Appendix D

Symbolic dynamics technigues

prime factorization for dynamical itineraries of se€l.2 illustrates the
sense in which prime cycles are “prime” - the product stnectof zeta
functions is a consequence of the unique factorizationgrtgmf symbol sequences.

THE KNEADING THEORY for unimodal mappings is developed in sdotl. The

D.1 Topological zeta functions for infinite subshifts
(P. Dahlqgvist)

,

J The Markov graph methods outlined in chapt@rare well suited for
symbolic dynamics of finite subshift type. A sequence of wlefined rules leads
to the answer, the topological zeta function, which turristoue a polynomial.
For infinite subshifts one would have to go through an infisi#éguence of graph
constructions and it is of course venyfittult to make any asymptotic statements
about the outcome. Luckily, for some simple systems the gaalbe reached by
much simpler means. This is the case for unimodal maps.

We will restrict our attention to the topological zeta fuoat for unimodal
maps with one external parametgi(x) = Ag(X). As usual, symbolic dynamics is
introduced by mapping a time series Xi_1XX+1 ... onto a sequence of symbols
...S-1SS+1... where

$s=0 X <X
:C XIZXC
s=1 X>X (D.1)

andx is the critical point of the map (i.e., maximumg@. In addition to the usual
binary alphabet we have added a symBdior the critical point. The kneading
sequencd, is the itinerary of the critical point. The crucial obsefgatis that no
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1(C) Gop(@/(1-2) 1(C) {iop(@/(1-2)
iC 1001C

101C 10011TC

101110T 10011C

H*(1) Meod-7) 10011@

1011 100C

101111T 10001@

101° (1-22)/(1+72) || 1000C

1011111C 10001

10111 1000C

1011C 10000

10110 1000

10C (1-z-72) 10000@

1001 10” (1-29/(1-2
10010

Table D.1: All ordered kneading sequences up to length seven, as wetiras longer kneading
sequences. Harmonic extensidft (1) is defined below.

periodic orbit can have a topological coordinate (see $2d4t.1) beyond that of

the kneading sequence. The kneading sequence thus inkentded in the list of

periodic orbits (ordered according to maximal topologicabrdinate), cycles up
to this limit are allowed, all beyond are pruned. All unimbafeps (obeying some
further constraints) with the same kneading sequence taus the same set of
periodic orbitsand the same topological zeta function. tbpelogical coordinate
of the kneading sequence increases with increasing

The kneading sequence can be of one of three types

1. It maps to the critical point again, aftariterations. If so, we adopt the
convention to terminate the kneading sequence with and refer to the
kneading sequence as finite.

2. Preperiodic, i.e., it is infinite but with a periodic tail.

3. Aperiodic.
As an archetype unimodal map we will choose tiéré map

AX x€[0,1/2]

x> 1(x) ={ Al-x) xe(121] ° (0-2)

where the parametex € (1,2]. The topological entropy i = logA. This
follows from the fact any trajectory of the map is bounded #scape rate is
strictly zero, and so the dynamical zeta function

1@ =[] (1— |in—p|) = [T(1- (%)) = veoptarn)
p

p

has its leading zero at= 1.
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The set of periodic points of the tent map is countable. A equence of
this fact is that the set of parameter values for which theallimgy sequence is
periodic or preperiodic are countable and thus of measumeara consequently
the kneading sequence is aperiodic for almost all A. For general unimodal maps
the corresponding statement is that the kneading sequepeiiodic for almost
all topological entropies.

For a given periodic kneading sequence of peripl, = PC =
s1S ... $-1C there is a simple expansion for the topological zeta functithen
the expanded zeta function is a polynomial of degree

n-1 i
Yaop@ = [ [1-Z)=1-2 ) az, a=]]-1) (D-3)
i=0 =1

p
andag = 1.

Aperiodic and preperiodic kneading sequences are acabdiotdy simply
replacingn by co.

Example. Consider as an example the kneading sequé&nce 10C. From
(D.3) we get the topological zeta functiondop(2) = (1-2)(1 -2z~ 7), see
tableD.1. This can also be realized by redefining the alphabet. Thefordidden
subsequence is 100. All allowed periodic orbits, exd&ptan can be built from
a alphabet with letters 18nd 1 We write this alphabet &40, 1;0}, yielding the
topological zeta function /Liop(2) = (1-2)(1 -z - 7). The leading zero is the
inverse golden meamy = (V5 - 1)/2.

Example. As another example we consider the preperiodic kneadigesee
Ka = 101*. From (.3) we get the topological zeta functiori{lop(2) = (1-2)(1-
27%)/(1 + 2), see tableD.1. This can again be realized by redefining the alphabet.
There are now an infinite number of forbidden subsequencasely 1020
wheren > 0. These pruning rules are respected by the alphgliét*!; 1,0},
yielding the topological zeta function above. The pole ia tleta functiorijt;})(z)
is a consequence of the infinite alphabet.

An important consequence dd (3) is that the sequende;} has a periodic tail
if and only if the kneading sequence has one (however, treiog may difer
by a factor of two). We know already that the kneading segeiéneperiodic for
almost allA.

The analytic structure of the function represented by tfiaite series). az
with unity as radius of convergence, depends on whetheathaft{a;} is periodic
or not. If the period of the tail i& we can write

1don@® = P+ AL+ 2+ 2 ) = i)+ 2

for some polynomialg(z) andq(z). The result is a set of poles spread out along
the unit circle. This applies to the preperiodic case. Arnriadée sequence of
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codficients would formally correspond to infinitd and it is natural to assume
that the singularities will fill the unit circle. There is iadd a theorem ensuring
that this is the case6]], provided thea;’s can only take on a finite number of
values. The unit circle becomesatural boundary, already apparent in a finite
polynomial approximations to the topological zeta fungctias in figurel3.4. A
function with a natural boundary lacks an analytic conttrmraoutside it.

To conclude: The topological zeta functiofib, for unimodal maps has the
unit circle as a natural boundary for almost all topologieatropies and for the
tent map D.2), for almost allA.

Let us now focus on the relation between the analytic straeabfithe topolo-
gical zeta function and the number of periodic orbits, dneaiL 3.6), the number
N of fixed points off"(x). The trace formula is (see sei8.4)

1 . d 1
Np=trT" = 7 P dzz ”d—zloggtop

wherey, is a (circular) contour encircling the origim= 0 in clockwise direction.
Residue calculus turns this into a sum over zexoand polesz, of g’t;%)

1 d
_ ~n _ =l —N -1
Np = E Z E Bt o 9§R dzz o log {iop

20:r<|zo|<R Zpir<|zp|<R

and a contribution from a large circle;. For meromorphic topological zeta func-
tions one may leR — oo with vanishing contribution fromyg, andN, will be a
sum of exponentials.

The leading zero is associated with the topological entrapydiscussed in
chapterl3.

We have also seen that for preperiodic kneading there widbes on the unit
circle.

To appreciate the role of natural boundaries we will conrsiddérery) special
example. Cascades of period doublings is a central concefhté description of
unimodal maps. This motivates a close study of the function

E(2) = ]—[(1 -7Z) . (D.4)
n=0

This function will appear again when we derive. ).

The expansion df(2) begins ag(2) = 1-z- 2+ -2 +2°.... The radius
of convergence is obviously unity. The simple rule govegrtime expansion will
effectively prohibit any periodicity among the d&eients making the unit circle
a natural boundary.
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It is easy to see tha&(z) = 0 if z = exp(2rm/2") for any integemrm andn.
(Strictly speaking we mean th&(z) — 0 whenz — exp(2rm/2") from inside).
Consequently, zeros are dense on the unit circle. One cassladsv that singular
points are dense on the unit circle, for instafi(g)| — oo whenz — exp(2rm/3")
for any integemandn.

As an example, the topological zeta function at the accutionlgpoint of
the first Feigenbaum cascade(fgh(2) = (1 - 2Z(2. ThenN, = 2*1if n =
2', otherwiseN, = 0. The growth rate in the number of cycles is anything but
exponential. It is clear tha\l, cannot be a sum of exponentials, the contgur
cannot be pushed away to infinitiR is restricted toR < 1 andN, is entirely
determined bﬂm which picks up its contribution from the natural boundary.

We have so far studied the analytic structure for some speases and we
know that the unit circle is a natural boundary for almostAall But how does
it look out there in the complex plane for some typical par@nealues? To
explore that we will imagine a journey from the origin= 0 out towards the unit
circle. While traveling we let the paramet&rchange slowly. The trip will have a
distinct science fiction flavor. The first zero we encounteéhésone connected to
the topological entropy. Obviously it moves smoothly armdy. When we move
outward to the unit circle we encounter zeros in increasimgsidies. The closer
to the unit circle they are, the wilder and stranger they moMeey move from
and back to the horizon, where they are created and destthyedgh bizarre
bifurcations. For some special values of the parametentheiocle suddenly gets
transparent and and we get (infinitely) short glimpses ofteravorld beyond the
horizon.

We end this section by deriving eg8.6) and (0.6). The impenetrable prose
is hopefully explained by the accompanying tables.

We know one thing from chaptd), namely for that finite kneading sequence
of lengthn the topological polynomial is of degree The graph contains a node
which is connected to itself only via the symbol 0. This ireglithat a factor
(1 -2 may be factored out anfp(2) = (1-2) Zi”:‘ol a;iZ. The problem is to find
the codficientsy.

periodic orbits| finite kneading sequences
P1=A%(P)
PC
PO
POPC
POP1
POP1POPC
l l
H*(P) H*(P)

Table D.2: Relation between periodic orbits and finite kneading secge®im a harmonic cascade.
The stringP is assumed to contain an odd number of 1's.

The ordered list of (finite) kneading sequences tableand the ordered list of
periodic orbits (on maximal form) are intimately related.tdbleD.2 we indicate
how they are nested during a period doubling cascade. Ewvaitg fineading

chaptefdahlqgvist.tex 30nov2001.tex



APPENDIX D. SYMBOLIC DYNAMICS TECHNIQUES 683

sequencéC is bracketed by two periodic orbit®1 andP0. We haveP1 < PC <

PO if P contains an odd number of 1's, ad < PC < P1 otherwise. From
now on we will assume thd® contains an odd number of 1's. The other case
can be worked out in complete analogy. The first and seconudrac of PC

are displayed in tabl®.2. The periodic orbitP1 (and the corresponding infinite
kneading sequence) is sometimes referred to as the antharextension oPC
(denotedA™(P)) and the accumulation point of the cascade is called thadaic
extension ofPC [14] (denotedH*(P)).

A central result is the fact that a period doubling cascad&xif not interfered
by any other sequence. Another way to express this is thatading sequence
PC and its harmonic are adjacent in the list of kneading se@msetwany order.

1(C) Liop(@/(1-2)
P, = 100C 1-z-7-7

H*(Py) = 10001001100.. |1-z-Z-Z2-Z+2+2+7-2...
PP = 1000 1-z2-72-2-2+7

A*(P,) = 1000110001.. |1-z-Z-Z-Z+2-2-72-7...
P, = 1000C 1-z-72-2-7

Table D.3: Example of a step in the iterative construction of the liskméading sequencéxC.

TableD.3 illustrates another central result in the combinatoric&regading
sequences. We suppose tiatC and P,C are neighbors in the list of order 5
(meaning that the shortest finite kneading sequétiCebetweenP,C andP,C is
longer than 5.) The important result is thHat (of lengthn’ = 6) has to coincide
with the firstn’ — 1 letters of bothH*(P1) and A*(P,). This is exemplified in
the left column of tableéD.3. This fact makes it possible to generate the list of
kneading sequences in an iterative way.

The zeta function at the accumulation pditft'(P,) is
{pr@E(Z") | (D.5)
and just beforéA™(P2)
i (@/(1-2%) . (D.6)

A short calculation shows that this is exactly what one wabthin by applying
(D.3) to the antiharmonic and harmonic extensions directlyyiplex that it applies
to {5 1(2) andZp1(2). This is the key observation.

Recall now the product representation of the zeta funciion = [Tp(1 -
Z"). We will now make use of the fact that the zeta function aisged with
P’C is a polynomial of orden’. There is no periodic orbit of length shorter than
n + 1 betweenH*(P1) and A~ (P>). It thus follows that the cd&cients of this
polynomial coincides with those ob(5) and (.6), see TabléD.3. We can thus
conclude that our rule can be applied directhP€.

This can be used as an induction step in proving that the ariebe applied
to every finite and infinite kneading sequences.
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Remark D.1 How to prove things. The explicit relation between the kneading sequence
and the cofficients of the topological zeta function is not commonly seehe literature.

The result can proven by combining some theorems of MilndrEmurston [3]. That
approach is hardly instructive in the present context. Qarivdtion was inspired by
Metropolis, Stein and Stein classical papér][ For further detail, consult 0.

D.1.1 Periodic orbits of unimodal maps

A periodic point (or acycle point) x; belonging to a cycle of period is a real
solution of

() = F(F(... f(x)..)) =%, i=012..,n-1 (D.7)

Thenth iterate of a unimodal map crosses the diagonal at nidgn2s. Similarly,

the backward and the forward Smale horseshoes interseabsittimes, and

therefore there will be Ror fewer periodic points of length. A cycle of length

n corresponds to an infinite repetition of a lengtlsymbol string, customarily
indicated by a line over the string:

S=(519%%... )" = S19%..- 5.

If 55... 5, is the symbol string associated with, its cyclic permutation
SSkt1---SnS1. .. 1 corresponds to the poi_; in the same cycle. A cycle

is calledprimeif its itinerary S cannot be written as a repetition of a shorter block
S

Each cycle yields rational values ofy. The repeating string:, $,... S
contains an odd number “1"s, the string of well ordered sylsbows; . . . w, has
to be of the double length before it repeats itself. The valisea geometrical sum
which we can write as the finite sum

22n 2n X
Y& &) = mzwt/z
t=1

Using this we can calculate th€S) for all short cycles.

Here we give explicit formulas for the topological coordmaf a periodic
point, given its itinerary. For the purpose of what followisis convenient to
compactify the itineraries by replacing the binary alphage= {0, 1} by the
infinite alphabet

{a1, @, a3, a4, --; 0} = {1,10,100 100Q... . ; 0} . (D.8)

In this notation the itinerars = &ajaa - -- and the corresponding topological
coordinate ??) are related by(S) = .1'011%0' - - .. For example:

S
¥(S)

11101110100100Q. Qi aazas. ..
.101101001110000. = .1'0'120%1102130%...
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Cycle points whose itineraries startwith =wp = ... =w; =0, wj;; = 1 remal_in
on the left branch of the tent map faterations, and satisfy(0. .. 0S) = y(S)/2'.

A periodic point (or acycle point) x; belonging to a cycle of periodis a real
solution of

() = F(F(... f(x)..)) =%, i=0,12...,n—1. (D.9)

The nth iterate of a unimodal map has at mos$t Bonotone segments, and
therefore there will be Ror fewer periodic points of length. A periodic orbit
of length n corresponds to an infinite repetition of a lengthsymbol string,
customarily indicated by a line over the string:

S=(a1%%..-%)” =5%S%. .- S

As all itineraries are infinite, we shall adopt conventioatt finite string itinerary
S = 9%3...5 stands for infinite repetition of a finite block, and routinel
omit the overline. If$;S; ... S is the symbol string associated wikh, its cyclic
permutation§ St - - - Sns1 - - - k1 corresponds to the poing_; in the same cycle.
A periodic orbitp is calledprimeif its itinerary S cannot be written as a repetition
of a shorter blocls’.

Periodic points correspond to rational valueg/pbut we have to distinguish
even andodd cycles. The even (odd) cycles contain even (odd) number iof
the repeating block, with periodic points given by

521100 .. 1K even

S (1+20%.10i---1¢ ad (D.10)
g (1+20 . ) o

y(@aj - adr) = {

wheren =i+ j +---+ k+ (is the cycle period. The maximal value cycle point
is given by the cyclic permutation & with the largesta; as the first symbol,
followed by the smallest availablg as the next symbol, and so on. For example:

1) = y(@) = .10101.. = .10 = 2/3
$(10) = y(a) = .1%0%... = 1100 = 4/5
$(100) = y(as) = .1%0°... = 111000 = 8/9
$(101) = y(apay) = .120'... = .110 = 6/7

An example of a cycle where only the third symbol determiesmaximal value
cycle point is

7(1101110)= y(apanarayay) = .11011010010016 100/129.

Maximal values of all cycles up to length 5 are given in table!
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D.2 Prime factorization for dynamical itineraries

,
J The Mobius function is not only a number-theoretic funitibut can be
used to manipulate ordered sets of noncommuting objectsasisymbol strings.
LetP = {p1, p2, p3, - - -} be an ordered set @fime strings, and

k4
N =in}= {p'fp‘gzp';?--- pj’} :

j €N, k €Z,, be the set of all strings obtained by the ordered concatenation of
the “primes”p;. By construction, every string has a unique prime factorization.
We say that a string has a divisgiif it containsd as a substring, and define the
string divisionn/d asn with the substringd deleted. Now we can do things like
this: definingty := ti4t}2 - - -t we can write the inverse dynamical zeta function
(18.2) as

[Ta-t)=> ntta,
p n

and, if we care (we do in the case of the Riemann zeta functtbae)dynamical
zeta function as .

1
]:[ T antn (D.11)

A striking aspect of this formula is its resemblance to thetdezation of
natural numbers into primes: the relation of the cycle egman(®.11) to the
product over prime cycles is analogous to the Riemann zetrdise 17.10
represented as a sum over natural numbers vs. its Eulerginmpresentation.

We now implement this factorization explicitly by decompasrecursively
binary strings into ordered concatenations of prime s&inghere are 2 strings
of length 1, both prime:p; = 0, p» = 1. There are 4 strings of length 2:
00, 01, 11, 10. The first three are ordered concatenationgiwmiep: 00 =
pf, 01 = pip2, 11 = pg; by ordered concatenations we mean thap, is
legal, butp,p; is not. The remaining string is the only prime of length@g, =
10. Proceeding by discarding the strings which are conatitars of shorter
primespltpi? - - p:.(j, with primes lexically ordered, we generate the standatd i
of primes, in agreement with tabl.1 0, 1, 10, 101, 100, 1000, 1001, 1011,
10000, 10001, 10010, 10011, 10110, 10111, 100000, 100@@D1D, 100011,
100110, 100111, 101100, 101110, 101111, This factorization is illustrated in
tableD.4.
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factors | string || factors | string || factors | string |- string

P1 ol p 0000 || Py 00000/ =7, = 50101
P2 1 p% P2 0001 || PyP2 00001 || 1o ps | 01101

, Py | 0011l PyPp | OOOML | paps | 11101
P2 00 || pyp3 | o111 PiPp | OOLLLY hops | 10101
P1P2 01| p4 1112 PP; | 01111\ bips | 01000
P5 11 p% ps | 0010 pg 11111 || pyps | 11000
P3 10 || pipops | 01101 P3Pz | 00010|| p;p; | 01001

5 p2ps | 1110 P7pzps | 00110 p2p7 | 11001
Py 000 || p? 1010 || pLp2ps | 01110| pips | 01011
PPz | 001\ i, | 0100| pps | 11110| p2ps | 11011
; 2 10000
pp? | O11| pop, | 1100| pip2 | 01010] Po
P3 111 | pips | 0101| pop? | 11010| Po | 10001
P1P3 010 || p2ps 1101 pi P4 001001l P11 10010
P2P3 110 || ps 1000 || pypops | 011001 P12 10011
P4 100 P7 1001 p2 Pa 11100 P13 10110
Ps 101 || ps 1011 p2p, | 10100|L P | 10111

Table D.4: Factorization of all periodic points strings up to length rioi ordered
concatenationg!é pl - - pl of prime stringsp; = 0, p = 1, ps = 10, ps = 100, ...
, P14 = 10111.

D.2.1 Prime factorization for spectral determinants

,
J Following sectD.2, the spectral determinant cycle expansions is obtained
by expanding- as a multinomial in prime cycle weights

(o)

_ k _
F= ]:[ gcpktp = > Ty dags. (D.12)

kikoks---=0

where the sum goes over all pseudocycles. In the above wedefined

Tpilpgzp?-- = 1—1[ Cpiki tgi . (D.13)
[exercise 17.10]
A striking aspect of the spectral determinant cycle expanisi its resemblance
to the factorization of natural numbers into primes: as weealy noted in secD. 2,
the relation of the cycle expansioD.(L2) to the product formulal(7.9) is analogous
to the Riemann zeta represented as a sum over natural nuwgoeliss Euler
product representation.

This is somewhat unexpected, as the cycle weights facteviaetly with
respect tor repetitions of a prime cyclety, p = tj, but only approximately
(shadowing) with respect to subdividing a string into prime substrings,, ~

tpltpz'

The codficientsCx have a simple form only in & given by the Euler formula
(21.34. In higher dimension€ x can be evaluated by expanding7(9, F(2) =
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[1p Fp, Where

S ) (s %Y
S I

r=1 r=1

Expanding and recollecting terms, and suppressing tyele label for the moment,
we obtain

Fp

D, Ce=(-)a/Dy
r=1

=~

Dk = |]d= ﬁ ﬁ(l — (D.14)

where evaluation of requires a certain amount of not too luminous algebra:

o =1
¢ = 1
d d

1(dy 1

e = E(d—l—oll)—E[L_l(uua)—gu—ua)]
1 (dods

C3 = g(d—%+2d1d2—3d3)

1

d
= 5 [1—[(1 + 22U + 202 + 1Y)
a=1

d d
+2 l—[(l — U -2+ 1) - 31_[(1 - ug)J
a=1 a=1

etc.. For example, for a general 2-dimensional map we have

= _1_it+ul+u2t2_U1U2(1+u1)(1+u2)+u§+ug
T Dl D2 D3

t2+....(D.15)

We discuss the convergence of such cycle expansions inl gect.

With T e o defined as above, the prime factorization of symbol strisgs i
1 F2

n

unigue in the sense thedch symbol string can bewritten asa unique concatenation
of prime strings, up to a convention on ordering of primes. This factorizai®ma
nontrivial example of the utility of generalized Mobiuwvérsion, sectD.2.

How is the factorization of secD.2 used in practice? Suppose we have
computed (or perhaps even measured in an experiment) alemycles up to
lengthn, i.e., we have a list ofy’s and the corresponding fundamental matrix
eigenvalue\p 1, Appo, ... Apd. Acycle expansion of the Selberg product is obtained
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