Appendix H

Discrete symmetries of dynamics

ASIC GROUP-THEORETIC NOTIONS are recapitulated here: groups, irreducible representati
invariants. Our notation followsirdtracks.eu

The key result is the construction of projection operatmsifinvariant matrices.
The basic idea is simple: a hermitian matrix can be diagpedli If this matrix
is an invariant matrix, it decomposes the reps of the grotp direct sums of
lower-dimensional reps. Most of computations to follow Ierpent the spectral
decomposition

M = A1P1+ P2 + -+« + 4Py,

which associates with each distinct rogtof invariant matrixM a projection
operator H.17):

Sects.H.3 andH.4 develop Fourier analysis as an application of the general
theory of invariance groups and their representations.

H.1 Preliminaries and definitions

(A. Wirzba and P. Cvitanovit)

We definegroup, representationsymmetry of a dynamical systeamdinvariance
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Group axioms. AgroupGis a set of elements, g, 03, . . . for whichcomposition
or group multiplication g o g; (which we often abbreviate apg;) of any two
elements satisfies the following conditions:

1. If 91,02 € G, theng, o g1 € G.

2. The group multiplication is associativgs o (g2 o g1) = (g3 © g2) © 0.

3. The groups containsidentityelemente such thagoe = eog = g for every
elementg € G.

4. For every elemerg € G, there exists a unique == g1 € G such that
hog=goh=e

A finite group is a group with a finite number of elements

G={e®,....0¢]),

where|G|, the number of elements, is teder of the group.

Example H.1 Finite groups: Some finite groups that frequently arise in
applications:

Cn (also denoted Z): the cyclic group of order n.

Dn: the dihedral group of order 2n, rotations and reflections in plane that preserve
a regular n-gon.

Sn: the symmetric group of all permutations of n symbols, order n!.

Example H.2 Lie groups: Some compact continuous groups that arise in
dynamical systems applications:

S! (also denoted T1): circle group of dimension 1.
Tm =St xSt .. x S mtorus, of dimension m.
S Q2): rotations in the plane, dimension 1. Isomorphic to S*.

0O(2) = SQ2) x Dy: group of rotations and reflections in the plane, of dimension
1

U(1): group of phase rotations in the complex plane, of dimension 1. Isomorphic
to SQ2).

S ((3): rotation group of dimension 3.

S U(2): unitary group of dimension 3. Isomorphic to S (3).

GL(n): general linear group of invertible matrix transformations, dimension n.
S Q(n): special orthogonal group of dimension n(n - 1)/2.

O(n) = SAN) x D;: orthogonal group of dimension n(n— 1)/2.

S An): symplectic group of dimension n(n+ 1)/2.

S U(n): special unitary group of dimension n® — 1.
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APPENDIX H. DISCRETE SYMMETRIES OF DYNAMICS 708

Example H.3 Cyclic and dihedral groups:  The cyclic group C,, ¢ S Q2) of order n
is generated by one element. For example, this element can be rotation through 2r/n.

The dihedral group D, c O(2), n > 2, can be generated by two elements one at least
of which must reverse orientation. For example, take o corresponding to reflection in
the x-axis. o> = €; such operation o is called an involution. C to rotation through 2z /n,
then D, = (o, C), and the defining relations are 0> = C" = ¢, (Co)? = e.

Groups are defined and classified as abstract objects bynthaiiplication
tables (for finite groups) or Lie algebras (for Lie groups).hd¥concerns us in
applications is theiactionas groups of transformations on a given space, usually a
vector space (see appendixl), but sometimes anfiane space, or a more general
manifold M.

Repeated index summation. Throughout this text, the repeated pairs of ufiparer
indices are always summed over

n
GabXb = Z GabXb ) (H.1)
b=1

unless explicitly stated otherwise.

General linear transformations. Let GL(n,F) be the group of general linear
transformations,

GL(n,F)={g:F" - F"|det@) # 0} . (H.2)

UnderGL(n, F) a basis set o¥ is mapped into another basis set by multiplication
with a [nxn] matrix g with entries in fieldF (F is eitherR or C),

A C

As the vectorx is what it is, regardless of a particular choice of basis,eurhis
transformation its coordinates must transform as

Xg = gabxb-

Standard rep. We shall refer to the set ohjkn] matricesg as astandard rep
of GL(n, F), and the space of afi-tuples i, Xo, ..., %)), X, € F on which these
matrices act as thetandard representation space V

Under a general linear transformatigre GL(n,F), the row of basis vectors
transforms by right multiplication a& = e g1, and the column o%y’s transforms
by left multiplication asx’ = gx. Under left multiplication the column (row
transposed) of basis vectoed transforms a®'’ = g'e', where thedual rep
g’ = (g})" is the transpose of the inverse @f This observation motivates
introduction of adual representation spadé the space on whicL(n, F) acts
via the dual rem’.
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Dual space. If V is a vector representation space, thendhel space\7 is the
set of all linear forms oV over the fieldF.

If (D),..., e} is a (right) basis of, thenV is spanned by theual basis
(left basis){eq), - - -, &)}, the set oh linear formsej) such that

e(i) . e(l) — 5|J ,

wheres? is the Kronecker symbol® = 1 if a = b, and zero otherwise. The
components of dual representation space vectors will herdidgiinguished by
upper indices

(yl’yz"“’yn)‘ (H.3)

They transform unde&L(n, F) as

Y2 =(@?. (H.4)

ForGL(n, F) no complex conjugation is implied by theotation; that interpretation
applies only to unitary subgroups GfL(n, C). g can be distinguished from' by
meticulously keeping track of the relative ordering of thdices,

R -, @)E - da. (H.5)

Defining space, dual space. In what followsV will always denote thelefining
n-dimensional complex vector representation space, thasay the initial, “elementary
multiplet” space within which we commence our deliberasio\long with the

defining vector representation spaceomes thelual n-dimensional vector representation
spaceV. We shall denote the corresponding elemen¥ diy raising the index, as

in (H.3), so the components of defining space vectors, resp. dutdrge@re
distinguished by lower, resp. upper indices:

(Xl,XZ,---,Xn), XEV
A%, XY, XeV. (H.6)

x| X
| |

Defining rep. LetG be a group of transformations acting linearly\dywith the
action of a group elememgte G on a vectorx € V given by an ixn] matrix g

X, =0a% ab=12....n. (H.7)

We shall refer tag,? as thedefining repof the groupG. The action ofy € G on a
vectorq e V is given by thedual rep[nxn] matrix g':

X = X(g")e = gl (H.8)
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APPENDIX H. DISCRETE SYMMETRIES OF DYNAMICS 710

In the applications considered here, the gr@will almost always be assumed
to be a subgroup of thenitary group in which caseg™ = g, and indicates
hermitian conjugation:

(QT)ab = (9" = gba- (H.9)

Hermitian conjugation is effected by complex conjugation and index transposition:
Complex conjugation interchanges upper and lower indicessposition reverses
their order. A matrix ishermitianif its elements satisfy

(MT)2 = M2. (H.10)

For a hermitian matrix there is no need to keep track of thativel ordering of
indices, adVp? = (M")p2 = M3,

Invariant vectors. The vector € V is aninvariant vectorif for any transformation
geG

ag=9q. (H.11)
If a bilinear formM (X y) = x®MaPyy, is invariant for allg € G, the matrix
Mab = gacgbd Iv'cd (H.12)

is aninvariant matrix Multiplying with g,® and using the unitary conditiof(9),
we find that the invariant matricedmmutewith all transformationg € G:

[g.M] =0. (H.13)

Invariants. We shall refer to an invariant relation betwepvectors inV and
g vectors inV, which can be written as a homogeneous polynomial in terms of
vector components, such as

H(XY,ZT, 9 = hqexoyasriZ, (H.14)

as aninvariant in V9 @ VP (repeated indices, as always, summed over). In this
example, the cdicientsh®®.ye are components of invariant tendoe V3 ® V2.
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Matrix group on vector space. We will now apply these abstract group definitions
to the set of {l x d]-dimensional non-singular matricés B, C, ... € GL(d) acting

in a d-dimensional vector spadé € RY. The product of matriced andB gives

the matrixC,

Cx=B(AX) = (BA)x eV, ¥xe V.

The identity of the group is the unit matrkwhich leaves all vectors M unchanged.
Every matrix in the group has a unique inverse.

Matrix representation of agroup. Let us now map the abstract groGghomeomorphically
on a group of matriceB(G) acting on the vector spadg i.e., in such a way that
the group properties, especially the group multiplicatire preserved:

1. Anyg e Gis mapped to a matril(g) € D(G).

2. The group produal, o g; € G is mapped onto the matrix produd(g, o
d1) = D(92)D(g1)-

3. The associativity is preserve@®(gs o (g2 o g1)) = D(93)(D(92)D(01)) =
(D(93)(D(92))D(02).-

4. The identity elemen¢ € G is mapped onto the unit matri2(e) = 1 and
the inverse elemerg € G is mapped onto the inverse matiXg™) =

[D(@)]~* =DX(g).

We call this matrix grou(G) a linear or matrixepresentatiorof the groupG
in therepresentation space.WVe emphasize herfénear’ in order to distinguish
the matrix representations from other representatiortgithaot have to be linear,
in general. Throughout this appendix we only consider limepresentations.

If the dimensionality ol is d, we say the representation is dstimensional
representation We will often abbreviate the notation by writing matride&) e
D(G) asg, i.e., X’ = gx corresponds to the matrix operatigh= Z?zl D(9)ij ;-

Character of arepresentation. The character of,(g) of ad-dimensional representation
D(g) of the group elemerd € G is defined as trace

d
Xa(9) = rD(g) = )" Di(Q).
i=1

Note thaty(e) = d, sinceDjj(e) = §;j for 1 < i, j < d.
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Faithful representations, factor group. If the mappingG onD(G) is an isomorphism,
the representation is said to Eethful. In this case the order of the group of
matricesD(G) is equal to the ordeG| of the group. In general, however, there
will be several elements € G that will be mapped on the unit matrix(h) = 1.

This property can be used to define a subgrbug G of the groupG consisting

of all elementsh € G that are mapped to the unit matrix of a given representation.
Then the representation is a faithful representation ofabtor group G H.

Equivalent representations, equivalence classesA representation of a group

is by no means unique. If the basis in thdimensional vector spadéis changed,

the matriceP(g) have to be replaced by their transformati@igg), with the new
matricesdD’(g) and the old matrice®(g) are related by an equivalence transformation
through a non-singular matri®

D’(g) = CD(g)C™.

The group of matriceB’(g) form a representatioD’ (G) equivalent to the representation
D(G) of the groupG. The equivalent representations have the same structure,
although the matrices look fierent. Because of the cylic nature of the trace the
character of equivalent representations is the same

x(9) = ) Dj(g) = trD'(g) = tr(CD()C™) .
i=1

Regular representation of a finite group. Theregularrepresentation of a group
is a special representation that is defined as follows: Coenthe elements of

a finite group into a vectofg:, gy, ..., gg}. Multiplication by any elemeng,
permutedgs, Oo, . . ., gg|} entries. We can represent the elenggrity the permutation
it induces on the components of vectgf, 9y, ...,0g}. Thusfori, j =1,...,|G|,

we define theregular representation

- _Joop ifgg=g;,withlj=1,...,|G|,
Dij(9) _{ 0 otherwise

In the regular representation the diagonal elements of @ilioes are zero except
for the identity elemeng, = ewith g,g; = gi. So in the regular representation the
character is given by

_J Gl for g=e,
)((g)—{ 0 for g#e.
H.2 Invariants and reducibility

What follows is a bit dry, so we start with a motivational gaidtom Hermann
Weyl on the “so-called first main theorem of invariant théory
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APPENDIX H. DISCRETE SYMMETRIES OF DYNAMICS 713

“All invariants are expressible in terms of a finite number agnthem We
cannot claim its validity for every grou@; rather, it will be our chief task to
investigate for each particular group whether a finite intgdpasis exists or not;
the answer, to be sure, will turn oufiamative in the most important cases.”

It is easy to show that any rep of a finite group can be broughtnitary
form, and the same is true of all compact Lie groups. Hencehiat follows, we
specialize to unitary and hermitian matrices.

H.2.1 Projection operators

ForM a hermitian matrix, there exists a diagonalizing unitantriraC such that

0 0
L 0 ... 0
CMCT = 0 0 4 0 . (H.15)
0 1
Az ...
0 0 o

Here 4; # A; are ther distinct roots of the minimatharacteristic(or seculaj
polynomial

[ ™ -a1)=0. (H.16)
i=1

In the matrixC(M — 1,1)C" the eigenvalues correspondingtpare replaced
by zeroes:

A1 — A2
A1 — A2

A3 — Az
A3 = Ao

and so on, so the product over all factaw € 1,1)(M — A31) ..., with exception
of the M — A;1) factor, has nonzero entries only in the subspace assdaiatie
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Aq:

[eoNeN
o O
= OO
o

cl[m-anct =] [ -a)

j#1 j#1
1# 1# 0

P =TT M_‘*il (H.17)

which acts as identity on théh subspace, and zero elsewhere. For example, the
projection operator onto th& subspace is

C. (H.18)

The diagonalization matrixC is deployed in the above only as a pedagogical
device. The whole point of the projector operator formalisithat weneverneed

to carry such explicit diagonalization; all we need are what invariant matrices
M we find convenient, the algebraic relations they satisfgl, thonormality and
completeness d¥;: The matriced?; areorthogonal

PiPj = 6ijPj, (no sum on;j), (H.19)

and satisfy theompleteness relation
r
Z P =1. (H.20)
i=1

As tr (CP,C") = tr P;, the dimension of théh subspace is given by
d=trpk;. (H.21)

It follows from the characteristic equatiohl(L6) and the form of the projection
operator {.17) that4; is the eigenvalue d¥1 on P; subspace:

MP; = A4iP; , (no sum on). (H.22)
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Hence, any matrix polynomidi(M) takes the scalar valuig ;) on theP; subspace
f(M)P; = f(14)P; . (H.23)

This, of course, is the reason why one wants to work with irciale reps: they
reduce matrices and “operators” to pure numbers.

H.2.2 Irreducible representations

Suppose there exist several linearly independent invdidad] hermitian matrices
M1, M»,,..., and that we have usdd, to decompose thd-dimensional vector
spaceV = Vi@ Vo @ ---. CanMj,Ms,... be used to further decomposg?

Further decomposition is possible if, and only if, the in&at matrices commute:

[M1,M;5] =0, (H.24)

or, equivalently, if projection operato; constructed fronM, commute with
projection operator®; constructed fronM 1,

PP = PP (H.25)
J J

Usually the simplest choices of independent invariant iwedrdo not commute.
In that case, the projection operat®sonstructed fronM ; can be used to project
commuting pieces dfi,:

Mg) =PM,P;, (no sum on).

ThatM g) commutes withiM 1 follows from the orthogonality oP;:

MP.Ma] = 3 4MP.Pj] =0, (H26)
i

Now the characteristic equation fmg) (if nontrivial) can be used to decompose
V; subspace.

An invariant matrixM induces a decomposition only if its diagonalized form
(H.15) has more than one distinct eigenvalue; otherwise it is gntagmal to the
unit matrix and commutes trivially with all group element.rep is said to be
irreducibleif all invariant matrices that can be constructed are priopaal to the
unit matrix.
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According to {H.13), an invariant matrixy commutes with group transformations
[G,M] = 0. Projection operatorg(17) constructed fronM are polynomials in
M, so they also commute with ajle G:

[G,P] =0 (H.27)

Hence, aflxd] matrix rep can be written as a direct sum df¥{d;] matrix reps:
G=1Gl= ) PGPj= ) PGP, = ) Gi. (H.28)
L] i i

In the diagonalized regH.18), the matrixg has a block diagonal form:

O1 0 0
cgci={0 @ O g=> ClgCi. (H.29)
0 0 ° !

The repg; acts only on thedi-dimensional subspac¥; consisting of vectors
Pig, g € V. In this way an invariantdx d] hermitian matrixM with r distinct
eigenvalues induces a decomposition a-dimensional vector spacé into a
direct sum ofd;-dimensional vector subspacés

v% vievie.. .oV, (H.30)

H.3 Lattice derivatives

Consider a smooth functiap(x) evaluated on a finitd-dimensional lattice
de = (X), X = al = lattice point, ¢ € Z9, (H.31)

wherea s the lattice spacing and there &t points in all. A vectors specifies a
lattice configuration. Assume the lattice is hyper-cubig ketri, € {fy, i, - - -, Ng}
be the unit lattice cell vectors pointing along thigositive directions|f,| = 1 .
Thelattice partial derivativeis then

p(x+af) = ¢()  dean, — b
(auﬁb)f - a = a .

Anything else with the correcd — 0 limit would do, but this is the simplest
choice. We can rewrite the derivative as a linear operatprintsoducing the
hopping operatoior “shift,” or “step”) in the directionu

(hﬂ)ﬁ_ = 8¢r, j - (H.32)
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As h will play a central role in what follows, it pays to understiawhat it does,
so we write it out for the 1-dimensional case in its fiNIX N] matrix glory:

0 1
0 1
0 1
h= . : (H.33)
0 1
1 0

We will assume throughout that the latticepisriodicin eachn, direction; this is
the easiest boundary condition to work with if we are intexésn large lattices
where surfaceféects are negligible.

Applied on the lattice configuration = (¢1, @2, - - -, #n), the hopping operator

shifts the lattice by one sitdyy = (¢, ¢3, -+, dn, @1). ItS transpose shifts the
entries the other way, so the transpose is also the inverse

h™t=h'. (H.34)

The lattice derivative can now be written as a multiplicatity a matrix:

1

= - - i i-
aﬂ¢€ a(hu 1) J¢J

In the 1-dimensional case th&l k N] matrix representation of the lattice
derivative is:

(H.35)

1 -1
To belabor the obvious: On a finite lattice Nf points a derivative is simply a
finite [Nx N] matrix. Continuum field theory is a world in which the la#ics so
fine that it looks smooth to us. Whenever someone calls songedim “operator,”

think “matrix.” For finite-dimensional spaces a linear agier is a matrix; things
get subtler for infinite-dimensional spaces.

H.3.1 Lattice Laplacian

In order to get rid of some of the lattice indices it is conestito employ vector
notation for the terms bilinear iy, and keep the rest lumped into “interaction,”

2
Slo1 = 5079 = (N~ )] (P~ 1)+ Silg]. (H.36)
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For example, for the discretized Landau HamiltonM#/2 = gmé/2, C = g/a?,
and the quartic terr, [¢] is local site-by-sitey,,r,r.e, = =41 BUS 16,0 0,650¢541 SO
this general quartic coupling is a little bit of an overkiiut by the time we get
to the Fourier-transformed theory, it will make sense as enamum conserving
vertex (H.62).

In the continuum integration by parts movgsaround; on a lattice this amounts
to a matrix transposition

(B~ 2)9] [P~ 2)9] = 07 (0 =D (1) 0.

If you are wondering where the “integration by parts” minigngs, it is there in
discrete case at well. It comes from the identify = —h~19. The combination
A =h"192

1 d

A= (h;t-1)(hy—1) = ZZ( %(h;l+h#)) (H.37)

u=1

is thelattice Laplacian We shall show below that this Laplacian has the correct
continuum limit. Itis the simplest spatial derivative alled forx — —x symmetric
actions. In the 1-dimensional case tive{N] matrix representation of the lattice
Laplacian is:

2 1 1
1 -2 1
1 1 -2 1
A= X . (H.38)
1
1 1 -2

The lattice Laplacian measures the second variation of d fielacross three
neighboring sites. You can easily check that it does whas#uend derivative
is supposed to do by applying it to a parabola restrictededdttice,¢, = ¢(¢),
where¢(¢) is defined by the value of the continuum functig(x) = x? at the
lattice point¢.

H.3.2 Inverting the Laplacian

Evaluation of perturbative corrections iBg.21) requires that we come to grips
with the “free” or “bare” propagatoM . While the the Laplacian is a simple
difference operatoiH.38), its inverse is a messier object. A way to compute is to
start expandindvl as a power series in the Laplacian

BM = rr1021 - %ZZ( ) . (H.39)
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As A is a finite matrix, the expansion is convergent foffisiently Iargerr(f. To
get a feeling for what is involved in evaluating such seriamluateA? in the
1-dimensional case:

6 -4 1 1 -4
-4 6 -4 1
, 1|1 -4 6 -4 1
A= L4 . (H.40)
6 -4
-4 1 1 -4 6

What A3, A%, --- contributions look like is now clear; as we include highed an
higher powers of the Laplacian, the propagator matrix fiis while theinverse
propagator is dferential operator connecting only the nearest neighboegitopagator
is integral operator, connecting every lattice site to aimgplattice site.

This matrix can be evaluated as is, on the lattice, and sorestiis evaluated
this way, but in case at hand a wonderful simplification fedrom the observation
that the lattice action is translationally invariant. Welwhow how this works in
sect.H.4.

H.4 Periodic lattices

Our task now is to transfornv into a form suitable to evaluation of Feynman
diagrams. The theory we will develop in this section is aggilie only taranslationally
invariant saddle point configurations. bifurcation

Consider the fiect of agp — h¢ translation on the action

1 v
Sthg] = -5 -hTM - g - E0 3 gyt
To=1

As M1 is constructed fromh and its inverse M~1 and h commute, and the
bilinear term ish invariant. In the quartic terrh permutes cyclically the terms
in the sum, so the total action is translationally invariant

1 e
Stha] = S[g] = 507 - M1 p - ER 3 gt (H.41)

4l

If a function (in this case, the actids[¢]) defined on a vector space (in this case,
the configurationy) commutes with a linear operatbr then the eigenvalues of

h can be used to decompose theector space into invariant subspaces. For a
hyper-cubic lattice the translations infidirent directions commuté,h, = h,h,,

so it is suficient to understand the spectrum of the 1-dimensional epitator
(H.33). To develop a feeling for how this reduction to invarianbspaces works

in practice, let us continue humbly, by expanding the scdpmipdeliberations

to a lattice consisting of 2 points.
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H.4.1 A 2-point lattice diagonalized

The action of the shift operatdr (H.33) on a 2-point latticep = (¢1, ¢») is to
permute the two lattice sites

"=(1 o)

As exchange repeated twice brings us back to the origindlgroation,h? = 1,
and the characteristic polynomial lofis

(h+1)h-1)=0,

with eigenvalueg = 1, 11 = —1. Construct now the symmetrization, antisymmetrization
projection operators

h-21 1 1/1 1
P _:_1h:_( ) H.42
0 = = 5aem=5(] g (H.42)
h-1 1 1/1 -1
P e =5( ) (H.43)

Noting thatPy + P; = 1, we can project the lattice configuratignonto the two
eigenvectors ofi;

¢ = 1¢=Po-¢+ P19,
¢1\ _ (P1+¢2) 1 (1\ (d1—¢2) 1 (1
(¢2) - V2 \/Q(l)+ N \/E(—l) (H.44)
= gioﬁo + (Zlﬁl . (H.45)

As PoP1 = 0, the symmetric and the antisymmetric configurations foans
separately under any linear transformation constructem frand its powers.

In this way the characteristic equatit¥ = 1 enables us to reduce the 2-
dimenional lattice configuration to two 1-dimensional qgr@swhich the value of
the shift operator (shift matri®) is a numberg € {1, -1}, and the eigenvectors are
fg = %(1, 1),fA; = %(1, —1). We have inserted/2 factors only for convenience,
in order that the eigenvectors be normalized unit vectors.w& shall now see,
(do, $1) is the 2-site periodic lattice discrete Fourier transfarfrthe field ¢1, ¢5).

H.5 Discrete Fourier transforms

Now let us generalize this reduction to a 1-dimensionalqatei lattice withN
sites.
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Each application oh translates the lattice one step;Nhsteps the lattice is

back in the original configuration s,
o ° %02
° h o1
o oo
hN =1 o ON-1,
k° 0
o o N-2

so the eigenvalues of are theN distinct N-th roots of unity

ZI¥

N-1
N-1=[]h-o D=0, w=¢ (H.46)
k=0

As the eigenvalues are all distinct aNdn number, the space is decomposed into

N 1-dimensional subspaces. The general theory (expoundagpendixH.2)
associates with thieth eigenvalue ol a projection operator that projects a configuration
¢ ontok-th eigenvector oh,

h-2;1
Pe= [ ]2 (H.47)

A factor (h — 4;1) kills the j-th eigenvectoi; component of an arbitrary vector
in expansionp = --- + &,-goj + ---. The above product kills everything but the
eigendirectionpy, and the factoﬂjik(ﬂk — 1j) ensures thal®y is normalized as a
projection operator. The set of the projection operatoc®mplete

> P=1 (H.48)
k

and orthonormal
PxPj = 6kjPk (no sum ork) . (H.49)

Constructing explicit eigenvectors is usually not a the besy to fritter one’s
youth away, as choice of basis is largely arbitrary, and fathe content of the
theory is in projection operators][ However, in case at hand the eigenvectors
are so simple that we can forget the general theory, androahshe solutions of
the eigenvalue condition

hew = of (H.50)
by hand:
0 1 1 1
0 1 WK Wk
— . K | mw— 3k
0 1 : :
1 0/ ,(N-1)k w(N-1)k
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The 1/ VN factor is chosen in order that be normalized unit vectors

SDE'QDk 1=1, (no sum ork)

0
1
o = =LMoo ) (H.51)
The eigenvectors are orthonormal
ol - @i = 6k (H.52)

as the explicit evaluation o(ﬁak "y ylelds5 the Kronecker delta function for a
periodic lattice i

N-—
1 g .
B = E N (k=D)e (H.53)
£=0

The sum is over thé&l unit vectors pointing at a uniform distribution of points on
the complex unit circle; they cancel each other unkess j (mod N), in which
case each term in the sum equals 1.
The projection operators can be expressed in terms of teexagtorsi{.50),
(H.51) as
1 1 4
(P = (@elef)e = G&@FC . (nosum ork). (H54)
The completenessH(48) follows from (H.53), and the orthonormalityH.49)
from (H.52).

x, the projection of the configuration on thé-th subspace is given by

P 9)e = ke, (no sum ork)

ol ¢ = \/_Ze"N'“ (H.55)

o/

We recognizepy as thediscrete Fourier transfornof ¢,. Hopefully rediscovering
it this way helps you a little toward understanding why Feutiansforms are full
of €XP factors (they are eigenvalues of the generator of transisitiand when
are they the natural set of basis functions (only if the thésrtranslationally
invariant).
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H.5.1 Fourier transform of the propagator

Now insert the identity}: Px = 1 wherever profitable:
M = 1M1= )" PMPe = > gilef- M - @) -
KK KK

The matrix
Mik = () - M - gi) (H.56)

is the Fourier space representationhdf No need to stop here - the terms in
the action (.41) that couple four (and, in general, 3,-4;) fields also have the
Fourier space representations

Y1 6o--6, ¢[1¢€2 T ¢€n = :)q/k1k2~-~|(n $k1$k2 T &kn s
:)7k1k2-~-kn = 7€1£2~-~£n(90k1)£1(90k2)£2 e ((pkn)[n

1 iz
W Z YVerty-ty € 1§ (kalrtthaln) (H.57)
£1-+0n

According to {H.52) the matrixUy, = (¢K)¢ = ﬁé%k" is a unitary matrix, and
the Fourier transform is a linear, unitary transformatidn™ = 3 P, = 1 with
Jacobian detl = 1. The form of the actionH.41) does not change under— ¢y
transformation, and from the formal point of view, it does natter whether we
compute in the Fourier space or in the configuration spadevihatarted out with.
For example, the trace & is the trace in either representation

Z Mye = Z Z (PkM Py) e
7 Kk ¢

D Ueelpl - M - el de = D Gk Mige =trK. - (H.58)

kk ¢ kk

trM

From this it follows that tM" = tr M", and from the tr In= Intr relation that
detM = detM. In fact, any scalar combination ¢fs, J's and couplings, such as
the partition functiorZ[ J], has exactly the same form in the configuration and the
Fourier space.

OK, a dizzying quantity of indices. But what's the pay-back?

H.5.2 Lattice Laplacian diagonalized

Now use the eigenvalue equatiod.0) to converth matrices into scalars. If
M commuteswith h, then ¢ - M - ) = Mk, and the matrixV acts as
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a multiplication by the scalaMy on thek-th subspace. For example, for the
1-dimensional version of the lattice Laplacidn.87) the projection on thé-th
subspace is

2 (1,
(o A ) = ;(Ewkmk)—l)(wlw)

% (cos(% k) - 1) Sk (H.59)

In the k-th subspace the bare propagatbr.59) is simply a number, and, in
contrast to the mess generated by39), there is nothing to inverting/l~:

i 1 Okk’
(6 M- ) = Golde = 3 -
K k T T B - 5 20 (cos(Zk,) - 1)

wherek = (ki, ko, - --,k,) is ad-dimensional vector in th&l9-dimensional dual
lattice.

Going back to the partition functior26.21) and sticking in the factors of
1into the pilinear part of the interaction, we replace thetigpd, by its Fourier
transformJy, and the spatial propagatavij., by the diagonalized Fourier transformed

(Go)k

ITM-3=3 T @ Mgy - ) = D F G (H61)
kK k

What's the price? The interaction ter&[¢] (which in (26.21) was local in the
configuration space) now has a more challengindependence in the Fourier
transform versionH.57). For example, the locality of the quartic term leads to
the 4-vertexnomentum conservation the Fourier space

Nd

1
S|[¢] = m751€2[3€4 ¢[1¢€2¢[3¢[4 = _ﬁuZ(¢€)4 =
’ =1
1 O ~ o~~~
= _ﬁuw 60,k1+k2+k3+k4 ¢k1¢k2¢k3¢k4 . (HGZ)

{ki}

H.6 C,, factorization

If an N-disk arrangement hasy symmetry, and the disk visitation sequence is
given by disk label$e exes . . .}, only the relative incremenjs = 6.1 — ¢ modN
matter. Symmetries under reflections across axes incrhasgroup toCyy and
add relations between symbolg;} and{N — ¢} differ only by a reflection. As
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Figure H.1: Symmetries of four disks on a square. A g a
fundamental domain indicated by the shaded wedge.

a consequence of this reflection increments become decteruatil the next
reflection and vice versa. Consider four equal disks placedhe vertices of

a square (figured.1). The symmetry group consists of the identdythe two
reflectionsoy, oy acrossx, y axes, the two diagonal reflectionsgs, 024, and the
three rotation€,, Co andCi by anglesr/2, = and 3r/2. We start by exploiting
theC4 subgroup symmetry in order to replace the absolute label$l, 2, 3, 4} by
relative incrementg; € {1, 2, 3}. By reflection across diagonals, an increment by 3
is equivalent to an increment by 1 and a reflection; this newt®} will be called

1. Our convention will be to first perform the increment andnthe change the
orientation due to the reflection. As an example, considefithdamental domain
cycle 112. Taking the disk 4 disk 2 segment as the starting segment, this symbol
string is mapped into the disk visitation sequengg?1,3,,1. .. = 123, where the
subscript indicates the increments (or decrements) betweighboring symbols;
the period of the cycld12 is thus 3 in both the fundamental domain and the
full space. Similarly, the cyclg_lz will be mapped into 12 11 53.12,13,21 =
121323 (note that the fundamental domain symbalotresponds to a flip in
orientation after the second and fifth symbols); this time preriod in the full
space is twice that of the fundamental domain. In particutze fundamental
domain fixed points correspond to the following 4-disk cgcle

4-disk reduced
12 o 1
1234 1
13 <—> 2

Conversions for all periodic orbits of reduced symbol peiess than 5 are listed
in tableH.6.

This symbolic dynamics is closely related to the group-tbgo structure
of the dynamics: the global 4-disk trajectory can be geedrdly mapping the
fundamental domain trajectories onto the full 4-disk spagehe accumulated
product of theCa, group elementgy; = C, g» = C?, 01 = 0diagC = CTaxis,
whereC is a rotation byr/2. In thel12 example worked out above, this yields
Ou12 = Q20101 = C2C0axis = O diag: listed in the last column of table.6. Our
convention is to multiply group elements in the reverse owdéh respect to the
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Table H.1: Cy4, correspondence between the ternary fundamental domairepycles

p and the full 4-disk{1,2,3,4 labeled cyclesp, together with theC,, transformation
that maps the end point of thecycle into an irreducible segment of tpecycle. For
typographical convenience, the symbabflsect.H.6 has been replaced by 0, so that the
ternary alphabet if0, 1, 2}. The degeneracy of thecycle ism, = 8nz/np. Orbit2 is the
sole boundary orbit, invariant both under a rotationrtand a reflection across a diagonal.
The two pairs of cycles marked bg)(and ) are related by time reversal, but cannot be
mapped into each other 16, transformations.

p p hf) i) p hf,
0 12 oy 0001 12121414 024
1 1234 Cy 0002 12124343 oy
2 13 Co, 013 0011 12123434 Co
01 1214 024 0012 121241413434 2323C3
02 1243 Oy 0021 @) 1213414234312324 C%
12 12413423 C; 0022 1213 e
001 121232343414 C4 0102 @) 1214232134324143C4
002 121343 C 0111 12143234 013
011 121434 oy 0112 ) 12142123 O
012 121323 013 0121 @) 12132124 O
021 124324 013 0122 12131413 024
022 124213 Ox 0211 12432134 o
112 123 e 0212 12431423 024
122 124231342413 C4 0221 12421424 024
0222 12424313 oy
1112 1234234134124123C,4
1122 12313413 C>

1222 124241313424 2313C}

o

-
Cr )

Figure H.2: Symmetries of four disks on a rectangle
A fundamental domain indicated by the shaded wedc

=

symbol sequence. We need these group elements for our epxttst dynamical
zeta function factorizations.

TheCy4y, group has four 1-dimensional representations, either sstmen(A;)
or antisymmetric A,) under both types of reflections, or symmetric under one and
antisymmetric under the otheB{, B,), and a degenerate pair of 2-dimensional
representationg. Substituting theC,, characters

Caw |AL A B B, E
e [T 1 1 1 2
C: |1 1 1 1 -2
CsCi|1 1 -1 -1 0
Caxes | 1 -1 1 -1 0
Odag | 1 -1 -1 1 O
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into (19.19 we obtain:

727

hs Ay A B1 B2 E
e (1-tp)° (1-tp) (1-tp) (Q-tp) (-t (@-tp)?
Ca: (1-t5)* 1-tp) (1-tp) (1-tp) (1-tp) (1+1tp)°
Cs,C3 (1-t)? (1-t)) (1-tp) (L+tp) (L+tp) (L+1t3)?
Cwes (L= = (-t (L+t) (-t @+t (L-L)
Cheg (-8 = (I-t) (1+t) (L+ty) (I-tp) (1-12)

The possible irreducible segment group eleméptare listed in the first column;
oaxesdenotes a reflection across either the x-axis or the y-amtsogiag denotes
a reflection across a diagonal (see figtrd). In addition, degenerate pairs of
boundary orbits can run along the symmetry lines in the fplice, with the
fundamental domain group theory weiglits = (Co + o)/2 (axes) anch, =
(Cy + 013)/2 (diagonals) respectively:

A A, B B E
(1 - tp)(1 - Otp)(L - tp)(L - Otp)(L + tp)?
(1 - tp)(1 - Otp)(L — Otp)(L — tp)(L + tp)?(H.63)

axes: (1-t§)?

diagonals: (% t§)

(we have assumed thigtdoes not change sign under reflections across symmetry
axes). For the 4-disk arrangement considered here onlyidgeml orbits13, 24
occur; they correspond to ti&fixed point in the fundamental domain.

The A; subspace i€, cycle expansion is given by

(1 —1t0)(1 — ta)(1 — t2)(1 — tor)(1 — to2)(1 — t12)

(1 - too1)(1 — too2)(1 — to12)(1 — to12) (1 — to21) (1 — toz2) (1 — t112)
(1 — t122)(1 — too01)(1 — to002) (1 — too12)(1 — too12)(1 — too21) - - -
= 1-1o—1tg —t2 — (tox — tots) — (toz — tot2) — (t12 — t1t2)

—(too1 — toto1) — (too2 — toto2) — (to11 — tatos)

1/in, =

—(to2z — tato) — (t112 — tat12) — (t122 — tatio)

—(tor2 + toz1 + totyty — totyo — titor — totog) . ... (H.64)

(for typographical conveniencejdreplaced by 0 in the remainder of this section).
For 1-dimensional representations, the characters caraledt the symbol strings:
xa,(hp) = (1), xg,(hp) = (-1)™, yB,(hp) = (-1)™*™, whereng andn, are the
number of times symbols 0, 1 appear in fheymbol string. FoB; all t, with an
odd total number of 0's and 1's change sign:

1/{s, = (L+1to)(1+1t1)(1—1t2)(1 - tor)(1+ toz)(1 +t12)
(1 + too1)(1 — too2)(1 + to11)(1 — to12) (1 — toz1) (1 + to22) (1 — t112)

(1 + t122)(1 — tooo1)(1 + too02) (1 — too11)(1 + too12) (1 + tooz1) - - -

appendSymm - 4feb2008.tex



APPENDIX H. DISCRETE SYMMETRIES OF DYNAMICS 728

= 1l+to+ty —to— (tor — tota) + (toz — tot2) + (tr2 — tato)
+(too1 — toto1) — (too2 — toto2) + (to11 — tator)
+(to22 — totoz) — (t112 — tat12) + (tr22 — tat12)
—(to12 + to21 + totatz — tot12 — tatoz — totog) . . . (H.65)

The form of the remaining cycle expansions depends cryadallthe special role
played by the boundary orbits: byl (63) the orbitt, does not contribute td, and
Bi,

1/¢p, (1 +to)(1 — t1)(1 + to1)(1 + to2)(1 — t12)
(1 - toon)(1 — too2) (1 + tor1)(1 + tor2)(1 + toz1) (1 + to22)(1 — t112)

(1 - t122)(1 + tooo1) (1 + too02) (1 — too11) (1 — too12)(1 — toozd) - - -
= 1+1tg—ty+ (tor — totz) + tox — t12

—(too1 — toto1) — (too2 — toto2) + (to11 — tito1)
+lo22 — 1122 = (t112 — tat12) + (tor2 + too1 — toti2 — ta1tp) . . (H.66)

and
1/{B, (1 —to)(1 + t1)(1 + to1)(1 — to2)(1 + t12)
(1 + too1)(1 = too2)(1 = tor1)(1 + to12) (1 + to21)(1 — to22) (1 — t112)

(1 + t122)(1 + tooo1) (1 — too02) (1 — too11) (1 + too12)(1 + tooz1) - - -
= 1-—tg+ty+ (tor — tot1) —tox + t12

+(too1 — toto1) — (too2 — totoz) — (to11 — tito1)
~tooo + t122 = (t112 — tat12) + (tor2 + too1 — toti2 — t1tp2) . . (H.67)

In the above we have assumed thatoes not change sign undgy, reflections.
For the mixed-symmetry subspaEdhe curvature expansion is given by

Ve = L1+ta+(—to® +11%) + (Qtooz — toto® — 2t112+ tots?)
+(2toor1 — 2toozz + 2totooz — to1? — to? + 2t1122— 2oty
+110% — to”t1%) + (2toooo2— 2loo112+ 2totoo11 — 2too121— 2tooz11
+2tooz22 — 2otooze + 21012+ 2to1021— 2lo1102— totor® + 2toz022

~totoz® + 211112~ 211220+ 2tati120 — 22122+ tot1n? — tot’ts?
+2to02(~to? + t1%) — 2t112(~to® + 117)) (H.68)

A quick test of the” = {AlgAzgglggzgé factorization is &orded by the topological
polynomial; substitutind, = z» into the expansion yields

1/§A1=1_3Z’ 1/§A2=1/§B;L=1, 1/482:1/§E:1+Z,

in agreement with3.40. [exercise 18.9]
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Table H.2: Cy, correspondence between the terngyl, 2} fundamental domain prime
cycles p and the full 4-disk{1,2,3,4 cycles p, together with theC,, transformation
that maps the end point of thecycle into an irreducible segment of tipecycle. The
degeneracy of the cycle ismp = 4np/np. Note that the 012 and 021 cycles are related
by time reversal, but cannot be mapped into each oth&@:pyransformations. The full
space orbit listed here is generated from the symmetry exticade by the rules given in
sect.H.7, starting from disk 1.

p p g p p 9
0 14 oy 0001 14143232 C;
1 12 Ox 0002 14142323 oy
2 13 C 0011 1412 e

01 1432 C 0012 14124143 oy
02 1423 Ox 0021 14134142 oy
12 1243 oy 0022 1413 e
001 141232 oy 0102 14324123 oy
002 141323 C, 0111 14343212 C,
011 143412 oy 0112 14342343 oy
012 143 e 0121 14312342 oy
021 142 e 0122 14313213 C,
022 142413 oy 0211 14212312 oy
112 121343 C; 0212 14213243 C;
122 124213 oy 0221 14243242 C,
0222 14242313 oy
1112 12124343 oy
1122 1213 e
1222 12424313 oy

H.7 C,, factorization

An arrangement of four identical disks on the vertices of etargle haC,,
symmetry (figureH.2b). Cy, consists ofe, oy, oy, Co}, i.€., the reflections across
the symmetry axes and a rotation oy

This system fiords a rather easy visualization of the conversion of a Kk-dis
dynamics into a fundamental domain symbolic dynamics. Aitdeaving the
fundamental domain through one of the axis may be folded bgck reflection
on that axis; with these symmetry operatiaas= oy andg; = oy we associate
labels 1 and 0, respectively. Orbits going to the diagornatlyosed disk cross the
boundaries of the fundamental domain twice; the produdbtedé two reflections
is justCy = oxoy, to which we assign the label 2. For example, a ternary string
0010201.. is converted into 12143123, and the associated group-theory

weight is given by. . . 919092909190Jo-

Short ternary cycles and the corresponding 4-disk cyckebsded in tableH.7.
Note that already at length three there is a pair of cycle® £0143 and 02X 142)
related by time reversal, babt by anyC,, symmetries.

The above is the complete description of the symbolic dynaffioir 4 sificiently
separated equal disks placed at corners of a rectangle. udouvifehe fundamental
domain requires further partitioning, the ternary desmipis insuficient. For
example, in the stadium billiard fundamental domain onaddsstinguish between
bounces & the straight and the curved sections of the billiard wallthat case
five symbols sffice for constructing the covering symbolic dynamics.
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The groupCy,y, has four 1-dimensional representations, distinguishethéy
behavior under axis reflections. The representation is symmetric with respect
to both reflections; thé\, representation is antisymmetric with respect to both.
The B; and By representations are symmetric under one and antisymnusgitier
the other reflection. The character table is

Cyy | At Ay By B

e |1 1 1 1
C[1 1 -1 -1
ox |1 -1 1 -1
oy |1 -1 -1 1

Substituted into the factorized determinalbf (14, the contributions of periodic
orbits split as follows

Op A1 Az B1 B,

e (I-tp)* = (1-t) (1-tp) (A-tp) (1-tp)
Ca (-t = (1-t) (A-tp) (1-tp) (1-tp)
ox. (1- tg 2 = (1-tp) (L+tp) (1-tp) (L+tp)
oy (-t = (1-tp) (L+tp) (L+tp) (1-tp)

Cycle expansions follow by substituting cycles and thedugrtheory factors from
tableH.7. ForA; all characters arel1, and the corresponding cycle expansion is
given in (H.64). Similarly, the totally antisymmetric subspace factatian A; is
given by H.65), the B, factorization ofC,4,. ForB; all t, with an odd total number
of 0’'s and 2’s change sign:

(1 +1t0)(1 - ta)(1 + t2)(1 + tor) (L — to2)(1 + t12)

(1 = too1)(1 + too2)(1 + to11)(1 — t012)(1 — to21)(1 + to22) (1 + t112)
(1 — t122)(1 + tooo1) (1 — too02) (1 — too11)(1 + too12)(1 + too21) - - -
= 1l+to—ty +to+ (tor — tots) — (toz — totz) + (tr2 — tato)

—(too1 — toto1) + (too2 — toto2) + (to11 — tatos)

+(to22 — tolo2) + (112 — tat12) — (tro2 — tot12)

—(to12 + toz1 + tot1tz — totso — tatop — toloy) . ... (H.69)

1/581

For B; all t, with an odd total number of 1's and 2’s change sign:

1/¢s, = (1—-1to)(1+t2)(1+1t2)(1+to1)(1 + to2)(1 - t12)
(1 + too1)(1 + too2)(1 — to12)(1 — to12) (1 — toz1) (1 — toz2) (1 + t112)
(1 + t122) (1 + tooo1) (1 + too02) (1 — too11)(1 — too12)(1 — too21) - - -
= 1-to+1ty+t2+ (tor — toty) + (toz — tot2) — (t12 — tat2)
+(too1 — toto1) + (too2 — toto2) — (to11 — tatos)
—(toz22 — toto2) + (t112 — tat12) + (tro2 — tot12)
—(to12 + toz1 + tot1tz — totso — tatop — toloy) . ... (H.70)
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Note that all of the above cycle expansions group long otbggther with their
pseudoorbit shadows, so that the shadowing argumentsriveence still apply.

The topological polynomial factorizes as

Lo, L L1,
gAl §A2 gBl ng

consistent with the 4-disk factorizatio©3.40.

H.8 Heénon map symmetries

We note here a few simple symmetries of the Henon n@ap8|. Forb # 0 the
Hénon map is reversible: the backward iteration3f.§) is given by

o1 = ~£ (1@~ Hova). (H.71)

Hence the time reversal amountstes 1/b, a — a/b? symmetry in the parameter
plane, together wittk — —x/b in the coordinate plane, and there is no need to
explore the &, b) parameter plane outside the sthpe {—1,1}. Forb = -1 the
map is orientation and area preserving ,

X1 = 1—ax — X1, (H.72)

the backward and the forward iteration are the same, andaihewandering set
is symmetric across the,.1 = X, diagonal. This is one of the simplest models of
a Poincaré return map for a Hamiltonian flow. For the origotereversingo = 1
case we have

X1 = 1—@% + X1, (H.73)

and the non—wandering set is symmetric acrossthe= —x, diagonal.

Commentary

Remark H.1 Literature This materialis covered in any introductionto linear alggh,

2, 3] or group theory {1, 10]. The exposition given in sect$l.2.1andH.2.2is taken
from refs. b, 7, 1. Who wrote this down first we do not know, but we like Harter's
exposition B, 9, 17] best. Harter's theory of class algebréisos a more elegant and
systematic way of constructing the maximal set of commutimgriant matriced; than
the sketch fiered in this section.
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Remark H.2 Labeling conventions While there is a variety of labeling conventioris]
8] for the reducedC,, dynamics, we prefer the one introduced here because obie cl
relation to the group-theoretic structure of the dynamiles:global 4-disk trajectory can
be generated by mapping the fundamental domain trajestonrito the full 4-disk space
by the accumulated product of tlk, group elements.

Remark H.3 Cy symmetry C,, is the symmetry of several systems studied in the
literature, such as the stadium billiar@i(], and the 2-dimensional anisotropic Kepler
potential f].

Exercises

H.1. Am | agroup?

H.2.

Show that multiplication table

describes a group. Or does it? (Hint: check whether this
table satisfies the group axioms of appendix.)

From W.G. Harter 7]

Three coupled pendulums with aC, symmetry.
Consider 3 pendulums in a row: the 2 outer ones of
the same masws and lengtH, the one midway of same
length but diferent mas#, with the tip coupled to the
tips of the outer ones with springs offtiessk. Assume
displacements are smaX,/| < 1.

(a) Show that the acceleration matkix —axis

decomposes into a-d subspace, with eigenvalue
(w)? = a+ b, and a 2d subspace, with acceleration

e a b c d f matrix (trust your own algebra, if it strays from what is
ele a b ¢ d f stated here)
ajla e d b f c
b|b d e f ¢ a
clc b f e a d g0 | arb -va2a
d|d f c a e b -V c+b
f|f c a d b e

The exercise is simple enough that you can do it without
using the symmetry, so: constriRt, P_ first, use them

to reducea to irreps, then proceed with computing
remaining eigenvalues af

(d) Does anything interesting happerMf= m?

The point of the above exercise is that almost always
the symmetry reduction is only partial: a matrix
representation of dimensiahgets reduced to a set of
subspaces whose dimensiaif® satisfy 3 d@ = d.
Beyond that, love many, trust few, and paddle your own
canoe.

From W.G. Harter 7]

el a+b -a 0 X1 o
% |=-| -c¢ 2c+b -c X |, H.3. Laplacian is a non-local operator.
X3 0 -a a+b X3

wherea = k/ml, ¢ = k/Ml andb = g/I.

(b) Check that § R] = 0, i.e., that the dynamics is
invariant undetC, = {e R}, whereR interchanges the
outer pendulums,

While the Laplacian is a simple tri-diagonafigirence
operator (.38), its inverse (the “free” propagator of
statistical mechanics and quantum field theory) is a
messier object. A way to compute is to start expanding
propagator as a power series in the Laplacian

00 1 1 1o 1 .,
R=|0 1 0. =) AN (H.74)
Y 5 0} MPL-A NP Lin?

(c) Construct the corresponding projection operators
P, and P_, and show that the 3-pendulum system
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As A is a finite matrix, the expansion is convergent
for sufficiently largen?. To get a feeling for what is



