
Appendix A

A brief history of chaos

Laws of attribution

1. Arnol’d’s Law: everything that is discovered is
named after someone else (including Arnol’d’s
law)

2. Berry’s Law: sometimes, the sequence of
antecedents seems endless. So, nothing is
discovered for the first time.

3. Whiteheads’s Law: Everything of importance has
been said before by someone who did not discover
it.

—M.V. Berry

(R. Mainieri and P. Cvitanović)

T   the motion of the Moon has preoccupied astronomers since
antiquity. Accurate understanding of its motion was important for determining
the longitude of ships while traversing open seas.

Kepler’s Rudolphine tables had been a great improvement over previous tables,
and Kepler was justly proud of his achievements. He wrote in the introduction to
the announcement of Kepler’s third law,Harmonice Mundi(Linz, 1619) in a style
that would not fly with the contemporaryPhysical Review Letterseditors:

What I prophesied two-and-twenty years ago, as soon as I discovered
the five solids among the heavenly orbits–what I firmly believed long before
I had seen Ptolemy’sHarmonics–what I had promised my friends in the title
of this book, which I named before I was sure of my discovery–what sixteen
years ago, I urged as the thing to be sought–that for which I joined Tycho
Brahé, for which I settled in Prague, for which I have devoted the best part
of my life to astronomical contemplations, at length I have brought to light,
and recognized its truth beyond my most sanguine expectations. It is not
eighteen months since I got the first glimpse of light, three months since
the dawn, very few days since the unveiled sun, most admirable to gaze
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upon, burst upon me. Nothing holds me; I will indulge my sacred fury; I
will triumph over mankind by the honest confession that I have stolen the
golden vases of the Egyptians to build up a tabernacle for my God far away
from the confines of Egypt. If you forgive me, I rejoice; if youare angry, I
can bear it; the die is cast, the book is written, to be read either now or in
posterity, I care not which; it may well wait a century for a reader, as God
has waited six thousand years for an observer.

Then came Newton. Classical mechanics has not stood still since Newton.
The formalism that we use today was developed by Euler and Lagrange. By the
end of the 1800’s the three problems that would lead to the notion of chaotic
dynamics were already known: the three-body problem, the ergodic hypothesis,
and nonlinear oscillators.

A.0.1 Three-body problem

Bernoulli used Newton’s work on mechanics to derive the elliptic orbits of Kepler
and set an example of how equations of motion could be solved by integrating.
But the motion of the Moon is not well approximated by an ellipse with the Earth
at a focus; at least the effects of the Sun have to be taken into account if one wants
to reproduce the data the classical Greeks already possessed. To do that one has
to consider the motion of three bodies: the Moon, the Earth, and the Sun. When
the planets are replaced by point particles of arbitrary masses, the problem to be
solved is known as the three-body problem. The three-body problem was also
a model to another concern in astronomy. In the Newtonian model of the solar
system it is possible for one of the planets to go from an elliptic orbit around the
Sun to an orbit that escaped its dominion or that plunged right into it. Knowing
if any of the planets would do so became the problem of the stability of the solar
system. A planet would not meet this terrible end if solar system consisted of
two celestial bodies, but whether such fate could befall in the three-body case
remained unclear.

After many failed attempts to solve the three-body problem,natural philosophers
started to suspect that it was impossible to integrate. The usual technique for
integrating problems was to find the conserved quantities, quantities that do not
change with time and allow one to relate the momenta and positions different
times. The first sign on the impossibility of integrating thethree-body problem
came from a result of Burns that showed that there were no conserved quantities
that were polynomial in the momenta and positions. Burns’ result did not preclude
the possibility of more complicated conserved quantities.This problem was settled
by Poincaré and Sundman in two very different ways.

In an attempt to promote the journalActa Mathematica, Mittag-Leffler got the
permission of the King Oscar II of Sweden and Norway to establish a mathematical
competition. Several questions were posed (although the king would have preferred
only one), and the prize of 2500 kroner would go to the best submission. One of
the questions was formulated by Weierstrass:

Given a system of arbitrary mass points that attract each other according
to Newton’s laws, under the assumption that no two points ever collide, try
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to find a representation of the coordinates of each point as a series in a
variable that is some known function of time and for all of whose values the
series converges uniformly.

This problem, whose solution would considerably extend ourunderstanding
of the solar system, . . .

Poincaré’s submission won the prize. He showed that conserved quantities that
were analytic in the momenta and positions could not exist. To show that he
introduced methods that were very geometrical in spirit: the importance of state
space flow, the role of periodic orbits and their cross sections, the homoclinic
points.

The interesting thing about Poincaré’s work was that it didnot solve the
problem posed. He did not find a function that would give the coordinates as
a function of time for all times. He did not show that it was impossible either,
but rather that it could not be done with the Bernoulli technique of finding a
conserved quantity and trying to integrate. Integration would seem unlikely from
Poincaré’s prize-winning memoir, but it was accomplishedby the Finnish-born
Swedish mathematician Sundman. Sundman showed that to integrate the three-
body problem one had to confront the two-body collisions. Hedid that by making
them go away through a trick known as regularization of the collision manifold.
The trick is not to expand the coordinates as a function of time t, but rather as a
function of 3√t. To solve the problem for all times he used a conformal map into a
strip. This allowed Sundman to obtain a series expansion forthe coordinates valid
for all times, solving the problem that was proposed by Weirstrass in the King
Oscar II’s competition.

The Sundman’s series are not used today to compute the trajectories of any
three-body system. That is more simply accomplished by numerical methods or
through series that, although divergent, produce better numerical results. The
conformal map and the collision regularization mean that the series are effectively

in the variable 1− e−
3√t. Quite rapidly this gets exponentially close to one, the

radius of convergence of the series. Many terms, more terms than any one has
ever wanted to compute, are needed to achieve numerical convergence. Though
Sundman’s work deserves better credit than it gets, it did not live up to Weirstrass’s
expectations, and the series solution did not “considerably extend our understanding
of the solar system.’ The work that followed from Poincaré did.

A.0.2 Ergodic hypothesis

The second problem that played a key role in development of chaotic dynamics
was the ergodic hypothesis of Boltzmann. Maxwell and Boltzmann had combined
the mechanics of Newton with notions of probability in orderto create statistical
mechanics, deriving thermodynamics from the equations of mechanics. To evaluate
the heat capacity of even a simple system, Boltzmann had to make a great simplifying
assumption of ergodicity: that the dynamical system would visit every part of
the phase space allowed by conservation laws equally often.This hypothesis was
extended to other averages used in statistical mechanics and was called the ergodic
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hypothesis. It was reformulated by Poincaré to say that a trajectory comes as close
as desired to any phase space point.

Proving the ergodic hypothesis turned out to be very difficult. By the end
of twentieth century it has only been shown true for a few systems and wrong
for quite a few others. Early on, as a mathematical necessity, the proof of the
hypothesis was broken down into two parts. First one would show that the mechanical
system was ergodic (it would go near any point) and then one would show that
it would go near each point equally often and regularly so that the computed
averages made mathematical sense. Koopman took the first step in proving the
ergodic hypothesis when he noticed that it was possible to reformulate it using
the recently developed methods of Hilbert spaces. This was an important step
that showed that it was possible to take a finite-dimensionalnonlinear problem
and reformulate it as a infinite-dimensional linear problem. This does not make
the problem easier, but it does allow one to use a different set of mathematical
tools on the problem. Shortly after Koopman started lecturing on his method,
von Neumann proved a version of the ergodic hypothesis, giving it the status of a
theorem. He proved that if the mechanical system was ergodic, then the computed
averages would make sense. Soon afterwards Birkhoff published a much stronger
version of the theorem.

A.0.3 Nonlinear oscillators

The third problem that was very influential in the development of the theory
of chaotic dynamical systems was the work on the nonlinear oscillators. The
problem is to construct mechanical models that would aid ourunderstanding of
physical systems. Lord Rayleigh came to the problem throughhis interest in
understanding how musical instruments generate sound. In the first approximation
one can construct a model of a musical instrument as a linear oscillator. But real
instruments do not produce a simple tone forever as the linear oscillator does, so
Lord Rayleigh modified this simple model by adding friction and more realistic
models for the spring. By a clever use of negative friction hecreated two basic
models for the musical instruments. These models have more than a pure tone
and decay with time when not stroked. In his bookThe Theory of SoundLord
Rayleigh introduced a series of methods that would prove quite general, such as
the notion of a limit cycle, a periodic motion a system goes toregardless of the
initial conditions.

A.1 Chaos grows up

(R. Mainieri)

The theorems of von Neumann and Birkhoff on the ergodic hypothesis were
published in 1912 and 1913. This line of enquiry developed intwo directions.
One direction took an abstract approach and considered dynamical systems as
transformations of measurable spaces into themselves. Could we classify these
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transformations in a meaningful way? This lead Kolmogorov to the introduction
of the concept of entropy for dynamical systems. With entropy as a dynamical
invariant it became possible to classify a set of abstract dynamical systems known
as the Bernoulli systems. The other line that developed fromthe ergodic hypothesis
was in trying to find mechanical systems that are ergodic. An ergodic system could
not have stable orbits, as these would break ergodicity. So in 1898 Hadamard
published a paper with a playful title of ‘... billiards ...,’ where he showed that the
motion of balls on surfaces of constant negative curvature is everywhere unstable.
This dynamical system was to prove very useful and it was taken up by Birkhoff.
Morse in 1923 showed that it was possible to enumerate the orbits of a ball on a
surface of constant negative curvature. He did this by introducing a symbolic code
to each orbit and showed that the number of possible codes grew exponentially
with the length of the code. With contributions by Artin, Hedlund, and H. Hopf it
was eventually proven that the motion of a ball on a surface ofconstant negative
curvature was ergodic. The importance of this result escaped most physicists, one
exception being Krylov, who understood that a physical billiard was a dynamical
system on a surface of negative curvature, but with the curvature concentrated
along the lines of collision. Sinai, who was the first to show that a physical billiard
can be ergodic, knew Krylov’s work well.

The work of Lord Rayleigh also received vigorous development. It prompted
many experiments and some theoretical development by van der Pol, Duffing,
and Hayashi. They found other systems in which the nonlinearoscillator played
a role and classified the possible motions of these systems. This concreteness
of experiments, and the possibility of analysis was too muchof temptation for
Mary Lucy Cartwright and J.E. Littlewood [15], who set out to prove that many
of the structures conjectured by the experimentalists and theoretical physicists did
indeed follow from the equations of motion. Birkhoff had found a ‘remarkable
curve’ in a two dimensional map; it appeared to be non-differentiable and it
would be nice to see if a smooth flow could generate such a curve. The work of
Cartwright and Littlewood lead to the work of Levinson, which in turn provided
the basis for the horseshoe construction of S. Smale.

[chapter 11]

In Russia, Lyapunov paralleled the methods of Poincaré andinitiated the
strong Russian dynamical systems school. Andronov carriedon with the study of
nonlinear oscillators and in 1937 introduced together withPontryagin the notion
of coarse systems. They were formalizing the understandinggarnered from the
study of nonlinear oscillators, the understanding that many of the details on how
these oscillators work do not affect the overall picture of the state space: there
will still be limit cycles if one changes the dissipation or spring force function
by a little bit. And changing the system a little bit has the great advantage of
eliminating exceptional cases in the mathematical analysis. Coarse systems were
the concept that caught Smale’s attention and enticed him tostudy dynamical
systems.

A.2 Chaos with us

(R. Mainieri)
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In the fall of 1961 Steven Smale was invited to Kiev where he met Arnol’d,
Anosov, Sinai, and Novikov. He lectured there, and spent a lot of time with
Anosov. He suggested a series of conjectures, most of which Anosov proved
within a year. It was Anosov who showed that there are dynamical systems
for which all points (as opposed to a non–wandering set) admit the hyperbolic
structure, and it was in honor of this result that Smale namedthese systems
Axiom-A. In Kiev Smale found a receptive audience that had been thinking about
these problems. Smale’s result catalyzed their thoughts and initiated a chain of
developments that persisted into the 1970’s.

Smale collected his results and their development in the 1967 review article on
dynamical systems, entitled “Differentiable dynamical systems.” There are many

[chapter 11]
great ideas in this paper: the global foliation of invariantsets of the map into
disjoint stable and unstable parts; the existence of a horseshoe and enumeration
and ordering of all its orbits; the use of zeta functions to study dynamical systems.
The emphasis of the paper is on the global properties of the dynamical system, on
how to understand the topology of the orbits. Smale’s account takes you from a
local differential equation (in the form of vector fields) to the globaltopological
description in terms of horseshoes.

The path traversed from ergodicity to entropy is a little more confusing. The
general character of entropy was understood by Weiner, who seemed to have
spoken to Shannon. In 1948 Shannon published his results on information theory,
where he discusses the entropy of the shift transformation.Kolmogorov went
far beyond and suggested a definition of the metric entropy ofan area preserving
transformation in order to classify Bernoulli shifts. The suggestion was taken
by his student Sinai and the results published in 1959. In 1960 Rohlin connected
these results to measure-theoretical notions of entropy. The next step was published
in 1965 by Adler and Palis, and also Adler, Konheim, McAndrew; these papers
showed that one could define the notion of topological entropy and use it as
an invariant to classify continuous maps. In 1967 Anosov andSinai applied
the notion of entropy to the study of dynamical systems. It was in the context
of studying the entropy associated to a dynamical system that Sinai introduced
Markov partitions in 1968.

Markov partitions allow one to relate dynamical systems andstatistical mechanics;
this has been a very fruitful relationship. It adds measure notions to the topological
framework laid down in Smale’s paper. Markov partitions divide the state space
of the dynamical system into nice little boxes that map into each other. Each
box is labeled by a code and the dynamics on the state space maps the codes
around, inducing a symbolic dynamics. From the number of boxes needed to
cover all the space, Sinai was able to define the notion of entropy of a dynamical
system. In 1970 Bowen came up independently with the same ideas, although
there was presumably some flow of information back and forth before these papers
got published. Bowen also introduced the important conceptof shadowing of
chaotic orbits. We do not know whether at this point the relations with statistical
mechanics were clear to every one. They became explicit in the work of Ruelle.
Ruelle understood that the topology of the orbits could be specified by a symbolic
code, and that one could associate an ‘energy’ to each orbit.The energies could
be formally combined in a ‘partition function’ to generate the invariant measure
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of the system.

After Smale, Sinai, Bowen, and Ruelle had laid the foundations of the statistical
mechanics approach to chaotic systems, research turned to studying particular
cases. The simplest case to consider is 1-dimensional maps.The topology of the
orbits for parabola-like maps was worked out in 1973 by Metropolis, Stein, and
Stein. The more general 1-dimensional case was worked out in1976 by Milnor
and Thurston in a widely circulated preprint, whose extended version eventually
got published in 1988.

A lecture of Smale and the results of Metropolis, Stein, and Stein inspired
Feigenbaum to study simple maps. This lead him to the discovery of the universality
in quadratic maps and the application of ideas from field-theory to dynamical
systems. Feigenbaum’s work was the culmination in the studyof 1-dimensional
systems; a complete analysis of a nontrivial transition to chaos. Feigenbaum
introduced many new ideas into the field: the use of the renormalization group
which lead him to introduce functional equations in the study of dynamical systems,
the scaling function which completed the link between dynamical systems and
statistical mechanics, and the use of presentation functions as the dynamics of
scaling functions.

The work in more than one dimension progressed very slowly and is still far
from completed. The first result in trying to understand the topology of the orbits
in two dimensions (the equivalent of Metropolis, Stein, andStein, or Milnor
and Thurston’s work) was obtained by Thurston. Around 1975 Thurston was
giving lectures “On the geometry and dynamics of diffeomorphisms of surfaces.”
Thurston’s techniques exposed in that lecture have not beenapplied in physics,
but much of the classification that Thurston developed can beobtained from the
notion of a ‘pruning front’ developed independently by Cvitanović.

Once one develops an understanding for the topology of the orbits of a dynamical
system, one needs to be able to compute its properties. Ruelle had already generalized
the zeta function introduced by Artin and Mazur so that it could be used to compute
the average value of observables. The difficulty with Ruelle’s zeta function is
that it does not converge very well. Starting out from Smale’s observation that a
chaotic dynamical system is dense with a set of periodic orbits, Cvitanović used
these orbits as a skeleton on which to evaluate the averages of observables, and
organized such calculations in terms of rapidly convergingcycle expansions. This
convergence is attained by using the shorter orbits used as abasis for shadowing
the longer orbits.

This account is far from complete, but we hope that it will help get a sense of
perspective on the field. It is not a fad and it will not die anytime soon.

A.3 Periodic orbit theory

Pure mathematics is a branch of applied mathematics.
— Joe Keller, after being asked to define applied

mathematics
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The history of the periodic orbit theory is rich and curious,and the recent
advances are to equal degree inspired by a century of separate development of
three disparate subjects; 1.classical chaotic dynamics, initiated by Poincaré
and put on its modern footing by Smale [23], Ruelle [28], and many others;
2. quantum theoryinitiated by Bohr, with the modern ‘chaotic’ formulation by
Gutzwiller [12, 17]; and 3. analyticnumber theoryinitiated by Riemann and
formulated as a spectral problem by Selberg [20, 3]. Following totally different
lines of reasoning and driven by very different motivations, the three separate
roads all arrive at formally nearly identicaltrace formulas, zeta functionsand
spectral determinants.

That these topics should be related is far from obvious. Connection between
dynamics and number theory arises from Selberg’s observation that description
of geodesic motion and wave mechanics on spaces of constant negative curvature
is essentially a number-theoretic problem.A posteriori, one can say that zeta
functions arise in both classical and quantum mechanics because in both the dynamical
evolution can be described by the action of linear evolution(or transfer) operators
on infinite-dimensional vector spaces. The spectra of theseoperators are given by
the zeros of appropriate determinants. One way to evaluate determinants is to

[section 17.1]
expand them in terms of traces,log det= tr log, and in this way the spectrum of
an evolution operator becames related to its traces, i.e., periodic orbits. A perhaps
deeper way of restating this is to observe that the trace formulas perform the same
service in all of the above problems; they relate the spectrum of lengths (local
dynamics) to the spectrum of eigenvalues (global averages), and for nonlinear
geometries they play a role analogous to that the Fourier transform plays for the
circle.

[exercise 4.1]

In M. Gutzwiller words:

“The classical periodic orbits are a crucial stepping stonein the understanding
of quantum mechanics, in particular when then classical system is chaotic.
This situation is very satisfying when one thinks of Poincaré who emphasized
the importance of periodic orbits in classical mechanics, but could not have
had any idea of what they could mean for quantum mechanics. The set
of energy levels and the set of periodic orbits are complementary to each
other since they are essentially related through a Fourier transform. Such
a relation had been found earlier by the mathematicians in the study of the
Laplacian operator on Riemannian surfaces with constant negative curvature.
This led to Selberg’s trace formula in 1956 which has exactlythe same form,
but happens to be exact. The mathematical proof, however, isbased on
the high degree of symmetry of these surfaces which can be compared to
the sphere, although the negative curvature allows for manymore different
shapes.”
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A.4 Death of the Old Quantum Theory

In 1913 Otto Stern and Max Theodor Felix von Laue went
up for a walk up the Uetliberg. On the top they sat down
and talked about physics. In particular they talked about
the new atom model of Bohr. There and then they made
the ‘Uetli Schwur:’ If that crazy model of Bohr turned out
to be right, then they would leave physics. It did and they
didn’t.

— A. Pais,Inward Bound: of Matter and Forces in
the Physical World

In an afternoon of May 1991 Dieter Wintgen is sitting in his office at the Niels
Bohr Institute beaming with the unparalleled glee of a boy who has just committed
a major mischief. The starting words of the manuscript he hasjust penned are

The failure of the Copenhagen School to obtain a reasonable .. .

34 years old at the time, Dieter was a scruffy kind of guy, always in sandals and
holed out jeans, a left winger and a mountain climber, working around the clock
with his students Gregor and Klaus to complete the work that Bohr himself would
have loved to see done back in 1916: a ‘planetary’ calculation of the helium
spectrum.

Never mind that the ‘Copenhagen School’ refers not to the oldquantum theory,
but to something else. The old quantum theory was no theory atall; it was
a set of rules bringing some order to a set of phenomena which defied logic of
classical theory. The electrons were supposed to describe planetary orbits around
the nucleus; their wave aspects were yet to be discovered. The foundations seemed
obscure, but Bohr’s answer for the once-ionized helium to hydrogen ratio was
correct to five significant figures and hard to ignore. The old quantum theory
marched on, until by 1924 it reached an impasse: the helium spectrum and the
Zeeman effect were its death knell.

Since the late 1890’s it had been known that the helium spectrum consists of
the orthohelium and parahelium lines. In 1915 Bohr suggested that the two kinds
of helium lines might be associated with two distinct shapesof orbits (a suggestion
that turned out to be wrong). In 1916 he got Kramers to work on the problem, and
wrote to Rutherford: “I have used all my spare time in the lastmonths to make
a serious attempt to solve the problem of ordinary helium spectrum . . . I think
really that at last I have a clue to the problem.” To other colleagues he wrote that
“the theory was worked out in the fall of 1916” and of having obtained a “partial
agreement with the measurements.” Nevertheless, the Bohr-Sommerfeld theory,
while by and large successful for hydrogen, was a disaster for neutral helium.
Heroic efforts of the young generation, including Kramers and Heisenberg, were
of no avail.

For a while Heisenberg thought that he had the ionization potential for helium,
which he had obtained by a simple perturbative scheme. He wrote enthusiastic
letters to Sommerfeld and was drawn into a collaboration with Max Born to
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compute the spectrum of helium using Born’s systematic perturbative scheme.
In first approximation, they reproduced the earlier calculations. The next level
of corrections turned out to be larger than the computed effect. The concluding
paragraph of Max Born’s classic “Vorlesungen über Atommechanik” from 1925
sums it up in a somber tone:

(. . . ) the systematic application of the principles of the quantum theory
(. . . ) gives results in agreement with experiment only in those cases where
the motion of a single electron is considered; it fails even in the treatment
of the motion of the two electrons in the helium atom.

This is not surprising, for the principles used are not really consistent.
(. . . ) A complete systematic transformation of the classical mechanics into
a discontinuous mechanics is the goal towards which the quantum theory
strives.

That year Heisenberg suffered a bout of hay fever, and the old quantum theory
was dead. In 1926 he gave the first quantitative explanation of the helium spectrum.
He used wave mechanics, electron spin and the Pauli exclusion principle, none of
which belonged to the old quantum theory, and planetary orbits of electrons were
cast away for nearly half a century.

Why did Pauli and Heisenberg fail with the helium atom? It wasnot the fault
of the old quantum mechanics, but rather it reflected their lack of understanding of
the subtleties of classical mechanics. Today we know what they missed in 1913-
24: the role of conjugate points (topological indices) along classical trajectories
was not accounted for, and they had no idea of the importance of periodic orbits
in nonintegrable systems.

Since then the calculation for helium using the methods of the old quantum
mechanics has been fixed. Leopold and Percival [5] added the topological indices
in 1980, and in 1991 Wintgen and collaborators [8, 9] understood the role of
periodic orbits. Dieter had good reasons to gloat; while therest of us were
preparing to sharpen our pencils and supercomputers in order to approach the
dreaded 3-body problem, they just went ahead and did it. Whatit took–and much
else–is described in this book.

One is also free to ponder what quantum theory would look liketoday if all this
was worked out in 1917. In 1994 Predrag Cvitanović gave a talk in Seattle about
helium and cycle expansions to–inter alia–Hans Bethe, who loved it so much that
after the talk he pulled Predrag aside and they trotted over to Hans’ secret place:
the best lunch on campus (Business School). Predrag asked: “Would Quantum
Mechanics look different if in 1917 Bohr and Kramerset al. figured out how to
use the helium classical 3-body dynamics to quantize helium?”

Bethe was very annoyed. He responded with an exasperated look - in Bethe
Deutschinglish (if you have ever talked to him, you can do thevoice over yourself):

“It would not matter at all!”
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A.4.1 Berry-Keating conjecture

A very appealing proposal in the context of semiclassical quantization is due
to M. Berry and J. Keating [21]. The idea is to improve cycle expansions by
imposing unitarity as a functional equation ansatz. The cycle expansions that they
use are the same as the original ones [2, 1] described above, but the philosophy
is quite different; the claim is that the optimal estimate for low eigenvalues of
classically chaotic quantum systems is obtained by taking the real part of the
cycle expansion of the semiclassical zeta function, cut off at the appropriate cycle
length. M. Sieber, G. Tanner and D. Wintgen, and P. Dahlqvistfind that their
numerical results support this claim; F. Christiansen and P. Cvitanović do not
find any evidence in their numerical results. The usual Riemann-Siegel formulas
exploit the self-duality of the Riemann and other zeta functions, but there is no
evidence of such symmetry for generic Hamiltonian flows. Also from the point
of hyperbolic dynamics discussed above, proposal in its current form belongs to
the category of crude cycle expansions; the cycles are cut off by a single external
criterion, such as the maximal cycle time, with no regard forthe topology and the
curvature corrections. While the functional equation conjecture is maybe not in
its final form yet, it is very intriguing and worth pursuing.

The real life challenge are generic dynamical flows, which fitneither of the
above two idealized settings.
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Commentary

Remark A.1 Notion of global foliations. For each paper cited in dynamical systems
literature, there are many results that went into its development. As an example, take
the notion of global foliations that we attribute to Smale. As far as we can trace the
idea, it goes back to René Thom; local foliations were already used by Hadamard. Smale
attended a seminar of Thom in 1958 or 1959. In that seminar Thom was explaining
his notion of transversality. One of Thom’s disciples introduced Smale to Brazilian
mathematician Peixoto. Peixoto (who had learned the results of the Andronov-Pontryagin
school from Lefschetz) was the closest Smale had ever come until then to the Andronov-
Pontryagin school. It was from Peixoto that Smale learned about structural stability, a
notion that got him enthusiastic about dynamical systems, as it blended well with his
topological background. It was from discussions with Peixoto that Smale got the problems
in dynamical systems that lead him to his 1960 paper on Morse inequalities. The next year
Smale published his result on the hyperbolic structure of the non-wandering set. Smale
was not the first to consider a hyperbolic point, Poincaré had already done that; but Smale
was the first to introduce a global hyperbolic structure. By 1960 Smale was already
lecturing on the horseshoe as a structurally stable dynamical system with an infinity of
periodic points and promoting his global viewpoint. (R. Mainieri)

Remark A.2 Levels of ergodicity. In the mid 1970’s A. Katok and Ya.B. Pesin tried
to use geometry to establish positive Lyapunov exponents. A. Katok and J.-M. Strelcyn
carried out the program and developed a theory of general dynamical systems with singularities.
They studied uniformly hyperbolic systems (as strong as Anosov’s), but with sets of
singularities. Under iterations a dense set of points hits the singularities. Even more
important are the points that never hit the singularity set.In order to establish some
control over how they approach the set, one looks at trajectories that apporach the set by
some givenǫn, or faster.

Ya.G. Sinai, L. Bunimovich and N.I. Chernov studied the geometry of billiards in a
very detailed way. A. Katok and Ya.B. Pesin’s idea was much more robust. Look at the
discontinuity set (geometry of it matters not at all), take an ǫ neighborhood around it.
Given that the Lebesgue measure isǫα and the stability grows not faster than (distance)n.
A. Katok and J.-M. Strelcyn proved that the Lyapunov exponent is non-zero.

In mid 1980’s Ya.B. Pesin studied the dissipative case. Now the problem has no
invariant Lebesgue measure. Assuming uniform hyperbolicity, with singularities, and
tying together Lebesgue measure and discontinuities, and given that the stability grows
not faster than (distance)n, Ya.B. Pesin proved that the Lyapunov exponent is non-zero,
and that SRB measure exists. He also proved that the Lorenz, Lozi and Byelikh attractors
satisfy these conditions.

In the systems that are uniformly hyperbolic, all trouble isin differentials. For the
Hénon attractor, already the differentials are nonhyperbolic. The points do not separate
uniformly, but the analogue of the singularity set can be obtained by excising the regions
that do not separate. Hence there are 3 levels of ergodic systems:

1. Anosov flow

2. Anosov flow+ singularity set: For the Hamiltonian systems the general case is
studied by A. Katok and J.-M. Strelcyn, and the billiards case by Ya.G. Sinai and
L. Bunimovich. The dissipative case is studied by Ya.B. Pesin.
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3. Hénon case: The first proof was given by M. Benedicks and L.Carleson [32]. A
more readable proof is given in M. Benedicks and L.-S. Young [13].

(based on Ya.B. Pesin’s comments)

Remark A.3 Einstein did it? The first hint that chaos is afoot in quantum mechanics
was given in a note by A. Einstein [16]. The total discussion is a one sentence remark.
Einstein being Einstein, this one sentence has been deemed sufficient to give him the
credit for being the pioneer of quantum chaos [17, 18]. We asked about the paper two
people from that era, Sir Rudolf Peierls and Abraham Pais, and both knew nothing about
the 1917 article. However, Theo Geisel has unearthed a reference that shows that in early
20s Born did have a study group meeting in his house that studied Poincaré’s Méchanique
Céleste [19]. In 1954 Fritz Reiche, who had previously followed Einstein as professor of
physics in Wroclaw (??), pointed out to J.B. Keller that Keller’s geometrical semiclassical
quantization was anticipated by the long forgotten paper byA. Einstein [16]. In this way
an important paper written by the physicist who at the time was the president of German
Physical Society, and the most famous scientist of his time,came to be referred to for the
first time by Keller [19], 41 years later. But before Ian Percival included the topological
phase, and Wintgen and students recycled the Helium atom, knowing Méchanique Céleste
was not enough to complete Bohr’s original program.

Remark A.4 Sources. The tale of appendixA.4, aside from a few personal recollections,
is in large part lifted from Abraham Pais’ accounts of the demise of the old quantum
theory [6, 7], as well as Jammer’s account [2]. In August 1994 Dieter Wintgen died in a
climbing accident in the Swiss Alps.
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