Chapter 32

Semiclassical evolution

William Rowan Hamilton was born in 1805. At three
he could read English; by four he began to read Latin,
Greek and Hebrew, by ten he read Sanskrit, Persian,
Arabic, Chaldee, Syrian and sundry Indian dialects. At
age seventeen he began to think about optics, and worked
out his great principle of “Characteristic Function.”

— Turnbull, Lives of Mathematicians

(G. Vattay, G. Tanner and P. Cvitanovi€)

where the de Broglie wavelength ~ 7/p of a particle with momentum

p is much shorter than the length scales across which the tiadtehthe
system changes significantly. In the short wavelength ameation the particle
is a point-like object bouncingfbpotential walls, the same way it does in the
classical mechanics. The novelty of quantum mechaniceistbrference of the
point-like particle with other versions of itself travediralong diferent classical
trajectories, a feat impossible in classical mechanics. e Stiort wavelength —
or semiclassical — formalism is developed by formally tgkihe limitz — 0 in
guantum mechanics in such a way that quantum quantities gfeetoclassical
counterparts.

SMICLASSICAL APPROXIMATIONS tO quantum mechanics are valid in the regime

[remark 32.1]

32.1 Hamilton-Jacobi theory

We saw in chapteB1that for a 1-dof particle moving in a slowly varying poteihtia
it makes sense to generalize the free particle wave fund¢Bdrl) to a wave
function

w(a.t) = A(g, eRevn, (32.1)

with slowly varying (real) amplitudé\(q, t) and rapidly varying (real) pha$¥q, t).

its phase and magnitude. The time evolution of the phasetenthagnitude of _
[exercise 31.1]
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CHAPTER 32. SEMICLASSICAL EVOLUTION 523
y follows from the Schrodinger equatioB(d.1)

iha+h2 & V() |y(g,t) =0 (32.2)

at  2mac? D)pat) =0 '
AssumeA # 0, and separate out the real and the imaginary parts. We get tw
equations: The real part governs the time evolution of tresph

AR 1 (6R)? 72 1 &2
E+%(a_q) V@-Lr P Ao, (32.3)

and the imaginary part the time evolution of the amplitude .
[exercise 32.6]

[exercise 32.7]
A 1 0AOR 1 R

= —A— = 32.4
ot m £ 9q; 00 " om oG (32.4)

[exercise 32.8]
In this way a linear PDE for a complex wave function is coreéiinto a set of
coupled non-linear PDE’s for real-valued functioR&nd A. The coupling term
in (32.3 is, however, of ordek? and thus small in the semiclassical limit- 0.

Now we generalize th&\entzel-Kramers-Brillouin (WKB) ansatz for 1-dof
dynamics to the Van Vleclnsatz in arbitrary dimension: we assume the magnitude
A(g, t) varies slowly compared to the phalf, t)/7, so we drop thé-dependent
term. In this approximation the pha®gg, t) and the corresponding “momentum
field” %(q, t) can be determined from the amplitude independent equation

OR OR
R H (q, a_q) -0, (32.5)

In classical mechanics this equation is known asHiaenilton-Jacobi equation.
We will refer to this step (as well as all leading order7irapproximations to
follow) as thesemiclassical approximation to wave mechanics, and from now on
work only within this approximation.

32.1.1 Hamilton’s equations

We now solve the nonlinear partialfi#rential equation32.5 in a way the 17
year old Hamilton might have solved it. The main step is tlep $¢ading from
the nonlinear PDE32.9 to Hamilton's ODEs 82.10. If you already understand
the Hamilton-Jacobi theory, you can safely skip this sectio

W fast track:
sect. 32.1.3, p. 527
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CHAPTER 32. SEMICLASSICAL EVOLUTION 524

R(@.t) R(@.t)

Figure 32.1: (a) A phaseR(qg,t) plotted as a
function of the positiorg for two infinitesimally ;
close times. (b) The phad¥q,t) transported by 9 %+ dd a
a swarm of “particles”; The Hamilton’s equations

(32.10 constructR(q, t) by transportingyo — q(t)

and the slope oR(qo, to), thatispy — p(t). (@

The wave equation30.1) describes how the wave functian evolves with
time, and if you think ofy as an (infinite dimensional) vector, positigrplays a
role of an index. In one spatial dimension the phRg#otted as a function of the
positionq for two different times looks something like figug2.1(a): The phase
R(q, tg) deforms smoothly with time into the phaRég, t) at timet. Hamilton’s
idea was to let a swarm of particles transgeidnd its slopeR/dq at q at initial
timet = tg to a correspondingr(qg, t) and its slope at timég figure 32.1(b). For
notational convenience, define

R .
pi=pi(at)=—, i=12...,D. (32.6)
a4

We saw earlier tha32.3 reduces in the semiclassical approximation to the Hamilto
Jacobi equation32.5. To make life simple, we shall assume throughout this
chapter that the Hamilton’s functidd(g, p) does not depend explicitly on tire

i.e., the energy is conserved.

To start with, we also assume that the functiefg, t) is smooth and well
defined for everyg at the initial timet. This is true for sticiently short times;
as we will see laterR develops folds and becomes multi-valued @sogresses.
Consider now the variation of the functid®(g,t) with respect to independent
infinitesimal variations of the time and space coordindtesddq, figure32.1(a)

oR oR

Dividing through bydt and substituting 32.5 we obtain the total derivative of
R(q, t) with respect to timalong the as yet arbitrary direction q, that is,

drR . _
E(q, g.t)=-H(@,p)+q-p. (32.8)

Note that the “momentump = 9dR/dq is a well defined function ofj andt.
In order to integratdR(g,t) with the help of 82.8 we also need to know how
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CHAPTER 32. SEMICLASSICAL EVOLUTION 525

p = 0R/0dqg changes along. Varying p with respect to independent infinitesimal
variationsdt anddqg and substituting the Hamilton-Jacobi equati@a.f) yields

dt+a—pdq.

OR_0R &R (0H 4Hap
aq

a0 " e " o™ "\aq “ap g

Note thatH(qg, p) depends omg also throughp(g, t) = dR/dq, hence thég—'; term
in the above equation. Dividing again throughdiywe get the time derivative of
0R/0q, that is,

. OH (. oH\ap
p(q,q,t)+a—q—(q ap)aq' (32.9)

Time variation ofp depends not only on the yet unknowgrbut also on the second
derivatives oR with respect ta with yet unknown time dependence. However, if
we choose ¢ (which was arbitrary, so far) such that the right hand sidbefbove
equation vanishes, we can calculate the funci@pt) along a specific trajectory
(q(t), p(t)) given by integrating the ordinary fiierential equations

q= oH(a, IO)’ b= _0H(@.p) (32.10)

ap aq

with initial conditions

/ / 6R /
ato) =0a’,  pto) =P’ = a_q(q o). (32.11)

[section 7.1]
We recognize 32.10 as Hamilton’s equations of motion of classical mechanics.
The miracle happens in the step leading fré&8.6 to (32.9 — if you missed it,
you have missed the point. Hamilton derived his equatiomsecoplating optics
- it took him three more years to realize that all of Newtonilimamics can be
profitably recast in this form.

g is no longer an independent function, and the phaggt) can now be
computed by integrating equatioB2.8) along the trajectoryd(t), p(t))

R(d'. to) + R(a.t; 4, to)
t
ft dr [q(7) - p(r) = H(Q(7), p(7))] . (32.12)

R(a. t)
R(,t; ', to)

with the initial conditions 82.117). In this way the Hamilton-Jacobpartial differential
equation 82.3 is solved by integrating a set ofdinary differential equations,
Hamilton’s equations. In order to determiRég, t) for arbitraryq andt we have
to find aqg’ such that the trajectory starting iq’(p’ = dqR(d', to)) reachegy in
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CHAPTER 32. SEMICLASSICAL EVOLUTION 526

timet and then computR along this trajectory, see figuB2.1(b). The integrand
of (32.12 is known as thé.agrangian,

L(@.0.t)=q- p-H(q, p.t). (32.13)

A variational principle lurks here, but we shall not make iméicss about it as yet.

Throughout this chapter we assume that the energy is catseand that the
only time dependence &f(q, p) is through §(7), p(r)), so the value oR(q, t; ', to)
does not depend dg, but only on the elapsed tinme- tg. To simplify notation we
will setty = 0 and write

R(a.q,t) = R(0.t;d,0).

The initial momentum of the particle must coincide with thiial momentum of
the trajectory connecting andq:

d
o

/ a / /
P = q,R(q,O):— R(a.d',1). (32.14)

0

[exercise 32.5]

The functionR(q, ¢, t) is known asHamilton’s principal function. fexercise 32.9]

To summarize: Hamilton’s achievement was to trade in the iHamJacobi
partial differential equation32.5 describing the evolution of a wave front for a
finite number ofordinary differential equations of motion, with the initial phase
R(g, 0) incremented by the integrédZ.12 evaluated along the phase space trajectory

(9(). p(2)).-

32.1.2 Action

Before proceeding, we note in passing a few facts about Hamain dynamics
that will be needed for the construction of semiclassicaeais functions. If the
energy is conserved, thﬁH(q, p)dr integral in 32.12 is simply Et. The first
term, or theaction

t q
S4.d.B)= [ dra) o = [ da-p (32.15)

is integrated along a trajectory frogh to q with a fixed energyE. By (32.12) the
action is a Legendre transform of Hamilton’s principal ftioe

S(a.9',E) =R(a.d',t) + Et. (32.16)
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CHAPTER 32. SEMICLASSICAL EVOLUTION 527

The time of flightt along the trajectory connectirgg — q with fixed energyk is
given by

0 , B

The way to think about the formul&2.16 for action is that the time of flight is a
function of the energyt, = t(g, ', E). The left hand side is explicitly a function of
E; the right hand side is an implicit function & through energy dependence of
the flight timet.

Going in the opposite direction, the energy of a trajectery= E(q,q’,1t)
connectingg’ — g with a given time of flightt is given by the derivative of
Hamilton’s principal function

9 ,

and the second variations BfandS are related in the standard way of Legendre
transforms:

2 62

0
—R(q, ',t P
ot? @4 )8E2

S(g,q,E) = -1. (32.19)

A geometric visualization of what the phase evolution lobks is very helpful

in understanding the origin of topological indices to beadticed in what follows.
Given an initial phas®(q, to), the gradientyR defines @-dimensional_agrangian
manifold (g, p = 9qR(q)) in the full 2d dimensional phase space, p). The

defining property of this manifold is that any contractibb®p v in it has zero
action,

Ozsgdq-p,
Y

a fact that follows from the definition gb as a gradient, and the Stokes theorem.
Hamilton’s equations of motion preserve this property arabrma Lagrangian
manifold into a Lagrangian manifold at a later tinte.

[section 32.1.4]

Returning back to the main line of our argument: so far we lttermined
the wave function phasB(qg,t). Next we show that the velocity field given by
the Hamilton’s equations together with the continuity doradetermines the
amplitude of the wave function.

32.1.3 Density evolution

To obtain the full solution of the Schrodinger equati@d.(), we also have to
integrate 82.4).

p(a.t) := A% = gy
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CHAPTER 32. SEMICLASSICAL EVOLUTION 528

plays the role of a density. To the leding orderzinthe gradient oR may be
interpreted as the semiclassical momentum density

oR

D L, 0A OR
WO (i@ ) = ~inAZC + P

Evaluated along the trajectorg(f), p(t)), the amplitude equatior3®.4) is equivalent
to the continuity equationl@.39 after multiplying 82.4) by 2A, that is

— + —(pvj) = 0. (32.20)

Here,vi = g; = pi/mdenotes a velocity field, which is in turn determined by the
gradient ofR(q, t), or theLagrangian manifold (q(t), p(t) = d4R(q, t)),

10
- ZZ_R(q.t).
v mag (9, 1)

As we already know how to solve the Hamilton-Jacobi equatikihb), we can
also solve for the density evolution as follows:

The densityp(q) can be visualized as the density of a configuration space
flow q(t) of a swarm of hypothetical particles; the trajectorigy are solutions
of Hamilton’s equations with initial conditions given bg(0) = ', p(0) = p’ =
R, 0)).

If we take a small configuration space voludf&g around some poirg at time
t, then the number of particles in itjgqg, t)d°dq. They started initially in a small
volumedPq around the pointy of the configuration space. For the moment, we
assume that there is only one solution, the case of sevdra pdl be considered
below. The number of particles at tinhén the volume is the same as the number
of particles in the initial volume dt= 0,

p(a(t),t)d°q = p(d’, 0)d°q
see figure32.2 The ratio of the initial and the final volumes can be exprésse

oq

% o((,0). (32.21)

p(a(t).t) = \det

[section 14.2]
As we know how to compute trajectorieg(t), p(t)), we know how to compute
this Jacobian and, bydR.217), the density(q(t), t) at timet.
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CHAPTER 32. SEMICLASSICAL EVOLUTION 529

3<a)da'= ¢lgddg

Figure 32.2: Density evolution of an initial surface
(@.p = 94R(Q,0) into (Q(t), p(t)) surface timet
later, sketched in 1 dimension. While the number ¢
trajectories and the phase space Liouville volume a
conserved, the density of trajectories projected on tl
g coordinate varies; trajectories which startedlin at
time zero end up in the intervdlt.

dy dy
32.1.4 Semiclassical wave function

Now we have all ingredients to write down the semiclassicavevfunction at
time t. Consider first the case when our initial wave function carwbéen in

terms of single-valued functiom®q’, 0) andR(q’, 0). For suficiently short times,
R(g,t) will remain a single-valued function af, and everyd®q configuration
space volume element keeps its orientation. The evolvee faction is in the
semiclassical approximation then given by

Ag, t)eR@/Mn — /det‘z_‘;' A(q, 0)g R -O+R@a-O)/n
detﬂ eiR(qu’at)/h w(q' 0) .
oq ’

As the time progresses the Lagrangian manif®&(q,t) can develop folds, so
for longer times the value of the phaRfg, t) is not necessarily unique; in general
more than one trajectory will connect poitandd’ with different phaseR(q, d', t)
accumulated along these paths, see figzr&

We thus expect in general a collection offdrent trajectories frony’ to
g which we will index by j, with different phase incremenj(q,q,t). The
hypothetical particles of the density flow at a given confagian space point can
move with diferent momentg = d4R;(q,t). This is not an ambiguity, since in
the full (g, p) phase space each particle follows its own trajectory withigue
momentum.

Whenever the Lagrangian manifold develops a fold, the ten$ithe phase
space trajectories in the fold projected on the configunatimordinates diverges.
As illustrated in figure32.3 when the Lagrangian manifold develops a fold at
g = qi; the volume elementlq; in the neighborhood of the folding point is
proportional to\/d_q’ instead ofdq’. The Jacobiafq’/dqdiverges like 1+/q; — q(t)
when computed along the trajectory going trough the folghomt atqg;. After
the folding the orientation of the intervaly has changed when being mapped
into dgp; in addition the functiorR, as well as its derivative which defines the
Lagrangian manifold, becomes multi-valued. Distinctecapries starting from
different initial pointsq’ can now reach the same final pomt (That is, the
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Figure 32.3: Folding of the Lagrangian surface
(9. 94R(a. 1)

point @ may have more than one pre-image.) The projection of a sirfioide
or of an envelope of a family of phase space trajectoriesallea acaustic; this
expression comes from the Greek word for “capable of burhiagoking the
luminous patterns that one observes swirling across therbodf a swimming
pool.

The folding also changes the orientation of the pieces df#tggangian manifold
(0, 9gR(q, t)) with respect to the initial manifold, so the eigenvaluéthe Jacobian
determinant change sign at each fold crossing. We can kaelp of the signs by
writing the Jacobian determinant as

oq

oq
det 5

det—‘ ,
aq i

— e—iﬂ'mj (0.9'.t)

alj

wheremj(q, g, t) counts the number of sign changes of the Jacobian detammina
on the way from’' to g along the trajectory indexed with see figure32.3 We
shall refer to the integem;(q,d’,t) as thetopological of the trajectory. So in
general the semiclassical approximation to the wave fands thus a sum over
possible trajectories that start at any intjabnd end irg in timet

A M2 ke i :
Yse(Qpt) = f dq’Z’deta—q’_ eR@a/A-mm @ 0/2y(qp 0),  (32.22)
i J

each contribution weighted by corresponding density, @hasrement and the
topological index.

That the correct topological index is obtained by simplyrting the number
of eigenvalue sign changes and taking the square root ishviius - the careful
argument requires that quantum wave functions evaluategsthe folds remain
single valued.

32.2 Semiclassical propagator

We saw in chapteB0 that the evolution of an initial wave functiop(qg, 0) is
completely determined by the propagat®®.(L2. As K(q, d', t) itself satisfies the
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CHAPTER 32. SEMICLASSICAL EVOLUTION 531

Schrodinger equatior8(.14), we can treat it as a wave function parameterized
by the configuration point/. In order to obtain a semiclassical approximation
to the propagator we follow now the ideas developed in thiedastion. There
is, however, one small complication: the initial conditi(80.15 demands that
the propagator dt= 0 is as-function atq = ¢, that is, the amplitude is infinite
at g and the phase is not well defined. Our hypothetical cloud dfighes is
thus initially localized aty = g with any initial velocity. This is in contrast
to the situation in the previous section where we assumedhthbgarticles at a
given pointg have well defined velocity (or a discrete set of velocitieskg by

g = dpH(q, p). We will now derive at a semiclassical expressionKdg, d', t) by
considering the propagator for short times first, and exledjmg from there to
arbitrary timed.

32.2.1 Short time propagator

For infinitesimally short timest away from the singular poirit= 0 we assume
that it is again possible to write the propagator in terms wfefl defined phase
and amplitude, that is

K(q, q,6t) = A(q, d, 6t)er Raa-o0
As all particles start aq) = ¢, R(q, ¢, 6t) will be of the form 32.12), that is
R(g.q', ot) = pgst — H(g, p)dt, (32.23)

with § ~ (q—q')/st. For Hamiltonians of the form30.2 we haveq = p/m, which
leads to

m(q - )?

ot - V(g)dt.

R(a.q',6t) =

HereV can be evaluated any place along the trajectory fqamq’, for example
at the midway poinV((g+q')/2). Inserting this into our ansatz for the propagator
we obtain

Ksx(@ O, 6t) ~ A(q, o, st)er (3@ -Vas) (32.24)

For infinitesimal times we can neglect the tekf(g)st, so Kg(q,d', 6t) is ad-
dimensional Gaussian with wid#? = ix#st/m. This Gaussian is a finite width
approximation to the Dirac delta function

. 1 27952
6@ = lim ——=e7/%" (32.25)
o—0 \127-[0-2
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if A= (m/2rihst)P/2, with A(g, o, 6t) fixed by the Dirac delta function normalization
condition.  The correctly normalized propagator for infisimal timesst is

exercise 32.1
therefore [ ]

, D/2 | ma-a)?_
Ksc(q,q,o“t)z( o h&) e ("G -V (32.26)

The short time dynamics of the Lagrangian manifaldogR) which corresponds
to the quantum propagator can now be deduced fi@ir2Q; one obtains

i.e., is the particles start for short times on a Lagrangianifold which is a plane

in phase space, see figu82.4 Note, that forst — 0, this plane is given by
the conditionq = ¢, that is, particles start on a plane parallel to the momentum
axis. As we have already noted, all particles starjat g but with different
velocities fort = 0. The initial surfaced’, p’ = dqR([, 0)) is mapped into the
surface ((t), p(t)) some time later. The slope of the Lagrangian plane for a short
finite time is given as

on___#R _ 0% _m
aq aq;0q; aq;

T

The prefactorif/6t)®/2 in (32.26 can therefore be interpreted as the determinant
of the Jacobian of the transformation from final position rdiratesq to initial
momentum coordinateg’, that is

ap, 1/2 )
Ks(a, o, 6t) = (det ) gRad.an/n, (32.27)

@amP2\ " aq

where

| _ 9°R@.q, )

= 32.28
90 |y 0q;0q; ( )

The subscript - |; o indicates that the partial derivatives are to be evaluatiélll w
t,q fixed.

The propagator in32.27 has been obtained for short times. It is, however,
already more or less in its final form. We only have to evolve shwort time
approximation of the propagator according 3@.22

1/
detﬂ

2
iRj(q”,q.t")/h-inm;(q”.q.t')/2 g
6q// J el K(q’ qJ ’ 5t) ’

Keed, 0t +6) =

J
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Figure 32.4: Evolution of the semiclassical
propagator. The configuration which corresponds -
the initial conditions of the propagator is a Lagrangia
manifoldq = ¢, that is, a plane parallel to theaxis.

The hypothetical particles are thus initially all placed ¢

g but take on all possible momenpa. The Jacobian ___
matrix C (32.29 relates an initial volume element in
momentum spacelp’ to a final configuration space
volumedga.

and we included here already the possibility that the phaserbes multi-valued,
that is, that there is more than one path frgito g”. The topological indexn; =
m;(q”,d’,t) is the number of singularities in the Jacobian along thiedtary j
from ' to g”’. We can writeK«(q”, ', t" + 6t) in closed form using the fact that
R(”’,q,t) + R(g,q,6t) = R(Q”,d,t" + 6t) and the multiplicativity of Jacobian
determinants, that is

det | get P _get 2P (32.29)
oq” |y 0q |y st 0" gy v +ot
The final form of the semiclassical dan Vleck propagator, is thus
1 P M2 o vmi
Ke(@ o t) = Y ————|det—| RiGdD/Aimn/2 32.30

This Van Vleck propagator is the essential ingredient ostraiclassical quantization
to follow.

The apparent simplicity of the semiclassical propagatadeseptive. The
wave function is not evolved simply by multiplying by a complnumber of
magnitude v/detdp’/dq and phaser(q, d',t); the more dificult task in general
is to find the trajectories connectimgandqin a given timet.

In addition, we have to treat the approximate propagat@r3() with some
care. Unlike the full quantum propagator, which satisfies gnoup property
(30.13 exactly, the semiclassical propagator performs this apgroximately,
that is

Ke(a, g t1 + 1) = f dq” K(a, 97, t2)Kse(q”, 0, 11) . (32.31)

The connection can be made explicit by the stationary phgs®gimation, sec31.2
Approximating the integral ind2.31) by integrating only over regions near points
g’ at which the phase is stationary, leads to the stationarggpbandition

oR(@.0". o)  IR(@". 4. t) _

0. 32.32
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Classical trajectories contribute whenever the final mdomarfor a path frongy’

to q” and the initial momentum for a path frog¥ to g coincide. Unlike the
classical evolution of sect5.2 the semiclassical evolution is not an evolution by
linear operator multiplication, but evolution suppleneghby a stationary phase
condition poyt = pin that matches up the classical momenta at each evolution
step.

32.2.2 Free particle propagator

To develop some intuition about the above formalism, carside case of a free
particle. For a free particle the potential energy vanishies kinetic energy is
gq{ and the Hamilton’s principal functior82.12) is

R(g.q,t) = m(%q'){ (32.33)

The weight det% from (32.28 can be evaluated explicitly, and the Van Vleck
propagator is

D/2 .
K(,d',1) = (%) gmia-a)?/2at (32.34)
identical to the short time propagat@2(26, with V(g) = 0. This case is rather
exceptional: for a free particle the semiclassical profmgarns out to be the
exact quantum propagatdt(qg, d’,t), as can be checked by substitution in the
Schrodinger equatior3R.2. The Feynman path integral formalism uses tqli_gm
fact to construct an exact quantum propagator by integyatie free particle
propagator (withv(q) treated as constant for short times) along all possiblé (no
necessarily classical) paths fraghto g.

ark 32.3]

[exercise 32.10]
[exercise 32.11]
[exercise 32.12]

32.3 Semiclassical Green'’s function

So far we have derived semiclassical formulas for the tinmudion of wave
functions, that is, we obtained approximate solutionseditne dependent Schrodinger
equation 80.1). Even though we assumed in the calculation a time indepgnde
Hamiltonian of the special fornB80.2), the derivation would lead to the same final
result 32.30 were one to consider more complicated or explicitly timpetadent
Hamiltonians. The propagator is thus important when we rtexested in finite

time quantum mechanicaffects. For time independent Hamiltonians, the time
dependence of the propagator as well as of wave functiohsuggver, essentially
given in terms of the energy eigen-spectrum of the systenn §30.10. It is
therefore advantageous to switch from a time representttdian energy representation,
that is from the propagator3(.12 to the energy dependent Green’s function
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(30.16. A semiclassical approximation of the Green’s funct®g(q,q’, E) is
given by the Laplace transforn3@.16 of the Van Vleck propagatdfs(q, d', t):

1 .
G(0. 0, E) = — fo dt €5/ Ke(a. 0, ). (32.35)

The expression as it stands is not very useful; in order ttuatathe integral, at
least to the leading order iy we need to turn to the method of stationary phase
again.

32.3.1 Stationary phase in higher dimensions
[exercise 31.1]

Generalizing the method of se@l.2to d dimensions, consider stationary phase
points fulfilling

d .
d_xiq)(x) =0 Vi=1...d.

X=Xo

An expansion of the phase up to second order involves nowythengtric matrix
of second derivatives ab(x), that is

2

Dij(x0) = ()

0%i0X; -

After choosing a suitable coordinate system which diageesD, we can approximate
the d-dimensional integral byl 1-dimensional Fresnel integrals; the stationary
phase estimate 08(.13 is then

|~ > (21 /9% detD(xo)| 2 A(xp) € 00)-Em00) (32.36)
Xo

where the sum runs over all stationary phase poigtsf ®(x) andm(xg) counts

the number of negative eigenvaluesiix). fexercise 26.2]

| [exercise 32.2]

The stationary phase approximation is all that is needethfosemiclassica _
[exercise 31.3]

approximation, with the proviso th&t in (32.39 has no zero eigenvalues.

32.3.2 Long trajectories

When evaluating the integre#2.35 approximately we have to distinguish between
two types of contributions: those coming from stationaringoof the phase and
those coming from infinitesimally short times. The first typlecontributions
can be obtained by the stationary phase approximation alhtienireated in this
section. The latter originate from the singular behavidhefpropagator for — 0
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where the assumption that the amplitude changes slowly amdpo the phase
is not valid. The short time contributions therefore havbedreated separately,
which we will do in sect32.3.3

The stationary phase points of the integrand in32.39 are given by the
condition

CREOC ) +E=0. (32.37)

We recognize this condition as the solution 82 (19, the timet* = t*(g,q’, E) in
which a particle of energi starting out ing’ reaches). Taking into account the
second derivative of the phase evaluated at the statiofayeppoint,

82

atz R(q’ q/’ t*) +

the stationary phase approximation of the integral comegdimg to a classical
trajectory j in the Van Vleck propagator sur3Z.30 yields

1/2

82R - i in
G(a.q, E) detC; (aTZ‘J) erSi-5m (32.38)

1
in(2inh)(D-1)/2

wherem; = m;(q, q’, E) now includes a possible additional phase arising from the
time stationary phase integratiodl(16, andC; = Cj(g,qd',t"), Rj = Rj(q, d, t)

are evaluated at the transit tirtie We re-express the phase in terms of the energy
dependent actior8@.19

S(g,q,E) = R(g,q, t*) + Et*, with t* =t*(q,q, E), (32.39)

the Legendre transform of Hamilton's principal function.otd that the partial
derivative of the action32.39 with respect tay;

9S(a.q.E) _ dR@q.t) (6R(q, q.b E) at
aq aaj ot aai-

is equal to

0S(a.9.E) _ dR(G. 9. t")
g oq;

: (32.40)

due to the stationary phase conditi@2 (37, so the definition of momentum as a
partial derivative with respect tg remains unaltered by the Legendre transform

from time to energy domain. .
[exercise 32.13]
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Next we will simplify the amplitude term in32.38 and rewrite it as an
explicit function of the energy. Consider th®[¢ 1)x (D + 1)] matrix

»s s ap ap
% _|990q oqoE |\ _| Taq ~ OE
0qQ0E OE2 oq oE

whereS = S(q, d, E) and we used32.14-32.17) here to obtain the left hand side
of (32.47). The minus signs follow from observing from the definitidn(82.15
that S(g,q’,E) = -S(d', g, E). Note thatD is nothing but the Jacobian matrix
of the coordinate transformatio, E) — (p',t) for fixed q’. We can therefore
use the multiplication rules of determinants of Jacobiarsch are just ratios of
volume elements, to obtain

_ _1\D+1 8(p,’t) _ (_1\b+1 a(pl’t) 8(q’ t)
e = (3" setge E))q, S oy E))q,

~ i1 (10D at\ 9?R\

= (—1) (deta—q)t’q (detﬁ)q . = detC(W) .

We use here the notati¢det.), ; for a Jacobian determinant with partial derivatives
evaluated at, ' fixed, and likewise for other subscripts. Using the relafiéih 19
which relates the tern% to 92R we can write the determinant &f as a product

of the Van Vleck determinant3@.29 and the amplitude factor arising from the
stationary phase approximation. The amplitudesin. 88 can thus be interpreted
as the determinant of a Jacobian of a coordinate transfmmathich includes
time and energy as independent coordinates. This causdadtease in the
dimensionality of the matri relative to the Van Vleck determinar?Z.29.

We can now write down the semiclassical approximation ofciiaribution
of the jth trajectory to the Green'’s functio%.38 in explicitly energy dependent
form:

ey 1 12 g iz,
Gj(q’q s E) - W |detDJ| en=l20 (3242)

However, this is still not the most convenient form of the &re function.

The trajectory contributing t&;(q, d’, E) is constrained to a given energy
E, and will therefore be on a phase space manifold of constaatgg, that is
H(g, p) = E. Writing this condition as a partial filerential equation fo®(q, ', E),
that is

0S
H(q9 a_q) - E ’
one obtains
0 oH dpj . 9%S
H N = 0 = —_— n = -—,
aq (9. p) ap; oq QJaqjaqi
0 %S
—H([,p) =0= ——(, 32.43
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that is the sub—matriﬁZS/aqiaq’j has (left- and right-) eigenvectors corresponding
to an eigenvalue 0. Rotate the local coordinate system agither end of the
trajectory

(QL 02,03, Qd) - (q”’ Out, Qu2, - qJ_(D—l))

so that one axis points along the trajectory and all otherparpendicular to it

(Ql,q25q3a"'a%)—> (q,O,O,,O)

With such local coordinate systems at both ends, with thgitodinal coordinate
axis q; pointing along the velocity vector of magnitudethe stability matrix of
S(g,q', E) has a column and a row of zeros &2 @43 takes form

. 9°S s
q ” = . ’q = O
8q||aqi 8qlaq”

The initial and final velocities are non-vanishing exceptgoints|gl = 0. These
are the turning points (where all energy is potential), archgsume that neithgr
norq’ is a turning point (in our application - periodic orbits - wencalways chose
g = ¢ not a turning point). In the local coordinate system with axés along
the trajectory and all other perpendicular to it the detaemt of 32.41) is of the
form

9Ed|
detD(q, g, E) = (-1)P*'|det 0 632;& « . (32.44)
2s S,
9q0E

The corner entries can be evaluated usi® 17

9°S 0 1 0SS 1

gqoE o §  OEdq &

As theq axis points along the velocity direction, velocitigs)” are by construction
almost always positive non-vanishing numbers. In this vaydeterminant of the
[(D+1)x(D+1)] dimensional matrixD(g, q’, E) can be reduced to the determinant
of a[(D — 1)x(D - 1)] dimensionakransverse matrix D, (g, d', E)

detD(q,q,E) = —q(l_q, detD,(q,q, E)
9°S(q.q. E)
D A /’ E A — — . 3245
L9 E)i T, (32.45)
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Putting everything together we obtain tfik trajectory contribution to the semiclassical

Green'’s function .
[exercise 32.15]

_ 1 1 (Y2 i i
" in(2rin) 072 ey |72 |detDl| enIm 2, (32.46)

Gj(.q,E)

where the topological indem; = mj(q, o', E) now counts the number of changes
of sign of de1D’L along the trajectory which connects/ to q at energyk.

The endpoint velocitieg, § also depend ony( (', E) and the trajectory.

32.3.3 Short trajectories

The stationary phase method cannot be used whensmall, both because we
cannot extend the integration i81(.16 to —co, and because the amplitude of
K(g, q',t) is divergent. In this case we have to evaluate the integvalving the
short time form of the exact quantum mechanical propag&@R2g

1 = m \P/2 i ma-q)2
/ — _ 7 ( ~V(g)t+Et)
Go(a. 9, E) ihfo dt(2 iht) ert 2 : (32.47)

By introducing a dimensionless variahte= t /2m(E — V(q))/mlq — |, the
integral can be rewritten as

Go(0.9', E) =

D1 o
m vem(E - V))* f dr__soaq E)r+/7)
2P\ Ha-a ) Jo P /

whereSp(q, d', E) = v2m(E - V)|g — ('] is the short distance form of the action.
Using the integral representation of the Hankel functiofirsf kind

H:-(Z) — _I;e—iwr/Z‘fO‘ e%iZ(T+1/T)T_V_1dT

we can write the short distance form of the Green’s funct®n a

D-2
, im (V2m(E-V)\ ? ,
Go(a,q', E) = o (W) H%(So(q, q.,E)/n). (32.48)

Hankel functions are stabdard, and their the short wavéieaymptotics is described
in standard reference books. The short distance Greenidanapproximation
is valid whenSgy(q, q', E) < 7.
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Résumé

The aim of the semiclassical or short-wavelength methode epproximate a
solution of the Schrddinger equation with a semiclassiale function

V(@) = D Aj(g,HERE
j

accurate to the leading order fin Here the sum is over all classical trajectories
that connect the initial poird’ to the final pointg in timet. “Semi—" refers ta,
the quantum unit of phase in the exponent. The quantum mashanters only
through this atomic scale, in units of which the variatiorited phase across the
classical potential is assumed to be large. “—classicédtrseo the rest - both the
amplitudesA(q, t) and the phaseR;(q, t) - which are determined by the classical
Hamilton-Jacobi equations.

In the semiclassical approximation the quantum time eiamiubperator is
given by thesemiclassical propagator

;e 1 op
Ke(a, ', 1) = W Z ‘deta_q J
j

where the topological indem;(g, g, t) counts the number of the direction reversal
along thejth classical trajectory that connecfs— qin timet. Until very recently

it was not possible to resolve quantum evolution on quantora scales (such as
one revolution of electron around a nucleus) - physical nmmegsents are almost
always done at time scales asymptotically large compar#égetmtrinsic quantum
time scale. Formally this information is extracted by meafresLaplace transform
of the propagator which yields the energy dependemiclassical Green’sfunction

GSC(q’ q,’ E) = Go(q9 q,’ E) + Z Gj(q’ q,’ E)
j
2
Gj(a.q.E) = % i et?Pel eisim (32.49)
in(2rih) 7 qq aq. i

whereGp(q, d', E) is the contribution of short trajectories wiBy(q,q’, E) < #,
while the sum is over the contributions of long trajectoKi@2.46 going fromq’
to g with fixed energyE, with Sj(q, o', E) > 7.

Commentary

Remark 32.1 Limiti — 0. The semiclassical limit’ — 0" discussed in secB2.1
is a shorthand notation for the limit in which typical quaies like the actionR or
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S in semiclassical expressions for the propagator or the @& denction become large
compared tgi. In the world that we live in the quantity is a fixed physical constant
whose value{] is 1.054571596(82) 16 Js.

Remark 32.2 Madelung’s fluid dynamics. Already Schrodingery] noted that

p=pQt) =~ =y'y

plays the role of a density, and that the gradientRofnay be interpreted as a local
semiclassical momentum, as the momentum density is

0A  OR

vy i, 0 _ 2 a0A  OR
(9. 1) (—|ha—q)¢/(q,t) = 'hAaq g

A very different interpretation of32.3-32.4 has been given by Madelung][ and then
built upon by Bohm §] and others §, 7]. Keeping the#i dependent term in3@.3,
the ordinary diferential equations driving the flon82.1Q have to be altered; if the
Hamiltonian can be written as kinetic plus potential tevia) as in G0.2, the#? term
modifies thep equation of motion as

. 0
P=5a V(@) + Q(a. 1)) , (32.50)

where, for the example at hand,

W1 9

Q(qv t) ==

interpreted by Bohm¢]] as the “quantum potential.” Madelung observed that Hami#
equation for the momentun32.50 can be rewritten as

v 0 1ov 1 0
Lilv- == - —— 0y, 32.52
R (32.52)
1% #lnp - « » . _ A2 -
whereoj = T aaag 1S the “pressure” stress tenser= p;/m, andp = A* as definedd]
in sect.32.1.3 We recall that the Euleriaﬁ+% a%i is the ordinary derivative of Lagrangian

mechanics, that i% . For comparison, the Euler equation for classical hydradyias is

() 2y L LV 10
ot dq) '~ mag  mpaq;

wherepd; is the pressure tensor.

The classical dynamics corresponding to quantum evoligitirus that of an “hypothetical
fluid” experiencingi andp dependent stresses. The “hydrodynamic” interpretation of
gquantum mechanics has, however, not been very fruitfulacture.
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Remark 32.3 Path integrals. The semiclassical propagat82(3(Q can also be derived
from Feynman'’s path integral formalism. Dirac was the fiostliscover that in the short-
time limit the quantum propagato8Z.349 is exact. Feynman noted in 1946 that one can
construct the exact propagator of the quantum Schrodemgeation by formally summing
over all possible (and emphatically not classical) patbmfg’ to q .

Gutzwiller started from the path integral to rederive VaeadK'’s semiclassical expression
for the propagator; Van Vleck’s original derivation is vernyich in the spirit of what has
presented in this chapter. He did, however, not considguaksibility of the formation of
caustics or folds of Lagrangian manifolds and thus did ndtige the topological phases
in his semiclassical expression for the propagator. Somged@s later Gutzwiller4]
added the topological indices when deriving the semiataspropagator from Feynman’s
path integral by stationary phase conditions.

Remark 32.4 Applications of the semiclassical Green’s function. The semiclassical
Green'’s function is the starting point of the semiclassapgdroximation in many applications.
The generic semiclassical strategy is to express physicattdies (for example scattering
amplitudes and cross section in scattering theory, otmilrength in spectroscopy, and
conductance in mesoscopic physics) in terms of the exactr@&dunction and then
replace it with the semiclassical formula.

Remark 32.5 The quasiclassical approximation  The quasiclassical approximation
was introduced by Maslo®]. The term ‘quasiclassical’ is more appropriate than séamsical
since the Maslov type description leads to a pure classucdliton operator in a natural
way. Following mostly ref. P], we give a summary of the quasiclassical approximation,
which was worked out by Maslo¥] in this form. One additional advantage of this
description is that the wave function evolves along onelsictassical trajectory and
we do not have to compute sums over increasing numbers cicdhsrajectories as in
computations involving Van Vleck formulaf].
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EXERCISES 543
Exercises
32.1. Dirac delta function, Gaussian representation. . 1-dimensional harmonic oscillator. Take a 1-

Consider the Gaussian distribution function

1
5,2 = ———=e7/%"

V202

Show that inc- — 0 limit this is the Dirac delta function

f dxd(x) = 1if 0 e M, zero otherwise
M

32.2. Stationary phase approximation in higher dimensions.

All semiclassical approximations are based on saddle

point evaluations of integrals of type

| = f dP xA(x)e P/ (32.53)

for small values ofsi. Obtain the stationary phase32.9.

estimate

(2rin)P/2

L2 S AGk)eHoan ,
Zn: ) /detD2d(x,)

whereD?®(x,) denotes the second derivative matrix.

32.3. Schrodinger equation in the Madelung form.

Verify the decomposition of Schrodinger equation in82.11.

real and imaginary parts, eq82(3 and ¢2.4.

3

32.4. Transport equations. J Write the wave-

function in the asymptotic form

Y(@.1) = &RV (i) A(x. 1),

n>0

Derive the transport equations for thg by substituting
this into the Schrodinger equation and then collecting
terms by orders ofi. Notice that equation foA, only

requires knowledge of,_; andR.

32.5. Easy examples of the Hamilton’s principal function. 32 14.

CalculateR(q, q', t) for

a) aD-dimensional free particle

b) a3-dimensional particle in constant magnetic field

¢) al-dimensional harmonic oscillator.

(Continuation: exercisg2.13)

exerVanVleck - 20jan2005.tex

dimensional harmonic oscillatdy(q) = %qu. Take a
WKB wave function of formA(qg, t) = a(t) andR(qg, t) =
r(t) + b(t)g + c(t)g?, wherer(t), a(t), b(t) and c(t) are
time dependent cdigcients. Derive ordinary dierential
equations by using3@.3 and (32.4 and solve them.
(Continuation: exercisg2.9)

. 1-dimensional linear potential. Take a 1-dimensional

linear potentialU(q) = —-Fg. Take a WKB wave
function of formA(q, t) = a(t) andR(qg, t) = r(t) + b(t)g+
c(t)g?, wherer(t), a(t), b(t) andc(t) are time dependent
codficients. Derive and solve the ordinanyfidrential
equations from32.3 and 32.4).

. D-dimensional quadratic potentials. Generalize

the above method to generfatdimensional quadratic
potentials.

Time evolution of R.  (Continuation of exercisg2.6.
Calculate the time evolution &(q, 0) = a+ bq+ cg? for
a l-dimensional harmonic oscillator using2(12 and
(32.19.

D-dimensional free particle propagator.  Verify the
results in sect32.2.2 show explicitly that 82.39, the
semiclassical Van Vleck propagator i dimensions,
solves the Schrodinger’s equation.

Propagator, charged particle in constant magnetic
field. Calculate the semiclassical propagator for
a charged particle in constant magnetic field in 3
dimensions. Verify that the semiclassical expression
coincides with the exact solution.

1-dimensional harmonic oscillator propagator.
Calculate the semiclassical propagator for a 1-
dimensional harmonic oscillator and verify that it is
identical to the exact quantum propagator.

13. Free particle action. Calculate the energy dependent

action for a free particle, a charged particle in a constant
magnetic field and for the harmonic oscillator.

3

Zero length orbits. J Derive the classical
trace (L6.1) rigorously and either add the— 0, zero
length contribution to the trace formula, or show that it
vanishes. Send us a reprint@ifiys. Rev. Lett. with the
correct derivation.

Free particle semiclassical Green's functions.
Calculate the semiclassical Green’s functions for the
systems of exercisg?.13



