Chapter 31

WK B quantization

HE WAVE FUNCTION for a particle of energ¥ moving in a constant potenti&f
I is

U = AP (31.1)

with a constant amplitudd, and constant wavelength= 2r/k, k = p/h,
andp = + v2m(E - V) is the momentum. Here we generalize this solution
to the case where the potential varies slowly over many eagghs. This

semiclassical (or WKB) approximate solution of the Sclmgdr equation fails at
classical turning points, configuration space points witeegarticle momentum
vanishes. In such neighborhoods, where the semiclasgpgabxmation fails,
one needs to solve locally the exact quantum problem, irréod®mpute connection
codficients which patch up semiclassical segments into an ajppate global
wave function.

Two lessons follow. First, semiclassical methods can bg pewerful -
classical mechanics computations yield suprisingly ateuestimates of quantal
spectra, without solving the Schrodinger equation. Seéceemiclassical quantization
does depend on a purely wave-mechanical phenomena, theenblagldition of
phases accrued by all fixed energy phase space trajectbaesdnnect pairs
of coordinate points, and the topological phase loss atyeftening point, a
topological property of the classical flow that plays no lialelassical mechanics.

311 WKB ansatz
Consider a time-independent Schrodinger equation in tladgimension:

hz " _
— o (@ + V(@y(a) = Bu(9), (31.2)
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Figure 31.1: A 1-dimensional potential, location of ,’(1
the two turning points at fixed enerdggy

with potential V(g) growing stficiently fast asq — oo so that the classical
particle motion is confined for anf. Define the local momenturp(g) and the
local wavenumbek(q) by

p(a) = +2m(E - V(9)),  p(a) = 7k(a) . (31.3)
The variable wavenumber form of the Schrodinger equation
W + K@y =0 (31.4)

sugests that the wave function be written/as AeiS, A andS real functions of
g. Substitution yields two equations, one for the real aneiofbr the imaginary
part:

"

Sy = p*+r*— (31.5)
A
7 !N _ l d VA
S"A+2S'A = Adq(SA)_O. (31.6)

The Wentzel-Kramers-BrillouifWKB) or semiclassical approximation consists
of dropping thei? term in 31.5. Recalling thatp = 7k, this amounts to assuming
thatk? > AT”, which in turn implies that the phase of the wave functiorhianging
much faster than its overall amplitude. So the WKB approxiomecan interpreted
either as a short wavelengtiigh frequency approximation to a wave-mechanical
problem, or as the semiclassicalx 1 approximation to quantum mechanics.

Settingsi = 0 and integrating31.5 we obtain the phase increment of a wave
function initially atq, at energye

q
S(0. ¢, E) = f dor’p(d”) (3L.7)
q/

This integral over a particle trajectory of constant engogled theaction, will
play a key role in all that follows. The integration &1(.6) is even easier

C

A(Q) = T
Ip(Q)I2

C = Ip(@)IZu(d), (31.8)
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Figure 31.2: A 1-dof phase space trajectory of a (@ f')
]

particle moving in a bound potential.

where the integration consta@tis fixed by the value of the wave function at the
initial point g’. The WKB (or semiclassical) ansatz wave function is given by

U, o . E) = Lle%s(q’q'f). (31.9)
Ip(apl2

In what follows we shall suppress dependence on the inibalt@nd energy in
such formulas,dq, q', E) — (q).

The WKB ansatz generalizes the free motion wave funct&inl, with the
probability density|A(g)[? for finding a particle atj now inversely proportional
to the velocity at that point, and the phaggp replaced by; [dqp(q), the
integrated action along the trajectory. This is fine, exapany turning point
o, figure31.1, where all energy is potential, and

p(@—0 as q- qo, (31.10)

so that the assumption thiet > AT” fails. What can one do in this case?

For the task at hand, a simple physical picture, due to Maslogs the job.
In the g coordinate, the turning points are defined by the zero kinetiergy
condition (see figure31.1), and the motion appears singular. This is not so in
the full phase space: the trajectory in a smooth confiningriedsional potential
is always a smooth loop, with the “special” role of the tughpointsqy, gr seen
to be an artifact of a particular choice of thg ) coordinate frame. Maslov’s
idea was to proceed from the initial poinf (p’) to a point @a, pa) preceeding the
turning point in they(q) representation, then switch to the momentum representati

— 1 f i
= ——= | dge i %Py(q), 31.11
¥(p) N v (a) ( )
continue from @a, pa) to (gs, ps), switch back to the coordinate representation,
Q) = —— f dpet® y(p), (31.12)
V2rh

and so on.
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CHAPTER 31. WKB QUANTIZATION 515

The only rub is that one usually cannot evaluate these wamsfexactly. But,
as the WKB wave function3(L.9) is approximate anyway, it fices to estimate
these transforms to leading order finaccuracy. This is accomplished by the
method of stationary phase.

31.2 Method of stationary phase

All“semiclassical” approximations are based on saddlaefmaluations of integrals
of the type

| = f dxAX) €M | x d(X) R, (31.13)

wheresis assumed to be a large, real parameter@(lis a real-valued function.
In our applicationss = 1/7 will always be assumed large.

For larges, the phase oscillates rapidly and “averages to zero” evesysy
except at thextremal points @’(%p) = 0. The method of approximating an integral
by its values at extremal points is called thethod of stationary phase. Consider
first the case of a 1-dimensional integral, and exp@ry + 6X) aroundxg to
second order idx,

| = f dx A(x) €SP0+ 79" (000X +..) (31.14)

Assume (for time being) thab”’ (xp) # O, with either sign, sg@”’] = @ /|®"| =
+1. If in the neighborhood ok the amplitudeA(x) varies slowly over many
oscillations of the exponential function, we may retain kb&ding term in the
Taylor expansion of the amplitude, and approximate thegialeup to quadratic
terms in the phase by

| ~ A(xo)g200) f dx e2is?" () (x-x0) (31.15)

Using theFresndl integral formula fexercise 31.1]

1 foo X2 - iz a
S dxe za = \/E: |a]l/ze'4la\ (31.16)
Vor J-w
we obtain
V2 oo
|zAX0’ ’ g@sP0)xlg 31.17
00) | 557 () (3147

wherez+ corresponds to the positjireegative sign osd” (o).
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31.3 WKB guantization

We can now evaluate the Fourier transfori®s.(), (31.12 to the same order in
h as the WKB wave function using the stationary phase method,

eiﬁ (S(a)-ap)

Fl;sc(p)
V2rh f lp(q)l

i(s
Varh  |p(ar)|2

Q

whereq® is given implicitly by the stationary phase condition
0=S(a)-p=pd)-p

and the sign ofS”(q") = p’(q") determines the phase of the Fresnel integral
(31.19

Teclp) = ——C—_eh(S@)-apl+ fsans (@) (31.19)
Ip(a*) P’ (a)I2
As we continue from da, pa) to (gs, ps), nothing problematic occurrs p(q*)

is finite, and so is the acceleratign(q*). Otherwise, the trajectory would take
infinitely long to get across. We recognize the exponentatdégendre transform

S(p) = S(a(p) - a(P)p

which can be used to expresses everything in terms b tregiable,

dpdq(p)

‘o d
T =0, GA=1= g gp = APP@). (31.20)

As the classical trajectory crossas the weight in 81.19,

d
d_qu(QL) = 2p(au)p'(aL) = —2mV'(a) (31.21)

is finite, andS”(q*) = p'(q°) < 0 for any point in the lower left quadrant,
including @a, pa). Hence, the phase loss iB81(19 is —7. To go back from
the p to theq representation, just turn figuBd.290° anticlockwise. Everything
is the same if you replacey,(p) — (—p,q); so, without much ado we get the
semiclassical wave function at the poigg(pg),

er (S(P)+ap)-% _ C
Vse(O) = ————— Jse(p’) = — et S@% (31.22)
la*(p*)I2 Ip(a)!?
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Figure 31.3: Sy(E), the action of a periodic orbjp at -
energyE, equals the area in the phase space traced « Jpa - i% dg
by the 1-dof trajectory. S e

The extralp’'(g*)*? weight in 31.19 is cancelled by théy (p*)|*/? term, by the
Legendre relation31.20.

The message is that going through a smooth potential tupoing the WKB
wave function phase slips by7. This is equally true for the right and the left
turning points, as can be seen by rotating figdte?by 18, and flipping coordinates
(a,p) — (-9,—p). While a turning point is not an invariant concept (for a
suficiently short trajectory segment, it can be undone by’ad®), for a complete
period @, p) = (¢, p’) the total phase slip is alway? - /2, as a loop always has
m = 2 turning points.

TheWKB quantization condition follows by demanding that the wave function
computed after a complete period be single-valued. Witimtmalization 81.8),
we obtain

o) = ot = [BD dtfpasyq).

The prefactor is 1 by the periodic orbit conditign= ¢, so the phase must be a
multiple of 2r,

: 95 pla)da = 2x(n+ ) (31.23)

wherem is the number of turning points along the trajectory - forstitdof
problem,m = 2.

The action integral in31.23 is the area (see figurgl.3 enclosed by the
classical phase space loop of figu#.2 and the quantization condition says
that eigenenergies correspond to loops whose action istegeinmultiple of the
unit quantum of action, Planck’s constantThe extra topological phase, which,
although it had been discovered many times in centuries et to wait for its
most recent quantum chaotic (re)birth until the 1970’s. ditests derivation in a
noninvariant coordinate frame, the final result involvely@anonically invariant
classical quantities, the periodic orbit acti®nand the topological indem.
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Figure 31.4: Airy function Ai(q). S g y2 4

31.3.1 Harmonic oscillator quantization

Let us check the WKB quantization for one case (the only das&®se quantum
mechanics we fully understand: the harmonic oscillator

E= %n(p“(rrwq)z) .

The loop in figure31.2is now a circle in therfwq, p) plane, the action is its area
S = 2rE/w, and the spectrum in the WKB approximation

En = hiw(n + 1/2) (31.24)

turns out to be thexact harmonic oscillator spectrum. The stationary phase
condition B1.18 keepsV(q) accurate to ordey?, which in this case is the whole
answer (but we were simply lucky, really). For many 1-doflpeons the WKB
spectrum turns out to be very accurate all the way down to tbengl state.
Surprisingly accurate, if one interprets dropping teerm in (31.5 as a short
wavelength approximation.

31.4 Beyond the quadratic saddle point

We showed, with a bit of Fresn®aslov voodoo, that in a smoothly varying
potential the phase of the WKB wave function slips by/& for each turning

point. Thisz/2 came from aVi in the Fresnel integral3(L.16, one such factor

for every time we switched representation from the confijomaspace to the

momentum space, or back. Good, but what does this mean?

The stationary phase approximatidil (14 fails wheneverd”(x) = 0, or, in
our the WKB ansatz31.18, whenever the momentumpf(q) = S”’(q) vanishes.
In that case we have to go beyond the quadratic approximéibi§ to the first
nonvanishing term in the Taylor expansion of the expondnb’[(xg) # 0, then

H 0 F ! (x= )3
| ~ A(xo)e 00 f dx g (0= (31.25)
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CHAPTER 31. WKB QUANTIZATION 519
Airy functions can be represented by integrals of the form

ﬁ).

+00 )
Ai(x):% f dy ™7 (31.26)

Derivations of the WKB quantization condition given in sfand quantum
mechanics textbooks rely on expanding the potential clodleet turning point

V() = V(o) + (@-qo)V'(qo) + - - -,

solving the Airy equation

Y=y, (31.27)

and matching the oscillatory and the exponentially deaayfarbidden” region
wave function pieces by means of ttKB connection formulas. That requires
staring at Airy functions and learning about their asymiptot a challenge that we
will have to eventually overcome, in order to incorporatéfrection phenomena
into semiclassical quantization.

2) what does the wave function look like?
3) generically useful when Gaussian approximations fail

The physical origin of the topological phase is illustrabsdthe shape of the
Airy function, figure31.4 For a potential with a finite slop¥’(q) the wave
function pentrates into the forbidden region, and accoresda bit more of a
stationary wavelength then what one would expect from thesital trajectory
alone. For infinite walls (i.e., billiards) aftierent argument applies: the wave
function must vanish at the wall, and the phase slip due t@awsar reflection is
-, rather than-n/2.

Résum é

The WKB ansatz wave function for 1-degree of freedom probldails at the
turning points of the classical trajectory. While in theepresentation the WKB
ansatz a turning point is singular, along fheélirection the classical trajectory in
the same neighborhood is smooth, as for any smooth boundtj@btite classical
motion is topologically a circle around the origin in the ) space. The simplest
way to deal with such singularities is as follows; follow ttlassical trajectory in
g-space until the WKB approximation fails close to the tughpoint; then insert
f dplp){p| and follow the classical trajectory in th@space until you encounter
the nextp-space turning point; go back to tlgespace representation, an so on.
Each matching involves a Fresnel integral, yielding aneextf/# phase shift, for
a total ofe™* phase shift for a full period of a semiclassical particle imgvin a
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soft potential. The condition that the wave-function begrvalued then leads to
the 1-dimensional WKB quantization, and its lucky coudire Bohr-Sommerfeld
quantization.

Alternatively, one can linearize the potential around thieihg pointa, V(q) =
V(@+(g-a)V’(a)+- - -, and solve the quantum mechanical constant linear pokentia
V(q) = gF problem exactly, in terms of an Airy function. An approxireatvave
function is then patched together from an Airy function atfegéurning point,
and the WKB ansatz wave-function segments inbetween vidliB connection
formulas. The single-valuedness condition again yieléslttdimensional WKB
quantization. This a bit more work than tracking the cleadi@jectory in the full
phase space, but it gives us a better feeling for shapes ofuuaigenfunctions,
and exemplifies the general strategy for dealing with otlegudarities, such
as wedges, bifurcation points, creeping and tunnelingchptiagether the WKB
segments by means of exact QM solutions to local approximsitto singular
points.

Commentary

Remark 31.1 Airy function. The stationary phase approximation is all that is needed
for the semiclassical approximation, with the proviso hat (32.36 has no zero eigenvalues.
The zero eigenvalue case would require going beyond theszansaddle-point approximation,
which typically leads to approximations of the integral$erms of Airy functions 10].

[exercise 31.4]

Remark 31.2 Bohr-Sommerfeld quantization. Bohr-Sommerfeld quantization condition
was the key result of the old quantum theory, in which the tedectrajectories were
purely classical. They were lucky - the symmetries of thel&eproblem work out in
such a way that the total topological index= 4 amount &ectively to numbering the
energy levels starting witlh = 1. They were unlucky - because the hydrogen=

4 masked the topological index, they could never get theuhebpectrum right - the
semiclassical calculation had to wait for until 1980, whepold and Percivab] added

the topological indices.

Exercises

i . . .
31.2. Fresnel integral. Derive the Fresnel integral
31.1. WKB ansatz. J Try to show that no other E—

ansatz other thar8@.1) gives a meaningful definition of 1 o 2 Vi Y2z a
the momentum in the — 0 limit. or j:w dxe 2 = Via=|a["“€Hq .

31.3. Sterling formula for n!. Compute an approximate
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