
Chapter 15

Averaging

For it, the mystic evolution;
Not the right only justified
– what we call evil also justified.

—Walt Whitman,
Leaves of Grass: Song of the Universal

W   the necessity of studying the averages of observables in
chaotic dynamics, and then cast the formulas for averages ina multiplicative
form that motivates the introduction of evolution operators and further

formal developments to come. The main result is that anydynamicalaverage
measurable in a chaotic system can be extracted from the spectrum of an appropriately
constructed evolution operator. In order to keep our toes closer to the ground,
in sect.15.3 we try out the formalism on the first quantitative diagnosis that a
system’s got chaos, Lyapunov exponents.

15.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible, as any finitely specified
initial condition, no matter how precise, will fill out the entire accessible state
space. Hence for chaotic dynamics one cannot follow individual trajectories for a
long time; what is attainable is a description of the geometry of the set of possible
outcomes, and evaluation of long time averages. Examples ofsuch averages are
transport coefficients for chaotic dynamical flows, such as escape rate, meandrift
and diffusion rate; power spectra; and a host of mathematical constructs such
as generalized dimensions, entropies and Lyapunov exponents. Here we outline
how such averages are evaluated within the evolution operator framework. The
key idea is to replace the expectation values of observablesby the expectation
values of generating functionals. This associates an evolution operator with a
given observable, and relates the expectation value of the observable to the leading
eigenvalue of the evolution operator.
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15.1.1 Time averages

Let a = a(x) be anyobservable, a function that associates to each point in state
space a number, a vector, or a tensor. The observable reportson a property of
the dynamical system. It is a device, such as a thermometer orlaser Doppler
velocitometer. The device itself does not change during themeasurement. The
velocity field ai(x) = vi(x) is an example of a vector observable; the length of
this vector, or perhaps a temperature measured in an experiment at instantτ are
examples of scalar observables. We define theintegrated observable At as the
time integral of the observablea evaluated along the trajectory of the initial point
x0,

At(x0) =
∫ t

0
dτa( f τ(x0)) . (15.1)

If the dynamics is given by an iterated mapping and the time isdiscrete,t → n,
the integrated observable is given by

An(x0) =
n−1
∑

k=0

a( f k(x0)) (15.2)

(we suppress possible vectorial indices for the time being).

Example 15.1 Integrated observables. If the observable is the velocity, ai(x) =
vi(x), its time integral At

i(x0) is the trajectory At
i(x0) = xi(t).

For Hamiltonian flows the action associated with a trajectory x(t) = [q(t), p(t)]
passing through a phase space point x0 = [q(0), p(0)] is:

At(x0) =
∫ t

0
dτ q̇(τ) · p(τ) . (15.3)

Thetime averageof the observable along a trajectory is defined by

a(x0) = lim
t→∞

1
t
At(x0) . (15.4)

If a does not behave too wildly as a function of time – for example,if ai(x) is the
Chicago temperature, bounded between−80oF and+130oF for all times –At(x0)
is expected to grow not faster thant, and the limit (15.4) exists. For an example
of a time average - the Lyapunov exponent - see sect.15.3.

The time average depends on the trajectory, but not on the initial point on that
trajectory: if we start at a later state space pointf T(x0) we get a couple of extra
finite contributions that vanish in thet → ∞ limit:

a( f T (x0)) = lim
t→∞

1
t

∫ t+T

T
dτa( f τ(x0))

= a(x0) − lim
t→∞

1
t

(∫ T

0
dτa( f τ(x0)) −

∫ t+T

t
dτa( f τ(x0))

)

= a(x0) .
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Figure 15.1: (a) A typical chaotic trajectory
explores the phase space with the long time
visitation frequency building up the natural
measureρ0(x). (b) time average evaluated along
an atypical trajectory such as a periodic orbit
fails to explore the entire accessible state space.
(A. Johansen) (a)

x

M (b)

The integrated observableAt(x0) and the time averagea(x0) take a particularly
simple form when evaluated on a periodic orbit. Define

[exercise 4.6]

flows: Ap = apTp =

∫ Tp

0
dτa

(

f τ(x0)
)

, x0 ∈ p

maps: = apnp =

np−1
∑

i=0

a
(

f i(x0)
)

, (15.5)

where p is a prime cycle,Tp is its period, andnp is its discrete time period in
the case of iterated map dynamics.Ap is a loop integral of the observable along
a single traversal of a prime cyclep, so it is an intrinsic property of the cycle,
independent of the starting pointx0 ∈ p. (If the observablea is not a scalar but a
vector or matrix we might have to be more careful in defining anaverage which
is independent of the starting point on the cycle). If the trajectory retraces itself
r times, we just obtainAp repeatedr times. Evaluation of the asymptotic time
average (15.4) requires therefore only a single traversal of the cycle:

ap = Ap/Tp . (15.6)

However,a(x0) is in general a wild function ofx0; for a hyperbolic system
ergodic with respect to a smooth measure, it takes the same value 〈a〉 for almost
all initial x0, but a different value (15.6) on any periodic orbit, i.e., on a dense set of
points (figure15.1(b)). For example, for an open system such as the Sinai gas of
sect.24.1 (an infinite 2-dimensional periodic array of scattering disks) the phase

[chapter 24]
space is dense with initial points that correspond to periodic runaway trajectories.
The mean distance squared traversed by any such trajectory grows asx(t)2 ∼

t2, and its contribution to the diffusion rateD ≈ x(t)2/t, (15.4) evaluated with
a(x) = x(t)2, diverges. Seemingly there is a paradox; even though intuition says
the typical motion should be diffusive, we have an infinity of ballistic trajectories.

For chaotic dynamical systems, this paradox is resolved by robust averaging,
i.e., averaging also over the initialx, and worrying about the measure of the
“pathological” trajectories.

15.1.2 Space averages

Thespace averageof a quantitya that may depend on the pointx of state space
M and on the timet is given by thed-dimensional integral over thed coordinates
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of the dynamical system:

〈a〉(t) =
1
|M|

∫

M

dx a( f t(x))

|M| =

∫

M

dx = volume ofM . (15.7)

The spaceM is assumed to have finite dimension and volume (open systems like
the 3-disk game of pinball are discussed in sect.15.1.3).

What is it wereally do in experiments? We cannot measure the time average
(15.4), as there is no way to prepare a single initial condition with infinite precision.
The best we can do is to prepare some initial densityρ(x) perhaps concentrated
on some small (but always finite) neighborhoodρ(x) = ρ(x, 0), so one should
abandon the uniform space average (15.7), and consider instead

〈a〉ρ(t) =
1
|M|

∫

M

dxρ(x)a( f t(x)) . (15.8)

We do not bother to lug the initialρ(x) around, as for the ergodic and mixing
systems that we shall consider hereany smooth initial density will tend to the
asymptotic natural measuret → ∞ limit ρ(x, t) → ρ0(x), so we can just as well
take the initialρ(x) = const. The worst we can do is to start out withρ(x) = const.,
as in (15.7); so let us take this case and define theexpectation value〈a〉 of an
observablea to be the asymptotic time and space average over the state spaceM

〈a〉 = lim
t→∞

1
|M|

∫

M

dx
1
t

∫ t

0
dτa( f τ(x)) . (15.9)

We use the same〈· · ·〉 notation as for the space average (15.7), and distinguish the
two by the presence of the time variable in the argument: if the quantity〈a〉(t)
being averaged depends on time, then it is a space average, ifit does not, it is the
expectation value〈a〉.

The expectation value is a space average of time averages, with everyx ∈ M
used as a starting point of a time average. The advantage of averaging over space is
that it smears over the starting points which were problematic for the time average
(like the periodic points). While easy to define, the expectation value〈a〉 turns
out not to be particularly tractable in practice. Here comesa simple idea that
is the basis of all that follows: Such averages are more conveniently studied by
investigating instead of〈a〉 the space averages of form

〈

eβ·A
t〉

=
1
|M|

∫

M

dx eβ·A
t(x). (15.10)

In the present contextβ is an auxiliary variable of no particular physical significance.
In most applicationsβ is a scalar, but if the observable is ad-dimensional vector

average - 13jun2008.tex



CHAPTER 15. AVERAGING 258

ai(x) ∈ Rd, thenβ is a conjugate vectorβ ∈ Rd; if the observable is ad× d tensor,
β is also a rank-2 tensor, and so on. Here we will mostly limit the considerations
to scalar values ofβ.

If the limit a(x0) for the time average (15.4) exists for “almost all” initialx0

and the system is ergodic and mixing (in the sense of sect.1.3.1), we expect
the time average along almost all trajectories to tend to thesame valuea, and the
integrated observableAt to tend tota. The space average (15.10) is an integral over
exponentials, and such integral also grows exponentially with time. So ast → ∞
we would expect the space average of

〈

exp(β · At)
〉

itself to grow exponentially
with time

〈

eβ·A
t〉

∝ ets(β) ,

and its rate of growth to go to a limit

s(β) = lim
t→∞

1
t

ln
〈

eβ·A
t〉

. (15.11)

Now we understand one reason for why it is smarter to compute
〈

exp(β · At)
〉

rather than〈a〉: the expectation value of the observable (15.9) and the moments of
the integrated observable (15.1) can be computed by evaluating the derivatives of
s(β)

∂s
∂β

∣

∣

∣

∣

∣

β=0
= lim

t→∞

1
t

〈

At
〉

= 〈a〉 ,

∂2s

∂β2

∣

∣

∣

∣

∣

∣

β=0

= lim
t→∞

1
t

(〈

AtAt
〉

−
〈

At
〉 〈

At
〉)

= lim
t→∞

1
t

〈

(At − t 〈a〉)2
〉

,

(15.12)

and so forth. We have written out the formulas for a scalar observable; the vector
[exercise 15.2]

case is worked out in the exercise15.2. If we can compute the functions(β), we
have the desired expectation value without having to estimate any infinite time
limits from finite time data.

Suppose we could evaluates(β) and its derivatives. What are such formulas
good for? A typical application is to the problem of describing a particle scattering
elastically off a 2-dimensional triangular array of disks. If the disks are sufficiently
large to block any infinite length free flights, the particle will diffuse chaotically,
and the transport coefficient of interest is the diffusion constant given by

〈

x(t)2
〉

≈

4Dt. In contrast toD estimated numerically from trajectoriesx(t) for finite but
large t, the above formulas yield the asymptoticD without any extrapolations to
the t → ∞ limit. For example, forai = vi and zero mean drift〈vi〉 = 0, in d
dimensions the diffusion constant is given by the curvature ofs(β) atβ = 0,

D = lim
t→∞

1
2dt

〈

x(t)2
〉

=
1
2d

d
∑

i=1

∂2s

∂β2
i

∣

∣

∣

∣

∣

∣

β=0

, (15.13)
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[section 24.1]

so if we can evaluate derivatives ofs(β), we can compute transport coefficients
that characterize deterministic diffusion. As we shall see in chapter24, periodic
orbit theory yields an explicit closed form expression forD.

fast track:

sect. 15.2, p. 261

15.1.3 Averaging in open systems

If the M is a compact region or set of regions to which the dynamics
is confined for all times, (15.9) is a sensible definition of the expectation value.
However, if the trajectories can exitM without ever returning,

∫

M

dyδ(y− f t(x0)) = 0 for t > texit , x0 ∈ M ,

we might be in trouble. In particular, for a repeller the trajectory f t(x0) will
eventually leave the regionM, unless the initial pointx0 is on the repeller, so
the identity

∫

M

dyδ(y− f t(x0)) = 1 , t > 0 , iff x0 ∈ non–wandering set (15.14)

might apply only to a fractal subset of initial points a set ofzero Lebesgue measure.
Clearly, for open systems we need to modify the definition of the expectation value
to restrict it to the dynamics on the non–wandering set, the set of trajectories which
are confined for all times.

Note byM a state space region that encloses all interesting initial points, say
the 3-disk Poincaré section constructed from the disk boundaries and all possible
incidence angles, and denote by|M| the volume ofM. The volume of the state
space containing all trajectories which start out within the state space regionM
and recur within that region at the timet

|M(t)| =
∫

M

dxdyδ
(

y− f t(x)
)

∼ |M|e−γt (15.15)

is expected to decrease exponentially, with the escape rateγ. The integral over
[section 1.4.3]

x takes care of all possible initial points; the integral overy checks whether their
trajectories are still withinM by the timet. For example, any trajectory that falls

[section 20.1]
off the pinball table in figure1.1 is gone for good.

The non–wandering set can be very difficult object to describe; but for any
finite time we can construct a normalized measure from the finite-time covering
volume (15.15), by redefining the space average (15.10) as
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Figure 15.2: A piecewise-linear repeller (15.17): All
trajectories that land in the gap between thef0 and f1
branches escape (Λ0 = 4,Λ1 = −2).

0 0.5 1

x

0

0.5

1

f(x)

〈

eβ·A
t〉

=

∫

M

dx
1
|M(t)|

eβ·A
t(x) ∼

1
|M|

∫

M

dx eβ·A
t(x)+γt . (15.16)

in order to compensate for the exponential decrease of the number of surviving
trajectories in an open system with the exponentially growing factoreγt. What
does this mean? Once we have computedγ we can replenish the density lost to
escaping trajectories, by pumping ineγt in such a way that the overall measure is
correctly normalized at all times,〈1〉 = 1.

Example 15.2 A piecewise-linear repeller: (continuation of example 14.1) What is
gained by reformulating the dynamics in terms of “operators?” We start by considering
a simple example in which the operator is a [2×2] matrix. Assume the expanding 1-d
map f (x) of figure 15.2, a piecewise-linear 2–branch repeller with slopes Λ0 > 1 and
Λ1 < −1 :

f (x) =



















f0 = Λ0x if x ∈ M0 = [0, 1/Λ0]

f1 = Λ1(x− 1) if x ∈ M1 = [1 + 1/Λ1, 1]
. (15.17)

Both f (M0) and f (M1) map onto the entire unit interval M = [0, 1]. Assume a
piecewise constant density

ρ(x) =

{

ρ0 if x ∈ M0
ρ1 if x ∈ M1

. (15.18)

There is no need to define ρ(x) in the gap betweenM0 andM1, as any point that lands
in the gap escapes.

The physical motivation for studying this kind of mapping is the pinball game: f
is the simplest model for the pinball escape, figure 1.8, with f0 and f1 modelling its two
strips of survivors.

As can be easily checked using (14.9), the Perron-Frobenius operator acts on
this piecewise constant function as a [2×2] “transfer” matrix with matrix elements

[exercise 14.1]

[exercise 14.5](

ρ0

ρ1

)

→ Lρ =

( 1
|Λ0|

1
|Λ1|

1
|Λ0|

1
|Λ1|

) (

ρ0

ρ1

)

, (15.19)

stretching both ρ0 and ρ1 over the whole unit interval Λ, and decreasing the density
at every iteration. In this example the density is constant after one iteration, so L has
only one non-zero eigenvalue es0 = 1/|Λ0| + 1/|Λ1|, with constant density eigenvector
ρ0 = ρ1. The quantities 1/|Λ0|, 1/|Λ1| are, respectively, the sizes of the |M0|, |M1|
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Figure 15.3: Space averaging pieces together the
time average computed along thet → ∞ trajectory
of figure 15.1 by a space average over infinitely
many shortt trajectory segments starting at all
initial points at once. (A. Johansen)

intervals, so the exact escape rate (1.3) – the log of the fraction of survivors at each
iteration for this linear repeller – is given by the sole eigenvalue of L:

γ = −s0 = − ln(1/|Λ0| + 1/|Λ1|) . (15.20)

Voila! Here is the rationale for introducing operators – in one time step we have solved
the problem of evaluating escape rates at infinite time. This simple explicit matrix
representation of the Perron-Frobenius operator is a consequence of the piecewise
linearity of f , and the restriction of the densities ρ to the space of piecewise constant
functions. The example gives a flavor of the enterprise upon which we are about to
embark in this book, but the full story is much subtler: in general, there will exist no
such finite-dimensional representation for the Perron-Frobenius operator.

We now turn to the problem of evaluating
〈

eβ·A
t〉

.

15.2 Evolution operators

The above simple shift of focus, from studying〈a〉 to studying
〈

exp
(

β · At)〉 is the
key to all that follows. Make the dependence on the flow explicit by rewriting this
quantity as

〈

eβ·A
t〉

=
1
|M|

∫

M

dx
∫

M

dyδ
(

y− f t(x)
)

eβ·A
t(x) . (15.21)

Hereδ
(

y− f t(x)
)

is the Dirac delta function: for a deterministic flow an initial
point x maps into a unique pointy at timet. Formally, all we have done above is
to insert the identity

1 =
∫

M

dyδ
(

y− f t(x)
)

, (15.22)

into (15.10) to make explicit the fact that we are averaging only over thetrajectories
that remain inM for all times. However, having made this substitution we have
replaced the study of individual trajectoriesf t(x) by the study of the evolution of
density ofthe totalityof initial conditions. Instead of trying to extract a temporal
average from an arbitrarily long trajectory which exploresthe phase space ergodically,
we can now probe the entire state space with short (and controllable) finite time
pieces of trajectories originating from every point inM.
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As a matter of fact (and that is why we went to the trouble of defining the
generator (14.27) of infinitesimal transformations of densities)infinitesimallyshort
time evolution can suffice to determine the spectrum and eigenvalues ofLt.

We shall refer to the kernel of the operation (15.21) asLt(y, x).

Lt(y, x) = δ
(

y− f t(x)
)

eβ·A
t(x) . (15.23)

The evolution operator acts on scalar functionsφ(x) as

(y) =
∫

M

dxδ
(

y− f t(x)
)

eβ·A
t(x)φ(x) . (15.24)

In terms of the evolution operator, the space average of the generating function
(15.21) is given by

〈

eβ·A
t〉

= 〈〉 ,

and, if the spectrum of the linear operatorLt can be described, by (15.11) this
limit

s(β) = lim
t→∞

1
t

ln
〈

Lt
〉

.

yields the leading eigenvalue ofs0(β), and, through it, all desired expectation
values (15.12).

The evolution operator is different for different observables, as its definition
depends on the choice of the integrated observableAt in the exponential. Its job
is deliver to us the expectation value ofa, but before showing that it accomplishes
that, we need to verify the semigroup property of evolution operators.

By its definition, the integral over the observablea is additive along the trajectory

x(t1+t2)


x(0)
 = x(0)

x(t1)


+

x(t1+t2)


x(t1)


At1+t2(x0) =
∫ t1

0
dτ +

∫ t1+t2

t1
dτ

= At1(x0) + At2( f t1(x0)) .

[exercise 14.3]

If At(x) is additive along the trajectory, the evolution operator generates a semigroup

[section 14.5]

Lt1+t2(y, x) =
∫

M

dzLt2(y, z)Lt1(z, x) , (15.25)
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Figure 15.4: A long-time numerical calculation
of the leading Lyapunov exponent requires rescaling
the distance in order to keep the nearby trajectory
separation within the linearized flow range. δ  x

  xδ

  xδ

2

x(t )1

1

x(0)

0

x(t )2

as is easily checked by substitution

Lt2Lt1a(y) =
∫

M

dxδ(y− f t2(x))eβ·A
t2(x)(Lt1a)(x) = Lt1+t2a(y) .

This semigroup property is the main reason why (15.21) is preferable to (15.9) as
a starting point for evaluation of dynamical averages: it recasts averaging in form
of operators multiplicative along the flow.

15.3 Lyapunov exponents

(J. Mathiesen and P. Cvitanović)

Let us apply the newly acquired tools to the fundamental diagnostics in this subject:
Is a given system “chaotic”? And if so, how chaotic? If all points in a neighborhood

[example 2.3]
of a trajectory converge toward the same trajectory, the attractor is a fixed point or
a limit cycle. However, if the attractor is strange, any two trajectories

[section 1.3.1]

x(t) = f t(x0) and x(t) + δx(t) = f t(x0 + δx0) (15.26)

that start out very close to each other separate exponentially with time, and in
a finite time their separation attains the size of the accessible state space. This
sensitivity to initial conditionscan be quantified as

|δx(t)| ≈ eλt |δx0| (15.27)

whereλ, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent.

15.3.1 Lyapunov exponent as a time average

We can start out with a smallδxand try to estimateλ from (15.27), but now that we
have quantified the notion of linear stability in chapter4 and defined the dynamical
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Figure 15.5: The symmetric matrix
(

Jt
)T

Jt maps a
swarm of initial points in an infinitesimal spherical
neighborhood ofx0 into a cigar-shaped neighborhood
finite time t later, with semiaxes determined by the
local stretching/shrinking |Λ1|, but local individual
trajectory rotations by the complex phase ofJt ignored.
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x(t)+    x

f (   )
t

time averages in sect.15.1.1, we can do better. The problem with measuring the
growth rate of the distance between two points is that as the points separate, the
measurement is less and less a local measurement. In study ofexperimental time
series this might be the only option, but if we have the equations of motion, a
better way is to measure the growth rate of vectors transverse to a given orbit.

The mean growth rate of the distance|δx(t)|/|δx0| between neighboring trajectories
(15.27) is given by theLyapunov exponent

λ = lim
t→∞

1
t

ln |δx(t)|/|δx0| (15.28)

(For notational brevity we shall often suppress the dependence of quantities such
as λ = λ(x0), δx(t) = δx(x0, t) on the initial point x0 and the timet). One
can take (15.28) as is, take a small initial separationδx0, track distance between
two nearby trajectories until|δx(t1)| gets significantly bigger, then recordt1λ1 =

ln(|δx(t1)|/|δx0|), rescaleδx(t1) by factor|δx0|/|δx(t1)|, and continue add infinitum,
with the leading Lyapunov exponent given by

λ = lim
t→∞

1
t

∑

i

tiλi . (15.29)

However, we can do better. Given the equations of motion and baring numerical
problems (such as evaluating the fundamental matrix (4.43) for high-dimensional
flows), for infinitesimalδx we know theδxi(t)/δx j(0) ratio exactly, as this is by
definition the fundamental matrix (4.43)

lim
δx→0

δxi(t)
δx j(0)

=
∂xi(t)
∂x j(0)

= Jt
i j (x0) ,

so the leading Lyapunov exponent can be computed from the linear approximation
(4.28)

λ = lim
t→∞

1
t

ln

∣

∣

∣Jt(x0)δx0

∣

∣

∣

|δx0|
= lim

t→∞

1
2t

ln
∣

∣

∣

∣

n̂T(

Jt)T Jtn̂
∣

∣

∣

∣

. (15.30)

In this formula the scale of the initial separation drops out, only its orientation
given by the initial orientation unit vector ˆn = δx/|δx| matters. The eigenvalues
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Figure 15.6: A numerical estimate of the leading
Lyapunov exponent for the Rössler flow (2.17) from
the dominant expanding eigenvalue formula (15.30).
The leading Lyapunov exponentλ ≈ 0.09 is positive,
so numerics supports the hypothesis that the Rössler
attractor is strange. (J. Mathiesen)
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of J are either real or come in complex conjugate pairs. AsJ is in general
not symmetric and not diagonalizable, it is more convenientto work with the
symmetric and diagonalizable matrixJ =

(

Jt)T Jt, with real positive eigenvalues
{|Λ1|

2 ≥ . . . ≥ |Λd|
2}, and a complete orthonormal set of eigenvectors of{u1, . . . , ud}.

Expanding the initial orientation ˆn =
∑

(n̂·ui)ui in theJui = ui eigenbasis, we have

n̂TJn̂ =
d

∑

i=1

(n̂ · ui)
2|Λi |

2 = (n̂ · u1)2e2λ1t
(

1+O(e−2(λ1−λ2)t)
)

, (15.31)

wheretλi = ln |Λi(x0, t)|, with exponents ordered byλ1 > λ2 ≥ λ3 · · ·. For long
times the largest Lyapunov exponent dominates exponentially (15.30), provided
the orientation ˆn of the initial separation was not chosen perpendicular to the
dominant expanding eigendirectionu1. The Lyapunov exponent is the time average

λ(x0) = lim
t→∞

1
t

{

ln |n̂ · u1| + ln |Λ1(x0, t)| +O(e−2(λ1−λ2)t)
}

= lim
t→∞

1
t

ln |Λ1(x0, t)| , (15.32)

whereΛ1(x0, t) is the leading eigenvalue ofJt(x0). By choosing the initial displacement
such that ˆn is normal to the first (i-1) eigendirections we can define not only the
leading, but all Lyapunov exponents as well:

λi(x0) = lim
t→∞

1
t

ln |Λi(x0, t)| , i = 1, 2, · · · , d . (15.33)

The leading Lyapunov exponent now follows from the fundamental matrix by
numerical integration of (4.9).

The equations can be integrated accurately for a finite time,hence the infinite
time limit of (15.30) can be only estimated from plots of1

2 ln |n̂TJn̂| as function of
time, such as the figure15.6for the Rössler flow (2.17).

As the local expansion and contraction rates vary along the flow, the temporal
dependence exhibits small and large humps. The sudden fall to a low level is
caused by a close passage to a folding point of the attractor,an illustration of why
numerical evaluation of the Lyapunov exponents, and proving the very existence
of a strange attractor is a very difficult problem. The approximately monotone
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part of the curve can be used (at your own peril) to estimate the leading Lyapunov
exponent by a straight line fit.

As we can already see, we are courting difficulties if we try to calculate the
Lyapunov exponent by using the definition (15.32) directly. First of all, the state
space is dense with atypical trajectories; for example, ifx0 happened to lie on a
periodic orbit p, λ would be simply ln|Λp|/Tp, a local property of cyclep, not
a global property of the dynamical system. Furthermore, even if x0 happens to
be a “generic” state space point, it is still not obvious thatln |Λ(x0, t)|/t should
be converging to anything in particular. In a Hamiltonian system with coexisting
elliptic islands and chaotic regions, a chaotic trajectorygets every so often captured
in the neighborhood of an elliptic island and can stay there for arbitrarily long
time; as there the orbit is nearly stable, during such episode ln|Λ(x0, t)|/t can dip
arbitrarily close to 0+. For state space volume non-preserving flows the trajectory
can traverse locally contracting regions, and ln|Λ(x0, t)|/t can occasionally go
negative; even worse, one never knows whether the asymptotic attractor is periodic
or “strange,” so any finite estimate ofλ might be dead wrong.

[exercise 15.1]

15.3.2 Evolution operator evaluation of Lyapunov exponents

A cure to these problems was offered in sect.15.2. We shall now replace time
averaging along a single trajectory by action of a multiplicative evolution operator
on the entire state space, and extract the Lyapunov exponentfrom its leading
eigenvalue. If the chaotic motion fills the whole state space, we are indeed computing
the asymptotic Lyapunov exponent. If the chaotic motion is transient, leading
eventually to some long attractive cycle, our Lyapunov exponent, computed on
non-wandering set, will characterize the chaotic transient; this is actually what
any experiment would measure, as even very small amount of external noise
will suffice to destabilize a long stable cycle with a minute immediatebasin of
attraction.

Due to the chain rule (4.51) for the derivative of an iterated map, the stability
of a 1-d mapping is multiplicative along the flow, so the integral (15.1) of the
observablea(x) = ln | f ′(x)|, the local trajectory divergence rate, evaluated along
the trajectory ofx0 is additive:

An(x0) = ln
∣

∣

∣ f n′(x0)
∣

∣

∣ =

n−1
∑

k=0

ln
∣

∣

∣ f ′(xk)
∣

∣

∣ . (15.34)

The Lyapunov exponent is then the expectation value (15.9) given by a spatial
integral (15.8) weighted by the natural measure

λ =
〈

ln | f ′(x)|
〉

=

∫

M

dxρ0(x) ln | f ′(x)| . (15.35)

The associated (discrete time) evolution operator (15.23) is

L(y, x) = δ(y− f (x)) eβ ln | f ′(x)| . (15.36)
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Here we have restricted our considerations to 1−d maps, as for higher-dimensional
flows only the fundamental matrices are multiplicative, notthe individual eigenvalues.
Construction of the evolution operator for evaluation of the Lyapunov spectra
in the general case requires more cleverness than warrantedat this stage in the
narrative: an extension of the evolution equations to a flow in the tangent space.

All that remains is to determine the value of the Lyapunov exponent

λ =
〈

ln | f ′(x)|
〉

=
∂s(β)
∂β

∣

∣

∣

∣

∣

β=1
= s′(1) (15.37)

from (15.12), the derivative of the leading eigenvalues0(β) of the evolution oper-
ator (15.36).

[example 18.1]

The only question is: how?

Résum é

The expectation value〈a〉 of an observablea(x) measuredAt(x) =
∫ t

0 dτa(x(τ))
and averaged along the flowx→ f t(x) is given by the derivative

〈a〉 =
∂s
∂β

∣

∣

∣

∣

∣

β=0

of the leading eigenvalueets(β) of the corresponding evolution operatorLt.

Instead of using the Perron-Frobenius operator (14.10) whose leading eigenfunction,
the natural measure, once computed, yields expectation value (14.20) of any observable
a(x), we construct a specific, hand-tailored evolution operator L for each and
every observable. However, by time we arrive to chapter18, the scaffolding

[chapter 18]
will be removed, bothL’s and their eigenfunctions will be gone, and only the
explicit and exact periodic orbit formulas for expectationvalues of observables
will remain.

The next question is: how do we evaluate the eigenvalues ofL? We saw
in example15.2, in the case of piecewise-linear dynamical systems, that these
operators reduce to finite matrices, but for generic smooth flows, they are infinite-
dimensional linear operators, and finding smart ways of computing their eigenvalues
requires some thought. In chapter10we undertook the first step, and replaced the
ad hocpartitioning (14.14) by the intrinsic, topologically invariant partitioning.
In chapter13 we applied this information to our first application of the evolution
operator formalism, evaluation of the topological entropy, the growth rate of the
number of topologically distinct orbits. This small victory will be refashioned
in chapters16 and 17 into a systematic method for computing eigenvalues of
evolution operators in terms of periodic orbits.
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Commentary

Remark 15.1 “Pressure.” The quantity
〈

exp(β · At)
〉

is called a “partition function” by
Ruelle [1]. Mathematicians decorate it with considerably more Greekand Gothic letters
than is the case in this treatise. Ruelle [1] and Bowen [2] had given name “pressure”P(a)
to s(β) (wherea is the observable introduced here in sect.15.1.1), defined by the “large
system” limit (15.11). As we shall apply the theory also to computation of the physical
gas pressure exerted on the walls of a container by a bouncingparticle, we prefer to refer
to s(β) as simply the leading eigenvalue of the evolution operatorintroduced in sect.14.5.
The “convexity” properties such asP(a) ≤ P(|a|) will be pretty obvious consequence of
the definition (15.11). In the case thatL is the Perron-Frobenius operator (14.10), the
eigenvalues{s0(β), s1(β), · · ·} are called theRuelle-Pollicott resonances[3, 4, 5], with the
leading one,s(β) = s0(β) being the one of main physical interest. In order to aid
the reader in digesting the mathematics literature, we shall try to point out the notational
correspondences whenever appropriate. The rigorous formalism is replete with lims, sups,
infs,Ω-sets which are not really essential to understanding of thetheory, and are avoided
in this presentation.

Remark 15.2 Microcanonical ensemble. In statistical mechanics the space average
(15.7) performed over the Hamiltonian system constant energy surface invariant measure
ρ(x)dx= dqdpδ(H(q, p)− E) of volumeω(E) =

∫

M
dqdpδ(H(q, p)− E)

〈a(t)〉 =
1
ω(E)

∫

M

dqdpδ(H(q, p)− E)a(q, p, t) (15.38)

is called themicrocanonical ensemble average.

Remark 15.3 Lyapunov exponents. The Multiplicative Ergodic Theorem of Oseledec [6]
states that the limits (15.30–15.33) exist for almost all pointsx0 and all tangent vectors ˆn.
There are at mostd distinct values ofλ as we let ˆn range over the tangent space. These
are the Lyapunov exponents [8] λi(x0).

There is much literature on numerical computation of the Lyapunov exponents, see
for example refs. [14, 15, 16].

Remark 15.4 State space discretization. Ref. [17] discusses numerical discretizatons
of state space, and construction of Perron-Frobenius operators as stochastic matrices, or
directed weighted graphs, as coarse-grained models of the global dynamics, with transport
rates between state space partitions computed using this matrix of transition probabilities;
a rigorous discussion of some of the former features is included in Ref. [18].

Exercises
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15.1. How unstable is the H́enon attractor?

(a) Evaluate numerically the Lyapunov exponentλ by
iterating the Hénon map

[

x′

y′

]

=

[

1− ax2 + y
bx

]

for a = 1.4, b = 0.3.

(b) Now check how robust is the Lyapunov exponent
for the Hénon attractor? Evaluate numerically the
Lyapunov exponent by iterating the Hénon map
for a = 1.39945219,b = 0.3. How much do
you trust now your result for the part (a) of this
exercise?

15.2. Expectation value of a vector observable.

Check and extend the expectation value formulas
(15.12) by evaluating the derivatives ofs(β) up to 4-th
order for the space average

〈

exp(β · At)
〉

with ai a vector
quantity:

(a)

∂s
∂βi

∣

∣

∣

∣

∣

β=0
= lim

t→∞

1
t

〈

At
i

〉

= 〈ai〉 , (15.39)

(b)

∂2s
∂βi∂β j

∣

∣

∣

∣

∣

∣

β=0

= lim
t→∞

1
t

(〈

At
i A

t
j

〉

−
〈

At
i

〉 〈

At
j

〉)

= lim
t→∞

1
t

〈

(At
i − t 〈ai〉)(At

j − t
〈

a j

〉

)
〉

.(15.40)

Note that the formalism is smart: it automatically
yields thevariance from the mean, rather than
simply the 2nd moment

〈

a2
〉

.

(c) compute the third derivative ofs(β).

(d) compute the fourth derivative assuming that the
mean in (15.39) vanishes,〈ai〉 = 0. The 4-th order
moment formula

K(t) =

〈

x4(t)
〉

〈

x2(t)
〉2
− 3 (15.41)

that you have derived is known askurtosis: it
measures a deviation from what the 4-th order
moment would be were the distribution a pure
Gaussian (see (24.22) for a concrete example).
If the observable is a vector, the kurtosisK(t) is
given by

∑

i j

[〈

AiAiA jA j

〉

+ 2
(〈

AiA j

〉 〈

A jAi

〉

− 〈AiA
(∑

i 〈AiAi〉
)2

15.3. Pinball escape rate from numerical simulation∗.
Estimate the escape rate forR : a = 6 3-disk pinball
by shooting 100,000 randomly initiated pinballs into the
3-disk system and plotting the logarithm of the number
of trapped orbits as function of time. For comparison,
a numerical simulation of ref. [3] yieldsγ = .410. . ..

15.4. Rössler attractor Lyapunov exponents.

(a) Evaluate numerically the expanding Lyapunov
exponentλe of the Rössler attractor (2.17).

(b) Plot your own version of figure15.6. Do not worry
if it looks different, as long as you understand why
your plot looks the way it does. (Remember the
nonuniform contraction/expansion of figure4.3.)

(c) Give your best estimate ofλe. The literature gives
surprisingly inaccurate estimates - see whether
you can do better.

(d) Estimate the contracting Lyapunov exponentλc.
Even though it is much smaller thanλe, a glance
at the stability matrix (4.4) suggests that you can
probably get it by integrating the infinitesimal
volume along a long-time trajectory, as in (4.47).
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