips of figur® for
various R:ia by color coding the initial points in the
Poincaré section by the number of bounces preceding
their escape. Try als&a = 6:1, though that might
be too thin and require some magnification. The initial
conditions can be randomly chosen, but need not -
actually a clearer picture is obtained by systematic scan
through regions of interest.

Pinball stability. Add to your exercise3.1 pinball
simulator a routine that computes the the22Jacobian
matrix. To be able to compare with the numerical
results of coming chapters, work wifRa = 6 andor
2.5 values.

Stadium billiard. Consider theBunimovich
stadium [9, 10] defined in figure8.1 The fundamental
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8.5.

8.6.
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matrix associated with the reflection is given y10.
Here we takey = —1 for the semicircle sections of the
boundary, and cag remains constant for all bounces
in a rotation sequence. The time of flight between two
semicircle bounces isx = 2cospk. The fundamental
matrix of one semicircle reflection folowed by the flight
to the next bounce is

1 2cosp 1 0
J = (‘1)( o 1" )( —2/ cossx 1)
_ -3 2 cosp
= (‘1)( 2cosh 1 )

A shift must always be followed bk = 1,2,3,---
bounces along a semicircle, hence the natural
symbolic dynamics for this problem isary, with the
corresponding fundamental matrix given by shear (
the eigenvalues remain equal to 1 throughout the whole
rotation), and bounces inside a circle lead to

K _ [ —2k—-1 2kcosp
F=(1) ( oK/ cosp k-1 (8.13)
The fundamental matrix of a cycfeof lengthn, is given
by
LY 1 0
— (_1)2"k Tk
Jp= (-1 Dl( 1 )( L 1)- (8.14)

Adopt your pinball simulator to the stadium billiard.

A test of your pinball simulator. Test your
exercise3.3pinball simulator by computing numerically
cycle stabilities by tracking distances to nearby orbits.
Compare your result with the exact analytic formulas of
exercised.3and9.4.

Birkhoff coordinates. Prove that the Birkh®
coordinates are phase space volume preserving.
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