Appendix J

Infinite dimensional operators

(A. Wirzba)

of trace-class and Hilbert-Schmidt matrices, the deteamt over infinite
dimensional matrices and regularization schemes for ogatior operators
which are not of trace-class.

Tms APPENDIX, taken from ref. [], summarizes the definitions and properties

J.1 Matrix-valued functions

(P. Cvitanovit)

As a preliminary we summarize some of the properties of fanst of finite-
dimensional matrices.

The derivative of a matrix is a matrix with elements

dAX)

A = dx ’

, d
A = A (3.1)
Derivatives of products of matrices are evaluated by thénatuge

d dA dB

A matrix and its derivative matrix in general do not commute

d , dA. dA

The derivative of the inverse of a matrix, follows frogg(AA‘l) =0:

d ., 1dA1

741



APPENDIX J. INFINITE DIMENSIONAL OPERATORS 742

A function of a single variable that can be expressed in teasiditions and
multiplications generalizes to a matrix-valued functionrbplacing the variable
by the matrix.

In particular, the exponential of a constant matrix can dendd either by its
series expansion, or as a limit of an infinite product:

SEWN 0
f o= ZHA, AC=1 (3.5)
k=0
= lim (1 1AN (J.6)
B N—oo +N ’

The first equation follows from the second one by the binonhi@abrem, so these
indeed are equivalent definitions. That the terms of of@@i~2) or smaller do
not matter follows from the bound

X—e\N X+ Xy \N X+ e\N
(1+ N)<(1+ N )<(1+ N)’

where|oxn| < €. If lim 6xy — 0 asN — oo, the extra terms do not contribute.

Consider now the determinant
det@) = Jim (det (1 + A/N)N .
To the leading order in/N
1 -2
det(1+A/N) =1+ NtrA+ O(N™).

hence

_ 1 N
dete = IJlmnw(l A+ O(N‘z)) = A 3.7)

Due to non-commutativity of matrices, generalization ofiadtion of several
variables to a function is not as straightforward. Expm@ssnvolving several
matrices depend on their commutation relations. For exejrthe commutator
expansion

e”Be™ =B +t[A,B] + ;[A, [A,B]] + ;[A,[A,[A, BI|] +--- (J.8)

sometimes used to establish the equivalence of the Heigeabe Schrodinger
pictures of quantum mechanics follows by recursive evadnatf t derivatives

g—t (€#Be™) = *[A,Ble™.
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Manipulations of such ilk yield
1
(A+B)N _ A/NGB/N _ -3
€ = € —[A,B] + O(N7°),
szl A- Bl + ON™)
and the Trotter product formula: B, C andA = B + C are matrices, then

& = lim (eMNePNY" (3.9)

N—oo

J.2 Operator norms

(R. Mainieri and P. Cvitanovit)

,
J The limit used in the above definition involves matrices -rapars in
vector spaces - rather than numbers, and its convergencbecahecked using
tools familiar from calculus. We briefly review those tookré, as throughout the
text we will have to consider manyftierent operators and how they converge.

Then — oo convergence of partial products

En= [ ] (1+%A)

0<m<n

can be verified using the Cauchy criterion, which states tthatsequenc¢En}
converges if the dierencegiEx - Ej|| — 0 ask, ] — co. To make sense of this we
need to define a sensible nofim - ||. Norm of a matrix is based on the Euclidean
norm for a vector: the idea is to assign to a malixa norm that is the largest
possible change it can cause to the length of a unit vector ~

M = supliMAll, Al =1. (J.10)
n

We say thafl-|| is the operator norm induced by the vector ndgrfh Constructing
a norm for a finite-dimensional matrix is easy, but hWdeen an operator in an
infinite-dimensional space, we would also have to speciysitacerbelongs to.
In the finite-dimensional case, the sum of the absolute galfithe components of
avector is also a norm; the induced operator norm for a misknixith components
Mij in that case can be defined by

IM]| = miaXZ IMij] . 3.11)
J

The operator normJ(11) and the vector normJ(10 are only rarely distinguished
by different notation, a bit of notational laziness that we shdiialgh
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Now that we have learned how to make sense out of horms of tpgrave

can check that .
[exercise J.1]

e < 1Al 3.12)
[exercise 2.9]

As ||Al|l is a number, the norm of” is finite and therefore well defined. In
particular, the exponential of a matrix is well defined fdnallues oft, and the
linear diferential equation4.10) has a solution for all times.

J.3 Trace class and Hilbert-Schmidt class

This section is mainly an extract from ref][ Refs. [7, 10, 11, 14] should

be consulted for more details and proofs. The trace classHibdrt-Schmidt
property will be defined here for linear, in general non-hiéem operatorsA e
L(H): H —» H (whereH is a separable Hilbert space). The transcription to
matrix elements (used in the prior chapters) is simgly= (¢i, A¢;) where{¢n}

is an orthonormal basis off and(, ) is the inner product ir{ (see sectJ.5
where the theory ofon Koch matrice®f ref. [12] is discussed). So, the trace
is the generalization of the usual notion of the sum of thgatal elements of a
matrix; but because infinite sums are involved, not all ofpesawill have a trace:

Definition:

(@) An operatorA is calledtrace class A € 91, if and only if, for every
orthonormal basiggn}:

D Kn, Agn)l < o0 (9.13)

The family of all trace class operators is denotedfy

(b) An operatorA is calledHilbert-Schmidt, A € 75, if and only if, for every
orthonormal basiggn}:

D IAGIP < oo
n

The family of all Hilbert-Schmidt operators is denoted {py.

Bounded operatorsare dual to trace class operators. They satisfy the theafivifp
condition: [{y, Be)| < C|lyllll¢l| with C < co andy, ¢ € H. If they have eigenvalues,
these are bounded too. The family of bounded operators ety B(H) with
the norm||B|| = supﬁﬂ% for ¢ € H. Examples for bounded operators are
unitary operators and especially the unit matrix. In fagerg bounded operator

can be written as linear combination of four unitary opamato

A bounded operatdC is compactif it is the norm limit of finite rank operators.
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An operatorA is calledpositive A > 0, if (A¢,¢) > 0 V¢ € H. Notice that
ATA > 0. We defindA| = VATA.

The most important properties of the trace and Hilbert-Sdhiiasses are
summarized in (see refs/,[9]):

(@ g1 and 7, are xideals., i.e., they are vector spaces closed under scalar

multiplication, sums, adjoints, and multiplication witbunded operators.
(b) A e gJiifandonlyif A =BCwith B,C € J>.
(c) J1c J» c Compact operators.

(d) For any operatoA, we haveA € 7> if 3, [|A¢nll* < o for a single basis.
For any operatoA > 0 we haveA € J1 if 3, {én, Adn)| < oo for a single
basis.

(e) If Ae g1, Tr(A) = X{¢n, Agn) is independent of the basis used.

(f) Tris linear and obeys TA") = Tr(A); Tr(AB) = Tr(BA) if either A € J1
andB bounded A bounded an® € 7, or bothA, B € 5.

(9) J» endowed with the inner produ¢f, B), = Tr(AB) is a Hilbert space.
If |All2 = [Tr(A*A)]%, then||All> > ||Al| and 7> is the]|| ||>-closure of the
finite rank operators.

(h) g1 endowed with the norriA|l; = Tr( VATA) is a Banach spacelA||; >
IAll2 > Al and 77 is the|| ||:-norm closure of théiniterank operators. The
dual space aff; is B(H), the family of bounded operators with the duality
(B,A) = Tr(BA).

(i) If A,B € 92, then||ABJl1 < [|All2lBll2. If A € 92 andB € B(H), then
IABIl2 < [IAll2][B]|. If A € g1 andB € B(H), then||AB||1 < [|A[l1]B]|-

Note the most important property for proving that an operetdrace class is the
decompositior{b) into two Hilbert-Schmidt ones, as the Hilbert-Schmidt prdp
can easily be verified in one single orthonormal basis (s@e Property(e)
ensures then that the trace is the same in any basis. Pesggajtand(f) show
that trace class operators behave in complete analogy te fiank operators.
The proof whether a matrix is trace-class (or Hilbert-Satindr not simplifies
enormously for diagonal matrices, as then the second papragerty (d) is
directly applicable: just the moduli of the eigenvalues {adn case of Hilbert-
Schmidt — the squares of the eigenvalues) have to be summearger to answer
that question. A good strategy in checking the trace-classacter of a general
matrix A is therefore the decomposition of that matrix into two nwasiB and

C where one, sa¥, should be chosen to be diagonal and either just barely of

Hilbert-Schmidt character leaving enough freedom for @stmerB or of trace-
class character such that one only has to show the boundefimés
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J.4 Determinants of trace class operators

This section is mainly based on ref§, [L0] which should be consulted for more
details and proofs. See also refs1[14].

Pre-definitions (Alternating algebra and Fock spaces):
Given a Hilbert spacegH, ®"H is defined as the vector space of multi-linear

functionals onH with ¢1 ® --- ® ¢ € ®"H in caseps,...,¢n € H. A"(H)
is defined as the subspace®¥H spanned by the wedge-product

bLA Agn=—= D @) ® - @ b))

1
\/m ePn

where®,, is the group of all permutations of letters ande(r) = +1 depending
on whetherr is an even or odd permutation, respectively. The inner prootu
A"(H) is given by

(@1 A A A~ An) = det{(gi, 7))

where defaij} = Y ep, €(m)arr) - - - @) A"(A) is defined as functor (a functor
satisfies/\"(AB) = A"(A) A"(B)) on A"(H) with

NP @A Adn) = Ady A A Agy.

Whenn = 0, \"(H) is defined to beC and A"(A) as 1:.C — C.

Properties: If A trace class, i.eA € g1, then for anyk, Ak(A) is trace class, and
for any orthonormal basig,} the cumulant

Tf(/\k(A)) = >0 (B A A G (Agi A AAG) < oo

i1<---<ik

is independent of the basis (with the understanding thaf&) = 1).

Definition: LetA € 1, then det (1+ A) is defined as
= k
det@L+A) = Y Tr ( A (A)) (3.14)
k=0

Properties.

Let A be a linear operator on a separable Hilbert spatand {¢;}; an
orthonormal basis.
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(@) X Tr(AXA)) converges for each € 7;.

|det@ + A)| < 12,1+ u«i(A)) whereu;(A) are thesingular values ofA,

(b) Idet@ + A) < 12, (L1 +4j(A)) wherey;(A) are thesingular values of.
i.e., the eigenvalues ¢ph| = VATA.

(c) Idetd + A)l < exp(lAll1).

(d) For anyAs,....An € J1, (Z1,....Z) +— det(1+zi”:1 ziAi) is an entire
analytic function.

(e) If A,Be J1,then

detd + A)detl +B) = det(1+A +B+ AB)
= det((1+A)(1+B))
= det((1+B)(1+A)) . (J.15)

If A € 91 andU unitary, then
det(U™(1+ A)U) = det(1+ U"AU) = det(l + A) .

(H If Ae g1, then @+ A)isinvertible if and only if det{ + A) # 0.

(g) If 2 # 0isann-times degenerate eigenvaluefok 71, then det{ + zA) has
azero of ordenatz=-1/A.

(h) For anye, there is aC.(A), depending oA € J1, so that/det + zA)| <
Ce(A) expel2).
(i) ForanyA € 91,

N(A)
det(l + A) = ]—[ (1+25(8)) (J.16)

=1

where here and in the foIIowir{gj(A)}jN:(f) are the eigenvalues #fcounted
with algebraic multiplicity .

() Lidskii's theorem:For anyA € J1,

N(A)

Tr(A) = > A4j(A) <.
=1

(K) If A € g1, then

N(AA))

3o (/\k(A))

=1

Z Aj (A) -+ 2 (A) < 0.

1<ji<<jk<N(A)

Tr( /\k(A))
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M If AeJ1,then

det(1+ zA) = Z pa Z A, (A) -+ 2 (A) < 0. (3.17)
k=0  1<ji<-<]k<N(A)

(m) If A € g1, then foriZ small (i.e. |2 maxa;(A)| < 1) the serie§p> | ZTr ((—A)k) /k
converges and

(o)

exp[— Z %Tr ((_A)k)
k=1
exp(Trin(1+ zA)) . (J.18)

det(1+ zA)

(n) The Plemelj-Smithies formul®efinean(A) for A € g1 by
_ S am(A)
det(l + zA) = Z‘sz“T . (3.19)
m=

Thenam(A) is given by them x m determinant:

Tr(A) m-1 0 0
Tr(A2)  Tr(A) m-2 0
amay = | AT YT > w20
1
Tr(A™  Tr(AMD) Tr(AM™2) ... Tr(A)

with the understanding thaig(A) = 1 anday(A) = Tr(A). Thus the
cumulantscy(A) = am(A)/m! satisfy the following recursion relation

cm(A) %Z(—l)k”cwk(A) Tr(A¥) form>1
k=1

co(A) 1. (J.21)

Note that in the context of quantum mechanics formuldd is the quantum
analog to the curvature expansion of the semiclassicalfaetdion with Tr(A™)
corresponding to the sum of all periodic orbits (prime arsbakpeated ones) of
total topological lengthm, i.e., letcm(s.c.) denote then' curvature term, then the
curvature expansion of the semiclassical zeta functionvisngby the recursion
relation

10, emi tp(K)’
em(sc) = — Z(—l) mele  (s.C) Z [p] —/—~— form>1
k=1 _ﬁ;r>0 1- (Ai)
with [p]r=k p
co(sc) = 1. (J.22)
In fact, in the cumulant expansiod.(9 as well as in the curvature expansion
there are large cancelations involved. Let us order — withasi of generality —
the eigenvalues of the operatlire 7, as follows:

|1l > |22] = - 2 Aica] = |Ai] 2 |Ajyal = -+
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(This is always possible because Efi(f) |1i] < «.) Then, in the standard
(Plemelj-Smithies) cumulant evaluation of the determinaq. (.19, we have
enormous cancelations of big numbers, e.g. atkfeumulant orderk > 3),

all the intrinsically large ‘numberst%, %712, ..., %2213, ... and many more
have to cancel out exactly until onyj, «..<j.<n(a) 4j; * - * 4j, is finally left over.
Algebraically, the fact that there are these large canoelstis of course of no
importance. However, if the determinant is calculated mira#y, the big cancelations
might spoil the result or even the convergence. Now, theature expansion of

the semiclassical zeta function, as it is known todtj)e semiclassical approximation
to the curvature expansion (unfortunately) in the PlerBefjithies form. As the
exact quantum mechanical result is approximated semictdlys the errors introduced
in the approximation might lead to bidfects as they are done with respect to large
quantities which eventually cancel out and not — as it wowdbcourse better

— with respect to the small surviving cumulants. Thus it wiooé very desirable

to have a semiclassical analog to the reduced cumulant sigpai.17) or even

to (J.19 directly. It might not be possible to find a direct semicleakanalog for

the individual eigenvalueg;. Thus the direct construction of the semiclassical
equivalent to .16 is rather unlikely. However, in order to have a semiclassic
“cumulant” summation without large cancelations — sgéq) — it would be just
suficient to find the semiclassical analog of each complete camb{).17 and

not of the single eigenvalues. Whether this will eventulakypossible is still an
open question.

J.5 Von Koch matrices

Implicitly, many of the above properties are based on therthef von Koch
matrices [1, 12, 13]: An infinite matrix 1 — A = |l6jx — ajll;’, consisting of
complex numbers, is called a matrix with absolutely convergent determinant

if the seriesy; |aj,k,aj,k, - - - j,.k,| CONvVerges, where the sum extends over all pairs
of systems of indicesj(, j2, -, jn) and ki, ko, - - -, ky) which differ from each
other only by a permutation, and < jo <--- jn (n=1,2,---). Then the limit

lim de11|5jk - ajk”T =detl - A)
Nn—oo

exists and is called the determinant of the matrix A. It can be represented in
the form

1 a  a 1 i @k A
det(l-A):l—Za”JrEZ‘ai{ aii"@ Dl A Ak am |+
=1 k=1 ! "ikm=1| @mj 8mk 8mm

where the series on the r.h.s. will remain convergent eviaie ihumbersyy (j,k =
1,2,---) are replaced by their moduli and if all the terms obtainedekyanding
the determinants are taken with the plus sign. The matrA is calledvon Koch
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matrix, if both conditions

Dyl < o, (3.23)
=1
Z|a,-k|2 < © (3.24)
k=1

are fulfilled. Then the following holds (see ref.1] 13]): (1) Every von Koch
matrix has an absolutely convergent determinant. If thenetgs of a von Koch
matrix are functions of some parametefaix = ajx(u), j,k = 1,2,---) and both
series in the defining condition converge uniformly in thendin of the parameter
u, then asn — oo the determinant didj — aj(u)ll} tends to the determinant
det@+ A(u)) uniformly with respect tqu, over the domain qgi. (2) If the matrices
1- A and1 - B are von Koch matrices, then their proddct C = (1-A)(1-B)

is a von Koch matrix, and

det( — C) = det(l — A) det(l - B).

Note that every trace-class matéxe 71 is also a von Koch matrix (and that
any matrix satisfying conditionJ(29) is Hilbert-Schmidt and vice versa). The
inverse implication, however, is not true: von Koch matsiege not automatically
trace-class. The caveat is that the definition of von Kochioes is basis-dependent,
whereas the trace-class property is basitependentAs the traces involve infinite
sums, the basis-independence is not at all trivial. An exarfigp an infinite matrix
which is von Koch, but not trace-class is the following:

2/j for i-j=-1 and jeven,
Ajj=1{ 2/i for i-j=+1 and ieven,
0 else,
ie.,
01 O 0 0 0
10 O 0 0 0
00 0O 22 O 0
0 0 172 O 0 0
A= (J.25)
0 0 O 0 0 13
0 0 O 0O 1¥3 O

Obviously, condition {.23 is fulfilled by definition. Second, the conditiod.24)

is satisfied a§)>> , 2/n? < co. However, the sum over the moduli of the eigenvalues
is just twice the harmonic serig§,’ ; 1/n which does not converge. The matrix
(J.25 violates the trace-class definitioh {3, as in its eigenbasis the sum over the
moduli of its diagonal elements is infinite. Thus #i&soluteconvergence is traded
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for a conditionalconvergence, since the sum over the eigenvalues themselnes
be arranged to still be zero, if the eigenvalues with the samgulus are summed
first. Absolute convergence is of course essential, if suave o be rearranged

or exchanged. Thus, the trace-class property is indispén$ar any controlled
unitary transformation of an infinite determinant, as thesré will be necessarily

a change of basis and in general also a re-ordering of thesgwnding traces.
Therefore the claim thaa Hilbert-Schmidt operator with a vanishing trace is
automatically trace-classs false. In general, such an operator has to be regularized
in addition (see next chapter).

J.6 Regularization

Many interesting operators are not of trace class (althaligy might be in some
Jp With p> 1 - an operatoA is in J, iff Tr/AIP < co in any orthonormal basis).
In order to compute determinants of such operators, an sxtef the cumulant
expansion is needed which in fact corresponds to a regataniz procedured,
10:

E.g. letA € Jp with p < n. Define

Ra(ZA) = (1 + 7A) exp[z (T ] -
k=

as the regulated version of the operathr Then the regulated operatg(zA) is
trace class, i.eR,(zA) € J1. Define now dei(1 + zA) = detl + R,(zA)). Then
the regulated determinant

N(zA)

det,(1+ zA) = ]—[

=1

n 1 —71: (A))

(1+25(A) exp[Z

k=1

< oo. (J.26)

exists and is finite. The corresponding Plemelj-Smithiemfda now readsi(]:

()
det,(1+ zA) = Z Zndm Y (A) (3.27)
with aﬁﬂ)(A) given by them x mdeterminant:

EL”) m-1 0 - 0

n) (n) m=2 -.. 0

?n) iLn) G I
aM(A) = 1 ) (3.28)

1

Ay oy oD
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where

m _ | Tr(A¥) k>n
710 k<n-1

As Simon [L(] says simply, the beauty ofl (28 is that we get dg{1 + A) from
the standard Plemelj-Smithies formulai9 by simply setting Trd), Tr(A?), .. .,
Tr(A™1) to zero.

See also ref.[5] where{4;} are the eigenvalues of an elliptic (pseuddfetential
operatoH of ordermon a compact or bounded manifold of dimensih® < A <
A1 < ---andAg T +o. and the Fredholm determinant

= Pl
A0 =] (1 _ _)
k=0 A

is regulated in the cage= d/m > 1 as Weierstrass product

AQ) = (1 - —)exp[— ot —J] (J.29)
lk:([) ) A 24 me

where L] denotes the integer part @f This is, see ref. 5], the unique entire
function of orde: having zeros &t} and subject to the normalization conditions

d dld
InA(0) = ﬁlnA(O): cee = mlnA(O):O.

Clearly (.29 is the same asl(26; one just has to identifg = -1, A = 1/H and
n—1=[u]. An example is the regularization of the spectral deteemin

A(E) = det[E - H)] (3.30)

which — as it stands — would only make sense for a finite dinosasibasis (or
finite dimensional matrices). In reflL§] the regulated spectral determinant for the
example of the hyperbola billiard in two dimensions (tlus 2, m = 2 and hence

u =1)is given as

A(E) = det [(E - H)Q(E, H)]
where

Q(E,H) = -H1efH™
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such that the spectral determinant in the eigenbagis(@fith eigenvalueg,, # 0)
reads

A(E) = l_[(l—

— e~ .
) E) < 00

n

Note thatH ! is for this example of Hilbert-Schmidt character.

Exercises

J.1. Norm of exponential of an operator. Verify
inequality (.12):

€] < Al
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