
Appendix G

Transport of vector fields

Man who says it cannot be done should not interrupt man
doing it.

—Sayings of Vattay Gábor

I    we show that the multidimensional Lyapunov exponents and
relaxation exponents (dynamo rates) of vector fields can be expressed in terms
of leading eigenvalues of appropriate evolution operators.

G.1 Evolution operator for Lyapunov exponents

Lyapunov exponents were introduced and computed for 1-d maps in sect.15.3.2.
For higher-dimensional flows only the fundamental matricesare multiplicative,
not individual eigenvalues, and the construction of the evolution operator for
evaluation of the Lyapunov spectra requires the extension of evolution equations
to the flow in the tangent space. We now develop the requisite theory.

Here we construct a multiplicative evolution operator (G.4) whose spectral
determinant (G.8) yields the leading Lyapunov exponent of ad-dimensional flow
(and is entire for Axiom A flows).

The key idea is to extending the dynamical system by the tangent space of the
flow, suggested by the standard numerical methods for evaluation of Lyapunov
exponents: start atx0 with an initial infinitesimal tangent space vectorη(0) ∈
TMx, and let the flow transport it along the trajectoryx(t) = f t(x0).

The dynamics in the (x, η) ∈ U × TUx space is governed by the system of
equations of variations [1]:

ẋ = v(x) , η̇ = Dv(x)η .
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HereDv(x) is the derivative matrix of the flow. We write the solution as

x(t) = f t(x0) , η(t) = Mt(x0) · η0 , (G.1)

with the tangent space vectorη transported by the stability matrixMt(x0) =
∂x(t)/∂x0.

As explained in sect.4.1, the growth rate of this vector is multiplicative along
the trajectory and can be represented asη(t) = |η(t)|/|η(0)|u(t) whereu(t) is a
“unit” vector in some norm||.||. For asymptotic times and for almost every initial
(x0, η(0)), this factor converges to the leading eigenvalue of thelinearized stability
matrix of the flow.

We implement this multiplicative evaluation of stability eigenvalues by adjoining
thed-dimensional transverse tangent spaceη ∈ TMx; η(x)v(x) = 0 to the (d+1)-
dimensional dynamical evolution spacex ∈ M ⊂ Rd+1. In order to determine the
length of the vectorη we introduce a homogeneous differentiable scalar function
g(η) = ||η||. It has the propertyg(Λη) = |Λ|g(η) for anyΛ. An example is the
projection of a vector to itsdth component
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= |ηd| .

Any vectorη ∈ TUx can now be represented by the productη = Λu, whereu
is a “unit” vector in the sense that its norm is||u|| = 1, and the factor

Λ
t(x0, u0) = g(η(t)) = g(Mt(x0) · u0) (G.2)

is the multiplicative “stretching” factor.

Unlike the leading eigenvalue of the Jacobian the stretching factor is multiplicative
along the trajectory:

Λ
t′+t(x0, u0) = Λt′(x(t), u(t))Λt(x0, u0).

[exercise G.1]

Theu evolution constrained toETg,x, the space of unit transverse tangent vectors,
is given by rescaling of (G.1):

u′ = Rt(x, u) =
1

Λt(x, u)
Mt(x) · u . (G.3)

Eqs. (G.1), (G.2) and (G.3) enable us to define amultiplicativeevolution operator
on the extended spaceU × ETg,x

Lt(x′, u′; x, u) = δ
(

x′ − f t(x)
) δ

(

u′ − Rt(x, u)
)

|Λt(x, u)|β−1
, (G.4)
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whereβ is a variable.

To evaluate the expectation value of log|Λt(x, u)|which is the Lyapunov exponent
we again have to take the proper derivative of the leading eigenvalue of (G.4).
In order to derive the trace formula for the operator (G.4) we need to evaluate
TrLt

=

∫

dxduLt(u, x; u, x). The
∫

dx integral yields a weighted sum over prime
periodic orbitsp and their repetitionsr:

TrLt
=

∑

p

Tp

∞
∑

r=1

δ
(

t − rTp

)

| det (1− Mr
p) |
∆p,r ,

∆p,r =

∫

g
du
δ
(

u − RTpr(xp, u)
)

|ΛTpr(xp, u)|β−1
, (G.5)

whereMp is the prime cyclep transverse stability matrix. As we shall see below,
∆p,r is intrinsic to cyclep, and independent of any particular cycle pointxp.

We note next that if the trajectoryf t(x) is periodic with periodT, the tangent
space containsd periodic solutions

ei(x(T + t)) = ei(x(t)) , i = 1, ..., d,

corresponding to thed unit eigenvectors{e1, e2, · · · , ed} of the transverse stability
matrix, with “stretching” factors (G.2) given by its eigenvalues

Mp(x) · ei(x) = Λp,i ei(x) , i = 1, ..., d. (no summation oni)

The
∫

du integral in (G.5) picks up contributions from these periodic solutions.
In order to compute the stability of theith eigendirection solution, it is convenient
to expand the variation around the eigenvectorei in the stability matrix eigenbasis
δu =

∑

δuℓ eℓ . The variation of the map (G.3) at a complete periodt = T is then
given by

δRT(ei ) =
M · δu

g(M · ei)
−

M · ei

g(M · ei)2

(

∂g(ei)
∂u

· M · δu
)

=

∑

k,i

Λp,k

Λp,i

(

ek − ei
∂g(ei)
∂uk

)

δuk . (G.6)

Theδui component does not contribute to this sum sinceg(ei + duiei) = 1 + dui

implies∂g(ei)/∂ui = 1. Indeed, infinitesimal variationsδu must satisfy

g(u + δu) = g(u) = 1 =⇒

d
∑

ℓ=1

δuℓ
∂g(u)
∂uℓ

= 0 ,
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so the allowed variations are of form

δu =
∑

k,i

(

ek − ei
∂g(ei )
∂uk

)

ck , |ck| ≪ 1 ,

and in the neighborhood of theei eigenvector the
∫

du integral can be expressed
as

∫

g
du =

∫

∏

k,i

dck .

Inserting these variations into the
∫

du integral we obtain

∫

g
du δ

(

ei + δu − RT(ei) − δR
T(ei) + . . .

)

=

∫

∏

k,i

dck δ((1− Λk/Λi)ck + . . .)

=

∏

k,i

1
|1− Λk/Λi |

,

and the
∫

du trace (G.5) becomes

∆p,r =

d
∑

i=1

1

| Λr
p,i |
β−1

∏

k,i

1
| 1− Λr

p,k/Λ
r
p,i |
. (G.7)

The corresponding spectral determinant is obtained by observing that the Laplace
transform of the trace (16.23) is a logarithmic derivative TrL(s) = − d

ds logF(s)
of the spectral determinant:

F(β, s) = exp

















−
∑

p,r

esTpr

r | det (1− Mr
p) |
∆p,r (β)

















. (G.8)

This determinant is the central result of this section. Its zeros correspond to the
eigenvalues of the evolution operator (G.4), and can be evaluated by the cycle
expansion methods.

The leading zero of (G.8) is called “pressure” (or free energy)

P(β) = s0(β). (G.9)

The average Lyapunov exponent is then given by the first derivative of the pressure
atβ = 1:

λ = P′(1). (G.10)
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The simplest application of (G.8) is to 2-dimensional hyperbolic Hamiltonian
maps. The stability eigenvalues are related byΛ1 = 1/Λ2 = Λ, and the spectral
determinant is given by

F(β, z) = exp

















−
∑

p,r

zrnp

r | Λr
p |

1
(1− 1/Λr

p)2
∆p,r (β)

















∆p,r(β) =
| Λr

p |
1−β

1− 1/Λ2r
p
+
| Λr

p |
β−3

1− 1/Λ2r
p
. (G.11)

The dynamics (G.3) can be restricted to au unit eigenvector neighborhood
corresponding to the largest eigenvalue of the Jacobi matrix. On this neighborhood
the largest eigenvalue of the Jacobi matrix is the only fixed point, and the spectral
determinant obtained by keeping only the largest term the∆p,r sum in (G.7) is also
entire.

In case of maps it is practical to introduce the logarithm of the leading zero
and to call it “pressure”

P(β) = logz0(β). (G.12)

The average of the Lyapunov exponent of the map is then given by the first
derivative of the pressure atβ = 1:

λ = P′(1). (G.13)

By factorizing the determinant (G.11) into products of zeta functions we can
conclude that the leading zero of the (G.4) can also be recovered from the leading
zeta function

1/ζ0(β, z) = exp

















−
∑

p,r

zrnp

r |Λr
p|
β

















. (G.14)

This zeta function plays a key role in thermodynamic applications as we will will
see in Chapter22.

G.2 Advection of vector fields by chaotic flows

Fluid motions can move embedded vector fields around. An example is the magnetic
field of the Sun which is “frozen” in the fluid motion. A passively evolving vector
field V is governed by an equation of the form

∂tV + u · ∇V − V · ∇u = 0, (G.15)

appendApplic - 30may2003.tex



APPENDIX G. TRANSPORT OF VECTOR FIELDS 701

whereu(x, t) represents the velocity field of the fluid. The strength of the vector
field can grow or decay during its time evolution. The amplification of the vector
field in such a process is called the ”dynamo effect.” In a strongly chaotic fluid
motion we can characterize the asymptotic behavior of the field with an exponent

V(x, t) ∼ V(x)eνt, (G.16)

whereν is called the fast dynamo rate. The goal of this section is to show that
periodic orbit theory can be developed for such a highly non-trivial system as
well.

We can write the solution of (G.15) formally, as shown by Cauchy. Letx(t, a)
be the position of the fluid particle that was at the pointa at t = 0. Then the field
evolves according to

V(x, t) = J(a, t)V(a, 0) , (G.17)

whereJ(a, t) = ∂(x)/∂(a) is the fundamental matrix of the transformation that
moves the fluid into itselfx = x(a, t).

We writex = f t(a), where f t is the flow that maps the initial positions of the
fluid particles into their positions at timet. Its inverse,a = f −t(x), maps particles
at timet and positionx back to their initial positions. Then we can write (G.17)

Vi(x, t) =
∑

j

∫

d3aLt
i j (x, a)V j (a, 0) , (G.18)

with

Lt
i j (x, a) = δ(a− f −t(x))

∂xi

∂a j
. (G.19)

For large times, the effect ofLt is dominated by its leading eigenvalue,eν0t with
Re(ν0) > Re(νi), i = 1, 2, 3, .... In this way the transfer operator furnishes the fast
dynamo rate,ν := ν0.

The trace of the transfer operator is the sum over all periodic orbit contributions,
with each cycle weighted by its intrinsic stability

TrLt
=

∑

p

Tp

∞
∑

r=1

tr Mr
p

∣

∣

∣

∣

det
(

1− M−r
p

)

∣

∣

∣

∣

δ(t − rTp). (G.20)

We can construct the corresponding spectral determinant asusual

F(s) = exp





















−
∑

p

∞
∑

r=1

1
r

tr Mr
p

∣

∣

∣

∣

det
(

1− M−r
p

)

∣

∣

∣

∣

esrTp





















. (G.21)
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Note that in this formuli we have omitted a term arising from the Jacobian transformation
along the orbit which would give 1+ tr Mr

p in the numerator rather than just
the trace ofMr

p. Since the extra term corresponds to advection along the orbit,
and this does not evolve the magnetic field, we have chosen to ignore it. It
is also interesting to note that the negative powers of the Jacobian occur in the
denominator, since we havef −t in (G.19).

In order to simplifyF(s), we factor the denominator cycle stability determinants
into products of expanding and contracting eigenvalues. For a 3-dimensional fluid
flow with cycles possessing one expanding eigenvalueΛp (with |Λp| > 1), and
one contracting eigenvalueλp (with |λp| < 1) the determinant may be expanded
as follows:

∣

∣

∣

∣

det
(

1− M−r
p

)

∣

∣

∣

∣

−1
= |(1− Λ−r

p )(1− λ−r
p )|−1

= |λp|
r
∞
∑

j=0

∞
∑

k=0

Λ
− jr
p λ

kr
p . (G.22)

With this decomposition we can rewrite the exponent in (G.21) as

∑

p

∞
∑

r=1

1
r

(λr
p + Λ

r
p)esrTp

∣

∣

∣

∣
det

(

1− M−r
p

)

∣

∣

∣

∣

=

∑

p

∞
∑

j,k=0

∞
∑

r=1

1
r

(

|λp|Λ
− j
p λ

k
pesTp

)r
(λr

p+Λ
r
p) , (G.23)

which has the form of the expansion of a logarithm:

∑

p

∑

j,k

[

log
(

1− esTp|λp|Λ
1− j
p λ

k
p

)

+ log
(

1− esTp |λp|Λ
− j
p λ

1+k
p

)]

. (G.24)

The spectral determinant is therefore of the form,

F(s) = Fe(s)Fc(s) , (G.25)

where

Fe(s) =
∏

p

∞
∏

j,k=0

(

1− t( jk)
p Λp

)

, (G.26)

Fc(s) =
∏

p

∞
∏

j,k=0

(

1− t( jk)
p λp

)

, (G.27)

with

t( jk)
p = esTp|λp|

λk
p

Λ
j
p

. (G.28)
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The two factors present inF(s) correspond to the expanding and contracting
exponents. (Had we not neglected a term in (G.21), there would be a third factor
corresponding to the translation.)

For 2-d Hamiltonian volume preserving systems,λ = 1/Λ and (G.26) reduces
to

Fe(s) =
∏

p

∞
∏

k=0













1−
tp

Λ
k−1
p













k+1

, tp =
esTp

| Λp |
. (G.29)

With σp = Λp/|Λp|, the Hamiltonian zeta function (thej = k = 0 part of the
product (G.27)) is given by

1/ζdyn(s) =
∏

p

(

1− σpesTp
)

. (G.30)

This is a curious formula — the zeta function depends only on the return times,
not on the eigenvalues of the cycles. Furthermore, the identity,

Λ + 1/Λ
|(1− Λ)(1− 1/Λ)|

= σ +
2

|(1− Λ)(1− 1/Λ)|
,

when substituted into (G.25), leads to a relation between the vector and scalar
advection spectral determinants:

Fdyn(s) = F2
0(s)/ζdyn(s) . (G.31)

The spectral determinants in this equation are entire for hyperbolic (axiom A)
systems, since both of them correspond to multiplicative operators.

In the case of a flow governed by a map, we can adapt the formulas(G.29)
and (G.30) for the dynamo determinants by simply making the substitution

znp = esTp , (G.32)

wherenp is the integer order of the cycle. Then we find the spectral determinant
Fe(z) given by equation (G.29) but with

tp =
znp

|Λp|
(G.33)

for the weights, and

1/ζdyn(z) = Πp

(

1− σpznp
)

(G.34)
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for the zeta-function

Formapswith finite Markov partition the inverse zeta function (G.34) reduces
to a polynomial forz since curvature terms in the cycle expansion vanish. For
example, for maps with complete binary partition, and with the fixed point stabilities
of opposite signs, the cycle expansion reduces to

1/ζdyn(s) = 1. (G.35)

For suchmapsthe dynamo spectral determinant is simply the square of the scalar
advection spectral determinant, and therefore all its zeros are double. In other
words, for flows governed by such discrete maps, the fast dynamo rate equals the
scalar advection rate.

In contrast, for 3-dimensionalflows, the dynamo effect is distinct from the
scalar advection. For example, for flows with finite symbolicdynamical grammars,
(G.31) implies that the dynamo zeta function is a ratio of two entire determinants:

1/ζdyn(s) = Fdyn(s)/F
2
0(s) . (G.36)

This relation implies that forflowsthe zeta function has double poles at the zeros
of the scalar advection spectral determinant, with zeros ofthe dynamo spectral
determinant no longer coinciding with the zeros of the scalar advection spectral
determinant; Usually the leading zero of the dynamo spectral determinant is larger

[exercise G.2]
than the scalar advection rate, and the rate of decay of the magnetic field is no
longer governed by the scalar advection.

Commentary

Remark G.1 Dynamo zeta. The dynamo zeta (G.34) has been introduced by Aurell
and Gilbert [2] and reviewed in ref. [3]. Our exposition follows ref. [19].

Exercises

G.1. Stretching factor. Prove the multiplicative property
of the stretching factor (G.2). Why should we extend the
phase space with the tangent space?

G.2. Dynamo rate. Suppose that the fluid dynamics is
highly dissipative and can be well approximated by the

piecewise linear map

f (x) =

{

1+ ax if x < 0,
1− bx if x > 0, (G.37)

on an appropriate surface of section (a, b > 2). Suppose
also that the return time is constantTa for x < 0 andTb
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