Appendix D

Symbolic dynamics techniques

HE KNEADING THEORY for unimodal mappings is developed in sdatl. The
prime factorization for dynamical itineraries of se€t.2 illustrates the
sense in which prime cycles are “prime” - the product stnectof zeta

functions is a consequence of the unique factorizationgqatgf symbol sequences.

D.1 Topological zeta functions for infinite subshifts
(P. Dahlgvist)

)

J The Markov graph methods outlined in chapi€rare well suited for
symbolic dynamics of finite subshift type. A sequence of wlefined rules leads
to the answer, the topological zeta function, which turnistowe a polynomial.
For infinite subshifts one would have to go through an infis#équence of graph
constructions and it is of course venfiiult to make any asymptotic statements
about the outcome. Luckily, for some simple systems the gaalbe reached by
much simpler means. This is the case for unimodal maps.

We will restrict our attention to the topological zeta funat for unimodal
maps with one external paramefgi(x) = Ag(X). As usual, symbolic dynamics is
introduced by mapping a time series Xi_1 % X+1 . .. onto a sequence of symbols
...S-1SS+1... where

§=0 % <X
=C X=X
s=1 x>X% (D.1)

andx is the critical point of the map (i.e., maximumg@j In addition to the usual
binary alphabet we have added a sym@dior the critical point. The kneading
sequencé, is the itinerary of the critical point. The crucial obsereatis that no
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1C) Lop@/(1-2) 1(C) Lop@/(1-2)
ic 1001C

101C 10011C

101110T 1001C

H®(1) Mol -2") 10011@

1011%C 100C

101111T 10001@

101° (1-22)/(1+2) || 1000LC

1011111C 10001

10111C 1000C

1011C 10000C

10110TC 1000@

10C 1-z-2) 10000@

1001@ 107 1-29/1-2)
10010C

Table D.1: All ordered kneading sequences up to length seven, as webrae longer kneading
sequences. Harmonic extensidf(1) is defined below.

periodic orbit can have a topological coordinate (see $&dt.1) beyond that of
the kneading sequence. The kneading sequence thus inderdes in the list of
periodic orbits (ordered according to maximal topologicabrdinate), cycles up
to this limit are allowed, all beyond are pruned. All unimbaeps (obeying some
further constraints) with the same kneading sequence taus the same set of
periodic orbitsand the same topological zeta function. fbpelogical coordinate
of the kneading sequence increases with increasing

The kneading sequence can be of one of three types

1. It maps to the critical point again, aftariterations. If so, we adopt the
convention to terminate the kneading sequence wi@ and refer to the
kneading sequence as finite.

2. Preperiodic, i.e., itis infinite but with a periodic tail.

3. Aperiodic.
As an archetype unimodal map we will choose titye map

AX x €[0,1/2]

XHf(X):{A(l—x) xe @21 (0-2)

where the parametex € (1,2]. The topological entropy ib = logA. This
follows from the fact any trajectory of the map is boundecs &scape rate is
strictly zero, and so the dynamical zeta function

1760 = [1(1=55) = [1(2-(3)") = veepte)
P p

has its leading zero at= 1.
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The set of periodic points of the tent map is countable. A eqnence of
this fact is that the set of parameter values for which theallivgy sequence is
periodic or preperiodic are countable and thus of measurearel consequently
the kneading sequence is aperiodic for almost all A. For general unimodal maps
the corresponding statement is that the kneading sequsapeiiodic for almost
all topological entropies.

For a given periodic kneading sequence of peripd , = PC =
s1% ... 5-1C there is a simple expansion for the topological zeta functithen
the expanded zeta function is a polynomial of degree

n-1 i
Vi@ = [ - =1-2 ) az, a=]]C1® (0-3)
p i=0 j=1

andag = 1.

Aperiodic and preperiodic kneading sequences are acabtiotedy simply
replacingn by co.

Example. Consider as an example the kneading sequénce: 10C. From
(D.3) we get the topological zeta functiondep(?d = (1-2)(1-z- ), see
tableD.1. This can also be realized by redefining the alphabet. Theforlidden
subsequence is 100. All allowed periodic orbits, exd&ptan can be built from
a alphabet with letters 18nd 1 We write this alphabet &40, 1; 0}, yielding the
topological zeta function /Liop(2) = (1 - 2)(1 - z— Z2). The leading zero is the
inverse golden meam = (V5 - 1)/2.

Example. As another example we consider the preperiodic kneadugesee
Ka = 101°. From 0.3) we get the topological zeta functioriélop(2) = (1-2)(1-

27°)/(1 + 2), see tabléD.1. This can again be realized by redefining the alphabet.

There are now an infinite number of forbidden subsequencasmely 102"0
wheren > 0. These pruning rules are respected by the alphgigt; 1,0},
yielding the topological zeta function above. The pole ia teta functior;’t;},(z)
is a consequence of the infinite alphabet.

An important consequence db (3) is that the sequende;} has a periodic tail
if and only if the kneading sequence has one (however, theziogh may difer
by a factor of two). We know already that the kneading seceiémeaperiodic for
almost allA.

The analytic structure of the function represented by tfiaite seriesy’ &z
with unity as radius of convergence, depends on whetheathefta;} is periodic
or not. If the period of the tail i we can write

a@
1-N

Yéiop@ = p@ + @1+ 2V +ZN..) = p@) +

for some polynomial$(z) andqg(2). The result is a set of poles spread out along
the unit circle. This applies to the preperiodic case. Arriapé&e sequence of
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codficients would formally correspond to infinifé and it is natural to assume
that the singularities will fill the unit circle. There is iadd a theorem ensuring
that this is the case6]], provided thea’s can only take on a finite number of
values. The unit circle becomesatural boundary, already apparent in a finite
polynomial approximations to the topological zeta funatias in figurel3.4 A
function with a natural boundary lacks an analytic conttimraoutside it.

To conclude: The topological zeta functiof(ib, for unimodal maps has the
unit circle as a natural boundary for almost all topologieatropies and for the
tent map D.2), for aimost allA.

Let us now focus on the relation between the analytic streabfithe topolo-
gical zeta function and the number of periodic orbits, oneail3.6), the number
N, of fixed points off"(x). The trace formula is (see setB.4)

a

1
e 109 {igp

1
_ n_ —N
No=trT"= 9§ dzz

wherey, is a (circular) contour encircling the origin= 0 in clockwise direction.
Residue calculus turns this into a sum over zexmnd poles, of g;,})

. N 1 ,d 1
Ny = Z 7" - Z zon+ﬁ9§Rdzz”d—Zloggmp

20:r<|z0|<R Zpir<|zpl<R

and a contribution from a large circlg. For meromorphic topological zeta func-
tions one may leR — co with vanishing contribution fromyg, andN, will be a
sum of exponentials.

The leading zero is associated with the topological entrapydiscussed in
chapterl3.

We have also seen that for preperiodic kneading there wldbes on the unit
circle.

To appreciate the role of natural boundaries we will considévery) special
example. Cascades of period doublings is a central conoefié description of
unimodal maps. This motivates a close study of the function

=@ =[]a-2) . (D.4)
n=0

This function will appear again when we derive. ).

The expansion oE(z) begins a€(2) = 1-z- 2+ 2 -2 +2.... The radius
of convergence is obviously unity. The simple rule govegrtime expansion will
effectively prohibit any periodicity among the déeients making the unit circle
a natural boundary.
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It is easy to see th&(2) = 0 if z = exp(2rm/2") for any integerm andn.
(Strictly speaking we mean tha(z) — 0 whenz — exp(2rm/2") from inside).
Consequently, zeros are dense on the unit circle. One carslatsy that singular
points are dense on the unit circle, for instafi(g)| — c whenz — exp(2rm/3")
for any integem andn.

As an example, the topological zeta function at the accutiounlgpoint of
the first Feigenbaum cascadeljgh(2) = (1 - 22(2. ThenN, = 2*1if n =
2', otherwiseN, = 0. The growth rate in the number of cycles is anything but
exponential. It is clear thafl, cannot be a sum of exponentials, the contgir
cannot be pushed away to infinitR is restricted toR < 1 andN, is entirely
determined b)JyR which picks up its contribution from the natural boundary.

We have so far studied the analytic structure for some speages and we
know that the unit circle is a natural boundary for almostAall But how does
it look out there in the complex plane for some typical par@mealues? To
explore that we will imagine a journey from the origir= 0 out towards the unit
circle. While traveling we let the paramet&rchange slowly. The trip will have a
distinct science fiction flavor. The first zero we encountehésone connected to
the topological entropy. Obviously it moves smoothly arady. When we move
outward to the unit circle we encounter zeros in increasiegsiies. The closer
to the unit circle they are, the wilder and stranger they molMeey move from
and back to the horizon, where they are created and destthyedgh bizarre
bifurcations. For some special values of the parametenttieivcle suddenly gets
transparent and and we get (infinitely) short glimpses ofteerovorld beyond the
horizon.

We end this section by deriving ed3.6) and ©.6). The impenetrable prose
is hopefully explained by the accompanying tables.

We know one thing from chaptéi0, namely for that finite kneading sequence
of lengthn the topological polynomial is of degree The graph contains a node
which is connected to itself only via the symbol 0. This imeglithat a factor
(1 - 2) may be factored out angbp(2) = (1-2 i":‘ol aZ. The problem is to find
the codficientsg;.

periodic orbits| finite kneading sequences
P1=A%(P)
PC
PO
POPC
POP1
POP1POPC
l l
H>(P) H*(P)

Table D.2: Relation between periodic orbits and finite kneading sece®im a harmonic cascade.
The stringP is assumed to contain an odd number of 1's.

The ordered list of (finite) kneading sequences tableand the ordered list of
periodic orbits (on maximal form) are intimately related tableD.2 we indicate
how they are nested during a period doubling cascade. Eweitg fineading
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sequenc®C is bracketed by two periodic orbitB1 andP0. We haveP1 < PC <

PO if P contains an odd number of 1's, aid < PC < P1 otherwise. From
now on we will assume tha® contains an odd number of 1's. The other case
can be worked out in complete analogy. The first and seconudrac of PC

are displayed in tabl®.2. The periodic orbifP1 (and the corresponding infinite
kneading sequence) is sometimes referred to as the antharextension oPC
(denotedA™(P)) and the accumulation point of the cascade is called thadraic
extension ofPC [14] (denotedH™(P)).

A central result is the fact that a period doubling cascad®it not interfered
by any other sequence. Another way to express this is thaeading sequence
PC and its harmonic are adjacent in the list of kneading seqsetacany order.

1(C) 4iop@/(1-2)
P, = 100C 1-z2-2-2

H®(Py) = 10001001100.. |1-z2-Z-2-2+2+2+7-7...
P = 1000LC 1-z2-Z-2-2+7

A®(P;) = 1000110001.. |[1-z-Z-Z-Z+2-P2-7-2...
P, = 100@C 1-z2-2-2-72

Table D.3: Example of a step in the iterative construction of the liskiéading sequencéC.

TableD.3 illustrates another central result in the combinatorickredading
sequences. We suppose tfaC and P,C are neighbors in the list of order 5
(meaning that the shortest finite kneading sequéti€ebetweenP;C andP,C is
longer than 5.) The important result is tH(t (of lengthn” = 6) has to coincide
with the firstr’ — 1 letters of bothH*(P1) and A*(P2). This is exemplified in
the left column of tableD.3. This fact makes it possible to generate the list of
kneading sequences in an iterative way.

The zeta function at the accumulation pdift (P;) is
GHRE@) . (05
and just beforéd™(P5)
pr@/(1-2) . (D.6)

A short calculation shows that this is exactly what one walithin by applying
(D.3) to the antiharmonic and harmonic extensions directlyyidex that it applies
t0 {51(2) andZ5 (). This is the key observation.

Recall now the product representation of the zeta funcion = [TpX -
Z'%). We will now make use of the fact that the zeta function aisged with
P’C is a polynomial of orden’. There is no periodic orbit of length shorter than
n + 1 betweerH*(P;) and A*(Py). It thus follows that the cd&cients of this
polynomial coincides with those ob(5) and O.6), see TableD.3. We can thus
conclude that our rule can be applied directlyPte.

This can be used as an induction step in proving that the arebe applied
to every finite and infinite kneading sequences.
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Remark D.1 How to prove things. The explicit relation between the kneading sequence
and the cofficients of the topological zeta function is not commonly seehe literature.

The result can proven by combining some theorems of MilndrEmurston [3. That
approach is hardly instructive in the present context. Qarivdtion was inspired by
Metropolis, Stein and Stein classical papér][ For further detail, consultq0].

D.1.1 Periodic orbits of unimodal maps

A periodic point (or acycle point) x; belonging to a cycle of period is a real
solution of

f(x) = f(FC.. fO0) .. ) =%, i=012..,n-1 (D.7)

Thenth iterate of a unimodal map crosses the diagonal at nidsn2s. Similarly,

the backward and the forward Smale horseshoes interseavsitZntimes, and

therefore there will be 2or fewer periodic points of length. A cycle of length

n corresponds to an infinite repetition of a lengtlsymbol string, customarily
indicated by a line over the string:

S=(s1%8... %) =5%S%.. &

If 515, .- 5 is the symbol string associated with, its cyclic permutation

SSal--- 1. .- 1 corresponds to the poink_; in the same cycle. A cycle

is calledprimeif its itinerary S cannot be written as a repetition of a shorter block
S

Each cycle yields rational values ofy. The repeating stringi, S, ... S
contains an odd number “1"s, the string of well ordered sytsibgws . . . w, has
to be of the double length before it repeats itself. The valisea geometrical sum
which we can write as the finite sum

22n 2n
NEEENSE 22n—_1ZW1/2t
=1

Using this we can calculate th€S) for all short cycles.

Here we give explicit formulas for the topological coordmaf a periodic
point, given its itinerary. For the purpose of what followsis convenient to
compactify the itineraries by replacing the binary alpliage= {0, 1} by the
infinite alphabet

{a1, 8, 83,84, -0} = {1,10,100 100Q. .. ; 0} . (D.8)

In this notation the itinerar = aajacd - -- and the corresponding topological
coordinate ??) are related by/(S) = .1011k0' - - .. For example:

S = 11101110100100Q. = ajapaiaiaazay...
¥(S) .101101001110000. = .1%'0%120'110%1%0%...
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Cycle points whose itineraries startwith =w, = ... =w; =0, wj;1 = 1 rema_in
on the left branch of the tent map fioterations, and satisfy(0. .. 0S) = y(S)/2'.

A periodic point (or acycle point) x; belonging to a cycle of periodis a real
solution of

04) = F(FC.. f(x)..)) =%, i=012....n—1. (D.9)

The nth iterate of a unimodal map has at mos$t Ronotone segments, and
therefore there will be 2or fewer periodic points of length. A periodic orbit
of length n corresponds to an infinite repetition of a lengthsymbol string,
customarily indicated by a line over the string:

S=(s1%8-- )7 =% &

As all itineraries are infinite, we shall adopt conventioatth finite string itinerary
S = 519%... S stands for infinite repetition of a finite block, and routinel
omit the overline. IfS;S;. .. 5, is the symbol string associated wikh, its cyclic
permutation§ S 1. .- 51 - - - Sk1 corresponds to the poimg_; in the same cycle.
A periodic orbitp is calledprimeif its itinerary S cannot be written as a repetition
of a shorter blocks’.

Periodic points correspond to rational valuegpbut we have to distinguish
even andodd cycles. The even (odd) cycles contain even (odd) numbey iof
the repeating block, with periodic points given by

(a8 = 521101 ... 1¢ even (0.10)
7S Tl @20 x 1019 odd '

wheren =i+ j+---+k+ (is the cycle period. The maximal value cycle point
is given by the cyclic permutation & with the largesta; as the first symbol,
followed by the smallest availablg as the next symbol, and so on. For example:

1) = y(@) = .1010L.. = .10 = 2/3
(10) = y(a) = .1%0%°... = 1100 = 4/5
#(100) = y(as) = .1%0%... = 111000 = 8/9
7(101) = y(apa) = .120*... = 110 = 6/7

An example of a cycle where only the third symbol determihesmhaximal value
cycle point is

$(1101110)= y(aparapayay) = .11011010010016 100/129.

Maximal values of all cycles up to length 5 are given in table!
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D.2 Prime factorization for dynamical itineraries

s
J The Mobius function is not only a number-theoretic funitibut can be
used to manipulate ordered sets of noncommuting objectsagisymbol strings.
LetP = {pi1, p2, ps, - - -} be an ordered set @fime strings, and

N =)= {ppns Bl

j €N, k € Z,, be the set of all strings obtained by the ordered concatenation of
the “primes” p;. By construction, every string has a unique prime factorization.
We say that a string has a divisgiif it containsd as a substring, and define the
string divisionn/d asn with the substringd deleted. Now we can do things like
this: definingt, := t',‘,llt';z2 ti;,'J we can write the inverse dynamical zeta function
(18.2 as

[T@-t0) = unta,
p n

and, if we care (we do in the case of the Riemann zeta functibe)dynamical
zeta function as .

1
]] T Zﬂ:tn (D.11)

A striking aspect of this formula is its resemblance to thetdezation of
natural numbers into primes: the relation of the cycle esman(.11) to the
product over prime cycles is analogous to the Riemann zetrdiee17.10
represented as a sum over natural numbers vs. its Eulerginmpresentation.

We now implement this factorization explicitly by decompagsrecursively
binary strings into ordered concatenations of prime ssringhere are 2 strings
of length 1, both prime:p; = 0, p, = 1. There are 4 strings of length 2:
00, 01, 11, 10. The first three are ordered concatenationgiwfes: 00 =
pi, 01 = pipp, 11 = pg; by ordered concatenations we mean thap, is
legal, butpyp; is not. The remaining string is the only prime of lengthp3, =
10. Proceeding by discarding the strings which are coneéiters of shorter
primesp‘;1 pgz e p'j(', with primes lexically ordered, we generate the standatd li
of primes, in agreement with table.1: 0, 1, 10, 101, 100, 1000, 1001, 1011,
10000, 10001, 10010, 10011, 10110, 10111, 100000, 100@@D1D, 100011,
100110, 100111, 101100, 101110, 101111, This factorization is illustrated in
tableD.4.
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factors| string || factors | string fe;ctors string factors | string
Pt 0[Py 0000|| Py 00000 =7, 50101
P2 1 pipz 0001 Pépz 00001 p1p2ps | 01101
p2p2 | 0011 Ppp; | 00011 5 11101
i 2os | oo111|| P25

p3 00 || pyp3 0111 plpi psps | 10101
P1P2 01 p‘%‘ 1111 P1P 01111{| pps | 01000
2 11 || p2ps 0010 || P2 111111 pops | 11000
p3 10 pip2pz | 0110 p%pg 00010 || pyp7 01001
pgpg 1110|| piPzps | 00110 pop7 | 11001
P3

P 000 1010 || pip2ps | 01110|| pips | 01011
P%Pz 001|| pps | 0100 pSps | 11110| Peps | 11011
P2 | O11|| pps | 1100 || pip2 | 01010]| Po 10000
P 111 || pips | 0101| pop2 | 11010 Po | 10001
p1p3 010 || p2ps 1101 p§p4 00100 || P11 10010
P23 110 || ps 1000 p1p2ps | 01100 P12 10011
P4 100 p7 1001 p2p4 11100 P13 10110
Ps 101 || ps 1011} 2, | 10100|P4 10111

Table D.4: Factorization of all periodic points strings up to length riioi ordered
concatenationg'fp‘f--~p',§“ of prime stringsp; = 0, p» = 1, ps = 10, ps = 100, ...
, Pa= 10111.

D.2.1 Prime factorization for spectral determinants
3
J Following sectD.2, the spectral determinant cycle expansions is obtained
by expanding= as a multinomial in prime cycle weights
_ k _
F= ]_l Z Cpktp = Z Tp;lpgngg... (D.12)

p k=0 kikoks-=0

where the sum goes over all pseudocycles. In the above wedefined

C

—T

I
=N

— ki
Tpl;lp?p;g___ = ! p‘k‘tpi . (D.13)

[exercise 17.10]

A striking aspect of the spectral determinant cycle expanisiits resemblance
to the factorization of natural numbers into primes: as weealy noted in secb.2,
the relation of the cycle expansioB.(L2) to the product formulal(7.9 is analogous
to the Riemann zeta represented as a sum over natural nungeriss Euler
product representation.

This is somewhat unexpected, as the cycle weights factesaetly with
respect tor repetitions of a prime cycletp, , = t,, but only approximately
(shadowing) with respect to subdividing a string into prime substringsp, ~

tPltP2~

The codficientsC y have a simple form only in & given by the Euler formula
(21.34. In higher dimension€ x can be evaluated by expanding7(9, F(2) =
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Hp Fp, where

SE AP R
Fp=1- — |+ = — ...
DR

Expanding and recollecting terms, and suppressing thyele label for the moment,
we obtain

Fo = .G Cc=()a/De
r=1

k

k
Dy = ]_[d,:ﬂ]_[(l ) (D.14)

r=1 a=1r=1

where evaluation ofy requires a certain amount of not too luminous algebra:

C =1
¢ =1
1
¢ = 5(—-dl) [ﬂ(1+ua)—]—[(1 ua)]
1 (dyd
C3 = 3—(%+2d1d2—3d3)
1( 8
= 6[]—[(1+2ua+2ua+ua)
a=1

d d
+2 ]_[(1— Ua — U2+ 1) — 3]_[(1 - ug)]
a=1 a=1
etc.. For example, for a general 2-dimensional map we have

1w+ 2. Urlza(L + U )(1 + Up) + U3 + ud

Fp=1- —t t®+....(D.15
p 0. "D, D3 *+.-(D19)

We discuss the convergence of such cycle expansions inl gect.

With 7 ot .. defined as above, the prime factorization of symbol striegs i

unique in the sense thedch symbol string can be written as a unique concatenation
of prime strings, up to a convention on ordering of primes. This factorizai®a
nontrivial example of the utility of generalized Mobiuversion, sectD.2.

How is the factorization of secD.2 used in practice? Suppose we have
computed (or perhaps even measured in an experiment) aleprycles up to
lengthn, i.e., we have a list ofy's and the corresponding fundamental matrix
eigenvalues\p1, Ap2,... Apg. Acycle expansion of the Selberg product is obtained
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