Appendix B

Linear stability

Mopping up operations are the activities that engage most
scientists throughout their careers.

— Thomas Kuhn, The Structure of Scientific
Revolutions

way beyond what we can exhaustively cover. Here we recapéd few

I HE SUBJECT OF LINEAR ALGEBRA generates innumerable tomes of its own, and is
essential concepts that ChaosBook relies on. The punckBiaeg):

Hamilton-Cayley equatiof](M — ;1) = 0 associates with each distinct root
A; of a matrixM a projection ontath vector subspace

M -1

P = .
/li—ﬂj

j#i

B.1 Linear algebra

The reader might prefer going straight to sé&xR.

Vector space. A setV of elementx,y, z,... is called avector(or linear) space
over a fieldF if

(a) vector addition“+" is defined inV such thatV is an abelian group under
addition, with identity elemer;

(b) the set iclosedwith respect tscalar multiplicationand vector addition

ax+y) = ax+ay, abeF, xyeV
(@a+bx = ax+bx
a(bx) = (ab)x
1x = X, 0Ox =0. (B.1)
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Here the fieldF is eitherR, the field of reals numbers, @, the field of complex
numbers. Given a subs¥p c V, the set of all linear combinations of elements of
Vo, or thespanof Vy, is also a vector space.

Abasis. {e1),... 9} is any linearly independent subset\bfvhose span i¥.
The number of basis elementds thedimensiorof the vector spac¥.

Dual space, dual basis. Under a general linear transformatigre GL(n, F), the
row of basis vectors transforms by right multiplicatione® = ¥, (g~1)!e®,
and the column ofxy’s transforms by left multiplication ag’ = gx. Under
left multiplication the column (row transposed) of basigtees gy transforms
asej) = (9");ew, where thedual repg’ = (g71)7 is the transpose of the inverse
of g. This observation motivates introduction oflaal representation spadé,
the space on whic&L(n, F) acts via the dual reg'.

Definition. If V is a vector representation space, thendhal spaceV is the set
of all linear forms onV over the fieldF.

If &), .., &9} is a basis oW, thenV is spanned by theual basisieqy, - - -, €},
the set ofd linear formsey, such that

K k
&) - €9 =4},

Whereo"j‘ is the Kronecker symbold'j‘ = 1if j = k, and zero otherwise. The

components of dual representation space vegtar¥ will here be distinguished
by upper indices

OhLYA LY. (B.2)
They transform unde&L(n, F) as
y? = (g")2y". (B.3)

ForGL(n, F) no complex conjugation is implied by theotation; that interpretation
applies only to unitary subgroups$(n) c GL(n,C). g can be distinguished from
g’ by meticulously keeping track of the relative ordering & thdices,

@8- g, (@) - . (B.4)

Algebra. A set of r elementst, of a vector spacg forms an algebra if, in
addition to the vector addition and scalar multiplication,
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(a) the set ixlosedwith respect to multiplicatiory - 7~ — 7, so that for any
two elements,, tz € 7, the product, - tz also belongs tg":

r-1

ty - tﬁ = Z Ta,ﬁyty s Ta,ﬁy eC; (BS)
y=0

(b) the multiplication operation idistributive

(ta+1tg)-t, = to-t,+tg-t,
to-(tg+t) = to-tp+ts-t,.

The set of numbers,g” are called thestructure constantsThey form a matrix
rep of the algebra,

(to)p” = 7ap” (B.6)
whose dimension is the dimension of the algebra itself.

Depending on what further assumptions one makes on theptidtion, one
obtains dfferent types of algebras. For example, if the multiplicatsomssociative

(ta - tg) -ty =to - (tg- 1)),
the algebra igssociative Typical examples of products are thmatrix product
(te t0)5 = WRAEE.  tacVoOV, (B.7)
and thelLie product
(to - tp)5 = @AES — W), tecVeV (B-8)

which defines d.ie algebra

B.2 Eigenvalues and eigenvectors

Eigenvalues of adxd] matrix M are the roots of its characteristic polynomial
detM — A1) = ]—[ui ~)=0. (B.9)
Given a nonsingular matriki, with all 2; # 0, acting ond-dimensional vectors

x, we would like to determineigenvector&) of M on whichM acts by scalar
multiplication by eigenvalug;

Me® = 2;e® . (B.10)
If 4 # 4;, €V and€el) are linearly independent, so there are at mibdistinct
eigenvalues, which we assume have been computed by somedneitid ordered

by their real parts, R& > Relj 1.
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If all eigenvalues are distinct &) ared linearly independent vectors which can
be used as a (non-orthogonal) basis for dsdimensional vectox € RY

X=x D+ x6@ 4. 4 xqD, (B.11)
From (8.10) it follows that matrix M — ;1) annihilatese,
M = )V = (4; - )e,

and the product of all such factors annihilates any vectotthie matrixM satisfies
its characteristic equatior(9),

d
]_[(M ~ A1) =0. (B.12)
i=1

This humble fact has a name: the Hamilton-Cayley theoremelfielete one term
from this product, we find that the remainder projextsnto the corresponding
eigenvector:

[ M= 250x = | ea - 4)xe?.

j#i j#i

Dividing through by the {; — ;) factors yields therojection operators

M - 21
P=]]-= (B.13)
which areorthogonalandcomplete
r
PP =6jPj, (nosumonj), > P =1. (B.14)
i=1

By (B.10) every column ofP; is proportional to a right eigenvectef), and its
every row to a left eigenvecta;). In general, neither set is orthogonal, but by the
idempotence conditiorB(14), they are mutually orthogonal,

e - eV = o). (B.15)

The non-zero constauwtis convention dependent and not worth fixing, unless you
feel nostalgic about Clebsch-Gordan ftméents. It follows from the characteristic
equation B.12) that 4; is the eigenvalue dfl on P; subspace:

MP; = AP (no sum on). (B.16)
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UsingM = M 1 and completeness relatioB.(4) we can rewriteM as
M = A41P1+ AP+ -+ AgPg. (BJ-?)

Any matrix functionf (M) takes the scalar valug ;) on theP; subspacef (M)P; =
f(1)P;, and is easily evaluated through #sectral decomposition

f(M) = > f(a)Pi. (B.18)

This, of course, is the reason why anyone but a fool works inigducible reps:
they reduce matrix (AKA “operator”) evaluations to manigtibns with numbers.

Example B.1 Complex eigenvalues.  As M has only real entries, it will in general
have either real eigenvalues, or complex conjugate pairs of eigenvalues. That is not
surprising, but also the corresponding eigenvectors can be either real or complex. All
coordinates used in defining the flow are real numbers, so what is the meaning of a
complex eigenvector?

If A, A1 eigenvalues that lie within a diagonal [2x 2] sub-block M’ c M form
a complex conjugate pair, {Ax, Ak+1} = {u + iw,u — iw}, the corresponding complex
eigenvectors can be replaced by their real and imaginary parts, {e¥, &1} — (Ree®, Im e}
In this 2-d real representation the block M’ — N consists of the identity and the
generator of S (2) rotations

N=(2 W) mlo 1)l o)

Trajectories of X = N x, x(t) = J'x(0), where

FodNo etﬂ(c‘.’s“’t —sin “’t) , (B.19)
Sinwt  coswt

spiral infout around (x,y) = (0,0), see figure 4.4, with the rotation period T and the
expansion/contraction multiplier along the €1 eigendirection per a turn of the spiral:

[exercise B.1]
T=21/w, Arda=€*, Aj=e"’. (B.20)
We learn that the typical turnover time scale in the neighborhood of the equilibrium

(%y) = (0,0) is of order ~ T (and not, let us say, 1000T, or 10-2T). Aj multipliers give
us estimates of strange-set thickness.

While for a randomly constructed matrix all eigenvalues disinct with
probability 1, that is not true in presence of symmetries.at\fan one say about
situation whered, eigenvalues are degeneratg,= Ai = diz1 = -+ = Adixd,-1?
Hamilton-Cayley B.12) now takes form

ﬁ(M ~ D=0, > dy=d. (B.21)
a=1 a

We distinguish two cases:
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M can be brought to diagonal form. The characteristic equatioB 1) can be
replaced by the minimal polynomial,

r

[ [m-2.0=0. (B.22)

a=1

where the product includes each distinct eigenvalue ontg olatrixM satisfies
Me@K = ek (B.23)

on ad,-dimensional subspace spanned by a linearly independérdf dmsis
eigenvectorgel®l) g2) ... gd)} This is the easy case whose discussion we
continue in appendiikl.2.1 Luckily, if the degeneracy is due to a finite or compact
symmetry group, releva¥l matrices can always be brought to such Hermitian,
diagonalizable form.

M can only be brought to upper-triangular, Jordan form.  This is the messy
case, so we only illustrate the key idea in exanipl2

Example B.2 Decomposition of 2-d vector spaces: Enumeration of every possible
kind of linear algebra eigenvalue / eigenvector combination is beyond what we can
reasonably undertake here. However, enumerating solutions for the simplest case, a
general [2x2] non-singular matrix

Mi1 Mz
M2:r M2 |-

takes us a long way toward developing intuition about arbitrary finite-dimensional matrices.
The eigenvalues

Ao = %trM + %\/(trM)Z — 4detM (B.24)

are the roots of the characteristic (secular) equation

detM — 112) (- D)2 - )

A2 —trM A+ detM = 0.

Distinct eigenvalues case has already been described in full generality. The left/right
eigenvectors are the rows/columns of projection operators

M - 2,1 M -1
P1= , 2 = ,
A1 — A2 -

AL # 2. (B.25)
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Degenerate eigenvalues.if 1; = 1, = A, we distinguish two cases: (a) M can be
brought to diagonal form. This is the easy case whose discussion in any dimension
we continue in appendix H.2.1. (b) M can be brought to Jordan form, with zeros
everywhere except for the diagonal, and some 1's directly above it; for a [2x 2] matrix
the Jordan form is

_(4 1 (1)_(1) (2)_(0)
M_(O/l)’ e7=1p0) V7=11)

v helps span the 2-d space, (M — 1)>v? = 0, but is not an eigenvector, as Mv® =
v 1+ M. For every such Jordan [d,xd,] block there is only one eigenvector per block.
Noting that

m_ plL mm—l
M - ( 0 /lm ’

we see that instead of acting multiplicatively on R?, fundamental matrix J' = exptM)

oM (u) _ e“(u + tv) (B.26)

V \%

picks up a power-low correction. That spells trouble (logarithmic term Int if we bring
the extra term into the exponent).

Example B.3 Projection operator decomposition in 2-d: Let’s illustrate how the
distinct eigenvalues case works with the [2x 2] matrix

M=(4 1).

3 2
Its eigenvalues {11, A2} = {5, 1} are the roots of (B.24):
detM —11) =A>-64+5=(5-)(1-1) =0.

That M satisfies its secular equation (Hamilton-Cayley theorem) can be verified by
explicit calculation:

(4 1)2_6(4 1)+5(1 0)_(0 0)
3 2 3 2 0 1) \0 0/
Associated with each root A; is the projection operator (B.25)

1

1 3 1

P, = Z(M—l)zz(s 1) (B.27)
1 101 -1

Pp = ZM-51=3(5 ) (8.28)

Matrices P; are orthonormal and complete, The dimension of the ith subspace is

given by di = trP;; in case at hand both subspaces are 1-dimensional. From the

characteristic equation it follows that P; satisfies the eigenvalue equation M P; = A;P; .

Two consequences are immediate. First, we can easily evaluate any function of M by
spectral decomposition

58591 1953

M7=3:1= (5" - 3P1+ (1-3P2 = (conos 19523.
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Second, as P; satisfies the eigenvalue equation, its every column is a right eigenvector,
and every row a left eigenvector. Picking first row/column we get the eigenvectors:

{e(l),e(z)} - {(1),(_]:'3)}
{eq), ep)} {(3 1),(1 -1)},

with overall scale arbitrary. The matrix is not hermitian , so {€)} do not form an orthogonal
basis. The left-right eigenvector dot products €j) - e, however, are orthonormal (B.15)
by inspection.

B.3 Stability of Hamiltonian flows

o3

(M.J. Feigenbaum and P. Cvitanovic)

The symplectic structure of Hamilton's equations buys usimuonore than the
incompressibility, or the phase space volume conservationed to in sect7.1
The evolution equations for any, g dependent quantit®) = Q(qg, p) are given by
(14.32.

In terms of the Poisson brackets, the time evolution eqndtioQ = Q(q, p)
is given by (4.39. We now recast the symplectic condition.11) in a form
convenient for using the symplectic constraintshdnWriting x(t) = X' = [p/, (]
and the fundamental matrix and its inverse

9 9 99 99

_ 0 0 -1 _ a9
M=l 33 o5 |- M =1 & % | (B.29)

aq op g  ap

we can spell out the symplectic invariance conditi@rl():

0% Op _ Opi 91k

ag dq;  dg dq; 0

0% OB _ 0P 0% _

opi dp;  Ipi Ip;

o e I L (B.30)
g p; 0 Ap; e '

From (7.18) we obtain

5Qi:a_p] 5|0i:8_q] g :_‘9_q’j 5|0i:_8_p’j
od; opi’ 9p; oG’ Ip; ap~ oq g

(B.31)

Taken together,§.31) and B.30) imply that the flow conserves the, q} Poisson
brackets

dg 0g; OO Oa
(Gog) = ST _ T _,
op dq,  Ip, g,
{pi.pj} = O, {pi, Qj} = Gij » (B.32)
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i.e., the transformations induced by a Hamiltonian floweonical preserving
the form of the equations of motion. The first two relations symmetric under
i, j interchange and yiel®(D — 1)/2 constraints each; the last relation yield%
constraints. Hence only (§? — 2D(D - 1)/2 — D? = 2D? + D elements oM
are linearly independent, as it behooves group elementseofyymplectic group
S d2D).

B.4 Monodromy matrix for Hamiltonian flows

O3

(G. Tanner)

It is not the fundamental matrix of the flow, but theonodromymatrix, which
enters the trace formula. This matrix gives the time depecelef a displacement
perpendicular to the flow on the energy manifold. Indeed, vgeader some
trivial parts in the fundamental matrid. An initial displacement in the direction
of the flow x = wVH(X) transfers according tox(t) = x(t)ot with 6t time
independent. The projection of any displacementsgron VH(X) is constant,
i.e., VH(x(t))ox(t) = 6E. We get the equations of motion for the monodromy
matrix directly choosing a suitable local coordinate systen the orbitx(t) in
form of the (non singular) transformatids(x(t)):

M(x(t)) = U™H(x(t)) M(x(t)) U(x(0)) (B.33)
These lead to

LM
U (LU - V) (B.34)

M
with L

Note that the properties a) — c) are only fulfilled fbt and L, if U itself is
symplectic.

Choosingxe = VH(t)/|[VH(t)|?> and % as local coordinates uncovers the two
trivial eigenvalues 1 of the transformed matrix iB.83) at any timet. Setting
U=, X5 X], ..., Xy ,) gives

1 * = * 0 = = ... =
010 0 0O 0 O0...0
=| 0 = , =0 = , (B.35)
. m o |
0 = 0 =«

The matrixm is now the monodromy matrix and the equation of motion arergiv
by

m=1m. (B.36)
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The vectorsxy, ..., Xog_2 must span the space perpendicular to the flow on the
energy manifold.

For a system with two degrees of freedom, the malti{x) can be written
down explicitly, i.e.,

X -y -U/q -V
UM = (s xe o) = | 1 X Vg we (B.37)
ts Al AE, A2 U v X/q2 _y/qZ .
vo-U Y/ X/

with x™ = (x,y;u,v) andq = |VH| = |X. The matrixU is non singular and
symplectic at every phase space poifgxcept the equilibrium points = 0). The
matrix elements fol are given B.39). One distinguishes 4 classes of eigenvalues
of m.

stableor elliptic, if A = €™ andv €]0, 1[.

marginal, if A = +1.

hyperbolig inverse hyperbolicif A = €, A = —e*%; 1 > 0 is called the
Lyapunov exponent of the periodic orbit.

loxodromic if A = e***'¥ with u and¥ real. This is the most general case
possible only in systems with 3 or more degree of freedoms.

For 2 degrees of freedom, i.en,is a [2<2] matriX, the eigenvalues are determined
by

1o Tr(m) £ \/Tr(m)2 — 4
= 5 ,

(B.38)

i.e., Tr(m) = 2 separates stable and unstable behavior.

Thel matrix elements for the local transformatidd.87) are

iy = IO = 16— 4 )= )+ 20y~ P + )
~(heh + hyu) (B + Py — By — B

T = q—lzt(hi )Ry + hu) + (B + ) (s + i)

~2(nehy + yh) (e + i) = 20y — b)) (e — P

Tor = —(h2 + )My + h) — (02 + B2) (e + )
+2(hxhy — hyhy)(hwu = hyy) + 2(hxhy + hyhy)(hyy + hyy)
I, = -y, (B.39)

with hj, hyj is the derivative of the HamiltoniaH with respect to the phase space
coordinates and = [VH|2.
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