
Appendix J

Infinite dimensional operators

(A. Wirzba)

T , taken from ref. [1], summarizes the definitions and properties
of trace-class and Hilbert-Schmidt matrices, the determinants over infinite
dimensional matrices and regularization schemes for matrices or operators

which are not of trace-class.

J.1 Matrix-valued functions

(P. Cvitanović)

As a preliminary we summarize some of the properties of functions of finite-
dimensional matrices.

The derivative of a matrix is a matrix with elements

A′(x) =
dA(x)

dx
, A′i j (x) =

d
dx

Ai j (x) . (J.1)

Derivatives of products of matrices are evaluated by the chain rule

d
dx

(AB) =
dA
dx

B + A
dB
dx

. (J.2)

A matrix and its derivative matrix in general do not commute

d
dx

A2 =
dA
dx

A+ A
dA
dx

. (J.3)

The derivative of the inverse of a matrix, follows fromddx(AA−1) = 0:

d
dx

A−1 = − 1
A

dA
dx

1
A
. (J.4)
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APPENDIX J. INFINITE DIMENSIONAL OPERATORS 742

A function of a single variable that can be expressed in termsof additions and
multiplications generalizes to a matrix-valued function by replacing the variable
by the matrix.

In particular, the exponential of a constant matrix can be defined either by its
series expansion, or as a limit of an infinite product:

eA =

∞
∑

k=0

1
k!

Ak , A0 = 1 (J.5)

= lim
N→∞

(

1+
1
N

A

)N

(J.6)

The first equation follows from the second one by the binomialtheorem, so these
indeed are equivalent definitions. That the terms of orderO(N−2) or smaller do
not matter follows from the bound

(

1+
x− ǫ

N

)N
<

(

1+
x+ δxN

N

)N

<

(

1+
x+ ǫ

N

)N
,

where|δxN| < ǫ. If lim δxN → 0 asN→ ∞, the extra terms do not contribute.

Consider now the determinant

det (eA) = lim
N→∞

(det (1+ A/N))N .

To the leading order in 1/N

det (1+ A/N) = 1+
1
N

tr A+O(N−2) .

hence

deteA = lim
N→∞

(

1+
1
N

tr A+O(N−2)

)N

= etr A (J.7)

Due to non-commutativity of matrices, generalization of a function of several
variables to a function is not as straightforward. Expression involving several
matrices depend on their commutation relations. For example, the commutator
expansion

etABe−tA = B + t[A,B] +
t2

2
[A, [A,B]] +

t3

3!
[A, [A, [A,B]]] + · · · (J.8)

sometimes used to establish the equivalence of the Heisenberg and Schrödinger
pictures of quantum mechanics follows by recursive evaluation of t derivatives

d
dt

(

etABe−tA
)

= etA [A,B]e−tA .
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Manipulations of such ilk yield

e(A+B)/N = eA/NeB/N − 1
2N2

[A,B] +O(N−3) ,

and the Trotter product formula: ifB, C andA = B + C are matrices, then

eA = lim
N→∞

(

eB/NeC/N
)N

(J.9)

J.2 Operator norms

(R. Mainieri and P. Cvitanović)

The limit used in the above definition involves matrices - operators in
vector spaces - rather than numbers, and its convergence canbe checked using
tools familiar from calculus. We briefly review those tools here, as throughout the
text we will have to consider many different operators and how they converge.

Then→ ∞ convergence of partial products

En =
∏

0≤m<n

(

1+
t
m

A
)

can be verified using the Cauchy criterion, which states thatthe sequence{En}
converges if the differences‖Ek−E j‖ → 0 ask, j → ∞. To make sense of this we
need to define a sensible norm‖ · · · ‖. Norm of a matrix is based on the Euclidean
norm for a vector: the idea is to assign to a matrixM a norm that is the largest
possible change it can cause to the length of a unit vector ˆn:

‖M‖ = sup
n̂
‖M n̂‖ , ‖n̂‖ = 1 . (J.10)

We say that‖·‖ is the operator norm induced by the vector norm‖·‖. Constructing
a norm for a finite-dimensional matrix is easy, but hadM been an operator in an
infinite-dimensional space, we would also have to specify the space ˆn belongs to.
In the finite-dimensional case, the sum of the absolute values of the components of
a vector is also a norm; the induced operator norm for a matrixM with components
Mi j in that case can be defined by

‖M‖ = max
i

∑

j

|Mi j | . (J.11)

The operator norm (J.11) and the vector norm (J.10) are only rarely distinguished
by different notation, a bit of notational laziness that we shall uphold.
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Now that we have learned how to make sense out of norms of operators, we
can check that

[exercise J.1]

‖etA‖ ≤ et‖A‖ . (J.12)

[exercise 2.9]

As ‖A‖ is a number, the norm ofetA is finite and therefore well defined. In
particular, the exponential of a matrix is well defined for all values oft, and the
linear differential equation (4.10) has a solution for all times.

J.3 Trace class and Hilbert-Schmidt class

This section is mainly an extract from ref. [9]. Refs. [7, 10, 11, 14] should
be consulted for more details and proofs. The trace class andHilbert-Schmidt
property will be defined here for linear, in general non-hermitian operatorsA ∈
L(H): H → H (whereH is a separable Hilbert space). The transcription to
matrix elements (used in the prior chapters) is simplyai j = 〈φi ,Aφ j〉 where{φn}
is an orthonormal basis ofH and 〈 , 〉 is the inner product inH (see sect.J.5
where the theory ofvon Koch matricesof ref. [12] is discussed). So, the trace
is the generalization of the usual notion of the sum of the diagonal elements of a
matrix; but because infinite sums are involved, not all operators will have a trace:

Definition:

(a) An operatorA is called trace class, A ∈ J1, if and only if, for every
orthonormal basis,{φn}:

∑

n

|〈φn,Aφn〉| < ∞ . (J.13)

The family of all trace class operators is denoted byJ1.

(b) An operatorA is calledHilbert-Schmidt , A ∈ J2, if and only if, for every
orthonormal basis,{φn}:

∑

n

‖Aφn‖2 < ∞ .

The family of all Hilbert-Schmidt operators is denoted byJ2.

Bounded operatorsare dual to trace class operators. They satisfy the the following
condition: |〈ψ, Bφ〉| ≤ C‖ψ‖‖φ‖with C < ∞ andψ, φ ∈ H . If they have eigenvalues,
these are bounded too. The family of bounded operators is denoted byB(H) with
the norm‖B‖ = supφ,0

‖Bφ‖
‖φ‖ for φ ∈ H . Examples for bounded operators are

unitary operators and especially the unit matrix. In fact, every bounded operator
can be written as linear combination of four unitary operators.

A bounded operatorC iscompact, if it is the norm limit of finite rank operators.
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An operatorA is calledpositive, A ≥ 0, if 〈Aφ, φ〉 ≥ 0 ∀φ ∈ H . Notice that
A†A ≥ 0. We define|A| =

√
A†A.

The most important properties of the trace and Hilbert-Schmidt classes are
summarized in (see refs. [7, 9]):

(a) J1 andJ2 are ∗ideals., i.e., they are vector spaces closed under scalar
multiplication, sums, adjoints, and multiplication with bounded operators.

(b) A ∈ J1 if and only if A = BC with B,C ∈ J2.

(c) J1 ⊂ J2 ⊂ Compact operators.

(d) For any operatorA, we haveA ∈ J2 if
∑

n ‖Aφn‖2 < ∞ for a single basis.
For any operatorA ≥ 0 we haveA ∈ J1 if

∑

n |〈φn,Aφn〉| < ∞ for a single
basis.

(e) If A ∈ J1, Tr(A) =
∑〈φn,Aφn〉 is independent of the basis used.

(f) Tr is linear and obeys Tr(A†) = Tr(A); Tr(AB) = Tr(BA) if either A ∈ J1

andB bounded,A bounded andB ∈ J1 or bothA,B ∈ J2.

(g) J2 endowed with the inner product〈A,B〉2 = Tr(A†B) is a Hilbert space.
If ‖A‖2 = [ Tr(A†A) ]

1
2 , then‖A‖2 ≥ ‖A‖ andJ2 is the‖ ‖2-closure of the

finite rank operators.

(h) J1 endowed with the norm‖A‖1 = Tr(
√

A†A) is a Banach space.‖A‖1 ≥
‖A‖2 ≥ ‖A‖ andJ1 is the‖ ‖1-norm closure of thefinite rank operators. The
dual space ofJ1 isB(H), the family of bounded operators with the duality
〈B,A〉 = Tr(BA).

(i) If A,B ∈ J2, then‖AB‖1 ≤ ‖A‖2‖B‖2. If A ∈ J2 andB ∈ B(H), then
‖AB‖2 ≤ ‖A‖2‖B‖. If A ∈ J1 andB ∈ B(H), then‖AB‖1 ≤ ‖A‖1‖B‖.

Note the most important property for proving that an operator is trace class is the
decomposition(b) into two Hilbert-Schmidt ones, as the Hilbert-Schmidt property
can easily be verified in one single orthonormal basis (see(d)). Property(e)
ensures then that the trace is the same in any basis. Properties (a) and (f) show
that trace class operators behave in complete analogy to finite rank operators.
The proof whether a matrix is trace-class (or Hilbert-Schmidt) or not simplifies
enormously for diagonal matrices, as then the second part ofproperty (d) is
directly applicable: just the moduli of the eigenvalues (or– in case of Hilbert-
Schmidt – the squares of the eigenvalues) have to be summed upin order to answer
that question. A good strategy in checking the trace-class character of a general
matrix A is therefore the decomposition of that matrix into two matricesB and
C where one, sayC, should be chosen to be diagonal and either just barely of
Hilbert-Schmidt character leaving enough freedom for its partnerB or of trace-
class character such that one only has to show the boundedness for B.
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J.4 Determinants of trace class operators

This section is mainly based on refs. [8, 10] which should be consulted for more
details and proofs. See also refs. [11, 14].

Pre-definitions (Alternating algebra and Fock spaces):
Given a Hilbert spaceH , ⊗nH is defined as the vector space of multi-linear
functionals onH with φ1 ⊗ · · · ⊗ φn ∈ ⊗nH in caseφ1, . . . , φn ∈ H .

∧n(H)
is defined as the subspace of⊗nH spanned by the wedge-product

φ1 ∧ · · · ∧ φn =
1
√

n!

∑

π∈Pn

ǫ(π)[φπ(1) ⊗ · · · ⊗ φπ(n)]

wherePn is the group of all permutations ofn letters andǫ(π) = ±1 depending
on whetherπ is an even or odd permutation, respectively. The inner product in
∧n(H) is given by

(φ1 ∧ · · · ∧ φn, η1 ∧ · · · ∧ ηn) = det
{

(φi , η j)
}

where det{ai j } =
∑

π∈Pn
ǫ(π)a1π(1) · · · anπ(n).

∧n(A) is defined as functor (a functor
satisfies

∧n(AB) =
∧n(A)

∧n(B)) on
∧n(H) with

∧n
(A) (φ1 ∧ · · · ∧ φn) = Aφ1 ∧ · · · ∧ Aφn .

Whenn = 0,
∧n(H) is defined to beC and

∧n(A) as 1:C→ C.

Properties: If A trace class, i.e.,A ∈ J1, then for anyk,
∧k(A) is trace class, and

for any orthonormal basis{φn} the cumulant

Tr
(

∧k
(A)

)

=
∑

i1<···<ik

(

(φi1 ∧ · · · ∧ φik), (Aφi1 ∧ · · · ∧ Aφik)
)

< ∞

is independent of the basis (with the understanding that Tr
∧0(A) ≡ 1).

Definition: Let A ∈ J1, then det (1+ A) is defined as

det(1+ A) =
∞
∑

k=0

Tr
(

∧k
(A)

)

(J.14)

Properties:

Let A be a linear operator on a separable Hilbert spaceH and {φ j}∞1 an
orthonormal basis.
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(a)
∑∞

k=0 Tr
(

∧k(A)
)

converges for eachA ∈ J1.

(b) |det(1 + A)| ≤ ∏∞
j=1

(

1+ µ j(A)
)

whereµ j(A) are thesingular values ofA,

i.e., the eigenvalues of|A| =
√

A†A.

(c) |det(1+ A)| ≤ exp(‖A‖1).

(d) For anyA1, . . . ,An ∈ J1, 〈z1, . . . , zn〉 7→ det
(

1+
∑n

i=1 ziA i

)

is an entire
analytic function.

(e) If A,B ∈ J1, then

det(1+ A)det(1+ B) = det(1+ A + B + AB)

= det((1+ A)(1+ B))

= det((1+ B)(1+ A)) . (J.15)

If A ∈ J1 andU unitary, then

det
(

U−1(1+ A)U
)

= det
(

1+ U−1AU
)

= det(1+ A) .

(f) If A ∈ J1, then (1+ A) is invertible if and only if det(1+ A) , 0.

(g) If λ , 0 is ann-times degenerate eigenvalue ofA ∈ J1, then det(1+ zA) has
a zero of ordern at z= −1/λ.

(h) For anyǫ, there is aCǫ(A), depending onA ∈ J1, so that|det(1 + zA)| ≤
Cǫ(A) exp(ǫ|z|).

(i) For anyA ∈ J1,

det(1+ A) =
N(A)
∏

j=1

(

1+ λ j(A)
)

(J.16)

where here and in the following{λ j(A)}N(A)
j=1 are the eigenvalues ofA counted

with algebraic multiplicity .

(j) Lidskii’s theorem:For anyA ∈ J1,

Tr(A) =
N(A)
∑

j=1

λ j(A) < ∞ .

(k) If A ∈ J1, then

Tr
(

∧k
(A)

)

=

N
(

∧k(A)
)

∑

j=1

λ j

(

∧k
(A)

)

=
∑

1≤ j1<···< jk≤N(A)

λ j1(A) · · · λ jk(A) < ∞.
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(l) If A ∈ J1, then

det(1+ zA) =
∞
∑

k=0

zk
∑

1≤ j1<···< jk≤N(A)

λ j1(A) · · · λ jk(A) < ∞. (J.17)

(m) If A ∈ J1, then for|z| small (i.e.,|z|max|λ j(A)| < 1) the series
∑∞

k=1 zkTr
(

(−A)k
)

/k
converges and

det(1+ zA) = exp

















−
∞
∑

k=1

zk

k
Tr

(

(−A)k
)

















= exp(Tr ln(1+ zA)) . (J.18)

(n) The Plemelj-Smithies formula:Defineαm(A) for A ∈ J1 by

det(1+ zA) =
∞
∑

m=0

zmαm(A)
m!

. (J.19)

Thenαm(A) is given by them×mdeterminant:

αm(A) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Tr(A) m− 1 0 · · · 0
Tr(A2) Tr(A) m− 2 · · · 0
Tr(A3) Tr(A2) Tr(A) · · · 0
...

...
...

...
...

1
Tr(Am) Tr(A(m−1)) Tr(A(m−2)) · · · Tr(A)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(J.20)

with the understanding thatα0(A) ≡ 1 andα1(A) ≡ Tr(A). Thus the
cumulantscm(A) ≡ αm(A)/m! satisfy the following recursion relation

cm(A) =
1
m

m
∑

k=1

(−1)k+1cm−k(A) Tr(Ak) for m≥ 1

c0(A) ≡ 1 . (J.21)

Note that in the context of quantum mechanics formula (J.19) is the quantum
analog to the curvature expansion of the semiclassical zetafunction with Tr(Am)
corresponding to the sum of all periodic orbits (prime and also repeated ones) of
total topological lengthm, i.e., letcm(s.c.) denote themth curvature term, then the
curvature expansion of the semiclassical zeta function is given by the recursion
relation

cm(s.c.) =
1
m

m
∑

k=1

(−1)k+m+1cm−k(s.c.)
∑

p;r>0
with [p]r=k

[p]
tp(k)r

1−
(

1
Λp

)r for m≥ 1

c0(s.c.) ≡ 1 . (J.22)

In fact, in the cumulant expansion (J.19) as well as in the curvature expansion
there are large cancelations involved. Let us order – without lost of generality –
the eigenvalues of the operatorA ∈ J1 as follows:

|λ1| ≥ |λ2| ≥ · · · ≥ |λi−1| ≥ |λi | ≥ |λi+1| ≥ · · ·
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(This is always possible because of
∑N(A)

i=1 |λi | < ∞.) Then, in the standard
(Plemelj-Smithies) cumulant evaluation of the determinant, eq. (J.19), we have
enormous cancelations of big numbers, e.g. at thek th cumulant order (k > 3),
all the intrinsically large ‘numbers’λk

1, λk−1
1 λ2, . . ., λk−2

1 λ2λ3, . . . and many more
have to cancel out exactly until only

∑

1≤ j1<···< jk≤N(A) λ j1 · · ·λ jk is finally left over.
Algebraically, the fact that there are these large cancelations is of course of no
importance. However, if the determinant is calculated numerically, the big cancelations
might spoil the result or even the convergence. Now, the curvature expansion of
the semiclassical zeta function, as it is known today,is the semiclassical approximation
to the curvature expansion (unfortunately) in the Plemelj-Smithies form. As the
exact quantum mechanical result is approximated semiclassically, the errors introduced
in the approximation might lead to big effects as they are done with respect to large
quantities which eventually cancel out and not – as it would be of course better
– with respect to the small surviving cumulants. Thus it would be very desirable
to have a semiclassical analog to the reduced cumulant expansion (J.17) or even
to (J.16) directly. It might not be possible to find a direct semiclassical analog for
the individual eigenvaluesλ j . Thus the direct construction of the semiclassical
equivalent to (J.16) is rather unlikely. However, in order to have a semiclassical
“cumulant” summation without large cancelations – see (J.17) – it would be just
sufficient to find the semiclassical analog of each complete cumulant (J.17) and
not of the single eigenvalues. Whether this will eventuallybe possible is still an
open question.

J.5 Von Koch matrices

Implicitly, many of the above properties are based on the theory of von Koch
matrices [11, 12, 13]: An infinite matrix 1 − A = ‖δ jk − a jk‖∞1 , consisting of
complex numbers, is called a matrix with anabsolutely convergent determinant,
if the series

∑ |a j1k1a j2k2 · · · a jn,kn| converges, where the sum extends over all pairs
of systems of indices (j1, j2, · · · , jn) and (k1, k2, · · · , kn) which differ from each
other only by a permutation, andj1 < j2 < · · · jn (n = 1, 2, · · ·). Then the limit

lim
n→∞

det‖δ jk − a jk‖n1 = det(1− A)

exists and is called the determinant of the matrix1 − A. It can be represented in
the form

det(1− A) = 1−
∞
∑

j=1

a j j +
1
2!

∞
∑

j,k=1

∣

∣

∣

∣

∣

a j j a jk
ak j akk

∣

∣

∣

∣

∣

− 1
3!

∞
∑

j,k,m=1

∣

∣

∣

∣

∣

∣

∣

∣

a j j a jk a jm
ak j akk akm
am j amk amm

∣

∣

∣

∣

∣

∣

∣

∣

+ · · · ,

where the series on the r.h.s. will remain convergent even ifthe numbersa jk ( j, k =
1, 2, · · ·) are replaced by their moduli and if all the terms obtained byexpanding
the determinants are taken with the plus sign. The matrix1−A is calledvon Koch
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matrix, if both conditions

∞
∑

j=1

|a j j | < ∞ , (J.23)

∞
∑

j,k=1

|a jk |2 < ∞ (J.24)

are fulfilled. Then the following holds (see ref. [11, 13]): (1) Every von Koch
matrix has an absolutely convergent determinant. If the elements of a von Koch
matrix are functions of some parameterµ (a jk = a jk(µ), j, k = 1, 2, · · ·) and both
series in the defining condition converge uniformly in the domain of the parameter
µ, then asn → ∞ the determinant det‖δ jk − a jk(µ)‖n1 tends to the determinant
det(1+A(µ)) uniformly with respect toµ, over the domain ofµ. (2) If the matrices
1−A and1−B are von Koch matrices, then their product1−C = (1−A)(1−B)
is a von Koch matrix, and

det(1− C) = det(1− A) det(1− B) .

Note that every trace-class matrixA ∈ J1 is also a von Koch matrix (and that
any matrix satisfying condition (J.24) is Hilbert-Schmidt and vice versa). The
inverse implication, however, is not true: von Koch matrices are not automatically
trace-class. The caveat is that the definition of von Koch matrices is basis-dependent,
whereas the trace-class property is basis-independent. As the traces involve infinite
sums, the basis-independence is not at all trivial. An example for an infinite matrix
which is von Koch, but not trace-class is the following:

A i j =



















2/ j for i − j = −1 and j even,
2/i for i − j = +1 and i even,
0 else,

i.e.,

A =







































































0 1 0 0 0 0 · · ·
1 0 0 0 0 0 · · ·
0 0 0 1/2 0 0 · · ·
0 0 1/2 0 0 0 · · ·
0 0 0 0 0 1/3

. . .

0 0 0 0 1/3 0
. . .

...
...

...
...

. . .
. . .

. . .







































































. (J.25)

Obviously, condition (J.23) is fulfilled by definition. Second, the condition (J.24)
is satisfied as

∑∞
n=1 2/n2 < ∞. However, the sum over the moduli of the eigenvalues

is just twice the harmonic series
∑∞

n=1 1/n which does not converge. The matrix
(J.25) violates the trace-class definition (J.13), as in its eigenbasis the sum over the
moduli of its diagonal elements is infinite. Thus theabsoluteconvergence is traded
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for aconditionalconvergence, since the sum over the eigenvalues themselvescan
be arranged to still be zero, if the eigenvalues with the samemodulus are summed
first. Absolute convergence is of course essential, if sums have to be rearranged
or exchanged. Thus, the trace-class property is indispensable for any controlled
unitary transformation of an infinite determinant, as then there will be necessarily
a change of basis and in general also a re-ordering of the corresponding traces.
Therefore the claim thata Hilbert-Schmidt operator with a vanishing trace is
automatically trace-classis false. In general, such an operator has to be regularized
in addition (see next chapter).

J.6 Regularization

Many interesting operators are not of trace class (althoughthey might be in some
Jp with p > 1 - an operatorA is inJp iff Tr|A|p < ∞ in any orthonormal basis).
In order to compute determinants of such operators, an extension of the cumulant
expansion is needed which in fact corresponds to a regularization procedure [8,
10]:
E.g. letA ∈ Jp with p ≤ n. Define

Rn(zA) = (1+ zA) exp

















n−1
∑

k=1

(−z)k

k
Ak

















− 1

as the regulated version of the operatorzA. Then the regulated operatorRn(zA) is
trace class, i.e.,Rn(zA) ∈ J1. Define now detn(1 + zA) = det(1 + Rn(zA)). Then
the regulated determinant

detn(1+ zA) =
N(zA)
∏

j=1





















(

1+ zλ j(A)
)

exp





















n−1
∑

k=1

(

−zλ j(A)
)k

k









































< ∞. (J.26)

exists and is finite. The corresponding Plemelj-Smithies formula now reads [10]:

detn(1+ zA) =
∞
∑

m=0

zmα
(n)
m (A)
m!

. (J.27)

with α(n)
m (A) given by them×mdeterminant:

α
(n)
m (A) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ
(n)
1 m− 1 0 · · · 0

σ
(n)
2 σ

(n)
1 m− 2 · · · 0

σ
(n)
3 σ

(n)
2 σ

(n)
1 · · · 0

...
...

...
...

...

1
σ

(n)
m σ

(n)
m−1 σ

(n)
m−2 · · · σ

(n)
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(J.28)
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where

σ
(n)
k =

{

Tr(Ak) k ≥ n
0 k ≤ n− 1

As Simon [10] says simply, the beauty of (J.28) is that we get detn(1 + A) from
the standard Plemelj-Smithies formula (J.19) by simply setting Tr(A), Tr(A2), . . .,
Tr(An−1) to zero.

See also ref. [15] where{λ j} are the eigenvalues of an elliptic (pseudo)-differential
operatorH of ordermon a compact or bounded manifold of dimensiond, 0 < λ0 ≤
λ1 ≤ · · · andλk ↑ +∞. and the Fredholm determinant

∆(λ) =
∞
∏

k=0

(

1− λ

λk

)

is regulated in the caseµ ≡ d/m> 1 as Weierstrass product

∆(λ) =
∞
∏

k=0

















(

1− λ

λk

)

exp

















λ

λk
+
λ2

2λ2
k

+ · · · + λ[µ]

[µ]λ[µ]
k

































(J.29)

where [µ] denotes the integer part ofµ. This is, see ref. [15], the unique entire
function of orderµ having zeros at{λk} and subject to the normalization conditions

ln∆(0) =
d
dλ

ln∆(0) = · · · = d[µ]

dλ[µ]
ln∆(0) = 0 .

Clearly (J.29) is the same as (J.26); one just has to identifyz= −λ, A = 1/H and
n− 1 = [µ]. An example is the regularization of the spectral determinant

∆(E) = det [(E − H)] (J.30)

which – as it stands – would only make sense for a finite dimensional basis (or
finite dimensional matrices). In ref. [16] the regulated spectral determinant for the
example of the hyperbola billiard in two dimensions (thusd = 2, m= 2 and hence
µ = 1) is given as

∆(E) = det [(E − H)Ω(E,H)]

where

Ω(E,H) = −H−1eEH−1
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such that the spectral determinant in the eigenbasis ofH (with eigenvaluesEn , 0)
reads

∆(E) =
∏

n

(

1− E
En

)

eE/En < ∞ .

Note thatH−1 is for this example of Hilbert-Schmidt character.

Exercises

J.1. Norm of exponential of an operator. Verify
inequality (J.12):

‖etA‖ ≤ et‖A‖ .
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