Appendix A

A brief history of chaos

L aws of attribution

1. Arnol’d’s Law: everything that is discovered is
named after someone else (including Arnol'd’s
law)

2. Berry’'s Law: sometimes, the sequence of
antecedents seems endless. So, nothing is
discovered for the first time.

3. Whiteheads's Law: Everything of importance has
been said before by someone who did not discover
it.

—M.V. Berry

(R. Mainieri and P. Cvitanovit)

TRYING to PREDICT the motion of the Moon has preoccupied astronomers since
antiquity. Accurate understanding of its motion was imaotfor determining
the longitude of ships while traversing open seas.

Kepler's Rudolphine tables had been a great improvememfoegious tables,
and Kepler was justly proud of his achievements. He wrotaénititroduction to
the announcement of Kepler's third laarmonice MundiLinz, 1619) in a style
that would not fly with the contemporaBhysical Review Lettemditors:

What | prophesied two-and-twenty years ago, as soon as dwised

the five solids among the heavenly orbits—what | firmly bedtlong before

| had seen Ptolemyldarmonics-what | had promised my friends in the title
of this book, which I named before | was sure of my discovetyatgixteen
years ago, | urged as the thing to be sought-that for whicinégTycho
Brahé, for which | settled in Prague, for which | have dedatee best part
of my life to astronomical contemplations, at length | haveught to light,
and recognized its truth beyond my most sanguine expengatiti is not
eighteen months since | got the first glimpse of light, thremths since
the dawn, very few days since the unveiled sun, most adneir@bbaze
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upon, burst upon me. Nothing holds me; | will indulge my sdchary; |
will triumph over mankind by the honest confession that Iéatolen the
golden vases of the Egyptians to build up a tabernacle for oy f@r away
from the confines of Egypt. If you forgive me, | rejoice; if yave angry, |
can bear it; the die is cast, the book is written, to be redteeihow or in
posterity, | care not which; it may well wait a century for ader, as God
has waited six thousand years for an observer.

Then came Newton. Classical mechanics has not stood stile Slewton.
The formalism that we use today was developed by Euler andabgg. By the
end of the 1800's the three problems that would lead to theomaif chaotic
dynamics were already known: the three-body problem, thedic hypothesis,
and nonlinear oscillators.

A.0.1 Three-body problem

Bernoulli used Newton’s work on mechanics to derive thggdliorbits of Kepler
and set an example of how equations of motion could be solyeddtegrating.
But the motion of the Moon is not well approximated by an slipvith the Earth
at a focus; at least thetects of the Sun have to be taken into account if one wants
to reproduce the data the classical Greeks already podseEselo that one has
to consider the motion of three bodies: the Moon, the Earid,the Sun. When
the planets are replaced by point particles of arbitrarysessthe problem to be
solved is known as the three-body problem. The three-bodplem was also
a model to another concern in astronomy. In the Newtonianeiefdthe solar
system it is possible for one of the planets to go from antalliprbit around the
Sun to an orbit that escaped its dominion or that plunged righ it. Knowing

if any of the planets would do so became the problem of thelisyadf the solar
system. A planet would not meet this terrible end if solartesysconsisted of
two celestial bodies, but whether such fate could befallhm three-body case
remained unclear.

After many failed attempts to solve the three-body probleatural philosophers
started to suspect that it was impossible to integrate. Hualuechnique for
integrating problems was to find the conserved quantitisantties that do not
change with time and allow one to relate the momenta andiposidiferent
times. The first sign on the impossibility of integrating tieee-body problem
came from a result of Burns that showed that there were ncecesd quantities
that were polynomial in the momenta and positions. Burrslitedid not preclude
the possibility of more complicated conserved quantitidss problem was settled
by Poincaré and Sundman in two veryfdrent ways.

In an attempt to promote the journatta MathematicaMittag-Leffler got the
permission of the King Oscar Il of Sweden and Norway to es&hlal mathematical
competition. Several questions were posed (although tigevikould have preferred
only one), and the prize of 2500 kroner would go to the bestrssdion. One of
the questions was formulated by Weierstrass:

Given a system of arbitrary mass points that attract eadr attcording
to Newton’s laws, under the assumption that no two points es#fide, try
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to find a representation of the coordinates of each point asriassin a
variable that is some known function of time and for all of whwalues the
series converges uniformly.

This problem, whose solution would considerably extendumaterstanding
of the solar system, ...

Poincaré’s submission won the prize. He showed that ceedeguantities that
were analytic in the momenta and positions could not exisi. sfiow that he
introduced methods that were very geometrical in spiri¢ ithportance of state
space flow, the role of periodic orbits and their cross sastidhe homoclinic
points.

The interesting thing about Poincaré’s work was that it dat solve the
problem posed. He did not find a function that would give therdmates as
a function of time for all times. He did not show that it was iospible either,
but rather that it could not be done with the Bernoulli tecfug of finding a
conserved quantity and trying to integrate. Integratiomd@eem unlikely from
Poincaré’s prize-winning memoir, but it was accomplistigdthe Finnish-born
Swedish mathematician Sundman. Sundman showed that grdteethe three-
body problem one had to confront the two-body collisions.ditkethat by making
them go away through a trick known as regularization of thésoon manifold.
The trick is not to expand the coordinates as a function oé tinbut rather as a
function of V. To solve the problem for all times he used a conformal mapant
strip. This allowed Sundman to obtain a series expansiothécoordinates valid
for all times, solving the problem that was proposed by Weiss in the King
Oscar II's competition.

The Sundman’s series are not used today to compute thettnagscof any
three-body system. That is more simply accomplished by migademethods or
through series that, although divergent, produce betteremgal results. The
conformal map and the collision regularization mean thatstries areféectively

in the variable 1- e Vi, Quite rapidly this gets exponentially close to one, the
radius of convergence of the series. Many terms, more tenars any one has
ever wanted to compute, are needed to achieve numericagigemce. Though
Sundman'’s work deserves better credit than it gets, it didiveoup to Weirstrass's
expectations, and the series solution did not “considgraktend our understanding
of the solar system.” The work that followed from Poincai@ d

A.0.2 Ergodic hypothesis

The second problem that played a key role in development abtah dynamics
was the ergodic hypothesis of Boltzmann. Maxwell and Bo#tmmhad combined
the mechanics of Newton with notions of probability in ortieicreate statistical
mechanics, deriving thermodynamics from the equationseafiranics. To evaluate
the heat capacity of even a simple system, Boltzmann hadke mgreat simplifying
assumption of ergodicity: that the dynamical system woudd every part of
the phase space allowed by conservation laws equally oftes.hypothesis was
extended to other averages used in statistical mechardosascalled the ergodic
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hypothesis. It was reformulated by Poincaré to say thajedtory comes as close
as desired to any phase space point.

Proving the ergodic hypothesis turned out to be veffialilt. By the end
of twentieth century it has only been shown true for a feweayst and wrong
for quite a few others. Early on, as a mathematical necegbigyproof of the
hypothesis was broken down into two parts. First one woubdvghat the mechanical
system was ergodic (it would go near any point) and then onddwvshow that
it would go near each point equally often and regularly sd tha computed
averages made mathematical sense. Koopman took the fipsinspeoving the
ergodic hypothesis when he noticed that it was possible faymeilate it using
the recently developed methods of Hilbert spaces. This wasnportant step
that showed that it was possible to take a finite-dimensiooalinear problem
and reformulate it as a infinite-dimensional linear prohlébhis does not make
the problem easier, but it does allow one to useftedint set of mathematical
tools on the problem. Shortly after Koopman started leoguion his method,
von Neumann proved a version of the ergodic hypothesisngjiitithe status of a
theorem. He proved that if the mechanical system was ergttdin the computed
averages would make sense. Soon afterwards Bffkhudblished a much stronger
version of the theorem.

A.0.3 Nonlinear oscillators

The third problem that was very influential in the developtehthe theory
of chaotic dynamical systems was the work on the nonlineaill@®rs. The
problem is to construct mechanical models that would aidumgterstanding of
physical systems. Lord Rayleigh came to the problem thrchighinterest in
understanding how musical instruments generate sounte liirst approximation
one can construct a model of a musical instrument as a lirsgliator. But real
instruments do not produce a simple tone forever as therlosallator does, so
Lord Rayleigh modified this simple model by adding frictiomdamore realistic
models for the spring. By a clever use of negative frictioncheated two basic
models for the musical instruments. These models have rhared pure tone
and decay with time when not stroked. In his botke Theory of SounHord
Rayleigh introduced a series of methods that would proveegeneral, such as
the notion of a limit cycle, a periodic motion a system goesegardless of the
initial conditions.

A.1 Chaosgrowsup

(R. Mainieri)

The theorems of von Neumann and Birlghon the ergodic hypothesis were
published in 1912 and 1913. This line of enquiry developetivo directions.
One direction took an abstract approach and consideredmdgahsystems as
transformations of measurable spaces into themselvesld @auiclassify these
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transformations in a meaningful way? This lead Kolmogomthe introduction
of the concept of entropy for dynamical systems. With entrap a dynamical
invariant it became possible to classify a set of abstracadycal systems known
as the Bernoulli systems. The other line that developed fhenergodic hypothesis
was in trying to find mechanical systems that are ergodic.rgadic system could
not have stable orbits, as these would break ergodicity. nSt888 Hadamard
published a paper with a playful title of ‘... billiards’.where he showed that the
motion of balls on surfaces of constant negative curvatiexérywhere unstable.
This dynamical system was to prove very useful and it wastaleby Birkhdf.
Morse in 1923 showed that it was possible to enumerate thtsarba ball on a
surface of constant negative curvature. He did this by éhteing a symbolic code
to each orbit and showed that the number of possible codes eyponentially
with the length of the code. With contributions by Artin, Heold, and H. Hopf it
was eventually proven that the motion of a ball on a surfaceoaktant negative
curvature was ergodic. The importance of this result estapest physicists, one
exception being Krylov, who understood that a physicaldill was a dynamical
system on a surface of negative curvature, but with the tumeesconcentrated
along the lines of collision. Sinai, who was the first to shbatta physical billiard
can be ergodic, knew Krylov's work well.

The work of Lord Rayleigh also received vigorous developmérprompted
many experiments and some theoretical development by vaiale Dufing,
and Hayashi. They found other systems in which the nonlinsaiilator played
a role and classified the possible motions of these systerhgs cbncreteness
of experiments, and the possibility of analysis was too moictemptation for
Mary Lucy Cartwright and J.E. LittlewoodL}], who set out to prove that many
of the structures conjectured by the experimentalists lagaretical physicists did
indeed follow from the equations of motion. Birkffidvad found a ‘remarkable
curve’ in a two dimensional map; it appeared to be ndfedintiable and it
would be nice to see if a smooth flow could generate such a ciitve work of
Cartwright and Littlewood lead to the work of Levinson, whii turn provided
the basis for the horseshoe construction of S. Smale.

[chapter 11]

In Russia, Lyapunov paralleled the methods of Poincaré iaitidted the
strong Russian dynamical systems school. Andronov caonedith the study of
nonlinear oscillators and in 1937 introduced together Wwitimtryagin the notion
of coarse systems. They were formalizing the understangiémgered from the
study of nonlinear oscillators, the understanding thatyradrihe details on how
these oscillators work do noftfact the overall picture of the state space: there
will still be limit cycles if one changes the dissipation qrisig force function
by a little bit. And changing the system a little bit has thearadvantage of
eliminating exceptional cases in the mathematical armlySoarse systems were
the concept that caught Smale’s attention and enticed histudy dynamical
systems.

A.2 Chaoswith us

(R. Mainieri)
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In the fall of 1961 Steven Smale was invited to Kiev where hé¢ Araol'd,
Anosov, Sinai, and Novikov. He lectured there, and spentt afldime with
Anosov. He suggested a series of conjectures, most of whietsév proved
within a year. It was Anosov who showed that there are dynalnsgstems
for which all points (as opposed to a non—wandering set) athei hyperbolic
structure, and it was in honor of this result that Smale namhede systems
Axiom-A. In Kiev Smale found a receptive audience that haghbihinking about
these problems. Smale’s result catalyzed their thougtdsiratiated a chain of
developments that persisted into the 1970’s.

Smale collected his results and their development in th& t&@ew article on
dynamical systems, entitled “Bérentiable dynamical systems.” There are ma[r&/aMer 1
great ideas in this paper: the global foliation of invarigets of the map into
disjoint stable and unstable parts; the existence of a slooseand enumeration
and ordering of all its orbits; the use of zeta functions tmgtdynamical systems.

The emphasis of the paper is on the global properties of thardical system, on
how to understand the topology of the orbits. Smale’s acctakes you from a
local differential equation (in the form of vector fields) to the glotmdological
description in terms of horseshoes.

]

The path traversed from ergodicity to entropy is a little emoonfusing. The
general character of entropy was understood by Weiner, wekmed to have
spoken to Shannon. In 1948 Shannon published his result§@miation theory,
where he discusses the entropy of the shift transformatiolmogorov went
far beyond and suggested a definition of the metric entro@nairea preserving
transformation in order to classify Bernoulli shifts. Thagggestion was taken
by his student Sinai and the results published in 1959. I Féhlin connected
these results to measure-theoretical notions of entrapg.n€xt step was published
in 1965 by Adler and Palis, and also Adler, Konheim, McAndréwese papers
showed that one could define the notion of topological eptrapd use it as
an invariant to classify continuous maps. In 1967 Anosov Sidhi applied
the notion of entropy to the study of dynamical systems. I \wathe context
of studying the entropy associated to a dynamical systemSimai introduced
Markov partitions in 1968.

Markov partitions allow one to relate dynamical systemsstatistical mechanics;
this has been a very fruitful relationship. It adds measot®ns to the topological
framework laid down in Smale’s paper. Markov partitionsidiévthe state space
of the dynamical system into nice little boxes that map irdcheother. Each
box is labeled by a code and the dynamics on the state space thegodes
around, inducing a symbolic dynamics. From the number okebaxeeded to
cover all the space, Sinai was able to define the notion obpytof a dynamical
system. In 1970 Bowen came up independently with the sanaes,iddthough
there was presumably some flow of information back and foetbie these papers
got published. Bowen also introduced the important conoémhadowing of
chaotic orbits. We do not know whether at this point the retest with statistical
mechanics were clear to every one. They became expliciteiwibrk of Ruelle.
Ruelle understood that the topology of the orbits could leeified by a symbolic
code, and that one could associate an ‘energy’ to each drbé.energies could
be formally combined in a ‘partition function’ to generatestinvariant measure
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of the system.

After Smale, Sinai, Bowen, and Ruelle had laid the foundtiof the statistical
mechanics approach to chaotic systems, research turnegddyirg particular
cases. The simplest case to consider is 1-dimensional mapstopology of the
orbits for parabola-like maps was worked out in 1973 by Mmtlis, Stein, and
Stein. The more general 1-dimensional case was worked difii6 by Milnor
and Thurston in a widely circulated preprint, whose extendersion eventually
got published in 1988.

A lecture of Smale and the results of Metropolis, Stein, ateinSnspired
Feigenbaum to study simple maps. This lead him to the disg@f¢he universality
in quadratic maps and the application of ideas from fieladthaéo dynamical
systems. Feigenbaum’s work was the culmination in the stddydimensional
systems; a complete analysis of a nontrivial transition lieos. Feigenbaum
introduced many new ideas into the field: the use of the realization group
which lead him to introduce functional equations in the gtofddynamical systems,
the scaling function which completed the link between dyicainsystems and
statistical mechanics, and the use of presentation furstias the dynamics of
scaling functions.

The work in more than one dimension progressed very slowdyisustill far
from completed. The first result in trying to understand thotogy of the orbits
in two dimensions (the equivalent of Metropolis, Stein, &teéin, or Milnor
and Thurston’s work) was obtained by Thurston. Around 19Wbir§ton was
giving lectures “On the geometry and dynamics dfetimorphisms of surfaces.”
Thurston’s techniques exposed in that lecture have not bppled in physics,
but much of the classification that Thurston developed caolb@ined from the
notion of a ‘pruning front’ developed independently by @wibvic.

Once one develops an understanding for the topology of thitsaf a dynamical
system, one needs to be able to compute its properties.eRasllalready generalized
the zeta function introduced by Artin and Mazur so that itiddoe used to compute
the average value of observables. Thfidllty with Ruelle’s zeta function is
that it does not converge very well. Starting out from Snsatéiservation that a
chaotic dynamical system is dense with a set of periodidgriivitanovi¢ used
these orbits as a skeleton on which to evaluate the averdigdservables, and
organized such calculations in terms of rapidly convergygle expansions. This
convergence is attained by using the shorter orbits usedasis for shadowing
the longer orbits.

This account is far from complete, but we hope that it willhgét a sense of
perspective on the field. It is not a fad and it will not die &mg soon.

A.3 Periodic orbit theory

Pure mathematics is a branch of applied mathematics.

— Joe Keller, after being asked to define applied
mathematics
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The history of the periodic orbit theory is rich and curioasd the recent
advances are to equal degree inspired by a century of sepdeatlopment of
three disparate subjects; Iclassical chaotic dynamicsnitiated by Poincaré
and put on its modern footing by Smal&3], Ruelle [28], and many others;
2. quantum theorynitiated by Bohr, with the modern ‘chaotic’ formulation by
Gutzwiller [12, 17]; and 3. analyticnumber theoryinitiated by Riemann and
formulated as a spectral problem by Selbéig, [3]. Following totally diferent
lines of reasoning and driven by veryfldirent motivations, the three separate
roads all arrive at formally nearly identicédace formulas zeta functionsand
spectral determinants

That these topics should be related is far from obvious. €ciion between
dynamics and number theory arises from Selberg's observdhiat description
of geodesic motion and wave mechanics on spaces of congigative curvature
is essentially a number-theoretic problerA. posteriori one can say that zeta
functions arise in both classical and quantum mechaniausedn both the dynamical
evolution can be described by the action of linear evolutartransfer) operators
on infinite-dimensional vector spaces. The spectra of thpseators are given by
the zeros of appropriate determinants. One way to evaligtrdinants is to
expand them in terms of tracdeg det= tr log, and in this way the spectrum o[‘se
an evolution operator becames related to its traces, egqgic orbits. A perhaps
deeper way of restating this is to observe that the tracedlasperform the same
service in all of the above problems; they relate the spetif lengths (local
dynamics) to the spectrum of eigenvalues (global averages) for nonlinear
geometries they play a role analogous to that the Fouriesfioam plays for the
circle.

ction 17.1]

[exercise 4.1]

In M. Gutzwiller words:

“The classical periodic orbits are a crucial stepping siortee understanding
of quantum mechanics, in particular when then classicaeayss chaotic.
This situation is very satisfying when one thinks of Poilgoaho emphasized
the importance of periodic orbits in classical mechaniascbuld not have
had any idea of what they could mean for quantum mechanic& s€h
of energy levels and the set of periodic orbits are complé¢amgrio each
other since they are essentially related through a Fouaestorm. Such
a relation had been found earlier by the mathematiciansarstidy of the
Laplacian operator on Riemannian surfaces with constayative curvature.
This led to Selberg’s trace formulain 1956 which has exab#ysame form,
but happens to be exact. The mathematical proof, howevérased on
the high degree of symmetry of these surfaces which can b@aed to
the sphere, although the negative curvature allows for maore diferent
shapes.”
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A.4 Death of the Old Quantum Theory

In 1913 Otto Stern and Max Theodor Felix von Laue went
up for a walk up the Uetliberg. On the top they sat down
and talked about physics. In particular they talked about
the new atom model of Bohr. There and then they made
the ‘Uetli Schwur:’ If that crazy model of Bohr turned out
to be right, then they would leave physics. It did and they
didn’t.

— A. Pais,Inward Bound: of Matter and Forces in
the Physical World

In an afternoon of May 1991 Dieter Wintgen is sitting in hifiae at the Niels
Bohr Institute beaming with the unparalleled glee of a bopWwas just committed
a major mischief. The starting words of the manuscript heustgpenned are

The failure of the Copenhagen School to obtain a reasonable .

34 years old at the time, Dieter was a gtykind of guy, always in sandals and
holed out jeans, a left winger and a mountain climber, waykinound the clock
with his students Gregor and Klaus to complete the work tiodir Biimself would
have loved to see done back in 1916: a ‘planetary’ calculatibthe helium
spectrum.

Never mind that the ‘Copenhagen School’ refers not to thejo&thtum theory,
but to something else. The old quantum theory was no theoafl;ait was
a set of rules bringing some order to a set of phenomena whafibddlogic of
classical theory. The electrons were supposed to desdabetgry orbits around
the nucleus; their wave aspects were yet to be discoverazfolindations seemed
obscure, but Bohr's answer for the once-ionized helium tdrbgen ratio was
correct to five significant figures and hard to ignore. The aldrqum theory
marched on, until by 1924 it reached an impasse: the heliwentspn and the
Zeeman &ect were its death knell.

Since the late 1890’s it had been known that the helium sp@ctonsists of
the orthohelium and parahelium lines. In 1915 Bohr suggetiat the two kinds
of helium lines might be associated with two distinct shagfesbits (a suggestion
that turned out to be wrong). In 1916 he got Kramers to workheproblem, and
wrote to Rutherford: “I have used all my spare time in the fasnths to make
a serious attempt to solve the problem of ordinary heliunctspm .. .| think
really that at last | have a clue to the problem.” To otherezgiues he wrote that
“the theory was worked out in the fall of 1916” and of havingaibed a “partial
agreement with the measurements.” Nevertheless, the Satmmerfeld theory,
while by and large successful for hydrogen, was a disastendatral helium.
Heroic dforts of the young generation, including Kramers and Heisembwvere
of no avail.

For a while Heisenberg thought that he had the ionizatioami@l for helium,
which he had obtained by a simple perturbative scheme. Heverathusiastic
letters to Sommerfeld and was drawn into a collaboratiorh Witax Born to
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compute the spectrum of helium using Born’s systematicupestive scheme.
In first approximation, they reproduced the earlier caldoites. The next level
of corrections turned out to be larger than the computéece The concluding
paragraph of Max Born’s classic “Vorlesungen tUber Atomaaik” from 1925
sums it up in a somber tone:

(...) the systematic application of the principles of theugum theory
(...) gives results in agreement with experiment only irsthoases where
the motion of a single electron is considered; it fails evethie treatment
of the motion of the two electrons in the helium atom.

This is not surprising, for the principles used are not yeadinsistent.
(...) A complete systematic transformation of the cladsiwachanics into
a discontinuous mechanics is the goal towards which thetgoatheory
strives.

That year Heisenberg fared a bout of hay fever, and the old quantum theory
was dead. In 1926 he gave the first quantitative explanafitredelium spectrum.
He used wave mechanics, electron spin and the Pauli exalpsiaciple, none of
which belonged to the old quantum theory, and planetarytodiielectrons were
cast away for nearly half a century.

Why did Pauli and Heisenberg fail with the helium atom? It wasthe fault
of the old quantum mechanics, but rather it reflected thek ¢d understanding of
the subtleties of classical mechanics. Today we know wlest thissed in 1913-
24: the role of conjugate points (topological indices) glafassical trajectories
was not accounted for, and they had no idea of the importahper@dic orbits
in nonintegrable systems.

Since then the calculation for helium using the methods efdld quantum
mechanics has been fixed. Leopold and Percihjadlded the topological indices
in 1980, and in 1991 Wintgen and collaboratofs 9] understood the role of
periodic orbits. Dieter had good reasons to gloat; while rist of us were
preparing to sharpen our pencils and supercomputers i ¢odapproach the
dreaded 3-body problem, they just went ahead and did it. \Whaik—and much
else—is described in this book.

Oneis also free to ponder what quantum theory would looktbkiay if all this
was worked out in 1917. In 1994 Predrag Cvitanovit gavelaiteSeattle about
helium and cycle expansions to—inter alia—Hans Bethe, whad it so much that
after the talk he pulled Predrag aside and they trotted @velans’ secret place:
the best lunch on campus (Business School). Predrag askéolild Quantum
Mechanics look dierent if in 1917 Bohr and Krameset al. figured out how to
use the helium classical 3-body dynamics to quantize hé&fium

Bethe was very annoyed. He responded with an exasperatied indBethe
Deutschinglish (if you have ever talked to him, you can doftiee over yourself):

“It would not matter at all!”
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A.4.1 Berry-Keating conjecture

A very appealing proposal in the context of semiclassicangjzation is due
to M. Berry and J. KeatingZl]. The idea is to improve cycle expansions by
imposing unitarity as a functional equation ansatz. Théeogrpansions that they
use are the same as the original ongsl] described above, but the philosophy
is quite diferent; the claim is that the optimal estimate for low eigémes of
classically chaotic quantum systems is obtained by takigreal part of the
cycle expansion of the semiclassical zeta function, filatathe appropriate cycle
length. M. Sieber, G. Tanner and D. Wintgen, and P. Dahldinst that their
numerical results support this claim; F. Christiansen an@anovi¢ do not
find any evidence in their numerical results. The usual Rrewaiegel formulas
exploit the self-duality of the Riemann and other zeta fioms, but there is no
evidence of such symmetry for generic Hamiltonian flows. oAl®m the point
of hyperbolic dynamics discussed above, proposal in iteeatiform belongs to
the category of crude cycle expansions; the cycles areftbi@ single external
criterion, such as the maximal cycle time, with no regardfiertopology and the
curvature corrections. While the functional equation eotjre is maybe not in
its final form yet, it is very intriguing and worth pursuing.

The real life challenge are generic dynamical flows, whicdither of the
above two idealized settings.
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Commentary

Remark A.1 Notion of global foliations.  For each paper cited in dynamical systems
literature, there are many results that went into its dgumlent. As an example, take
the notion of global foliations that we attribute to Smales far as we can trace the
idea, it goes back to René Thom; local foliations were alyassed by Hadamard. Smale
attended a seminar of Thom in 1958 or 1959. In that seminamTitvas explaining
his notion of transversality. One of Thom’s disciples inluwoed Smale to Brazilian
mathematician Peixoto. Peixoto (who had learned the estithe Andronov-Pontryagin
school from Lefschetz) was the closest Smale had ever cotilehen to the Andronov-
Pontryagin school. It was from Peixoto that Smale learnezlibtructural stability, a
notion that got him enthusiastic about dynamical systerast blended well with his
topological background. It was from discussions with P&itbhat Smale got the problems
in dynamical systems that lead him to his 1960 paper on Moesgualities. The next year
Smale published his result on the hyperbolic structure efrtbn-wandering set. Smale
was not the first to consider a hyperbolic point, Poincackdieeady done that; but Smale
was the first to introduce a global hyperbolic structure. B¥pd Smale was already
lecturing on the horseshoe as a structurally stable dyramystem with an infinity of
periodic points and promoting his global viewpoint. (R. Niaii)

Remark A.2 Levels of ergodicity. In the mid 1970’s A. Katok and Ya.B. Pesin tried

to use geometry to establish positive Lyapunov exponentKatok and J.-M. Strelcyn
carried out the program and developed a theory of generaldigal systems with singularities.
They studied uniformly hyperbolic systems (as strong assémis), but with sets of
singularities. Under iterations a dense set of points higssingularities. Even more
important are the points that never hit the singularity skt.order to establish some
control over how they approach the set, one looks at trajestthat apporach the set by
some givere", or faster.

Ya.G. Sinai, L. Bunimovich and N.I. Chernov studied the getmof billiards in a
very detailed way. A. Katok and Ya.B. Pesin’s idea was muchemobust. Look at the
discontinuity set (geometry of it matters not at all), takeeaneighborhood around it.
Given that the Lebesgue measurefisand the stability grows not faster than (distarfice)
A. Katok and J.-M. Strelcyn proved that the Lyapunov expaigenon-zero.

In mid 1980’s Ya.B. Pesin studied the dissipative case. Nuwsvproblem has no
invariant Lebesgue measure. Assuming uniform hyperhgligiith singularities, and
tying together Lebesgue measure and discontinuities, & ¢hat the stability grows
not faster than (distancg)Ya.B. Pesin proved that the Lyapunov exponent is non-zero,
and that SRB measure exists. He also proved that the Loreazahd Byelikh attractors
satisfy these conditions.

In the systems that are uniformly hyperbolic, all troubléniglifferentials. For the
Hénon attractor, already theffirentials are nonhyperbolic. The points do not separate
uniformly, but the analogue of the singularity set can beotgtd by excising the regions
that do not separate. Hence there are 3 levels of ergodieragst

1. Anosov flow

2. Anosov flow+ singularity set: For the Hamiltonian systems the genersé éa
studied by A. Katok and J.-M. Strelcyn, and the billiardsechg Ya.G. Sinai and
L. Bunimovich. The dissipative case is studied by Ya.B. Resi
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3. Hénon case: The first proof was given by M. Benedicks anddrleson $27]. A
more readable proof is given in M. Benedicks and L.-S. Youri. [

(based on Ya.B. Pesin’'s comments)

Remark A.3 Einstein didit? The first hint that chaos is afoot in quantum mechanics
was given in a note by A. Einsteirif]. The total discussion is a one sentence remark.
Einstein being Einstein, this one sentence has been deeuffedest to give him the
credit for being the pioneer of quantum chaas,[18. We asked about the paper two
people from that era, Sir Rudolf Peierls and Abraham Pais bath knew nothing about
the 1917 article. However, Theo Geisel has unearthed eereferthat shows that in early
20s Born did have a study group meeting in his house thateddRlbincaré’s Méchanique
Céleste [9). In 1954 Fritz Reiche, who had previously followed Einatas professor of
physics in Wroclaw (?7?), pointed out to J.B. Keller that Kei geometrical semiclassical
quantization was anticipated by the long forgotten papek biinstein [LE]. In this way

an important paper written by the physicist who at the tims W president of German
Physical Society, and the most famous scientist of his toame to be referred to for the
first time by Keller [L9], 41 years later. But before lan Percival included the topual
phase, and Wintgen and students recycled the Helium atamwikg Méchanique Céleste
was not enough to complete Bohr’s original program.

Remark A.4 Sources. The tale of appendi.4, aside from a few personal recollections,
is in large part lifted from Abraham Pais’ accounts of the @enof the old quantum
theory b, 7], as well as Jammer’s accou?{] In August 1994 Dieter Wintgen died in a
climbing accident in the Swiss Alps.
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