Appendix |

Convergence of spectral
determinants

I.1 Curvature expansions: geometric picture

will note that the numerical convergence of cycle exparsfonsystems such

as the 3-disk game of pinball, takl&.2.2 is very impressive; only three input
numbers (the two fixed poin 1 and the 2-cycl@O0) already yield the escape rate
to 4 significant digits! We have omitted an infinity of unstabycles; so why does
approximating the dynamics by a finite number of cycles warkvsll?

I F YOU HAS SOME EXPERIENCE With numerical estimates of fractal dimensions, you

Looking at the cycle expansions simply as sums of unrelavatributions is
not specially encouraging: the cycle expansiv®.9 is not absolutely convergent
in the sense of Dirichlet series of set8.6 so what one makes of it depends on
the way the terms are arranged.

The simplest estimate of the error introduced by approximgagmooth flow
by periodic orbits is to think of the approximation as a téssan of a smooth
curve by piecewise linear tiles, figuiell

I.1.1 Tessalation of a smooth flow by cycles

One of the early high accuracy computationg efas due to Euler. Euler computed
the circumference of the circee of unit radius by inscribitg it a regular polygon
with N sides; the error of such computation is proportional-tcos(2r/N) o« N=2.

In a periodic orbit tessalation of a smooth flow, we cover thase space bg™
tiles at thenth level of resolution, whera is the topological entropy, the growth
rate of the number of tiles. Hence we expect the error in afprating a smooth
flow by €™ linear segments to be exponentially small, of oridef oc &2,
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I.1.2 Shadowing and convergence of curvature expansions

We have shown in chapté that if the symbolic dynamics is defined by a finite
grammar, a finite number of cycles, let us say the kitstms in the cycle expansion
are necessary to correctly count the pieces of the Cantogeswtrated by the
dynamical system.

They are composed of products of non—intersecting loopshenMarkov
graph, seel(3.13. We refer to this set of non—intersecting loops adtindamental
cycles of the strange set. It is only after these terms haga beluded that the
cycle expansion is expected to converge smoothly, i.ey forln > k are the
curvaturesc, in (9.2??) a measure of the variation of the quality of a lirzeal
covering of the dynamical Cantor set by the lengttycles, and expected to fall
off rapidly with n.

The rate of fall-df of the cycle expansion céiicients can be estimated by
observing that for subshifts of finite type the contribusioinom longer orbits
in curvature expansions such d(7) can always be grouped into shadowing
combinations of pseudo-cycles. For example, a cycle viitariaryab= ;s - - - s,
will appear in combination of form

Yi=1--—(to—tath) =,

with ab shadowed by cycl@ followed by cycleb, wherea = ;5 --- sy, b =
Sl S-1Sn, ands labels the Markov partitionMs, (10.4) that the trajectory
traverses at thkth return. If the two trajectories coincide in the firstsymbols,
at themth return to a Poincaré section they can land anywhere iphhse space
M

[£Ta0x) — T (xa.)| ~ 1.,

where we have assumed that théis compact, and that the maximal possible
separation acros$lis O(1). Herex, is a point on thé& cycle of periodT,, andx,, ..

is a nearby point whose trajectory tracks the cgder the firstm Poincaré section
returns completed at the tinig,_. An estimate of the maximal separation of the
initial points of the two neighboring trajectories is aakgd by Taylor expanding
aroundxy . = Xz + 6Xa...

afTa(xq)
ox

fla(@) - 1 (xa.) = 0Xa. = Ma-6Xa..

hence the hyperbolicity of the flow forces the initial poiaf®ieighboring trajectories
that track each other for at leastconsecutive symbols to lie exponentially close

1
0. o —
™
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Similarly, for any observablel6.1) integrated along the two nearby trajectories

QAT
AT () = AT + S| o
X=Xa

SO

TaConst

Ta. — ATa(xo)| o
AT () ~ AT o« 2

B

As the time of return is itself an integral along the trajegtoeturn times of nearby
trajectories are exponentially close

TaConst

Ta. - T
Ta. al o Aal

5

and so are the trajectory stabilities

TaConst
Aal

|AT2 (Xa.) = AT(xg)| o<
Substitutingtap one finds

tap — talp = 1 — g ATa+To=Tan)
tap

AaAb‘
Aap |-

Since with increasingn segments ofb come closer t@, the diferences in action
and the ratio of the eigenvalues converge exponentiallly thi¢ eigenvalue of the
orbita,

Ta+To—Tap ~ CONStX A5, [AaAb/Aw| ~ €XpECONSY Aa)

Expanding the exponentials one thus finds that this termartyisle expansion is
of the order of

toib — tata-1p ~ CONSEX typAz) . (1.1)

Even though the number of terms in a cycle expansion growsresgially, the
shadowing cancellations improve the convergence by amexjtial factor compared
to trace formulas, and extend the radius of convergenceegdefiodic orbit sums.
Tablel.1 shows some examples of such compensations between loreg @il
their pseudo-cycle shadows.
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n tap — tatp Ta— (Ta+To) | log[Zele] ab-a-b

2 | -5.2346515078410° | 4.8580292737410° -6.3x107 01-01

3| -7.960286001391C°F | 5.2171310143210° |  -9.8x10° 001-001

4| -1.0332652987410° | 5.2985819941910 |  -1.3x10° | 0001-0001

5| -1.2748152201610° | 5.3551357469710° |  -1.6x10° | 00001-60001
6 | -1.5254470482810'! | 5.4099988262610° |  -1.8x10° | 000001-G00001
2| -5.2346515078410° | 4.85802927372107 |  -6.3x10° 01-01

3| 5.304147529961C° | -3.6709365669010° 7.7x10° 011-011

4| -5.4093426168010° | 3.1492576131810" -9.2x10* 0111-0111

5| 4.9912950883810'0 | -2.6729282279610° 1.0<10¢ | 01111-01111
6 | -4.3924600058810' | 2.2708711626810° -1.0x10° | 011111-01111

Table I.1: Demonstration of shadowing in curvature combinations afeweights of
form tap — tatp, the 3-disk fundamental domain cyclesRat d = 6, table27.2 The ratio
Aalp/Aap is approaching unity exponentially fast.

Itis crucial that the curvature expansion is grouped (amaidated) by topologically
related cycles and pseudo-cycles; truncations that ignpogy, such as inclusion
of all cycles withT < Ty, Will contain orbits unmatched by shadowed orbits,
and exhibit a mediocre convergence compared with the aunev@ixpansions.

Note that the existence of a polezt 1/c implies that the cycle expansions
have a finite radius of convergence, and that analytic coations will be required
for extraction of the non-leading zeros of¢l Preferably, one should work with
cycle expansions of Selberg products, as discussed inl&e2t2

I.1.3 No shadowing, poorer convergence

Conversely, if the dynamics is not of a finite subshift typeere is no finite
topological polynomial, there are no “curvature” correns, and the convergence
of the cycle expansions will be poor.

I.2  Onimportance of pruning

If the grammar is not finite and there is no finite topologicalypomial, there
will be no “curvature” expansions, and the convergence béllpoor. That is
the generic case, and one strategy for dealing with it is tbdigood sequence of
approximate but finite grammars; for each approximate granuycle expansions
yield exponentially accurate eigenvalues, with succesapproximate grammars
converging toward the desired infinite grammar system.

When the dynamical system’s symbolic dynamics does nothéinée grammar,
and we are not able to arrange its cycle expansion into awevatombinations
(18.7), the series is truncated as in s€@.5 by including all pseudo-cycles such
that|Ap, --- Ap| < |Apl, whereP is the most unstable prime cycle included into
truncation. The truncation error should then be of ol@&" ™" Tp/|Ap|), with h
the topological entropy, arél™ roughly the number of pseudo-cycles of stability
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~ |Ap|. In this case the cycle averaging formulas do not convergeifgiantly
better than the approximations such as the trace forn20l4.§.

Numerical results (see for example the plots of the accurdcthe cycle
expansion truncations for the Heénon map in réf) [ndicate that the truncation
error of most averages tracks closely the fluctuations duleet@rregular growth
in the number of cycles. It is not known whether one can exple sum rules
such as the mass flow conservati@d.(L]) to improve the accuracy of dynamical
averaging.

.3 Ma-the-matical caveats

“Lo duca e io per quel cammino ascoso intrammo a

ritornar nel chiaro monde; e sanza cura aver d’alcun riposa

salimmo su, el primo e io secondo, tanto ch'i’ vidi de le

cose belle che porta ‘I ciel, per un perutgio tondo.”
—Dante

§
J The periodic orbit theory is learned in stages. At first giarit seems
totally impenetrable. After basic exercises are gone tjinput seems totally
trivial; all that seems to be at stake are elementary maaiijoms with traces,
determinants, derivatives. But if start thinking about yaliget a more and more
uncomfortable feeling that from the mathematical pointiefw this is a perilous
enterprise indeed. In chapt2t we shall explain which parts of this enterprise are
really solid; here you give a fortaste of what objections a mathimat might
rise.

Birkhoff’s 1931 ergodic theorem states that the time averdged) exists
almost everywhere, and, if the flow is ergodic, it impliesttte(x)) = (a) is a
constant for almost akk. The problem is that the above cycle averaging formulas
implicitly rely on ergodic hypothesis: they are strictlyroect only if the dynamical
system is locally hyperbolic and globally mixing. If one éakag derivative of
both sides

ps)eH = fM dx oy - F1(9)APps(x)

and integrates over

[ o a—aﬁpﬁw)]ﬂ:o + t;’—jﬁzo [ oot -

0
[ axA 00+ [ ox @p,xx)\ﬂ:o,

one obtains in the long time limit

aJs
= fM dy po(x) (a(x)) - (12)
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This is the expectation valud§.12 only if the time averagel.4) equals the
space averagelb.9), (a(x)) = (a), for all x except a subset € M of zero
measure; if the phase space is foliated into non-commungcaubspaced =
M1 + M, of finite measure such thdf(M;) N M, = 0 for all t, this fails. In
other words, we have tacitly assumed metric indecompasaloil transitivity.
We have also glossed over the nature of the “phase sp&te’For example,
if the dynamical system is open, such as the 3-disk game @iaflinM in the
expectation value integrall.2? is a Cantor set, the closure of the union of all
periodic orbits.  AlternativelyM can be considered continuous, but then the
measurepg in (1.2) is highly singular. The beauty of the periodic orbit theory
is that instead of using an arbitrary coordinatizationMfit partitions the phase
space by the intrinsic topology of the dynamical flow anddmithe correct measure
from cycle invariants, the stability eigenvalues of peitoalbits.

Were we to restrict the applications of the formalism onlysystems which
have been rigorously proven to be ergodic, we might as wédl & the shop
right now. For example, even for something as simple as #@oH mapping we
do not know whether the asymptotic time attractor is strasrgeeriodic. Physics )
. . . . . . exercise 15.1]
applications require a more pragmatic attitude. In theecgaipansions approaclll
we construct the invariant set of the given dynamical systsm closure of the
union of periodic orbits, and investigate how robust areaherages computed
on this set. This turns out to depend very much on the obslenbaing averaged
over; dynamical averages exhibit “phase transitions”,targbove cycle averaging
formulas apply in the “hyperbolic phase” where the averageldminated by
exponentially many exponentially small contributionst, fiail in a phase dominated
by few marginally stable orbits. Here the noise - always gmgsno matter how
weak - helps us by erasing an infinity of small traps that therdgnistic dynamics
might fall into.

Still, in spite of all the caveats, periodic orbit theory idbeautiful theory,
and the cycle averaging formulas are the most elegant andrfidvool available
today for evaluation of dynamical averages for low dimenal@haotic deterministic
systems.

.4 Estimate of thenth cumulant

An immediate consequence of the exponential spacing ofigemealues is that
the convergence of the Selberg product expandiohZ) as function of the topological
cyclelengthF(2) = },,CnZ", is faster than exponential. Considet-alimensional
map for which all fundamental matrix eigenvalues are equgak Ap1 = Ap2 =

-+ = Apg. The stability eigenvalues are generally not isotropicvéaer, to
obtain qualitative bounds on the spectrum, we replace aliilgy eigenvalues
with the least expanding one. In this case theycle contribution to the product
(17.9 reduces to

0

Fo@ = H (1—tpu',§“k2*”‘+k“)
kykg=0
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