
Chapter 25

Turbulence?

I am an old man now, and when I die and go to Heaven
there are two matters on which I hope enlightenment. One
is quantum electro-dynamics and the other is turbulence of
fluids. About the former, I am rather optimistic.

—Sir Horace Lamb

T    honorable cause that would justify sweating through so much
formalism - this is but the sharpening of a pencil in order that we may attack
the Navier-Stokes equation,

ρ

(

∂u
∂t
+ u · ∇u

)

= −∇p+ ν∇2u + f , (25.1)

and solve the problem of turbulence.

Flows described by partial differential equations [PDEs] are said to be ‘infinite
dimensional’ because if one writes them down as a set of ordinary differential
equations [ODEs], one needs infinitely many of them to represent the dynamics
of one partial differential equation. Even though the state space is infinite--
dimensional, the long-time dynamics of many systems of physical interest is finite-
dimensional, contained within aninertial manifold.

Being realistic, we are not so foolhardy to immediately plunge intotheproblem
– there are too many dimensions and indices. Instead, we start small, in one spatial
dimension,u → u, u · ∇u → u∂x, assume constantρ, forget about the pressurep,
and so on. This line of reasoning, as well as many other equally sensible threads of
thought, such as the amplitude equations obtained via weakly nonlinear stability
analysis of steady flows, leads to a small set of frequently studied nonlinear PDEs,
like the one that we turn to now.
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25.1 Fluttering flame front

Romeo: ‘Misshapen chaos of well seeming forms!’
—W. Shakespeare,Romeo and Julliet, Act I, Scene I

The Kuramoto-Sivashinsky [KS] system describes the flame front flutter of
gas burning on your kitchen stove, figure25.1 (a), and many other problems of
greater import, is one of the simplest nonlinear systems that exhibit ‘turbulence’
(in this context often referred to more modestly as ‘spatiotemporally chaotic behavior’).
The time evolution of the ‘flame front velocity’u = u(x, t) on a periodic domain

u(x, t) = u(x+ L, t) is given by

ut +
1
2(u2)x + uxx + uxxxx = 0 , x ∈ [0, L] . (25.2)

In this equationt is the time andx is the spatial coordinate. The subscriptsx andt
denote partial derivatives with respect tox andt: ut = ∂u/d∂, uxxxx stands for the
4th spatial derivative ofu = u(x, t) at positionx and timet. In what follows we
use interchangeably the “dimensionless system size”L̃, or the periodic domain
size L = 2πL̃, as the system parameter. We take note, as in the Navier-Stokes
equation (25.1), of the “inertial” termu∂xu, the “anti-diffusive” term∂2

xu (with a
“wrong” sign), etc..

The term (u2)x makes this anonlinear system. This is one of the simplest
conceivable nonlinear PDE, playing the role in the theory ofspatially extended
systems a bit like the role that thex2 nonlinearity plays in the dynamics of iterated
mappings. The time evolution of a typical solution of the Kuramoto-Sivashinsky

[section 3.3]
system is illustrated by figure25.1(b).

[remark 25.1]

Spatial periodicityu(x, t) = u(x + L, t) makes it convenient to work in the
Fourier space,

u(x, t) =
+∞
∑

k=−∞
ak(t)e

ikx/L̃ , (25.3)

with the 1-dimensional PDE (25.2) replaced by an infinite set of ODEs for the
complex Fourier coefficientsak(t):

ȧk = vk(a) = ((k/L̃)2 − (k/L̃)4) ak − i
k

2L̃

+∞
∑

m=−∞
amak−m . (25.4)

Sinceu(x, t) is real,ak = a∗−k , and we can replace the sum in (25.10) by a sum
overk > 0.

Due to the hyperviscous dampinguxxxx, long time solutions of Kuramoto-
Sivashinsky equation are smooth,ak drop off fast withk, and truncations of (25.10)
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CHAPTER 25. TURBULENCE? 437

Figure 25.1: (a) Kuramoto-Sivashinsky dynamics
visualized as the Bunsen burner flame flutter, with
u = u(x, t) the “velocity of the flame front” at
position x and timet. (b) A typical “turbulent”
solution of the Kuramoto-Sivashinsky equation,
system sizeL = 88.86. The color (gray scale)
indicates the value ofu at a given position and
instant in time. Thex coordinate is scaled with
the most unstable wavelength 2π

√
2, which is

approximately also the mean wavelength of the
turbulent flow. The dynamics is typical of a
large system, in this case approximately 10 mean
wavelengths wide. (from ref. [10])
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to N terms, 16≤ N ≤ 128, yield highly accurate solutions for system sizes
considered here. Robustness of the Fourier representationof KS as a function
of the number of modes kept in truncations of (25.10) is, however, a subtle issue.
Adding an extra mode to a truncation of the system introducesa small perturbation.
However, this can (and often will) throw the dynamics into a different asymptotic
state. A chaotic attractor forN = 15 can collapse into an attractive period-3 cycle
for N = 16, and so on. If we compute, for example, the Lyapunov exponent
λ(L̃,N) for a strange attractor of the system (25.10), there is no reason to expect
λ(L̃,N) to smoothly converge to a limit valueλ(L̃,∞) as N → ∞, because of
the lack of structural stability both as a function of truncation N, and the system
sizeL̃. The topology is more robust for̃L windows of transient turbulence, where
the system can be structurally stable, and it makes sense to compute Lyapunov
exponents, escape rates, etc., for the repeller, i.e., the closure of the set of all
unstable periodic orbits.

Spatial representations of PDEs (such as the 3d snapshots of velocity and
vorticity fields in Navier-Stokes) offer little insight into detailed dynamics of low-
Reflows. Much more illuminating are the state space representations.

The objects explored in this paper: equilibria and short periodic orbits, are
robust both under mode truncations and small system parameter L̃ changes.

25.1.1 Scaling and symmetries

The Kuramoto-Sivashinsky equation (25.2) is space translationally invariant, time
translationally invariant, and invariant under reflectionx→ −x, u→ −u.

Comparingut and (u2)x terms we note thatuhas dimensions of [x]/[t], henceu
is the “velocity,” rather than the “height” of the flame front. Indeed, the Kuramoto-
Sivashinsky equation is Galilean invariant: ifu(x, t) is a solution, thenv + u(x +
2vt, t), with v an arbitrary constant velocity, is also a solution. Withoutloss of
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generality, in our calculations we shall work in the mean zero velocity frame

∫

dx u= 0 . (25.5)

In terms of the system sizeL, the only length scale available, the dimensions
of terms in (25.2) are [x] = L, [t] = L2, [u] = L−1, [ν] = L2 . Scaling out the
“viscosity” ν

x→ xν
1
2 , t → tν , u→ uν−

1
2 ,

brings the Kuramoto-Sivashinsky equation (25.2) to a non-dimensional form

ut = (u2)x − uxx − uxxxx , x ∈ [0, Lν−
1
2 ] = [0, 2πL̃] . (25.6)

In this way we trade in the “viscosity”ν and the system sizeL for a single
dimensionless system size parameter

L̃ = L/(2π
√
ν) (25.7)

which plays the role of a “Reynolds number” for the Kuramoto-Sivashinsky system.

In the literature sometimesL is used as the system parameter, withν fixed to 1,
and at other timesν is varied withL fixed to either 1 or 2π. To minimize confusion,
in what follows we shall state results of all calculations inunits of dimensionless
system sizẽL. Note that the time units also have to be rescaled; for example, if
T∗p is a period of a periodic solution of (25.2) with a givenν andL = 2π, then the
corresponding solution of the non-dimensionalized (25.6) has period

Tp = T∗p/ν . (25.8)

25.1.2 Fourier space representation

Spatial periodic boundary conditionu(x, t) = u(x+ 2πL̃, t) makes it convenient to
work in the Fourier space,

u(x, t) =
+∞
∑

k=−∞
bk(t)e

ikx/L̃ . (25.9)

with (25.6) replaced by an infinite tower of ODEs for the Fourier coefficients:

ḃk = (k/L̃)2
(

1− (k/L̃)2
)

bk + i(k/L̃)
+∞
∑

m=−∞
bmbk−m . (25.10)
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CHAPTER 25. TURBULENCE? 439

This is the infinite set of ordinary differential equations promised in this chapter’s
introduction.

Sinceu(x, t) is real,bk = b∗−k , so we can replace the sum overm in (25.10) by
a sum overm> 0. As ḃ0 = 0, b0 is a conserved quantity, in our calculations fixed
to b0 = 0 by the vanishing mean〈u〉 condition (25.5) for the front velocity.

Example 25.1 Kuramoto-Sivashinsky antisymmetric subspace: The Fourier
coefficients bk are in general complex numbers. We can isolate the antisymmetric
subspace u(x, t) = −u(−x, t) by considering the case of bk pure imaginary, bk = iak,
where ak = −a−k are real, with the evolution equations

ȧk = (k/L̃)2
(

1− (k/L̃)2
)

ak − (k/L̃)
+∞
∑

m=−∞
amak−m . (25.11)

By picking this subspace we eliminate the continuous translational symmetry from our
considerations; that is not an option for an experimentalist, but will do for our purposes.
In the antisymmetric subspace the translational invariance of the full system reduces
to the invariance under discrete translation by half a spatial period L. In the Fourier
representation (25.11) this corresponds to invariance under

a2m→ a2m , a2m+1→ −a2m+1 . (25.12)

The antisymmetric condition amounts to imposing u(0, t) = 0 boundary condition.

25.2 Infinite-dimensional flows: Numerics

The trivial solutionu(x, t) = 0 is an equilibrium point of (25.2), but that is basically
all we know as far as useful analytical solutions are concerned. To develop some
intuition about the dynamics we turn to numerical simulations.

How are solutions such as figure25.1 (b) computed? The salient feature of
such partial differential equations is a theorem saying that for state space contracting
flows, the asymptotic dynamics is describable by afiniteset of “inertial manifold”
ordinary differential equations. How you solve the equation (25.2) numerically is
up to you. Here are some options:

Discrete mesh:You can divide thex interval into a sufficiently fine discrete grid of
N points, replace space derivatives in (25.2) by approximate discrete derivatives,
and integrate a finite set of first order differential equations for the discretized
spatial componentsu j(t) = u( jL/N, t), by any integration routine you trust.

Fourier modes: You can integrate numerically the Fourier modes (25.10), truncating
the ladder of equations to a finite number of modesN, i.e., setak = 0 for k > N. In

[exercise 2.6]
the applied mathematics literature more sophisticated variants of such truncations
are calledGälerkin truncations, or Gälerkin projections. You need to worry about
“stiffness” of the equations and the stability of your integrator.For the parameter
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Figure 25.2: Spatiotemporally periodic solution
u0(x, t), with periodT0 = 30.0118 . The antisymmetric
subspace,u(x, t) = −u(−x, t), so we plotx ∈ [0, L/2].
System sizeL̃ = 2.89109, N = 16 Fourier modes
truncation. (From ref. [4])

Figure 25.3: Projections of a typical 16-
dimensional trajectory onto different 3-
dimensional subspaces, coordinates (a){a1,a2,a3},
(b) {a1,a2,a4}. System sizẽL = 2.89109,N = 16
Fourier modes truncation. (From ref. [4].)
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values explored in this chapter, truncationsN in range 16 to 64 yields sufficient
accuracy.

Pseudo-spectral methods:You can mix the two methods, exploiting the speed
of Fast Fourier Transforms.

Example 25.2 Kuramoto-Sivashinsky simulation, antisymmetric subspac e: To
get started, we set ν = 0.029910, L = 2π in the Kuramoto-Sivashinsky equation (25.2),
or, equivalently, ν = 1, L = 36.33052 in the non-dimensionalized (25.6). Consider
the antisymmetric subspace (25.11), so the non-dimensionalized system size is L̃ =
L/4π = 2.89109. Truncate (25.11) to 0 ≤ k ≤ 16, and integrate an arbitrary initial
condition. Let the transient behavior settle down.

Why this L̃? For this system size L̃ the dynamics appears to be chaotic, as
far as can be determined numerically. Why N = 16? In practice one repeats the
same calculation at different truncation cutoffs N, and makes sure that the inclusion of
additional modes has no effect within the desired accuracy. For this system size N = 16
suffices.

Once a trajectory is computed in Fourier space, we can recover and plot the
corresponding spatiotemporal pattern u(x, t) over the configuration space using (25.9),
as in figure 25.1 (b) and figure 25.2. Such patterns give us a qualitative picture of
the flow, but no detailed dynamical information; for that, tracking the evolution in a
high-dimensional state space, such as the space of Fourier modes, is much more
informative.

25.3 Visualization

The problem with high-dimensional representations, such as truncations of the
infinite tower of equations (25.10), is that the dynamics is difficult to visualize.
The best we can do without much programming is to examine the trajectory’s

[section 25.3]
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Figure 25.4: The attractor of the Kuramoto-
Sivashinsky system (25.10), plotted as the a6

component of thea1 = 0 Poincaré section return
map. Here 10,000 Poincaré section returns of a typical
trajectory are plotted. Also indicated are the periodic
points 0, 1, 01 and 10. System sizeL̃ = 2.89109,
N = 16 Fourier modes truncation. (From ref. [4].)

projections onto any three axesai , a j , ak, as in figure25.3.

The question is: how is one to look at such a flow? It is not clearthat restricting
the dynamics to a Poincaré section necessarily helps - after all, a section reduces
a (d + 1)-dimensional flow to ad-dimensional map, and how much is gained by
replacing a continuous flow in 16 dimensions by a set of pointsin 15 dimensions?
The next example illustrates the utility of visualization of dynamics by means of
Poincaré sections.

Example 25.3 Kuramoto-Sivashinsky Poincar é return maps: Consider the
Kuramoto-Sivashinsky equation in the N Fourier modes representation. We pick (arbitrarily)
the hyperplane a1 = 0 as the Poincaré section, and integrate (25.10) with a1 = 0, and an
arbitrary initial point (a2, . . . , aN). When the flow crosses the a1 = 0 hyperplane in the
same direction as initially, the initial point is mapped into (a′2, . . .a

′
N) = P(a2, . . . , aN).

This defines P, the Poincaré return map (3.1) of the (N − 1)-dimensional a1 = 0
hyperplane into itself.

Figure 25.4 is a typical result. We have picked - again arbitrarily - a subspace
such as a6(n+ 1) vs. a6(n) in order to visualize the dynamics. While the topology of the
attractor is still obscure, one thing is clear: even though the flow state space is infinite
dimensional, the attractor is finite and thin, barely thicker than a line.

The above example illustrates why a Poincaré section givesa more informative
snapshot of the flow than the full flow portrait. While no fine structure is discernible
in the full state space flow portraits of the Kuramoto-Sivashinsky dynamics, figure25.3,
the Poincaré return map figure25.4reveals the fractal structure in the asymptotic
attractor.

In order to find a better representation of the dynamics, we now turn to its
topological invariants.

25.4 Equilibria of equilibria

(Y. Lan and P. Cvitanović)

The set of equilibria and their stable/ unstable manifolds form the coarsest topological
framework for organizing state space orbits.
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The equilibrium conditionut = 0 for the Kuramoto-Sivashinsky equation PDE
(25.6) is the ODE

(u2)x − uxx − uxxxx = 0

which can be analyzed as a dynamical system in its own right. Integrating once
we get

u2 − ux − uxxx = c , (25.13)

wherec is an integration constant whose value strongly influences the nature of
the solutions. Written as a 3−d dynamical system with spatial coordinatex playing
the role of “time,” this is a volume preserving flow

ux = v , vx = w , wx = u2 − v− c , (25.14)

with the “time” reversal symmetry,

x→ −x, u→ −u, v→ v, w→ −w .

From (25.14) we see that

(u+ w)x = u2 − c .

If c < 0, u+ w increases without bound withx→ ∞, and every solution escapes
to infinity. If c = 0, the origin (0, 0, 0) is the only bounded solution.

For c > 0 there is muchc-dependent interesting dynamics, with complicated
fractal sets of bounded solutions. The sets of the solutionsof the equilibrium
condition (25.14) are themselves in turn organized by the equilibria of the equilibrium
condition, and the connections between them. Forc > 0 the equilibrium points of
(25.14) arec+ = (

√
c, 0, 0) andc− = (−

√
c, 0, 0). Linearization of the flow around

c+ yields stability eigenvalues [2λ ,−λ ± iθ] with

λ =
1
√

3
sinhφ , θ = coshφ ,

andφ fixed by sinh 3φ = 3
√

3c. Hencec+ has a 1−d unstable manifold and a 2−d
stable manifold along which solutions spiral in. By thex → −x “time reversal”
symmetry, the invariant manifolds ofc− have reversed stability properties.

The non–wandering set fo this dynamical system is quite pretty, and surprisingly
hard to analyze. However, we do not need to explore the fractal set of the Kuramoto-
Sivashinsky equilibria for infinite size system here; for a fixed system sizeL

PDEs - 27apr2007.tex



CHAPTER 25. TURBULENCE? 443

Figure 25.5: The non–wandering set under study
appears to consist of three patches: the left part
(SL), the center part (SC) and the right part (SR),
each centered around an unstable equilibrium: (a)
centralC1 equilibrium, (b) sideR1 equilibrium on
the interval [0, L]. (a)
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with periodic boundary condition, the only surviving equilibria are those with
periodicity L. They satisfy the equilibrium condition for (25.10)

(k/L̃)2
(

1− (k/L̃)2
)

bk + i(k/L̃)
+∞
∑

m=−∞
bmbk−m = 0 . (25.15)

Periods of spatially periodic equilibria are multiples ofL. Every timeL̃ crosses an
integer valueL̃ = n, n-cell states are generated through pitchfork bifurcations. In
the full state space they form an invariant circle due to the translational invariance
of (25.6). In the antisymmetric subspace considered here, they corresponds to two
points, half-period translates of each other of the form

u(x, t) = −2
∑

k

bkn sin(knx) ,

wherebkn ∈ R.

For any fixed periodL the number of spatially periodic solutions is finite
up to a spatial translation. This observation can be heuristically motivated as
follows. Finite dimensionality of the inertial manifold bounds the size of Fourier
components of all solutions. On a finite-dimensional compact manifold, an
analytic function can only have a finite number of zeros. So, the equilibria, i.e.,
the zeros of a smooth velocity field on the inertial manifold,are finitely many.

For a sufficiently smallL the number of equilibria is small, mostly concentrated
on the low wave number end of the Fourier spectrum. These solutions may be
obtained by solving the truncated versions of (25.15).

Example 25.4 Some Kuramoto-Sivashinsky equilibria:

25.5 Why does a flame front flutter?

We start by considering the case whereaq is an equilibrium point (2.8). Expanding
around the equilibrium pointaq, and using the fact that the matrixA = A(aq) in
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Figure 25.6: Lyapunov exponentsλ1,k versusk for

the least unstable spatio-temporally periodic orbit1
of the Kuramoto-Sivashinsky system, compared with
the Floquet exponents of theu(x, t) = 0 stationary
solution,λk = k2 − νk4. The eigenvalueλ1,k for k ≥ 8
falls below the numerical accuracy of integration and
are not meaningful. The cycle1 was computed using
methods of chapter12. System sizeL̃ = 2.89109,
N = 16 Fourier modes truncation. (From ref. [4])
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(4.2) is constant, we can apply the simple formula (4.30) also to the fundamental
matrix of an equilibrium point of a PDE,

Jt(aq) = eAt A = A(aq) .

Example 25.5 Stability matrix, antisymmetric subspace: The Kuramoto-Sivashinsky
flat flame front u(x, t) = 0 is an equilibrium point of (25.2). The stability matrix (4.3)
follows from (25.10)

Ak j(a) =
∂vk(a)
∂a j

= ((k/L̃)2 − (k/L̃)4)δk j − 2(k/L̃)ak− j . (25.16)

For the u(x, t) = 0 equilibrium solution the stability matrix is diagonal, and – as in (4.16)
– so is the fundamental matrix Jt

k j(0) = δk je((k/L̃)2−(k/L̃)4)t .

For L̃ < 1, u(x, t) = 0 is the globally attractive stable equilibrium. As the
system sizẽL is increased, the “flame front” becomes increasingly unstable and
turbulent, the dynamics goes through a rich sequence of bifurcations on which we
shall not dwell here.

The |k| <?? long wavelength perturbations of the flat-front equilibrium are
linearly unstable, while all|k| >?? short wavelength perturbations are strongly
contractive. The highk eigenvalues, corresponding to rapid variations of the
flame front, decay so fast that the corresponding eigendirections are physically
irrelevant. To illustrate the rapid contraction in the non-leading eigendirections
we plot in figure25.6 the eigenvalues of the equilibrium in the unstable regime,
for relatively small system size, and compare them with the stability eigenvalues
of the least unstable cycle for the same system size. The equilibrium solution is
very unstable, in 5 eigendirections, the least unstable cycle only in one. Note
that for k > 7 the rate of contraction is so strong that higher eigendirections
are numerically meaningless for either solution; even though the flow is infinite-
dimensional, the attracting set must be rather thin.

While in general for̃L sufficiently large one expects many coexisting attractors
in the state space,in numerical studies most random initialconditions settle converge
to the same chaotic attractor.
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From (25.10) we see that the originu(x, t) = 0 has Fourier modes as the linear
stability eigenvectors. When|k| ∈ (0, L̃), the corresponding Fourier modes are
unstable. The most unstable modes has|k| = L̃/

√
2 and defines the scale of basic

building blocks of the spatiotemporal dynamics of the Kuramoto-Sivashinsky equation
in large system size limit, as shown in sect.??.

Consider now the case of initialak sufficiently small that the bilinearamak−m

terms in (25.10) can be neglected. Then we have a set of decoupled linear equations
for ak whose solutions are exponentials, at most a finite number forwhichk2 > νk4

is growing with time, and infinitely many withνk4 > k2 decaying in time. The
growth of the unstable long wavelengths (low|k|) excites the short wavelengths
through theamak−m nonlinear term in (25.10). The excitations thus transferred are
dissipated by the strongly damped short wavelengths, and a “chaotic equilibrium”
can emerge. The very short wavelengths|k| ≫ 1/

√
ν remain small for all times,

but the intermediate wavelengths of order|k| ∼ 1/
√
ν play an important role in

maintaining the dynamical equilibrium. As the damping parameter decreases,
the solutions increasingly take on shock front character poorly represented by the
Fourier basis, and many higher harmonics may need to be kept in truncations of
(25.10).

Hence, while one may truncate the high modes in the expansion(25.10), care
has to be exercised to ensure that no modes essential to the dynamics are chopped
away.

In other words, even though our starting point (25.2) is an infinite-dimensional
dynamical system, the asymptotic dynamics unfolds on a finite-dimensional attracting
manifold, and so we are back on the familiar territory of sect. 2.2: the theory of a
finite number of ODEs applies to this infinite-dimensional PDE as well.

We can now start to understand the remark on page37that for infinite dimensional
systems time reversibility is not an option: evolution forward in time strongly
damps the higher Fourier modes. There is no turning back: if we reverse the time,
the infinity of high modes that contract strongly forward in time now explodes,
instantly rendering evolution backward in time meaningless. As so much you are
told about dynamics, this claim is also wrong, in a subtle way: if the initial u(x, 0)
is in the non–wandering set (2.2), the trajectory is well defined both forward and
backward in time. For practical purposes, this subtlety is not of much use, as any
time-reversed numerical trajectory in a finite-mode truncation will explode very
quickly, unless special precautions are taken.

When is an equilibrium important? There are two kinds of roles equilibria
play:

“Hole” in the natural measure. The more unstable eigendirections it has (for
example, theu = 0 solution), the more unlikely it is that an orbit will recur in its
neighborhood.

unstable manifold of a “least unstable” equilibrium. Asymptotic dynamics
spends a large fraction of time in neighborhoods of a few equilibria with only a
few unstable eigendirections.
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Table 25.1: Important Kuramoto-Sivashinsky equilibria: the first few Floquet exponents

S µ(1) ± i ω(1) µ(2) ± i ω(2) µ(3) ± i ω(3)

C1 0.04422± i 0.26160 -0.255± i 0.431 -0.347± i 0.463
R1 0.01135± i 0.79651 -0.215± i 0.549 -0.358± i 0.262
T 0.25480 -0.07± i 0.645 -0.264

Example 25.6 Stability of Kuramoto-Sivashinsky equilibria:

spiraling out in a plane, all other directions contracting

Stability of “center” equilibrium

linearized Floquet exponents:

(µ(1) ± i ω(1), µ(2) ± i ω(2), · · ·) = (0.044± i 0.262, −0.255± i 0.431, · · ·)

The plane spanned by µ(1) ± i ω(1) eigenvectors rotates with angular period
T ≈ 2π/ω(1) = 24.02.

a trajectory that starts near the C1 equilibrium point spirals away per one rotation
with multiplier Λradial ≈ exp(µ(1)T) = 2.9.

each Poincaré section return, contracted into the stable manifold by factor of
Λ2 ≈ exp(µ(2)T) = 0.002

The local Poincaré return map is in practice 1− dimensional

25.6 Periodic orbits

expanding eigenvalue of the least unstable spatio-temporally periodic orbit 1:
Λ1 = −2.0 . . .

very thin Poincaré section
thickness∝ least contracting eigenvalueΛ2 = 0.007. . .

15-d → 15-d Poincaré return map projection on the [a6 → a6] Fourier
component is not even 1→ 1.

25.7 Intrinsic parametrization

Both in the Rössler flow of example3.4, and in the Kuramoto-Sivashinsky system
of example25.3we have learned that the attractor is very thin, but otherwise the
return maps that we found were disquieting – neither figure3.6 nor figure25.4
appeared to be one-to-one maps. This apparent loss of invertibility is an artifact of
projection of higher-dimensional return maps onto lower-dimensional subspaces.
As the choice of lower-dimensional subspace is arbitrary, the resulting snapshots
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Figure 25.7: The Poincaré return map of the
Kuramoto-Sivashinsky system (25.10) figure 25.4,
from the unstable manifold of the1 fixed point to
the (neighborhood of) the unstable manifold. Also
indicated are the periodic points0 and01.
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of return maps look rather arbitrary, too. Other projections might look even less
suggestive.

Such observations beg a question: Does there exist a “natural,” intrinsically
optimal coordinate system in which we should plot of a returnmap?

As we shall now argue (see also sect.12.1), the answer is yes: The intrinsic
coordinates are given by the stable/unstable manifolds, and a return map should be
plotted as a map from the unstable manifold back onto the immediate neighborhood
of the unstable manifold.

Examination of numerical plots such as figure25.3suggests that a more thoughtful
approach would be to find a coordinate transformationy = h(x) to a “center
manifold,” such that in the new, curvilinear coordinates large-scale dynamics takes
place in (y1, y2) coordinates, with exponentially small dynamics iny3, y4 · · ·. But
- thinking is extra price - we do not know how to actually accomplish this.

Both in the example of the Rössler flow and of the Kuramoto-Sivashinsky
system we sketched the attractors by running a long chaotic trajectory, and noted
that the attractors are very thin, but otherwise the return maps that we plotted were
disquieting – neither figure3.6nor figure25.4appeared to be 1-to-1 maps. In this
section we show how to use such information to approximatelylocate cycles.

25.8 Energy budget

The space average of a functiona = a(x, t) on the intervalL,

〈a〉 =
1
L

∫ L

0
dx a(x, t) , (25.17)

is in general time dependent. Its mean value is given by the time average

a = lim
t→∞

1
t

∫ t

0
dτ 〈a〉 = lim

t→∞

1
tL

∫ t

0

∫ L

0
dτdx a(x, τ) . (25.18)
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The mean valuea, a = a(u) evaluated on an equilibrium or relative equilibrium
u(x, t) = uq(x− ct) is

aq = 〈a〉q . (25.19)

Evaluation of the infinite time average (25.18) on a function of a periodTp periodic
orbit or relative periodic orbitup(x, t) requires only a single traversal of the periodic
solution,

ap =
1
Tp

∫ Tp

0
dτ 〈a〉 . (25.20)

Equation (25.2) can be written as

ut = −Vx , V(x, t) = 1
2u2 + ux + uxxx . (25.21)

u is related to the “flame-front height”h(x, t) by u = hx, soE can be interpreted
as the mean energy density (25.22). So, even though KS is a phenomenological
small-amplitude equation, the time-dependent quantity

E =
1
L

∫ L

0
dx V(x, t) =

1
L

∫ L

0
dx

u2

2
(25.22)

has a physical interpretation [?] as the average “energy” density of the flame front.
This analogy to the corresponding definition of the mean kinetic energy density
for the Navier-Stokes will be useful in what follows.

The energy (25.22) is also the quadratic norm in the Fourier space,

E =
∞
∑

k=1

Ek , Ek =
1
2 |ak|2 . (25.23)

Take time derivative of the energy density (25.22), substitute (25.2) and integrate
by parts. Total derivatives vanish by the spatial periodicity on theL domain:

Ė = 〈ut u〉 = −
〈(

u2

2
+ u ux + u uxxx

)

x
u

〉

=

〈

+ux
u2

2
+ (ux)

2 + ux uxxx

〉

. (25.24)

Substitution by (??) verifies that for an equilibriumE is constant:

Ė =

〈(

u2

2
+ ux + uxxx

)

ux

〉

= E 〈ux〉 = 0 .
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Figure 25.8: Power input
〈

(ux)2
〉

vs. dissipation
〈

(uxx)2
〉

for L = 22 equilibria and relative
equilibria, for several periodic orbits and relative
periodic orbits, and for a typical “turbulent” state.
Note that(up,x)2 of the (Tp,dp) = (32.8,10.96)
relative periodic orbit, figure??(c), which appears
well embedded within the turbulent state, is close
to the turbulent expectation(ux)2 .
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Figure 25.9: E1 (red), E2 (green), E3 (blue),
connections fromE1 to A(L/4)E1 (green), from
A(L/4)E1 to E1 (yellow-green) and fromE3 to
A(L/4)E1 (blue), along with a generic long-time
“turbulent” evolution (grey) forL = 22. Three
different projections of the (E,

〈

(ux)2
〉

,
〈

(uxx)2
〉

)−
〈

(ux)2
〉

) representation are shown.
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The first term in (25.24) vanishes by integration by parts,
〈

(u3)x

〉

= 3
〈

ux u2
〉

= 0 ,
and integrating the third term by parts yet again we get that the energy variation

Ė =
〈

(ux)
2
〉

−
〈

(uxx)
2
〉

(25.25)

balances the KS equation (25.2) power pumped in by the anti-diffusionuxx against
energy dissipated by the hypervicosityuxxxx [?].

In figure 25.8 we plot the power input
〈

(ux)2
〉

vs. dissipation
〈

(uxx)2
〉

for
all L = 22 equilibria and relative equilibria , several periodic orbits and relative
periodic orbits, and for a typical “turbulent” evolution. The time averaged energy
densityE computed on a typical orbit goes to a constant, so the expectation values
(25.26) of drive and dissipation exactly balance each out:

Ė = lim
t→∞

1
t

∫ t

0
dτ Ė = (ux)2 − (uxx)2 = 0 . (25.26)

In particular, the equilibria and relative equilibria sit on the diagonal in figure25.8,
and so do time averages computed on periodic orbits and relative periodic orbits:

Ep =
1

Tp

∫ Tp

0
dτE(τ)
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(ux)2
p =

1
Tp

∫ Tp

0
dτ

〈

(ux)
2
〉

= (uxx)2
p . (25.27)

In the Fourier basis (25.23) the conservation of energy on average takes form

0 =
+∞
∑

k=1

((k/L̃)2 − (k/L̃)4) Ek , Ek(t) = |ak(t)|2 . (25.28)

The largek convergence of this series is insensitive to the system sizeL; Ek have
to decrease much faster than 1/(k/L̃)4. Deviation of Ek from this bound for
small k determines the active modes. This may be useful to bound the number
of equilibria, with the upper bound given by zeros of a small number of long
wavelength modes.

Résum é

Turbulence is the graveyard of theories
— Hans W. Liepmann

We have learned that an instanton is an analytic solution of Yang-Mills equations
of motion, but shouldn’t a strongly nonlinear field theory dynamics be dominated
by turbulent solutions? How are we to think about systems where every spatiotemporal
solution is unstable?

Here we think of turbulence in spatially extended systems interms of recurrent
spatiotemporal patterns. Pictorially, dynamics drives a given spatially extended
system through a repertoire of unstable patterns; as we watch a turbulent system
evolve, every so often we catch a glimpse of a familiar pattern:

=⇒ other swirls =⇒

For any finite spatial resolution, the system follows approximately for a finite
time a pattern belonging to a finite alphabet of admissible patterns, and the long
term dynamics can be thought of as a walk through the space of such patterns.
Recasting this image into mathematics is the subject of thisbook.

The problem one faces with high-dimensional flows is that their topology
is hard to visualize, and that even with a decent starting guess for a point on
a periodic orbit, methods like the Newton-Raphson method are likely to fail.
Methods that start with initial guesses for a number of points along the cycle, such

[chapter 27]
as the multipoint shooting method of sect.12.3, are more robust. The relaxation
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(or variational) methods take this strategy to its logical extreme, and start by a
guess of not a few points along a periodic orbit, but a guess ofthe entire orbit. As
these methods are intimately related to variational principles and path integrals,
we postpone their introduction to chapter27.

At present the theory is in practice applicable only to systems with a low
intrinsic dimension– the minimum number of coordinates necessary to capture its
essential dynamics. If the system is very turbulent (a description of its long time
dynamics requires a space of very high intrinsic dimension)we are out of luck.

Commentary

Remark 25.1 Model PDE systems. The theorem on finite dimensionality of inertial
manifolds of state space contracting PDE flows is proven in ref. [1]. The Kuramoto-
Sivashinsky equation was introduced in refs. [2, 3]. Holmes, Lumley and Berkooz [5]
offer a delightful discussion of why this system deserves studyas a staging ground for
studying turbulence in full-fledged Navier-Stokes equation. How good a description of a
flame front this equation is not a concern here; suffice it to say that such model amplitude
equations for interfacial instabilities arise in a varietyof contexts - see e.g. ref. [6] -
and this one is perhaps the simplest physically interestingspatially extended nonlinear
system.

For equilibria theL-independent bound onE is given by Michaelson [?]. The best
current bound[?, ?] on the long-time limit ofE as a function of the system sizeL scales
asE ∝ L3/2.

The work described in this chapter was initiated by Putkaradze’s 1996 term project
(seeChaosBook.org/extras), and continued by Christiansen Cvitanović, Davidchack,
Gibson, Halcrow, Lan, and Siminos [4, 7, 8, 16, 15, 10, 11, 9].

Exercises

25.1. Galilean invariance of the Kuramoto-Sivashinsky equation.

(a) Verify that the Kuramoto-Sivashinsky equation is
Galilean invariant: ifu(x, t) is a solution, then
v + u(x + 2vt, t), with v an arbitrary constant
velocity, i s also a solution.

(b) Verify that mean

〈u〉 = 1
L

∫

L
dx u

is conserved by the flow.

(c) Argue that the choice (25.5) of the vanishing mean
velocity, 〈u〉 = 0 leads to no loss of generality in
calculations that follow.

(d) [thinking is extra cost] Inspection
of various “turbulent” solutions of Kuramoto-
Sivashinsky equation reveals subregions of
“traveling waves” with locally nonzero〈u〉. Is
there a way to use Galilean invariance locally,
even though we eliminated it by the〈u〉 = 0
condition?

25.2. Infinite dimensional dynamical systems are not
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smooth. Many of the operations we consider
natural for finite dimensional systems do not have
smooth behavior in infinite dimensional vector spaces.
Consider, as an example, a concentrationφ diffusing on
R according to the diffusion equation

∂tφ =
1
2
∇2φ .

(a) Interpret the partial differential equation as an
infinite dimensional dynamical system. That is,
write it asẋ = F(x) and find the velocity field.

(b) Show by examining the norm

‖φ‖2 =
∫

R

dxφ2(x)

that the vector fieldF is not continuous.

(c) Try the norm

‖φ‖ = sup
x∈R
|φ(x)| .

Is F continuous?

(d) Argue that the semi-flow nature of the problem is
not the cause of our difficulties.

(e) Do you see a way of generalizing these results?
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