Appendix G

Transport of vector fields

Man who says it cannot be done should not interrupt man
doing it.
—Sayings of Vattay Gabor

relaxation exponents (dynamo rates) of vector fields caxjpessed in terms

I N THIS APPENDIX W€ show that the multidimensional Lyapunov exponents and
of leading eigenvalues of appropriate evolution operators

G.1 Evolution operator for Lyapunov exponents

,
J Lyapunov exponents were introduced and computed fbrmiaps in sectl5.3.2
For higher-dimensional flows only the fundamental matriaes multiplicative,

not individual eigenvalues, and the construction of theluian operator for
evaluation of the Lyapunov spectra requires the extendi@valution equations

to the flow in the tangent space. We now develop the requlsitery.

Here we construct a multiplicative evolution operat@.4) whose spectral
determinant G.8) yields the leading Lyapunov exponent ofl@imensional flow
(and is entire for Axiom A flows).

The key idea is to extending the dynamical system by the tdrgpace of the
flow, suggested by the standard numerical methods for ei@tuaf Lyapunov
exponents: start atg with an initial infinitesimal tangent space vectg0) €
T My, and let the flow transport it along the trajectoqy) = f'(xo).

The dynamics in thex(n) € U x TUy space is governed by the system of
equations of variationsl]:

x=Vv(X), n=Dv(X)n.
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HereDv(X) is the derivative matrix of the flow. We write the solution as
X(t) = fi(%), n(t) = M'(%) - 70, (G.1)

with the tangent space vectgrtransported by the stability matrif(xg) =
oxX(t)/0xo.

As explained in sectl.1, the growth rate of this vector is multiplicative along
the trajectory and can be representedyéd = |n(t)|/In(0)u(t) whereu(t) is a
“unit” vector in some norm|.||. For asymptotic times and for almost every initial
(%0, n(0)), this factor converges to the leading eigenvalue ofitiearized stability
matrix of the flow.

We implement this multiplicative evaluation of stabiliigenvalues by adjoining
the d-dimensional transverse tangent space T My; n(X)v(X) = 0 to the @+1)-
dimensional dynamical evolution spage M c R4, In order to determine the
length of the vector; we introduce a homogeneoudtdrentiable scalar function
a(n) = lnll. It has the propertg(An) = |Alg(n) for any A. An example is the
projection of a vector to itdth component

n
n2

g = [ndl -

d

Any vectorn € T Uy can now be represented by the prodwet Au, whereu
is a “unit” vector in the sense that its norm||ig| = 1, and the factor

Al(Xo, Ug) = g(n(t)) = g(M'(Xo) - Uo) (G.2)

is the multiplicative “stretching” factor.

Unlike the leading eigenvalue of the Jacobian the stregchiotor is multiplicative
along the trajectory:

A" (%0, Ug) = A (X(1), u(t)) A'(Xo, Uo).
[exercise G.1]

Theu evolution constrained t&T g x, the space of unit transverse tangent vectors,
is given by rescaling ofG.1):

u’ =R(xu) = MY(X) - u. (G.3)

1
At(x,u)

Egs. G.1), (G.2) and (G.3) enable us to defineraultiplicative evolution operator
on the extended spatéx ETgy

(U’ — RY(x, u))

tres oo/, — ’ _ ft TAtlv IB—1
L(X U xu) = 6(x - () IAY (X, u)B-t

(G.4)
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whereg is a variable.

To evaluate the expectation value of |ad(x, u)| which is the Lyapunov exponent
we again have to take the proper derivative of the leadingre@ue of G.4).
In order to derive the trace formula for the operat@r4) we need to evaluate
TrL= fdde LY(u, x;u, X). Thefdxmtegral yields a weighted sum over prime
periodic orbitsp and their repetitions:

(Tp)
t
L = Zpl pZ—|det(1 Mr)| p.ro
8(u = R™" (xp, u))
A = d G5
o = [T ©.5)

whereMj, is the prime cyclep transverse stability matrix. As we shall see below,
Ap, is intrinsic to cyclep, and independent of any particular cycle poipt

We note next that if the trajectorff(x) is periodic with periodr, the tangent
space containd periodic solutions

eg(X(T +1t) =g(x(t), i=1,..d,

corresponding to thd unit eigenvectorse;, e, - - -, €4} of the transverse stability
matrix, with “stretching” factors®.2) given by its eigenvalues

Mp(X) - &(X) = Apia(x), i=1..d. (no summation o)

Thefdu integral in G.5) picks up contributions from these periodic solutions.
In order to compute the stability of thih eigendirection solution, it is convenient
to expand the variation around the eigenveean the stability matrix eigenbasis
6u = Y éup e . The variation of the mapd.3) at a complete periotd= T is then
given by

T M-su  M-g (89(94), , )
oR'(a) gM-&) g(M-e)? M-ou
_ Apk ag(e)
_ ;A_M(GK_Q % )5uk. (G.6)

The éu; component does not contribute to this sum sig@E + dug) = 1+ du
impliesdg(e)/du; = 1. Indeed, infinitesimal variationil must satisfy

ag(u)
ouy

d
gu+su)=guw=1 = Z(SU[ =0,
=1
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so the allowed variations are of form

3 ag(e)
6U—;(@—a o )ck, o < 1,

and in the neighborhood of thee eigenvector thq du integral can be expressed
as
f du = f ndq(.
9 ki

Inserting these variations into ttfedu integral we obtain

fdu 5(e +ou—R"(e) -oR"(a) +...)
g

= fﬂdqd((l—Ak/Ai)ck+...)

ki

-1 1
L1-Aw/AlT
and thef du trace G.5 becomes

1 1
r -1 _ AT r .
i=1 |Ap,i & ki 11 A|o,k/Ap,i |

(G.7)

The corresponding spectral determinant is obtained byreingethat the Laplace
transform of the tracel@.23 is a logarithmic derivative T£(s) = —dislog F(s)
of the spectral determinant:

esTpr
F(8, 9 = exp -; Tdet A=Y |Ap,r(/3) . (G.8)

This determinant is the central result of this section. &g correspond to the
eigenvalues of the evolution operatds.{), and can be evaluated by the cycle
expansion methods.

The leading zero of.8) is called “pressure” (or free energy)

P(B) = so(B). (G.9)

The average Lyapunov exponent is then given by the firstakivesof the pressure
atg = 1:

1=P (). (G.10)
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The simplest application 0of.8) is to 2-dimensional hyperbolic Hamiltonian
maps. The stability eigenvalues are relatedMay= 1/A» = A, and the spectral
determinant is given by

Z"r 1
F(B,2 = exp|- Ap,
8.2 p ;I’ll\rpl(l—l/l\rp)z pr(B)
Af 1-B Af -3
Apr(B) 7 | 5P (G.11)

+ .
1-1/AF  1-1/A%

The dynamics G.3) can be restricted to a unit eigenvector neighborhood
corresponding to the largest eigenvalue of the Jacobixa& this neighborhood
the largest eigenvalue of the Jacobi matrix is the only fix@dtpand the spectral
determinant obtained by keeping only the largest termtfyesum in G.7) is also
entire.

In case of maps it is practical to introduce the logarithmhaf keading zero
and to call it “pressure”

P(B) = log zy(p). (G.12)

The average of the Lyapunov exponent of the map is then giyethd first
derivative of the pressure At= 1.

1=P(1). (G.13)

By factorizing the determinant3(11) into products of zeta functions we can
conclude that the leading zero of the.{) can also be recovered from the leading
zeta function

Np

r
rAp

. (G.14)

1/20(8.2) = exp[— D

p.r
This zeta function plays a key role in thermodynamic apfilices as we will will

see in Chapte?2.

G.2 Advection of vector fields by chaotic flows

Fluid motions can move embedded vector fields around. An plaisithe magnetic
field of the Sun which is “frozen” in the fluid motion. A pasdiyevolving vector
field V is governed by an equation of the form

OV +u-VV-V.Vu=0, (G.15)
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whereu(x, t) represents the velocity field of the fluid. The strength ef ector
field can grow or decay during its time evolution. The amgdificn of the vector
field in such a process is called the "dynanfteet.” In a strongly chaotic fluid
motion we can characterize the asymptotic behavior of the fieh an exponent

V(x 1) ~ V(x)et, (G.16)

wherev is called the fast dynamo rate. The goal of this section ishtawsthat
periodic orbit theory can be developed for such a highly triwial system as
well.

We can write the solution of3.15 formally, as shown by Cauchy. Lg(t, a)
be the position of the fluid particle that was at the paimttt = 0. Then the field
evolves according to

V(x.1) = J@V(a0) , (G.17)

whereJ(a,t) = d(x)/d(a) is the fundamental matrix of the transformation that
moves the fluid into itselk = x(a, t).

We writex = ft(a), wheref! is the flow that maps the initial positions of the
fluid particles into their positions at tinte Its inversea = f~'(x), maps particles
at timet and positiorx back to their initial positions. Then we can writ®.(L7)

Vi(x,t):z f d®a £jj(x.a)V;j(@.0) . (G.18)
j

with
_ “trpp O
Li(x.a) =s(a— f t(x))a—aj . (G.19)

For large times, theffect of £! is dominated by its leading eigenvalu! with
Revo) > Regvj), 1 = 1,2, 3,.... In this way the transfer operator furnishes the fast
dynamo ratey := vg.

The trace of the transfer operator is the sum over all periodiit contributions,
with each cycle weighted by its intrinsic stability

Trot = Z T Z |det

6(t ~ITp). (G.20)

We can construct the corresponding spectral determinaungiss

1 tr M,

— = M| | (G.21)
r|o|et1 M;')

F(s) = exp|— Z i
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Note that in this formuli we have omitted a term arising frdra Jacobian transformation
along the orbit which would give * tr M in the numerator rather than just

the trace ofMj,. Since the extra term corresponds to advection along thig orb
and this does not evolve the magnetic field, we have chosegnure it. It

is also interesting to note that the negative powers of tkehlan occur in the
denominator, since we have! in (G.19.

In order to simplifyF(s), we factor the denominator cycle stability determinants
into products of expanding and contracting eigenvaluesaRBadimensional fluid
flow with cycles possessing one expanding eigenvalygwith [Ap| > 1), and
one contracting eigenvalug, (with |1p| < 1) the determinant may be expanded
as follows:

(- AL - N = 2 ZZA e (G.22)

=0 k=0

det(1 - m57)[ " =

With this decomposition we can rewrite the exponentGrn2(l) as

1 (Af +A! )eSpr *

PV

p jk=0r=1

“II—‘

(1plA R 25eT) (4AT) . (G.23)

ZZ

which has the form of the expansion of a logarithm:

ZZ[Iog (1- e Plaplay k) +log (1 - eTPlapAG 25H)] . (G.24)

The spectral determinant is therefore of the form,

F(s) = Fe(9Fc(9) (G.25)
where
Fe(9 = | ﬁ (1-t9A,) . (G.26)
P jk=0

F9 = | ﬁ - 1§91,). (G.27)
p

with
. Ak
1R = eSTop =2 . (G.28)
P P~
Ap
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The two factors present ifr(s) correspond to the expanding and contracting
exponents. (Had we not neglected a termGn21), there would be a third factor
corresponding to the translation.)

For 2-d Hamiltonian volume preserving systemss 1/A and G.26) reduces
to

00 k+1
tp esTr
Fe(S):l—[n(l——Alé_l] e (6.29
p

k=0

With op = Ap/|Ayl, the Hamiltonian zeta function (the = k = 0 part of the
product G.27) is given by

Yéay() = | [ (1- ope’™) . (G.30)
p

This is a curious formula — the zeta function depends onlyhenreturn times,
not on the eigenvalues of the cycles. Furthermore, theiiglent

AYYA 2
(A-MA-/A) IQ-ANA-2/A)

when substituted intod.25, leads to a relation between the vector and scalar
advection spectral determinants:

Fayn(S) = F5(9)/Zayn(9) - (G.31)

The spectral determinants in this equation are entire fpetyolic (axiom A)
systems, since both of them correspond to multiplicativerators.

In the case of a flow governed by a map, we can adapt the forn(Glas)
and G.30 for the dynamo determinants by simply making the subsitut

=T (G.32)

wheren,, is the integer order of the cycle. Then we find the spectrardahant
Fe(2) given by equation®.29 but with

Zp
tp=— G.33
for the weights, and
1/Zay(@) = M (1 - op2™) (G.34)
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for the zeta-function

Formapswith finite Markov partition the inverse zeta functio®.34) reduces
to a polynomial forz since curvature terms in the cycle expansion vanish. For
example, for maps with complete binary partition, and whiga fixed point stabilities
of opposite signs, the cycle expansion reduces to

1/Zayn(S) = 1. (G.35)

For suchmapsthe dynamo spectral determinant is simply the square ofdhlais
advection spectral determinant, and therefore all itsszare double. In other
words, for flows governed by such discrete maps, the fastrdgrrate equals the
scalar advection rate.

In contrast, for 3-dimensiondlows the dynamo fiect is distinct from the
scalar advection. For example, for flows with finite symbdijmamical grammars,
(G.3) implies that the dynamo zeta function is a ratio of two entieterminants:

1/Zayn(S) = Fayn(9)/F3(9) . (G.36)

This relation implies that foflowsthe zeta function has double poles at the zeros
of the scalar advection spectral determinant, with zerohefdynamo spectral
determinant no longer coinciding with the zeros of the scativection spectral
determinant; Usually the leading zero of the dynamo splesétarminant is larger
than the scalar advection rate, and the rate of decay of tiymetia field is no
longer governed by the scalar advection.

[exercise G.2]

Commentary

Remark G.1 Dynamo zeta. The dynamo zeta®.34) has been introduced by Aurell
and Gilbert P] and reviewed in ref.3]. Our exposition follows ref.19].

Exercises
G.1. Stretching factor.  Prove the multiplicative property piecewise linear map
of the stretching factor&.2). Why should we extend the .
hase space with the tangent space? _ ) 1+ax if x<0,
p p 9 p f(x) = { 1-bx if x>0 (G.37)
G.2. Dynamo rate. Suppose that the fluid dynamics is on an appropriate surface of secti@l{ > 2). Suppose

highly dissipative and can be well approximated by the also that the return time is constangfor x < 0 andTy
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