Chapter 25

Turbulence?

I am an old man now, and when | die and go to Heaven
there are two matters on which | hope enlightenment. One
is quantum electro-dynamics and the other is turbulence of
fluids. About the former, | am rather optimistic.

—Sir Horace Lamb

formalism - this is but the sharpening of a pencil in ordet theamay attack 0%

THERE 1s oNLY ONE honorable cause that would justify sweating through so mucp

the Navier-Stokes equation,
ou 2
pE-%—U'VU =-Vp+vWu+f, (25.1)

and solve the problem of turbulence.

Flows described by partial fierential equations [PDEs] are said to be ‘infinite
dimensional’ because if one writes them down as a set of argidifferential
equations [ODES], one needs infinitely many of them to reprethe dynamics
of one partial diterential equation. Even though the state space is infinite--
dimensional, the long-time dynamics of many systems ofighygterest is finite-
dimensional, contained within anertial manifold

Being realistic, we are not so foolhardy to immediately gielimtotheproblem
—there are too many dimensions and indices. Instead, wesstall, in one spatial
dimensionu — u, u- Vu — udy, assume constapt forget about the pressupe
and so on. This line of reasoning, as well as many other ggsefisible threads of
thought, such as the amplitude equations obtained via weekilinear stability
analysis of steady flows, leads to a small set of frequentigisti nonlinear PDEs,
like the one that we turn to now.
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25.1 Fluttering flame front

Romeo: ‘Misshapen chaos of well seeming forms!’
—W. Shakespear&omeo and JullietAct I, Scene |

The Kuramoto-Sivashinsky [KS] system describes the flaroet filutter of
gas burning on your kitchen stove, figu2g.1(a), and many other problems of
greater import, is one of the simplest nonlinear systemisetkiaibit ‘turbulence’
(in this context often referred to more modestly as ‘spatigiorally chaotic behavior’).
The time evolution of the ‘flame front velocityl = u(x,t) on a periodic domain
u(x, t) = u(x+ L,t) is given by

Ut + %(UZ)X + Uxx + Uxxxx = 0, xe[0,L]. (25.2)

In this equatiort is the time and is the spatial coordinate. The subscrip@ndt
denote partial derivatives with respectt@andt: u; = du/dd, uxxxx Stands for the
4th spatial derivative ofi = u(x,t) at positionx and timet. In what follows we
use interchangeably the “dimensionless system dizedr the periodic domain
sizeL = 2zL, as the system parameter. We take note, as in the NavieesStok
equation 25.1), of the “inertial” termudyu, the “anti-difusive” terma2u (with a
“wrong” sign), etc..

The term (?)x makes this anonlinear system This is one of the simplest
conceivable nonlinear PDE, playing the role in the theorgptially extended
systems a bit like the role that th& nonlinearity plays in the dynamics of iterated
mappings. The time evolution of a typical solution of the Kmoto-Sivashinsky[
system is illustrated by figurg5.1(b).

Spatial periodicityu(x,t) = u(x + L,t) makes it convenient to work in the
Fourier space,

u(x.t) = i at)dt (25.3)

k=—00

with the 1-dimensional PDE26.2) replaced by an infinite set of ODEs for the
complex Fourier cocientsa(t):

. . . . k +00
&= W(@) = ((k/L)? - (k/D)*) ax - 5T n;W Bmk-m- (25.4)

Sinceu(x, t) is real,a = a*, , and we can replace the sum 25(10 by a sum
overk > 0.

Due to the hyperviscous dampingxxx long time solutions of Kuramoto-
Sivashinsky equation are smoodh drop df fast withk, and truncations of45.10
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Figure 25.1:(a) Kuramoto-Sivashinsky dynamics
visualized as the Bunsen burner flame flutter, with
u = u(xt) the “velocity of the flame front” at
position x and timet. (b) A typical “turbulent”
solution of the Kuramoto-Sivashinsky equation,
system sizeL = 8886. The color (gray scale)
indicates the value ofi at a given position and

instant in time. Thex coordinate is scaled with e
the most unstable wavelengthr 92, which is \
approximately also the mean wavelength of th

turbulent flow. The dynamics is typical of a
large system, in this case approximately 10 mea
wavelengths wide. (from refl[]) - -

! 5 6
@) o/ (27V2)
(b)

to N terms, 16< N < 128, yield highly accurate solutions for system sizes
considered here. Robustness of the Fourier representaftigt® as a function
of the number of modes kept in truncations 25 (10 is, however, a subtle issue.
Adding an extra mode to a truncation of the system introdacesall perturbation.
However, this can (and often will) throw the dynamics intoifiedent asymptotic
state. A chaotic attractor fod = 15 can collapse into an attractive period-3 cycle
for N = 16, and so on. If we compute, for example, the Lyapunov expone
A(L, N) for a strange attractor of the syste@5(10), there is no reason to expect
A(L, N) to smoothly converge to a limit valug(L, ) asN — oo, because of
the lack of structural stability both as a function of trutiea N, and the system
sizeL. The topology is more robust fdrwindows of transient turbulence, where
the system can be structurally stable, and it makes sensantpute Lyapunov
exponents, escape rates, etc., for the repeller, i.e.,|tisere of the set of all
unstable periodic orbits.

Spatial representations of PDEs (such as thesi8apshots of velocity and
vorticity fields in Navier-Stokes)fter little insight into detailed dynamics of low-
Reflows. Much more illuminating are the state space repreienta

The objects explored in this paper: equilibria and shoreqm orbits, are
robust both under mode truncations and small system pagaimehanges.

25.1.1 Scaling and symmetries

The Kuramoto-Sivashinsky equatia?5(2) is space translationally invariant, time
translationally invariant, and invariant under reflectior> —x, u — —u.

Comparingy and (%) terms we note thathas dimensions of]/[t], henceu
is the “velocity,” rather than the “height” of the flame fromhdeed, the Kuramoto-
Sivashinsky equation is Galilean invariant:uifx, t) is a solution, therv + u(x +
2vt, ), with v an arbitrary constant velocity, is also a solution. Withtngts of
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generality, in our calculations we shall work in the mearoaeslocity frame

fdxu:o. (25.5)

In terms of the system sidg the only length scale available, the dimensions
of terms in 5.9 are [x] = L, [t] = L2, [u] = L%, [v] = L2. Scaling out the
“viscosity” v

1 1
X—Xv2, t-otv, u-uw?z,

brings the Kuramoto-Sivashinsky equati@b (2 to a non-dimensional form
U = (Uz)x — Uxx — Uxxxx, x € [0, LV_%] =10, 27r|:] . (25.6)

In this way we trade in the “viscosityy and the system sizk for a single
dimensionless system size parameter

L=L/(2rvy) (25.7)

which plays the role of a “Reynolds number” for the Kuram@&toashinsky system.
In the literature sometimédsis used as the system parameter, wiftxed to 1,
and at other timesis varied withL fixed to either 1 or 2. To minimize confusion,
in what follows we shall state results of all calculationauinits of dimensionless
system sizd.. Note that the time units also have to be rescaled: for exanipl
Ty is a period of a periodic solution o2§.2) with a givenv andL = 2r, then the
corresponding solution of the non-dimensionalized.§) has period

To=Th/v. (25.8)

25.1.2 Fourier space representation

Spatial periodic boundary conditiargx, t) = u(x + 2rL, t) makes it convenient to
work in the Fourier space,

D = ) b (25.9)

k=—00

with (25.6) replaced by an infinite tower of ODEs for the Fourier fiméents:

b = (k/D)? (1= (k/D)?) b + i(k/D) f Dbk - (25.10)
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This is the infinite set of ordinary fierential equations promised in this chapter’s
introduction.

4
Figure 25.2: Spatiotemporally periodic soluton =0
Uo(x, t), with periodT, = 30.0118 . The antisymmetric
subspaceu(x,t) = —u(—x,t), so we plotx € [0, L/2]. > -
System sizel = 2.89109,N = 16 Fourier modes x/m
truncation. (From ref.4])

Sinceu(x, t) is real,bx = b*, , so we can replace the sum ovein (25.10 by
a sum ovem > 0. Asby = 0, by is a conserved quantity, in our calculations fixed
to by = 0 by the vanishing meafu) condition @5.5) for the front velocity.

Example 25.1 Kuramoto-Sivashinsky antisymmetric subspace: The Fourier
coefficients by are in general complex numbers. We can isolate the antisymmetric
subspace u(x,t) = —u(—x,t) by considering the case of by pure imaginary, by = ia,
where a = —a i are real, with the evolution equations

+00
ac= (D2 (1- WD) ac- D) D andcn. (25.12) _ L ,

Mo Figure 25.3: Projections of a typical 16-
dimensional trajectory onto fierent 3-
dimensional subspaces, coordinategda)a,, as},
(b) {ay, @, as). System sizd. = 2.89109,N = 16
Fourier modes truncation. (From ref]])

By picking this subspace we eliminate the continuous translational symmetry from our
considerations; that is not an option for an experimentalist, but will do for our purposes.
In the antisymmetric subspace the translational invariance of the full system reduces
to the invariance under discrete translation by half a spatial period L. In the Fourier

representation (25.11) this corresponds to invariance under values explored in this chapter, truncatiddsn range 16 to 64 yields sficient

accuracy.
8m — azm, Boms1 — —a2mil- (25.12)
Pseudo-spectral methods:You can mix the two methods, exploiting the speed

The antisymmetric condition amounts to imposing u(0,t) = 0 boundary condition. of Fast Fourier Transforms.

Example 25.2 Kuramoto-Sivashinsky simulation, antisymmetric subspac e: To
get started, we setv = 0.02991Q L = 2r in the Kuramoto-Sivashinsky equation (25.2),
or, equivalently, v = 1, L = 36.33052in the non-dimensionalized (25.6). Consider
the antisymmetric subspace (25.11), so the non-dimensionalized system size is L=
L/4r = 2.89109 Truncate (25.11) to 0 < k < 16, and integrate an arbitrary initial

25.2 Infinite-dimensional flows: Numerics

The trivial solutionu(x, t) = 0 is an equilibrium point 0fZ5.2), but that is basically
all we know as far as useful analytical solutions are corexbrifo develop some
intuition about the dynamics we turn to numerical simulasio

How are solutions such as figue®.1 (b) computed? The salient feature of
such partial dferential equations is a theorem saying that for state spanteacting
flows, the asymptotic dynamics is describable liynie set of “inertial manifold”
ordinary diferential equations. How you solve the equati®f.®) numerically is
up to you. Here are some options:

Discrete mesh:You can divide thecinterval into a séficiently fine discrete grid of
N points, replace space derivatives #5(2 by approximate discrete derivatives,
and integrate a finite set of first orderfférential equations for the discretized
spatial components;(t) = u(jL/N,t), by any integration routine you trust.

Fourier modes: You can integrate numerically the Fourier mod2s. (0, truncating

condition. Let the transient behavior settle down.

Why this L? For this system size L the dynamics appears to be chaotic, as
far as can be determined numericall. Why N = 16? In practice one repeats the
same calculation at different truncation cutoffs N, and makes sure that the inclusion of
additional modes has no effect within the desired accuracy. For this system size N = 16
suffices.

Once a trajectory is computed in Fourier space, we can recover and plot the
corresponding spatiotemporal pattern u(x, t) over the configuration space using (25.9),
as in figure 25.1 (b) and figure 25.2. Such patterns give us a qualitative picture of
the flow, but no detailed dynamical information; for that, tracking the evolution in a
high-dimensional state space, such as the space of Fourier modes, is much more
informative.

25.3 Visualization

the ladder of equations to a finite number of molege., set, = 0fork > N. In )

. . . . 5 . [exercise 2.6]
the applied mathematics literature more sophisticateidnar of such truncations
are calledGalerkin truncationsor Gélerkin projections You need to worry about
“stiffness” of the equations and the stability of your integrafar. the parameter

The problem with high-dimensional representations, suchruncations of the
infinite tower of equations25.10), is that the dynamics is fiicult to visualize.
The best we can do without much programming is to examinertjectory’s [section 25.3]
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-1.38

ug(n+1)
&

Figure 25.4: The attractor of the Kuramoto-
Sivashinsky system 26.10, plotted as theas 1
component of thea; = 0 Poincaré section return -14s
map. Here 10,000 Poincaré section returns of a typic

trajectory are plotted. Also indicated are the periodi 1
points 0, 1, 01 and 10. System size= 2.89109, B T e
N = 16 Fourier modes truncation. (From ref].) ag(n)

projections onto any three axesa;, a, as in figure25.3

The question is: how is one to look at such a flow? Itis not dleatrrestricting
the dynamics to a Poincaré section necessarily helpsr-alfte section reduces
a (d + 1)-dimensional flow to a@-dimensional map, and how much is gained by
replacing a continuous flow in 16 dimensions by a set of paini$ dimensions?
The next example illustrates the utility of visualizatiohdynamics by means of
Poincaré sections.

Example 25.3 Kuramoto-Sivashinsky Poincar é return maps: Consider the

Kuramoto-Sivashinsky equation in the N Fourier modes representation. We pick (arbitrarily)

the hyperplane a; = 0 as the Poincaré section, and integrate (25.10) witha; = 0, and an
arbitrary initial point (ay, ..., an). When the flow crosses the ay = 0 hyperplane in the
same direction as initially, the initial point is mapped into (&,,...a)) = P(az,...,an)-
This defines P, the Poincaré return map (3.1) of the (N — 1)-dimensional a3 = 0
hyperplane into itself.

Figure 25.4 is a typical result. We have picked - again arbitrarily - a subspace
such as ag(n + 1) vs. ag(n) in order to visualize the dynamics. While the topology of the
attractor is still obscure, one thing is clear: even though the flow state space is infinite
dimensional, the attractor is finite and thin, barely thicker than a line.

The above example illustrates why a Poincaré section givesre informative
snapshot of the flow than the full flow portrait. While no fineisture is discernible
in the full state space flow portraits of the Kuramoto-Sivasky dynamics, figur@5.3
the Poincaré return map figue®.4reveals the fractal structure in the asymptotic
attractor.

In order to find a better representation of the dynamics, we tuon to its
topological invariants.

25.4  Equilibria of equilibria

(Y. Lan and P. Cvitanovic)

The set of equilibria and their stablanstable manifolds form the coarsest topological
framework for organizing state space orbits.
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The equilibrium conditionu; = 0 for the Kuramoto-Sivashinsky equation PDE
(25.6) is the ODE

(uz)x = Uxx — Uxxxx = 0

which can be analyzed as a dynamical system in its own rigitegtating once
we get

U2 = Uy — Ugx = C, (25.13)

wherec is an integration constant whose value strongly influentesature of
the solutions. Written as a@dynamical system with spatial coordinatelaying
the role of “time,” this is a volume preserving flow

U =V, Vi =W, wy=ul-v-c, (25.14)
with the “time” reversal symmetry,

X—> =X, U—>-U V-V, W-— -W.
From (25.14) we see that

(U+Ww)y =1 —-c.
If ¢ < 0, u+ w increases without bound with— co, and every solution escapes
to infinity. If ¢ = 0, the origin (00, 0) is the only bounded solution.

Forc > 0 there is muchke-dependent interesting dynamics, with complicated
fractal sets of bounded solutions. The sets of the solutadrthe equilibrium
condition @5.14) are themselves in turn organized by the equilibria of thelixium
condition, and the connections between them.d=e10 the equilibrium points of

(25.19 arec, = (+/c,0,0) andc_ = (- +/c, 0,0). Linearization of the flow around
¢, yields stability eigenvalues 2 —1 + i6] with

1
A= —sinhg, 0 = coshg,
V3

and¢ fixed by sinh® = 3v3c. Hencec, has a 4d unstable manifold and a@
stable manifold along which solutions spiral in. By the» —x “time reversal”
symmetry, the invariant manifolds of have reversed stability properties.

The non—-wandering set fo this dynamical system is quiteypratd surprisingly
hard to analyze. However, we do not need to explore the freetaf the Kuramoto-
Sivashinsky equilibria for infinite size system here; for xefi system sizé
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1 1
Figure 25.5: The non—-wandering set under study =0 30
appears to consist of three patches: the left part
(SL), the center partSc) and the right part$g), - =
each centered around an unstable equilibrium: (a) R R
centralC, equilibrium, (b) sideR; equilibrium on - 10 20 30 40 0 10 20 30 40
the interval [QL]. (@) X (b) X

with periodic boundary condition, the only surviving edjuila are those with
periodicity L. They satisfy the equilibrium condition fo2%.10

(k/D)? (1= (/D)%) b +i(k/ L) i brmbim = 0. (25.15)

m=—co

Periods of spatially periodic equilibria are multiplesLofEvery timef crosses an
integer valuel = n, n-cell states are generated through pitchfork bifurcations
the full state space they form an invariant circle due to thedlational invariance
of (25.6). In the antisymmetric subspace considered here, thegsmmonds to two
points, half-period translates of each other of the form

U ) = -2 )" brasinkny),
k

wherebyn, € R.

For any fixed period. the number of spatially periodic solutions is finite
up to a spatial translation. This observation can be hécalst motivated as
follows. Finite dimensionality of the inertial manifold bods the size of Fourier
components of all solutions.  On a finite-dimensional corhpaanifold, an
analytic function can only have a finite number of zeros. 8e,dquilibria, i.e.,
the zeros of a smooth velocity field on the inertial manifelce finitely many.

For a stificiently smallL the number of equilibria is small, mostly concentrated
on the low wave number end of the Fourier spectrum. Thesdisaumay be
obtained by solving the truncated versions25.(L5.

Example 25.4 Some Kuramoto-Sivashinsky equilibria:

25.5 Why does a flame front flutter?

We start by considering the case whagés an equilibrium pointZ.8). Expanding
around the equilibrium poirdg, and using the fact that the matux = A(ag) in
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10

-10
Figure 25.6: Lyapunov exponentds, versusk for

the least unstable spatio-temporally periodic ofbit L
of the Kuramoto-Sivashinsky system, compared with "
the Floquet exponents of th&x,t) = O stationary
solution, 4 = k? — vk*. The eigenvaluay, for k > 8 40
falls below the numerical accuracy of integration and
are not meaningful. The cyclewas computed using %
methods of chaptet2. System sizel = 2.89109, . L L
N = 16 Fourier modes truncation. (From ref])| 2 4 6 8 10 12 14 16

(4.2) is constant, we can apply the simple formwua3() also to the fundamental
matrix of an equilibrium point of a PDE,

Jag) =" A=Ay).

Example 25.5 Stability matrix, antisymmetric subspace: The Kuramoto-Sivashinsky
flat flame front u(x,t) = 0 is an equilibrium point of (25.2). The stability matrix (4.3)
follows from (25.10)

(@)

e = (/D7 = (/D))o - 20/ D - (25.16)
]

Aij(@) =
For the u(x, t) = 0 equilibrium solution the stability matrix is diagonal, and — as in (4.16)
—s0 is the fundamental matrix Jj (0) = di;&®/ BE=(D

ForL < 1, u(xt) = O is the globally attractive stable equilibrium. As the
system sizd. is increased, the “flame front” becomes increasingly uristahd
turbulent, the dynamics goes through a rich sequence afchaiions on which we
shall not dwell here.

The |kl <?? long wavelength perturbations of the flat-front equilibr are
linearly unstable, while allk] >?? short wavelength perturbations are strongly
contractive. The higtk eigenvalues, corresponding to rapid variations of the
flame front, decay so fast that the corresponding eigertirecare physically
irrelevant. To illustrate the rapid contraction in the Heading eigendirections
we plot in figure25.6the eigenvalues of the equilibrium in the unstable regime,
for relatively small system size, and compare them with thbikty eigenvalues
of the least unstable cycle for the same system size. Thélequn solution is
very unstable, in 5 eigendirections, the least unstabléeayaly in one. Note
that fork > 7 the rate of contraction is so strong that higher eigentimes
are numerically meaningless for either solution; even ghothe flow is infinite-
dimensional, the attracting set must be rather thin.

While in general foll sufficiently large one expects many coexisting attractors

in the state space,in numerical studies most random initiadlitions settle converge
to the same chaotic attractor.
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From 25.10 we see that the origin(x, t) = 0 has Fourier modes as the linear
stability eigenvectors. Whelk| € (0, L), the corresponding Fourier modes are
unstable. The most unstable modes [kas L/ V2 and defines the scale of basic
building blocks of the spatiotemporal dynamics of the KuotwrSivashinsky equation
in large system size limit, as shown in se22.

Consider now the case of initia suficiently small that the bilineaamayx_m
terms in @5.10 can be neglected. Then we have a set of decoupled lineati@ugia
for ax whose solutions are exponentials, at most a finite numbevtiarh k2 > vik4
is growing with time, and infinitely many withk* > k? decaying in time. The
growth of the unstable long wavelengths (I¢k}) excites the short wavelengths
through theamax_m nonlinear term inZ5.10. The excitations thus transferred are
dissipated by the strongly damped short wavelengths, anbaotic equilibrium”
can emerge. The very short wavelengfiss 1/ +/v remain small for all times,
but the intermediate wavelengths of ordkdr~ 1/+/v play an important role in
maintaining the dynamical equilibrium. As the damping paeter decreases,
the solutions increasingly take on shock front characterlpaepresented by the
Fourier basis, and many higher harmonics may need to be tképirications of
(25.10.

Hence, while one may truncate the high modes in the expal@toh0, care
has to be exercised to ensure that no modes essential torthmitys are chopped
away.

In other words, even though our starting poi2% () is an infinite-dimensional
dynamical system, the asymptotic dynamics unfolds on @fuliinensional attracting
manifold, and so we are back on the familiar territory of s2ct the theory of a
finite number of ODESs applies to this infinite-dimensionalBP&s well.

We can now start to understand the remark on @gkat for infinite dimensional
systems time reversibility is not an option: evolution fard in time strongly
damps the higher Fourier modes. There is no turning backe ifeverse the time,
the infinity of high modes that contract strongly forward iime& now explodes,
instantly rendering evolution backward in time meaningless so much you are
told about dynamics, this claim is also wrong, in a subtle viftye initial u(x, 0)
is in the non—-wandering se? (), the trajectory is well defined both forward and
backward in time. For practical purposes, this subtletyoisai much use, as any
time-reversed numerical trajectory in a finite-mode traiocawill explode very
quickly, unless special precautions are taken.

When is an equilibrium important? There are two kinds of roles equilibria
play:

“Hole” in the natural measure The more unstable eigendirections it has (for
example, ther = 0 solution), the more unlikely it is that an orbit will recur its
neighborhood.

unstable manifold of a “least unstable” equilibriumAsymptotic dynamics

spends a large fraction of time in neighborhoods of a fewlixjia with only a
few unstable eigendirections.
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Table 25.1: Important Kuramoto-Sivashinsky equilibria: the first feoguet exponents

S 2T+ [ PR Ot 0@
C; 0.04422+10.26160 -0.25%10.431 -0.34%1i0.463
R;  0.01135+i0.79651 -0.21%i0.549 -0.358:i0.262
T 0.25480 -0.0%10.645 -0.264

Example 25.6 Stability of Kuramoto-Sivashinsky equilibria:
spiraling out in a plane, all other directions contracting
Stability of “center” equilibrium
linearized Floquet exponents:

e+ i0® 4@+ iw®,..) = (0.044+ 10262, —0.255+ i 0.431, ---)
The plane spanned by u® + iw® eigenvectors rotates with angular period

T ~ 21/0® = 2402

a trajectory that starts near the Cy equilibrium point spirals away per one rotation
with multiplier A pagig ~ exp®T) = 2.9.

each Poincaré section return, contracted into the stable manifold by factor of
Az ~ exp®T) = 0.002

The local Poincaré return map is in practice 1 — dimensional

25.6 Periodic orbits

expanding eigenvalue of the least unstable spatio-tertipguariodic orbit 1:
A =-20...

very thin Poincaré section
thicknessx least contracting eigenvalue, = 0.007. ..

15d — 15 Poincaré return map projection on thas [— ag] Fourier
component is not even® 1.

25.7 Intrinsic parametrization

Both in the Rossler flow of exampB4, and in the Kuramoto-Sivashinsky system
of example25.3we have learned that the attractor is very thin, but othenthe
return maps that we found were disquieting — neither figufenor figure25.4
appeared to be one-to-one maps. This apparent loss ofibiligris an artifact of
projection of higher-dimensional return maps onto lowierehsional subspaces.
As the choice of lower-dimensional subspace is arbitréug,resulting snapshots

PDEs - 27apr2007.tex



CHAPTER 25. TURBULENCE? 447

0.4
0.7
06 01
0.5~
Pls) 04

0.3~
Figure 25.7: The Poincaré return map of the

Kuramoto-Sivashinsky system2%.1Q figure 25.4 or 10

from the unstable manifold of th& fixed point to 0.1

the (neighborhood of) the unstable manifold. Also 4o . . . , . .
indicated are the periodic poinBsand01. 0 oL 02z 03 04 05 06 o7 08

of return maps look rather arbitrary, too. Other projediionight look even less
suggestive.

Such observations beg a question: Does there exist a “hatatansically
optimal coordinate system in which we should plot of a retuap?

As we shall now argue (see also sei2.1), the answer is yes: The intrinsic
coordinates are given by the stagbiestable manifolds, and a return map should be
plotted as a map from the unstable manifold back onto the idietezneighborhood
of the unstable manifold.

Examination of numerical plots such as fig@fe3suggests that a more thoughtful

approach would be to find a coordinate transformator: h(x) to a “center
manifold,” such that in the new, curvilinear coordinatagéascale dynamics takes
place in §1,y») coordinates, with exponentially small dynamicsy#y, - - -. But

- thinking is extra price - we do not know how to actually acgdish this.

Both in the example of the Rossler flow and of the Kuramot@&hinsky
system we sketched the attractors by running a long chaejectory, and noted
that the attractors are very thin, but otherwise the retuapsithat we plotted were
disquieting — neither figurd.6 nor figure25.4appeared to be 1-to-1 maps. In this
section we show how to use such information to approximdoslgte cycles.

25.8 Energy budget
The space average of a functiar= a(x, t) on the interval,
1 L
(a) = —f dxaxt), (25.17)
L Jo
is in general time dependent. Its mean value is given by the &verage

1 t 1 t L
a=lim —fd-r (@ = lim —ffd‘rdxa(x,‘r). (25.18)
toeo t o t—eo tL Jo Jo
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The mean valu@, a = a(u) evaluated on an equilibrium or relative equilibrium
u(x,t) = ug(x—ct) is

ag = () - (25.19)

Evaluation of the infinite time average. 18 on a function of a period, periodic
orbit or relative periodic orbitip(x, t) requires only a single traversal of the periodic
solution,

1 (e
ap=— dr (a) . (25.20)
Tp 0

Equation £5.2) can be written as
U = —Vy, V(X 1) = 3U% + Uy + Ugyy. (25.21)

u is related to the “flame-front heighti(x, t) by u = hy, SOE can be interpreted
as the mean energy densi35(22. So, even though KS is a phenomenological
small-amplitude equation, the time-dependent quantity

1t 1w
E_Efode(xt)_Edex? (25.22)

has a physical interpretatiofi][as the average “energy” density of the flame front.
This analogy to the corresponding definition of the meantlénenergy density
for the Navier-Stokes will be useful in what follows.

The energy 5.22 is also the quadratic norm in the Fourier space,
E=) E. Ec=3al (25.23)

Take time derivative of the energy densib(22), substitute 25.2) and integrate
by parts. Total derivatives vanish by the spatial peridgion theL domain:

m-
Il

u2
<Utu>=—<(7+uux+quXX) u>

2
<+Ux u? + ()2 + Uy uxxx> . (25.24)
Substitution by ??) verifies that for an equilibriunt is constant:

. u2
E= <(? + Uy + uxxx)ux> =E(uy) =0.
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Figure 25.8: Power input((u,)?) vs. dissipation
() for L = 22 equilibria and relative

equilibria, for several periodic orbits and relative

periodic orbits, and for a typical “turbulent” state.
Note that(up)? of the (Tp,d,) = (328,10.96)
relative periodic orbit, figur@?(c), which appears

well embedded within the turbulent state, is close

to the turbulent expectatiafui)? .

Figure 25.9: E; (red), E; (green), E; (blue),
connections fromE; to A(L/4)E; (green), from
A(L/4)E; to E; (yellow-green) and fromE; to
A(L/4)E; (blue), along with a generic long-time
“turbulent” evolution (grey) forL = 22. Three
different projections of theg <(ux)2>, ((uxx)z))—
(()?)) representation are shown.
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The first term in 25.24) vanishes by integration by pargi®)x) = 3(uy U?) = 0,
and integrating the third term by parts yet again we get timenergy variation

E = ((W)?) - ((xd?)

(25.25)

balances the KS equatio®q.2 power pumped in by the anti{tlisionuyx against
energy dissipated by the hypervicosityxx [?].

In figure 25.8 we plot the power inpu((ux)2> VS. dissipation((uxx)2 for
all L = 22 equilibria and relative equilibria , several periodibits and relative
periodic orbits, and for a typical “turbulent” evolution. h& time averaged energy
densityE computed on a typical orbit goes to a constant, so the exjmtizalues
(25.26 of drive and dissipation exactly balance each out:

- A
E= lIim ff drE = (u)? - (Uxx)? = 0. (25.26)
—00 0

In particular, the equilibria and relative equilibria sit the diagonal in figuré5.8§
and so do time averages computed on periodic orbits andvesfriodic orbits:

E L
p—T—pfo - Er)
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—_— TD [
(G Tip fo dr (1)) = (Ue)?p.- (25.27)

In the Fourier basis?26.23 the conservation of energy on average takes form
+00 " - _
0= (WP~ (DB, Et) = latd). (25.28)
k=1

The largek convergence of this series is insensitive to the systemLsiEg have
to decrease much faster thap(/L)*.  Deviation of Ey from this bound for
smallk determines the active modes. This may be useful to bounduher
of equilibria, with the upper bound given by zeros of a smaimiber of long
wavelength modes.

Résumé

Turbulence is the graveyard of theories
— Hans W. Liepmann

We have learned that an instanton is an analytic solutioraofYMills equations
of motion, but shouldn’t a strongly nonlinear field theoryndynics be dominated
by turbulent solutions? How are we to think about systemseveeery spatiotemporal
solution is unstable?

Here we think of turbulence in spatially extended systentsrims of recurrent
spatiotemporal patterns. Pictorially, dynamics drivesvery spatially extended
system through a repertoire of unstable patterns; as wehveaterbulent system
evolve, every so often we catch a glimpse of a familiar patter

D5

— other swirls =

\

For any finite spatial resolution, the system follows apprately for a finite
time a pattern belonging to a finite alphabet of admissibtéepas, and the long
term dynamics can be thought of as a walk through the spacacbf gatterns.
Recasting this image into mathematics is the subject obidxk.

The problem one faces with high-dimensional flows is thatr tt@pology
is hard to visualize, and that even with a decent startingsgdier a point on
a periodic orbit, methods like the Newton-Raphson methadliaely to fail.
Methods that start with initial guesses for a number of oatbng the cycle, such
as the multipoint shooting method of set®.3 are more robust. The relaxatio#mm' 27l
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(or variational) methods take this strategy to its logicete@me, and start by a
guess of not a few points along a periodic orbit, but a guesiseoéntire orbit. As
these methods are intimately related to variational ppiesi and path integrals,
we postpone their introduction to chapf.

At present the theory is in practice applicable only to systevith a low
intrinsic dimension- the minimum number of coordinates necessary to capture its
essential dynamics. If the system is very turbulent (a detsen of its long time
dynamics requires a space of very high intrinsic dimensiompre out of luck.

Commentary

Remark 25.1 Model PDE systems. The theorem on finite dimensionality of inertial
manifolds of state space contracting PDE flows is provenfini¢ =~ The Kuramoto-
Sivashinsky equation was introduced in refs. §]. Holmes, Lumley and Berkooz]
offer a delightful discussion of why this system deserves saglg staging ground for
studying turbulence in full-fledged Navier-Stokes equatidow good a description of a
flame front this equation is not a concern herdisa it to say that such model amplitude
equations for interfacial instabilities arise in a varietfycontexts - see e.g. ref6] -
and this one is perhaps the simplest physically interestpragially extended nonlinear
system.

For equilibria theL-independent bound o is given by Michaelsonq). The best
current bound?, ?] on the long-time limit ofE as a function of the system sizescales
asE « 132,

The work described in this chapter was initiated by Putkze&d1996 term project
(see ChaosBook.org/extras), and continued by Christiansen Cvitanovi¢, Davidchack,
Gibson, Halcrow, Lan, and Siminos},[7, 8, 16, 15, 10, 11, 9].

Exercises

25.1. Galilean invariance of the Kuramoto-Sivashinsky equation  (c) Argue that the choice6.5 of the vanishing mean

velocity, (uy = 0 leads to no loss of generality in

calculations that follow.
(a) Verify that the Kuramoto-Sivashinsky equation is
Galilean invariant: ifu(x,t) is a solution, then
V + u(x + 2vtt), with v an arbitrary constant
velocity, i s also a solution.

(b) Verify that mean

)
(d) J [thinking is extra cost] Inspection

“traveling waves” with locally nonzerdu). Is

there a way to use Galilean invariance locally,

1 even though we eliminated it by the)) = 0
(uy = Edexu condition?

is conserved by the flow. 25.2. Infinite dimensional dynamical systems are not

exerPDEs - 22apr2007.tex

of various “turbulent” solutions of Kuramoto-
Sivashinsky equation reveals subregions of
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smooth. Many of the operations we consider that the vector fieldr is not continuous.
natural for finite dimensional systems do not have
smooth behavior in infinite dimensional vector spaces.
Consider, as an example, a concentrafiatiffusing on

R according to the diusion equation

(c) Trythe norm

llgll = suplg(x)] .
1 XeR.
e = Evzqs.
Is F continuous?
(a) Interpret the partial élierential equation as an
infinite dimensional dynamical system. That is,
write it asX = F(x) and find the velocity field.
(b) Show by examining the norm

llgl? = f} dx¢?(X)

(d) Argue that the semi-flow nature of the proble
not the cause of our fliculties.

(e) Do you see a way of generalizing these resul
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