Chapter 32

Semiclassical evolution

William Rowan Hamilton was born in 1805. At three
he could read English; by four he began to read Latin,
Greek and Hebrew, by ten he read Sanskrit, Persian,
Arabic, Chaldee, Syrian and sundry Indian dialects. At
age seventeen he began to think about optics, and worked
out his great principle of “Characteristic Function.”

— Turnbull, Lives of Mathematicians

(G. Vattay, G. Tanner and P. Cvitanovic)

where the de Broglie wavelength ~ 7/p of a particle with momentum

p is much shorter than the length scales across which the taitehthe
system changes significantly. In the short wavelength aqmetion the particle
is a point-like object bouncingfbpotential walls, the same way it does in the
classical mechanics. The novelty of quantum mechaniceigthrference of the
point-like particle with other versions of itself travediralong diferent classical
trajectories, a feat impossible in classical mechanics. e ghort wavelength —
or semiclassical — formalism is developed by formally takihe limitz — 0 in
guantum mechanics in such a way that quantum quantities gfeetoclassical
counterparts.

SMICLASSICAL APPROXIMATIONS tO quantum mechanics are valid in the regime

[remark 32.1]

32.1 Hamilton-Jacobi theory

We saw in chapteB1that for a 1-dof particle moving in a slowly varying poteftia
it makes sense to generalize the free particle wave fungBaril) to a wave
function

¥(a.1) = Ag,yyeRen, (32.1)

with slowly varying (real) amplitudé(q, t) and rapidly varying (real) phas¥a, t).

its phase and magnitude. The time evolution of the phasetenthagnitude of )
[exercise 31.1]
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¢ follows from the Schrodinger equatioBQ.1)

2 a2
(m2 N V(q)) w(t) = 0. (32.2)

AssumeA # 0, and separate out the real and the imaginary parts. We get tw
equations: The real part governs the time evolution of tresgh

2 2 2
R 1 ((’)R) V(g el o 0. (32.3)

ot omlag) TV AT

and the imaginary part the time evolution of the amplitude )
[exercise 32.6]

[exercise 32.7]

+ —AZ_ = 0. (32.4)

OA L IAIR 1R
ot m &4 9q; ag  2m I

[exercise 32.8]
In this way a linear PDE for a complex wave function is coreeiinto a set of
coupled non-linear PDE's for real-valued functidR@ndA. The coupling term
in (32.3 is, however, of ordeh? and thus small in the semiclassical lirit- 0.

Now we generalize th&\entzel-Kramers-Brillouin (WKB) ansatz for 1-dof
dynamics to the Van Vlecénsatzin arbitrary dimension: we assume the magnitude
A(g, t) varies slowly compared to the phaR, t) /7, so we drop théi-dependent
term. In this approximation the phaR¥qg, t) and the corresponding “momentum
field” %(q, t) can be determined from the amplitude independent equation

oR oR
E+H(q,a—q) ~o0. (32.5)

In classical mechanics this equation is known asHlaenilton-Jacobi equation.
We will refer to this step (as well as all leading order7irapproximations to
follow) as thesemiclassical approximation to wave mechanics, and from now on
work only within this approximation.

32.1.1 Hamilton’s equations

We now solve the nonlinear partialfféirential equation32.5) in a way the 17
year old Hamilton might have solved it. The main step is tlep $eading from
the nonlinear PDE32.9) to Hamilton’s ODEs 82.10. If you already understand
the Hamilton-Jacobi theory, you can safely skip this sectio

fast track:
W sect. 32.1.3, p. 527
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R(a.t) R(a.t)

Figure 32.1: (a) A phaseR(qg,t) plotted as a
function of the positiorg for two infinitesimally

close times. (b) The phad®(q,t) transported by 9 Gt+dq q

J
a swarm of “particles”; The Hamilton’s equations slope J

(32.10 constructR(q, t) by transportingjo — q(t)
and the slope oR(qp, to), that ispg — p(t). (@)

The wave equation3Q.1) describes how the wave functian evolves with
time, and if you think ofy as an (infinite dimensional) vector, positigrplays a
role of an index. In one spatial dimension the phBgdotted as a function of the
positionq for two different times looks something like figu82.1(a): The phase
R(q, tp) deforms smoothly with time into the phaB¥g,t) at timet. Hamilton's
idea was to let a swarm of particles transg@rnd its slopeR/dq at g at initial
timet = tp to a corresponding(qg, t) and its slope at timég figure 32.1(b). For
notational convenience, define

R
P=p@n =2, i=12....D. (32.6)

We saw earlier thaB.3 reduces in the semiclassical approximation to the Hamilto

Jacobi equation3R.5. To make life simple, we shall assume throughout this
chapter that the Hamilton’s functidr(q, p) does not depend explicitly on tine
i.e., the energy is conserved.

To start with, we also assume that the functigfu, t) is smooth and well
defined for everyq at the initial timet. This is true for sfficiently short times;
as we will see laterR develops folds and becomes multi-valued asogresses.
Consider now the variation of the functid®(q,t) with respect to independent
infinitesimal variations of the time and space coordindtemddg, figure32.1(a)

oR. R
dr= Lt + Baq. 32.7
at ot g (32.7)

Dividing through bydt and substituting32.5 we obtain the total derivative of
R(q, t) with respect to timelong the as yet arbitrary direction g, that is,

dR, . )
E(q, a.t)=-H(@.p)+4q-p. (32.8)

Note that the “momentump = dR/dq is a well defined function of] andt.
In order to integrateR(q,t) with the help of 82.8 we also need to know how
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p = dR/dq changes along. 'Varying p with respect to independent infinitesimal
variationsdt anddq and substituting the Hamilton-Jacobi equatidg.f) yields

dt+6—pdq.

R &R ; R dH Hap
aq

q " agt o' \aq  opaa

Note thatH(q, p) depends om also throughp(g, t) = dR/dq, hence the% term
in the above equation. Dividing again throughdiywe get the time derivative of
0R/dq, that is,

o GH (. oM\dp
paay+ 5 = (a- ) 5. (329

Time variation ofp depends not only on the yet unknogybut also on the second
derivatives oR with respect tay with yet unknown time dependence. However, if
we choose ¢ (which was arbitrary, so far) such that the right hand sidibbefabove
equation vanishes, we can calculate the funcR(m t) along a specific trajectory
(q(t), p(t)) given by integrating the ordinary ftiérential equations

. _ 9H(@.p) __ 0H(@.p)
4= =7 (32.10)

with initial conditions

/ / (9R /
q(to) =4, plto) = p' = ﬁ(q  to). (32.11)

[section 7.1]
We recognize 32.10 as Hamilton’s equations of motion of classical mechanics.
The miracle happens in the step leading frd@8.f) to (32.9 — if you missed it,
you have missed the point. Hamilton derived his equatiomsecoplating optics
- it took him three more years to realize that all of Newtonimamics can be
profitably recast in this form.

g is no longer an independent function, and the phaggt) can now be
computed by integrating equatio®2.8) along the trajectoryq(t), p(t))
Rt = R, t)+R(@td,t)
t
R@.t;q,t) = flo dr [g(7) - p(r) - H(q(7), p(7))] . (32.12)

with the initial conditions 82.11). In this way the Hamilton-Jacobpartial differential
equation 82.3 is solved by integrating a set ofdinary differential equations,
Hamilton’s equations. In order to determiRéq, t) for arbitraryq andt we have
to find aq’ such that the trajectory starting i/ (p’ = dqR(d', 1)) reachegy in
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timet and then comput® along this trajectory, see figu2.1(b). The integrand
of (32.12 is known as theagrangian,

L@t =94 -p-H(p1). (32.13)

A variational principle lurks here, but we shall not make iméwss about it as yet.

Throughout this chapter we assume that the energy is catseand that the
only time dependence &f(q, p) is through §(7), p(r)), so the value oR(q, t; ¢, to)
does not depend dp, but only on the elapsed tinte-ty. To simplify notation we
will settyg = 0 and write

R(a,d.t) =R(a,t;d’,0).

The initial momentum of the particle must coincide with théial momentum of
the trajectory connecting’ andq;

; 6_ ’ _ _6_ ,
P= 5 R0 = —5RE@d.0. (32.14)

[exercise 32.5]

The functionR(q, d', t) is known asHamilton’s principal function. [exercise 32.9]

To summarize: Hamilton’s achievement was to trade in the iti@mJacobi
partial differential equation32.5 describing the evolution of a wave front for a
finite number ofordinary differential equations of motion, with the initial phase
R(q, 0) incremented by the integrédZ.12) evaluated along the phase space trajectory

(9(@). p(@))-

32.1.2 Action

Before proceeding, we note in passing a few facts about Hamain dynamics
that will be needed for the construction of semiclassicaeis functions. If the
energy is conserved, thﬁH(q, p)dr integral in 32.12) is simply Et. The first
term, or theaction

t q
S(Q.0.E) = fo dra() - plr) = fq dq-p (32.15)

is integrated along a trajectory froghto q with a fixed energye. By (32.12) the
action is a Legendre transform of Hamilton’s principal ftioc

S(a.9.E) =R(q. 4, t) + Et. (32.16)
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The time of flightt along the trajectory connectirgg — q with fixed energyE is
given by

2] , B
a—ES(q, q,E)=t. (32.17)

The way to think about the formul&2.16 for action is that the time of flight is a
function of the energy, = t(q, q', E). The left hand side is explicitly a function of
E; the right hand side is an implicit function & through energy dependence of
the flight timet.

Going in the opposite direction, the energy of a trajectBry= E(q, ', t)
connectingg — g with a given time of flightt is given by the derivative of
Hamilton’s principal function

a /
FR@q.0=-E, (32.18)

and the second variations BfandS are related in the standard way of Legendre
transforms:

R(q,q t) S(q,q E) = (32.19)

()t2 OE?

A geometric visualization of what the phase evolution lobks is very helpful
in understanding the origin of topological indices to beadticed in what follows.
Given an initial phas&(q, to), the gradiendyR defines éD-dimensionalagrangian
manifold (g, p = 94R(g)) in the full 2d dimensional phase space, f). The
defining property of this manifold is that any contractibéep y in it has zero

action,
- faa-».
Y

a fact that follows from the definition gf as a gradient, and the Stokes theorem.
Hamilton’s equations of motion preserve this property arapra Lagrangian
manifold into a Lagrangian manifold at a later tinte.

[section 32.1.4]

Returning back to the main line of our argument: so far we fi®termined
the wave function phasiB(qg,t). Next we show that the velocity field given by
the Hamilton’s equations together with the continuity e@pradetermines the
amplitude of the wave function.

32.1.3 Density evolution

To obtain the full solution of the Schrédinger equati@d.(), we also have to
integrate 82.4).

p(a.t) = A2 = y'y
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plays the role of a density. To the leding orderzinthe gradient oR may be
interpreted as the semiclassical momentum density

et = Al R
V@) (CnGU@ ) = -IhAZC +pg.

Evaluated along the trajectorg(f), p(t)), the amplitude equatior3®.4) is equivalent
to the continuity equationl@.36 after multiplying 32.4) by 2A, that is

9 9y
it 3—qi(pv,) =0. (32.20)

Here,v; = ¢ = pi/mdenotes a velocity field, which is in turn determined by the
gradient ofR(q, t), or theLagrangian manifold (q(t), p(t) = d4R(a. 1)),

10
= =2 R(@.1).
v maq @9

As we already know how to solve the Hamilton-Jacobi equatBh5), we can
also solve for the density evolution as follows:

The densityp(q) can be visualized as the density of a configuration space
flow q(t) of a swarm of hypothetical particles; the trajectorigt are solutions
of Hamilton’s equations with initial conditions given bg(0) = o', p(0) = p’ =
9qR(q’, 0)).

If we take a small configuration space voludRg around some poirgat time
t, then the number of particles in itigq, t)dPdg. They started initially in a small
volumedPq’ around the point of the configuration space. For the moment, we
assume that there is only one solution, the case of seveta pdl be considered
below. The number of particles at tinhén the volume is the same as the number
of particles in the initial volume dt= 0,

(). 9)d%q = p(df, 0)d°q ,
see figure32.2 The ratio of the initial and the final volumes can be exprésse

p(At).1) = \deti—‘g o(d.0). (32.21)

[section 14.2]

As we know how to compute trajectorieg(t), p(t)), we know how to compute
this Jacobian and, by32.21), the density(q(t), t) at timet.
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.y

Figure 32.2: Density evolution of an initial surface
.0 = 94R(q,0) into (@Q(t), p(t)) surface timet
later, sketched in 1 dimension. While the number ¢
trajectories and the phase space Liouville volume a
conserved, the density of trajectories projected on t/==
g coordinate varies; trajectories which startedlé at

time zero end up in the intervelb.

32.1.4 Semiclassical wave function

Now we have all ingredients to write down the semiclassicalevfunction at
time t. Consider first the case when our initial wave function carwbéen in

terms of single-valued functior®q’, 0) andR(q', 0). For stficiently short times,
R(g,t) will remain a single-valued function af, and everyd®q configuration
space volume element keeps its orientation. The evolvea faction is in the
semiclassical approximation then given by

V(@D = AdgneR@I - /det’;_‘g A, 0)eRE-0)+R@d D)/

laet?d. graao/m
det 2 éd W(d,0).

As the time progresses the Lagrangian manii@|&(q,t) can develop folds, so
for longer times the value of the phaRfg, t) is not necessarily unique; in general
more than one trajectory will connect poigtandg’ with different phaseR(q, d', t)
accumulated along these paths, see figz&

We thus expect in general a collection offdrent trajectories frong to
q which we will index by j, with different phase incremen®j(q,¢/,t). The
hypothetical particles of the density flow at a given confégion space point can
move with diferent momentag = d4Rj(q.t). This is not an ambiguity, since in
the full (g, p) phase space each particle follows its own trajectory witiigue
momentum.

Whenever the Lagrangian manifold develops a fold, the tien$ithe phase
space trajectories in the fold projected on the configunatimordinates diverges.
As illustrated in figure32.3 when the Lagrangian manifold develops a fold at
g = ¢1; the volume elementig; in the neighborhood of the folding point is
proportional ton_q instead oflq’. The Jacobiadq'/dqdiverges like 1 /a1 — q(t)
when computed along the trajectory going trough the foldiomt atq;. After
the folding the orientation of the intervaly has changed when being mapped
into dop; in addition the functiorR, as well as its derivative which defines the
Lagrangian manifold, becomes multi-valued. Distinctdcapries starting from
different initial pointsg’ can now reach the same final pomt. (That is, the
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Figure 32.3: Folding of the Lagrangian surface
(9, 9qR(a. 1)).

point ¢ may have more than one pre-image.) The projection of a sifiofde
or of an envelope of a family of phase space trajectoriesallsd acaustic; this
expression comes from the Greek word for “capable of burhiegoking the
luminous patterns that one observes swirling across therhodf a swimming
pool.

The folding also changes the orientation of the pieces df lugangian manifold
(9. 94R(q, 1)) with respect to the initial manifold, so the eigenvaluéthe Jacobian
determinant change sign at each fold crossing. We can kaelp of the signs by
writing the Jacobian determinant as

detﬂ‘ = g mMi(@.d.Y det(;_(i‘,‘ ,
i

i

wherem;(g, ¢, t) counts the number of sign changes of the Jacobian detenmina
on the way fromg’ to g along the trajectory indexed with see figure32.3  We
shall refer to the integem;(qg, ', t) as thetopological of the trajectory. So in
general the semiclassical approximation to the wave fands thus a sum over
possible trajectories that start at any infjand end img in time t

) aq/ 1/2 iRj (q,9',t)/A—izm; (0.9 ,t)/2 [
t//sc(q,t)=qu Z‘deta_q’. griad. HETG,0), (32.22)
7 ]

each contribution weighted by corresponding density, @hasrement and the
topological index.

That the correct topological index is obtained by simplyrding the number
of eigenvalue sign changes and taking the square root ishvidus - the careful
argument requires that quantum wave functions evaluategsthe folds remain
single valued.

32.2 Semiclassical propagator

We saw in chapteBO that the evolution of an initial wave functios(g,0) is
completely determined by the propagat®®.(19. As K(q, q', t) itself satisfies the
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Schrddinger equatior3(.14, we can treat it as a wave function parameterized
by the configuration poing/. In order to obtain a semiclassical approximation
to the propagator we follow now the ideas developed in thedastion. There
is, however, one small complication: the initial conditi(80.15 demands that
the propagator dt = 0 is as-function atq = ¢, that is, the amplitude is infinite
at g and the phase is not well defined. Our hypothetical cloud dfighes is
thus initially localized aty = g with any initial velocity. This is in contrast
to the situation in the previous section where we assumedhbaparticles at a
given pointq have well defined velocity (or a discrete set of velocitieisgg by

g = dpH(a. p). We will now derive at a semiclassical expressionKdg, q', t) by
considering the propagator for short times first, and exlegmg from there to
arbitrary timed.

32.2.1 Short time propagator

For infinitesimally short timegt away from the singular poirit= 0 we assume
that it is again possible to write the propagator in terms wofedl defined phase
and amplitude, that is

K(a.d',6t) = AG. o, st)er 7.
As all particles start af = ¢, R(q, ¢, 6t) will be of the form 382.12), that is
R(g. ¢, 6t) = past — H(a, p)dt, (32.23)

with g ~ (Q—q’)/ét. For Hamiltonians of the fornB0.2) we haveq = p/m, which
leads to

R(a.9',6t) =

_ )2
%—V(q)&.

HereV can be evaluated any place along the trajectory fgamq’, for example
at the midway poin¥((q+q’)/2). Inserting this into our ansatz for the propagator
we obtain

Kex(ah o, 0t) ~ A, o, styer (B -vias) (32.24)

For infinitesimal times we can neglect the tekf)st, so K«(q,d',dt) is ad-
dimensional Gaussian with widi"? = i7it/m. This Gaussian is a finite width
approximation to the Dirac delta function

6@ = lim %e*zz/zﬂz (32.25)

-0 \/270
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if A= (m/2rinst)P/2, with A(g, g, 6t) fixed by the Dirac delta function normalization
condition.  The correctly normalized propagator for infisimal timesst is

exercise 32.1
therefore : !

Y-
K@ 000 = (o) el 5V, (32.26)

The short time dynamics of the Lagrangian manifaddgR) which corresponds
to the quantum propagator can now be deduced fR2r2@3; one obtains

OR_~ m |

B_q =p= ﬁ(q -q),
i.e., is the particles start for short times on a Lagrangiamifold which is a plane
in phase space, see figus8.4 Note, that forst — 0, this plane is given by
the conditiong = ¢, that is, particles start on a plane parallel to the momentum
axis. As we have already noted, all particles starjat g but with different
velocities fort = 0. The initial surfaced’, p’ = d4R(d, 0)) is mapped into the
surface (t), p(t)) some timet later. The slope of the Lagrangian plane for a short
finite time is given as

op _ "R _ 9p _m.
ogj g0 ag; ot

The prefactorif/6t)®/2 in (32.26 can therefore be interpreted as the determinant
of the Jacobian of the transformation from final positionrdaatesq to initial
momentum coordinateg, that is

/ L o\ e
Kee(a, o', 6t) = @rnp? dEt% , (32.27)

where

op| _ 9*R(@.q.4t)

. (32.28)
aqj o ﬁqjaqi

The subscript - | o indicates that the partial derivatives are to be evaluatigal w
t,q fixed.

The propagator in32.27 has been obtained for short times. It is, however,
already more or less in its final form. We only have to evolve short time
approximation of the propagator according 3@.229

09 [Y2 R (o 0tV himm (@ at
Ksc(q”,q’at/ + 60 — Z ldet%‘ e'Rj(q Q') /h=izm;(q”,q.t )/ZK(q’ q;’(st) )
i J
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Ph

Figure 32.4: Evolution of the semiclassical
propagator. The configuration which corresponds

the initial conditions of the propagator is a Lagrangia
manifoldq = ¢, that is, a plane parallel to theaxis.

The hypothetical particles are thus initially all placed &

q but take on all possible momenpa. The Jacobian ___
matrix C (32.29 relates an initial volume element in
momentum spacelp’ to a final configuration space
volumedq.

and we included here already the possibility that the phaserhes multi-valued,
that is, that there is more than one path frghto g”. The topological indexn; =
m;j(q”,q’,t) is the number of singularities in the Jacobian along thgedtary j
from ¢ to g”. We can writeKs(q”, ¢/, t’ + 6t) in closed form using the fact that
R(g”’,q,t") + R(a.q,6t) = R(”,q,t" + 6t) and the multiplicativity of Jacobian
determinants, that is

det 2| ger 92| _ger 2P| (32.29)
g Iy 0 Iy st 0" gy 4ot
The final form of the semiclassical ®an Vleck propagator, is thus
S 1 39"1/2 iRj(a( ) /h—imy /2
K00, 1) = Z,: DG ‘det 5] © : (32.30)

This Van Vleck propagator is the essential ingredient os#raiclassical quantization
to follow.

The apparent simplicity of the semiclassical propagatadeseptive. The
wave function is not evolved simply by multiplying by a complnumber of
magnitude y/det dp’/dq and phaser(q, ¢/, t); the more dificult task in general
is to find the trajectories connectingandg in a given timet.

In addition, we have to treat the approximate propagat@r3Q) with some
care. Unlike the full quantum propagator, which satisfies gnoup property
(30.13 exactly, the semiclassical propagator performs this aplgroximately,
that is

Kee 0ot + 1) ~ f Ao Keo( 0 t)Keol- . ). (32.31)

The connection can be made explicit by the stationary phgs®aimation, sec1.2
Approximating the integral in32.31) by integrating only over regions near points
g’ at which the phase is stationary, leads to the stationargepbandition

dR(q.9",t2) N IR, q,tr) _ 0

7 - (32.32)
ﬁqi ﬁqi
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Classical trajectories contribute whenever the final mdomarfor a path frong’

to g” and the initial momentum for a path frog¥ to g coincide. Unlike the
classical evolution of sect5.2 the semiclassical evolution is not an evolution by
linear operator multiplication, but evolution supplermeghby a stationary phase
condition poyt = pin that matches up the classical momenta at each evolution
step.

32.2.2 Free particle propagator

To develop some intuition about the above formalism, cardide case of a free
particle. For a free particle the potential energy vanislies kinetic energy is
ng, and the Hamilton’s principal functior8®.12) is

R(@.9.t) = m(%q’)z. (32.33)

The weight de%’]’ from (32.28 can be evaluated explicitly, and the Van Vleck
propagator is

m \D/2 . )
Km(q,q’,t):(ﬁ) dmia-a)?/2nt (32.34)

identical to the short time propagat®2(26, with V(g) = 0. This case is rather
exceptional: for a free particle the semiclassical propgageirns out to be the
exact quantum propagatdt(qg, ', t), as can be checked by substitution in the
Schrodinger equation3@.2. The Feynman path integral formalism uses trﬂis
. . . remark 32.3]
fact to construct an exact quantum propagator by integyatie free particle
propagator (withv(q) treated as constant for short times) along all possiblé (no

necessarily classical) paths fraghto g. [exercise 32.10]

[exercise 32.11]
[exercise 32.12]

32.3 Semiclassical Green’s function

So far we have derived semiclassical formulas for the timsution of wave
functions, that is, we obtained approximate solutionsédithe dependent Schrodinger
equation 80.1). Even though we assumed in the calculation a time independe
Hamiltonian of the special forn80.2), the derivation would lead to the same final
result 32.30 were one to consider more complicated or explicitly timpetaent
Hamiltonians. The propagator is thus important when we rtiereésted in finite

time quantum mechanicaltfects. For time independent Hamiltonians, the time
dependence of the propagator as well as of wave functiohsvgever, essentially
given in terms of the energy eigen-spectrum of the systenm &30.10. It is
therefore advantageous to switch from a time representtdian energy representation,
that is from the propagator3Q.12 to the energy dependent Green’s function
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(30.16. A semiclassical approximation of the Green’s funct®g(q, q', E) is
given by the Laplace transforn3@.16 of the Van Vleck propagatdfs:(q, q', t):

1>
(a0, E) =17 fo dt €5 K (a, o, 1) . (32.35)

The expression as it stands is not very useful; in order thuat@the integral, at
least to the leading order iy we need to turn to the method of stationary phase
again.

32.3.1 Stationary phase in higher dimensions
[exercise 31.1]

Generalizing the method of se@l.2to d dimensions, consider stationary phase
points fulfilling

d .
d_>q®(x) =0 Vvi=1,...d.

X=Xo

An expansion of the phase up to second order involves nowythengtric matrix
of second derivatives @b(x), that is

82
Dij(x0) = MCD(X)

X=Xo

After choosing a suitable coordinate system which diageesD, we can approximate
the d-dimensional integral byl 1-dimensional Fresnel integrals; the stationary
phase estimate 08(.13 is then

| ~ Z (271 /992 |detD(xo)| " Y2A(xg) €50 00)-Fm0) (32.36)
Xo

where the sum runs over all stationary phase poiptsf ®(x) andm(xp) counts

the number of negative eigenvaluesiixo). [exercise 26.2]

The stationary phase approximation is all that is needethiosemiclassical E:Z:E:ZZ zig
approximation, with the proviso th& in (32.36 has no zero eigenvalues. '

32.3.2 Long trajectories

When evaluating the integre82.35 approximately we have to distinguish between
two types of contributions: those coming from stationaringoof the phase and
those coming from infinitesimally short times. The first typlecontributions
can be obtained by the stationary phase approximation ahtenreated in this
section. The latter originate from the singular behaviahefpropagator for — 0
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where the assumption that the amplitude changes slowly agedpto the phase
is not valid. The short time contributions therefore havéédreated separately,
which we will do in sect32.3.3

The stationary phase points of the integrand in 32.39 are given by the
condition

%R(q, q,t)+E=0. (32.37)

We recognize this condition as the solution 82(19, the timet* = t*(g,q', E) in
which a particle of energ starting out ing’ reacheg). Taking into account the
second derivative of the phase evaluated at the statiofegeppoint,

52

RO )+

R(G q.t) + Et = R(q, ¢, t*) + Et* + %(t —t)?

the stationary phase approximation of the integral comadimg to a classical
trajectory j in the Van Vleck propagator sur3Z.30 yields

1/2

PR YT ok
Gj(a.9.E) = detcj[ ‘] erSimEm (32.38)

ot2

1
in(2ini)P-D72

wherem; = m;(q, g, E) now includes a possible additional phase arising from the
time stationary phase integratiod1(16, andC; = Cj(q.q'.t"), Rj = Rj(a. ¢, t")

are evaluated at the transit tirtie We re-express the phase in terms of the energy
dependent actiorB@.16

S(@.9.E)=R(q.q.t") + Et",  with t"=t"(q.q,E), (32.39)

the Legendre transform of Hamilton’s principal function.otl that the partial
derivative of the action32.39 with respect tay

0S(a.9.E) _ 9R(q.q,t) +(0R(q, q.9 +E) ot
aq; aq; ot g

is equal to

0S(a.9.E) _ 9R(q.q,t")
o aq;

. (32.40)

due to the stationary phase conditi@&2 (37, so the definition of momentum as a
partial derivative with respect tg remains unaltered by the Legendre transform
from time to energy domain.
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Next we will simplify the amplitude term in32.39 and rewrite it as an
explicit function of the energy. Consider thé[¢ 1)x(D + 1)] matrix

82S 82S op ap’
aq’ o g OE ~93aq T~ 9E

D(@.q.E) =( g0 I ):[ nOE ] : (32.41)
J90E  oE2 aq  OE

whereS = S(q, q', E) and we used32.14-32.17) here to obtain the left hand side
of (32.47). The minus signs follow from observing from the definition(82.15
that S(g,q’, E) = —=S(d, q, E). Note thatD is nothing but the Jacobian matrix
of the coordinate transformatiow, ) — (p’,t) for fixed g’. We can therefore
use the multiplication rules of determinants of Jacobiartsch are just ratios of
volume elements, to obtain

detD = (—1)D+1(det"(p"t)) _(_1)o+1(det6(p’,t) a(q,t))
;

aG By (1) (. E)
op ot PR\

_ _1\D+1 -

= (-1) (det—aq )Lq, (det—aE)q,'q detC( atZ) .

We use here the notatig¢det.),  for a Jacobian determinant with partial derivatives
evaluated at, g’ fixed, and likewise for other subscripts. Using the relaf@h 19
which relates the terrdt to 92Rwe can write the determinant &f as a product

of the Van Vleck determinant3@.2§ and the amplitude factor arising from the
stationary phase approximation. The amplitude3in.89 can thus be interpreted
as the determinant of a Jacobian of a coordinate transfamathich includes
time and energy as independent coordinates. This causesdigase in the
dimensionality of the matri relative to the Van Vleck determinartZ.29.

We can now write down the semiclassical approximation ofcibvetribution
of the jth trajectory to the Green’s functioZ.39 in explicitly energy dependent
form:

|detD;|*/% erSi-%m . (32.42)

Gi(G.q.E) =~
i@9.8) = Gz

However, this is still not the most convenient form of the &r's function.

The trajectory contributing t@;(q,q’, E) is constrained to a given energy
E, and will therefore be on a phase space manifold of consteergg, that is
H(q, p) = E. Writing this condition as a partial fierential equation foB(q, ', E),
that is

S
H(g —)=E
@5 = E:
one obtains
d AHap; . 9°S
—H(q, =0= ——— =
aq (@ p) ap; oq qj&qjﬁqi
i) %S
—H({,p) =0= ——(, 32.43
5@ P) 5o (32.43)
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that is the sub-matrig?S/dqdq; has (left- and right-) eigenvectors corresponding
to an eigenvalue 0. Rotate t‘1e local coordinate system atither end of the
trajectory

(01, 02,03, - -+, Gd) = (G A1, a2, -+ u(D-1))

so that one axis points along the trajectory and all otherparpendicular to it

(61, G2, G5, -+ - Ga) — (§,0,0,---,0).

With such local coordinate systems at both ends, with thgifodinal coordinate
axis g pointing along the velocity vector of magnitudgthe stability matrix of
S(g,d, E) has a column and a row of zeros 88 (43 takes form

4 ?s s §=0
aqaq;  9Gi9q

The initial and final velocities are non-vanishing exceptfoints|g| = 0. These
are the turning points (where all energy is potential), aechgsume that neithgr
norq’ is a turning point (in our application - periodic orbits - wencalways chose
g = g not a turning point). In the local coordinate system with emés along
the trajectory and all other perpendicular to it the deteamt of 32.41) is of the
form

ey
0 0 GEaq]
, 2
detD(q.q.E) = (-1)°**|{det 0 ﬁ . (32.44)
%S «
dq0E

The corner entries can be evaluated usBigy17)

%S 9 1 %S 1

do0E ~ dq G OEdq o

As theq) axis points along the velocity direction, velocitigsy” are by construction
almost always positive non-vanishing numbers. In this va@ydeterminant of the
[(D+1)x(D+1)] dimensional matrixD(q, o', E) can be reduced to the determinant
of a[(D - 1)x(D - 1)] dimensionatransverse matrix D, (g, d’, E)

detD(q.q.E) = % detD, (9,9, E)
4°S(a.9, E)
D.(.. E) _¥S@a.B) 32.45
1@, E) R (32.45)
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Putting everything together we obtain tfth trajectory contribution to the semiclassical

Green’s function

[exercise 32.15]

1 1
in(2aiR) D72 oy 12

1/2 i
| eisimim, (32.46)

Gj(a.q,E) = |detD),

where the topological indem; = m;j(q, d’, E) now counts the number of changes

of sign of deID'L along the trajectoryj which connectsy to q at energyE.

The endpoint velocitieg, ¢’ also depend org(q', E) and the trajectory.

32.3.3 Short trajectories

The stationary phase method cannot be used whensmall, both because we
cannot extend the integration i81.16 to —co, and because the amplitude of
K(g,d',t) is divergent. In this case we have to evaluate the integvalving the
short time form of the exact quantum mechanical propag&@@£0

1~ m \P/2 i ma-ay?
/ == — i -V(a)t+Et)
Go(a. ', E) ihfo dt(Zﬂth) ez . (32.47)

By introducing a dimensionless variahte= t y/2m(E — V(q))/miq - d|, the
integral can be rewritten as

Nlo

-1
ey M V2m(E - V) © Ot isoqd. B+
S0t~ g (gt ) Sy ’

whereSo(q, q', E) = vV2m(E - V)|g — /| is the short distance form of the action.
Using the integral representation of the Hankel functiofirsf kind

: 0o
H‘T(Z) — 7|_efivzr/2f e%iz(‘rJrl/r)T—v—ldT
n 0

we can write the short distance form of the Green’s functien a

D-2

} im [ VZME=V)\ 2 ,
Go@d.B) > -2 (m) H%(So(q, q.E)/n). (32.48)

Hankel functions are stabdard, and their the short wavéteagymptotics is described
in standard reference books. The short distance Greerd$idanapproximation
is valid whenSy(q, ¢, E) < 7.
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Résumé

The aim of the semiclassical or short-wavelength methods &pproximate a
solution of the Schrddinger equation with a semiclassi@le function

Uso(a ) = ) Aj(g neRi@on,
i

accurate to the leading order #in Here the sum is over all classical trajectories
that connect the initial poirg’ to the final pointg in time t. “Semi-" refers tas,
the quantum unit of phase in the exponent. The quantum m&shanters only
through this atomic scale, in units of which the variatiortte# phase across the
classical potential is assumed to be large. “—classicédrseo the rest - both the
amplitudesA(g, t) and the phaseR;(q, t) - which are determined by the classical
Hamilton-Jacobi equations.

In the semiclassical approximation the quantum time eimiubperator is
given by thesemiclassical propagator

/1172
‘Zp erRi—Em
q

1

KSC(qv q,, t) = W Z ‘det J
where the topological index;(q, d', t) counts the number of the direction reversal
along thejth classical trajectory that connecfs— qin timet. Until very recently

it was not possible to resolve quantum evolution on quantore scales (such as
one revolution of electron around a nucleus) - physical megsents are almost
always done at time scales asymptotically large compartitetimtrinsic quantum
time scale. Formally this information is extracted by meafresLaplace transform
of the propagator which yields the energy dependemiclassical Green'sfunction

Gx(0.q.E) = Go(a.q.E)+ » Gj(a.d.E)
j

1 V2 o
Gjad.B) = ——%5 erSim7m (32.49)

1 et%
in(2nin) %2199 0dL

i
whereGop(q, ', E) is the contribution of short trajectories wiy(q,q', E) < #,

while the sum is over the contributions of long trajectoi{@8.46 going fromq’
to g with fixed energyE, with Sj(g,q, E) > 7.

Commentary

Remark 32.1 Limit7i — 0. The semiclassical limit# — 0" discussed in secB2.1
is a shorthand notation for the limit in which typical quaies like the actionsR or
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S in semiclassical expressions for the propagator or the ri@éenction become large
compared tgi. In the world that we live in the quantity is a fixed physical constant
whose value{] is 1.054571596(82) 164 Js.

Remark 32.2 Madelung’s fluid dynamics. Already Schrodingerd] noted that

p=p(t) = A =y"y

plays the role of a density, and that the gradienRofmay be interpreted as a local
semiclassical momentum, as the momentum density is

s - —inalA 4 7R
¥(g.t) (—lh@)w(q. t) = 'hAaq +p3q .

A very different interpretation 0f32.3-32.4 has been given by Madelung][ and then
built upon by Bohm §] and others §, 7]. Keeping theZ dependent term in3@.3,
the ordinary diferential equations driving the flowd2.10Q have to be altered; if the
Hamiltonian can be written as kinetic plus potential teva) as in 0.2, thes? term
modifies thep equation of motion as

. ad
=5 (V(a) + Q(@.1) , (32.50)

where, for the example at hand,

o1

Qa.t) = “Im VG aF VP

(32.51)

interpreted by Bohmd] as the “quantum potential.” Madelung observed that Hamié
equation for the momentun32.50 can be rewritten as

v ( 6)\,'_ 10v 19 - (32.52)

ot """ 5a)" = "maa " mpag;”

whereoj = %g;l;cf, is the “pressure” stress tensur= p;/m, andp = A? as defined]
in sect.32.1.3 We recall that the Euleriaﬁ+%ﬁ% is the ordinary derivative of Lagrangian

mechanics, that i% . For comparison, the Euler equation for classical hydradyies is

v a\ 1oV 14
ﬁ+(V-%)V.— maa ny>0q,(p6")’

whereps;; is the pressure tensor.
The classical dynamics corresponding to quantum evoligithus that of an “hypothetical

fluid” experiencingi andp dependent stresses. The “hydrodynamic” interpretation of
guantum mechanics has, however, not been very fruitfulacge.
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Remark 32.3 Path integrals. The semiclassical propagat82(3(Q can also be derived
from Feynman’s path integral formalism. Dirac was the fiostliscover that in the short-
time limit the quantum propagatos2.39 is exact. Feynman noted in 1946 that one can
construct the exact propagator of the quantum Schrodewgeation by formally summing
over all possible (and emphatically not classical) patbmfg’ toq .

Gutzwiller started from the path integral to rederive VarsK’'s semiclassical expression
for the propagator; Van Vleck’s original derivation is venych in the spirit of what has
presented in this chapter. He did, however, not considgualsibility of the formation of
caustics or folds of Lagrangian manifolds and thus did ncitide the topological phases
in his semiclassical expression for the propagator. Somged@s later Gutzwiller4]
added the topological indices when deriving the semiataspropagator from Feynman’s
path integral by stationary phase conditions.

Remark 32.4 Applications of the semiclassical Green’s function. The semiclassical
Green’s function is the starting point of the semiclassiggdroximation in many applications.
The generic semiclassical strategy is to express physieaitgies (for example scattering
amplitudes and cross section in scattering theory, osmilirength in spectroscopy, and
conductance in mesoscopic physics) in terms of the exactr@rdunction and then
replace it with the semiclassical formula.

Remark 32.5 The quasiclassical approximation  The quasiclassical approximation
was introduced by Maslo@]. The term ‘quasiclassical’ is more appropriate than séamgical
since the Maslov type description leads to a pure classucdliton operator in a natural
way. Following mostly ref.?], we give a summary of the quasiclassical approximation,
which was worked out by Maslo¢] in this form. One additional advantage of this
description is that the wave function evolves along onelsictassical trajectory and
we do not have to compute sums over increasing numbers dicdhsrajectories as in
computations involving Van Vleck formulaf].

VanVleck - 28dec2004.tex

EXERCISES 543
Exercises
32.1. Dirac delta function, Gaussian representation. 32.6. 1-dimensional harmonic oscillator. Take a 1

32.2.

32.3.

32.4.

32.5.

Consider the Gaussian distribution function

1 _2/202
6,.(2) = ——e7/%
@ V2ro?

Show that in- — 0 limit this is the Dirac delta function

f dxd(x) = 1if 0 e M, zero otherwise
M

32.7.

Stationary phase approximation in higher dimensions.

All semiclassical approximations are based on saddle

point evaluations of integrals of type

32.8.
I = f dPxA(X) PN/ (32.53)
for small values ofa. Obtain the stationary phase32.9.
estimate
(2nin)P/2
Ix )y APt =,
Zn: VdetD?(x,) 32.10.

whereD?d(x,) denotes the second derivative matrix.

Schrddinger equation in the Madelung form.

Verify the decomposition of Schrddinger equation in82.11.

real and imaginary parts, eq82.3 and 32.4.
)

Transport equations. J Write the wave-
function in the asymptotic form

32.12.

w(a.t) = e ROV S () A(x. ).

n=0

Derive the transport equations for thg by substituting

this into the Schradinger equation and then collecting™ ™"

terms by orders ofi. Notice that equation foA, only
requires knowledge of,_; andR.

Easy examples of the Hamilton’s principal function. 32.14.

CalculateR(q, g, t) for

a) aD-dimensional free particle

13

b) a3-dimensional particle in constant magnetic field

c) a l-dimensional harmonic oscillator. 32.15.

(Continuation: exercisg2.13)
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dimensional harmonic oscillatdd(q) = %qu. Take
WKB wave function of formA(q, t) = a(t) andR(q, t) =
r(t) + b(t)g + c(t)g?, wherer(t),a(t), b(t) and c(t) ar
time dependent cdicients. Derive ordinary dlierentic
equations by using3@.3 and 2.4 and solve ther
(Continuation: exercisg2.9)

1-dimensional linear potential. Take a 1-dimensior
linear potentialU(q) = —-Fg. Take a WKB wav
function of formA(g, t) = a(t) andR(q, t) = r(t) +b(t)g+
c(t)g?, wherer(t), a(t), b(t) andc(t) are time depende
codficients. Derive and solve the ordinaryfférentic
equations from32.3 and 382.4.

D-dimensional quadratic potentials. Generaliz
the above method to generf@tdimensional quadra
potentials.

Time evolution of R, (Continuation of exercis&2.6
Calculate the time evolution 6%(g, 0) = a+ bg+ cg? fo
a 1-dimensional harmonic oscillator using2(129 ant
(32.19.

D-dimensional free particle propagator.  Verify the
results in sect32.2.2 show explicitly that 82.39, the
semiclassical Van Vleck propagator i dimension
solves the Schrodinger’s equation.

Propagator, charged particle in constant magnet
field. Calculate the semiclassical propagato
a charged particle in constant magnetic field
dimensions. Verify that the semiclassical expre:
coincides with the exact solution.

1-dimensional harmonic oscillator propagato
Calculate the semiclassical propagator for @
dimensional harmonic oscillator and verify that i
identical to the exact quantum propagator.

Free particle action. Calculate the energy depenc
action for a free particle, a charged particle in a con
magnetic field and for the harmonic oscillator.

3

Zero length orbits. J Derive the classic
trace (L6.1) rigorously and either add the— 0, zert
length contribution to the trace formula, or show tf
vanishes. Send us a reprint®ifiys. Rev. Lett. with the
correct derivation.

Free particle semiclassical Green’s functior
Calculate the semiclassical Green’s functions fo
systems of exercisg2.13



