
Appendix B

Linear stability

Mopping up operations are the activities that engage most
scientists throughout their careers.

— Thomas Kuhn, The Structure of Scientific
Revolutions

T     generates innumerable tomes of its own, and is
way beyond what we can exhaustively cover. Here we recapitulate a few
essential concepts that ChaosBook relies on. The punch line(B.22):

Hamilton-Cayley equation
∏

(M − λi1) = 0 associates with each distinct root
λi of a matrixM a projection ontoith vector subspace

Pi =

∏

j,i

M − λ j1
λi − λ j

.

B.1 Linear algebra

The reader might prefer going straight to sect.B.2.

Vector space. A setV of elementsx, y, z, . . . is called avector(or linear) space
over a fieldF if

(a) vector addition“+” is defined inV such thatV is an abelian group under
addition, with identity element0;

(b) the set isclosedwith respect toscalar multiplicationand vector addition

a(x + y) = ax + ay , a, b ∈ F , x, y ∈ V

(a+ b)x = ax + bx

a(bx) = (ab)x

1x = x , 0x = 0 . (B.1)
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Here the fieldF is eitherR, the field of reals numbers, orC, the field of complex
numbers. Given a subsetV0 ⊂ V, the set of all linear combinations of elements of
V0, or thespanof V0, is also a vector space.

A basis. {e(1), · · · , e(d)} is any linearly independent subset ofV whose span isV.
The number of basis elementsd is thedimensionof the vector spaceV.

Dual space, dual basis. Under a general linear transformationg ∈ GL(n, F), the
row of basis vectors transforms by right multiplication ase( j)

=
∑

k(g−1) j
k e(k),

and the column ofxa’s transforms by left multiplication asx′ = gx. Under
left multiplication the column (row transposed) of basis vectors e(k) transforms
ase( j) = (g†) j

ke(k), where thedual repg† = (g−1)T is the transpose of the inverse
of g. This observation motivates introduction of adual representation spacēV,
the space on whichGL(n, F) acts via the dual repg†.

Definition. If V is a vector representation space, then thedual spaceV̄ is the set
of all linear forms onV over the fieldF.

If {e(1), · · · , e(d)} is a basis ofV, thenV̄ is spanned by thedual basis{e(1), · · · , e(d)},
the set ofd linear formse(k) such that

e( j) · e(k)
= δkj ,

whereδkj is the Kronecker symbol,δkj = 1 if j = k, and zero otherwise. The
components of dual representation space vectors ¯y ∈ V̄ will here be distinguished
by upper indices

(y1, y2, . . . , yn) . (B.2)

They transform underGL(n, F) as

y′a = (g†)a
byb . (B.3)

ForGL(n, F) no complex conjugation is implied by the† notation; that interpretation
applies only to unitary subgroupsU(n) ⊂ GL(n,C). g can be distinguished from
g† by meticulously keeping track of the relative ordering of the indices,

(g)b
a→ ga

b , (g†)b
a→ gb

a . (B.4)

Algebra. A set of r elementstα of a vector spaceT forms an algebra if, in
addition to the vector addition and scalar multiplication,

appendStability - 31jan2008.tex



APPENDIX B. LINEAR STABILITY 662

(a) the set isclosedwith respect to multiplicationT · T → T , so that for any
two elementstα, tβ ∈ T , the producttα · tβ also belongs toT :

tα · tβ =
r−1
∑

γ=0

ταβ
γtγ , ταβ

γ ∈ C ; (B.5)

(b) the multiplication operation isdistributive:

(tα + tβ) · tγ = tα · tγ + tβ · tγ
tα · (tβ + tγ) = tα · tβ + tα · tγ .

The set of numbersταβγ are called thestructure constants. They form a matrix
rep of the algebra,

(tα)βγ ≡ ταβγ , (B.6)

whose dimension is the dimension of the algebra itself.

Depending on what further assumptions one makes on the multiplication, one
obtains different types of algebras. For example, if the multiplicationis associative

(tα · tβ) · tγ = tα · (tβ · tγ) ,

the algebra isassociative. Typical examples of products are thematrix product

(tα · tβ)c
a = (tα)

b
a(tβ)

c
b , tα ∈ V ⊗ V̄ , (B.7)

and theLie product

(tα · tβ)c
a = (tα)

b
a(tβ)

c
b − (tα)

b
c(tβ)

a
b , tα ∈ V ⊗ V̄ (B.8)

which defines aLie algebra.

B.2 Eigenvalues and eigenvectors

Eigenvalues of a [d×d] matrix M are the roots of its characteristic polynomial

det (M − λ1) =
∏

(λi − λ) = 0 . (B.9)

Given a nonsingular matrixM , with all λi , 0, acting ond-dimensional vectors
x, we would like to determineeigenvectorse(i) of M on whichM acts by scalar
multiplication by eigenvalueλi

Me(i)
= λie(i) . (B.10)

If λi , λ j , e(i) ande( j) are linearly independent, so there are at mostd distinct
eigenvalues, which we assume have been computed by some method, and ordered
by their real parts, Reλi ≥ Reλi+1.
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If all eigenvalues are distinct e( j) ared linearly independent vectors which can
be used as a (non-orthogonal) basis for anyd-dimensional vectorx ∈ Rd

x = x1 e(1)
+ x2 e(2)

+ · · · + xd e(d) . (B.11)

From (B.10) it follows that matrix (M − λi1) annihilatese(i),

(M − λi1)e( j)
= (λ j − λi)e( j) ,

and the product of all such factors annihilates any vector, so the matrixM satisfies
its characteristic equation (B.9),

d
∏

i=1

(M − λi1) = 0 . (B.12)

This humble fact has a name: the Hamilton-Cayley theorem. Ifwe delete one term
from this product, we find that the remainder projectsx onto the corresponding
eigenvector:

∏

j,i

(M − λ j1)x =
∏

j,i

(λi − λ j)xie(i) .

Dividing through by the (λi − λ j) factors yields theprojection operators

Pi =

∏

j,i

M − λ j1
λi − λ j

, (B.13)

which areorthogonalandcomplete:

PiP j = δi j P j , (no sum onj) ,
r

∑

i=1

Pi = 1 . (B.14)

By (B.10) every column ofPi is proportional to a right eigenvectore(i), and its
every row to a left eigenvectore(i). In general, neither set is orthogonal, but by the
idempotence condition (B.14), they are mutually orthogonal,

e(i) · e( j)
= cδ j

i . (B.15)

The non-zero constantc is convention dependent and not worth fixing, unless you
feel nostalgic about Clebsch-Gordan coefficients. It follows from the characteristic
equation (B.12) thatλi is the eigenvalue ofM on Pi subspace:

MP i = λiPi (no sum oni) . (B.16)
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UsingM = M 1 and completeness relation (B.14) we can rewriteM as

M = λ1P1 + λ2P2 + · · · + λdPd . (B.17)

Any matrix function f (M ) takes the scalar valuef (λi ) on thePi subspace,f (M )Pi =

f (λi )Pi , and is easily evaluated through itsspectral decomposition

f (M ) =
∑

i

f (λi)Pi . (B.18)

This, of course, is the reason why anyone but a fool works withirreducible reps:
they reduce matrix (AKA “operator”) evaluations to manipulations with numbers.

Example B.1 Complex eigenvalues. As M has only real entries, it will in general
have either real eigenvalues, or complex conjugate pairs of eigenvalues. That is not
surprising, but also the corresponding eigenvectors can be either real or complex. All
coordinates used in defining the flow are real numbers, so what is the meaning of a
complex eigenvector?

If λk, λk+1 eigenvalues that lie within a diagonal [2×2] sub-block M ′ ⊂ M form
a complex conjugate pair, {λk, λk+1} = {µ + iω, µ − iω}, the corresponding complex
eigenvectors can be replaced by their real and imaginary parts, {e(k), e(k+1)} → {Ree(k), Im e(k)}.
In this 2−d real representation the block M ′ → N consists of the identity and the
generator of S O(2) rotations

N =
(

µ −ω

ω µ

)

= µ

(

1 0
0 1

)

+ ω

(

0 −1
1 0

)

.

Trajectories of ẋ = N x, x(t) = Jt x(0), where

Jt
= etN

= etµ
(

cosωt − sin ωt
sin ωt cosωt

)

, (B.19)

spiral in/out around (x, y) = (0, 0), see figure 4.4, with the rotation period T and the
expansion/contraction multiplier along the e( j) eigendirection per a turn of the spiral:

[exercise B.1]

T = 2π/ω , Λradial = eTµ , Λ j = eTµ( j)
. (B.20)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x, y) = (0, 0) is of order ≈ T (and not, let us say, 1000T, or 10−2T). Λ j multipliers give
us estimates of strange-set thickness.

While for a randomly constructed matrix all eigenvalues aredistinct with
probability 1, that is not true in presence of symmetries. What can one say about
situation wheredα eigenvalues are degenerate,λα = λi = λi+1 = · · · = λi+dα−1?
Hamilton-Cayley (B.12) now takes form

r
∏

α=1

(M − λα1)dα = 0 ,
∑

α

dα = d . (B.21)

We distinguish two cases:
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M can be brought to diagonal form. The characteristic equation (B.21) can be
replaced by the minimal polynomial,

r
∏

α=1

(M − λα1) = 0 , (B.22)

where the product includes each distinct eigenvalue only once. MatrixM satisfies

Me(α,k)
= λie(α,k) , (B.23)

on a dα-dimensional subspace spanned by a linearly independent set of basis
eigenvectors{e(α,1), e(α,2), · · · , e(α,dα)}. This is the easy case whose discussion we
continue in appendixH.2.1. Luckily, if the degeneracy is due to a finite or compact
symmetry group, relevantM matrices can always be brought to such Hermitian,
diagonalizable form.

M can only be brought to upper-triangular, Jordan form. This is the messy
case, so we only illustrate the key idea in exampleB.2.

Example B.2 Decomposition of 2−d vector spaces: Enumeration of every possible
kind of linear algebra eigenvalue / eigenvector combination is beyond what we can
reasonably undertake here. However, enumerating solutions for the simplest case, a
general [2×2] non-singular matrix

M =
(

M11 M12
M21 M22

)

.

takes us a long way toward developing intuition about arbitrary finite-dimensional matrices.
The eigenvalues

λ1,2 =
1
2

tr M ±
1
2

√

(tr M )2 − 4 detM (B.24)

are the roots of the characteristic (secular) equation

det (M − λ 1) = (λ1 − λ)(λ2 − λ)

= λ2 − tr M λ + detM = 0 .

Distinct eigenvalues case has already been described in full generality. The left/right
eigenvectors are the rows/columns of projection operators

P1 =
M − λ21
λ1 − λ2

, P2 =
M − λ11
λ2 − λ1

, λ1 , λ2 . (B.25)
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Degenerate eigenvalues.If λ1 = λ2 = λ, we distinguish two cases: (a) M can be
brought to diagonal form. This is the easy case whose discussion in any dimension
we continue in appendix H.2.1. (b) M can be brought to Jordan form, with zeros
everywhere except for the diagonal, and some 1’s directly above it; for a [2×2] matrix
the Jordan form is

M =
(

λ 1
0 λ

)

, e(1)
=

(

1
0

)

, v(2)
=

(

0
1

)

.

v(2) helps span the 2−d space, (M − λ)2v(2)
= 0, but is not an eigenvector, as Mv (2)

=

λv(2)
+e(1). For every such Jordan [dα×dα] block there is only one eigenvector per block.

Noting that

Mm
=

(

λm mλm−1

0 λm

)

,

we see that instead of acting multiplicatively on R2, fundamental matrix Jt
= exp(tM )

etM
(

u
v

)

= etλ

(

u+ tv
v

)

(B.26)

picks up a power-low correction. That spells trouble (logarithmic term ln t if we bring
the extra term into the exponent).

Example B.3 Projection operator decomposition in 2−d: Let’s illustrate how the
distinct eigenvalues case works with the [2×2] matrix

M =
( 4 1
3 2

)

.

Its eigenvalues {λ1, λ2} = {5, 1} are the roots of (B.24):

det (M − λ1) = λ2 − 6λ + 5 = (5− λ)(1− λ) = 0 .

That M satisfies its secular equation (Hamilton-Cayley theorem) can be verified by
explicit calculation:

(4 1
3 2

)2

− 6
(4 1
3 2

)

+ 5
(1 0
0 1

)

=

(0 0
0 0

)

.

Associated with each root λi is the projection operator (B.25)

P1 =
1
4

(M − 1) =
1
4

(3 1
3 1

)

(B.27)

P2 =
1
4

(M − 5 · 1) =
1
4

( 1 −1
−3 3

)

. (B.28)

Matrices Pi are orthonormal and complete, The dimension of the ith subspace is
given by di = tr Pi ; in case at hand both subspaces are 1-dimensional. From the
characteristic equation it follows that Pi satisfies the eigenvalue equation M P i = λiPi .

Two consequences are immediate. First, we can easily evaluate any function of M by
spectral decomposition

M7 − 3 · 1 = (57 − 3)P1 + (1− 3)P2 =

(58591 19531
58593 19529

)

.
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Second, as Pi satisfies the eigenvalue equation, its every column is a right eigenvector,
and every row a left eigenvector. Picking first row/column we get the eigenvectors:

{e(1), e(2)} = {

(

1
1

)

,

(

1
−3

)

}

{e(1), e(2)} = {( 3 1 ) , ( 1 −1 )} ,

with overall scale arbitrary.The matrix is not hermitian , so {e( j)} do not form an orthogonal
basis. The left-right eigenvector dot products e( j) · e(k), however, are orthonormal (B.15)
by inspection.

B.3 Stability of Hamiltonian flows

(M.J. Feigenbaum and P. Cvitanović)

The symplectic structure of Hamilton’s equations buys us much more than the
incompressibility, or the phase space volume conservationalluded to in sect.7.1.
The evolution equations for anyp, q dependent quantityQ = Q(q, p) are given by
(14.32).

In terms of the Poisson brackets, the time evolution equation for Q = Q(q, p)
is given by (14.34). We now recast the symplectic condition (7.11) in a form
convenient for using the symplectic constraints onM. Writing x(t) = x′ = [p′, q′]
and the fundamental matrix and its inverse

M =















∂q′

∂q
∂q′

∂p
∂p′

∂q
∂p′

∂p















, M−1
=















∂q
∂q′

∂q
∂p′

∂p
∂q′

∂p
∂p′















, (B.29)

we can spell out the symplectic invariance condition (7.11):

∂q′k
∂qi

∂p′k
∂q j
−
∂p′k
∂qi

∂q′k
∂q j

= 0

∂q′k
∂pi

∂p′k
∂p j
−
∂p′k
∂pi

∂q′k
∂p j

= 0

∂q′k
∂qi

∂p′k
∂p j
−
∂p′k
∂qi

∂q′k
∂p j

= δi j . (B.30)

From (7.18) we obtain

∂qi

∂q′j
=

∂p′j
∂pi
,
∂pi

∂p′j
=

∂q′j
∂qi
,
∂qi

∂p′j
= −
∂q′j
∂pi
,
∂pi

∂q′j
= −
∂p′j
∂qi
. (B.31)

Taken together, (B.31) and (B.30) imply that the flow conserves the{p, q} Poisson
brackets

{qi , q j} =
∂qi

∂p′k

∂q j

∂q′k
−
∂q j

∂p′k

∂qi

∂q′k
= 0

{pi , p j} = 0 , {pi , q j} = δi j , (B.32)
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i.e., the transformations induced by a Hamiltonian flow arecanonical, preserving
the form of the equations of motion. The first two relations are symmetric under
i, j interchange and yieldD(D − 1)/2 constraints each; the last relation yieldsD2

constraints. Hence only (2D)2 − 2D(D − 1)/2 − D2
= 2D2

+ D elements ofM
are linearly independent, as it behooves group elements of the symplectic group
S p(2D).

B.4 Monodromy matrix for Hamiltonian flows

(G. Tanner)

It is not the fundamental matrix of the flow, but themonodromymatrix, which
enters the trace formula. This matrix gives the time dependence of a displacement
perpendicular to the flow on the energy manifold. Indeed, we discover some
trivial parts in the fundamental matrixM. An initial displacement in the direction
of the flow x = ω∇H(x) transfers according toδx(t) = xt(t)δt with δt time
independent. The projection of any displacement onδx on ∇H(x) is constant,
i.e., ∇H(x(t))δx(t) = δE. We get the equations of motion for the monodromy
matrix directly choosing a suitable local coordinate system on the orbitx(t) in
form of the (non singular) transformationU(x(t)):

M̃(x(t)) = U−1(x(t)) M(x(t)) U(x(0)) (B.33)

These lead to

˙̃M = L̃ M̃

with L̃ = U−1(LU − U̇) (B.34)

Note that the properties a) – c) are only fulfilled for̃M and L̃ , if U itself is
symplectic.
ChoosingxE = ∇H(t)/|∇H(t)|2 and xt as local coordinates uncovers the two
trivial eigenvalues 1 of the transformed matrix in (B.33) at any timet. Setting
U = (xT

t , x
T
E, x

T
1 , . . . , x

T
2d−2) gives

M̃ =









































1 ∗ ∗ . . . ∗
0 1 0 . . . 0
0 ∗
...
... m

0 ∗









































; L̃ =









































0 ∗ ∗ . . . ∗
0 0 0 . . . 0
0 ∗
...
... l

0 ∗









































, (B.35)

The matrixm is now the monodromy matrix and the equation of motion are given
by

ṁ = l m. (B.36)
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The vectorsx1, . . . , x2d−2 must span the space perpendicular to the flow on the
energy manifold.

For a system with two degrees of freedom, the matrixU(t) can be written
down explicitly, i.e.,

U(t) = (xt, x1, xE, x2) =





























ẋ −ẏ −u̇/q2 −v̇/q2

ẏ ẋ −v̇/q2 u̇/q2

u̇ v̇ ẋ/q2 −ẏ/q2

v̇ −u̇ ẏ/q2 ẋ/q2





























(B.37)

with xT
= (x, y; u, v) and q = |∇H| = |ẋ|. The matrixU is non singular and

symplectic at every phase space pointx (except the equilibrium points ˙x = 0). The
matrix elements forl are given (B.39). One distinguishes 4 classes of eigenvalues
of m.

• stableor elliptic, if Λ = e±iπν andν ∈]0, 1[.

• marginal, if Λ = ±1.

• hyperbolic, inverse hyperbolic, if Λ = e±λ, Λ = −e±λ; λ > 0 is called the
Lyapunov exponent of the periodic orbit.

• loxodromic, if Λ = e±u±iΨ with u andΨ real. This is the most general case
possible only in systems with 3 or more degree of freedoms.

For 2 degrees of freedom, i.e.,m is a [2×2] matrix, the eigenvalues are determined
by

λ =
Tr(m) ±

√

Tr(m)2 − 4
2

, (B.38)

i.e., Tr(m) = 2 separates stable and unstable behavior.

The l matrix elements for the local transformation (B.37) are

l̃11 =
1
q

[(h2
x − h2

y − h2
u + h2

v)(hxu − hyv) + 2(hxhy − huhv)(hxv + hyu)

−(hxhu + hyhv)(hxx + hyy − huu− hvv)]

l̃12 =
1

q2
[(h2

x + h2
v)(hyy + huu) + (h2

y + h2
u)(hxx + hvv)

−2(hxhu + hyhv)(hxu + hyv) − 2(hxhy − huhv)(hxy − huv)]

l̃21 = −(h2
x + h2

y)(huu + hvv) − (h2
u + h2

v)(hxx + hyy)

+2(hxhu − hyhv)(hxu − hyv) + 2(hxhv + hyhu)(hxv + hyu)

l̃22 = −l̃11, (B.39)

with hi , hi j is the derivative of the HamiltonianH with respect to the phase space
coordinates andq = |∇H|2.
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