Appendix C

| mplementing evolution

C.1 Koopmania

the language of functional analysis, by introducing Kleepman operator,
whose action on a state space functix is to replace it by its downstream
value timet later,a(x) — a(x(t)) evaluated at the trajectory poirdt):

THE way in which time evolution acts on observables may be rephrased

Kla(x) = a(f'(x)). (C.1)

Observablea(x) has no explicit time dependence; all the time dependence
comes from its evaluation aft) rather than ak = x(0).

Suppose we are starting with an initial density of represtarmg pointsp(X):
then the average value afx) evolves as

_ 1 t _ 1 t
@ = fM dxa(f'09p() = fM dx [ K'a(x)| p(x).

An alternative point of view (analogous to the shift from tHeisenberg to the
Schrodinger picture in quantum mechanics) is to push dycarafects into the
density. In contrast to the Koopman operator which advatteegrajectory by
timet, the Perron-Frobenius operatd?(10 depends on the trajectory point time
t in the past, so the Perron-Frobenius operator is the adpdithe Koopman
operator

fM dx [K'a(3)] p(x) = fM dxa(x) [£Lp(9)] - (C.2)

Checking this is an easy change of variables exercise. Foe filmensional
deterministic invertible flows the Koopman operat@r]) is simply the inverse of
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APPENDIX C. IMPLEMENTING EVOLUTION 672

the Perron-Frobenius operatdi(6), so in what follows we shall not distinguish
the two. However, for infinite dimensional flows contractiiogward in time and
for stochastic flows such inverses do not exist, and therengmd to be more
careful.

The family of Koopman’s operatot§<t}tER+ forms a semigroup parameterized
by time

(@ K°=1
(b) KK =™ >0 (semigroup property) ,

with thegenerator of the semigroup, the generator of infinitesimal time tratishs
defined by

7=ty ).

(If the flow is finite-dimensional and invertiblel is a generator of a group). The
explicit form of A follows from expanding dynamical evolution up to first order

asin @.5:

Aa(x) = t|Ln3+%(a(ft(x)) —a(¥) = vi(¥)dia(). (C.3)

Of course, that is nothing but the definition of the time datiixe, so the equation
of motion fora(x) is

d
(a —ﬂ)a(x) =0. (C.4)

[appendix C.2]
The finite time Koopman operato€ (1) can be formally expressed by exponentiating
the time evolution generatofl as

K=", (C.5)
[exercise C.1]

The generatorA looks very much like the generator of translations. Indeed,
for a constant velocity field dynamical evolution is nothibigt a translation by

timex velocity:
y [exercise 14.10]

eVira(x) = a(x + tv). (C.6)

As we will not need to implement a computational formula fengrale“ in
what follows, we relegate making sense of such operatorpgeralixC.2. Here
we limit ourselves to a brief remark about the notion of “¢4pam” of a linear
operator.

[appendix C.2]
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The Koopman operatoK acts multiplicatively in time, so it is reasonable to
suppose that there exist constaMs> 0, 3 > 0 such that|%X"|| < Me? for all
t > 0. What does that mean? The operator norm is define in the gaintdrs
which we defined the matrix norms in sedt2 We are assuming that no value
of K'p(X) grows faster than exponentially for any choice of funciigr), so that
the fastest possible growth can be bounded'yya reasonable expectation in the
light of the simplest example studied so far, the exact escafe (5.20. If that
is so, multiplyingK* by ™% we construct a new operater?kt = e(“*-#) which
decays exponentially for large||e#)|| < M. We say thae"¥%! is an element
of a bounded semigroup with generatgfl — 1. Given this bound, it follows by
the Laplace transform

fodte-ﬂv(‘:ﬁ, Res> g, (C.7)

that theresolvent operator § — A)~* is bounded (“resolventZ= able to cause

. . . [section J.2]
separation into constltuents)

H 1 Hsf dte‘“Metﬁzl.
S—-A 0 s—-p

If one is interested in the spectrum &f, as we will be, the resolvent operator
is a natural object to study. The main lesson of this briefle@s$s that for the
continuous time flows the Laplace transform is the tool thads down the
generator in 14.29 into the resolvent form14.31) and enables us to study its
spectrum.

C.2 Implementing evolution

(R. Artuso and P. Cvitanovit)

,
J We now come back to the semigroup of operatits We have introduced
the generator of the semigroup4(27) as

d t
ﬂ—a‘K

t=0

If we now take the derivative at arbitrary times we get

i UE00) — u(F(0)

n—0 n
W(F(0) %w(i)

(% Aw) (%)

d
(&‘Ktﬁb) (¥

%=1(x)
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which can be formally integrated like an ordinarytdrential equation yielding [exercise C.4]

Kt = &, (C.8)

This guarantees that the Laplace transform manipulatioesdt.14.5are correct.

Though the formal expression of the semigro@pgj is quite simple one has to
take care in implementing its action. If we express the egptal through the

power series

— A, (C.9)

we encounter the problem that the infinitesimal generdtdr2() contains non-
commuting pieces, i.e., there drg combinations for which the commutator does
not satisfy

0
[a—Xi,Vj(X)] =0.

To derive a more useful representation, we follow the sfsatesed for finite-
dimensional matrix operators in sects2and4.3and use the semigroup property
to write

t/oT

Kt = 1_[ xoT

m=1
as the starting point for a discretized approximation tath@inuous time dynamics,
with time stepsr. Omitting terms from the second order onwards in the expansi
of K97 yields an error of orde®(672). This might be acceptable if the time step
ot is suficiently small. In practice we write the Euler product

t/oT

K= | | @+ 6tAm) + O (C.10)
m=1

where

Am) () = () g—i

K= 7 (%)

As far as thex dependence is concerneli™ acts as

X1 X1

gl L ' . (C.11)
X X + 0TVi(X)
X4 X4
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[exercise 2.6]
We see that the product forr@ (10 of the operator is nothing else but a prescription
for finite time step integration of the equations of motion this case the simplest
Euler type integrator which advances the trajectorygtyvelocity at each time
step.

C.2.1 A symplecticintegrator

,
J The procedure we described above is only a starting poimbfwe sophisticated
approximations. As an example on how to get a sharper bourlkdeoerror term
consider the Hamiltonian flowd = 8+ C, B8 = pik, C = -4i\V(d) 75 Clearly
the potential and the kinetic parts do not commute. We maksesef the formal
solution (.10 by splitting it into infinitesimal steps and keeping ternpsta 572

in

[exercise C.2]

- 1
KT = KT + ﬂ((sf)%za +2C,[B,C]] +---, (C.12)
where
.f(& — e:—ZL(ST.‘Be(%Ce%é‘r.‘B ) (C13)

The approximate infinitesimal Liouville operatd%‘” is of the form that now
generates evolution as a sequence of mappings induced3f), a free flight by
1618, scattering byraV(q'), followed again by:s735 free flight:

(s~ (9

p o4 p

wUob = )=o)
2 P’ P+ orov(a)
7 17 r_ 0T 7

() - -]
[ P’ P’

Collecting the terms we obtain an integration rule for thjget of symplectic flow
which is better than the straight Euler integrati@h 1) as it is accurate up to
ordersr?:

S 2
On — 0T Pn — %av (On = 67Pn/2)

Pn + 070V (On — 67Pn/2) (C.15)

On+1

Pn+1

The fundamental matrix of one integration step is given by

1 —57/2 1 0\[1 -61/2
M:(o 1 )(67(9V(q’) 1)(0 1 ) (C.16)
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EXERCISES 676

Note that the billiard flow&.11) is an example of such symplectic integrator. In
that case the free flight is interrupted by instantaneousreféctions, and can be
integrated out.

Commentary

Remark C.1 Koopman operators. The “Heisenberg picture” in dynamical systems
theory has been introduced by Koopman and Von Neumang][ see also ref. {].
Inspired by the contemporary advances in quantum mechatapman [] observed

in 1931 thatX" is unitary onL?(x) Hilbert spaces. The Koopman operator is the classical
analogue of the quantum evolution operatoréikh/h) —the kernel of£!(y, x) introduced

in (14.19 (see also secfl5.2 is the analogue of the Green’s function discussed here in
chapter30. The relation between the spectrum of the Koopman operaickassical
ergodicity was formalized by von Neuman#.[ We shall not use Hilbert spaces here
and the operators that we shall stugyl not be unitary. For a discussion of the relation
between the Perron-Frobenius operators and the Koopmaatopefor finite dimensional
deterministic invertible flows, infinite dimensional camtting flows, and stochastic flows,
see Lasota-Mackey] and Gaspardd].

Remark C.2 Symplectic integration. The reviews [] and [8] offer a good starting
point for exploring the symplectic integrators literatuF®r a higher order integrators of
type (C.13, check ref. [3].

Exercises
C.1. Exponential form of semigroup elements. Check (C.12 are not vanishing by showing that
that the Koopman operator and the evolution generator
commute, K'A = AK", by considering the action of [8,C] = —p(V"i _ Vrﬁ) )
both operators on an arbitrary state space funct{ah ap aq

C.3. Symplectic leapfrog integrator.  Implement C.15
for 2-dimensional Hamiltonian flows; compare it with
Runge-Kutta integrator by integrating trajectories in
C.2. Non-commutativity. Check that the commutators in some (chaotic) Hamiltonian flow.
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