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Predrag Cvitanović – Roberto Artuso – Ronnie Mainieri – Gregor Tanner –
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Chapter 1

Overture

If I have seen less far than other men it is because I have
stood behind giants.

—Edoardo Specchio

R classic theoretical physics textbooks leaves a sense that there are
holes large enough to steam a Eurostar train through them. Here we learn
about harmonic oscillators and Keplerian ellipses - but where is the chapter

on chaotic oscillators, the tumbling Hyperion? We have justquantized hydrogen,
where is the chapter on the classical 3-body problem and its implications for
quantization of helium? We have learned that an instanton isa solution of field-
theoretic equations of motion, but shouldn’t a strongly nonlinear field theory have
turbulent solutions? How are we to think about systems wherethings fall apart;
the center cannot hold; every trajectory is unstable?

This chapter offers a quick survey of the main topics covered in the book.
Throughout the book

indicates that the section is on a pedestrian level - you are expected to
know/learn this material

indicates that the section is on a cyclist, somewhat advanced level

indicates that the section requires a hearty stomach and is probably best
skipped on first reading

fast track points you where to skip to

tells you where to go for more depth on a particular topic

indicates an exercise that might clarify a point in the text

indicates that a figure is still missing–you are urged to fetch it

1



CHAPTER 1. OVERTURE 2

We start out by making promises–we will right wrongs, no longer shall you suffer
the slings and arrows of outrageous Science of Perplexity. We relegate a historical
overview of the development of chaotic dynamics to appendixA, and head straight
to the starting line: A pinball game is used to motivate and illustrate most of the
concepts to be developed in ChaosBook.

This is a textbook, not a research monograph, and you should be able to follow
the thread of the argument without constant excursions to sources. Hence there are
no literature references in the text proper, all learned remarks and bibliographical
pointers are relegated to the “Commentary” section at the end of each chapter.

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation with
science, we acquire a firmer hold over the vicissitudes of
life and meet them with greater calm, but in reality we
have done no more than to find a way to escape from our
sorrows.

—Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton’s first frustrating(and unsuccessful)
crack at the 3-body problem, lunar dynamics. Nature is rich in systems governed
by simple deterministic laws whose asymptotic dynamics arecomplex beyond
belief, systems which are locally unstable (almost) everywhere but globally recurrent.
How do we describe their long term dynamics?

The answer turns out to be that we have to evaluate a determinant, take a
logarithm. It would hardly merit a learned treatise, were itnot for the fact that this
determinant that we are to compute is fashioned out of infinitely many infinitely
small pieces. The feel is of statistical mechanics, and thatis how the problem
was solved; in the 1960’s the pieces were counted, and in the 1970’s they were
weighted and assembled in a fashion that in beauty and in depth ranks along with
thermodynamics, partition functions and path integrals amongst the crown jewels
of theoretical physics.

This book isnot a book about periodic orbits. The red thread throughout the
text is the duality between the local, topological, short-time dynamically invariant
compact sets (equilibria, periodic orbits, partially hyperbolic invariant tori) and
the global long-time evolution of densities of trajectories. Chaotic dynamics is
generated by the interplay of locally unstable motions, andthe interweaving of
their global stable and unstable manifolds. These featuresare robust and accessible
in systems as noisy as slices of rat brains. Poincaré, the first to understand deterministic
chaos, already said as much (modulo rat brains). Once this topology is understood,
a powerful theory yields the observable consequences of chaotic dynamics, such
as atomic spectra, transport coefficients, gas pressures.

That is what we will focus on in ChaosBook. The book is a self-contained
graduate textbook on classical and quantum chaos. Your professor does not know
this material, so you are on your own. We will teach you how to evaluate a
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determinant, take a logarithm–stuff like that. Ideally, this should take 100 pages
or so. Well, we fail–so far we have not found a way to traverse this material in
less than a semester, or 200-300 page subset of this text. Nothing to be done.

1.2 Chaos ahead

Things fall apart; the centre cannot hold.
—W.B. Yeats:The Second Coming

The study of chaotic dynamics is no recent fashion. It did notstart with the
widespread use of the personal computer. Chaotic systems have been studied for
over 200 years. During this time many have contributed, and the field followed no
single line of development; rather one sees many interwovenstrands of progress.

In retrospect many triumphs of both classical and quantum physics were a
stroke of luck: a few integrable problems, such as the harmonic oscillator and
the Kepler problem, though ‘non-generic,’ have gotten us very far. The success
has lulled us into a habit of expecting simple solutions to simple equations–an
expectation tempered by our recently acquired ability to numerically scan the state
space of non-integrable dynamical systems. The initial impression might be that
all of our analytic tools have failed us, and that the chaoticsystems are amenable
only to numerical and statistical investigations. Nevertheless, a beautiful theory
of deterministic chaos, of predictive quality comparable to that of the traditional
perturbation expansions for nearly integrable systems, already exists.

In the traditional approach the integrable motions are usedas zeroth-order
approximations to physical systems, and weak nonlinearities are then accounted
for perturbatively. For strongly nonlinear, non-integrable systems such expansions
fail completely; at asymptotic times the dynamics exhibitsamazingly rich structure
which is not at all apparent in the integrable approximations. However, hidden
in this apparent chaos is a rigid skeleton, a self-similar tree ofcycles(periodic
orbits) of increasing lengths. The insight of the modern dynamical systems theory
is that the zeroth-order approximations to the harshly chaotic dynamics should
be very different from those for the nearly integrable systems: a good starting
approximation here is the stretching and folding of baker’sdough, rather than the
periodic motion of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get some feeling for how
and why unstable cycles come about, we start by playing a gameof pinball. The
reminder of the chapter is a quick tour through the material covered in ChaosBook.
Do not worry if you do not understand every detail at the first reading–the intention
is to give you a feeling for the main themes of the book. Details will be filled out
later. If you want to get a particular point clarified right now, on the margin

[section 1.4]
points at the appropriate section.
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CHAPTER 1. OVERTURE 4

Figure 1.1: A physicist’s bare bones game of pinball.

1.3 The future as in a mirror

All you need to know about chaos is contained in the
introduction of [ChaosBook]. However, in order to
understand the introduction you will first have to read the
rest of the book.

—Gary Morriss

That deterministic dynamics leads to chaos is no surprise toanyone who has tried
pool, billiards or snooker–the game is about beating chaos–so we start our story
about what chaos is, and what to do about it, with a game ofpinball. This might
seem a trifle, but the game of pinball is to chaotic dynamics what a pendulum is
to integrable systems: thinking clearly about what ‘chaos’in a game of pinball
is will help us tackle more difficult problems, such as computing the diffusion
constant of a deterministic gas, the drag coefficient of a turbulent boundary layer,
or the helium spectrum.

We all have an intuitive feeling for what a ball does as it bounces among the
pinball machine’s disks, and only high-school level Euclidean geometry is needed
to describe its trajectory. A physicist’s pinball game is the game of pinball strip-
ped to its bare essentials: three equidistantly placed reflecting disks in a plane,
figure1.1. A physicist’s pinball is free, frictionless, point-like,spin-less, perfectly
elastic, and noiseless. Point-like pinballs are shot at thedisks from random starting
positions and angles; they spend some time bouncing betweenthe disks and then
escape.

At the beginning of the 18th century Baron Gottfried WilhelmLeibniz was
confident that given the initial conditions one knew everything a deterministic
system would do far into the future. He wrote [1], anticipating by a century and
a half the oft-quoted Laplace’s “Given for one instant an intelligence which could
comprehend all the forces by which nature is animated...”:

That everything is brought forth through an established destiny is just
as certain as that three times three is nine. [. . . ] If, for example, one sphere
meets another sphere in free space and if their sizes and their paths and
directions before collision are known, we can then foretelland calculate
how they will rebound and what course they will take after theimpact. Very
simple laws are followed which also apply, no matter how manyspheres
are taken or whether objects are taken other than spheres. From this one
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Figure 1.2: Sensitivity to initial conditions: two
pinballs that start out very close to each other separate
exponentially with time.

1

2

3

23132321

2313

Figure 1.3: Unstable trajectories separate with time.

  x(0)δ

  x(t)δ

x(t)x(0)

sees then that everything proceeds mathematically–that is, infallibly–in the
whole wide world, so that if someone could have a sufficient insight into
the inner parts of things, and in addition had remembrance and intelligence
enough to consider all the circumstances and to take them into account, he
would be a prophet and would see the future in the present as ina mirror.

Leibniz chose to illustrate his faith in determinism precisely with the type of
physical system that we shall use here as a paradigm of ‘chaos.’ His claim is
wrong in a deep and subtle way: a state of a physical system canneverbe specified
to infinite precision, and by this we do not mean that eventually the Heisenberg
uncertainty principle kicks in. In the classical, deterministic dynamics there is no
way to take all the circumstances into account, and a single trajectory cannot be
tracked, only a ball of nearby initial points makes physicalsense.

1.3.1 What is ‘chaos’?

I accept chaos. I am not sure that it accepts me.
—Bob Dylan,Bringing It All Back Home

A deterministic system is a system whose present state isin principle fully determined
by its initial conditions, in contrast to a stochastic system.

For a stochastic system the initial conditions determine the future only partially,
due to noise, or other external circumstances beyond our control: the present
state reflects the past initial conditions plus the particular realization of the noise
encountered along the way.

A deterministic system with sufficiently complicated dynamics can fool us
into regarding it as a stochastic one; disentangling the deterministic from the
stochastic is the main challenge in many real-life settings, from stock markets
to palpitations of chicken hearts. So, what is ‘chaos’?

intro - 13jun2008.tex
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In a game of pinball, any two trajectories that start out veryclose to each
other separate exponentially with time, and in a finite (and in practice, a very
small) number of bounces their separationδx(t) attains the magnitude ofL, the
characteristic linear extent of the whole system, figure1.2. This property of
sensitivity to initial conditionscan be quantified as

|δx(t)| ≈ eλt |δx(0)|

whereλ, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent. For any finite accuracyδx = |δx(0)| of the initial data, the

[section 15.3]
dynamics is predictable only up to a finiteLyapunov time

TLyap ≈ −
1
λ

ln |δx/L| , (1.1)

despite the deterministic and, for Baron Leibniz, infallible simple laws that rule
the pinball motion.

A positive Lyapunov exponent does not in itself lead to chaos. One could try
to play 1- or 2-disk pinball game, but it would not be much of a game; trajectories
would only separate, never to meet again. What is also neededis mixing, the
coming together again and again of trajectories. While locally the nearby trajectories
separate, the interesting dynamics is confined to a globallyfinite region of the state
space and thus the separated trajectories are necessarily folded back and can re-
approach each other arbitrarily closely, infinitely many times. For the case at hand
there are 2n topologically distinctn bounce trajectories that originate from a given
disk. More generally, the number of distinct trajectories with n bounces can be
quantified as

[section 13.1]

N(n) ≈ ehn

whereh, the growth rate of the number of topologically distinct trajectories, is
called the“topological entropy” (h = ln 2 in the case at hand).

The appellation ‘chaos’ is a confusing misnomer, as in deterministic dynamics
there is no chaos in the everyday sense of the word; everything proceeds mathematically–
that is, as Baron Leibniz would have it, infallibly. When a physicist says that a
certain system exhibits ‘chaos,’ he means that the system obeys deterministic laws
of evolution, but that the outcome is highly sensitive to small uncertainties in the
specification of the initial state. The word ‘chaos’ has in this context taken on a
narrow technical meaning. If a deterministic system is locally unstable (positive
Lyapunov exponent) and globally mixing (positive entropy)–figure1.4–it is said
to bechaotic.

While mathematically correct, the definition of chaos as ‘positive Lyapunov
+ positive entropy’ is useless in practice, as a measurement of these quantities is
intrinsically asymptotic and beyond reach for systems observed in nature. More
powerful is Poincaré’s vision of chaos as the interplay of local instability (unstable
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Figure 1.4: Dynamics of achaotic dynamical
system is (a) everywhere locally unstable (positive
Lyapunov exponent) and (b) globally mixing
(positive entropy). (A. Johansen) (a) (b)

periodic orbits) and global mixing (intertwining of their stable and unstable manifolds).
In a chaotic system any open ball of initial conditions, no matter how small, will
in finite time overlap with any other finite region and in this sense spread over the
extent of the entire asymptotically accessible state space. Once this is grasped,
the focus of theory shifts from attempting to predict individual trajectories (which
is impossible) to a description of the geometry of the space of possible outcomes,
and evaluation of averages over this space. How this is accomplished is what
ChaosBook is about.

A definition of ‘turbulence’ is even harder to come by. Intuitively, the word
refers to irregular behavior of an infinite-dimensional dynamical system described
by deterministic equations of motion–say, a bucket of sloshing water described by
the Navier-Stokes equations. But in practice the word ‘turbulence’ tends to refer
to messy dynamics which we understand poorly. As soon as a phenomenon is
understood better, it is reclaimed and renamed: ‘a route to chaos’, ‘spatiotemporal
chaos’, and so on.

In ChaosBook we shall develop a theory of chaotic dynamics for low dimensional
attractors visualized as a succession of nearly periodic but unstable motions. In
the same spirit, we shall think of turbulence in spatially extended systems in terms
of recurrent spatiotemporal patterns. Pictorially, dynamics drives a given spatially
extended system (clouds, say) through a repertoire of unstable patterns; as we
watch a turbulent system evolve, every so often we catch a glimpse of a familiar
pattern:

=⇒ other swirls =⇒

For any finite spatial resolution, a deterministic flow follows approximately for a
finite time an unstable pattern belonging to a finite alphabetof admissible patterns,
and the long term dynamics can be thought of as a walk through the space of such
patterns. In ChaosBook we recast this image into mathematics.

intro - 13jun2008.tex
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1.3.2 When does ‘chaos’ matter?

In dismissing Pollock’s fractals because of their limited
magnification range, Jones-Smith and Mathur would also
dismiss half the published investigations of physical
fractals.

— Richard P. Taylor[4, 5]

When should we be mindful of chaos? The solar system is ‘chaotic’, yet
we have no trouble keeping track of the annual motions of planets. The rule
of thumb is this; if the Lyapunov time (1.1)–the time by which a state space
region initially comparable in size to the observational accuracy extends across
the entire accessible state space–is significantly shorterthan the observational
time, you need to master the theory that will be developed here. That is why
the main successes of the theory are in statistical mechanics, quantum mechanics,
and questions of long term stability in celestial mechanics.

In science popularizations too much has been made of the impact of ‘chaos
theory,’ so a number of caveats are already needed at this point.

At present the theory that will be developed here is in practice applicable only
to systems of a low intrinsicdimension– the minimum number of coordinates
necessary to capture its essential dynamics. If the system is very turbulent (a
description of its long time dynamics requires a space of high intrinsic dimension)
we are out of luck. Hence insights that the theory offers in elucidating problems of
fully developed turbulence, quantum field theory of strong interactions and early
cosmology have been modest at best. Even that is a caveat withqualifications.
There are applications–such as spatially extended (non-equilibrium) systems, plumber’s
turbulent pipes, etc.,–where the few important degrees of freedom can be isolated
and studied profitably by methods to be described here.

Thus far the theory has had limited practical success when applied to the very
noisy systems so important in the life sciences and in economics. Even though
we are often interested in phenomena taking place on time scales much longer
than the intrinsic time scale (neuronal inter-burst intervals, cardiac pulses, etc.),
disentangling ‘chaotic’ motions from the environmental noise has been very hard.

In 1980’s something happened that might be without parallel; this is an area of
science where the advent of cheap computation had actually subtracted from our
collective understanding. The computer pictures and numerical plots of fractal
science of the 1980’s have overshadowed the deep insights ofthe 1970’s, and
these pictures have since migrated into textbooks. By a regrettable oversight,
ChaosBook has none, so ‘Untitled 5’ of figure1.5will have to do as the illustration
of the power of fractal analysis. Fractal science posits that certain quantities
(Lyapunov exponents, generalized dimensions, . . . ) can be estimated on a computer.
While some of the numbers so obtained are indeed mathematically sensible characterizations
of fractals, they are in no sense observable and measurable on the length-scales
and time-scales dominated by chaotic dynamics.

Even though the experimental evidence for the fractal geometry of nature
is circumstantial [2], in studies of probabilistically assembled fractal aggregates
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Figure 1.5: Katherine Jones-Smith, ‘Untitled 5,’ the
drawing used by K. Jones-Smith and R.P. Taylor to test
the fractal analysis of Pollock’s drip paintings [3].

we know of nothing better than contemplating such quantities. In deterministic
systems we can domuchbetter.

1.4 A game of pinball

Formulas hamper the understanding.

—S. Smale

We are now going to get down to the brass tacks. Time to fasten your seat
belts and turn off all electronic devices. But first, a disclaimer: If you understand
the rest of this chapter on the first reading, you either do notneed this book, or
you are delusional. If you do not understand it, it is not because the people who
wrote it are smarter than you: the most you can hope for at thisstage is to get a
flavor of what lies ahead. If a statement in this chapter mystifies/intrigues, fast
forward to a section indicated by on the margin, read only the parts that you
feel you need. Of course, we think that you need to learn ALL ofit, or otherwise
we would not have included it in ChaosBook in the first place.

Confronted with a potentially chaotic dynamical system, our analysis proceeds
in three stages; I. diagnose, II. count, III. measure. First, we determine the
intrinsic dimensionof the system–the minimum number of coordinates necessary
to capture its essential dynamics. If the system is very turbulent we are, at present,
out of luck. We know only how to deal with the transitional regime between
regular motions and chaotic dynamics in a few dimensions. That is still something;
even an infinite-dimensional system such as a burning flame front can turn out to
have a very few chaotic degrees of freedom. In this regime thechaotic dynamics
is restricted to a space of low dimension, the number of relevant parameters
is small, and we can proceed to step II; wecount and classify all possible

[chapter 10]

[chapter 13]
topologically distinct trajectories of the system into a hierarchy whose successive
layers require increased precision and patience on the partof the observer. This

intro - 13jun2008.tex

http://materialscience.uoregon.edu/taylor/taylor.html
http://observer.case.edu/Archives/Volume_39/Issue_7/Story_1094/


CHAPTER 1. OVERTURE 10

Figure 1.6: Binary labeling of the 3-disk pinball
trajectories; a bounce in which the trajectory returns
to the preceding disk is labeled 0, and a bounce which
results in continuation to the third disk is labeled 1.

we shall do in sect.1.4.2. If successful, we can proceed with step III: investigate
theweightsof the different pieces of the system.

We commence our analysis of the pinball game with steps I, II:diagnose,
count. We shall return to step III–measure–in sect.1.5.

[chapter 18]

1.4.1 Symbolic dynamics

With the game of pinball we are in luck–it is a low dimensionalsystem, free
motion in a plane. The motion of a point particle is such that after a collision
with one disk it either continues to another disk or it escapes. If we label the
three disks by 1, 2 and 3, we can associate every trajectory with an itinerary, a
sequence of labels indicating the order in which the disks are visited; for example,
the two trajectories in figure1.2have itineraries2313 , 23132321 respectively.

Such labeling goes by the namesymbolic dynamics. As the particle cannot
[exercise 1.1]

[section 2.1]
collide two times in succession with the same disk, any two consecutive symbols
must differ. This is an example ofpruning, a rule that forbids certain subsequences
of symbols. Deriving pruning rules is in general a difficult problem, but with the
game of pinball we are lucky–for well-separated disks thereare no further pruning
rules.

[chapter 11]

The choice of symbols is in no sense unique. For example, as ateach bounce
we can either proceed to the next disk or return to the previous disk, the above
3-letter alphabet can be replaced by a binary{0, 1} alphabet, figure1.6. A clever
choice of an alphabet will incorporate important features of the dynamics, such as
its symmetries.

[section 10.5]

Suppose you wanted to play a good game of pinball, that is, getthe pinball
to bounce as many times as you possibly can–what would be a winning strategy?
The simplest thing would be to try to aim the pinball so it bounces many times
between a pair of disks–if you managed to shoot it so it startsout in the periodic
orbit bouncing along the line connecting two disk centers, it would stay there
forever. Your game would be just as good if you managed to get it to keep
bouncing between the three disks forever, or place it on any periodic orbit. The
only rub is that any such orbit isunstable, so you have to aim very accurately in
order to stay close to it for a while. So it is pretty clear thatif one is interested in
playing well, unstable periodic orbits are important–theyform theskeleton onto
which all trajectories trapped for long times cling.
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Figure 1.7: The 3-disk pinball cycles1232 and

121212313.

Figure 1.8: (a) A trajectory starting out from disk
1 can either hit another disk or escape. (b) Hitting
two disks in a sequence requires a much sharper aim,
with initial conditions that hit further consecutive disks
nested within each other, as in Fig.1.9.

1.4.2 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting position and momentum. We
shall refer to the set of periodic points that belong to a given periodic orbit as a
cycle.

Short periodic orbits are easily drawn and enumerated–an example is drawn
in figure 1.7–but it is rather hard to perceive the systematics of orbits from their
configuration space shapes. In mechanics a trajectory is fully and uniquely specified
by its position and momentum at a given instant, and no two distinct state space
trajectories can intersect. Their projections onto arbitrary subspaces, however,
can and do intersect, in rather unilluminating ways. In the pinball example the
problem is that we are looking at the projections of a 4-dimensional state space
trajectories onto a 2-dimensional subspace, the configuration space. A clearer
picture of the dynamics is obtained by constructing a set of state space Poincaré
sections.

Suppose that the pinball has just bounced off disk 1. Depending on its position
and outgoing angle, it could proceed to either disk 2 or 3. Notmuch happens in
between the bounces–the ball just travels at constant velocity along a straight line–
so we can reduce the 4-dimensional flow to a 2-dimensional mapP that takes the
coordinates of the pinball from one disk edge to another diskedge. The trajectory
just after the moment of impact is defined bysn, the arc-length position of the
nth bounce along the billiard wall, andpn = psinφn the momentum component
parallel to the billiard wall at the point of impact, see figure1.9. Such section of a
flow is called aPoincaré section. In terms of Poincaré sections, the dynamics is

[example 3.2]
reduced to the set of sixmaps Psk←sj : (sn, pn) 7→ (sn+1, pn+1), with s ∈ {1, 2, 3},
from the boundary of the diskj to the boundary of the next diskk.

[section 8]

Next, we mark in the Poincaré section those initial conditions which do not
escape in one bounce. There are two strips of survivors, as the trajectories originating
from one disk can hit either of the other two disks, or escape without further ado.
We label the two stripsM12,M13. Embedded within them there are four strips
M121,M123,M131,M132 of initial conditions that survive for two bounces, and
so forth, see figures1.8and1.9. Provided that the disks are sufficiently separated,
after n bounces the survivors are divided into 2n distinct strips: theMi th strip
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Figure 1.9: The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk 1
with x0 = (s0, p0) . (a) Strips of initial points
M12, M13 which reach disks 2, 3 in one bounce,
respectively. (b) Strips of initial pointsM121,M131

M132 andM123 which reach disks 1, 2, 3 in two
bounces, respectively. The Poincaré sections for
trajectories originating on the other two disks are
obtained by the appropriate relabeling of the strips.
Disk radius : center separation ratio a:R= 1:2.5.
(Y. Lan) (a)
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consists of all points with itineraryi = s1s2s3 . . . sn, s = {1, 2, 3}. The unstable
cycles as a skeleton of chaos are almost visible here: each such patch contains
a periodic points1s2s3 . . . sn with the basic block infinitely repeated. Periodic
points are skeletal in the sense that as we look further and further, the strips shrink
but the periodic points stay put forever.

We see now why it pays to utilize a symbolic dynamics; it provides a navigation
chart through chaotic state space. There exists a unique trajectory for every
admissible infinite length itinerary, and a unique itinerary labels every trapped
trajectory. For example, the only trajectory labeled by12 is the 2-cycle bouncing
along the line connecting the centers of disks 1 and 2; any other trajectory starting
out as 12. . . either eventually escapes or hits the 3rd disk.

1.4.3 Escape rate
[example 15.2]

What is a good physical quantity to compute for the game of pinball? Such
a system, for which almost any trajectory eventually leavesa finite region (the
pinball table) never to return, is said to be open, or arepeller. The repellerescape
rate is an eminently measurable quantity. An example of such a measurement
would be an unstable molecular or nuclear state which can be well approximated
by a classical potential with the possibility of escape in certain directions. In an
experiment many projectiles are injected into a macroscopic ‘black box’ enclosing
a microscopic non-confining short-range potential, and their mean escape rate is
measured, as in figure1.1. The numerical experiment might consist of injecting
the pinball between the disks in some random direction and asking how many
times the pinball bounces on the average before it escapes the region between the
disks.

[exercise 1.2]

For a theorist, a good game of pinball consists in predictingaccurately the
asymptotic lifetime (or the escape rate) of the pinball. We now show how periodic
orbit theory accomplishes this for us. Each step will be so simple that you can
follow even at the cursory pace of this overview, and still the result is surprisingly
elegant.

Consider figure1.9 again. In each bounce the initial conditions get thinned
out, yielding twice as many thin strips as at the previous bounce. The total area
that remains at a given time is the sum of the areas of the strips, so that the fraction
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of survivors aftern bounces, or thesurvival probabilityis given by

Γ̂1 =
|M0|
|M| +

|M1|
|M| , Γ̂2 =

|M00|
|M| +

|M10|
|M| +

|M01|
|M| +

|M11|
|M| ,

Γ̂n =
1
|M|

(n)∑

i

|Mi | , (1.2)

where i is a label of theith strip, |M| is the initial area, and|Mi | is the area of
the ith strip of survivors.i = 01, 10, 11, . . . is a label, not a binary number. Since
at each bounce one routinely loses about the same fraction oftrajectories, one
expects the sum (1.2) to fall off exponentially withn and tend to the limit

[chapter 20]

Γ̂n+1/Γ̂n = e−γn → e−γ. (1.3)

The quantityγ is called theescape ratefrom the repeller.

1.5 Chaos for cyclists

Étant données des équations ... et une solution particuliére
quelconque de ces équations, on peut toujours trouver une
solution périodique (dont la période peut, il est vrai, étre
trés longue), telle que la différence entre les deux solutions
soit aussi petite qu’on le veut, pendant un temps aussi long
qu’on le veut. D’ailleurs, ce qui nous rend ces solutions
périodiques si précieuses, c’est qu’elles sont, pour ansi
dire, la seule bréche par où nous puissions esseyer de
pénétrer dans une place jusqu’ici réputée inabordable.

—H. Poincaré, Les méthodes nouvelles de la
méchanique céleste

We shall now show that the escape rateγ can be extracted from a highly convergent
exact expansion by reformulating the sum (1.2) in terms of unstable periodic
orbits.

If, when asked what the 3-disk escape rate is for a disk of radius 1, center-
center separation 6, velocity 1, you answer that the continuous time escape rate
is roughlyγ = 0.4103384077693464893384613078192. . ., you do not need this
book. If you have no clue, hang on.

1.5.1 How big is my neighborhood?

Not only do the periodic points keep track of topological ordering of the strips,
but, as we shall now show, they also determine their size.
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Figure 1.10: The fundamental matrixJt maps an
infinitesimal displacementδx at x0 into a displacement
Jt(x0)δx finite time t later.

δ  x(t) = J tδ  x(0)

  x(0)δ

x(0)

x(t)

As a trajectory evolves, it carries along and distorts its infinitesimal neighborhood.
Let

x(t) = f t(x0)

denote the trajectory of an initial pointx0 = x(0). Expandingf t(x0 + δx0) to
linear order, the evolution of the distance to a neighboringtrajectoryxi(t) + δxi(t)
is given by the fundamental matrixJ:

δxi(t) =
d∑

j=1

Jt(x0)i j δx0 j , Jt(x0)i j =
∂xi(t)
∂x0 j

.

A trajectory of a pinball moving on a flat surface is specified by two position
coordinates and the direction of motion, so in this cased = 3. Evaluation of a
cycle fundamental matrix is a long exercise - here we just state the result. The

[section 8.2]
fundamental matrix describes the deformation of an infinitesimal neighborhood
of x(t) along the flow; its eigenvectors and eigenvalues give the directions and the
corresponding rates of expansion or contraction, figure1.10. The trajectories that
start out in an infinitesimal neighborhood separate along the unstable directions
(those whose eigenvalues are greater than unity in magnitude), approach each
other along the stable directions (those whose eigenvaluesare less than unity
in magnitude), and maintain their distance along the marginal directions (those
whose eigenvalues equal unity in magnitude).

In our game of pinball the beam of neighboring trajectories is defocused along
the unstable eigendirection of the fundamental matrixM.

As the heights of the strips in figure1.9 are effectively constant, we can
concentrate on their thickness. If the height is≈ L, then the area of theith strip is
Mi ≈ Ll i for a strip of widthl i .

Each stripi in figure1.9 contains a periodic pointxi . The finer the intervals,
the smaller the variation in flow across them, so the contribution from the strip
of width l i is well-approximated by the contraction around the periodic point xi

within the interval,

l i = ai/|Λi | , (1.4)
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whereΛi is the unstable eigenvalue of the fundamental matrixJt(xi) evaluated at
the ith periodic point fort = Tp, the full period (due to the low dimensionality,
the Jacobian can have at most one unstable eigenvalue). Onlythe magnitude of
this eigenvalue matters, we can disregard its sign. The prefactorsai reflect the
overall size of the system and the particular distribution of starting values ofx. As
the asymptotic trajectories are strongly mixed by bouncingchaotically around the
repeller, we expect their distribution to be insensitive tosmooth variations in the
distribution of initial points.

[section 14.4]

To proceed with the derivation we need thehyperbolicityassumption: for large
n the prefactorsai ≈ O(1) are overwhelmed by the exponential growth ofΛi, so
we neglect them. If the hyperbolicity assumption is justified, we can replace

[section 16.1.1]|Mi | ≈ Ll i in (1.2) by 1/|Λi | and consider the sum

Γn =

(n)∑

i

1/|Λi | ,

where the sum goes over all periodic points of periodn. We now define a generating
function for sums over all periodic orbits of all lengths:

Γ(z) =
∞∑

n=1

Γnzn . (1.5)

Recall that for largen thenth level sum (1.2) tends to the limitΓn → e−nγ, so the
escape rateγ is determined by the smallestz= eγ for which (1.5) diverges:

Γ(z) ≈
∞∑

n=1

(ze−γ)n
=

ze−γ

1− ze−γ
. (1.6)

This is the property ofΓ(z) that motivated its definition. Next, we devise a formula
for (1.5) expressing the escape rate in terms of periodic orbits:

Γ(z) =
∞∑

n=1

zn
(n)∑

i

|Λi |−1

=
z
|Λ0|
+

z
|Λ1|
+

z2

|Λ00|
+

z2

|Λ01|
+

z2

|Λ10|
+

z2

|Λ11|

+
z3

|Λ000|
+

z3

|Λ001|
+

z3

|Λ010|
+

z3

|Λ100|
+ . . . (1.7)

For sufficiently smallz this sum is convergent. The escape rateγ is now given by
[section 16.3]

the leading pole of (1.6), rather than by a numerical extrapolation of a sequence
of γn extracted from (1.3). As any finite truncationn < ntrunc of (1.7) is a
polynomial in z, convergent for anyz, finding this pole requires that we know
something aboutΓn for anyn, and that might be a tall order.
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We could now proceed to estimate the location of the leading singularity
of Γ(z) from finite truncations of (1.7) by methods such as Padé approximants.
However, as we shall now show, it pays to first perform a simpleresummation
that converts this divergence into azeroof a related function.

1.5.2 Dynamical zeta function

If a trajectory retraces aprime cycle r times, its expanding eigenvalue isΛr
p. A

prime cyclep is a single traversal of the orbit; its label is a non-repeating symbol
string ofnp symbols. There is only one prime cycle for each cyclic permutation
class. For example,p = 0011= 1001= 1100= 0110 is prime, but0101= 01
is not. By the chain rule for derivatives the stability of a cycle is the same

[exercise 13.5]

[section 4.5]
everywhere along the orbit, so each prime cycle of lengthnp contributesnp terms
to the sum (1.7). Hence (1.7) can be rewritten as

Γ(z) =
∑

p

np

∞∑

r=1

(
znp

|Λp|

)r

=
∑

p

nptp

1− tp
, tp =

znp

|Λp|
(1.8)

where the indexp runs through all distinctprime cycles. Note that we have
resummed the contribution of the cyclep to all times, so truncating the summation
up to givenp is nota finite timen ≤ np approximation, but an asymptotic,infinite
time estimate based by approximating stabilities of all cycles by a finite number of
the shortest cycles and their repeats. Thenpznp factors in (1.8) suggest rewriting
the sum as a derivative

Γ(z) = −z
d
dz

∑

p

ln(1− tp) .

HenceΓ(z) is a logarithmic derivative of the infinite product

1/ζ(z) =
∏

p

(1− tp) , tp =
znp

|Λp|
. (1.9)

This function is called thedynamical zeta function, in analogy to the Riemann
zeta function, which motivates the ‘zeta’ in its definition as 1/ζ(z). This is the
prototype formula of periodic orbit theory. The zero of 1/ζ(z) is a pole ofΓ(z),
and the problem of estimating the asymptotic escape rates from finiten sums such
as (1.2) is now reduced to a study of the zeros of the dynamical zeta function
(1.9). The escape rate is related by (1.6) to a divergence ofΓ(z), andΓ(z) diverges

[section 20.1]
whenever 1/ζ(z) has a zero.

[section 17.4]

Easy, you say: “Zeros of (1.9) can be read off the formula, a zero

zp = |Λp|1/np

for each term in the product. What’s the problem?” Dead wrong!
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1.5.3 Cycle expansions

How are formulas such as (1.9) used? We start by computing the lengths and
eigenvalues of the shortest cycles. This usually requires some numerical work,
such as the Newton method searches for periodic solutions; we shall assume that
the numerics are under control, and thatall short cycles up to given length have
been found. In our pinball example this can be done by elementary geometrical

[chapter 12]
optics. It is very important not to miss any short cycles, as the calculation is as
accurate as the shortest cycle dropped–including cycles longer than the shortest
omitted does not improve the accuracy (unless exponentially many more cycles
are included). The result of such numerics is a table of the shortest cycles, their
periods and their stabilities.

[section 27.3]

Now expand the infinite product (1.9), grouping together the terms of the same
total symbol string length

1/ζ = (1− t0)(1− t1)(1− t10)(1− t100) · · ·
= 1− t0 − t1 − [t10 − t1t0] − [(t100− t10t0) + (t101− t10t1)]

−[(t1000− t0t100) + (t1110− t1t110)

+(t1001− t1t001− t101t0 + t10t0t1)] − . . . (1.10)

The virtue of the expansion is that the sum of all terms of the same total length
[chapter 18]

n (grouped in brackets above) is a number that is exponentially smaller than a
typical term in the sum, for geometrical reasons we explain in the next section.

[section 18.1]

The calculation is now straightforward. We substitute a finite set of the eigenvalues
and lengths of the shortest prime cycles into the cycle expansion (1.10), and obtain
a polynomial approximation to 1/ζ. We then varyz in (1.9) and determine the
escape rateγ by finding the smallestz= eγ for which (1.10) vanishes.

1.5.4 Shadowing

When you actually start computing this escape rate, you willfind out that the
convergence is very impressive: only three input numbers (the two fixed points0,
1 and the 2-cycle10) already yield the pinball escape rate to 3-4 significant digits!
We have omitted an infinity of unstable cycles; so why does approximating the

[section 18.2.2]
dynamics by a finite number of the shortest cycle eigenvalueswork so well?

The convergence of cycle expansions of dynamical zeta functions is a consequence
of the smoothness and analyticity of the underlying flow. Intuitively, one can
understand the convergence in terms of the geometrical picture sketched in figure1.11;
the key observation is that the long orbits areshadowedby sequences of shorter
orbits.

A typical term in (1.10) is a difference of a long cycle{ab}minus its shadowing

intro - 13jun2008.tex



CHAPTER 1. OVERTURE 18

Figure 1.11: Approximation to (a) a smooth
dynamics by (b) the skeleton of periodic points,
together with their linearized neighborhoods.
Indicated are segments of two 1-cycles and a 2-cycle
that alternates between the neighborhoods of the two
1-cycles, shadowing first one of the two 1-cycles, and
then the other.

approximation by shorter cycles{a} and{b}

tab− tatb = tab(1− tatb/tab) = tab

(
1−

∣∣∣∣∣
Λab

ΛaΛb

∣∣∣∣∣
)
, (1.11)

wherea andb are symbol sequences of the two shorter cycles. If all orbitsare
weighted equally (tp = znp), such combinations cancel exactly; if orbits of similar
symbolic dynamics have similar weights, the weights in suchcombinations almost
cancel.

This can be understood in the context of the pinball game as follows. Consider
orbits0, 1 and01. The first corresponds to bouncing between any two disks while
the second corresponds to bouncing successively around allthree, tracing out an
equilateral triangle. The cycle01 starts at one disk, say disk 2. It then bounces
from disk 3 back to disk 2 then bounces from disk 1 back to disk 2and so on, so its
itinerary is2321. In terms of the bounce types shown in figure1.6, the trajectory is
alternating between 0 and 1. The incoming and outgoing angles when it executes
these bounces are very close to the corresponding angles for0 and 1 cycles. Also
the distances traversed between bounces are similar so thatthe 2-cycle expanding
eigenvalueΛ01 is close in magnitude to the product of the 1-cycle eigenvalues
Λ0Λ1.

To understand this on a more general level, try to visualize the partition of
a chaotic dynamical system’s state space in terms of cycle neighborhoods as a
tessellation (a tiling) of the dynamical system, with smooth flow approximated by
its periodic orbit skeleton, each ‘tile’ centered on a periodic point, and the scale
of the ‘tile’ determined by the linearization of the flow around the periodic point,
figure1.11.

The orbits that follow the same symbolic dynamics, such as{ab} and a ‘pseudo
orbit’ {a}{b}, lie close to each other in state space; long shadowing pairshave to
start out exponentially close to beat the exponential growth in separation with
time. If the weights associated with the orbits are multiplicative along the flow
(for example, by the chain rule for products of derivatives)and the flow is smooth,
the term in parenthesis in (1.11) falls off exponentially with the cycle length, and
therefore the curvature expansions are expected to be highly convergent.

[chapter 21]
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1.6 Evolution

The above derivation of the dynamical zeta function formulafor the escape rate
has one shortcoming; it estimates the fraction of survivorsas a function of the
number of pinball bounces, but the physically interesting quantity is the escape
rate measured in units of continuous time. For continuous time flows, the escape
rate (1.2) is generalized as follows. Define a finite state space regionM such
that a trajectory that exitsM never reenters. For example, any pinball that falls
of the edge of a pinball table in figure1.1 is gone forever. Start with a uniform
distribution of initial points. The fraction of initialx whose trajectories remain
withinM at timet is expected to decay exponentially

Γ(t) =

∫
M dxdyδ(y − f t(x))

∫
M dx

→ e−γt .

The integral overx starts a trajectory at everyx ∈ M. The integral overy tests
whether this trajectory is still inM at timet. The kernel of this integral

Lt(y, x) = δ
(
y− f t(x)

)
(1.12)

is the Dirac delta function, as for a deterministic flow the initial point xmaps into a
unique pointy at timet. For discrete time,f n(x) is thenth iterate of the mapf . For
continuous flows,f t(x) is the trajectory of the initial pointx, and it is appropriate
to express the finite time kernelLt in terms of a generator of infinitesimal time
translations

Lt = etA ,

[section 14.6]

very much in the way the quantum evolution is generated by theHamiltonianH,
the generator of infinitesimal time quantum transformations.

As the kernelL is the key to everything that follows, we shall give it a name,
and refer to it and its generalizations as theevolution operatorfor ad-dimensional
map or ad-dimensional flow.

The number of periodic points increases exponentially withthe cycle length
(in the case at hand, as 2n). As we have already seen, this exponential proliferation
of cycles is not as dangerous as it might seem; as a matter of fact, all our computations
will be carried out in then→ ∞ limit. Though a quick look at long-time density
of trajectories might reveal it to be complex beyond belief,this distribution is
still generated by a simple deterministic law, and with someluck and insight, our
labeling of possible motions will reflect this simplicity. If the rule that gets us
from one level of the classification hierarchy to the next does not depend strongly
on the level, the resulting hierarchy is approximately self-similar. We now turn
such approximate self-similarity to our advantage, by turning it into an operation,
the action of the evolution operator, whose iteration encodes the self-similarity.
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Figure 1.12: The trace of an evolution operator is
concentrated in tubes around prime cycles, of length
Tp and thickness 1/|Λp|r for the rth repetition of the
prime cyclep.

1.6.1 Trace formula

In physics, when we do not understand something, we give
it a name.

—Matthias Neubert

Recasting dynamics in terms of evolution operators changeseverything. So
far our formulation has been heuristic, but in the evolutionoperator formalism
the escape rate and any other dynamical average are given by exact formulas,
extracted from the spectra of evolution operators. The key tools aretrace formulas
andspectral determinants.

The trace of an operator is given by the sum of its eigenvalues. The explicit
expression (1.12) for Lt(x, y) enables us to evaluate the trace. Identifyy with x
and integratex over the whole state space. The result is an expression for trLt as
a sum over neighborhoods of prime cyclesp and their repetitions

[section 16.2]

trLt =
∑

p

Tp

∞∑

r=1

δ(t − rTp)∣∣∣∣det
(
1− Mr

p

)∣∣∣∣
. (1.13)

This formula has a simple geometrical interpretation sketched in figure1.12. After
the rth return to a Poincaré section, the initial tubeMp has been stretched out
along the expanding eigendirections, with the overlap withthe initial volume

given by 1/
∣∣∣∣det

(
1− Mr

p

)∣∣∣∣→ 1/|Λp|, the same weight we obtained heuristically in
sect.1.5.1.

The ‘spiky’ sum (1.13) is disquieting in the way reminiscent of the Poisson
resummation formulas of Fourier analysis; the left-hand side is the smooth eigenvalue
sum treAt =

∑
esαt, while the right-hand side equals zero everywhere except for

the sett = rTp. A Laplace transform smooths the sum over Dirac delta functions
in cycle periods and yields thetrace formulafor the eigenspectrums0, s1, · · · of
the classical evolution operator:

[chapter 16]

∫ ∞

0+
dt e−st trLt = tr

1
s−A =

∞∑

α=0

1
s− sα

=
∑

p

Tp

∞∑

r=1

er(β·Ap−sTp)
∣∣∣∣det

(
1− Mr

p

)∣∣∣∣
. (1.14)
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The beauty of trace formulas lies in the fact that everythingon the right-hand-
side–prime cyclesp, their periodsTp and the stability eigenvalues ofMp–is an
invariant property of the flow, independent of any coordinate choice.

1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zeros ofthe appropriate
determinant. One way to evaluate determinants is to expand them in terms of
traces, using the identities

[exercise 4.1]

d
ds

ln det (s−A) = tr
d
ds

ln(s− A) = tr
1

s−A , (1.15)

and integrating overs. In this way thespectral determinantof an evolution oper-
ator becomes related to the traces that we have just computed:

[chapter 17]

det (s−A) = exp

−
∑

p

∞∑

r=1

1
r

e−sTpr
∣∣∣∣det

(
1− Mr

p

)∣∣∣∣

 . (1.16)

The 1/r factor is due to thes integration, leading to the replacementTp→ Tp/rTp

in the periodic orbit expansion (1.14).
[section 17.5]

The motivation for recasting the eigenvalue problem in thisform is sketched
in figure 1.13; exponentiation improves analyticity and trades in a divergence
of the trace sum for a zero of the spectral determinant. We have now retraced
the heuristic derivation of the divergent sum (1.6) and the dynamical zeta func-
tion (1.9), but this time with no approximations: formula (1.16) is exact. The
computation of the zeros of det (s−A) proceeds very much like the computations
of sect.1.5.3.

1.7 From chaos to statistical mechanics

Under heaven, all is chaos.
— Chairman Mao Zedong, a letter to Jiang Qing

The replacement of dynamics of individual trajectories by evolution operators
which propagate densities feels like a bit of mathematical voodoo. Actually,
something very radical has taken place. Consider a chaotic flow, such as the
stirring of red and white paint by some deterministic machine. If we were able to
track individual trajectories, the fluid would forever remain a striated combination
of pure white and pure red; there would be no pink. What is more, if we reversed
the stirring, we would return to the perfect white/red separation. However, that
cannot be–in a very few turns of the stirring stick the thickness of the layers goes
from centimeters to Ångströms, and the result is irreversibly pink.
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Figure 1.13: Spectral determinant is preferable to the
trace as it vanishes smoothly at the leading eigenvalue,
while the trace formula diverges.

Understanding the distinction between evolution of individual trajectories and
the evolution of the densities of trajectories is key to understanding statistical
mechanics–this is the conceptual basis of the second law of thermodynamics, and
the origin of irreversibility of the arrow of time for deterministic systems with
time-reversible equations of motion: reversibility is attainable for distributions
whose measure in the space of density functions goes exponentially to zero with
time.

By going to a description in terms of the asymptotic time evolution oper-
ators we give up tracking individual trajectories for long times, by trading it in
for a very effective description of the asymptotic trajectory densities. This will
enable us, for example, to give exact formulas for transportcoefficients such as
the diffusion constants withoutany probabilistic assumptions (in contrast to the

[chapter 24]
stosszahlansatzof Boltzmann).

A century ago it seemed reasonable to assume that statistical mechanics applies
only to systems with very many degrees of freedom. More recent is the realization
that much of statistical mechanics follows from chaotic dynamics, and already at
the level of a few degrees of freedom the evolution of densities is irreversible.
Furthermore, the theory that we shall develop here generalizes notions of ‘measure’
and ‘averaging’ to systems far from equilibrium, and transports us into regions
hitherto inaccessible with the tools of equilibrium statistical mechanics.

The concepts of equilibrium statistical mechanics do help us, however, to
understand the ways in which the simple-minded periodic orbit theory falters. A
non-hyperbolicity of the dynamics manifests itself in power-law correlations and

[chapter 23]
even ‘phase transitions.’

1.8 What is not in ChaosBook

This book offers a breach into a domain hitherto reputed unreachable, a domain
traditionally traversed only by mathematical physicists and mathematicians. What
distinguishes it from mathematics is the insistence on computability and numerical
convergence of methods offered. A rigorous proof, the end of the story as far
as a mathematician is concerned, might state that in a given setting, for times in
excess of 1032 years, turbulent dynamics settles onto an attractor of dimension less
than 600. Such a theorem is of a little use to an honest, hard-working plumber,
especially if her hands-on experience is that within the span of even the most
careful simulation the dynamics seems to have settled on a (transient?) attractor
of dimension less than 3. If rigor, magic, fractals or brainsis your thing, read
remark1.4and beyond.
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So, no proofs! but lot of hands-on plumbing ahead.

Résum é

This text is an exposition of the best of all possible theories of deterministic chaos,
and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, no matter how small,
will spread over the entire accessible state space. Hence the theory focuses on
describing the geometry of the space of possible outcomes, and evaluating averages
over this space, rather than attempting the impossible: precise prediction of individual
trajectories. The dynamics of densities of trajectories isdescribed in terms of
evolution operators. In the evolution operator formalism the dynamical averages
are given by exact formulas, extracted from the spectra of evolution operators.
The key tools aretrace formulasandspectral determinants.

The theory of evaluation of the spectra of evolution operators presented here is
based on the observation that the motion in dynamical systems of few degrees of
freedom is often organized around a fewfundamentalcycles. These short cycles
capture the skeletal topology of the motion on a strange attractor/repeller in the
sense that any long orbit can approximately be pieced together from the nearby
periodic orbits of finite length. This notion is made preciseby approximating
orbits by prime cycles, and evaluating the associated curvatures. A curvature
measures the deviation of a longer cycle from its approximation by shorter cycles;
smoothness and the local instability of the flow implies exponential (or faster)
fall-off for (almost) all curvatures. Cycle expansions offer an efficient method for
evaluating classical and quantum observables.

The critical step in the derivation of the dynamical zeta function was the
hyperbolicity assumption, i.e., the assumption of exponential shrinkage of all
strips of the pinball repeller. By dropping theai prefactors in (1.4), we have
given up on any possibility of recovering the precise distribution of startingx
(which should anyhow be impossible due to the exponential growth of errors), but
in exchange we gain an effective description of the asymptotic behavior of the
system. The pleasant surprise of cycle expansions (1.9) is that the infinite time
behavior of an unstable system is as easy to determine as the short time behavior.

To keep the exposition simple we have here illustrated the utility of cycles and
their curvatures by a pinball game, but topics covered in ChaosBook – unstable
flows, Poincaré sections, Smale horseshoes, symbolic dynamics, pruning, discrete
symmetries, periodic orbits, averaging over chaotic sets,evolution operators, dyn-
amical zeta functions, spectral determinants, cycle expansions, quantum trace
formulas, zeta functions, and so on to the semiclassical quantization of helium
– should give the reader some confidence in the broad sway of the theory. The
formalism should work for any average over any chaotic set which satisfies two
conditions:

1. the weight associated with the observable under consideration is multiplicative
along the trajectory,
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2. the set is organized in such a way that the nearby points in the symbolic
dynamics have nearby weights.

The theory is applicable to evaluation of a broad class of quantities characterizing
chaotic systems, such as the escape rates, Lyapunov exponents, transport coefficients
and quantum eigenvalues. A big surprise is that the semi-classical quantum mechanics
of systems classically chaotic is very much like the classical mechanics of chaotic
systems; both are described by zeta functions and cycle expansions of the same
form, with the same dependence on the topology of the classical flow.
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But the power of instruction is seldom of much efficacy,
except in those happy dispositions where it is almost
superfluous.

—Gibbon

Commentary

Remark 1.1 Nonlinear dynamics texts. This text aims to bridge the gap between
the physics and mathematics dynamical systems literature.The intended audience is
Henri Roux, the perfect physics graduate student with a theoretical bent who does not
believe anything he is told. As a complementary presentation we recommend Gaspard’s
monograph [9] which covers much of the same ground in a highly readable andscholarly
manner.

As far as the prerequisites are concerned–ChaosBook is not an introduction to nonlinear
dynamics. Nonlinear science requires a one semester basic course (advanced undergraduate
or first year graduate). A good start is the textbook by Strogatz [10], an introduction to the
applied mathematician’s visualization of flows, fixed points, manifolds, bifurcations. It is
the most accessible introduction to nonlinear dynamics–a book on differential equations
in nonlinear disguise, and its broadly chosen examples and many exercises make it a
favorite with students. It is not strong on chaos. There the textbook of Alligood, Sauer
and Yorke [11] is preferable: an elegant introduction to maps, chaos, period doubling,
symbolic dynamics, fractals, dimensions–a good companionto ChaosBook. Introductions
more comfortable to physicists is the textbook by Ott [13], with the baker’s map used
to illustrate many key techniques in analysis of chaotic systems. Ott is perhaps harder
than the above two as first books on nonlinear dynamics. Sprott [14] and Jackson [15]
textbooks are very useful compendia of the ’70s and onward ‘chaos’ literature which we,
in the spirit of promises made in sect.1.1, tend to pass over in silence.

An introductory course should give students skills in qualitative and numerical analysis
of dynamical systems for short times (trajectories, fixed points, bifurcations) and familiarize
them with Cantor sets and symbolic dynamics for chaotic systems. A good introduction
to numerical experimentation with physically realistic systems is Tufillaro, Abbott, and
Reilly [16]. Korsch and Jodl [17] and Nusse and Yorke [18] also emphasize hands-on
approach to dynamics. With this, and a graduate level-exposure to statistical mechanics,
partial differential equations and quantum mechanics, the stage is set for any of the one-
semester advanced courses based on ChaosBook.

Remark 1.2 ChaosBook based courses. The courses taught so far (for a listing,
consultChaosBook.org/courses) start out with the introductory chapters on qualitative
dynamics, symbolic dynamics and flows, and then continue in different directions:

Deterministic chaos.Chaotic averaging, evolution operators, trace formulas, zeta functions,
cycle expansions, Lyapunov exponents, billiards, transport coefficients, thermodynamic
formalism, period doubling, renormalization operators.

A graduate level introduction to statistical mechanics from the dynamical point view
is given by Dorfman [33]; the Gaspard monograph [9] covers the same ground in more
depth. Driebe monograph [34] offers a nice introduction to the problem of irreversibility
in dynamics. The role of ‘chaos’ in statistical mechanics iscritically dissected by Bricmont
in his highly readable essay“Science of Chaos or Chaos in Science?”[35].
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Spatiotemporal dynamical systems.Partial differential equations for dissipative systems,
weak amplitude expansions, normal forms, symmetries and bifurcations, pseudospectral
methods, spatiotemporal chaos, turbulence. Holmes, Lumley and Berkooz [38] offer
a delightful discussion of why the Kuramoto-Sivashinsky equation deserves study as a
staging ground for a dynamical approach to study of turbulence in full-fledged Navier-
Stokes boundary shear flows.

Quantum chaos.Semiclassical propagators, density of states, trace formulas, semiclassical
spectral determinants, billiards, semiclassical helium,diffraction, creeping, tunneling,
higher-order~ corrections. For further reading on this topic, consult thequantum chaos
part ofChaosBook.org.

Remark 1.3 Periodic orbit theory. This book puts more emphasis on periodic orbit
theory than any other current nonlinear dynamics textbook.The role of unstable periodic
orbits was already fully appreciated by Poincaré [19, 20], who noted that hidden in the
apparent chaos is a rigid skeleton, a tree ofcycles(periodic orbits) of increasing lengths
and self-similar structure, and suggested that the cycles should be the key to chaotic
dynamics. Periodic orbits have been at core of much of the mathematical work on the
theory of the classical and quantum dynamical systems ever since. We refer the reader to
the reprint selection [21] for an overview of some of that literature.

Remark 1.4 If you seek rigor? If you find ChaosBook not rigorous enough, you
should turn to the mathematics literature. The most extensive reference is the treatise by
Katok and Hasselblatt [22], an impressive compendium of modern dynamical systems
theory. The fundamental papers in this field, all still valuable reading, are Smale [23],
Bowen [24] and Sinai [26]. Sinai’s paper is prescient and offers a vision and a program
that ties together dynamical systems and statistical mechanics. It is written for readers
versed in statistical mechanics. For a dynamical systems exposition, consult Anosov and
Sinai [25]. Markov partitions were introduced by Sinai in ref. [27]. The classical text
(though certainly not an easy read) on the subject of dynamical zeta functions is Ruelle’s
Statistical Mechanics, Thermodynamic Formalism[28]. In Ruelle’s monograph transfer
operator technique (or the ‘Perron-Frobenius theory’) andSmale’s theory of hyperbolic
flows are applied to zeta functions and correlation functions. The status of the theory from
Ruelle’s point of view is compactly summarized in his 1995 Pisa lectures [29]. Further
excellent mathematical references on thermodynamic formalism are Parry and Pollicott’s
monograph [30] with emphasis on the symbolic dynamics aspects of the formalism, and
Baladi’s clear and compact reviews of the theory of dynamical zeta functions [31, 32].

Remark 1.5 If you seek magic? ChaosBook resolutely skirts number-theoretical magic
such as spaces of constant negative curvature, Poincaré tilings, modular domains, Selberg
Zeta functions, Riemann hypothesis,. . .Why? While this beautiful mathematics has been
very inspirational, especially in studies of quantum chaos, almost no powerful method in
its repertoire survives a transplant to a physical system that you are likely to care about.

Remark 1.6 Sorry, no shmactals! ChaosBook skirts mathematics and empirical practice
of fractal analysis, such as Hausdorff and fractal dimensions. Addison’s introduction to
fractal dimensions [37] offers a well-motivated entry into this field. While in studies of
probabilistically assembled fractals such as Diffusion Limited Aggregates (DLA) better
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measures of ‘complexity’ are lacking, for deterministic systems there are much better,
physically motivated and experimentally measurable quantities (escape rates, diffusion
coefficients, spectrum of helium, ...) that we focus on here.

Remark 1.7 Rat brains? If you were wondering while reading this introduction
‘what’s up with rat brains?’, the answer is yes indeed, thereis a line of research in neuronal
dynamics that focuses on possible unstable periodic states, described for example in
ref. [39, 40, 41, 42].
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A guide to exercises

God can afford to make mistakes. So can Dada!

—Dadaist Manifesto

The essence of this subject is incommunicable in print; the only way to develop
intuition about chaotic dynamics is by computing, and the reader is urged to try
to work through the essential exercises. As not to fragment the text, the exercises
are indicated by text margin boxes such as the one on this margin, and collected

[exercise 18.2]
at the end of each chapter. By the end of a (two-semester) course you should
have completed at least three small projects: (a) compute everything for a 1-
dimensional repeller, (b) compute escape rate for a 3-disk game of pinball, (c)
compute a part of the quantum 3-disk game of pinball, or the helium spectrum, or
if you are interested in statistical rather than the quantummechanics, compute a
transport coefficient. The essential steps are:

• Dynamics

1. count prime cycles, exercise1.1, exercise9.2, exercise10.1

2. pinball simulator, exercise8.1, exercise12.4

3. pinball stability, exercise9.3, exercise12.4

4. pinball periodic orbits, exercise12.5, exercise12.6

5. helium integrator, exercise2.10, exercise12.8

6. helium periodic orbits, exercise12.9

• Averaging, numerical

1. pinball escape rate, exercise15.3

• Averaging, periodic orbits

1. cycle expansions, exercise18.1, exercise18.2

2. pinball escape rate, exercise18.4, exercise18.5

3. cycle expansions for averages, exercise18.1, exercise20.3

4. cycle expansions for diffusion, exercise24.1

5. pruning, Markov graphs, exercise13.7

6. desymmetrization exercise19.1

7. intermittency, phase transitions, exercise23.6

The exercises that you should do haveunderlined titles . The rest (smaller type )
are optional. Difficult problems are marked by any number of *** stars. If you
solve one of those, it is probably worth apublication. Solutions to some of the
problems are available onChaosBook.org. A clean solution, a pretty figure, or a
nice exercise that you contribute to ChaosBook will be gratefully acknowledged.
Often going through a solution is more instructive than reading the chapter that
problem is supposed to illustrate.
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Exercises

1.1. 3-disk symbolic dynamics. As periodic trajectories
will turn out to be our main tool to breach deep into the
realm of chaos, it pays to start familiarizing oneself with
them now by sketching and counting the few shortest
prime cycles (we return to this in sect.13.4). Show that
the 3-disk pinball has 3·2n−1 itineraries of lengthn. List
periodic orbits of lengths 2, 3, 4, 5,· · ·. Verify that the
shortest 3-disk prime cycles are 12, 13, 23, 123, 132,
1213, 1232, 1323, 12123,· · ·. Try to sketch them.

1.2. Sensitivity to initial conditions. Assume that two

pinball trajectories start out parallel, but separated by
1 Ångström, and the disks are of radiusa = 1 cm
and center-to-center separationR = 6 cm. Try to
estimate in how many bounces the separation will grow
to the size of system (assuming that the trajectories
have been picked so they remain trapped for at least
that long). Estimate the Who’sPinball Wizard’s typical
score (number of bounces) in a game without cheating,
by hook or crook (by the end of chapter18 you should
be in position to make very accurate estimates).
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Chapter 2

Go with the flow

Knowing the equations and knowing the solution are two
different things. Far, far away.

— T.D. Lee

(R. Mainieri, P. Cvitanović and E.A. Spiegel)

W   with a recapitulation of the basic notions of dynamics. Our
aim is narrow; we keep the exposition focused on prerequisites to the
applications to be developed in this text. We assume that thereader

is familiar with dynamics on the level of the introductory texts mentioned in
remark1.1, and concentrate here on developing intuition about what a dynamical
system can do. It will be a coarse brush sketch–a full description of all possible
behaviors of dynamical systems is beyond human ken. Anyway,for a novice there
is no shortcut through this lengthy detour; a sophisticatedtraveler might prefer to
skip this well-trodden territory and embark upon the journey at chapter14.

fast track:

chapter 14, p. 235

2.1 Dynamical systems

In a dynamical system we observe the world as a function of time. We express our
observations as numbers and record how they change with time; given sufficiently
detailed information and understanding of the underlying natural laws, we see the
future in the present as in a mirror. The motion of the planetsagainst the celestial

[section 1.3]
firmament provides an example. Against the daily motion of the stars from East
to West, the planets distinguish themselves by moving amongthe fixed stars.
Ancients discovered that by knowing a sequence of planet’s positions–latitudes
and longitudes–its future position could be predicted.

For the solar system, tracking the latitude and longitude inthe celestial sphere
suffices to completely specify the planet’s apparent motion. Allpossible values for
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Figure 2.1: A trajectory traced out by the evolution
rule f t. Starting from the state space pointx, after a
time t, the point is atf t(x).

f (x)f (x)
t

x

positions and velocities of the planets form thephase spaceof the system. More
generally, a state of a physical system, at a given instant intime, can be represented
by a single point in an abstract space calledstate spaceor phase spaceM. As the
system changes, so does therepresentative pointin state space. We refer to the
evolution of such points asdynamics, and the functionf t which specifies where
the representative point is at timet as theevolution rule.

If there is a definite rulef that tells us how this representative point moves
in M, the system is said to be deterministic. For a deterministicdynamical
system, the evolution rule takes one point of the state spaceand maps it into
exactly one point. However, this is not always possible. Forexample, knowing the
temperature today is not enough to predict the temperature tomorrow; knowing
the value of a stock today will not determine its value tomorrow. The state
space can be enlarged, in the hope that in a sufficiently large state space it is
possible to determine an evolution rule, so we imagine that knowing the state
of the atmosphere, measured over many points over the entireplanet should be
sufficient to determine the temperature tomorrow. Even that is not quite true, and
we are less hopeful when it comes to stocks.

For a deterministic system almost every point has a unique future, so trajectories
cannot intersect. We say ‘almost’ because there might exista set of measure zero
(tips of wedges, cusps, etc.) for which a trajectory is not defined. We may think

[chapter 11]
such sets a nuisance, but it is quite the contrary–they will enable us to partition
state space, so that the dynamics can be better understood.

Locally, the state spaceM looks likeRd, meaning thatd numbers are sufficient
to determine what will happen next. Globally, it may be a morecomplicated
manifold formed by patching together several pieces ofRd, forming a torus, a
cylinder, or some other geometric object. When we need to stress that the dimension
d of M is greater than one, we may refer to the pointx ∈ M as xi where
i = 1, 2, 3, . . . , d. The evolution rulef t : M → M tells us where a pointx is
inM after a time intervalt.

The pair (M, f ) constitute adynamical system.

The dynamical systems we will be studying are smooth. This isexpressed
mathematically by saying that the evolution rulef t can be differentiated as many
times as needed. Its action on a pointx is sometimes indicated byf (x, t) to
remind us thatf is really a function of two variables: the time and a point in state
space. Note that time is relative rather than absolute, so only the time interval
is necessary. This follows from the fact that a point in statespace completely
determines all future evolution, and it is not necessary to know anything else. The
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Figure 2.2: The evolution rulef tcan be used to map
a regionMi of the state space into the regionf t(Mi).
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ff (     )Mi

time parameter can be a real variable (t ∈ R), in which case the evolution is called
aflow, or an integer (t ∈ Z), in which case the evolution advances in discrete steps
in time, given byiterationof amap. Actually, the evolution parameter need not be
the physical time; for example, a time-stationary solutionof a partial differential
equation is parameterized by spatial variables. In such situations one talks of a
‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systems. They manifest themselves
through their trajectories: given an initial pointx0, the evolution rule traces out a
sequence of pointsx(t) = f t(x0), thetrajectory through the pointx0 = x(0). A

[exercise 2.1]
trajectory is parameterized by the timet and thus belongs to (f t(x0), t) ∈ M × R.
By extension, we can also talk of the evolution of a regionMi of the state space:
just apply f t to every point inMi to obtain a new regionf t(Mi), as in figure2.2.

Becausef t is a single-valued function, any point of the trajectory canbe
used to label the trajectory. If we mark the trajectory by itsinitial point x0, we
are describing it in theLagrangian coordinates. We can regard the transport
of the material point att = 0 to its current pointx(t) = f t(x0) as a coordinate
transformation from the Lagrangian coordinates to theEulerian coordinates.

The subset of pointsMx0 ⊂ M that belong to the infinite-time trajectory
of a given pointx0 is called theorbit of x0; we shall talk about forward orbits,
backward orbits, periodic orbits, etc.. For a flow, an orbit is a smooth continuous
curve; for a map, it is a sequence of points. An orbit is adynamically invariant
notion. While “trajectory” refers to a statex(t) at time instantt, “orbit” refers to
the totality of states that can be reached fromx0, with state spaceM foliated into
a union of such orbits (eachMx0 labeled by a single point belonging to the set,
x0 = x(0) for example).

2.1.1 A classification of possible motions?

What are the possible trajectories? This is a grand question, and there are many
answers, chapters to follow offering some. Here is the first attempt to classify all
possible trajectories:

stationary: f t(x) = x for all t
periodic: f t(x) = f t+Tp(x) for a given minimum periodTp

aperiodic: f t(x) , f t′ (x) for all t , t′ .

A periodic orbit (or acycle) p is the set of pointsMp ⊂ M swept out by a
trajectory that returns to the initial point in a finite time.Periodic orbits form a
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very small subset of the state space, in the same sense that rational numbers are a
set of zero measure on the unit interval.

[chapter 5]

Periodic orbits and equilibrium points are the simplest examples of ‘non-
wandering’ invariant sets preserved by dynamics. Dynamicscan also preserve
higher-dimensional smooth compact invariant manifolds; most commonly encountered
are theM-dimensional tori of Hamiltonian dynamics, with notion of periodic
motion generalized to quasiperiodic (superposition ofM incommesurate frequencies)
motion on a smooth torus, and families of solutions related by a continuous symmetry.

The ancients tried to make sense of all dynamics in terms of periodic motions;
epicycles, integrable systems. The embarassing truth is that for a generic dynamical
systems almost all motions are aperiodic. So we refine the classification by dividing
aperiodic motions into two subtypes: those that wander off, and those that keep
coming back.

A point x ∈ M is called awandering point, if there exists an open neighborhood
M0 of x to which the trajectory never returns

f t(x) <M0 for all t > tmin . (2.1)

In physics literature, the dynamics of such state is often referred to astransient.

Wandering points do not take part in the long-time dynamics,so your first task
is to prune them fromM as well as you can. What remains envelops the set of the
long-time trajectories, or thenon-wandering set.

For times much longer than a typical ‘turnover’ time, it makes sense to relax
the notion of exact periodicity, and replace it by the notionof recurrence. A point
is recurrentor non-wanderingif for any open neighborhoodM0 of x and any time
tmin there exists a later timet, such that

f t(x) ∈ M0 . (2.2)

In other words, the trajectory of a non-wandering point reenters the neighborhood
M0 infinitely often. We shall denote byΩ the non–wandering setof f , i.e., the
union of all the non-wandering points ofM. The setΩ, the non–wandering set of
f , is the key to understanding the long-time behavior of a dynamical system; all
calculations undertaken here will be carried out on non–wandering sets.

So much about individual trajectories. What about clouds ofinitial points? If
there exists a connected state space volume that maps into itself under forward
evolution (and you can prove that by the method of Lyapunov functionals, or
several other methods available in the literature), the flowis globally contracting
onto a subset ofM which we shall refer to as theattractor. The attractor may
be unique, or there can coexist any number of distinct attracting sets, each with
its own basin of attraction, the set of all points that fall into the attractor under
foward evolution. The attractor can be a fixed point, a periodic orbit, aperiodic,
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or any combination of the above. The most interesting case isthat of an aperiodic
recurrent attractor, to which we shall refer loosely as astrange attractor. We say

[example 2.3]
‘loosely’, as will soon become apparent that diagnosing andproving existence of
a genuine, card-carrying strange attractor is a highly nontrivial undertaking.

Conversely, if we can enclose the non–wandering setΩ by a connected state
space volumeM0 and then show that almost all points withinM0, but not in
Ω, eventually exitM0, we refer to the non–wandering setΩ as arepeller. An
example of a repeller is not hard to come by–the pinball game of sect.1.3 is a
simple chaotic repeller.

It would seem, having said that the periodic points are so exceptional that
almost all non-wandering points are aperiodic, that we havegiven up the ancients’
fixation on periodic motions. Nothing could be further from truth. As longer and
longer cycles approximate more and more accurately finite segments of aperiodic
trajectories, we shall establish control over non–wandering sets by defining them
as the closure of the union of all periodic points.

Before we can work out an example of a non–wandering set and get a better
grip on what chaotic motion might look like, we need to ponderflows in a little
more depth.

2.2 Flows

There is no beauty without some strangeness.

—William Blake

A flow is a continuous-time dynamical system. The evolution rulef t is a family
of mappings ofM → M parameterized byt ∈ R. Becauset represents a time
interval, any family of mappings that forms an evolution rule must satisfy:

[exercise 2.2]

(a) f 0(x) = x (in 0 time there is no motion)

(b) f t( f t′(x)) = f t+t′ (x) (the evolution law is the same at all times)

(c) the mapping (x, t) 7→ f t(x) fromM× R intoM is continuous.

We shall often find it convenient to represent functional composition by ‘◦ :’
[appendix H.1]

f t+s = f t ◦ f s = f t( f s) . (2.3)

The family of mappingsf t(x) thus forms a continuous (forward semi-) group.
Why ‘semi-’group? It may fail to form a group if the dynamics is not reversible,
and the rulef t(x) cannot be used to rerun the dynamics backwards in time, with
negativet; with no reversibility, we cannot define the inversef −t( f t(x)) = f 0(x) =
x , in which case the family of mappingsf t(x) does not form a group. In exceedingly
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many situations of interest–for times beyond the Lyapunov time, for asymptotic
attractors, for dissipative partial differential equations, for systems with noise, for
non-invertible maps–the dynamics cannot be run backwards in time, hence, the
circumspect emphasis onsemigroups. On the other hand, there are many settings
of physical interest, where dynamics is reversible (such asfinite-dimensional Hamiltonian
flows), and where the family of evolution mapsf t does form a group.

For infinitesimal times, flows can be defined by differential equations. We
write a trajectory as

x(t + τ) = f t+τ(x0) = f ( f (x0, t), τ) (2.4)

and express the time derivative of a trajectory at pointx(t),
[exercise 2.3]

dx
dτ

∣∣∣∣∣
τ=0
= ∂τ f ( f (x0, t), τ)|τ=0 = ẋ(t) . (2.5)

as the time derivative of the evolution rule, a vector evaluated at the same point.
By considering all possible trajectories, we obtain the vector ẋ(t) at any point
x ∈ M. Thisvector fieldis a (generalized) velocity field:

v(x) = ẋ(t) . (2.6)

Newton’s laws, Lagrange’s method, or Hamilton’s method areall familiar procedures
for obtaining a set of differential equations for the vector fieldv(x) that describes
the evolution of a mechanical system. Equations of mechanics may appear different
in form from (2.6), as they are often involve higher time derivatives, but an equation
that is second or higher order in time can always be rewrittenas a set of first order
equations.

We are concerned here with a much larger world of general flows, mechanical
or not, all defined by a time-independent vector field (2.6). At each point of the
state space a vector indicates the local direction in which the trajectory evolves.
The length of the vector|v(x)| is proportional to the speed at the pointx, and the
direction and length ofv(x) changes from point to point. When the state space is a
complicated manifold embedded inRd, one can no longer think of the vector field
as being embedded in the state space. Instead, we have to imagine that each point
x of state space has a different tangent planeTMx attached to it. The vector field
lives in the union of all these tangent planes, a space calledthe tangent bundle
TM.

Example 2.1 A 2-dimensional vector field v(x): A simple example of a flow is
afforded by the unforced Duffing system

ẋ(t) = y(t)

ẏ(t) = −0.15y(t) + x(t) − x(t)3 (2.7)

plotted in figure 2.3. The velocity vectors are drawn superimposed over the configuration
coordinates (x(t), y(t)) of state space M, but they belong to a different space, the
tangent bundle TM.
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Figure 2.3: (a) The 2-dimensional vector field
for the Duffing system (2.7), together with a short
trajectory segment. (b) The flow lines. Each
‘comet’ represents the same time interval of a
trajectory, starting at the tail and ending at the
head. The longer the comet, the faster the flow
in that region. (a) (b)

Figure 2.4: Lorenz “butterfly” strange attractor. (J.
Halcrow)
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If v(xq) = 0 , (2.8)

xq is anequilibrium point(also referred to as astationary, fixed, critical, invariant,
rest, stagnationpoint, zero of the vector fieldv, or steady state- our usage is
‘equilibrium’ for a flow, ‘fixed point’ for a map), and the trajectory remains
forever stuck atxq. Otherwise the trajectory passing throughx0 at time t = 0
can be obtained by integrating the equations (2.6):

x(t) = f t(x0) = x0 +

∫ t

0
dτ v(x(τ)) , x(0) = x0 . (2.9)

We shall consider here onlyautonomousflows, i.e., flows for which the velocity
field vi is stationary, not explicitly dependent on time. A non-autonomous system

dy
dτ
= w(y, τ) , (2.10)

can always be converted into a system where time does not appear explicitly.
[exercise 2.4]

[exercise 2.5]
To do so, extend (‘suspend’) state space to be (d + 1)-dimensional by defining
x = {y, τ}, with a stationary vector field

v(x) =

[
w(y, τ)

1

]
. (2.11)

The new flowẋ = v(x) is autonomous, and the trajectoryy(τ) can be read off x(t)
by ignoring the last component ofx.
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Figure 2.5: A trajectory of the Rössler flow at time
t = 250. (G. Simon)
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Example 2.2 Lorenz strange attractor: Edward Lorenz arrived at the equation

ẋ = v(x) =


ẋ
ẏ
ż

 =


σ(y− x)
ρx− y− xz

xy− bz

 (2.12)

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed σ = 10, b = 8/3,
and varied the “Rayleigh number” ρ. For 0 < ρ < 1 the equilibrium EQ0 = (0, 0, 0) at the
origin is attractive. At ρ = 1 it undergoes a pitchfork bifurcation into a pair of equilibria
at

[remark 2.2]

xEQ1,2 = (±
√

b(ρ − 1),±
√

b(ρ − 1), ρ − 1) , (2.13)

We shall not explore the Lorenz flow dependence on the ρ parameter in what follows,
but here is a brief synopsis: the EQ0 1d unstable manifold closes into a homoclinic orbit
at ρ = 13.56. . .. Beyond that, an infinity of associated periodic orbits are generated,
until ρ = 24.74. . ., where EQ1,2 undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice
σ = 10, b = 8/3, ρ = 28. For these parameter values the long-time dynamics is confined
to the strange attractor depicted in figure 2.4. (Continued in example 3.5.)

Example 2.3 The Rössler flow–A flow with a strange attractor: The Duffing
flow of figure 2.3 is bit of a bore–every trajectory ends up in one of the two attractive
equilibrium points. Let’s construct a flow that does not die out, but exhibits a recurrent
dynamics. Start with a harmonic oscillator

ẋ = −y , ẏ = x . (2.14)

The solutions are reit , re−it , and the whole x-y plane rotates with constant angular
velocity θ̇ = 1, period T = 2π. Now make the system unstable by adding

ẋ = −y , ẏ = x+ ay, a > 0 , (2.15)

or, in radial coordinates, ṙ = ar sin2 θ, θ̇ = 1+ (a/2) sin 2θ. The plane is still rotating with
the same average angular velocity, but trajectories are now spiraling out. Any flow in
the plane either escapes, falls into an attracting equilibrium point, or converges to a limit
cycle. Richer dynamics requires at least one more dimension. In order to prevent the
trajectory from escaping to ∞, kick it into 3rd dimension when x reaches some value c
by adding

ż= b+ z(x− c) , c > 0 . (2.16)
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As x crosses c, z shoots upwards exponentially, z ≃ e(x−c)t. In order to bring it back,
start decreasing x by modifying its equation to

ẋ = −y− z.

Large z drives the trajectory toward x = 0; there the exponential contraction by e−ct

kicks in, and the trajectory drops back toward the x-y plane. This frequently studied
example of an autonomous flow is called the Rössler!flow (for definitiveness, we fix the
parameters a, b, c in what follows):

ẋ = −y− z

ẏ = x+ ay

ż = b+ z(x− c) , a = b = 0.2 , c = 5.7 . (2.17)

The system is as simple as they get–it would be linear, were it not for the sole bilinear
[exercise 2.8]

term zx. Even for so ‘simple’ a system the nature of long-time solutions is far from
obvious.

There are two repelling equilibrium points (2.8):

x± =
c±
√

c2 − 4ab
2a

(a,−1, 1)

(x−, y−, z−) = ( 0.0070, −0.0351, 0.0351)

(x+, y+, z+) = ( 5.6929, −28.464, 28.464) (2.18)

One is close to the origin by construction–the other, some distance away, exists because
the equilibrium condition has a 2nd-order nonlinearity.

To see what other solutions look like we need to resort to numerical integration.
A typical numerically integrated long-time trajectory is sketched in figure 2.5. As we
shall show in sect. 4.1, for this flow any finite volume of initial conditions shrinks with
time, so the flow is contracting. Trajectories that start out sufficiently close to the origin
seem to converge to a strange attractor. We say ‘seem’ as there exists no proof that

[exercise 3.5]
such an attractor is asymptotically aperiodic–it might well be that what we see is but a
long transient on a way to an attractive periodic orbit. For now, accept that figure 2.5
and similar figures in what follows are examples of ‘strange attractors.’ (continued in
exercise 2.8 and example 3.4) (R. Paškauskas)

fast track:

chapter 3, p. 46

2.3 Computing trajectories

On two occasions I have been asked [by members of
Parliament], ’Pray, Mr. Babbage, if you put into the
machine wrong figures, will the right answers come out?’
I am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.

— Charles Babbage

You have not learned dynamics unless you know how to integrate numerically
whatever dynamical equations you face. Sooner or later, youneed to implement
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some finite time-step prescription for integration of the equations of motion (2.6).
The simplest is the Euler integrator which advances the trajectory byδτ× velocity
at each time step:

xi → xi + vi(x)δτ . (2.19)

This might suffice to get you started, but as soon as you need higher numerical
accuracy, you will need something better. There are many excellent reference texts
and computer programs that can help you learn how to solve differential equations
numerically using sophisticated numerical tools, such as pseudo-spectral methods
or implicit methods. If a ‘sophisticated’ integration routine takes days and

[exercise 2.6]
gobbles up terabits of memory, you are using brain-damaged high level software.
Try writing a few lines of your own Runge-Kutta code in some mundane everyday
language. While you absolutely need to master the requisitenumerical methods,

[exercise 2.7]
this is neither the time nor the place to expound upon them; how you learn them
is your business. And if you have developed some nice routines for solving

[exercise 2.9]
problems in this text or can point another student to some, let us know.

[exercise 2.10]

Résum é

Chaotic dynamics with a low-dimensional attractor can be visualized as a succession
of nearly periodic but unstable motions. In the same spirit,turbulence in spatially
extended systems can be described in terms of recurrent spatiotemporal patterns.
Pictorially, dynamics drives a given spatially extended system through a repertoire
of unstable patterns; as we watch a turbulent system evolve,every so often we
catch a glimpse of a familiar pattern. For any finite spatial resolution and finite
time the system follows approximately a pattern belonging to a finite repertoire of
possible patterns, and the long-term dynamics can be thought of as a walk through
the space of such patterns. Recasting this image into mathematics is the subject
of this book.

Commentary

Remark 2.1 Rössler and Duffing flows. The Duffing system (2.7) arises in the study
of electronic circuits [2]. The Rössler flow (2.17) is the simplest flow which exhibits many
of the key aspects of chaotic dynamics. We shall us the Rössler and the 3-pinball (see
chapter8) systems throughout ChaosBook to motivate the notions of Poincaré sections,
return maps, symbolic dynamics, cyce expansions, etc., etc.. The Rössler flow was
introduced in ref. [3] as a set of equations describing no particular physical system, but
capturing the essence of chaos in a simplest imaginable smooth flow. Otto Rössler, a man
of classical education, was inspired in this quest by that rarely cited grandfather of chaos,
Anaxagoras (456 B.C.). This, and references to earlier workcan be found in refs. [5, 8,
11]. We recommend in particular the inimitable Abraham and Shaw illustrated classic [6]
for its beautiful sketches of the Rössler and many other flows. Timothy Jones [19] has a
number of interesting simulations on a Drexel website.
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Rössler flow is integrated in exercise2.7, its equilibria are determined in exercise2.8,
its Poincaré sections constructed in exercise3.1, and the corresponding return Poincaré
map computed in exercise3.2. Its volume contraction rate is computed in exercise4.3, its
topology investigated in exercise4.4, and its Lyapunov exponents evaluated in exercise15.4.
The shortest Rössler flow cycles are computed and tabulatedin exercise12.7.

Remark 2.2 Lorenz equation. The Lorenz equation (2.12) is the most celebrated
early illustration of “deterministic chaos” [13] (but not the first - the honor goes to Dame
Cartwright [27]). Lorenz’s paper, which can be found in reprint collections refs. [14, 15],
is a pleasure to read, and is still one of the best introductions to the physics motivating
such models. For a geophysics derivation, see Rothman course notes [7]. The equations,
a set of ODEs inR3, exhibit strange attractors [28, 29, 30]. Frøyland [16] has a nice brief
discussion of Lorenz flow. Frøyland and Alfsen [17] plot many periodic and heteroclinic
orbits of the Lorenz flow; some of the symmetric ones are included in ref. [16]. Guckenheimer-
Williams [18] and Afraimovich-Bykov-Shilnikov [19] offer in-depth discussion of the
Lorenz equation. The most detailed study of the Lorenz equation was undertaken by
Sparrow [21]. For a physical interpretation ofρ as “Rayleigh number.” see Jackson [24]
and Seydel [25]. Lorenz truncation to 3 modes is so drastic that the model bears no relation
to the physical hydrodynamics problem that motivated it. For a detailed pictures of Lorenz
invariant manifolds consult Vol II of Jackson [24]. Lorenz attractor is a very thin fractal –
as we saw, stable manifold thinckness is of order 10−4 – but its fractal structure has been
accurately resolved by D. Viswanath [9, 10]. (Continued in remark9.1.)

Remark 2.3 Diagnosing chaos. In sect.1.3.1we have stated that a deterministic
system exhibits ‘chaos’ if its dynamics is locally unstable(positive Lyapunov exponent)
and globally mixing (positive entropy). In sect.15.3we shall define Lyapunov exponents,
and discuss their evaluation, but already at this point it would be handy to have a few
quick numerical methods to diagnose chaotic dynamics. Laskar’s frequency analysis
method [15] is useful for extracting quasi-periodic and weakly chaotic regions of state
space in Hamiltonian dynamics with many degrees of freedom.For pointers to other
numerical methods, see ref. [16].

Remark 2.4 Dynamical systems software: J.D. Meiss [13] has maintained for many
yearsSci.nonlinear FAQwhich is now in part superseded by the SIAM Dynamical Systems
websitewww.dynamicalsystems.org. The website glossary contains most of Meiss’s
FAQ plus new ones, and a up-to-date software list [14], with links to DSTool, xpp,
AUTO, etc.. Springer on-lineEncyclopaedia of Mathematicsmaintains links to dynamical
systems software packages oneom.springer.de/D/d130210.htm.
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The exercises that you should do haveunderlined titles . The rest (smaller type )
are optional. Difficult problems are marked by any number of *** stars.

Exercises

2.1. Trajectories do not intersect. A trajectory in the
state spaceM is the set of points one gets by evolving
x ∈ M forwards and backwards in time:

Cx = {y ∈ M : f t(x) = y for t ∈ R} .

Show that if two trajectories intersect, then they are the
same curve.

2.2. Evolution as a group. The trajectory evolutionf t is
a one-parameter semigroup, where (2.3)

f t+s = f t ◦ f s .

Show that it is a commutative semigroup.

In this case, the commutative character of the
(semi-)group of evolution functions comes from the
commutative character of the time parameter under
addition. Can you think of any other (semi-)group
replacing time?

2.3. Almost ODE’s.

(a) Consider the pointx on R evolving according
ẋ = eẋ . Is this an ordinary differential equation?

(b) Is ẋ = x(x(t)) an ordinary differential equation?

(c) What about ˙x = x(t + 1) ?

2.4. All equilibrium points are fixed points. Show that
a point of a vector fieldv where the velocity is zero is a
fixed point of the dynamicsf t.

2.5. Gradient systems. Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an
auxiliary function, the ‘potential’φ

ẋ = −∇φ(x)

wherex ∈ Rd, andφ is a function from that space to the
realsR.

(a) Show that the velocity of the particle is in the
direction of most rapid decrease of the function
φ.

(b) Show that all extrema ofφ are fixed points of the
flow.

(c) Show that it takes an infinite amount of time for
the system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gradient
systems.

2.6. Runge-Kutta integration. Implement the fourth-
order Runge-Kutta integration formula (see, for
example, ref. [12]) for ẋ = v(x):

xn+1 = xn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+O(δτ5)

k1 = δτ v(xn) , k2 = δτ v(xn + k1/2)

k3 = δτ v(xn + k2/2)

k4 = δτ v(xn + k3) .

If you already know your Runge-Kutta, program what
you believe to be a better numerical integration routine,
and explain what is better about it.

2.7. Rössler flow. Use the result of exercise2.6 or some
other integration routine to integrate numerically the
Rössler flow (2.17). Does the result look like a ‘strange
attractor’?

2.8. Equilibria of the R össler flow.

(a) Find all equilibrium points (xq, yq, zq) of the
Rössler system (2.17). How many are there?

(b) Assume thatb = a. As we shall see, some
surprisingly large, and surprisingly small numbers
arise in this system. In order to understand their
size, introduce parameters

ǫ = a/c , D = 1− 4ǫ2 , p± = (1±
√

D)/2 .

Express all the equilibria in terms of (c, ǫ,D, p±).
Expand equilibria to the first order inǫ. Note that
it makes sense because fora = b = 0.2, c = 5.7 in
(2.17), ǫ ≈ 0.03. (continued as exercise3.1)

(Rytis Paškauskas)

2.9. Can you integrate me? Integrating equations
numerically is not for the faint of heart. It is not always
possible to establish that a set of nonlinear ordinary
differential equations has a solution for all times and
there are many cases were the solution only exists for
a limited time interval, as, for example, for the equation
ẋ = x2 , x(0) = 1 .
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(a) For what times do solutions of

ẋ = x(x(t))

exist? Do you need a numerical routine to answer
this question?

(b) Let’s test the integrator you wrote in exercise2.6.
The equation ¨x = −x with initial conditionsx(0) =
2 and ẋ = 0 has as solutionx(t) = e−t(1 + e2 t) .
Can your integrator reproduce this solution for
the intervalt ∈ [0, 10]? Check you solution by
plotting the error as compared to the exact result.

(c) Now we will try something a little harder. The
equation is going to be third order

...
x +0.6ẍ+ ẋ− |x| + 1 = 0 ,

which can be checked–numerically–to be chaotic.
As initial conditions we will always use ¨x(0) =
ẋ(0) = x(0) = 0 . Can you reproduce the result
x(12)= 0.8462071873 (all digits are significant)?
Even though the equation being integrated is
chaotic, the time intervals are not long enough
for the exponential separation of trajectories to
be noticeable (the exponential growth factor is
≈ 2.4).

(d) Determine the time interval for which the solution
of ẋ = x2, x(0) = 1 exists.

2.10. Classical collinear helium dynamics. In order to
apply periodic orbit theory to quantization of helium
we shall need to compute classical periodic orbits of

the helium system. In this exercise we commence their
evaluation for the collinear helium atom (7.6)

H =
1
2

p2
1 +

1
2

p2
2 −

Z
r1
− Z

r2
+

1
r1 + r2

.

The nuclear charge for helium isZ = 2. Colinear helium
has only 3 degrees of freedom and the dynamics can be
visualized as a motion in the (r1, r2), r i ≥ 0 quadrant. In
(r1, r2)-coordinates the potential is singular forr i → 0
nucleus-electron collisions. These 2-body collisions
can be regularized by rescaling the coordinates, with
details given in sect.6.3. In the transformed coordinates
(x1, x2, p1, p2) the Hamiltonian equations of motion take
the form

Ṗ1 = 2Q1

2−
P2

2

8
− Q2

2(1+
Q2

2

R4
)



Ṗ2 = 2Q2

2−
P2

1

8
− Q2

1(1+
Q2

1

R4
)



Q̇1 =
1
4

P1Q2
2 , Q̇2 =

1
4

P2Q2
1 . (2.20)

whereR= (Q2
1 + Q2

2)1/2.

(a) Integrate the equations of motion by the
fourth order Runge-Kutta computer routine of
exercise2.6 (or whatever integration routine you
like). A convenient way to visualize the 3-d
state space orbit is by projecting it onto the 2-
dimensional (r1(t), r2(t)) plane. (continued as
exercise3.4)

(Gregor Tanner, Per Rosenqvist)
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Chapter 3

Discrete time dynamics

Do it again!
—Isabelle, age 3

(R. Mainieri and P. Cvitanović)

T   in the sect.2.1 definition of a dynamical system can be
either continuous or discrete. Discrete time dynamical systems arise naturally
from flows; one can observe the flow at fixed time intervals (by strobing it),

or one can record the coordinates of the flow when a special event happens (the
Poincaré section method). This triggering event can be as simple as vanishing
of one of the coordinates, or as complicated as the flow cutting through a curved
hypersurface.

3.1 Poincaŕe sections

Successive trajectory intersections with aPoincaré section, a (d− 1)-dimensional
hypersurface or a set of hypersurfacesP embedded in thed-dimensional state
spaceM, define thePoincaré return map P(x), a (d−1)-dimensional map of form

x′ = P(x) = f τ(x)(x) , x′, x ∈ P . (3.1)

Here thefirst return functionτ(x)–sometimes referred to as theceiling function–is
the time of flight to the next section for a trajectory starting atx. The choice of the
section hypersurfaceP is altogether arbitrary. It is rarely possible to define a single
section that cuts across all trajectories of interest. In practice one often needs
only a local section–a finite hypersurface of codimension 1 volume intersected by
a ray of trajectories near to the trajectory of interest. Thehypersurface can be
specified implicitly through a functionU(x) that is zero whenever a pointx is on
the Poincaré section,

x ∈ P iff U(x) = 0 . (3.2)
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Figure 3.1: A x(t) trajectory that intersects a Poincaré
section P at times t1, t2, t3, t4, and closes a cycle
(x1, x2, x3, x4), xk = x(tk) ∈ P of topological length 4
with respect to this section. Note that the intersections
are not normal to the section, and that the crossingz
does not count, as it in the wrong direction.
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x3
z
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x4

The gradient ofU(x) evaluated atx ∈ P serves a two-fold function. First, the
flow should pierce the hypersurfaceP, rather than being tangent to it. A nearby
point x + δx is in the hypersurfaceP if U(x + δx) = 0. A nearby point on the
trajectory is given byδx = vδt, so a traversal is ensured by thetransversality
condition

(v · ∂U) =
d∑

j=1

v j(x)∂ jU(x) , 0 , ∂ jU(x) =
d

dxj
U(x) , x ∈ P . (3.3)

Second, the gradient∂ jU defines the orientation of the hypersurfaceP. The flow
is oriented as well, and a periodic orbit can pierceP twice, traversing it in either
direction, as in figure3.1. Hence the definition of Poincaré return mapP(x) needs
to be supplemented with the orientation condition

xn+1 = P(xn) , U(xn+1) = U(xn) = 0 , n ∈ Z+
d∑

j=1

v j(xn)∂ jU(xn) > 0 . (3.4)

In this way the continuous timet flow f t(x) is reduced to a discrete timensequence
xn of successiveorientedtrajectory traversals ofP.

[chapter 15]

With a sufficiently clever choice of a Poincaré section or a set of sections,
any orbit of interest intersects a section. Depending on theapplication, one might
need to convert the discrete timen back to the continuous flow time. This is
accomplished by adding up the first return function timesτ(xn), with the accumulated
flight time given by

tn+1 = tn + τ(xn) , t0 = 0 , xn ∈ P . (3.5)

Other quantities integrated along the trajectory can be defined in a similar manner,
and will need to be evaluated in the process of evaluating dynamical averages.

A few examples may help visualize this.

Example 3.1 Hyperplane P: The simplest choice of a Poincaré section is a plane
P specified by a point (located at the tip of the vector r0) and a direction vector a
perpendicular to the plane. A point x is in this plane if it satisfies the condition

U(x) = (x− r0) · a = 0 . (3.6)
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Figure 3.5: (Right:) a sequence of Poincaré
sections of the Rössler strange attractor, defined
by planes through thez axis, oriented at angles
(a) −60o (b) 0o, (c) 60o, (d) 120o, in the x-
y plane. (Left:) side andx-y plane view of a typical
trajectory with Poincaré sections superimposed.
(R. Paškauskas)
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is the symmetry quotiented version of chapter 9 which replaces the above 6 maps by
[chapter 9]

a return map pair P0,P1.
[chapter 8]

Embedded withinP12, P13 are four stripsP121, P123, P131,P132 of initial conditions
that survive two bounces, and so forth. Provided that the disks are sufficiently separated,
after n bounces the survivors are labeled by 2n distinct itineraries σ1σ2σ3 . . . σn.

Billiard dynamics is exceptionally simple - free flight segments, followed by
specular reflections at boundaries, thus billiard boundaries are the obvious choice
as Poincaré sections. What about smooth, continuous time flows, with no obvious
surfaces that would fix the choice of Poincaré sections?

Example 3.3 Pendulum: The phase space of a simple pendulum is 2-dimensional:
momentum on the vertical axis and position on the horizontal axis. We choose the
Poincaré section to be the positive horizontal axis. Now imagine what happens as a
point traces a trajectory through this phase space. As long as the motion is oscillatory,
in the pendulum all orbits are loops, so any trajectory will periodically intersect the line,
that is the Poincaré section, at one point.

Consider next a pendulum with friction, such as the unforced Duffing system
plotted in figure 2.3. Now every trajectory is an inward spiral, and the trajectory will
intersect the Poincaré section y = 0 at a series of points that get closer and closer to
either of the equilibrium points; the Duffing oscillator at rest.

Motion of a pendulum is so simple that you can sketch it yourself on a piece
of paper. The next example offers a better illustration of the utility of visualization
of dynamics by means of Poincaré sections.

Example 3.4 Rössler flow: Consider figure 2.5, a typical trajectory of the 3-
dimensional Rössler flow (2.17). It wraps around the z axis, so a good choice for a
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Figure 3.6: Return maps for theRn → Rn+1

radial distance Poincaré sections of figure3.5. (R.
Paškauskas)
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Poincaré section is a plane passing through the z axis. A sequence of such Poincaré
sections placed radially at increasing angles with respect to the x axis, figure 3.5,
illustrates the “stretch & fold” action of the Rössler flow. To orient yourself, compare
this with figure 2.5, and note the different z-axis scales. Figure 3.5 assembles these
sections into a series of snapshots of the flow. A line segment [A, B], traversing the
width of the attractor, starts out close to the x-y plane, and after the stretching (a) →
(b) followed by the folding (c)→ (d), the folded segment returns close to the x-y plane
strongly compressed. In one Poincaré return the [A, B] interval is stretched, folded and
mapped onto itself, so the flow is expanding. It is also mixing, as in one Poincaré return
the point C from the interior of the attractor is mapped into the outer edge, while the
edge point B lands in the interior.

Once a particular Poincaré section is picked, we can also exhibit the return
map (3.1), as in figure 3.6. Cases (a) and (d) are examples of nice 1-to-1 return maps.
However, (b) and (c) appear multimodal and non-invertible, artifacts of projection of
a 2-d return map (Rn, zn) → (Rn+1, zn+1) onto a 1-dimensional subspace Rn → Rn+1.
(Continued in example 4.1)

fast track:

sect. 3.3, p. 54

The above examples illustrate why a Poincaré section givesa more informative
snapshot of the flow than the full flow portrait. For example, while the full flow
portrait of the Rössler flow figure2.5 gives us no sense of the thickness of the
attractor, we see clearly in the figure3.5 Poincaré sections that even though the
return map is 2-d → 2-d, the flow contraction is so strong that for all practical
purposes it renders the return map 1-dimensional.

3.1.1 What’s the best Poincaŕe section?

In practice, picking sections is a dark and painful art, especially for high-dimensional
flows where the human visual cortex falls short. It helps to understand why we
need them in the first place.

Whenever a system has a continuous symmetryG, any two solutions related
by the symmetry are equivalent, so it would be stupid to keep recomputing them
over and over. We would rather replace the whole continuous family of solutions
by one.

A smart way to do would be to replace dynamics (M, f ) by dynamics on the
quotient state space(M/G, f̃ ). We will discuss this in chapter9, but in general

[chapter 9]
constructing explicit quotient state space flow̃f appears either difficult, or not
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Figure 3.7: (a) Lorenz flow figure2.4 cut by
y = x Poincaré section planeP through thez
axis and bothEQ1,2 equilibria. Points where flow
pierces into section are marked by dots. To aid
visualization of the flow near theEQ0 equilibrium,
the flow is cut by the second Poincaré section,
P′, throughy = −x and thez axis. (b) Poincaré
sectionsP andP′ laid side-by-side. The singular
nature of these sections close toEQ0 will be
elucidated in example4.6and figure10.7(b). (E.
Siminos) (a) (b)

appreciated enough to generate much readable literature, or perhaps impossible.
So one resorts to method of sections.

Time evolution itself is a 1-parameter abelian Lie group, albeit a highly nontrivial
one (otherwise this book would not be much of a doorstop). Theinvariants of the
flow are its infinite-time orbits; particularly useful invariants are compact orbits
Mp ⊂ M, such as equilibrium points, periodic orbits and tori. For any orbit it
suffices to pick a single state space pointx ∈ Mp, the rest of the orbit is generated
by the flow and its symmetries.

Choice of this one point is utterly arbitrary; in dynamics this is called a
“Poincaré section,” and in theoretical physics this goes by the exceptionally uninformative
name of “gauge fixing.” The price is that one generates “ghosts,” or, in dynamics,
increases the dimensionality of the state space by additional constraints (see sect.12.4).
It is a commonly deployed but inelegant procedure where symmetry is broken for
computational convenience, and restored only at the end of the calculation, when
all broken pieces are reassembled.

This said, there are a few rules of thumb to follow: (a) You canpick as many
sections as convenient. (b) For ease of computation, pick linear sections (3.6) if
you can. (c) If equilibria play important role in organizinga flow, pick sections
that go through them (see example3.5). (c) If you have a global discrete or

[chapter 9]
continuous symmetry, pick sections left invariant by the symmetry (see example9.2).
(d) If you are solving a local problem, like finding a periodicorbit, you do not
need a global section. Pick a section or a set of (multi-shooting) sections on the
fly, requiring only that they are locally orthogonal to the flow (e) If you have
another rule of thumb dear to you, let us know.

Example 3.5 Sections of Lorenz flow: (Continued from example 2.2.) The plane
P fixed by the x = y diagonal and the z-axis depicted in figure 3.7 is a natural choice
of a Poincaré section of the Lorenz flow of figure 2.4, as it contains all three equilibria,
xEQ0 = (0, 0, 0) and the (2.13) pair EQ1,2. A section has to be supplemented with the
orientation condition (3.4): here points where flow pierces into the section are marked
by dots.

EQ1,2 are centers of out-spirals, and close to them the section is transverse
to the flow. However, close to EQ0 trajectories pass the z-axis either by crossing the

maps - 13jun2008.tex

CHAPTER 3. DISCRETE TIME DYNAMICS 53

section P or staying on the viewer’s side. We are free to deploy as many sections as
we wish: in order to capture the whole flow in this neighborhood we add the second
Poincaré section, P′, through the y = −x diagonal and the z-axis. Together the two
sections, figure 3.7 (b), capture the whole flow near EQ0. In contrast to Rössler sections
of figure 3.5, these appear very singular. We explain this singularity in example 4.6, and
postpone construction of a Poincaré return map to example 9.2.

(E. Siminos and J. Halcrow)

3.2 Constructing a Poincaŕe section

For almost any flow of physical interest a Poincaré section is not available in
analytic form. We describe now a numerical method for determining a Poincaré
section.

[remark 3.1]

Consider the system (2.6) of ordinary differential equations in the vector variable
x = (x1, x2, . . . , xd)

dxi

dt
= vi(x, t) , (3.10)

where the flow velocityv is a vector function of the position in state spacex and
the timet. In general,v cannot be integrated analytically, so we will have to resort
to numerical integration to determine the trajectories of the system. Our task is
to determine the points at which the numerically integratedtrajectory traverses
a given hypersurface. The hypersurface will be specified implicitly through a
function U(x) that is zero whenever a pointx is on the Poincaré section, such as
the hyperplane (3.6).

If we use a tiny step size in our numerical integrator, we can observe the value
of U as we integrate; its sign will change as the trajectory crosses the hypersurface.
The problem with this method is that we have to use a very smallintegration time
step. In order to land exactly on the Poincaré section one often interpolates the
intersection point from the two trajectory points on eitherside of the hypersurface.
However, there is a better way.

Let ta be the time just beforeU changes sign, andtb the time just after it
changes sign. The method for landing exactly on the Poincar´e section will be to
convert one of the space coordinates into an integration variable for the part of the
trajectory betweenta andtb. Using

dxk

dx1

dx1

dt
=

dxk

dx1
v1(x, t) = vk(x, t) (3.11)

we can rewrite the equations of motion (3.10) as

dt
dx1
=

1
v1
, · · · , dxd

dx1
=

vd

v1
. (3.12)
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Now we usex1 as the ‘time’ in the integration routine and integrate it from x1(ta) to
the value ofx1 on the hypersurface, determined by the hypersurface intersection
condition (3.6). This is the end point of the integration, with no need for any
interpolation or backtracking to the surface of section. The x1–axis need not be
perpendicular to the Poincaré section; anyxi can be chosen as the integration
variable, provided thexi-axis is not parallel to the Poincaré section at the trajectory
intersection point. If the section crossing is transverse (3.3), v1 cannot vanish in
the short segment bracketed by the integration step preceding the section, and the
point on the Poincaré section.

Example 3.6 Computation of R össler flow Poincar é sections. Poincaré sections
of figure 3.5 are defined by the fixing angle U(x) = θ−θ0 = 0. Convert Rössler equation
(2.17) to cylindrical coordinates:

ṙ = υr = −zcosθ + ar sin2 θ

θ̇ = υθ = 1+
z
r

sinθ +
a
2

sin 2θ

ż = υz = b+ z(r cosθ − c) . (3.13)

In principle one should use the equilibrium x+ from (2.18) as the origin, and its eigenvectors
as the coordinate frame, but here original coordinates suffice, as for parameter values
(2.17), and (x0, y0, z0) sufficiently far away from the inner equilibrium, θ increases monotonically
with time. Integrate

dr
dθ
= υr/υθ ,

dt
dθ
= 1/υθ ,

dz
dθ
= υz/υθ (3.14)

from (rn, θn, zn) to the next Poincaré section at θn+1, and switch the integration back to
(x, y, z) coordinates. (Radford Mitchell, Jr.)

3.3 Maps

Though we have motivated discrete time dynamics by considering sections of a
continuous flow, there are many settings in which dynamics isinherently discrete,
and naturally described by repeated iterations of the same map

f :M→M ,

or sequences of consecutive applications of a finite set of maps,

{ fA, fB, . . . fZ} :M→M , (3.15)

for example maps relating different sections among a set of Poincaré sections. The
discrete ‘time’ is then an integer, the number of applications of a map. As writing
out formulas involving repeated applications of a set of maps explicitly can be
awkward, we streamline the notation by denoting a map composition by ‘◦’

fZ(· · · fB( fA(x))) · · ·) = fZ ◦ · · · fB ◦ fA(x) , (3.16)
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Figure 3.8: A flow x(t) of figure 3.1 represented by
a Poincaré return map that maps points in the Poincaré
sectionP asxn+1 = f (xn) . In this example the orbit of
x1 consists of the four cycle points (x1, x2, x3, x4)
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x3
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x1

and thenth iterate of mapf by

f n(x) = f ◦ f n−1(x) = f
(
f n−1(x)

)
, f 0(x) = x .

[section 2.1]

The trajectoryof x is now the discrete set of points

{
x, f (x), f 2(x), . . . , f n(x)

}
,

and theorbit of x is the subset of all points ofM that can be reached by iterations
of f . For example, the orbit ofx1 in figure3.8 is the 4-cycle (x1, x2, x3, x4) .

The functional form of such Poincaré return mapsP as figure3.6 can be
approximated by tabulating the results of integration of the flow from x to the
first Poincaré section return for manyx ∈ P, and constructing a function that
interpolates through these points. If we find a good approximation to P(x),
we can get rid of numerical integration altogether, by replacing the continuous
time trajectory f t(x) by iteration of the Poincaré return mapP(x). Constructing
accurateP(x) for a given flow can be tricky, but we can already learn much from
approximate Poincaré return maps. Multinomial approximations

Pk(x) = ak +

d∑

j=1

bk jx j +

d∑

i, j=1

cki j xi x j + . . . , x ∈ P (3.17)

to Poincaré return maps



x1,n+1

x2,n+1

. . .

xd,n+1


=



P1(xn)
P2(xn)
. . .

Pd(xn)


, xn, xn+1 ∈ P

motivate the study of model mappings of the plane, such as theHénon map.

Example 3.7 Hénon map: The map

xn+1 = 1− ax2
n + byn

yn+1 = xn (3.18)

is a nonlinear 2-dimensional map most frequently employed in testing various hunches
about chaotic dynamics. The Hénon map is sometimes written as a 2-step recurrence
relation

xn+1 = 1− ax2
n + bxn−1 . (3.19)
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Figure 3.9: The strange attractor and an unstable
period 7 cycle of the Hénon map (3.18) with a = 1.4,
b = 0.3. The periodic points in the cycle are connected
to guide the eye. (K.T. Hansen [8])
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An n-step recurrence relation is the discrete-time analogue of an nth order differential
equation, and it can always be replaced by a set of n 1-step recurrence relations.

The Hénon map is the simplest map that captures the “stretch & fold” dynamics
of return maps such as Rössler’s, figure 3.5. It can be obtained by a truncation of a
polynomial approximation (3.17) to a Poincaré return map (3.17) to second order.

A quick sketch of the long-time dynamics of such a mapping (an example is
depicted in figure 3.9), is obtained by picking an arbitrary starting point and iterating
(3.18) on a computer. We plot here the dynamics in the (xn, xn+1) plane, rather than in
the (xn, yn) plane, because we think of the Hénon map as a model return map xn →
xn+1. As we shall soon see, periodic orbits will be key to understanding the long-time

[exercise 3.5]
dynamics, so we also plot a typical periodic orbit of such a system, in this case an
unstable period 7 cycle. Numerical determination of such cycles will be explained in
sect. 27.1 , and the cycle point labels 0111010, 1110100, · · · in sect. 11.3.

Example 3.8 Lozi map: Another example frequently employed is the Lozi map, a
linear, ‘tent map’ version of the Hénon map (3.18) given by

xn+1 = 1− a|xn| + byn

yn+1 = xn . (3.20)

Though not realistic as an approximation to a smooth flow, the Lozi map is a very helpful
tool for developing intuition about the topology of a large class of maps of the “stretch
& fold” type.

What we get by iterating such maps is–at least qualitatively–not unlike what
we get from Poincaré section of flows such as the Rössler flowfigure 3.6. For
an arbitrary initial point this process might converge to a stable limit cycle, to a
strange attractor, to a false attractor (due to roundoff errors), or diverge. In other
words, mindless iteration is essentially uncontrollable,and we will need to resort
to more thoughtful explorations. As we shall explain in due course, strategies for

[exercise 3.5]
systematic exploration rely on stable/unstable manifolds, periodic points, saddle-
straddle methods and so on.

Example 3.9 Parabola: For sufficiently large value of the stretching paramater a,
one iteration of the Hénon map (3.18) stretches and folds a region of the (x, y) plane
centered around the origin. The parameter a controls the amount of stretching, while
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the parameter b controls the thickness of the folded image through the ‘1-step memory’
term bxn−1 in (3.19). In figure 3.9 the parameter b is rather large, b = 0.3, so the attractor
is rather thick, with the transverse fractal structure clearly visible. For vanishingly small
b the Hénon map reduces to the 1-dimensional quadratic map

xn+1 = 1− ax2
n . (3.21)

[exercise 3.7]
By setting b = 0 we lose determinism, as on reals the inverse of map (3.21) has two
preimages {x+n−1, x

−
n−1} for most xn. If Bourbaki is your native dialect: the Hénon map

is injective or one-to-one, but the quadratic map is surjective or many-to-one. Still, this
1-dimensional approximation is very instructive.

As we shall see in sect.10.2.1, an understanding of 1-dimensional dynamics is
indeed the essential prerequisite to unraveling the qualitative dynamics of many
higher-dimensional dynamical systems. For this reason many expositions of the
theory of dynamical systems commence with a study of 1-dimensional maps. We
prefer to stick to flows, as that is where the physics is.

[appendix H.8]

Résum é

In recurrent dynamics a trajectory exits a region in state space and then reenters
it infinitely often, with a finite mean return time. If the orbit is periodic, it
returns after a full period. So, on average, nothing much really happens along
the trajectory–what is important is behavior of neighboring trajectories transverse
to the flow. This observation motivates a replacement of the continuous time flow
by iterative mapping, the Poincaré return map.

The visualization of strange attractors is greatly facilitated by a felicitous
choice of Poincaré sections, and the reduction of flows to Poincaré return maps.
This observation motivates in turn the study of discrete-time dynamical systems
generated by iterations of maps.

A particularly natural application of the Poincaré section method is the reduction
of a billiard flow to a boundary-to-boundary return map, described in chapter8.
As we shall show in chapter6, further simplification of a Poincaré return map,

[chapter 8]

[chapter 6]
or any nonlinear map, can be attained through rectifying these maps locally by
means of smooth conjugacies.

Commentary

Remark 3.1 Determining a Poincaré section. The idea of changing the integration
variable from time to one of the coordinates, although simple, avoids the alternative
of having to interpolate the numerical solution to determine the intersection. The trick
described in sect.3.2 is due to Hénon [5, 6, 7].
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Remark 3.2 Hénon, Lozi maps. The Hénon map is of no particular physical import in
and of itself–its significance lies in the fact that it is a minimal normal form for modeling
flows near a saddle-node bifurcation, and that it is a prototype of the stretching and
folding dynamics that leads to deterministic chaos. It is generic in the sense that it can
exhibit arbitrarily complicated symbolic dynamics and mixtures of hyperbolic and non–
hyperbolic behaviors. Its construction was motivated by the best known early example of
‘deterministic chaos’, the Lorenz equation [1], see ref. [1] and remark2.2.

Y. Pomeau’s studies of the Lorenz attractor on an analog computer, and his insights
into its stretching and folding dynamics motivated Hénon [2] to introduce the Hénon
map in 1976. Hénon’s and Lorenz’s original papers can be found in reprint collections
refs. [3, 4]. They are a pleasure to read, and are still the best introduction to the physics
motivating such models. A detailed description of the dynamics of the Hénon map is
given by Mira and coworkers [8], as well as very many other authors.

The Lozi map [10] is particularly convenient in investigating the symbolicdynamics
of 2-d mappings. Both the Lorenz and Lozi systems are uniformly smooth systems with
singularities. The continuity of measure for the Lozi map was proven by M. Misiurewicz [11],
and the existence of the SRB measure was established by L.-S.Young.

[section 14.1]

Remark 3.3 Grasshoppers vs. butterflies. The ’sensitivity to initial conditions’ was
discussed by Maxwell, 30 years later by Poincaré. In weather prediction, the Lorentz’
‘Butterfly Effect’ started its journey in 1898, as a ‘Grasshopper Effect’ in a book review by
W. S. Franklin [1]. In 1963 Lorenz ascribed a ‘seagull effect’ to an unnamed meteorologist,
and in 1972 he repackaged it as the ‘Butterfly Effect’.
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Exercises

3.1. Poincaré sections of the R̈ossler flow.

(continuation of exercise2.8) Calculate numerically a
Poincaré section (or several Poincaré sections) of the
Rössler flow. As the Rössler flow state space is 3D, the
flow maps onto a 2D Poincaré section. Do you see that
in your numerical results? How good an approximation
would a replacement of the return map for this section
by a 1-dimensional map be? More precisely, estimate
the thickness of the strange attractor. (continued as
exercise4.4)

(R. Paškauskas)

3.2. A return Poincar é map for the Rössler flow.
(continuation of exercise3.1) That Poincaré return maps
of figure 3.6 appear multimodal and non-invertible is
an artifact of projections of a 2-dimensional return map
(Rn, zn) → (Rn+1, zn+1) onto a 1-dimensional subspace
Rn→ Rn+1.

Construct a genuinesn+1 = f (sn) return map by
parametrazing points on a Poincaré section of the
attractor figure3.5 by a Euclidean lengths computed
curvilinearly along the attractor section.

This is best done (using methods to be developed in
what follows) by a continuation of the unstable manifold
of the 1-cycle embedded in the strange attractor,
figure12.1(b). (P. Cvitanović)

3.3. Arbitrary Poincar é sections. We will generalize the
construction of Poincaré sections so that they can have
any shape, as specified by the equationU(x) = 0.

(a) Start by modifying your integrator so that you
can change the coordinates once you get near the
Poincaré section. You can do this easily by writing
the equations as

dxk

ds
= κ fk , (3.22)

with dt/ds = κ, and choosingκ to be 1 or 1/ f1.
This allows one to switch betweent andx1 as the
integration ’time.’

(b) Introduce an extra dimensionxn+1 into your
system and set

xn+1 = U(x) . (3.23)

How can this be used to find a Poincaré section?

3.4. Classical collinear helium dynamics.

(continuation of exercise2.10) Make a Poincaré surface
of section by plotting (r1, p1) wheneverr2 = 0: Note that
for r2 = 0, p2 is already determined by (7.6). Compare
your results with figure6.3(b).

(Gregor Tanner, Per Rosenqvist)

3.5. Hénon map fixed points. Show that the two fixed
points (x0, x0), (x1, x1) of the Hénon map (3.18) are
given by

x0 =
−(1− b) −

√
(1− b)2 + 4a

2a
,

x1 =
−(1− b) +

√
(1− b)2 + 4a

2a
.

3.6. How strange is the H́enon attractor?

(a) Iterate numerically some 100,000 times or so the
Hénon map

[
x′

y′

]
=

[
1− ax2 + y
bx

]

for a = 1.4, b = 0.3 . Would you describe the
result as a ’strange attractor’? Why?

(b) Now check how robust the Hénon attractor is by
iterating a slightly different Hénon map, witha =
1.39945219,b = 0.3. Keep at it until the ’strange’
attractor vanishes like the smile of the Chesire cat.
What replaces it? Would you describe the result as
a ’strange attractor’? Do you still have confidence
in your own claim for the part (a) of this exercise?

3.7. Fixed points of maps. A continuous functionF is
a contraction of the unit interval if it maps the interval
inside itself.

(a) Use the continuity ofF to show that a 1-
dimensional contractionF of the interval [0, 1] has
at least one fixed point.

(b) In a uniform (hyperbolic) contraction the slope
of F is always smaller than one,|F′| < 1.
Is the composition of uniform contractions a
contraction? Is it uniform?
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Chapter 4

Local stability

(R. Mainieri and P. Cvitanović)

S  we have concentrated on description of the trajectory of a single initial
point. Our next task is to define and determine the size of aneighborhood
of x(t). We shall do this by assuming that the flow is locally smooth,and

describe the local geometry of the neighborhood by studyingthe flow linearized
aroundx(t). Nearby points aligned along the stable (contracting) directions remain
in the neighborhood of the trajectoryx(t) = f t(x0); the ones to keep an eye on are
the points which leave the neighborhood along the unstable directions. As we shall
demonstrate in chapter16, in hyperbolic systems what matters are the expanding
directions. The repercussion are far-reaching: As long as the number of unstable
directions is finite, the same theory applies to finite-dimensional ODEs, state
space volume preserving Hamiltonian flows, and dissipative, volume contracting
infinite-dimensional PDEs.

4.1 Flows transport neighborhoods

As a swarm of representative points moves along, it carries along and distorts
neighborhoods. The deformation of an infinitesimal neighborhood is best understood
by considering a trajectory originating nearx0 = x(0) with an initial infinitesimal
displacementδx(0), and letting the flow transport the displacementδx(t) along the
trajectoryx(x0, t) = f t(x0).

4.1.1 Instantaneous shear

The system of linearequations of variationsfor the displacement of the infinitesimally
close neighborx+ δx follows from the flow equations (2.6) by Taylor expanding
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Figure 4.1: A swarm of neighboring points ofx(t) is
instantaneously sheared by the action of the stability
matrix A - a bit hard to draw.

δ t

to linear order

ẋi + δ̇xi = vi(x+ δx) ≈ vi(x) +
∑

j

∂vi

∂x j
δx j .

The infinitesimal displacementδx is thus transported along the trajectoryx(x0, t),
with time variation given by

d
dt
δxi(x0, t) =

∑

j

∂vi

∂x j
(x)

∣∣∣∣∣∣
x=x(x0,t)

δx j(x0, t) . (4.1)

As both the displacement and the trajectory depend on the initial point x0 and the
time t, we shall often abbreviate the notation tox(x0, t) → x(t) → x, δxi(x0, t) →
δxi(t)→ δx in what follows. Taken together, the set of equations

ẋi = vi(x) , δ̇xi =
∑

j

Ai j (x)δx j (4.2)

governs the dynamics in the tangent bundle (x, δx) ∈ TM obtained by adjoining
the d-dimensional tangent spaceδx ∈ TxM to every pointx ∈ M in the d-
dimensional state spaceM ⊂ Rd. Thestability matrix(velocity gradients matrix)

Ai j (x) =
∂vi(x)
∂x j

(4.3)

describes the instantaneous rate of shearing of the infinitesimal neighborhood of
x(t) by the flow, figure4.1.

Example 4.1 Rössler and Lorenz flows, linearized: For the Rössler (2.17) and
Lorenz (2.12) flows the stability matrices are, respectively

ARoss=


0 −1 −1
1 a 0
z 0 x− c

 , ALor =


−σ σ 0
ρ − z −1 x

y x −b

 . (4.4)
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Figure 4.2: The fundamental matrixJt maps an
infinitesimal displacement atx0 into a displacement
rotated and sheared by the linearized flow fundamental
matrix Jt(x0) finite time t later.

δ  x(t) = J tδ  x(0)

  x(0)δ

x(0)

x(t)

4.1.2 Linearized flow

Major combat operations in Iraq have ended.
— President G. W. Bush, May 1, 2003

Taylor expanding afinite timeflow to linear order,

f t
i (x0 + δx) = f t

i (x0) +
∑

j

∂ f t
i (x0)

∂x0 j
δx j + · · · , (4.5)

one finds that the linearized neighborhood is transported by

δx(t) = Jt(x0)δx0 , Jt
i j (x0) =

∂xi(t)
∂x j

∣∣∣∣∣∣
x=x0

. (4.6)

This Jacobian matrix has inherited the namefundamental solution matrixor simply
fundamental matrixfrom the theory of linear ODEs. It is often denotedD f ,
but for our needs (we shall have to sort through a plethora of related Jacobian
matrices) matrix notationJ is more economical.J describes the deformation of
an infinitesimal neighborhood at finite timet in the co-moving frame ofx(t).

As this is a deformation in the linear approximation, one canthink of it as
a linear deformation of an infinitesimal sphere envelopingx0 into an ellipsoid
aroundx(t), described by the eigenvectors and eigenvalues of the fundamental
matrix of the linearized flow, figure4.2. Nearby trajectories separate along the
unstable directions, approach each other along thestable directions, and change
their distance along themarginal directionsat a rate slower than exponential,
corresponding to the eigenvalues of the fundamental matrixwith magnitude larger
than, smaller than, or equal 1. In the literature adjectivesneutralor indifferentare
often used instead of ‘marginal,’ (attracting) stable directions are sometimes called
‘asymptotically stable,’ and so on.

One of the preferred directions is what one might expect, thedirection of the
flow itself. To see that, consider two initial points along a trajectory separated
by infinitesimal flight timeδt: δx0 = f δt(x0) − x0 = v(x0)δt. By the semigroup
property of the flow,f t+δt = f δt+t, where

f δt+t(x0) =
∫ δt+t

0
dτ v(x(τ)) = δt v(x(t)) + f t(x0) .
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Figure 4.3: For a periodic orbitp, any two points
along the cycle are mapped into themselves after one
cycle periodT, henceδx = v(x0)δt is mapped into itself
by the cycle fundamental matrixJp.

δ  x
x(T) = x(0)

Expanding both sides off t( f δt(x0)) = f δt( f t(x0)), keeping the leading term inδt,
and using the definition of the fundamental matrix (4.6), we observe thatJt(x0)
transports the velocity vector atx0 to the velocity vector atx(t) at timet:

v(x(t)) = Jt(x0) v(x0) . (4.7)

In nomenclature of page63, the fundamental matrix maps the initial, Lagrangian
coordinate frame into the current, Eulerian coordinate frame.

The velocity at pointx(t) in general does not point in the same direction
as the velocity at pointx0, so this is not an eigenvalue condition forJt; the
fundamental matrix computed for an arbitrary segment of an arbitrary trajectory
has no invariant meaning.

As the eigenvalues of finite timeJt have invariant meaning only for periodic
orbits, we postpone their interpretation to chapter5. However, already at this
stage we see that if the orbit is periodic,x(Tp) = x(0), at any point along cyclep
the velocityv is an eigenvector of the fundamental matrixJp = JTp with a unit
eigenvalue,

Jp(x) v(x) = v(x) , x ∈ p . (4.8)

Two successive points along the cycle separated byδx0 have the same separation
after a completed periodδx(Tp) = δx0, see figure4.3, hence eigenvalue 1.

As we started by assuming that we know the equations of motion, from (4.3)
we also know stability matrixA, the instantaneous rate of shear of an infinitesimal
neighborhoodδxi(t) of the trajectoryx(t). What we do not know is the finite time
deformation (4.6).

Our next task is to relate the stability matrixA to fundamental matrixJt. On
the level of differential equations the relation follows by taking the time derivative
of (4.6) and replacingδ̇x by (4.2)

δ̇x(t) = J̇t δx0 = Aδx(t) = AJt δx0 .
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Hence thed2 matrix elements of fundamental matrix satisfy the linearized equation
(4.1)

d
dt

Jt(x) = A(x) Jt(x) , initial condition J0(x) = 1 . (4.9)

Given a numerical routine for integrating the equations of motion, evaluation
of the fundamental matrix requires minimal additional programming effort; one
simply extends thed-dimensional integration routine and integrates concurrently
with f t(x) thed2 elements ofJt(x).

The qualifier ‘simply’ is perhaps too glib. Integration willwork for short finite
times, but for exponentially unstable flows one quickly runsinto numerical over-
and/or underflow problems, so further thought will have to go intoimplementation
this calculation.

So now we know how to compute fundamental matrixJt given the stability
matrix A, at least when thed2 extra equations are not too expensive to compute.
Mission accomplished.

fast track:

chapter 7, p. 108

And yet... there are mopping up operations left to do. We persist until we
derive the integral formula (4.43) for the fundamental matrix, an analogue of the
finite-time “Green function” or “path integral” solutions of other linear problems.

We are interested in smooth, differentiable flows. If a flow is smooth, in a
sufficiently small neighborhood it is essentially linear. Hencethe next section,
which might seem an embarrassment (what is a section onlinear flows doing
in a book onnonlinear dynamics?), offers a firm stepping stone on the way to
understanding nonlinear flows. If you know your eigenvaluesand eigenvectors,
you may prefer to fast forward here.

fast track:

sect. 4.3, p. 71

4.2 Linear flows

Diagonalizing the matrix: that’s the key to the whole thing.
— Governor Arnold Schwarzenegger

Linear fields are the simplest vector fields, described by linear differential equations
which can be solved explicitly, with solutions that are goodfor all times. The state
space for linear differential equations isM = Rd, and the equations of motion
(2.6) are written in terms of a vectorx and a constant stability matrixA as

ẋ = v(x) = Ax. (4.10)
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Solving this equation means finding the state space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))

passing through the pointx0. If x(t) is a solution withx(0) = x0 andy(t) another
solution withy(0) = y0, then the linear combinationax(t) + by(t) with a, b ∈ R is
also a solution, but now starting at the pointax0 + by0. At any instant in time, the
space of solutions is ad-dimensional vector space, which means that one can find
a basis ofd linearly independent solutions.

How do we solve the linear differential equation (4.10)? If instead of a matrix
equation we have a scalar one, ˙x = λx , the solution is

x(t) = etλx0 . (4.11)

In order to solve thed-dimensional matrix case, it is helpful to rederive the solution
(4.11) by studying what happens for a short time stepδt. If at time t = 0 the
position isx(0), then

x(δt) − x(0)
δt

= λx(0) , (4.12)

which we iteratem times to obtain Euler’s formula for compounding interest

x(t) ≈
(
1+

t
m
λ

)m
x(0) . (4.13)

The term in parentheses acts on the initial conditionx(0) and evolves it tox(t) by
takingmsmall time stepsδt = t/m. Asm→ ∞, the term in parentheses converges
to etλ. Consider now the matrix version of equation (4.12):

x(δt) − x(0)
δt

= Ax(0) . (4.14)

A representative pointx is now a vector inRd acted on by the matrixA, as in
(4.10). Denoting by1 the identity matrix, and repeating the steps (4.12) and (4.13)
we obtain Euler’s formula for the exponential of a matrix:

x(t) = Jtx(0) , Jt = etA = lim
m→∞

(
1+

t
m

A
)m

. (4.15)

We will find this definition the exponential of a matrix helpful in the general case,
where the matrixA = A(x(t)) varies along a trajectory.

How do we compute the exponential (4.15)?

fast track:

sect. 4.3, p. 71
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Example 4.2 Fundamental matrix eigenvalues, diagonalizable case: Should we
be so lucky that A = AD happens to be a diagonal matrix with eigenvalues (λ(1), λ(2), . . . , λ(d)),
the exponential is simply

Jt = etAD =



etλ(1) · · · 0
. . .

0 · · · etλ(d)

 . (4.16)

Next, suppose that A is diagonalizable and that U is a nonsingular matrix that brings it
to a diagonal form AD = U−1AU. Then J can also be brought to a diagonal form (insert
factors 1 = UU−1 between the terms of the product (4.15)):

[exercise 4.2]

Jt = etA = UetADU−1 . (4.17)

The action of both A and J is very simple; the axes of orthogonal coordinate system
where A is diagonal are also the eigen-directions of both A and Jt, and under the
flow the neighborhood is deformed by a multiplication by an eigenvalue factor for each
coordinate axis.

In generalJt is neither diagonal, nor diagonalizable, nor constant along the
trajectory. As any matrix,Jt can also be expressed in the singular value decomposition
form

J = UDVT

whereD is diagonal, andU, V are orthogonal matrices. The diagonal elements
σ1, σ2, . . ., σd of D are called thesingular valuesof J, namely the square root of
the eigenvalues ofJ†J, which is a Hermitian, positive semi-definite matrix (and
thus admits only real, non-negative eigenvalues). From a geometric point of view,
when all singular values are non-zero,J maps the unit sphere into an ellipsoid:
the singular values are then the lengths of the semiaxes of this ellipsoid.

[section 5.1.2]

We recapitulate the basic facts of linear algebra in appendix B. A 2−d example
serves well to highlight the most important types of linear flows:

Example 4.3 Linear stability of 2 −d flows: For a 2−d flow the eigenvalues λ(1), λ(2) of
A are either real, leading to a linear motion along their eigenvectors, x j(t) = x j(0) exp(tλ( j)),
or a form a complex conjugate pair λ(1) = µ + iω , λ(2) = µ − iω , leading to a circular or
spiral motion in the [x1, x2] plane.

These two possibilities are refined further into sub-cases depending on the
signs of the real part. In the case λ(1) > 0, λ(2) < 0, x1 grows exponentially with time,
and x2 contracts exponentially. This behavior, called a saddle, is sketched in figure 4.4,
as are the remaining possibilities: in/out nodes, inward/outward spirals, and the center.
The magnitude of out-spiral |x(t)| diverges exponentially when µ > 0, and contracts into
(0, 0) when the µ < 0, whereas the phase velocity ω controls its oscillations.

If eigenvalues λ(1) = λ(2) = λ are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector. We distinguish two cases: (a)
A can be brought to diagonal form. (b) A can be brought to Jordan form, which (in
dimension 2 or higher) has zeros everywhere except for the repeating eigenvalues on
the diagonal, and some 1’s directly above it. For every such Jordan [dα×dα] block there
is only one eigenvector per block.

We sketch the full set of possibilities in figures 4.4 and 4.5, and work out in
detail the most important cases in appendix B, example B.2.
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Figure 4.4: Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node
(attracting), center (elliptic), in spiral.

Figure 4.5: Qualitatively distinct types of
exponents of a [2×2] fundamental matrix.
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4.2.1 Eigenvalues, multipliers - a notational interlude

Throughout this text the symbolΛk will always denote thekth eigenvalue(in
literature sometimes referred to as themultiplier or Floquet!multiplier) of the
finite time fundamental matrixJt. Symbolλ(k) will be reserved for thekth Floquet
or characteristicexponent, orcharacteristic value, with real partµ(k) and phase
ω(k):

Λk = etλ(k)
= et(µ(k)+iω(k)) . (4.18)

Jt(x0) depends on the initial pointx0 and the elapsed timet. For notational brevity
we tend to omit this dependence, but in general

Λ = Λk = Λk(x0, t) , λ = λ
(k)(x0, t) , ω = ω

(k)(x0, t) , · · · etc.,

depend on both the trajectory traversed and the choice of coordinates.

However, as we shall see in sect.5.2, if the stability matrixAor the fundamental
matrix J is computed on a flow-invariant setMp, such as an equilibriumq or a
periodic orbitp of periodTp,

Aq = A(xq) , Jp(x) = JTp(x) , x ∈ Mp , (4.19)

(x is any point on the cycle) its eigenvalues

λ
(k)
q = λ

(k)(xq) , Λp,k = Λk(x,Tp)
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are flow-invariant, independent of the choice of coordinates and the initial point
in the cyclep, so we label them by theirq or p label.

We number eigenvaluesΛk in order of decreasing magnitude

|Λ1| ≥ |Λ2| ≥ . . . ≥ |Λd| . (4.20)

Since|Λ j | = etµ( j)
, this is the same as labeling by

µ(1) ≥ µ(2) ≥ . . . ≥ µ(d) . (4.21)

In dynamics the expanding directions,|Λe| > 1, have to be taken care of first,
while the contracting directions|Λc| < 1 tend to take care of themselves, hence
the ordering by decreasing magnitude is the natural one.

4.2.2 Yes, but how do you really do it?

Economical description of neighborhoods of equilibria andperiodic orbits is afforded
by projection operators

Pi =
∏

j,i

M − λ( j)1
λ(i) − λ( j)

, (4.22)

where matrixM is typically either equilibrium stability matrixA, or periodic orbit
fundamental matrixĴ restricted to a Poincaré section, as in (4.55). While usually
not phrased in language of projection operators, the requisite linear algebra is
standard, and relegated here to appendixB.

Once the distinct non-zero eigenvalues{λ(i)} are computed, projection operators
are polynomials inM which need no further diagonalizations or orthogonalizations.
For each distinct eigenvalueλ(i) of M , the colums/rows ofPi

(M − λ( j)1)P j = P j(M − λ( j)1) = 0 , (4.23)

are the right/left eigenvectorse(k), e(k) of M which (providedM is not of Jordan
type) span the corresponding linearized subspace, and are aconvenient starting
seed for tracing out the global unstable/stable manifolds.

MatricesPi areorthogonalandcomplete:

PiP j = δi j P j , (no sum onj) ,
r∑

i=1

Pi = 1 . (4.24)
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with the dimension of theith subspace given bydi = tr Pi . Completeness relation
substituted intoM = M 1 yields

M = λ(1)P1 + λ
(2)P2 + · · · + λ(r)Pr . (4.25)

As any matrix functionf (M ) takes the scalar valuef (λ(i)) on thePi subspace,
f (M )Pi = f (λ(i))Pi , it is easily evaluated through itsspectral decomposition

f (M ) =
∑

i

f (λ(i))Pi . (4.26)

As M has only real entries, it will in general have either real eigenvalues
(over-damped oscillator, for example), or complex conjugate pairs of eigenvalues
(under-damped oscillator, for example). That is not surprising, but also the corresponding
eigenvectors can be either real or complex. All coordinatesused in defining the
flow are real numbers, so what is the meaning of acomplexeigenvector?

If two eigenvalues form a complex conjugate pair,{λ(k), λ(k+1)} = {µ + iω, µ −
iω}, they are in a sense degenerate: while a realλ(k) characterizes a motion
along a line, a complexλ(k) characterizes a spiralling motion in a plane. We
determine this plane by replacing the corresponding complex eigenvectors by their
real and imaginary parts,{e(k), e(k+1)} → {Ree(k), Im e(k)}, or, in terms of projection
operators:

Pk =
1
2

(R + iQ) , Pk+1 = P∗k ,

whereR = Pk + Pk+1 is the subspace decomposed by thekth complex eigenvalue
pair, andQ = (Pk − Pk+1)/i, both matrices with real elements. Substitution

( Pk

Pk+1

)
=

1
2

(1 i
1 −i

) ( R
Q

)
,

brings theλ(k)Pk+λ
(k+1)Pk+1 complex eigenvalue pair in the spectral decomposition

(4.25) into the real form,

( Pk Pk+1 )
(
λ 0
0 λ∗

) ( Pk

Pk+1

)
= ( R Q )

(
µ −ω
ω µ

) ( R
Q

)
, (4.27)

where we have dropped the superscript(k) for notational brevity.

To summarize, spectrally decomposed matrixM (4.25) acts along lines on
subspaces corresponding to real eigenvalues, and as a [2×2] rotation in a plane on
subspaces corresponding to complex eigenvalue pairs.

Now that we have some feeling for the qualitative behavior ofeigenvectors
and eigenvalues of linear flows, we are ready to return to the nonlinear case.
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4.3 Stability of flows

How do you determine the eigenvalues of the finite time local deformation Jt

for a general nonlinear smooth flow? The fundamental matrix is computed by
integrating the equations of variations (4.2)

x(t) = f t(x0) , δx(x0, t) = Jt(x0)δx(x0, 0) . (4.28)

The equations are linear, so we should be able to integrate them–but in order to
make sense of the answer, we derive it step by step.

4.3.1 Stability of equilibria

For a start, consider the case wherex is an equilibrium point (2.8). Expanding
around the equilibrium pointxq, using the fact that the stability matrixA = A(xq)
in (4.2) is constant, and integrating,

f t(x) = xq + eAt(x− xq) + · · · , (4.29)

we verify that the simple formula (4.15) applies also to the fundamental matrix of
an equilibrium point,

Jt(xq) = eAqt , Aq = A(xq) . (4.30)

Example 4.4 In-out spirals. Consider a 2−d equilibrium whose stability eigenvalues
{λ(1), λ(2)} = {µ+ iω, µ− iω} form a complex conjugate pair. The corresponding complex
eigenvectors can be replaced by their real and imaginary parts, {e(1), e(2)} → {Ree(k), Im e(k)}.
The 2−d real representation (4.27),

(
µ −ω
ω µ

)
= µ

( 1 0
0 1

)
+ ω

( 0 −1
1 0

)

consists of the identity and the generator of S O(2) rotations. Trajectories x(t) = Jt x(0),
where

Jt = eAqt = etµ
( cosωt − sin ωt

sin ωt cosωt

)
, (4.31)

spiral in/out around (x, y) = (0, 0), see figure 4.4, with the rotation period T, and
contraction/expansion radially by the multiplier Λradial, and by the multiplier Λ j along
the e( j) eigendirection per a turn of the spiral:

[exercise B.1]

T = 2π/ω , Λradial = eTµ , Λ j = eTµ( j)
. (4.32)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x, y) = (0, 0) is of order ≈ T (and not, let us say, 1000T, or 10−2T). Λ j multipliers give
us estimates of strange-set thickness.
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In the EQ1 neighborhood the unstable manifold trajectories slowly spiral out,
with very small radial per-turn expansion multiplierΛ(1) ≃ 1.06, and very strong contraction
multiplier Λ(3) ≃ 10−4 onto the unstable manifold, figure 4.7 (a). This contraction
confines, for all practical purposes, the Lorenz attractor to a 2-dimensional surface
evident in the section figure 3.7.

In the xEQ0 = (0, 0, 0) equilibrium neighborhood the extremely strong λ(3) ≃
−23 contraction along the e(3) direction confines the hyperbolic dynamics near EQ0 to
the plane spanned by the unstable eigenvector e(1), with λ(1) ≃ 12, and the slowest
contraction rate eigenvector e(2) along the z-axis, with λ(2) ≃ −3. In this plane the strong
expansion along e(1) overwhelms the slow λ(2) ≃ −3 contraction down the z-axis, making
it extremely unlikely for a random trajectory to approach EQ0, figure 4.7 (b). Thus
linearization suffices to describe analytically the singular dip in the Poincaré sections
of figure 3.7, and the empirical scarcity of trajectories close to EQ0. (Continued in
example 4.7.)

(E. Siminos and J. Halcrow)

Example 4.7 Lorenz flow: Global portrait (Continued from example 4.6.) As the
EQ1 unstable manifold spirals out, the strip that starts out in the section above EQ1 in
figure 3.7 cuts across the z-axis invariant subspace. This strip necessarily contains a
heteroclinic orbit that hits the z-axis head on, and in infinite time (but exponentially fast)
descends all the way to EQ0.

How? As in the neighborhood of the EQ0 equilibrium the dynamics is linear
(see figure 4.7 (a)), there is no need to integrate numerically the final segment of the
heteroclinic connection - it is sufficient to bring a trajectory a small distance away from
EQ0, continue analytically to a small distance beyond EQ0, then resume the numerical
integration.

What happens next? Trajectories to the left of z-axis shoot off along the e(1)

direction, and those to the right along −e(1). As along the e(1) direction xy > 0, the
nonlinear term in the ż equation (2.12) bends both branches of the EQ0 unstable
manifold Wu(EQ0) upwards. Then . . . - never mind. Best to postpone the completion of
this narrative to example 9.2, where the discrete symmetry of Lorenz flow will help us
streamline the analysis. As we shall show, what we already know about the 3 equilibria
and their stable/unstable manifolds suffices to completely pin down the topology of
Lorenz flow. (Continued in example 9.2.)

(E. Siminos and J. Halcrow)

4.3.2 Stability of trajectories

Next, consider the case of a general, non-stationary trajectory x(t). The exponential
of a constant matrix can be defined either by its Taylor seriesexpansion, or in
terms of the Euler limit (4.15):

etA =

∞∑

k=0

tk

k!
Ak (4.40)

= lim
m→∞

(
1+

t
m

A
)m

. (4.41)

Taylor expanding is fine ifA is a constant matrix. However, only the second,
tax-accountant’s discrete step definition of an exponential is appropriate for the
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task at hand, as for a dynamical system the local rate of neighborhood distortion
A(x) depends on where we are along the trajectory. The linearized neighborhood is
multiplicatively deformed along the flow, and themdiscrete time step approximation
to Jt is therefore given by a generalization of the Euler product (4.41):

Jt = lim
m→∞

1∏

n=m

(1+ δtA(xn)) = lim
m→∞

1∏

n=m

eδt A(xn) (4.42)

= lim
m→∞

eδt A(xn)eδt A(xm−1) · · · eδt A(x2)eδt A(x1) ,

whereδt = (t − t0)/m, and xn = x(t0 + nδt). Slightly perverse indexing of the
products indicates that in our convention the successive infinitesimal deformation
are applied by multiplying from the left. The two formulas for Jt agree to leading
order inδt, and them→ ∞ limit of this procedure is the integral

Jt
i j (x0) =

[
Te

∫ t
0 dτA(x(τ))

]

i j
, (4.43)

whereT stands for time-ordered integration,definedas the continuum limit of the
successive left multiplications (4.42). This integral formula forJ is the main

[exercise 4.5]
conceptual result of this chapter.

It makes evident important properties of fundamental matrices, such as that
they are multiplicative along the flow,

Jt+t′ (x) = Jt′(x′) Jt(x), where x′ = f t(x) , (4.44)

an immediate consequence of time-ordered product structure of (4.42). However,
in practiceJ is evaluated by integrating (4.9) along with the ODEs that define a
particular flow.

in depth:

sect. 15.3, p. 263

4.4 Neighborhood volume

[section 15.3]

[remark 15.3]

Consider a small state space volume∆V = ddx centered around the pointx0 at
time t = 0. The volume∆V′ = ∆V(t) around the pointx′ = x(t) time t later is

∆V′ =
∆V′

∆V
∆V =

∣∣∣∣∣det
∂x′

∂x

∣∣∣∣∣∆V =
∣∣∣det J(x0)t

∣∣∣∆V , (4.45)

so the|detJ| is the ratio of the initial and the final volumes. The determinant
detJt(x0) =

∏d
i=1Λi(x0, t) is the product of the multipliers. We shall refer to this
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determinant as theJacobianof the flow. This Jacobian is easily evaluated. Take
[exercise 4.1]

the time derivative and use the matrix identity ln detJ = tr ln J:

d
dt

ln∆V(t) =
d
dt

ln detJ = tr
d
dt

ln J = tr
1
J

J̇ = tr A = ∂ivi .

(Here, as elsewhere in this book, a repeated index implies summation.) As the
divergence∂ivi is a scalar quantity, the integral in the exponent needsno time
ordering. Integrate both sides to obtain the time evolution of an infinitesimal
volume

detJt(x0) = exp

[∫ t

0
dτ tr A(x(τ))

]
= exp

[∫ t

0
dτ ∂ivi(x(τ))

]
. (4.46)

All we need to do is evaluate the time average

∂ivi = lim
t→∞

1
t

∫ t

0
dτ

d∑

i=1

Aii (x(τ))

=
1
t

ln

∣∣∣∣∣∣∣

d∏

i=1

Λi(x0, t)

∣∣∣∣∣∣∣
=

d∑

i=1

λ(i)(x0, t) (4.47)

along the trajectory. If the flow is not singular (for example, the trajectory does
not run head-on into the Coulomb 1/r singularity), the stability matrix elements
are bounded everywhere,|Ai j | < M , and so is the trace

∑
i Aii . The time integral

in (4.46) grows at most linearly witht, hence∂ivi is bounded for all times, and
numerical estimates of thet → ∞ limit in (4.47) are not marred by any blowups.

Even if we were to insist on extracting∂ivi from (4.42) by first multiplying
fundamental matrices along the flow, and then taking the logarithm, we can avoid
exponential blowups inJt by using the multiplicative structure (4.44), detJt′+t(x0) =
detJt′(x′) detJt(x0) to restart withJ0(x′) = 1 whenever the eigenvalues ofJt(x0)
start getting out of hand. In numerical evaluations of Lyapunov exponents,

[section 15.3]
λi = limt→∞ µ(i)(x0, t), the sum rule (4.47) can serve as a helpful check on the
accuracy of the computation.

The divergence∂ivi is an important characterization of the flow - it describes
the behavior of a state space volume in the infinitesimal neighborhood of the
trajectory. If∂ivi < 0, the flow islocally contracting, and the trajectory might
be falling into an attractor. If∂ivi(x) < 0 , for all x ∈ M, the flow isglobally
contracting, and the dimension of the attractor is necessarily smaller than the
dimension of state spaceM. If ∂ivi = 0, the flow preserves state space volume
and detJt = 1. A flow with this property is calledincompressible. An important
class of such flows are the Hamiltonian flows considered in sect. 7.2.

But before we can get to that, Henri Roux, the perfect studentalways on alert,
pipes up. He does not like our definition of the fundamental matrix in terms of the
time-ordered exponential (4.43). Depending on the signs of multipliers, the left
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hand side of (4.46) can be either positive or negative. But the right hand side is an
exponential of a real number, and that can only be positive. What gives? As we
shall see much later on in this text, in discussion of topological indices arising in
semiclassical quantization, this is not at all a dumb question.

4.5 Stability of maps

The transformation of an infinitesimal neighborhood of a trajectory under the
iteration of a map follows from Taylor expanding the iterated mapping atdiscrete
time n to linear order, as in (4.5). The linearized neighborhood is transported by
the fundamental matrix evaluated at a discrete set of timesn = 1, 2, . . .,

Mn
i j (x0) =

∂ f n
i (x)

∂x j

∣∣∣∣∣∣
x=x0

. (4.48)

We shall refer to this Jacobian matrix also as themonodromymatrix, in case of
periodic orbits f n(x) = x. Derivative notationMt(x0) → D f t(x0) is frequently
employed in the literature. As in the continuous case, we denote byΛk the kth
eigenvalueor multiplier of the finite time fundamental matrixMn(x0), andµ(k) the
real part ofkth eigen-exponent

Λ± = en(µ±iω) , |Λ| = enµ .

For complex eigenvalue pairs the phaseω describes the rotation velocity in the
plane defined by the corresponding pair of eigenvectors, with one period of rotation
given by

T = 2π/ω . (4.49)

Example 4.8 Stability of a 1-dimensional map: Consider a 1-d map f (x). The
chain rule yields the stability of the nth iterate

Λ(x0, n) =
d
dx

f n(x0) =
n−1∏

m=0

f ′(xm) , xm = f m(x0) . (4.50)

The 1-step product formula for the stability of thenth iterate of ad-dimensional
map

Mn(x0) = M(xn−1) · · ·M(x1)M(x0) ,

M(x)kl =
∂

∂xl
fk(x) , xm = f m(x0) (4.51)
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follows from the chain rule for matrix derivatives

∂

∂xi
f j( f (x)) =

d∑

k=1

∂

∂yk
f j(y)

∣∣∣∣∣
y= f (x)

∂

∂xi
fk(x) .

If you prefer to think of a discrete time dynamics as a sequence of Poincaré section
returns, then (4.51) follows from (4.44): fundamental matrices are multiplicative
along the flow.

[exercise 15.1]

Example 4.9 Hénon map fundamental matrix: For the Hénon map (3.18) the
fundamental matrix for the nth iterate of the map is

Mn(x0) =
1∏

m=n

(
−2axm b

1 0

)
, xm = f m

1 (x0, y0) . (4.52)

The determinant of the Hénon one time step fundamental matrix (4.52) is constant,

detM = Λ1Λ2 = −b (4.53)

so in this case only one eigenvalue Λ1 = −b/Λ2 needs to be determined. This is not
an accident; a constant Jacobian was one of desiderata that led Hénon to construct a
map of this particular form.

fast track:

chapter 7, p. 108

4.5.1 Stability of Poincaŕe return maps

(R. Paškauskas and P. Cvitanović)

We now relate the linear stability of the Poincaré return map P : P → P defined
in sect.3.1to the stability of the continuous time flow in the full state space.

The hypersurfaceP can be specified implicitly through a functionU(x) that
is zero whenever a pointx is on the Poincaré section. A nearby pointx+ δx is in
the hypersurfaceP if U(x+ δx) = 0, and the same is true for variations around the
first return pointx′ = x(τ), so expandingU(x′) to linear order inδx leads to the
condition

d+1∑

i=1

∂U(x′)
∂xi

dx′i
dxj

∣∣∣∣∣∣P
= 0 . (4.54)

In what followsUi is the gradient ofU defined in (3.3), unprimed quantities refer
to the starting pointx = x0 ∈ P, v = v(x0), and the primed quantities to the first
return: x′ = x(τ), v′ = v(x′), U′ = U(x′). For brevity we shall also denote the
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Figure 4.8: If x(t) intersects the Poincaré sectionP
at timeτ, the nearbyx(t) + δx(t) trajectory intersects
it time τ + δt later. As (U′ · v′δt) = −(U′ · J δx),
the difference in arrival times is given byδt =
−(U′ · J δx)/(U′ · v′).
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x(t)

v’ tδ
x’

U(x)=0

x

x(t)+δx(t)

Jδ

U’

full state space fundamental matrix at the first return byJ = Jτ(x0). Both the first
return x′ and the time of flight to the next Poincaré sectionτ(x) depend on the
starting pointx, so the fundamental matrix

Ĵ(x)i j =
dx′i
dxj

∣∣∣∣∣∣P
(4.55)

with both initial and the final variation constrained to the Poincaré section hypersurface
P is related to the continuous flow fundamental matrix by

dx′i
dxj

∣∣∣∣∣∣P
=
∂x′i
∂x j
+

dx′i
dτ

dτ
dxj
= Ji j + v′i

dτ
dxj

.

The return time variationdτ/dx, figure 4.8, is eliminated by substituting this
expression into the constraint (4.54),

0 = ∂iU
′ Ji j + (v′ · ∂U′)

dτ
dxj

,

yielding the projection of the full space (d + 1)-dimensional fundamental matrix
to the Poincaré mapd-dimensional fundamental matrix:

Ĵi j =

(
δik −

v′i ∂kU′

(v′ · ∂U′)

)
Jk j . (4.56)

Substituting (4.7) we verify that the initial velocityv(x) is a zero-eigenvector of̂J

Ĵv= 0 , (4.57)

so the Poincaré section eliminates variations parallel tov, andĴ is a rankd matrix,
i.e., one less than the dimension of the continuous time flow.

Résum é

A neighborhood of a trajectory deforms as it is transported by a flow. In the
linear approximation, the stability matrixA describes the shearing/compression/-
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expansion of an infinitesimal neighborhood in an infinitesimal time step. The
deformation after a finite timet is described by the fundamental matrix

Jt(x0) = Te
∫ t
0 dτA(x(τ)) ,

whereT stands for the time-ordered integration, defined multiplicatively along the
trajectory. For discrete time maps this is multiplication by time step fundamental
matrix M along then pointsx0, x1, x2, . . ., xn−1 on the trajectory ofx0,

Mn(x0) = M(xn−1)M(xn−2) · · ·M(x1)M(x0) ,

with M(x) the single discrete time step fundamental matrix. In this book Λk

denotes thekth eigenvalueof the finite time fundamental matrixJt(x0), andµ(k)

the real part ofkth eigen-exponent

|Λ| = enµ , Λ± = en(µ±iω) .

For complex eigenvalue pairs the phaseω describes rotational motion in the plane
defined by the corresponding pair of eigenvectors.

The eigenvalues and eigen-directions of the fundamental matrix describe the
deformation of an initial infinitesimal sphere of neighboring trajectories into an
ellipsoid a finite timet later. Nearby trajectories separate exponentially along
unstable directions, approach each other along stable directions, and change slowly
(algebraically) their distance along marginal directions. The fundamental matrix
Jt is in general neither symmetric, nor diagonalizable by a rotation, nor do its
(left or right) eigenvectors define an orthonormal coordinate frame. Furthermore,
although the fundamental matrices are multiplicative along the flow, in dimensions
higher than one their eigenvalues in general are not. This lack of multiplicativity
has important repercussions for both classical and quantumdynamics.

Commentary

Remark 4.1 Linear flows. The subject of linear algebra generates innumerable tomes
of its own; in sect.4.2 we only sketch, and in appendixB recapitulate a few facts that
our narrative relies on. They are presented at length in manytextbooks. The standard
references that exhaustively enumerate and explain all possible cases are Hirsch and
Smale [1], and Arnol’d [1]. For ChaosBook purposes, we enjoyed the discussion in
chapter 2 Meiss [2], chapter 1 of Perko [3] and chapters 3 and 5 of Glendinning [4] most.

The construction of projection operators given here is taken from refs. [6, 7]. Who
wrote this down first we do not know, lineage certainly goes all the way back to Lagrange
polynomials [10], but projection operators tend to get drowned in sea of algebraic details.
Halmos [5] is a good early reference - but we like Harter’s exposition [8, 9, 12] best, for
its multitude of specific examples and physical illustrations.
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The nomenclature tends to be a bit confusing. In referring toA defined in (4.3) as the
“stability matrix” we follow Tabor [13]. SometimesA, which describes the instantaneous
shear of the trajectory pointx(x0, t) is referred to as the ‘Jacobian matrix,’ a particularly
unfortunate usage when one considers linearized stabilityof an equilibrium point (4.30).
What Jacobi had in mind in his 1841 fundamental paper [11] on the determinants today
known as ‘jacobians’ were transformations between different coordinate frames. These
are dimensionless quantities, while the dimension ofAi j 1/[time]. More unfortunate still
is referring toJt = etA as an ‘evolution operator,’ which here (see sect.15.2) refers to
something altogether different. In this book fundamental matrixJt always refers to (4.6),
the linearized deformation after a finite timet, either for a continuous time flow, or a
discrete time mapping.

Exercises

4.1. Trace-log of a matrix. Prove that

det M = etr ln M .

for an arbitrary nonsingular finite dimensional matrixM,
detM , 0.

4.2. Stability, diagonal case. Verify the relation (4.17)

Jt = etA = U−1etAD U , AD = UAU−1 .

4.3. State space volume contraction.

(a) Compute the Rössler flow volume contraction rate
at the equilibria.

(b) Study numerically the instantaneous∂ivi along a
typical trajectory on the Rössler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) of∂ivi . If you see regions
of local expansion, explain them.

(c) Compute numerically the average contraction rate
(4.47) along a typical trajectory on the Rössler
attractor.

(d) (optional) color-code the points on the trajectory
by the sign (and perhaps the magnitude) of∂ivi −
∂ivi .

(e) Argue on basis of your results that this attractor is
of dimension smaller than the state spaced = 3.

(f) (optional) Start some trajectories on the escape
side of the outer equilibrium, color-code the points
on the trajectory. Is the flow volume contracting?

4.4. Topology of the Rössler flow. (continuation of
exercise3.1)

(a) Show that equation|det (A− λ1)| = 0 for Rössler
flow in the notation of exercise2.8can be written
as

λ3+λ2c (p∓−ǫ)+λ(p±/ǫ+1−c2ǫp∓)∓c
√

D =

(b) Solve (4.58) for eigenvalues λ± for each
equilibrium as an expansion in powers ofǫ.
Derive

λ−1 = −c+ ǫc/(c2 + 1)+ o(ǫ)
λ−2 = ǫc

3/[2(c2 + 1)] + o(ǫ2)
θ−2 = 1+ ǫ/[2(c2 + 1)] + o(ǫ)
λ+1 = cǫ(1− ǫ) + o(ǫ3)
λ+2 = −ǫ5c2/2+ o(ǫ6)
θ+2 =

√
1+ 1/ǫ (1+ o(ǫ))

(4.59)

Compare with exact eigenvalues. What are
dynamical implications of the extravagant value of
λ−1? (continued as exercise12.7)

(R. Paškauskas)

4.5. Time-ordered exponentials. Given a time dependent
matrixV(t) check that the time-ordered exponential

U(t) = Te
∫ t

0 dτV(τ)

may be written as

U(t) =
∞∑

m=0

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tm−1

0
dtmV(t1) · · ·V

and verify, by using this representation, thatU(t)
satisfies the equation

U̇(t) = V(t)U(t),

with the initial conditionU(0) = 1.
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4.6. A contracting baker’s map. Consider a contracting
(or ‘dissipative’) baker’s map, acting on a unit square
[0, 1]2 = [0, 1] × [0, 1], defined by

(
xn+1
yn+1

)
=

(
xn/3
2yn

)
yn ≤ 1/2

(
xn+1
yn+1

)
=

(
xn/3+ 1/2

2yn − 1

)
yn > 1/2 .

This map shrinks strips by a factor of 1/3 in the x-
direction, and then stretches (and folds) them by a factor
of 2 in they-direction.

By how much does the state space volume contract for
one iteration of the map?
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[4.6] P. Cvitanović, “Group theory for Feynman diagrams innon-Abelian gauge
theories,”Phys. Rev. D14, 1536 (1976).
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Chapter 5

Cycle stability

T  of a dynamical system–singularities, periodic orbits,
and the ways in which the orbits intertwine–are invariant under a general
continuous change of coordinates. Surprisingly, there exist quantities that

depend on the notion of metric distance between points, but nevertheless do not
change value under a smooth change of coordinates. Local quantities such as
the eigenvalues of equilibria and periodic orbits, and global quantities such as
Lyapunov exponents, metric entropy, and fractal dimensions are examples of properties
of dynamical systems independent of coordinate choice.

We now turn to the first, local class of such invariants, linear stability of
periodic orbits of flows and maps. This will give us metric information about
local dynamics. If you already know that the eigenvalues of periodic orbits are
invariants of a flow, skip this chapter.

fast track:

chapter 7, p. 108

5.1 Stability of periodic orbits

As noted on page35, a trajectory can be stationary, periodic or aperiodic. For
chaotic systems almost all trajectories are aperiodic–nevertheless, equilibria and
periodic orbits will turn out to be the key to unraveling chaotic dynamics. Here
we note a few of the properties that makes them so precious to atheorist.

An obvious virtue of periodic orbits is that they aretopological invariants: a
fixed point remains a fixed point for any choice of coordinates, and similarly a
periodic orbit remains periodic in any representation of the dynamics. Any re-
parametrization of a dynamical system that preserves its topology has to preserve
topological relations between periodic orbits, such as their relative inter-windings
and knots. So the mere existence of periodic orbits suffices to partially organize
the spatial layout of a non–wandering set. No less important, as we shall now
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show, is the fact that cycle eigenvalues aremetric invariants: they determine the
relative sizes of neighborhoods in a non–wandering set.

To prove this, we start by noting that due to the multiplicative structure (4.44)
of fundamental matrices, the fundamental matrix for therth repeat of a prime
cycle p of periodTp is

JrTp(x) = JTp( f (r−1)Tp(x)) · · · JTp( f Tp(x))JTp(x) =
(
Jp(x)

)r
, (5.1)

whereJp(x) = JTp(x) is the fundamental matrix for a single traversal of the prime
cycle p, x ∈ p is any point on the cycle, andf rTp(x) = x as f t(x) returns tox every
multiple of the periodTp. Hence, it suffices to restrict our considerations to the
stability of prime cycles.

fast track:

sect. 5.2, p. 87

5.1.1 Nomenclature, again

When dealing with periodic orbits, some of the quantities introduced above inherit
terminology from the theory of differential equations with periodic coefficients.

For instance, if we consider the equation of variations (4.2) evaluated on a
periodic orbitp,

δ̇x = A(t)δx , A(t) = A(x(t)) = A(t + Tp) , (5.2)

theTp periodicity of the stability matrix implies that ifδx(t) is a solution of (5.2)
then alsoδx(t + Tp) satisfies the same equation: moreover the two solutions are
related by (see (4.6))

δx(t + Tp) = Jp(x)δx(t) . (5.3)

Even though the fundamental matrixJp(x) depends uponx (the “starting” point
of the periodic orbit), its eigenvalues do not, so we may write for its eigenvectors
e( j)

Jp(x)e( j)(x) = Λp, je( j)(x) = eTp(µ( j)
p +iω( j)

p )e( j)(x) ,

whereµ( j)
p andω( j)

p are independent ofx, and expand

δx(t) =
∑

j

u j (t)e( j) .
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Figure 5.1: For a prime cyclep, fundamental matrix
Jp returns an infinitesimal spherical neighborhood of
x0 ∈ p stretched into an ellipsoid, with overlap ratio
along the expanding eigdirectione(i) of Jp(x) given by
the the expanding eigenvalue 1/|Λp,i |. These ratios are
invariant under smooth nonlinear reparametrizations of
state space coordinates, and are intrinsic property of
cycle p.
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If we take (5.3) into account, we get

δx(t + Tp) =
∑

j

u j(t + Tp)e( j) =
∑

j

u j(t)e
Tp(µ( j)

p +iω( j)
p )e( j)

which shows that the coefficientsu j(t) may be written as

u j(t) = et(µ( j)
p +iω( j)

p )v j(t)

wherev j(t) is periodic with period Tp. Thus each solution of the equation of
variations may be expressed as

δx(t) =
∑

j

v j(t)e
t(µ( j)

p +iω( j)
p )e( j) v j(t + Tp) = v j(t) , (5.4)

the form predicted by Floquet theorem for differential equations with periodic
coefficients.

The continuous timet appearing in (5.4) does not imply that eigenvalues of the
fundamental matrix enjoy any multiplicative property:µ( j)

p andω( j)
p refer to a full

evolution over the complete periodic orbit.Λp, j is called the Floquet multiplier,

andµ( j)
p + iω( j)

p the Floquet or characteristic exponent, whereΛp, j = eTp(µ( j)
p +iω( j)

p ).

5.1.2 Fundamental matrix eigenvalues and exponents

We sort theFloquet multipliersΛp,1, Λp,2, . . ., Λp,d of the [d×d] fundamental
matrix Jp evaluated on thep-cycle into sets{e,m, c}

expanding: {Λ}e = {Λp, j :
∣∣∣Λp, j

∣∣∣ > 1}
marginal: {Λ}m = {Λp, j :

∣∣∣Λp, j

∣∣∣ = 1} (5.5)

contracting: {Λ}c = {Λp, j :
∣∣∣Λp, j

∣∣∣ < 1} .
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and denote byΛp (no jth eigenvalue index) the product ofexpandingFloquet
multipliers

Λp =
∏

e

Λp,e . (5.6)

As Jp is a real matrix, complex eigenvalues always come in complexconjugate
pairs,Λp,i+1 = Λ

∗
p,i, so the product of expanding eigenvaluesΛp is always real.

The stretching/contraction rates per unit time are are given by the real parts of
Floquet exponents

µ
(i)
p =

1
Tp

ln
∣∣∣Λp,i

∣∣∣ . (5.7)

The factor 1
Tp

in the definition of the Floquet exponents is motivated by itsform for
the linear dynamical systems, for example (4.16), as well as the fact that exponents
so defined can be interpreted as Lyapunov exponents (15.33) evaluated on the
prime cyclep. As in the three cases of (5.5), we sort the Floquet exponentsλ =
µ ± iω into three sets

[section 15.3]

expanding: {λ}e = {λ(i)
p : µ(i)

p > 0}
marginal: {λ}m = {λ(i)

p : µ(i)
p = 0}

contracting: {λ}c = {λ(i)
p : µ(i)

p < 0} . (5.8)

A periodic orbit p of a d-dimensional flow or a map isstableif real parts of
all of its Floquet exponents (other than the vanishing longitudinal exponent, to be
explained in sect.5.2.1) are strictly negative,µ(i)

p < 0. The region of system
parameter values for which a periodic orbitp is stable is called thestability
window of p. The setMp of initial points that are asymptotically attracted to
p as t → +∞ (for a fixed set of system parameter values) is called thebasin of
attractionof p.

If all Floquet exponents (other than the vanishing longitudinal exponent) of
all periodic orbits of a flow are strictly bounded away from zero,|µ(i)| ≥ µmin > 0,
the flow is said to behyperbolic. Otherwise the flow is said to benonhyperbolic.
In particular, if allµ(i) = 0, the orbit is said to beelliptic. Such orbits proliferate
in Hamiltonian flows.

[section 7.3]

We often do care aboutσ( j)
p = Λp, j/|Λp, j |, the sign of thejth eigenvalue, and,

if Λp, j is complex, its phase

Λp, j = σ
( j)
p eλ

( j)
p Tp = σ

( j)
p e(µ( j)

p ±iω( j)
p )Tp . (5.9)

[section 7.2]

Keeping track of this by case-by-case enumeration is an unnecessary nuisance,
followed in much of the literature. To avoid this, almost allof our formulas will
be stated in terms of the Floquet multipliersΛ j rather than in the terms of the
overall signs, Floquet exponentsλ( j) and phasesω( j).
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Example 5.1 Stability of 1- d map cycles: The simplest example of cycle stability is
afforded by 1-dimensional maps. The stability of a prime cycle p follows from the chain
rule (4.50) for stability of the npth iterate of the map

Λp =
d

dx0
f np(x0) =

np−1∏

m=0

f ′(xm) , xm = f m(x0) . (5.10)

Λp is a property of the cycle, not the initial point, as taking any periodic point in the p
cycle as the initial point yields the same result.

A critical point xc is a value of x for which the mapping f (x) has vanishing
derivative, f ′(xc) = 0. For future reference we note that a periodic orbit of a 1-
dimensional map is stable if

∣∣∣Λp

∣∣∣ =
∣∣∣ f ′(xnp) f ′(xnp−1) · · · f ′(x2) f ′(x1)

∣∣∣ < 1 ,

and superstable if the orbit includes a critical point, so that the above product vanishes.
For a stable periodic orbit of period n the slope of the nth iterate f n(x) evaluated on a
periodic point x (fixed point of the nth iterate) lies between −1 and 1. If

∣∣∣Λp

∣∣∣ > 1, p-cycle
is unstable.

Example 5.2 Stability of cycles for maps: No matter what method we use to
determine the unstable cycles, the theory to be developed here requires that their
Floquet multipliers be evaluated as well. For maps a fundamental matrix is easily
evaluated by picking any cycle point as a starting point, running once around a prime
cycle, and multiplying the individual cycle point fundamental matrices according to
(4.51). For example, the fundamental matrix Mp for a Hénon map (3.18) prime cycle p
of length np is given by (4.52),

Mp(x0) =
1∏

k=np

(
−2axk b

1 0

)
, xk ∈ p ,

and the fundamental matrix Mp for a 2-dimensional billiard prime cycle p of length np

Mp = (−1)np

1∏

k=np

(
1 τk
0 1

) (
1 0
rk 1

)

follows from (8.11) of chapter 8. We shall compute Floquet multipliers of Hénon map
cycles once we learn how to find their periodic orbits, see exercise 12.10.

5.2 Cycle Floquet multipliers are cycle invariants

The 1-dimensional map cycle Floquet multiplierΛp is a product of derivatives
over all points around the cycle, and is therefore independent of which periodic
point is chosen as the initial one. In higher dimensions the form of the fundamental
matrix Jp(x0) in (5.1) does depend on the choice of coordinates and the initial
point x0 ∈ p. Nevertheless, as we shall now show, the cycleFloquet multipliers
are intrinsic property of a cycle also for multi-dimensional flows. Consider the
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ith eigenvalue, eigenvector pair (Λp,i , e(i)) computed fromJp evaluated at a cycle
point,

Jp(x)e(i)(x) = Λp,ie(i)(x) , x ∈ p . (5.11)

Consider another point on the cycle at timet later, x′ = f t(x) whose fundamental
matrix isJp(x′). By the group property (4.44), JTp+t = Jt+Tp, and the fundamental
matrix atx′ can be written either as

JTp+t(x) = JTp(x′)Jt(x) = Jp(x′)Jt(x) , or Jp(x′)Jt(x) = Jt(x)Jp(x) .

Multiplying (5.11) by Jt(x), we find that the fundamental matrix evaluated atx′

has the same eigenvalue,

Jp(x′)e(i)(x′) = Λp,ie(i)(x′) , e(i)(x′) = Jt(x)e(i)(x) , (5.12)

but with the eigenvectore(i) transported along the flowx → x′ to e(i)(x′) =
Jt(x)e(i)(x). Hence, Jp evaluated anywhere along the cycle has the same set
of Floquet multipliers{Λp,1,Λp,2, · · ·Λp,d−1, 1}. As quantities such as trJp(x),
detJp(x) depend only on the eigenvalues ofJp(x) and not on the starting pointx,
in expressions such as det

(
1− Jr

p(x)
)

we may omit reference tox:

det
(
1− Jr

p

)
= det

(
1− Jr

p(x)
)

for any x ∈ p . (5.13)

We postpone the proof that the cycle Floquet multipliers aresmooth conjugacy
invariants of the flow to sect.6.6.

5.2.1 Marginal eigenvalues

The presence of marginal eigenvalues signals either a continuous symmetry of the
flow (which one should immediately exploit to simplify the problem), or a non-
hyperbolicity of a flow (a source of much pain, hard to avoid).In that case (typical
of parameter values for which bifurcations occur) one has togo beyond linear
stability, deal with Jordan type subspaces (see example4.3), and sub-exponential
growth rates, such astα.

[chapter 23]

[exercise 5.1]
For flow-invariant solutions such as periodic orbits, the time evolution is itself

a continuous symmetry, hence a periodic orbit of a flow alwayshas amarginal
eigenvalue:

As Jt(x) transports the velocity fieldv(x) by (4.7), after a complete period

Jp(x)v(x) = v(x) , (5.14)
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so a periodic orbit of aflow always has an eigenvectore(d)(x) = v(x) parallel to
the local velocity field with the unit eigenvalue

Λp,d = 1 , λ
(d)
p = 0 . (5.15)

[exercise 6.2]

The continuous invariance that gives rise to this marginal eigenvalue is the invariance
of a cycle under a translation of its points along the cycle: two points on the cycle
(see figure4.3) initially distanceδx apart,x′(0)−x(0) = δx(0), are separated by the
exactly sameδx after a full periodTp. As we shall see in sect.5.3, this marginal
stability direction can be eliminated by cutting the cycle by a Poincaré section and
eliminating the continuous flow fundamental matrix in favorof the fundamental
matrix of the Poincaré return map.

If the flow is governed by a time-independent Hamiltonian, the energy is
conserved, and that leads to an additional marginal eigenvalue (remember, by
symplectic invariance (7.19) real eigenvalues come in pairs).

5.3 Stability of Poincaré map cycles

(R. Paškauskas and P. Cvitanović)

If a continuous flow periodic orbitp pierces the Poincaré sectionP once, the
section point is a fixed point of the Poincaré return mapP with stability (4.56)

Ĵi j =

(
δik −

vi Uk

(v · U)

)
Jk j , (5.16)

with all primes dropped, as the initial and the final points coincide, x′ = f Tp(x) =
x. If the periodic orbitp pierces the Poincaré sectionn times, the same observation
applies to thenth iterate ofP.

We have already established in (4.57) that the velocityv(x) is a zero-eigenvector
of the Poincaré section fundamental matrix,Ĵv= 0. Consider next (Λp,α, e(α)), the
full state spaceαth (eigenvalue, eigenvector) pair (5.11), evaluated at a cycle point
on a Poincaré section,

J(x)e(α)(x) = Λαe(α)(x) , x ∈ P . (5.17)

Multiplying (5.16) by e(α) and inserting (5.17), we find that the full state space
fundamental matrix and the Poincaré section fundamental matrix Ĵ has the same
eigenvalue

Ĵ(x)ê(α)(x) = Λαê(α)(x) , x ∈ P , (5.18)
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where ê(α) is a projection of the full state space eigenvector onto the Poincaré
section:

(ê(α))i =

(
δik −

vi Uk

(v ·U)

)
(e(α))k . (5.19)

Hence,Ĵp evaluated on any Poincaré section point along the cyclep has the same
set of Floquet multipliers{Λp,1,Λp,2, · · ·Λp,d} as the full state space fundamental
matrix Jp.

As established in (4.57), due to the continuous symmetry (time invariance)Ĵp

is a rankd − 1 matrix. We shall refer to any such full rank [(d − N)× (d − N)]
submatrix withN continuous symmetries quotiented out as themonodromy matrix
Mp (from Greekmono-= alone, single, anddromo= run, racecourse, meaning a
single run around the stadium).

5.4 There goes the neighborhood

In what follows, our task will be to determine the size of aneighborhoodof x(t),
and that is why we care about the Floquet multipliers, and especially the unstable
(expanding) ones. Nearby points aligned along the stable (contracting) directions
remain in the neighborhood of the trajectoryx(t) = f t(x0); the ones to keep an eye
on are the points which leave the neighborhood along the unstable directions. The
sub-volume|Mi | =

∏e
i ∆xi of the set of points which get no further away from

f t(x0) thanL, the typical size of the system, is fixed by the condition that∆xiΛi =

O(L) in each expanding directioni. Hence the neighborhood size scales as∝
1/|Λp| whereΛp is the product of expanding eigenvalues (5.6) only; contracting
ones play a secondary role. So secondary that even infinitelymany of them will
not matter.

So the physically important information is carried by the expanding sub-volume,
not the total volume computed so easily in (4.47). That is also the reason why
the dissipative and the Hamiltonian chaotic flows are much more alike than one
would have naively expected for ‘compressible’vs. ‘incompressible’ flows. In
hyperbolic systems what matters are the expanding directions. Whether the contracting
eigenvalues are inverses of the expanding ones or not is of secondary importance.
As long as the number of unstable directions is finite, the same theory applies both
to the finite-dimensional ODEs and infinite-dimensional PDEs.

Résum é

Periodic orbits play a central role in any invariant characterization of the dynamics,
because (a) their existence and inter-relations are atopological, coordinate-independent
property of the dynamics, and (b) their Floquet multipliersform an infinite set of
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metric invariants: The Floquet multipliers of a periodic orbit remain invariant
under any smooth nonlinear change of coordinatesf → h ◦ f ◦ h−1 .

We shall show in chapter10that extending their local stability eigendirections
into stable and unstable manifolds yields important globalinformation about the
topological organization of state space.

In hyperbolic systems what matters are the expanding directions. The physically
important information is carried by the unstable manifold,and the expanding sub-
volume characterized by the product of expanding eigenvalues ofJp. As long as
the number of unstable directions is finite, the theory can beapplied to flows of
arbitrarily high dimension.

Commentary

Remark 5.1 Floquet theory. Floquet theory is a classical subject in the theory of
differential equations [2]. In physics literature Floquet exponents often assume different
names according to the context where the theory is applied: they are called Bloch phases
in the discussion of Schrödinger equation with a periodic potential [3], or quasimomenta
in the quantum theory of time-periodic Hamiltonians.

Exercises

5.1. A limit cycle with analytic Floquet exponent.
There are only two examples of nonlinear flows
for which the stability eigenvalues can be evaluated
analytically. Both are cheats. One example is the 2-d
flow

q̇ = p+ q(1− q2 − p2)

ṗ = −q+ p(1− q2 − p2) .

Determine all periodic solutions of this flow, and
determine analytically their Floquet exponents. Hint: go
to polar coordinates (q, p) = (r cosθ, r sinθ). G. Bard

Ermentrout

5.2. The other example of a limit cycle with analytic
Floquet exponent. What is the other example of a
nonlinear flow for which the stability eigenvalues can be
evaluated analytically? Hint: email G.B. Ermentrout.

5.3. Yet another example of a limit cycle with analytic
Floquet exponent. Prove G.B. Ermentrout wrong
by solving a third example (or more) of a nonlinear
flow for which the stability eigenvalues can be evaluated
analytically.

References

[5.1] J. Moehlis and K. Josić, “Periodic Orbit,”
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Chapter 6

Get straight

We owe it to a book to withhold judgment until we reach
page 100.

—Henrietta McNutt, George Johnson’s seventh-
grade English teacher

A H  is said to be ‘integrable’ if one can find a change of
coordinates to an action-angle coordinate frame where the phase space
dynamics is described by motion on circles, one circle for each degree

of freedom. In the same spirit, a natural description of a hyperbolic, unstable
flow would be attained if one found a change of coordinates into a frame where
the stable/unstable manifolds are straight lines, and the flow is along hyperbolas.
Achieving this globally for anything but a handful of contrived examples is too
much to hope for. Still, as we shall now show, we can make some headway on
straightening out the flow locally.

Even though such nonlinear coordinate transformations arevery important,
especially in celestial mechanics, we shall not necessarily use them much in
what follows, so you can safely skip this chapter on the first reading. Except,
perhaps, you might want to convince yourself that cycle stabilities are indeed
metric invariants of flows (sect.6.6), and you might like transformations that turn
a Keplerian ellipse into a harmonic oscillator (example6.2) and regularize the
2-body Coulomb collisions (sect.6.3) in classical helium.

fast track:

chapter 14, p. 235

6.1 Changing coordinates

Problems are handed down to us in many shapes and forms, and they are not
always expressed in the most convenient way. In order to simplify a given problem,
one may stretch, rotate, bend and mix the coordinates, but indoing so, the vector
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field will also change. The vector field lives in a (hyper)plane tangent to state
space and changing the coordinates of state space affects the coordinates of the
tangent space as well, in a way that we will now describe.

Denote byh theconjugation functionwhich maps the coordinates of the initial
state spaceM into the reparameterized state spaceM′ = h(M), with a point
x ∈ M related to a pointy ∈ M′ by

y = h(x) = (y1(x), y2(x), . . . , yd(x)) .

The change of coordinates must be one-to-one and span bothM andM′, so given
any pointy we can go back tox = h−1(y). For smooth flows the reparameterized
dynamics should support the same number of derivatives as the initial one. Ifh is
a (piecewise) analytic function, we refer toh as asmooth conjugacy.

The evolution rulegt(y0) onM′ can be computed from the evolution rule
f t(x0) onM by taking the initial pointy0 ∈ M′, going back toM, evolving, and
then mapping the final pointx(t) back toM′:

y(t) = gt(y0) = h ◦ f t ◦ h−1(y0) . (6.1)

Here ‘◦’ stands for functional compositionh ◦ f (x) = h( f (x)), so (6.1) is a
shorthand fory(t) = h( f t(h−1(y0))).

The vector field ˙x = v(x) inM, locally tangent to the flowf t, is related to the
flow by differentiation (2.5) along the trajectory. The vector field ˙y = w(y) inM′,
locally tangent togt follows by the chain rule:

[exercise 6.1]

w(y) =
dgt

dt
(y)

∣∣∣∣∣∣
t=0

=
d
dt

(
h ◦ f t ◦ h−1(y)

)∣∣∣∣∣
t=0

= h′(h−1(y)) v(h−1(y)) = h′(x) v(x) . (6.2)

In order to rewrite the right-hand side as a function ofy, note that the∂y differentiation
of h(h−1(y)) = y implies

∂h
∂x

∣∣∣∣∣
x
· ∂h−1

∂y

∣∣∣∣∣∣
y

= 1 → ∂h
∂x

(x) =

[
∂h−1

∂y
(y)

]−1

, (6.3)

so the equations of motion in the transformed coordinates, with the indices reinstated,
are

ẏi = wi(y) =

[
∂h−1

∂y
(y)

]−1

i j
v j(h

−1(y)) . (6.4)

Imagine that the state space is a rubber sheet with the flow lines drawn on it.
A coordinate changeh corresponds to pulling and tugging on the rubber sheet
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smoothly, without cutting, gluing, or self-intersectionsof the distorted rubber
sheet. Trajectories that are closed loops inM will remain closed loops in the
new manifoldM′, but their shapes will change. Globallyh deforms the rubber
sheet in a highly nonlinear manner, but locally it simply rescales and shears the
tangent field by the Jacobian matrix∂ jhi , hence the simple transformation law
(6.2) for the velocity fields.

The time itself is a parametrization of points along flow lines, and it can
also be reparameterized,s = s(t), with the attendant modification of (6.4). An
example is the 2-body collision regularization of the helium Hamiltonian (7.6), to
be undertaken in sect.6.3below.

6.2 Rectification of flows

A profitable way to exploit invariance of dynamics under smooth conjugacies is
to use it to pick out the simplest possible representative ofan equivalence class.
In general and globally these are just words, as we have no clue how to pick such
‘canonical’ representative, but for smooth flows we can always do it locally and
for sufficiently short time, by appealing to therectification theorem, a fundamental
theorem of ordinary differential equations. The theorem assures us that there
exists a solution (at least for a short time interval) and what the solution looks
like. The rectification theorem holds in the neighborhood ofpoints of the vector
field v(x) that are not singular, that is, everywhere except for the equilibrium
points (2.8), and points at whichv is infinite. According to the theorem, in a
small neighborhood of a non-singular point there exists a change of coordinates
y = h(x) such that ˙x = v(x) in the new,canonicalcoordinates takes form

ẏ1 = ẏ2 = · · · = ẏd−1 = 0
ẏd = 1 , (6.5)

with unit velocity flow alongyd, and no flow along any of the remaining directions.
This is an example of a one-parameter Lie group of transformations, with finite
time τ action

y′i = yi , i = 1, 2, . . . , d − 1

y′d = yd + τ .

[exercise 9.7]

Example 6.1 Harmonic oscillator, rectified: As a simple example of global
rectification of a flow consider the harmonic oscillator

q̇ = p , ṗ = −q . (6.6)

The trajectories x(t) = (q(t), p(t)) circle around the origin, so a fair guess is that the
system would have a simpler representation in polar coordinates y = (r, θ):

h−1 :

{
q = h−1

1 (r, θ) = r cosθ
p = h−1

2 (r, θ) = r sinθ
. (6.7)
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Figure 6.1: Coordinates for the helium three body
problem in the plane.
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The Jacobian matrix of the transformation is

h′ =


cosθ sinθ

−sinθ
r

cosθ
r

 (6.8)

resulting in (6.4) of rectified form
[exercise 5.1]

(
ṙ
θ̇

)
=


cosθ sinθ

−sinθ
r

cosθ
r


(

q̇
ṗ

)
=

(
0
−1

)
. (6.9)

In the new coordinates the radial coordinate r is constant, and the angular coordinate
θ wraps around a cylinder with constant angular velocity. There is a subtle point in
this change of coordinates: the domain of the map h−1 is not the plane R2, but rather
the plane minus the origin. We had mapped a plane into a cylinder, and coordinate
transformations should not change the topology of the space in which the dynamics
takes place; the coordinate transformation is not defined on the equilibrium point x =
(0, 0), or r = 0.

6.3 Classical dynamics of collinear helium

(G. Tanner)

So far much has been said about 1-dimensional maps, game of pinball and other
curious but rather idealized dynamical systems. If you havebecome impatient and
started wondering what good are the methods learned so far insolving real life
physical problems, good news are here. We will apply here concepts of nonlinear
dynamics to nothing less than the helium, a dreaded three-body Coulomb problem.

Can we really jump from three static disks directly to three charged particles
moving under the influence of their mutually attracting or repelling forces? It
turns out, we can, but we have to do it with care. The full problem is indeed
not accessible in all its detail, but we are able to analyze a somewhat simpler
subsystem–collinear helium. This system plays an important role in the classical
and quantum dynamics of the full three-body problem.

The classical helium system consists of two electrons of mass me and charge
−emoving about a positively charged nucleus of massmhe and charge+2e.

conjug - 3nov2007.tex

CHAPTER 6. GET STRAIGHT 97

Figure 6.2: Collinear helium, with the two electrons
on opposite sides of the nucleus.

He
++

e e

r r

- -

1 2

The helium electron-nucleus mass ratiomhe/me = 1836 is so large that we
may work in the infinite nucleus mass approximationmhe= ∞, fixing the nucleus
at the origin. Finite nucleus mass effects can be taken into account without any
substantial difficulty. We are now left with two electrons moving in three spatial
dimensions around the origin. The total angular momentum ofthe combined
electron system is still conserved. In the special case of angular momentum
L = 0, the electrons move in a fixed plane containing the nucleus.The three body
problem can then be written in terms of three independent coordinates only, the
electron-nucleus distancesr1 andr2 and the inter-electron angleΘ, see figure6.1.

This looks like something we can lay our hands on; the problemhas been
reduced to three degrees of freedom, six phase space coordinates in all, and the
total energy is conserved. But let us go one step further; theelectrons are attracted
by the nucleus but repelled by each other. They will tend to stay as far away from
each other as possible, preferably on opposite sides of the nucleus. It is thus worth
having a closer look at the situation where the three particles are all on a line with
the nucleus being somewhere between the two electrons. If we, in addition, let the
electrons have momenta pointing towards the nucleus as in figure6.2, then there
is no force acting on the electrons perpendicular to the common interparticle axis.
That is, if we start the classical system on the dynamical subspaceΘ = π, d

dtΘ = 0,
the three particles will remain in thiscollinear configurationfor all times.

6.3.1 Scaling

In what follows we will restrict the dynamics to this collinear subspace. It is a
system of two degrees of freedom with the Hamiltonian

H =
1

2me

(
p2

1 + p2
2

)
− 2e2

r1
− 2e2

r2
+

e2

r1 + r2
= E , (6.10)

whereE is the total energy. As the dynamics is restricted to the fixedenergy shell,
the four phase space coordinates are not independent; the energy shell dependence
can be made explicit by writing (r1, r2, p1, p2)→ (r1(E), r2(E), p1(E), p2(E)) .

We will first consider the dependence of the dynamics on the energy E. A
simple analysis of potential versus kinetic energy tells usthat if the energy is
positive both electrons can escape tor i → ∞, i = 1, 2. More interestingly, a
single electron can still escape even ifE is negative, carrying away an unlimited
amount of kinetic energy, as the total energy of the remaining inner electron has no
lower bound. Not only that, but one electronwill escape eventually for almost all
starting conditions. The overall dynamics thus depends critically on whetherE >

0 or E < 0. But how does the dynamics change otherwise with varying energy?
Fortunately, not at all. Helium dynamics remains invariantunder a change of
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energy up to a simple scaling transformation; a solution of the equations of motion
at a fixed energyE0 = −1 can be transformed into a solution at an arbitrary energy
E < 0 by scaling the coordinates as

r i(E) =
e2

(−E)
r i , pi(E) =

√
−meE pi , i = 1, 2 ,

together with a time transformationt(E) = e2m1/2
e (−E)−3/2 t. We include the

electron mass and charge in the scaling transformation in order to obtain a non–
dimensionalized Hamiltonian of the form

H =
p2

1

2
+

p2
2

2
− 2

r1
− 2

r2
+

1
r1 + r2

= −1 . (6.11)

The case of negative energies chosen here is the most interesting one for us. It
exhibits chaos, unstable periodic orbits and is responsible for the bound states and
resonances of the quantum problem.

6.3.2 Regularization of two–body collisions

Next, we have a closer look at the singularities in the Hamiltonian (6.11). Whenever
two bodies come close to each other, accelerations become large, numerical routines
require lots of small steps, and numerical precision suffers. No numerical routine
will get us through the singularity itself, and in collinearhelium electrons have no
option but to collide with the nucleus. Hence aregularizationof the differential
equations of motions is a necessary prerequisite to any numerical work on such
problems, both in celestial mechanics (where a spaceship executes close approaches
both at the start and its destination) and in quantum mechanics (where much of
semiclassical physics is dominated by returning classicalorbits that probe the
quantum wave function at the nucleus).

There is a fundamental difference between two–body collisionsr1 = 0 or r2 =

0, and the triple collisionr1 = r2 = 0. Two–body collisions can be regularized,
with the singularities in equations of motion removed by a suitable coordinate
transformation together with a time transformation preserving the Hamiltonian
structure of the equations. Such regularization is not possible for the triple collision,
and solutions of the differential equations can not be continued through the singularity
at the origin. As we shall see, the chaos in collinear helium originates from this
singularity of triple collisions.

A regularization of the two–body collisions is achieved by means of the Kust-
aanheimo–Stiefel (KS) transformation, which consists of acoordinate dependent
time transformation which stretches the time scale near theorigin, and a canonical
transformation of the phase space coordinates. In order to motivate the method,
we apply it first to the 1-dimensional Kepler problem

H =
1
2

p2 − 2
x
= E . (6.12)
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Example 6.2 Keplerian ellipse, rectified: To warm up, consider the E = 0 case,
starting at x = 0 at t = 0. Even though the equations of motion are singular at the initial
point, we can immediately integrate

1
2

ẋ2 − 2
x
= 0

by means of separation of variables

√
xdx=

√
2dt , x = (3t)

2
3 , (6.13)

and observe that the solution is not singular. The aim of regularization is to compensate
for the infinite acceleration at the origin by introducing a fictitious time, in terms of which
the passage through the origin is smooth.

A time transformation dt = f (q, p)dτ for a system described by a Hamiltonian
H(q, p) = E leaves the Hamiltonian structure of the equations of motion unaltered, if
the Hamiltonian itself is transformed into H(q, p) = f (q, p)(H(q, p) − E). For the 1–
dimensional Coulomb problem with (6.12) we choose the time transformation dt = xdτ
which lifts the |x| → 0 singularity in (6.12) and leads to a new Hamiltonian

H = 1
2

xp2 − 2− Ex= 0. (6.14)

The solution (6.13) is now parameterized by the fictitous time dτ through a pair of
equations

x = τ2 , t =
1
3
τ3 .

The equations of motion are, however, still singular as x→ 0:

d2x
dτ2
= − 1

2x
dx
dτ
+ xE .

Appearance of the square root in (6.13) now suggests a canonical transformation of
form

x = Q2 , p =
P

2Q
(6.15)

which maps the Kepler problem into that of a harmonic oscillator with Hamiltonian

H(Q,P) =
1
8

P2 − EQ2 = 2, (6.16)

with all singularities completely removed.

We now apply this method to collinear helium. The basic idea is that one seeks
a higher-dimensional generalization of the ‘square root removal’ trick (6.15), by
introducing a new vectorQ with propertyr = |Q|2 . In this simple 1-dimensional
example the KS transformation can be implemented by

r1 = Q2
1 , r2 = Q2

2 , p1 =
P1

2Q1
, p2 =

P2

2Q2
(6.17)
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Figure 6.3: (a) A typical trajectory in the [r1, r2]
plane; the trajectory enters here along ther1 axis
and escapes to infinity along ther2 axis; (b)
Poincaré map (r2=0) for collinear helium. Strong
chaos prevails for smallr1 near the nucleus.
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and reparameterization of time bydτ = dt/r1r2. The singular behavior in the
original momenta atr1 or r2 = 0 is again compensated by stretching the time
scale at these points. The Hamiltonian structure of the equations of motions with
respect to the new timeτ is conserved, if we consider the Hamiltonian

Hko =
1
8

(Q2
2P2

1 + Q2
1P2

2) − 2R2
12+ Q2

1Q2
2(−E + 1/R2

12) = 0 (6.18)

with R12 = (Q2
1+Q2

2)1/2, and we will takeE = −1 in what follows. The equations
of motion now have the form

Ṗ1 = 2Q1

2−
P2

2

8
− Q2

2

1+
Q2

2

R4
12


 ; Q̇1 =

1
4

P1Q2
2 (6.19)

Ṗ2 = 2Q2

2−
P2

1

8
− Q2

1

1+
Q2

1

R4
12


 ; Q̇2 =

1
4

P2Q2
1.

Individual electron–nucleus collisions atr1 = Q2
1 = 0 or r2 = Q2

2 = 0 no
longer pose a problem to a numerical integration routine. The equations (6.19)
are singular only at the triple collisionR12 = 0, i.e., when both electrons hit the
nucleus at the same time.

The new coordinates and the Hamiltonian (6.18) are very useful when calculating
trajectories for collinear helium; they are, however, lessintuitive as a visualization
of the three-body dynamics. We will therefore refer to the old coordinatesr1, r2

when discussing the dynamics and the periodic orbits.

To summarize, we have brought a 3-body problem into a form where the
2-body collisions have been transformed away, and the phasespace trajectories
computable numerically. To appreciate the full beauty of what has been attained,
you have to fast-forward to quantum chaos part ofChaosBook.org; we are
already ‘almost’ ready to quantize helium by semiclassicalmethods.

fast track:

chapter 5, p. 83
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6.4 Rectification of maps

In sect.6.2we had argued that nonlinear coordinate transformations can be profitably
employed to simplify the representation of a flow. We shall now apply the same
idea to nonlinear maps, and determine a smooth nonlinear change of coordinates
that flattens out the vicinity of a fixed point and makes the maplinear in an
open neighborhood. In its simplest form the idea can be implemented only for
an isolated nondegenerate fixed point (otherwise are neededin the normal form
expansion around the point), and only in a finite neighborhood of a point, as the
conjugating function in general has a finite radius of convergence. In sect.6.5we
will extend the method to periodic orbits.

6.4.1 Rectification of a fixed point in one dimension
[exercise 6.2]

Consider a 1-dimensional mapxn+1 = f (xn) with a fixed point atx = 0, with
stabilityΛ = f ′(0). If |Λ| , 1, one can determine term-by-term the power series
for a smooth conjugationh(x) centered at the fixed point,h(0) = 0, that flattens
out the neighborhood of the fixed point

f (x) = h−1(Λh(x)) (6.20)

and replaces the nonlinear mapf (x) by a linear mapyn+1 = Λyn.

To compute the conjugationh we use the functional equationh−1(Λx) =
f (h−1(x)) and the expansions

f (x) = Λx+ x2 f2 + x3 f3 + . . .

h−1(x) = x+ x2h2 + x3h3 + . . . . (6.21)

Equating the coefficients of xk on both sides of the functional equation yields
hk order by order as a function off2, f3, . . .. If h(x) is a conjugation, so is any
scalingh(bx) of the function for a real numberb. Hence the value ofh′(0) is not
determined by the functional equation (6.20); it is convenient to seth′(0) = 1.

The algebra is not particularly illuminating and best left to computers. In any
case, for the time being we will not use much beyond the first, linear term in these
expansions.

Here we have assumedΛ , 1. If the fixed point has firstk−1 derivatives
vanishing, the conjugacy is to thekth normal form.

In several dimensions,Λ is replaced by the Jacobian matrix, and one has to
check that the eigenvaluesM are non-resonant, that is, there is no integer linear
relation between the Floquet exponents (5.7).

[remark 6.3]
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6.5 Rectification of a 1-dimensional periodic orbit

In sect.6.4.1we have constructed the conjugation function for a fixed point. Here
we turn to the problem of constructing it for periodic orbits. Each point around the
cycle has a differently distorted neighborhood, with differing second and higher
order derivatives, so we need to compute a different conjugation functionha at
each cycle pointxa. We expand the mapf around each cycle point along the
cycle,

ya(φ) = fa(φ) − xa+1 = φ fa,1 + φ
2 fa,2 + . . . (6.22)

wherexa is a point on the cycle,fa(φ) = f (xa + φ) is centered on the periodic
orbit, and the indexk in fa,k refers to thekth order in the expansion (6.21).

For a periodic orbit the conjugation formula (6.20) generalizes to

fa(φ) = h−1
a+1( f ′a(0)ha(φ)) , a = 1, 2, · · · , n ,

point by point. The conjugationg functionsha are obtained in the same way as
before, by equating coefficients of the expansion (6.21), and assuming that the
cycle Floquet multiplierΛ =

∏n−1
a=0 f ′(xa) is not marginal,|Λ| , 1. The explicit

expressions forha in terms of f are obtained by iterating around the whole cycle,

f n(xa + φ) = h−1
a (Λha(φ)) + xa . (6.23)

evaluated at each cycle pointa. Again we have the freedom to seth′a(0) = 1 for
[remark 6.2]

all a.

6.5.1 Repeats of cycles

We have traded in our initial nonlinear mapf for a (locally) linear mapΛy and an
equally complicated conjugation functionh. What is gained by rewriting the map
f in terms of the conjugacy functionh? Once the neighborhood of a fixed point
is linearized, the repeats of it are trivialized; from the conjugation formula (6.21)
one can compute the derivatives of a function composed with itself r times:

f r(x) = h−1(Λrh(x)) .

One can already discern the form of the expansion for arbitrary repeats; the answer
will depend on the conjugacy functionh(x) computed for asinglerepeat, and all
the dependence on the repeat number will be carried by factors polynomial in
Λr , a considerable simplification. The beauty of the idea is difficult to gauge at
this stage–an appreciation only sets in when one starts computing perturbative
corrections, be it in celestial mechanics (where the methodwas born), be it the
quantum or stochastic corrections to ‘semiclassical’ approximations.
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6.6 Cycle Floquet multipliers are metric invariants

In sect.5.2we have established that for a given flow the cycle Floquet multipliers
are intrinsic to a given cycle, independent of the starting point along the cycle.
Now we can prove a much stronger statement; cycle Floquet multipliers aresmooth
conjugacyor metric invariantsof the flow, the same inany representation of the
dynamical system.

That the cycle Floquet multipliers are an invariant property of the given dynamical
system follows from elementary considerations of sect.6.1: If the same dynamics
is given by a mapf in x coordinates, and a mapg in they = h(x) coordinates, then
f andg (or any other good representation) are related by (6.4), a reparameterization
and a coordinate transformationg = h ◦ f ◦ h−1. As both f andg are arbitrary
representations of the dynamical system, the explicit formof the conjugacyh is of
no interest, only the properties invariant under any transformationh are of general
import. Furthermore, a good representation should not mutilate the data;h must
be asmooth conjugacywhich maps nearby cycle points off into nearby cycle
points ofg. This smoothness guarantees that the cycles are not only topological
invariants, but that their linearized neighborhoods are also metrically invariant.
For a fixed pointf (x) = x of a 1-dimensional map this follows from the chain rule
for derivatives,

g′(y) = h′( f ◦ h−1(y)) f ′(h−1(y))
1

h′(x)

= h′(x) f ′(x)
1

h′(x)
= f ′(x) . (6.24)

In d dimensions the relationship between the maps in different coordinate representations
is againg◦h = h◦ f . We now make the matrix structure of relation (6.3) explicit:

Γik(x) =
∂hi

∂xk

∣∣∣∣∣
x

and Γ−1
ik (x) =

∂h−1
i

∂yk

∣∣∣∣∣∣
h(x)

,

i.e.,Γik(x) is the matrix inverse ofΓ−1
ik (x). The chain rule now relatesM′, the the

fundamental matrix of the mapg to the fundamental matrix of mapf :

M′i j (h(x)) = Γik( f (x))Mkl(x)Γ−1
l j (x) . (6.25)

If x is a fixed point then (6.25) is asimilarity transformation and thus preserves
eigenvalues: it is easy to verify that in the case of periodnp cycle againM′p(h(x))
andMp(x) are related by a similarity transformation (note that thisis not true for
Mr(x) with r , np). As stability of a flow can always be reduced to stability of a
Poincaré section return map, a Floquet multiplier of any cycle, for a flow or a map
in arbitrary dimension, is a metric invariant of the dynamical system.

[exercise 6.2]

in depth:

appendix B.3, p. 658
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Résum é

Dynamics (M, f ) is invariant under the group of all smooth conjugacies

(M, f ) → (M′, g) = (h(M), h ◦ f ◦ h−1) .

This invariance can be used to (i) find a simplified representation for the flow and
(ii) identify a set of invariants, numbers computed within aparticular choice of
(M, f ), but invariant under allM→ h(M) smooth conjugacies.

The 2D-dimensional phase space of an integrable Hamiltonian system of D
degrees of freedom is fully foliated byD-tori. In the same spirit, for a uniformly
hyperbolic, chaotic dynamical system one would like to change into a coordinate
frame where the stable/unstable manifolds form a set of transversally intersecting
hyper-planes, with the flow everywhere locally hyperbolic.That cannot be achieved
in general: Fully globally integrable and fully globally chaotic flows are a very
small subset of all possible flows, a ‘set of measure zero’ in the world of all
dynamical systems.

What wereally care about is developping invariant notions of what a given
dynamical system is. The totality of smooth one-to-one nonlinear coordinate
transformationsh which map all trajectories of a given dynamical system (M, f t)
onto all trajectories of dynamical systems (M′, gt) gives us a huge equivalence
class, much larger than the equivalence classes familiar from the theory of linear
transformations, such as the rotation groupO(d) or the Galilean group of all
rotations and translations inRd. In the theory of Lie groups, the full invariant
specification of an object is given by a finite set of Casimir invariants. What a good
full set of invariants for a group of general nonlinear smooth conjugacies might be
is not known, but the set of all periodic orbits and their stability eigenvalues will
turn out to be a good start.

Commentary

Remark 6.1 Rectification of flows. See Section 2.2.5 of ref. [12] for a pedagogical
introduction to smooth coordinate reparameterizations. Explicit examples of transformations
into canonical coordinates for a group of scalings and a group of rotations are worked out.

Remark 6.2 Rectification of maps. The methods outlined above are standard in the
analysis of fixed points and construction of normal forms forbifurcations, see for example
ref. [22, 2, 4, 5, 6, 7, 8, 9, 9]. The geometry underlying such methods is pretty, and we
enjoyed reading, for example, Percival and Richards [10], chaps. 2 and 4 of Ozorio de
Almeida’s monograph [11], and, as always, Arnol’d [1].

Recursive formulas for evaluation of derivatives needed toevaluate (6.21) are given,
for example, in Appendix A of ref. [5]. Section 10.6 of Ref. [13] describes in detail the
smooth conjugacy that relates the Ulam map to the tent map.
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Remark 6.3 A resonance condition. In the hyperbolic case there is a resonance
condition that must be satisfied: none of the Floquet exponents may be related by ratios
of integers. That is, ifΛp,1,Λp,2, . . . ,Λp,d are the Floquet multipliers of the fundamental
matrix, then they are in resonance if there exist integersn1, . . . , nd such that

(Λp,1)n1(Λp,2)n2 · · · (Λp,d)nd = 1 .

If there is resonance, then one may get corrections to the basic conjugation formulas in
the form of monomials in the variables of the map. (R. Mainieri)

conjug - 3nov2007.tex



EXERCISES 106

Exercises

6.1. Coordinate transformations. Changing coordinates
is conceptually simple, but can become confusing when
carried out in detail. The difficulty arises from confusing
functional relationships, such asx(t) = h−1(y(t)) with
numerical relationships, such asw(y) = h′(x)v(x).
Working through an example will clear this up.

(a) The differential equation in theM space is ˙x =
{2x1, x2} and the change of coordinates fromM to
M′ is h(x1, x2) = {2x1+x2, x1−x2}. Solve forx(t).
Findh−1.

(b) Show that in the transformed spaceM′, the
differential equation is

d
dt

[
y1
y2

]
=

1
3

[
5y1 + 2y2
y1 + 4y2

]
.

Solve this system. Does it match the solution in
theM space?

6.2. Linearization for maps. Let f : C → C be a map
from the complex numbers into themselves, with a fixed

point at the origin and analytic there. By manipulating
power series, find the first few terms of the maph that
conjugatesf to αz, that is,

f (z) = h−1(αh(z)) .

There are conditions on the derivative off at the origin
to assure that the conjugation is always possible. Can
you formulate these conditions by examining the series?

(difficulty: medium) (R. Mainieri)

6.3. Ulam and tent maps. Show that the smooth
conjugacy (6.1)

g(y0) = h ◦ f ◦ h−1(y0)

y = h(x) = sin2(πx/2) ,

conjugates the tent mapf (x) = 1 − 2|x − 1/2| into
the Ulam mapg(y) = 4y(1 − y) . (Continued as
exercise12.1.)
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Chapter 7

Hamiltonian dynamics

Truth is rarely pure, and never simple.

—Oscar Wilde

Y    that the strangeness of contracting flows, flows such as the
Rössler flow of figure2.5 is of concern only to chemists; real physicists
do Hamiltonian dynamics, right? Now, that’s full of chaos, too! While

it is easier to visualize aperiodic dynamics when a flow is contracting onto a
lower-dimensional attracting set, there are plenty examples of chaotic flows that
do preserve the full symplectic invariance of Hamiltonian dynamics. The whole
story started in fact with Poincaré’s restricted 3-body problem, a realization that
chaos rules also in general (non-Hamiltonian) flows came much later.

Here we briefly review parts of classical dynamics that we will need later
on; symplectic invariance, canonical transformations, and stability of Hamiltonian
flows. We discuss billiard dynamics in some detail in chapter8.

7.1 Hamiltonian flows

(P. Cvitanović and L.V. Vela-Arevalo)

An important class of flows are Hamiltonian flows, given by a Hamiltonian
[appendix B]

H(q, p) together with the Hamilton’s equations of motion

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi

, (7.1)

with the 2D phase space coordinatesxsplit into the configuration space coordinates
and the conjugate momenta of a Hamiltonian system withD degrees of freedom
(dof):

x = (q, p) , q = (q1, q2, . . . , qD) , p = (p1, p2, . . . , pD) . (7.2)
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Figure 7.1: Phase plane of the unforced, undamped
Duffing oscillator. The trajectories lie on level sets of
the Hamiltonian (7.4). −2 −1 0 1 2

−1

0

1

q

p

The energy, or the value of the Hamiltonian function at the state space pointx =
(q, p) is constant along the trajectoryx(t),

d
dt

H(q(t), p(t)) =
∂H
∂qi

q̇i(t) +
∂H
∂pi

ṗi(t)

=
∂H
∂qi

∂H
∂pi
− ∂H
∂pi

∂H
∂qi
= 0 , (7.3)

so the trajectories lie on surfaces of constant energy, orlevel setsof the Hamiltonian
{(q, p) : H(q, p) = E}. For 1-dof Hamiltonian systems this is basically the whole
story.

Example 7.1 Unforced undamped Duffing oscillator: When the damping term
is removed from the Duffing oscillator (2.7), the system can be written in Hamiltonian
form with the Hamiltonian

H(q, p) =
p2

2
− q2

2
+

q4

4
. (7.4)

This is a 1-dof Hamiltonian system, with a 2-dimensional state space, the plane (q, p).
The Hamilton’s equations (7.1) are

q̇ = p , ṗ = q− q3 . (7.5)

For 1-dof systems, the ‘surfaces’ of constant energy (7.3) are simply curves in the
phase plane (q, p), and the dynamics is very simple: the curves of constant energy are
the trajectories, as shown in figure 7.1.

Thus all 1-dof systems areintegrable, in the sense that the entire phase plane
is foliated by curves of constant energy, either periodic – as is the case for the
harmonic oscillator (a ‘bound state’)–or open (a ‘scattering trajectory’). Add one

[example 6.1]
more degree of freedom, and chaos breaks loose.

Example 7.2 Collinear helium: In the quantum chaos part of ChaosBook.org
we shall apply the periodic orbit theory to the quantization of helium. In particular, we
will study collinear helium, a doubly charged nucleus with two electrons arranged on a
line, an electron on each side of the nucleus. The Hamiltonian for this system is

H =
1
2

p2
1 +

1
2

p2
2 −

2
r1
− 2

r2
+

1
r1 + r2

. (7.6)
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Figure 7.2: A typical collinear helium trajectory in
the [r1, r2] plane; the trajectory enters along ther1-axis
and then, like almost every other trajectory, after a few
bounces escapes to infinity, in this case along ther2-
axis.
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Collinear helium has 2 dof, and thus a 4-dimensional phase space M, which energy
conservation reduces to 3 dimensions. The dynamics can be projected onto the 2-
dimensional configuration plane, the (r1, r2), r i ≥ 0 quadrant, figure 7.2. It looks messy,
and, indeed, it will turn out to be no less chaotic than a pinball bouncing between three
disks. As always, a Poincaré section will be more informative than this rather arbitrary
projection of the flow.

Note an important property of Hamiltonian flows: if the Hamilton equations
(7.1) are rewritten in the 2D phase space form ˙xi = vi(x), the divergence of the
velocity field v vanishes, namely the flow is incompressible. The symplectic
invariance requirements are actually more stringent than just the phase space
volume conservation, as we shall see in the next section.

7.2 Stability of Hamiltonian flows

Hamiltonian flows offer an illustration of the ways in which an invariance of
equations of motion can affect the dynamics. In the case at hand, thesymplectic
invariancewill reduce the number of independent stability eigenvalues by a factor
of 2 or 4.

7.2.1 Canonical transformations

The equations of motion for a time-independent,D-dof Hamiltonian (7.1) can be
written

ẋi = ωi j H j(x) , ω =

(
0 I
−I 0

)
, H j(x) =

∂

∂x j
H(x) , (7.7)

wherex = (q, p) ∈ M is a phase space point,Hk = ∂kH is the column vector of
partial derivatives ofH, I is the [D×D] unit matrix, andω the [2D×2D] symplectic
form

ωT = −ω , ω2 = −1 . (7.8)
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The evolution ofJt (4.6) is again determined by the stability matrixA, (4.9):

d
dt

Jt(x) = A(x)Jt(x) , Ai j (x) = ωik Hk j(x) , (7.9)

where the matrix of second derivativesHkn = ∂k∂nH is called theHessian matrix.
From the symmetry ofHkn it follows that

ATω + ωA = 0 . (7.10)

This is the defining property for infinitesimal generators ofsymplectic(or canonical)
transformations, transformations which leave the symplectic formω invariant.

Symplectic matrices are by definition linear transformations that leave the
(antisymmetric) quadratic formxiωi j y j invariant. This immediately implies that
any symplectic matrix satisfies

QTωQ = ω , (7.11)

and – whenQ is close to the identityQ = 1 + δtA – it follows that thatA must
satisfy (7.10).

Consider now a smooth nonlinear change of variables of formyi = hi(x), and
define a new functionK(x) = H(h(x)). Under which conditions doesK generate
a Hamiltonian flow? In what follows we will use the notation∂̃ j = ∂/∂y j: by
employing the chain rule we have that

ωi j∂ jK = ωi j ∂̃lH
∂hl

∂x j
(7.12)

(Here, as elsewhere in this book, a repeated index implies summation.) By virtue
of (7.1) ∂̃lH = −ωlmẏm, so that, again by employing the chain rule, we obtain

ωi j∂ jK = −ωi j
∂hl

∂x j
ωlm

∂hm

∂xn
ẋn (7.13)

The right hand side simplifies to ˙xi (yielding Hamiltonian structure) only if

− ωi j
∂hl

∂x j
ωlm

∂hm

∂xn
= δin (7.14)

or, in compact notation, by defining (∂h)i j =
∂hi
∂xj

− ω(∂h)Tω(∂h) = 1 (7.15)
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Figure 7.3: Stability exponents of a Hamiltonian
equilibrium point, 2-dof.
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degenerate saddle
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which is equivalent to the requirement that∂h is symplectic. h is then called
a canonical transformation. We care about canonical transformations for two
reasons. First (and this is a dark art), if the canonical transformationh is very

[example 6.1]
cleverly chosen, the flow in new coordinates might be considerably simpler than
the original flow. Second, Hamiltonian flows themselves are aprime example of
canonical transformations.

Example 7.3 Hamiltonian flows are canonical: For Hamiltonian flows it follows
from (7.10) that d

dt

(
JTωJ

)
= 0, and since at the initial time J0(x0) = 1, fundamental

matrixis a symplectic transformation (7.11). This equality is valid for all times, so a
Hamiltonian flow f t(x) is a canonical transformation, with the linearization ∂x f t(x) a
symplectic transformation (7.11): For notational brevity here we have suppressed the
dependence on time and the initial point, J = Jt(x0). By elementary properties of
determinants it follows from (7.11) that Hamiltonian flows are phase space volume
preserving:

|detJ| = 1 . (7.16)

Actually it turns out that for symplectic matrices (on any field) one always has detJ =
+1.

7.2.2 Stability of equilibria of Hamiltonian flows

For an equilibrium pointxq the stability matrixA is constant. Its eigenvalues
describe the linear stability of the equilibrium point.A is the matrix (7.10) with
real matrix elements, so its eigenvalues (the Floquet exponents of (4.30)) are either
real or come in complex pairs. In the case of Hamiltonian flows, it follows from
(7.10) that the characteristic polynomial ofA for an equilibriumxq satisfies

det (A− λ1) = det (ω−1(A− λ1)ω) = det (−ωAω − λ1)

= det (AT + λ1) = det (A+ λ1) . (7.17)

That is, the symplectic invariance implies in addition thatif λ is an eigenvalue,
then−λ, λ∗ and−λ∗ are also eigenvalues. Distinct symmetry classes of the Floquet
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Figure 7.4: Stability of a symplectic map inR4.
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exponents of an equilibrium point in a 2-dof system are displayed in figure7.3. It
is worth noting that while the linear stability of equilibria in a Hamiltonian system
always respects this symmetry, the nonlinear stability canbe completely different.

[section 4.3.1]

[exercise 7.4]

[exercise 7.5]

7.3 Symplectic maps

A stability eigenvalueΛ = Λ(x0, t) associated to a trajectory is an eigenvalue of
the fundamental matrixJ. As J is symplectic, (7.11) implies that

J−1 = −ωJTω , (7.18)

so the characteristic polynomial is reflexive, namely it satisfies

det (J − Λ1) = det (JT − Λ1) = det (−ωJTω − Λ1)

= det (J−1 − Λ1) = det (J−1) det (1− ΛJ)

= Λ2D det (J − Λ−11) . (7.19)

Hence ifΛ is an eigenvalue ofJ, so are 1/Λ, Λ∗ and 1/Λ∗. Real eigenvalues
always come paired asΛ, 1/Λ. The Liouville conservation of phase space volumes
(7.16) is an immediate consequence of this pairing up of eigenvalues. The complex
eigenvalues come in pairsΛ, Λ∗, |Λ| = 1, or in loxodromic quartetsΛ, 1/Λ, Λ∗

and 1/Λ∗. These possibilities are illustrated in figure7.4.

Example 7.4 Hamiltonian H énon map, reversibility: By (4.53) the Hénon map
(3.18) for b = −1 value is the simplest 2-d orientation preserving area-preserving map,
often studied to better understand topology and symmetries of Poincaré sections of
2 dof Hamiltonian flows. We find it convenient to multiply (3.19) by a and absorb the a
factor into x in order to bring the Hénon map for the b = −1 parameter value into the
form

xi+1 + xi−1 = a− x2
i , i = 1, ..., np , (7.20)
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using (7.16) we derive theLiouville theorem:

V(t) =
∫

f t(C)
dx=

∫

C

∣∣∣∣∣∣det
∂ f t(x′)
∂x

∣∣∣∣∣∣ dx′

∫

C
det (J)dx′ =

∫

C
dx′ = V(0) , (7.32)

Hamiltonian flows preserve phase space volumes.

The symplectic structure of Hamilton’s equations buys us much more than
the ‘incompressibility,’ or the phase space volume conservation. Consider the
symplectic product of two infinitesimal vectors

(δx, δx̂) = δxTωδx̂ = δpiδq̂i − δqiδp̂i

=

D∑

i=1

{
oriented area in the (qi , pi) plane

}
. (7.33)

Time t later we have

(δx′, δx̂′) = δxT JTωJδx̂ = δxTωδx̂ .

This has the following geometrical meaning. We imagine there is a reference
phase space point. We then define two other points infinitesimally close so that
the vectorsδx andδx̂ describe their displacements relative to the reference point.
Under the dynamics, the three points are mapped to three new points which are
still infinitesimally close to one another. The meaning of the above expression is
that the area of the parallelopiped spanned by the three finalpoints is the same as
that spanned by the initial points. The integral (Stokes theorem) version of this
infinitesimal area invariance states that for Hamiltonian flows theD oriented areas
Vi bounded byD loopsΩVi , one per each (qi , pi) plane, are separately conserved:

∫

V
dp∧ dq=

∮

ΩV
p · dq= invariant. (7.34)

Morally a Hamiltonian flow is reallyD-dimensional, even though its phase space
is 2D-dimensional. Hence for Hamiltonian flows one emphasizesD, the number
of the degrees of freedom.

in depth:

appendix B.3, p. 658

Commentary

Remark 7.1 Hamiltonian dynamics literature. If you are reading this book, in theory
you already know everything that is in this chapter. In practice you do not. Try this:
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Put your right hand on your heart and say: “I understand why nature prefers symplectic
geometry.” Honest? Out there there are about 2 centuries of accumulated literature
on Hamilton, Lagrange, Jacobi etc. formulation of mechanics, some of it excellent.
In context of what we will need here, we make a very subjectiverecommendation–we
enjoyed reading Percival and Richards [10] and Ozorio de Almeida [11].

Remark 7.2 Symplectic. The term symplectic –Greek for twining or plaiting together–
was introduced into mathematics by Hermann Weyl. ‘Canonical’ lineage is church-
doctrinal: Greek ‘kanon,’ referring to a reed used for measurement, came to mean in
Latin a rule or a standard.

Remark 7.3 The sign convention of ω. The overall sign ofω, the symplectic invariant
in (7.7), is set by the convention that the Hamilton’s principal function (for energy conserving

flows) is given byR(q, q′, t) =
∫ q′

q
pidqi − Et. With this sign convention the action along

a classical path is minimal, and the kinetic energy of a free particle is positive.

Remark 7.4 Symmetries of the symbol square. For a more detailed discussion of
symmetry lines see refs. [5, 8, 46, 13]. It is an open question (see remark19.3) as to
how time reversal symmetry can be exploited for reductions of cycle expansions. For
example, the fundamental domain symbolic dynamics for reflection symmetric systems
is discussed in some detail in sect.19.5, but how does one recode from time-reversal
symmetric symbol sequences to desymmetrized 1/2 state space symbols?

Remark 7.5 Standard map. Standard maps model free rotators under the influence
of short periodic pulses, as can be physically implemented,for instance, by pulsed optical
lattices in cold atoms physics. On the theoretical side, standard maps exhibit a number
of important features: smallk values provide an example ofKAM perturbative regime
(see ref. [8]), while for largerk chaotic deterministic transport is observed [9, 10]; the
transition to global chaos also presents remarkable universality features [11, 12, 13].
Also the quantum counterpart of this model has been widely investigated, being the first
example where phenomena like quantum dynamical localization have been observed [14].
For some hands-on experience of the standard map, download Meiss simulation code [4].

Exercises

7.1. Complex nonlinear Schr̈odinger equation.
Consider the complex nonlinear Schrödinger equation
in one spatial dimension [1]:

i
∂φ

∂t
+
∂2φ

∂x2
+ βφ|φ|2 = 0, β , 0.

(a) Show that the functionψ : R → C defining the

traveling wave solutionφ(x, t) = ψ(x − ct) for
c > 0 satisfies a second-order complex differential
equation equivalent to a Hamiltonian system in
R

4 relative to the noncanonical symplectic form
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whose matrix is given by

wc =



0 0 1 0
0 0 0 1
−1 0 0 −c
0 −1 c 0


.

(b) Analyze the equilibria of the resulting Ha-
miltonian system inR4 and determine their linear
stability properties.

(c) Let ψ(s) = eics/2a(s) for a real functiona(s) and
determine a second order equation fora(s). Show
that the resulting equation is Hamiltonian and has
heteroclinic orbits forβ < 0. Find them.

(d) Find ‘soliton’ solutions for the complex nonlinear
Schrödinger equation.

(Luz V. Vela-Arevalo)

7.2. Symplectic group/algebra

Show that if a matrixC satisfies (7.10), then exp(sC) is
a symplectic matrix.

7.3. When is a linear transformation canonical?

(a) Let A be a [n × n] invertible matrix. Show that
the mapφ : R2n → R

2n given by (q, p) 7→
(Aq, (A−1)Tp) is a canonical transformation.

(b) If R is a rotation inR3, show that the map (q, p) 7→
(R q,R p) is a canonical transformation.

(Luz V. Vela-Arevalo)

7.4. Determinant of symplectic matrices. Show that
the determinant of a symplectic matrix is+1, by going
through the following steps:

(a) use (7.19) to prove that for eigenvalue pairs each
member has the same multiplicity (the same holds
for quartet members),

(b) prove that thejoint multiplicity of λ = ±1 is even,

(c) show that the multiplicities ofλ = 1 andλ = −1
cannot be both odd. (Hint: write

P(λ) = (λ − 1)2m+1(λ + 1)2l+1Q(λ)

and show thatQ(1) = 0).

7.5. Cherry’s example. What follows refs. [2, 3] is mostly
a reading exercise, about a Hamiltonian system that is
linearly stablebut nonlinearly unstable. Consider the
Hamiltonian system onR4 given by

H =
1
2

(q2
1 + p2

1) − (q2
2 + p2

2) +
1
2

p2(p2
1 − q2

1) − q1q2p1.

(a) Show that this system has an equilibrium at the
origin, which is linearly stable. (The linearized
system consists of two uncoupled oscillators with
frequencies in ratios 2:1).

(b) Convince yourself that the following is a family of
solutions parameterize by a constantτ:

q1 = −
√

2
cos(t − τ)

t − τ , q2 =
cos 2(t − τ)

t − τ ,

p1 =
√

2
sin(t − τ)

t − τ , p2 =
sin 2(t − τ)

t − τ .

These solutions clearly blow up in finite time;
however they start att = 0 at a distance

√
3/τ from

the origin, so by choosingτ large, we can find
solutions starting arbitrarily close to the origin, yet
going to infinity in a finite time, so the origin is
nonlinearly unstable.

(Luz V. Vela-Arevalo)

References

[7.1] J.E. Marsden and T.S. Ratiu,Introduction to Mechanics and Symmetry
(Springer, New York, 1994).

[7.2] T.M. Cherry, “Some examples of trajectories defined bydifferential
equations of a generalized dynamical type,”Trans.Camb.Phil.Soc.XXIII ,
165 (1925).

[7.3] K.R. Meyer, “Counter-examples in dynamical systems via normal form
theory,”SIAM Review28, 41 (1986)

[7.4] J.D. Meiss, “Visual explorations of dynamics: the standard map,”
arXiv:0801.0883.

refsNewt - 7aug2005.tex

References 119

[7.5] D.G. Sterling, H.R. Dullin and J.D. Meiss, “Homoclinic bifurcations for the
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Chapter 8

Billiards

T  that we have the best intuitive grasp on, and find easiest to
grapple with both numerically and conceptually, is the dynamics of billiards.
For billiards, discrete time is altogether natural; a particle moving through

a billiard suffers a sequence of instantaneous kicks, and executes simple motion
in between, so there is no need to contrive a Poincaré section. We have already
used this system in sect.1.3 as the intuitively most accessible example of chaos.
Here we define billiard dynamics more precisely, anticipating the applications to
come.

8.1 Billiard dynamics

A billiard is defined by a connected regionQ ⊂ RD, with boundary∂Q ⊂ RD−1

separatingQ from its complementRD \ Q. The regionQ can consist of one
compact, finite volume component (in which case the billiardphase space is
bounded, as for the stadium billiard figure8.1), or can be infinite in extent, with
its complementRD \ Q consisting of one or several finite or infinite volume
components (in which case the phase space is open, as for the 3-disk pinball game
figure 1.1). In what follows we shall most often restrict our attentionto planar
billiards.

A point particle of massm and momentumpn = mvn moves freely within the
billiard, along a straight line, until it encounters the boundary. There it reflects
specularly (specular= mirrorlike), with no change in the tangential component
of momentum, and instantaneous reversal of the momentum component normal to
the boundary,

p
′
= p− 2(p · n̂)n̂ , (8.1)

with n̂ the unit vector normal to the boundary∂Q at the collision point. The angle
of incidence equals the angle of reflection, as illustrated in figure8.2. A billiard is
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Figure 8.1: The stadium billiard is a 2-
dimensional domain bounded by two semi-circles
of radiusd = 1 connected by two straight walls
of length 2a. At the points where the straight
walls meet the semi-circles, the curvature of the
border changes discontinuously; these are the only
singular points of the flow. The lengtha is the only
parameter. ����������������������������������������
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Figure 8.2: (a) A planar billiard trajectory is fixed
by specifying the perimeter length parametrized
by s and the outgoing trajectory angleφ, both
measured counterclockwise with respect to the
outward normal ˆn. (b) The Birkhoff phase space
coordinate pair (s, p) fully specifies the trajectory,
wherep = |p| sinφ is the momentum component
tangential to the boundary As the pinball kinetic
energy is conserved in elastic scattering, the
pinball mass and the magnitude of the pinball
momentum are customarily set tom= |p| = 1. �����������������
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a Hamiltonian system with a 2D-dimensional phase spacex = (q, p) and potential
V(q) = 0 for q ∈ Q, V(q) = ∞ for q ∈ ∂Q.

A billiard flow has a natural Poincaré section defined by Birkhoff coordinates
sn, the arc length position of thenth bounce measured along the billiard boundary,
and pn = |p| sinφn, the momentum component parallel to the boundary, where
φn is the angle between the outgoing trajectory and the normal to the boundary.
We measure both the arc lengths, and the parallel momentump counterclockwise
relative to the outward normal (see figure8.2 as well as figure3.3). In D = 2,
the Poincaré section is a cylinder (topologically an annulus), figure8.3, where the
parallel momentump ranges for−|p| to |p|, and thes coordinate is cyclic along
each connected component of∂Q. The volume in the full phase space is preserved
by the Liouville theorem (7.32). The Birkhoff coordinatesx = (s, p) ∈ P, are
the natural choice, because with them the the Poincaré return map preserves the
phase space volume in the (s, p) parameterize Poincaré section (a perfectly good
coordinate set (s, φ) does not do that).

[exercise 8.6]

[section 8.2]Without loss of generality we setm= |v| = |p| = 1. Poincaré section condition
eliminates one dimension, and the energy conservation|p| = 1 eliminates another,
so the Poincaré section return mapP is (2D − 2)-dimensional.

The dynamics is given by the Poincaré return map

P : (sn, pn) 7→ (sn+1, pn+1) (8.2)

from thenth collision to the (n+ 1)st collision. The discrete time dynamics map
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Figure 8.3: In D = 2 the billiard Poincaré section
is a cylinder, with the parallel momentump ranging
over p ∈ {−1,1}, and with thes coordinate is cyclic
along each connected component of∂Q. The rectangle
figure8.2 (b) is such cylinder unfolded, with periodic
boundary conditions glueing together the left and the
right edge of the rectangle.
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P is equivalent to the Hamiltonian flow (7.1) in the sense that both describe the
same full trajectory. Lettn denote the instant ofnth collision. Then the position
of the pinball∈ Q at time tn + τ ≤ tn+1 is given by 2D − 2 Poincaré section
coordinates (sn, pn) ∈ P together withτ, the distance reached by the pinball along
thenth section of its trajectory.

Example 8.1 3-disk game of pinball: In case of bounces off a circular disk, the
position coordinate s = rθ is given by angle θ ∈ [0, 2π]. For example, for the 3-disk
game of pinball of figure 1.6 and figure 3.3 we have two types of collisions:

[exercise 8.1]

P0 :

{
φ′ = −φ + 2 arcsinp
p′ = −p+ a

R sinφ′
back-reflection (8.3)

P1 :

{
φ′ = φ − 2 arcsinp+ 2π/3
p′ = p− a

R sinφ′
reflect to 3rd disk . (8.4)

Here a = radius of a disk, and R = center-to-center separation. Actually, as in this
example we are computing intersections of circles and straight lines, nothing more
than high-school geometry is required. There is no need to compute arcsin’s either -
one only needs to compute a square root per each reflection, and the simulations can
be very fast.

[exercise 8.2]
Trajectory of the pinball in the 3-disk billiard is generated by a series of P0’s and

P1’s. At each step on has to check whether the trajectory intersects the desired disk
(and no disk inbetween). With minor modifications, the above formulas are valid for any
smooth billiard as long as we replace a by the local curvature of the boundary at the
point of collision.

8.2 Stability of billiards

We turn next to the question of local stability of discrete time billiard systems.
Infinitesimal equations of variations (4.2) do not apply, but the multiplicative
structure (4.44) of the finite-time fundamental matrices does. As they are more
physical than most maps studied by dynamicists, let us work out the billiard
stability in some detail.

On the face of it, a plane billiard phase space is 4-dimensional. However, one
dimension can be eliminated by energy conservation, and theother by the fact that
the magnitude of the velocity is constant. We shall now show how going to a local
frame of motion leads to a [2×2] fundamental matrix.
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Consider a 2-dimensional billiard with phase space coordinatesx = (q1, q2, p1, p2).
Let tk be the instant of thekth collision of the pinball with the billiard boundary,
andt±k = tk ± ǫ, ǫ positive and infinitesimal. With the mass and the velocity equal
to 1, the momentum direction can be specified by angleθ: x = (q1, q2, sinθ, cosθ).
Now parametrize the 2-d neighborhood of a trajectory segment byδx = (δz, δθ),
where

δz= δq1 cosθ − δq2 sinθ , (8.5)

δθ is the variation in the direction of the pinball motion. Due to energy conservation,
there is no need to keep track ofδq‖, variation along the flow, as that remains
constant. (δq1, δq2) is the coordinate variation transverse to thekth segment of the
flow. From the Hamilton’s equations of motion for a free particle, dqi/dt = pi ,
dpi/dt = 0, we obtain the equations of motion (4.1) for the linearized neighborhood

d
dt
δθ = 0,

d
dt
δz= δθ . (8.6)

Let δθk = δθ(t+k ) andδzk = δz(t+k ) be the local coordinates immediately after the
kth collision, andδθ−k = δθ(t

−
k ), δz−k = δz(t

−
k ) immediately before. Integrating the

free flight fromt+k−1 to t−k we obtain

δz−k = δzk−1 + τkδθk−1 , τk = tk − tk−1

δθ−k = δθk−1 , (8.7)

and the fundamental matrix (4.43) for thekth free flight segment is

MT(xk) =

(
1 τk
0 1

)
. (8.8)

At incidence angleφk (the angle between the outgoing particle and the outgoing
normal to the billiard edge), the incoming transverse variation δz−k projects onto an
arc on the billiard boundary of lengthδz−k / cosφk. The corresponding incidence
angle variationδφk = δz−k /ρk cosφk, ρk = local radius of curvature, increases the
angular spread to

δzk = −δz−k
δθk = − δθ−k −

2
ρk cosφk

δz−k , (8.9)

so the fundamental matrix associated with the reflection is

MR(xk) = −
(

1 0
rk 1

)
, rk =

2
ρk cosφk

. (8.10)
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Figure 8.4: Defocusing of a beam of nearby
trajectories at a billiard collision. (A. Wirzba)

ϕθ

The full fundamental matrix fornp consecutive bounces describes a beam of
trajectories defocused byMT along the free flight (theτk terms below) and defocused/refocused
at reflections byMR (therk terms below)

[exercise 8.4]

Mp = (−1)np

1∏

k=np

(
1 τk
0 1

) (
1 0
rk 1

)
, (8.11)

whereτk is the flight time of thekth free-flight segment of the orbit,rk = 2/ρk cosφk

is the defocusing due to thekth reflection, andρk is the radius of curvature of
the billiard boundary at thekth scattering point (for our 3-disk game of pinball,
ρ = 1). As the billiard dynamics is phase space volume preserving, detM = 1,
and the eigenvalues are given by (7.22).

This is still another example of the fundamental matrix chain rule (4.51) for
discrete time systems, rather similar to the Hénon map stability ( 4.52). Stability of
every flight segment or reflection taken alone is a shear with two unit eigenvalues,

detMT = det

(
1 τk
0 1

)
, detMR = det

(
1 0
rk 1

)
, (8.12)

but acting in concert in the intervowen sequence (8.11) they can lead to a hyperbolic
deformation of the infinitesimal neighborhood of a billiardtrajectory.

[exercise 9.3]

As a concrete application, consider the 3-disk pinball system of sect.1.3.
Analytic expressions for the lengths and eigenvalues of0, 1 and10 cycles follow
from elementary geometrical considerations. Longer cycles require numerical

[exercise 9.4]

[exercise 8.3]
evaluation by methods such as those described in chapter12.

[chapter 12]

Résum é

A particulary natural application of the Poincaré sectionmethod is the reduction
of a billiard flow to a boundary-to-boundary return map.
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Commentary

Remark 8.1 Billiards. The 3-disk game of pinball is to chaotic dynamics what a
pendulum is to integrable systems; the simplest physical example that captures the essence
of chaos. Another contender for the title of the ‘harmonic oscillator of chaos’ is the baker’s
map which is used as the red thread through Ott’s introduction to chaotic dynamics [13].
The baker’s map is the simplest reversible dynamical systemwhich is hyperbolic and
has positive entropy. We will not have much use for the baker’s map here, as due to its
piecewise linearity it is so nongeneric that it misses all ofthe subtleties of cycle expansions
curvature corrections that will be central to this treatise.

[chapter 18]

That the 3-disk game of pinball is a quintessential example of deterministic chaos
appears to have been first noted by B. Eckhardt [1]. The model was studied in depth
classically, semiclassically and quantum mechanically byP. Gaspard and S.A. Rice [3],
and used by P. Cvitanović and B. Eckhardt [4] to demonstrate applicability of cycle
expansions to quantum mechanical problems. It has been usedto study the higher order
~ corrections to the Gutzwiller quantization by P. Gaspard and D. Alonso Ramirez [5],
construct semiclassical evolution operators and entire spectral determinants by P. Cvitanović
and G. Vattay [6], and incorporate the diffraction effects into the periodic orbit theory by
G. Vattay, A. Wirzba and P.E. Rosenqvist [7]. Gaspard’s monograph [9], which we
warmly recommend, utilizes the 3-disk system in much more depth than will be attained
here. For further links checkChaosBook.org.

A pinball game does miss a number of important aspects of chaotic dynamics: generic
bifurcations in smooth flows, the interplay between regionsof stability and regions of
chaos, intermittency phenomena, and the renormalization theory of the ‘border of order’
between these regions. To study these we shall have to face upto much harder challenge,
dynamics of smooth flows.

Nevertheless, pinball scattering is relevant to smooth potentials. The game of pinball
may be thought of as the infinite potential wall limit of a smooth potential, and pinball
symbolic dynamics can serve as acoveringsymbolic dynamics in smooth potentials. One
may start with the infinite wall limit and adiabatically relax an unstable cycle onto the
corresponding one for the potential under investigation. If things go well, the cycle

[section 27.1]
will remain unstable and isolated, no new orbits (unaccounted for by the pinball symbolic
dynamics) will be born, and the lost orbits will be accountedfor by a set of pruning rules.
The validity of this adiabatic approach has to be checked carefully in each application, as
things can easily go wrong; for example, near a bifurcation the same naive symbol string
assignments can refer to a whole island of distinct periodicorbits.

Remark 8.2 Stability analysis. The chapter 1 of Gaspard monograph [9] is recommended
reading if you are interested in Hamiltonian flows, and billiards in particular. A. Wirzba
has generalized the stability analysis of sect.8.2 to scattering off 3-dimensional spheres
(follow the links in ChaosBook.org/extras). A clear discussion of linear stability for
the generald-dimensional case is given in Gaspard [9], sect. 1.4.

Exercises
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8.1. A pinball simulator. Implement the disk→ disk
maps to compute a trajectory of a pinball for a
given starting point, and a givenR:a = (center-to-
center distance):(disk radius) ratio for a 3-disk system.
As this requires only computation of intersections of
lines and circles together with specular reflections,
implementation should be within reach of a high-school
student. Please start working on this program now;
it will be continually expanded in chapters to come,
incorporating the Jacobian calculations, Newton root–
finding, and so on.

Fast code will use elementary geometry (only one√· · · per iteration, rest are multiplications) and eschew
trigonometric functions. Provide a graphic display of
the trajectories and of the Poincaré section iterates. To
be able to compare with the numerical results of coming
chapters, work withR:a= 6 and/or 2.5 values. Draw the
correct versions of figure1.9or figure10.4for R:a= 2.5
and/or 6.

8.2. Trapped orbits. Shoot 100,000 trajectories from one
of the disks, and trace out the strips of figure1.9 for
various R:a by color coding the initial points in the
Poincaré section by the number of bounces preceding
their escape. Try alsoR:a = 6:1, though that might
be too thin and require some magnification. The initial
conditions can be randomly chosen, but need not -
actually a clearer picture is obtained by systematic scan
through regions of interest.

8.3. Pinball stability. Add to your exercise8.1 pinball
simulator a routine that computes the the [2×2] Jacobian
matrix. To be able to compare with the numerical
results of coming chapters, work withR:a = 6 and/or
2.5 values.

8.4. Stadium billiard. Consider theBunimovich
stadium[9, 10] defined in figure8.1. The fundamental

matrix associated with the reflection is given by (8.10).
Here we takeρk = −1 for the semicircle sections of the
boundary, and cosφk remains constant for all bounces
in a rotation sequence. The time of flight between two
semicircle bounces isτk = 2 cosφk. The fundamental
matrix of one semicircle reflection folowed by the flight
to the next bounce is

J = (−1)

(
1 2 cosφk
0 1

) (
1 0

−2/ cosφk 1

)

= (−1)

(
−3 2 cosφk

2/ cosφk 1

)
.

A shift must always be followed byk = 1, 2, 3, · · ·
bounces along a semicircle, hence the natural
symbolic dynamics for this problem isn-ary, with the
corresponding fundamental matrix given by shear (ie.
the eigenvalues remain equal to 1 throughout the whole
rotation), andk bounces inside a circle lead to

Jk = (−1)k
(
−2k− 1 2kcosφ
2k/ cosφ 2k− 1

)
. (8.13)

The fundamental matrix of a cyclep of lengthnp is given
by

Jp = (−1)
∑

nk

np∏

k=1

(
1 τk
0 1

) (
1 0

nkrk 1

)
. (8.14)

Adopt your pinball simulator to the stadium billiard.

8.5. A test of your pinball simulator. Test your
exercise8.3pinball simulator by computing numerically
cycle stabilities by tracking distances to nearby orbits.
Compare your result with the exact analytic formulas of
exercise9.3and9.4.

8.6. Birkhoff coordinates. Prove that the Birkhoff
coordinates are phase space volume preserving.
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Chapter 9

World in a mirror

A detour of a thousand pages starts with a single misstep.

—Chairman Miaw

D  often come equipped with discrete symmetries, such as
the reflection symmetries of various potentials. As we shallshow here and
in chapter19, symmetries simplify the dynamics in a rather beautiful way:

If dynamics is invariant under a set of discrete symmetriesG, the state spaceM
is tiled by a set of symmetry-related tiles, and the dynamics can be reduced to
dynamics within one such tile, thefundamental domainM/G. If the symmetry
is continuous the dynamics is reduced to a lower-dimensional desymmetrized
systemM/G, with “ignorable” coordinates eliminated (but not forgotten). In
either case families of symmetry-related full state space cycles are replaced by
fewer and often much shorter “relative” cycles. In presenceof a symmetry the
notion of a prime periodic orbit has to be reexamined: it is replaced by the notion
of arelative periodic orbit, the shortest segment of the full state space cycle which
tiles the cycle under the action of the group. Furthermore, the group operations
that relate distinct tiles do double duty as letters of an alphabet which assigns
symbolic itineraries to trajectories.

Familiarity with basic group-theoretic notions is assumed, with details relegated
to appendixH.1. The erudite reader might prefer to skip the lengthy group-
theoretic overture and go directly toC2 = D1 example9.1 and example9.2, and
C3v = D3 example9.3, backtrack as needed.

Our hymn to symmetry is a symphony in two movements: In this chapter
we look at individual orbits, and the ways they are interrelated by symmetries.
This sets the stage for a discussion of how symmetries affect global densities
of trajectories, and the factorization of spectral determinants to be undertaken in
chapter19.
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9.1 Discrete symmetries

We show that a symmetry equates multiplets of equivalent orbits.

We start by defining a finite (discrete) group, its state spacerepresentations,
and what we mean by asymmetry(invarianceor equivariance) of a dynamical
system.

Definition: A finite group consists of a set of elements

G = {e, g2, . . . , g|G|} (9.1)

and a group multiplication ruleg j ◦ gi (often abbreviated asg jgi), satisfying

1. Closure: Ifgi , g j ∈ G, theng j ◦ gi ∈ G

2. Associativity:gk ◦ (g j ◦ gi) = (gk ◦ g j) ◦ gi

3. Identitye: g ◦ e= e◦ g = g for all g ∈ G

4. Inverseg−1: For everyg ∈ G, there exists a unique element
h = g−1 ∈ G such thath ◦ g = g ◦ h = e.

|G|, the number of elements, is called theorder of the group.

Definition: Coordinate transformations. An activelinear coordinate transformation
x → Tx corresponds to a non-singular [d× d] matrix T that shifts the vector
x ∈ M into another vectorTx ∈ M. The correspondingpassivecoordinate
transformationf (x) → T−1 f (x) changes the coordinate system with respect to
which the vectorf (x) ∈ M is measured. Together, a passive and active coordinate
transformations yield the map in the transformed coordinates:

f̂ (x) = T−1 f (Tx) . (9.2)

Linear action of a discrete groupG elementg on statesx ∈ M is given by a
finite non-singular [d×d] matrix g, the linearrepresentationof elementg ∈ G.
In what follows we shall indicate by bold faceg the matrix representation of the
action of group elementg ∈ G on the state space vectorsx ∈ M.

If the coordinate transformationgbelongs to a linear non-singular representation
of a discrete (finite) groupG, for any elementg ∈ G, there exists a numberm≤ |G|
such that

gm ≡ g ◦ g ◦ . . . ◦ g︸          ︷︷          ︸
m times

= e → |detg| = 1 . (9.3)
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As the modulus of its determinant is unity, detg is anmth root of 1.

A group is asymmetryof a dynamics if for every solutionf (x) ∈ M and
g ∈ G, y = g f (x) is also a solution:

Definition: Symmetry of a dynamical system. A dynamical system (M, f )
is invariant (or G-equivariant) under a symmetry groupG if the “equations of
motion” f :M→M (a discrete time mapf , or the continuous flowf t) from the
d-dimensional manifoldM into itself commute with all actions ofG,

f (gx) = g f (x) . (9.4)

Another way to state this is that the “law of motion” is invariant, i.e., retains its
form in any symmetry-group related coordinate frame (9.2),

f (x) = g−1 f (gx) , (9.5)

for anystatex ∈ M andanyfinite non-singular [d×d] matrix representationg of
elementg ∈ G.

Why “equivariant”? A functionh(x) is said to beG-invariant if h(x) = h(gx)
for all g ∈ G. The mapf : M → M maps vector into a vector, hence a slightly
different invariance conditionf (x) = g−1 f (gx). It is obvious from the context, but
for verbal emphasis some like to distinguish the two cases byin/equi-variant. The
key result of the representation theory of invariant functions is:

Hilbert-Weyl theorem. For a compact groupG there exist a finiteG-invariant
homogenous polynomial basis{u1, u2, . . . , um} such that anyG-invariant polynomial
can be written as a multinomial

h(x) = p(u1(x), u2(x), . . . , um(x)) . (9.6)

In practice, explicit construction of such basis does not seem easy, and we will not
take this path except for a few simple low-dimensional cases. We prefer to apply
the symmetry to the system as given, rather than undertake a series of nonlinear
coordinate transformations that the theorem suggests.

For a generic ergodic orbitf t(x) the trajectory and any of its images under
action ofg ∈ G are distinct with probability one,f t(x) ∩ g f t′ (x) = ∅ for all t, t′.
For compact invariant sets, such as fixed points and periodicorbits, especially the
short ones, the situation is very different.
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9.1.1 Isotropy subgroups

The subset of pointsMx0 ⊂ M that belong to the infinite-time trajectory of a
given pointx0 is called theorbit (or asolution) of x0. An orbit is adynamically
invariant notion: it refers to the totality of states that can be reached from x0, with
the full state spaceM foliated into a union of such orbits. We label a generic orbit
Mx0 by any point belonging to it,x0 = x(0) for example. A generic orbit might be
ergodic, unstable and essentially uncontrollable. The strategy of this monograph
is to populate the state space by a hierarchy ofcompact invariant sets(equilibria,
periodic orbits, invariant tori,. . .), each computable in a finite time. Orbits which
are compact invariant sets we label by whatever alphabet we find convenient in
a particular application:EQ = xEQ = MEQ for an equilibrium,p = Mp for a
periodic orbit, etc..

The set of pointsgx generated by all actionsg ∈ G of the groupG is called the
group orbit of x ∈ M. If G is a symmetry, intrinsic properties of an equilibrium
(such as Floquet exponents) or a cyclep (period, Floquet multipliers) and its
image under a symmetry transformationg ∈ G are equal. A symmetry thus
reduces the number of dynamically distinct solutionsMx0 of the system. So
we also need to determine the symmetry of asolution, as opposed to (9.5), the
symmetry of thesystem.

Definition: Isotropy subgroup. Let p =Mp ⊂ M be an orbit of the system. A
set of group actions which maps an orbit into itself,

Gp = {g ⊆ G : gMp =Mp} , (9.7)

is called anisotropy subgroup(or stabilizer subgroup) of the solutionMp. We
shall denote byGp the maximalisotropysubgroup ofMp. For a discrete subgroup

Gp = {e, b2, b3, . . . , bh} ⊆ G , (9.8)

of orderh = |Gp|, group elements (isotropies) map orbit points into orbit points
reached at different times. For continuous symmetries the isotropy subgroup Gp

can be any continuous or discrete subgroup ofG.

Let H = {e, b2, b3, . . . , bh} ⊆ G be a subgroup of orderh = |H|. The set of
h elements{c, cb2, cb3, . . . , cbh}, c ∈ G but not inH, is called leftcoset cH. For
a given subgroupH the group elements are partitioned intoH andm− 1 cosets,
wherem= |G|/|H|. The cosets cannot be subgroups, since they do not include the
identity element.

9.1.2 Conjugate elements, classes and orbit multiplicity

If Gp is the isotropy subgroup of orbitMp, elements of the coset spaceg ∈ G/Gp

generate them−1 distinct copies ofMp, so for discrete groups the multiplicity of
an equilibrium or a cyclep is mp = |G|/|Gp|.
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An elementb ∈ G is conjugateto a if b = c a c−1 wherec is some other
group element. Ifb andc are both conjugate toa, they are conjugate to each other.
Application of all conjugations separates the set of group elements into mutually
not-conjugate subsets calledclasses. The identitye is always in the class{e} of its
own. This is the only class which is a subgroup, all other classes lack the identity
element. Physical importance of classes is clear from (9.2), the way coordinate
transformations act on mappings: action of elements of a class (say reflections, or
discrete rotations) is equivalent up to a redefinition of thecoordinate frame. We
saw above that splitting of a groupG into an isotropy subgroupGp and m− 1
cosetscGp relates a solutionMp to m− 1 other distinct solutionscMp. Clearly
all of them have equivalent isotropies: the precise statement is that the isotropy
subgroup of orbitc p is conjugate to thep isotropy subgroup,Gc p = c Gp c−1.

The next step is the key step; if a set of solutions is equivalent by symmetry
(a circle, let’s say), we would like to represent it by a single solution (shrink the
circle to a point).

Definition: Invariant subgroup. A subgroupH ⊆ G is an invariant subgroup
or normal divisor if it consists of complete classes. Class is complete if no
conjugation takes an element of the class out ofH.

H dividesG into H andm− 1 cosets, each of order|H|. Think of action of
H within each subset as identifying its|H| elements as equivalent. This leads to
the notion ofG/H as thefactor groupor quotient group G/H of G, with respect
to thenormal divisor(or invariant subgroup)H. Its order ism = |G|/|H|, and its
multiplication table can be worked out from theG multiplication table class by
class, with the subgroupH playing the role of identity.G/H is homeomorphicto
G, with |H| elements in a class ofG represented by a single element inG/H.

So far we have discussed the structure of a group as an abstract entity. Now
we switch gears to what we really need this for: describe the action of the group
on the state space of a dynamical system of interest.

Definition: Fixed-point subspace. The fixed-point subspace of a given subgroup
H ∈ G, G a symmetry of dynamics, is the set state space points leftpoint-wise
invariant under any subgroup action

Fix(H) = {x ∈ M : h x = x for all h ∈ H} . (9.9)

A typical point in Fix(H) moves with time, but remains withinf (Fix(H)) ⊆
Fix(H) for all times. This suggests a systematic approach to seeking compact
invariant solutions. The larger the symmetry subgroup, thesmaller Fix(H), easing
the numerical searches, so start with the largest subgroupsH first.

Definition: Invariant subspace. Mα ⊂ M is aninvariant subspace if

{Mα : gx ∈ Mα for all g ∈ G andx ∈ Mα} . (9.10)
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{0} andM are always invariant subspaces. So is any Fix(H) which is point-wise
invariant under action ofG. We can often decompose the state space into smaller
invariant subspaces, with group acting within each “chunk”separately:

Definition: Irreducible subspace. A spaceMα whose only invariant subspaces
are{0} andMα is calledirreducible.

As a first, coarse attempt at classification of orbits by theirsymmetries, we
take note three types of equilibria or cycles: asymmetrica, symmetric equilibria
or cyclessbuilt by repeats of relative cycles ˜s, and boundary equilibria.

Asymmetric cycles: An equilibrium or periodic orbit is not symmetric if{xa} ∩
{gxa} = ∅, where{xa} is the set of periodic points belonging to the cyclea. Thus
g ∈ G generate|G| distinct orbits with the same number of points and the same
stability properties.

Symmetric cycles: A cycle s is symmetric(or self-dual) if it has a non-trivial
isotropy subgroup, i.e., operating withg ∈ Gp ⊂ G on the set of cycle points
reproduces the set.g ∈ Gp acts a shift in time, mapping the cycle pointx ∈ Mp

into f Tp/|Gp|(x)

Boundary solutions: An equilibrium xq or a larger compact invariant solution in
a fixed-point subspace Fix(G), gxq = xq for all g ∈ G lies on the boundary of
domains related by action of the symmetry group. A solution that is point-wise
invariant under all group operations has multiplicity 1.

A string of unmotivated definitions (or an unmotivated definition of strings)
has a way of making trite mysterious, so let’s switch gears: develop a feeling for
why they are needed by first working out the simplest, 1-d example with a single
reflection symmetry.

Example 9.1 Group D1 - a reflection symmetric 1d map: Consider a 1d map f
with reflection symmetry f (−x) = − f (x). An example is the bimodal “sawtooth” map
of figure 9.1, piecewise-linear on the state space M = [−1, 1] split into three regions
M = {ML,MC,MR}which we label with a 3-letter alphabet L(eft), C(enter), and R(ight).
The symbolic dynamics is complete ternary dynamics, with any sequence of letters
A = {L,C,R} corresponding to an admissible trajectory. Denote the reflection operation
by Rx= −x. The 2-element group {e,R} goes by many names - here we shall refer to it
as C2, the group of rotations in the plane by angle π, or D1, dihedral group with a single
reflection. The symmetry invariance of the map implies that if {xn} is a trajectory, than
also {Rxn} is a trajectory because Rxn+1 = R f(xn) = f (Rxn) .

Asymmetric cycles:Rgenerates a reflection of the orbit with the same number of points
and the same stability properties, see figure 9.1 (c).

Symmetric cycles:A cycle s is symmetric (or self-dual) if operating with R on the set of
cycle points reproduces the set. The period of a symmetric cycle is even (ns = 2ns̃), and
the mirror image of the xs cycle point is reached by traversing the irreducible segment
s̃ (relative periodic orbit) of length ns̃, f ns̃(xs) = Rxs, see figure 9.1 (b).

Boundary cycles: In the example at hand there is only one cycle which is neither
symmetric nor antisymmetric, but lies on the boundary Fix(G): the fixed point C at the
origin.
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Figure 9.3: The symmetries of three disks on
an equilateral triangle. The fundamental domain is
indicated by the shaded wedge.

in depth:

appendix H, p. 697

9.2 Relative periodic orbits

We show that a symmetry reduces computation of periodic orbits to repeats of
shorter, “relative periodic orbit” segments.

Invariance of a flow under a symmetry means that the symmetricimage of a
cycle is again a cycle, with the same period and stability. The new orbit may be
topologically distinct (in which case it contributes to themultiplicity of the cycle)
or it may be the same cycle.

A cycle is symmetricunder symmetry operationg if g acts on it as a shift
in time, advancing the starting point to the starting point of a symmetry related
segment. A symmetric cyclep can thus be subdivided intomp repeats of a
irreducible segment, “prime” in the sense that the full state space cycle is a repeat
of it. Thus in presence of a symmetry the notion of a periodic orbit is replaced
by the notion of the shortest segment of the full state space cycle which tiles the
cycle under the action of the group. In what follows we refer to this segment as a
relative periodic orbit.

Relative periodic orbits (orequvariant periodic orbits) are orbitsx(t) in state
spaceM which exactly recur

x(t) = g x(t + T) (9.17)

for a fixedrelative period Tand a fixed group actiong ∈ G. This group action is
referred to as a “phase,” or a “shift.” For a discrete group by(9.3) gm = e for some
finite m, so the corresponding full state space orbit is periodic with periodmT.

The period of the full orbit is given by themp× (period of the relative periodic
orbit), and theith Floquet multiplierΛp,i is given byΛ

mp

p̃,i of the relative periodic
orbit. The elements of the quotient spaceb ∈ G/Gp generate the copiesbp, so the
multiplicity of the full state space cyclep is mp = |G|/|Gp|.
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Figure 9.4: The 3-disk pinball cycles: (a)12,

13, 23, 123. Cycle132 turns clockwise. (b)
Cycle1232; the symmetry related1213 and1323
not drawn. (c)12323; 12123, 12132, 12313,
13131 and13232 not drawn. (d) The fundamental
domain, i.e., the 1/6th wedge indicated in (a),
consisting of a section of a disk, two segments
of symmetry axes acting as straight mirror walls,
and the escape gap to the left. The above 14 full-
space cycles restricted to the fundamental domain
reduced to the two fixed points0, 1, 2-cycle10,
and 5-cycle00111 (not drawn).

(a) (b) (c)

(d)

We now illustrate these ideas with the example of sect.1.3, symmetries of a
3-disk game of pinball.

Example 9.3 C3v = D3 invariance - 3-disk game of pinball: As the three disks
in figure 9.3 are equidistantly spaced, our game of pinball has a sixfold symmetry. The
symmetry group of relabeling the 3 disks is the permutation group S3; however, it is
more instructive to think of this group geometrically, as C3v (dihedral group D3), the
group of order |G| = 6 consisting of the identity element e, three reflections across
axes {σ12, σ23, σ13}, and two rotations by 2π/3 and 4π/3 denoted {C,C2}. Applying an
element (identity, rotation by ±2π/3, or one of the three possible reflections) of this
symmetry group to a trajectory yields another trajectory. For instance, σ12, the flip
across the symmetry axis going through disk 1 interchanges the symbols 2 and 3; it
maps the cycle 12123into 13132, figure 9.5 (a). Cycles 12, 23, and 13 in figure 9.4 (a)
are related to each other by rotation by ±2π/3, or, equivalently, by a relabeling of the
disks.

[exercise 9.6]
The subgroups of D3 are D1 = {e, σ}, consisting of the identity and any one of

the reflections, of order 2, and C3 = {e,C,C2}, of order 3, so possible cycle multiplicities
are |G|/|Gp| = 2, 3 or 6.

The C3 subgroup Gp = {e,C,C2} invariance is exemplified by 2 cycles 123and
132 which are invariant under rotations by 2π/3 and 4π/3, but are mapped into each
other by any reflection, figure 9.5 (b), and the multiplicity is |G|/|Gp| = 2.

The Cv type of a subgroup is exemplified by the invariances of p̂ = 1213. This
cycle is invariant under reflection σ23{1213} = 1312= 1213, so the invariant subgroup
is Gp̂ = {e, σ23}, with multiplicity is mp̂ = |G|/|Gp| = 3; the cycles in this class, 1213, 1232
and 1323, are related by 2π/3 rotations, figure 9.5 (c).

A cycle of no symmetry, such as 12123, has Gp = {e} and contributes in all six
copies (the remaining cycles in the class are 12132, 12313, 12323, 13132and 13232),
figure 9.5 (a).

Besides the above discrete symmetries, for Hamiltonian systems cycles may
be related by time reversal symmetry. An example are the cycles 121212313and
121212323= 313212121which have the same periods and stabilities, but are related
by no space symmetry, see figure 9.5 (d). Continued in example 9.5.
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Figure 9.5: Cycle 121212313 has multiplicity

6; shown here is121313132= σ23121212313.
However,121231313 which has the same stability
and period is related to121313132 by time
reversal, but not by anyC3v symmetry.

9.3 Domain for fundamentalists

So far we have used symmetry to effect a reduction in the number of independent
cycles in cycle expansions. The next step achieves much more:

1. Discrete symmetries can be used to restrict all computations to afundamental
domain, theM/G quotiented subspace of the full state spaceM.

2. Discrete symmetry tessellates the state space into copies of a fundamental
domain, and thus induces a natural partition of state space.The state space
is completely tiled by a fundamental domain and its symmetric images.

3. Cycle multiplicities induced by the symmetry are removedbydesymmetrization,
reduction of the full dynamics to the dynamics on afundamental domain.
Each symmetry-related set of global cyclesp corresponds to precisely one
fundamental domain (or relative) cycle ˜p. Conversely, each fundamental
domain cycle ˜p traces out a segment of the global cyclep, with the end
point of the cycle ˜p mapped into the irreducible segment ofp with the group
elementhp̃. The relative periodic orbits in the full space, folded backinto
the fundamental domain, are periodic orbits.

4. The group elementsG = {e, g2, . . . , g|G|}which map the fundamental domain
M̃ into its copiesgM̃, serve also as letters of a symbolic dynamics alphabet.

If the dynamics is invariant under a discrete symmetry, the state spaceM can
be completely tiled by the fundamental domaiñM and its imagesMa = aM̃,
Mb = bM̃, . . . under the action of the symmetry groupG = {e, a, b, . . .},

M = M̃ ∪Ma ∪Mb · · · ∪M|G| = M̃ ∪ aM̃ ∪ bM̃ · · · . (9.18)

Now we can use the invariance condition (9.4) to move the starting pointx
into the fundamental domainx = ax̃, and then use the relationa−1b = h−1 to
also relate the endpointy to its image in the fundamental domain. While the
global trajectory runs over the full spaceM, the restricted trajectory is brought
back into the fundamental domaiñM any time it exits into an adjoining tile; the
two trajectories are related by the symmetry operationh which maps the global
endpoint into its fundamental domain image.
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Figure 9.6: The bimodal Ulam sawtooth map of
figure 9.1 with the D1 symmetry f (−x) = − f (x)
restricted to the fundamental domain.f (x) is
indicated by the thin line, and fundamental domain
map f̃ (x̃) by the thick line. (a) Boundary fixed
pointC is the fixed point0. The asymmetric fixed
point pair {L,R} is reduced to the fixed point2,
and the full state space symmetric 2-cycleLR is
reduced to the fixed point2. (b) The asymmetric
2-cycle pair{LC,CR} is reduced to 2-cycle02. (c)
All fundamental domain fixed points and 2-cycles.
(Yueheng Lan)
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Example 9.4 Group D1 and reduction to the fundamental domain. Consider
again the reflection-symmetric bimodal Ulam sawtooth map f (−x) = − f (x) of example 9.1,
with symmetry group D1 = {e,R}. The state spaceM = [−1, 1] can be tiled by half-line
M̃ = [0, 1], and RM̃ = [−1, 0], its image under a reflection across x = 0 point. The
dynamics can then be restricted to the fundamental domain x̃k ∈ M̃ = [0, 1]; every time
a trajectory leaves this interval, it is mapped back using R.

In figure 9.6 the fundamental domain map f̃ (x̃) is obtained by reflecting x < 0
segments of the global map f (x) into the upper right quadrant. f̃ is also bimodal and
piecewise-linear, with M̃ = [0, 1] split into three regions M̃ = {M̃0, M̃1, M̃2} which we
label with a 3-letter alphabet Ã = {0, 1, 2}. The symbolic dynamics is again complete
ternary dynamics, with any sequence of letters {0, 1, 2} admissible.

However, the interpretation of the “desymmetrized” dynamics is quite different -
the multiplicity of every periodic orbit is now 1, and relative periodic orbits of the full state
space dynamics are all periodic orbits in the fundamental domain. Consider figure 9.6

In (a) the boundary fixed point C is also the fixed point 0. In this case the set
of points invariant under group action of D1, M̃ ∩ RM̃, is just this fixed point x = 0, the
reflection symmetry point.

The asymmetric fixed point pair {L,R} is reduced to the fixed point 2, and the
full state space symmetric 2-cycle LR is reduced to the fixed point 1. The asymmetric
2-cycle pair {LC,CR} is reduced to the 2-cycle 01. Finally, the symmetric 4-cycle LCRC
is reduced to the 2-cycle 02. This completes the conversion from the full state space
for all fundamental domain fixed points and 2-cycles, figure 9.6 (c).

Example 9.5 3-disk game of pinball in the fundamental domain

If the dynamics is symmetric under interchanges of disks, the absolute disk
labels ǫi = 1, 2, · · · ,N can be replaced by the symmetry-invariant relative disk→disk
increments gi , where gi is the discrete group element that maps disk i−1 into disk i.
For 3-disk system gi is either reflection σ back to initial disk (symbol ‘0’) or rotation
by C to the next disk (symbol ‘1’). An immediate gain arising from symmetry invariant
relabeling is that N-disk symbolic dynamics becomes (N−1)-nary, with no restrictions
on the admissible sequences.

An irreducible segment corresponds to a periodic orbit in the fundamental domain,
a one-sixth slice of the full 3-disk system, with the symmetry axes acting as reflecting
mirrors (see figure 9.4(d)). A set of orbits related in the full space by discrete symmetries
maps onto a single fundamental domain orbit. The reduction to the fundamental domain
desymmetrizes the dynamics and removes all global discrete symmetry-induced degeneracies:
rotationally symmetric global orbits (such as the 3-cycles 123and 132) have multiplicity
2, reflection symmetric ones (such as the 2-cycles 12, 13 and 23) have multiplicity 3,
and global orbits with no symmetry are 6-fold degenerate. Table 11.1 lists some of
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Figure 9.7: (a) The pair of full-space 9-cycles, the

counter-clockwise121232313 and the clockwise
131323212 correspond to (b) one fundamental
domain 3-cycle001.

(a)

(b)

the shortest binary symbols strings, together with the corresponding full 3-disk symbol
sequences and orbit symmetries. Some examples of such orbits are shown in figures 9.5
and 9.7. Continued in example 11.3.

9.4 Continuous symmetries

[...] which is an expression of consecration of “angular
momentum.”

— Mason A. Porter’s student

What if the “law of motion” retains its form (9.5) in a family of coordinate frames
f (x) = g−1 f (gx) related by a group ofcontinuoussymmetries? The notion of
“fundamental domain” is of no use here. Instead, as we shall see, continuous
symmetries reduce dynamics to a desymmetrized system of lower dimensionality,
by elimination of “ignorable” coordinates.

Definition: A Lie group is a topological groupG such that (1)G has the
structure of a smooth differential manifold. (2) The composition mapG × G →
G : (g, h)→ gh−1 is smooth.

By “smooth” in this text we always meanC∞ differentiable. If you are mystified
by the above definition, don’t be. Just think “aha, like the rotation groupS O(3)?”
If action of every elementg of a groupG commutes with the flow ˙x = v(x),
x(t) = f t(x0),

gv(x) = v(gx) , g f t(x0) = f t(gx0) , (9.19)

the dynamics is said to beinvariant or equivariantunderG.
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Let G be a group,M a set, andgM −→ M a group action. For anyx ∈ M,
theorbitMx of x is the set of all group actions

Mx = {g x | g ∈ G} ⊂ M .

For a given state space pointx the group ofN continuous transformations together
with the time translation sweeps out a smooth (N+1)-dimensional manifold of
equivalent orbits. The time evolution itself is a noncompact 1-parameter Lie
group; however, for solutionsp for which theN-dimensional group manifold is
periodic in timeTp, the orbit of xp is a compactinvariant manifoldMp. The
simplest example is theN = 0 case, where the invariant manifoldMp is the
1d-torus traced out by the periodic trajectory. Thus the time evolution and the
Lie group continuous symmetries can be considered on the same footing, and
the closure of the set of compact unstable invariant manifoldsMp is the non–
wandering setΩ of dynamics in presence of a continuous global symmetry (see
sect.2.1.1).

The desymmetrized state space is the quotient spaceM/G. The reduction to
M/G amounts to a change of coordinates where the “ignorable angles” {t, θ1, · · · , θN}
parametrizeN+1 time and group translations can be separated out. A simple
example is the “rectification” of the harmonic oscillator bya change to polar
coordinates, example6.1.

9.4.1 Lie groups for pedestrians

All the group theory that you shall need here is in principle contained in the
Peter-Weyl theorem, and its corollaries: A compact Lie groupG is completely
reducible, its representations are fully reducible, everycompact Lie group is a
closed subgroup ofU(n) for somen, and every continuous, unitary, irreducible
representation of a compact Lie group is finite dimensional.

Instead of writing yet another tome on group theory, in what follows we serve
group theoretic nuggets on need-to-know basis, following awell-trod pedestrian
route through a series of examples of familiar bits of group theory and Fourier
analysis (but take a modicum of high, cyclist road in the textproper).

Consider infinitesimal transformations of formg = 1+ iD, |Da
b| ≪ 1, i.e., the

transformations connected to the identity (in general, we also need to combine
this with effects of invariance under discrete coordinate transformations, already
discussed above).Unitary transformations exp(iθ jT j) are generated by sequences
of infinitesimal transformations of form

ga
b ≃ δa

b + iδθi(Ti)
b
a θ ∈ RN , Ti hermitian.

whereTi , the generatorsof infinitesimal transformations, are a set of linearly
independent [d×d] hermitian matrices. In terms of the generatorsTi , a tensor
h ...c

ab... is invariant ifTi “annihilate” it, i.e.,Ti · h = 0:

(Ti)
a′
a h c...

a′b... + (Ti)
b′
b h c...

ab′... − (Ti)
c
c′h

c′...
ab... + . . . = 0 . (9.20)
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Example 9.6 Lie algebra. As one does not want the symmetry rules to change at
every step, the generators Ti , i = 1, 2, . . . ,N, are themselves invariant tensors:

(Ti) a
b = ga

a′gb
b′gii ′ (Ti′) a′

b′ , (9.21)

where gi j =
[
e−iθkCk

]
i j

is the adjoint [N×N] matrix representation of g ∈ G. The [d×d]

matrices Ti are in general non-commuting, and from (9.20) it follows that they close
N-element Lie algebra

TiT j − T jTi = iCi jkTk i, j, k = 1, 2, ...,N ,

where the fully antisymmetric adjoint representation generators [Ck] i j = Ci jk are known
as the structure constants.

exercise14.10

Example 9.7 Group S O(2). S O(2) is the group of rotations in a plane, smoothly
connected to the unit element (i.e. the inversion (x, y)→ (−x,−y) is excluded). A group
element can be parameterized by angle θ, and its action on smooth periodic functions
is generated by

g(θ) = eiθT , T = −i
d
dθ

,

g(θ) rotates a periodic function u(θ + 2π) = u(θ) by θ mod 2π:

g(θ)u(θ′) = u(θ′ + θ)

The multiplication law is g(θ)g(θ′) = g(θ + θ′). If the group G actions consists of N such
rotations which commute, for example a N-dimensional box with periodic boundary
conditions, the group G is an Abelian group that acts on a torus TN.

9.4.2 Relative periodic orbits

Consider a flow invariant under a global continuous symmetry(Lie group)G. A
relative periodic orbitp is an orbit in state spaceM which exactly recurs

xp(t) = gpxp(t + Tp) , xp(t) ∈ Mp (9.22)

for a fixedrelative period Tp and a fixed group actiongp ∈ G that “rotates” the
endpointxp(Tp) back into the initial pointxp(0). The group actiongp is referred
to as a “phase,” or a “shift.”

Example 9.8 Continuous symmetries of the plane Couette flow. The Navier-
Stokes plane Couette flow defined as a flow between two countermoving planes, in a
box periodic in streamwise and spanwise directions, a relative periodic solution is a
solution that recurs at time Tp with exactly the same disposition of velocity fields over
the entire box, but shifted by a 2-dimensional (streamwise,spanwise) translation gp.
The S O(2)× S O(2) continuous symmetry acts on a 2-torus T2.
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For dynamical systems with continuous symmetries parameters {t, θ1, · · · , θN}
are real numbers, ratiosπ/θ j are almost never rational, and relative periodic orbits
are almost never eventually periodic. As almost any such orbit explores ergodically
the manifold swept by action ofG×t, they are sometimes referred to as “quasiperiodic.”
However, a relative periodic orbit can be pre-periodic if itis invariant under a
discrete symmetry: Ifgm = 1 is of finite orderm, then the corresponding orbit is
periodic with periodmTp. If g is not of a finite order, the orbit is periodic only
after the action ofg, as in (9.22).

In either discrete or continuous symmetry case, we refer to the orbitsMp in
M satisfying (9.22) as relative periodic orbits. Morally, as it will be shown in
chapter19, they are the true “prime” orbits, i.e., the shortest segments that under
action ofG tile the entire invariant submanifoldsMp.

9.5 Stability

A infinitesimal symmetry group transformation maps a trajectory in a nearby
equivalent trajectory, so we expect the initial point perturbations along to group
manifold to be marginal, with unit eigenvalue. The argumentis akin to (4.7),
the proof of marginality of perturbations along a periodic orbit. In presence of
an N-dimensional Lie symmetry groupG, further N eigenvalues equal unity.
Consider two nearby initial points separated by anN-dimensional infinitesimal
group transformationδθ: δx0 = g(δθ)x0 − x0 = iδθ ·Tx0. By the commutativity of
the group with the flow,g(δθ) f t(x0) = f t(g(δθ)x0). Expanding both sides, keeping
the leading term inδθ, and using the definition of the fundamental matrix (4.6),
we observe thatJt(x0) transports theN-dimensional tangent vector frame atx0 to
the rotated tangent vector frame atx(t) at timet:

δx(t) = g(θ)Jt(x0) δx0 . (9.23)

For relative periodic orbitsgpx(Tp) = x(0), at any point along cyclep the
group tangent vectorTx(t) is an eigenvector of the fundamental matrixJp(x) =
gpJTp(x) with an eigenvalue of unit magnitude,

JTp(x) x0 = g(θ)Tx(t) , x ∈ p . (9.24)

Two successive points along the cycle separated byδx0 have the same separation
after a completed periodδx(Tp) = gpδx0, hence eigenvalue of magnitude 1.

9.5.1 Boundary orbits

Peculiar effects arise for orbits that run on a symmetry lines that bordera fundamental
domain. The state space transformationh , e leaves invariant sets ofboundary
points; for example, under reflectionσ across a symmetry axis, the axis itself
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remains invariant. Some care need to be exercised in treating the invariant “boundary”
setM = M̃ ∩ Ma ∩Mb · · · ∩ M|G|. The properties of boundary periodic orbits
that belong to such pointwise invariant sets will require a bit of thinking.

In our 3-disk example, no such orbits are possible, but they exist in other
systems, such as in the bounded region of the Hénon-Heiles potential (remark9.3)
and in 1d maps of example9.1. For the symmetrical 4-disk billiard, there are in
principle two kinds of such orbits, one kind bouncing back and forth between
two diagonally opposed disks and the other kind moving alongthe other axis of
reflection symmetry; the latter exists for bounded systems only. While for low-
dimensional state spaces there are typically relatively few boundary orbits, they
tend to be among the shortest orbits, and they play a key role in dynamics.

While such boundary orbits are invariant under some symmetry operations,
their neighborhoods are not. This affects the fundamental matrixMp of the orbit
and its Floquet multipliers.

Here we have used a particularly simple direct product structure of a global
symmetry that commutes with the flow to reduce the dynamics toa symmetry
reduced (d−1−N)-dimensional state spaceM/G.

Résum é

In sect.2.1.1 we made a lame attempt to classify “all possible motions:” (1)
equilibria, (2) periodic orbits, (3) everything else. Now one can discern in the
fog of dynamics outline of a more serious classification - long time dynamics
takes place on the closure of a set of all invariant compact sets preserved by
the dynamics, and those are: (1) 0-dimensional equilibriaMq, (2) 1-dimensional
periodic orbitsMp, (3) global symmetry inducedN-dimensional relative equilibria
Mtw, (4) (N+1)-dimensional relative periodic orbitsMp, (5) terra incognita. We
have some inklings of the “terra incognita:” for example, symplectic symmetry
induces existence of KAM-tori, and in general dynamical settings we are encountering
more and more examples ofpartially hyperbolic invariant tori, isolated tori that
are consequences of dynamics, not of a global symmetry, and which cannot be
represented by a single relative periodic orbit, but require a numerical computation
of full (N+1)-dimensional compact invariant sets and their infinite-dimensional
linearized fundamental matrices, marginal in (N+1) dimensions, and hyperbolic
in the rest.

The main result of this chapter can be stated as follows: If a dynamical system
(M, f ) has a symmetryG, the symmetry should be deployed to “quotient” the state
spaceM/G, i.e., identify allx ∈ M related by the symmetry.

(1) In presence of a discrete symmetryG, associated with each full state space
cycle p is a maximal isotropy subgroupGp ⊆ G of order 1≤ |Gp| ≤ |G|, whose
elements leavep invariant. The isotropy subgroupGp acts onp as time shift, tiling
it with |Gp| copies of its shortest invariant segment, the relative periodic orbit p̃.
The elements of the cosetb ∈ G/Gp generatemp = |G|/|Gp| distinct copies ofp.
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This reduction to the fundamental domaiñM = M/G simplifies symbolic
dynamics and eliminates symmetry-induced degeneracies. For the short orbits the
labor saving is dramatic. For example, for the 3-disk game ofpinball there are
256 periodic points of length 8, but reduction to the fundamental domain non-
degenerate prime cycles reduces the number of the distinct cycles of length 8 to
30.

Amusingly, in this extension of “periodic orbit” theory from unstable 1-dimensional
closed orbits to unstable (N + 1)-dimensional compact manifoldsMp invariant
under continuous symmetries, there are either no or proportionally few periodic
orbits. Likelihood of finding a periodic orbit iszero. One expects some only
if in addition to a continuous symmetry one has a discrete symmetry, or the
particular invariant compact manifoldMp is invariant under a discrete subgroup
of the continuous symmetry. Relative periodic orbits are almost never eventually
periodic, i.e., they almost never lie on periodic trajectories in the full state space,
unless forced to do so by a discrete symmetry, so looking for periodic orbits in
systems with continuous symmetries is a fool’s errand.

Atypical as they are (no chaotic solution will be confined to these discrete
subspaces) they are important for periodic orbit theory, asthere the shortest orbits
dominate.

We feel your pain, but trust us: once you grasp the relation between the full
state spaceM and the desymmetrizedG-quotientedM/G, you will find the life
as a fundamentalist so much simpler that you will never return to your full state
space confused ways of yesteryear.

Commentary

Remark 9.1 Symmetries of the Lorenz equation: (Continued from remark2.2.) After
having studied example9.2 you will appreciate whyChaosBook.org starts out with
the symmetry-less Rössler flow (2.17), instead of the better known Lorenz flow (2.12)
(indeed, getting rid of symmetry was one of Rössler’s motivations). He threw the baby
out with the water; for Lorenz flow dimensionalities of stable/unstable manifolds make
possible a robust heteroclinic connection absent from Rössler flow, with unstable manifolds
of an equilibrium flowing into the stable manifold of anotherequilibria. How such connections
are forced upon us is best grasped by perusing the chapter 13 “Heteroclinic tangles” of
the inimitable Abraham and Shaw illustrated classic [26]. Their beautiful hand-drawn
sketches elucidate the origin of heteroclinic connectionsin the Lorenz flow (and its high-
dimensional Navier-Stokes relatives) better than any computer simulation. Miranda and
Stone [28] were first to quotient theD1 symmetry and explicitly construct the desymmetrized,
“proto-Lorenz system,” by a nonlinear coordinate transformation into the Hilbert-Weyl
polynomial basis invariant under the action of the symmetrygroup [33]. For in-depth
discussion of symmetry-reduced (“images”) and symmetry-extended (“covers”) topology,
symbolic dynamics, periodic orbits, invariant polynomialbases etc., of Lorenz, Rössler
and many other low-dimensional systems there is no better reference than the Gilmore
and Letellier monograph [29, 31]. They interpret the proto-Lorenz and its “double cover”
Lorenz as “intensities” being the squares of “amplitudes,”and call quotiented flows such
as (Lorenz)/D1 “images.” Our “doubled-polar angle” visualization figure10.7is a proto-
Lorenz in disguise, with the difference: we integrate the flow and construct Poincaré
sections and return maps in the Lorenz [x, y, z] coordinates, without any nonlinear coordinate
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transformations. The Poincaré return map figure10.8 is reminiscent in shape both of
the one given by Lorenz in his original paper, and the one plotted in a radial coordinate
by Gilmore and Letellier. Nevertheless, it is profoundly different: our return maps are
from unstable manifold→ itself [4], and thus intrinsic and coordinate independent. This
is necessary in high-dimensional flows to avoid problems such as double-valuedness of
return map projections on arbitrary 1−d coordinates encountered already in the Rössler
example. More importantly, as we know the embedding of the unstable manifold into the
full state space, a cycle point of our return mapis - regardless of the length of the cycle -
the cycle point in the full state space, so no additional Newton searches are needed.

Remark 9.2 Examples of systems with discrete symmetries. One has aD1 symmetry
in the Lorenz system (remark2.2), the Ising model, and in the 3−d anisotropic Kepler
potential [4, 18, 19], a D3 = C3v symmetry in Hénon-Heiles type potentials [5, 6, 7, 3],
a D4 = C4v symmetry in quartic oscillators [4, 5], in the purex2y2 potential [6, 7] and in
hydrogen in a magnetic field [8], and aD2 = C2v = V4 = C2×C2 symmetry in the stadium
billiard [9]. A very nice application of desymmetrization is carried out in ref. [10].

Remark 9.3 Hénon-Heiles potential. An example of a system withD3 = C3v symmetry
is provided by the motion of a particle in the Hénon-Heiles potential [5]

V(r, θ) =
1
2

r2 +
1
3

r3 sin(3θ) .

Our 3-disk coding is insufficient for this system because of the existence of elliptic islands
and because the three orbits that run along the symmetry axiscannot be labeled in our
code. As these orbits run along the boundary of the fundamental domain, they require the
special treatment [8] discussed in sect.9.5.1.

Remark 9.4 Cycles and symmetries. We conclude this section with a few comments
about the role of symmetries in actual extraction of cycles.In theN-disk billiard example,
a fundamental domain is a sliver of theN-disk configuration space delineated by a pair of
adjoining symmetry axes. The flow may further be reduced to a return map on a Poincaré
surface of section. While in principle any Poincaré surface of section will do, a natural
choice in the present context are crossings of symmetry axes, see example7.6.

In actual numerical integrations only the last crossing of asymmetry line needs to
be determined. The cycle is run in global coordinates and thegroup elements associated
with the crossings of symmetry lines are recorded; integration is terminated when the orbit
closes in the fundamental domain. Periodic orbits with non-trivial symmetry subgroups
are particularly easy to find since their points lie on crossings of symmetry lines, see
example7.6.
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Exercises

9.1. 3-disk fundamental domain symbolic dynamics.

Try to sketch0, 1, 01,001,011,· · ·. in the fundamental
domain, and interpret the symbols{0, 1} by relating them
to topologically distinct types of collisions. Compare
with table 11.1. Then try to sketch the location of
periodic points in the Poincaré section of the billiard
flow. The point of this exercise is that while in the
configuration space longer cycles look like a hopeless
jumble, in the Poincaré section they are clearly and
logically ordered. The Poincaré section is always to be
preferred to projections of a flow onto the configuration
space coordinates, or any other subset of state space
coordinates which does not respect the topological
organization of the flow.

9.2. Reduction of 3-disk symbolic dynamics to binary.

(a) Verify that the 3-disk cycles
{1 2,1 3,2 3}, {1 2 3,1 3 2}, {12 13+ 2 perms.},
{121 232 313+ 5 perms.}, {121 323+ 2 perms.},
· · ·,
correspond to the fundamental domain cycles0,1,
01,001,011,· · · respectively.

(b) Check the reduction for short cycles in table11.1
by drawing them both in the full 3-disk system and
in the fundamental domain, as in figure9.7.

(c) Optional: Can you see how the group elements
listed in table11.1relate irreducible segments to
the fundamental domain periodic orbits?

9.3. Fundamental domain fixed points. Use the formula
(8.11) for billiard fundamental matrix to compute the
periodsTp and the expanding eigenvaluesΛp of the
fundamental domain0 (the 2-cycle of the complete 3-
disk space) and1 (the 3-cycle of the complete 3-disk
space) fixed points:

Tp Λp

0: R− 2 R− 1+ R
√

1− 2/R

1: R−
√

3 − 2R√
3
+ 1− 2R√

3

√
1−
√

3/R

(9.25)

We have set the disk radius toa = 1.

9.4. Fundamental domain 2-cycle. Verify that for the10-
cycle the cycle length and the trace of the fundamental
matrix are given by

L10 = 2

√
R2 −

√
3R+ 1− 2,

tr J10 = Λ10 + 1/Λ10 (9.26)

= 2L10 + 2+
1
2

L10(L10+ 2)2
√

3R/2− 1
.

The 10-cycle is drawn in figure11.2. The unstable
eigenvalueΛ10 follows from (7.22).

9.5. A test of your pinball simulator: 10-cycle. Test
your exercise8.3 pinball simulator stability evaluation
by checking numerically the exact analytic10-cycle
stability formula (9.26).

9.6. The group C3v. We will compute a few of the
properties of the groupC3v, the group of symmetries
of an equilateral triangle

1

2  3

(a) For this exercise, get yourself a good textbook,
a book like Hamermesh [12] or Tinkham [11],
and read up on classes and characters. All
discrete groups are isomorphic to a permutation
group or one of its subgroups, and elements
of the permutation group can be expressed as
cycles. Express the elements of the groupC3v as
cycles. For example, one of the rotations is (123),
meaning that vertex 1 maps to 2 and 2 to 3 and 3
to 1.

(b) Find the subgroups of the groupC3v.

(c) Find the classes ofC3v and the number of elements
in them.

(d) There are three irreducible representations for the
group. Two are one dimensional and the other one
of multiplicity 2 is formed by [2×2] matrices of
the form[

cosθ sinθ
− sinθ cosθ

]
.

Find the matrices for all six group elements.

(e) Use your representation to find the character table
for the group.

9.7. Lorenz system in polar coordinates: group theory.
Use (6.7), (6.8) to rewrite the Lorenz equation

ẋ = v(x) =


ẋ
ẏ
ż

 =


σ(y− x)
ρx− y− xz

xy− bz



in polar coordinates (r, θ, z), where (x, y) =

(r cosθ, r sinθ).
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1. Show that in the polar coordinates Lorentz flow
takes form

ṙ =
r
2

(−σ − 1+ (σ + ρ − z) sin 2θ

+(1− σ) cos 2θ)

θ̇ =
1
2

(−σ + ρ − z+ (σ − 1) sin 2θ

+(σ + ρ − z) cos 2θ)

ż = −bz+
r2

2
sin 2θ . (9.27)

2. Argue that the transformation to polar coordinates
is invertible almost everywhere. Where does the
inverse not exist? What is group-theoretically
special about the subspace on which the inverse
not exist?

3. Show that this is the (Lorenz)/D1 quotient map for
the Lorenz flow, i.e., that it identifies points related
by theπ rotation in the (x, y) plane.

4. Show that a periodic orbit of the Lorenz flow in
polar representation is either a periodic orbit or a
relative periodic orbit (9.17) of the Lorenz flow in
the (x, y, z) representation.

5. Argue that if the dynamics is invariant under a
rational rotationRπ/mv(x) = v(Rπ/mx) = v(x),
a discrete subgroupCm of S O(2) in the (x, y)-
plane, the only non-zero Fourier components of
equations of motion area jm , 0, j = 1, 2, · · ·. The
Fourier representation is then the quotient map of
the dynamics,M/Cm.

By going to polar coordinates we have quotiented out the
π-rotation (x, y, z)→ (−x,−y, z) symmetry of the Lorenz
equations, and constructed an explicit representation of
the desymmetrized Lorenz flow.

9.8. Lorenz system in polar coordinates: dynamics.
(Continuation of exercise9.7.)

1. Show that (9.27) has two equilibria:

(r0, z0) = (0, 0) , θ0 undefined

(r1, θ1, z1) = (
√

2b(ρ − 1), π/4, ρ− 1) .(9.28)

2. Verify numerically that the eigenvalues and
eigenvectors of the two equilibria are:

EQ1 = (0, 12, 27) equilibrium: (and itsR-
rotation relatedEQ2 partner) has one stable real
eigenvalueλ(1) = −13.854578, and the unstable
complex conjugate pairλ(2,3) = µ(2) ± iω(2) =

0.093956± i10.194505. The unstable eigenplane
is defined by eigenvectors
Ree(2) = (−0.4955,−0.2010,−0.8450), Im e(2) =

(0.5325,−0.8464, 0)
with periodT = 2π/ω(2) = 0.6163306,
radial expansion multiplierΛr = exp(2πµ(2)/ω(2)) =
1.059617,

and the contracting multiplier Λc =

exp(2πµ(1)/ω(2)) ≈ 1.95686×10−4 along the stable
eigenvector ofEQ1,
e(3) = (0.8557,−0.3298,−0.3988).

EQ0 = (0, 0, 0) equilibrium: The stable
eigenvectore(1) = (0, 0, 1) of EQ0, has contraction
rate λ(2) = −b = −2.666. . .. The other stable
eigenvector is
e(2) = (−0.244001,−0.969775,0), with
contracting eigenvalueλ(2) = −22.8277. The
unstable eigenvector
e(3) = (−0.653049, 0.757316, 0) has eigenvalue
λ(3) = 11.8277.

3. Plot the Lorenz strange attractor both in the
original form figure2.4 and in the doubled-polar
coordinates (expand the angleθ ∈ [0, π] to 2θ ∈
[0, 2π]) for the Lorenz parameter valuesσ = 10,
b = 8/3, ρ = 28. Topologically, does it resemble
the Lorenz butterfly, the Rössler attractor, or
neither? The Poincaré section of the Lorenz
flow fixed by thez-axis and the equilibrium in
the doubled polar angle representation, and the
corresponding Poincaré return map (sn, sn+1) are
plotted in figure10.7.
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Figure: The Poincaré return map(sn, sn+1) for the
EQ0, lower Poincaré section of figure10.7(b). (J.
Halcrow)

4. Construct the above Poincaré return map
(sn, sn+1), wheres is arc-length measured along
the unstable manifold ofEQ0. Elucidate its
relation to the Poincaré return map of figure10.8.

5. Show that if a periodic orbit of the polar
representation Lorenz is also periodic orbit of the
Lorenz flow, their stability eigenvalues are the
same. How do the stability eigenvalues of relative
periodic orbits of the representations relate to each
other?

6. What does the volume contraction formula (4.34)
look like now? Interpret.
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9.9. Proto-Lorenz system. Here we quotient
out the D1 symmetry by constructing an explicit
“intensity” representation of the desymmetrized Lorenz
flow, following Miranda and Stone [28].
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Figure: The Lorenz attractor in proto-Lorenz
representation (S.14). The points related by byπ-
rotation about the z-axis are identified. (J. Halcrow)

1. Rewrite the Lorenz equation (2.12) in terms of
variables

(u, v, z) = (x2 − y2, 2xy, z) , (9.29)

show that it takes form


u̇
v̇
ż

 =


−(σ + 1)u+ (σ − r)v+ (1− σ)N + vz

(r − σ)u− (σ + 1)v+ (r + σ)N − uz− uN
v/2− bz



N =
√

u2 + v2 .

2. Show that this is the (Lorenz)/D1 quotient map for
the Lorenz flow, i.e., that it identifies points related
by theπ rotation (9.12).

3. Show that (9.29) is invertible. Where does the
inverse not exist?

4. Compute the equilibria of proto-Lorenz and their
stabilities. Compare with the equilibria of the
Lorenz flow.

5. Plot the strange attractor both in the original form
(2.12) and in the proto-Lorenz form for the Lorenz
parameter valuesσ = 10, b = 8/3, ρ = 28, as in
figure ??. Topologically, does it resemble more
the Lorenz, or the Rössler attractor, or neither?

7. Show that a periodic orbit of the proto-Lorenz is
either a periodic orbit or a relative periodic orbit
of the Lorenz flow.

8. Show that if a periodic orbit of the proto-Lorenz
is also periodic orbit of the Lorenz flow, their
stability eigenvalues are the same. How do the
stability eigenvalues of relative periodic orbits of
the Lorenz flow relate to the stability eigenvalues
of the proto-Lorenz?

9 What does the volume contraction formula (4.34)
look like now? Interpret.

10. Show that the coordinate change (9.29) is the
same as rewriting (9.27) in variables (u, v) =
(r2 cos 2θ, r2 sin 2θ), i.e., squaring a complex
numberz= x+ iy, z2 = u+ iv.
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Chapter 10

Qualitative dynamics, for
pedestrians

The classification of the constituents of a chaos, nothing
less is here essayed.

—Herman Melville,Moby Dick, chapter 32

I    we begin to learn how to use qualitative properties of a flow in
order topartition the state space in a topologically invariant way, andname
topologically distinct orbits. This will enable us – in chapter 13 – to count

the distinct orbits, and in the process touch upon all the main themes of this book,
going the whole distance from diagnosing chaotic dynamics to computing zeta
functions.

We start by a simple physical example, symbolic dynamics of a3-disk game
of pinball, and then show that also for smooth flows the qualitative dynamics
of stretching and folding flows enables us to partition the state space and assign
symbolic dynamics itineraries to trajectories. Here we illustrate the method on
a 1− d approximation to Rössler flow. In chapter13 we turn this topological
dynamics into a multiplicative operation on the state spacepartitions by means
of transition matrices/Markov graphs, the simplest examples of evolution oper-
ators. Deceptively simple, this subject can get very difficult very quickly, so in
this chapter we do the first pass, at a pedestrian level, postponing the discussion
of higher-dimensional, cyclist level issues to chapter11.

Even though by inclination you might only care about the serious stuff, like
Rydberg atoms or mesoscopic devices, and resent wasting time on things formal,
this chapter and chapter13 are good for you. Read them.

10.1 Qualitative dynamics

(R. Mainieri and P. Cvitanović)
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Figure 10.1: A trajectory with itinerary 021012.
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x

What can a flow do to the state space points? This is a very difficult question
to answer because we have assumed very little about the evolution function f t;
continuity, and differentiability a sufficient number of times. Trying to make sense
of this question is one of the basic concerns in the study of dynamical systems.
One of the first answers was inspired by the motion of the planets: they appear to
repeat their motion through the firmament. Motivated by thisobservation, the first
attempts to describe dynamical systems were to think of themas periodic.

However, periodicity is almost never quite exact. What one tends to observe
is recurrence. A recurrence of a pointx0 of a dynamical system is a return of
that point to a neighborhood of where it started. How close the point x0 must
return is up to us: we can choose a volume of any size and shape,and call it the
neighborhoodM0, as long as it enclosesx0. For chaotic dynamical systems, the
evolution might bring the point back to the starting neighborhood infinitely often.
That is, the set

{
y ∈ M0 : y = f t(x0), t > t0

}
(10.1)

will in general have an infinity of recurrent episodes.

To observe a recurrence we must look at neighborhoods of points. This suggests
another way of describing how points move in state space, which turns out to be
the important first step on the way to a theory of dynamical systems: qualitative,
topological dynamics, or, as it is usually called,symbolic dynamics. As the subject
can get quite technical, a summary of the basic notions and definitions of symbolic
dynamics is relegated to sect.10.5; check that section whenever you run into
obscure symbolic dynamics jargon.

We start by cutting up the state space up into regionsMA,MB, . . . ,MZ. This
can be done in many ways, not all equally clever. Any such division of the state
space into topologically distinct regions is apartition, and we associate with each
region (sometimes referred to as astate) a symbols from an N-letter alphabet
or state setA = {A, B,C, · · · ,Z}. As the dynamics moves the point through the
state space, different regions will be visited. The visitation sequence - forthwith
referred to as theitinerary - can be represented by the letters of the alphabetA.
If, as in the example sketched in figure10.1, the state space is divided into three
regionsM0,M1, andM2, the “letters” are the integers{0, 1, 2}, and the itinerary
for the trajectory sketched in the figure is 07→ 2 7→ 1 7→ 0 7→ 1 7→ 2 7→ · · ·.
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Figure 10.2: Two pinballs that start out very close
to each other exhibit the same qualitative dynamics
2313 for the first three bounces, but due to the

exponentially growing separation of trajectories with
time, follow different itineraries thereafter: one
escapes after2313 , the other one escapes after
23132321.

1

2

3

23132321

2313

If there is no way to reach partitionMi from partitionM j , and conversely,
partitionM j from partitionMi , the state space consists of at least two disconnected
pieces, and we can analyze it piece by piece. An interesting partition should be
dynamically connected, i.e., one should be able to go from any regionMi to
any other regionM j in a finite number of steps. A dynamical system with such
partition is said to bemetrically indecomposable.

In general one also encounters transient regions - regions to which the dynamics
does not return to once they are exited. Hence we have to distinguish between (for
us uninteresting) wandering trajectories that never return to the initial neighborhood,
and the non–wandering set (2.2) of therecurrenttrajectories.

The allowed transitions between the regions of a partition are encoded in the
[N×N]-dimensionaltransition matrixwhose elements take values

Ti j =

{
1 if a transitionM j →Mi is possible
0 otherwise. (10.2)

The transition matrix encodes the topological dynamics as an invariant law of
motion, with the allowed transitions at any instant independent of the trajectory
history, requiring no memory.

Example 10.1 Complete N-ary dynamics: All transition matrix entries equal unity
(one can reach any region from any other region in one step):

Tc =



1 1 . . . 1
1 1 . . . 1
...

...
. . .

...

1 1 . . . 1


. (10.3)

Further examples of transition matrices, such as the 3-disk transition matrix (10.5) and
the 1-step memory sparse matrix (10.13), are peppered throughout the text.

However, knowing that a point fromMi reachesM j in one step is not quite
good enough. We would be happier if we knew thatanypoint inMi reachesM j;
otherwise we have to subpartitionMi into the points which land inM j , and those
which do not, and often we will find ourselves partitioningad infinitum.
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Figure 10.3: The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk 1
with x0 = (arclength, parallel momentum)=
(s0, p0) , disk radius : center separation ratio
a:R= 1:2.5. (a) Strips of initial pointsM12,M13

which reach disks 2, 3 in one bounce, respectively.
(b) Strips of initial pointsM121, M131 M132 and
M123 which reach disks 1, 2, 3 in two bounces,
respectively. (Y. Lan) (a)
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Such considerations motivate the notion of aMarkov partition, a partition for
which no memory of preceding steps is required to fix the transitions allowed in
the next step. Dynamically,finite Markov partitionscan be generated byexpanding
d-dimensional iterated mappingsf : M → M, if M can be divided intoN
regions{M0,M1, . . . ,MN−1} such that in one step points from an initial region
Mi either fully cover a regionM j , or miss it altogether,

either M j ∩ f (Mi) = ∅ or M j ⊂ f (Mi) . (10.4)

Let us illustrate what this means by our favorite example, the game of pinball.

Example 10.2 3-disk symbolic dynamics: Consider the motion of a free point
particle in a plane with 3 elastically reflecting convex disks. After a collision with a disk
a particle either continues to another disk or escapes, and any trajectory can be labeled
by the disk sequence. For example, if we label the three disks by 1, 2 and 3, the two
trajectories in figure 10.2 have itineraries 2313 , 23132321 respectively. The 3-disk

[exercise 1.1]
prime cycles given in figures 9.4 and 11.2 are further examples of such itineraries.

At each bounce a cone of initially nearby trajectories defocuses (see figure 1.8),
and in order to attain a desired longer and longer itinerary of bounces the initial point
x0 = (s0, p0) has to be specified with a larger and larger precision, and lie within
initial state space strips drawn in figure 10.3. Similarly, it is intuitively clear that
as we go backward in time (in this case, simply reverse the velocity vector), we also
need increasingly precise specification of x0 = (s0, p0) in order to follow a given past
itinerary. Another way to look at the survivors after two bounces is to plot Ms1.s2, the
intersection ofM.s2 with the stripsMs1. obtained by time reversal (the velocity changes
sign sinφ → − sinφ). Ms1.s2, figure 10.4, is a “rectangle” of nearby trajectories which
have arrived from the disk s1 and are heading for the disk s2.

The itinerary is finite for a scattering trajectory, coming in from infinity and
escaping after a finite number of collisions, infinite for a trapped trajectory, and
infinitely repeating for a periodic orbit. A finite length trajectory is not uniquely
specified by its finite itinerary, but an isolated unstable cycle is: its itinerary is
an infinitely repeating block of symbols. More generally, for hyperbolic flows
the intersection of the future and past itineraries, the bi-infinite itineraryS-.S+ =
· · · s−2s−1s0.s1s2s3 · · · specifies a unique trajectory. This is intuitively clear forour
3-disk game of pinball, and is stated more formally in the definition (10.4) of a
Markov partition. The definition requires that the dynamicsbe expanding forward
in time in order to ensure that the cone of trajectories with agiven itinerary
becomes sharper and sharper as the number of specified symbols is increased.
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Figure 10.4: The Poincaré section of the state space
for the binary labeled pinball. For definitiveness, this
set is generated by starting from disk 1, preceded by
disk 2. Indicated are the fixed points0, 1 and the
2-cycle periodic points01, 10, together with strips
which survive 1, 2, . . . bounces. Iteration corresponds
to the decimal point shift; for example, all points in the
rectangle [01.01] map into the rectangle [010.1] in one
iteration. See also figure11.2(b).

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

si
nØ

1

0

−1
−2.5

S
0 2.5

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

12 13

Example 10.3 Pruning rules for a 3-disk alphabet: As the disks are convex, there
can be no two consecutive reflections off the same disk, hence the covering symbolic
dynamics consists of all sequences which include no symbol repetitions 11, 22, 33.
This is a finite set of finite length pruning rules, hence, the dynamics is a subshift of
finite type (see (10.22) for definition), with the transition matrix (10.2) given by

T =


0 1 1
1 0 1
1 1 0

 . (10.5)

For convex disks the separation between nearby trajectories increases at every reflection,
implying that the fundamental matrix has an expanding eigenvalue. By the Liouville
phase space volume conservation (7.32), the other transverse eigenvalue is contracting.
This example demonstrates that finite Markov partitions can be constructed for hyperbolic
dynamical systems which are expanding in some directions, contracting in others.
Further examples are the 1-dimensional expanding mapping sketched in figure 10.6,
and more examples are worked out in sect. 24.2.

Determining whether the symbolic dynamics is complete (as is the case for
sufficiently separated disks), pruned (for example, for touching or overlapping
disks), or only a first coarse graining of the topology (as, for example, for smooth
potentials with islands of stability) requires case-by-case investigation, a discussion
we postpone to sect.10.3 and chapter11. For the time being we assume that
the disks are sufficiently separated that there is no additional pruning beyond the
prohibition of self-bounces.

If there are no restrictions on symbols, the symbolic dynamics is complete,
and all binary sequences are admissible itineraries. As this type of symbolic
dynamics pops up frequently, we list the shortest binary prime cycles in table10.1.

[exercise 10.2]

Inspecting the figure10.3 we see that the relative ordering of regions with
differing finite itineraries is a qualitative, topological property of the flow, so it
makes sense to define a simple “canonical” representative partition which in a
simple manner exhibits spatial ordering common to an entireclass of topologically
similar nonlinear flows.

in depth:

chapter 19, p. 320
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Table 10.1: Prime cycles for the binary symbolic dynamics up to length 9.
np p
1 0

1
2 01
3 001

011
4 0001

0011
0111

5 00001
00011
00101
00111
01011
01111

6 000001
000011
000101
000111
001011
001101
001111
010111
011111

7 0000001
0000011
0000101

np p
7 0001001

0000111
0001011
0001101
0010011
0010101
0001111
0010111
0011011
0011101
0101011
0011111
0101111
0110111
0111111

8 00000001
00000011
00000101
00001001
00000111
00001011
00001101
00010011
00010101
00011001
00100101

np p
8 00001111

00010111
00011011
00011101
00100111
00101011
00101101
00110101
00011111
00101111
00110111
00111011
00111101
01010111
01011011
00111111
01011111
01101111
01111111

9 000000001
000000011
000000101
000001001
000010001
000000111
000001011

np p
9 000001101

000010011
000010101
000011001
000100011
000100101
000101001
000001111
000010111
000011011
000011101
000100111
000101011
000101101
000110011
000110101
000111001
001001011
001001101
001010011
001010101
000011111
000101111
000110111
000111011
000111101

np p
9 001001111

001010111
001011011
001011101
001100111
001101011
001101101
001110101
010101011
000111111
001011111
001101111
001110111
001111011
001111101
010101111
010110111
010111011
001111111
010111111
011011111
011101111
011111111

10.2 Stretch and fold

Symbolic dynamics forN-disk game of pinball is so straightforward that one may
altogether fail to see the connection between the topology of hyperbolic flows and
their symbolic dynamics. This is brought out more clearly bythe 1-dimensional
visualization of “stretch & fold” flows to which we turn now.

Suppose concentrations of certain chemical reactants worry you, or the variations
in the Chicago temperature, humidity, pressure and winds affect your mood. All
such properties vary within some fixed range, and so do their rates of change.
Even if we are studying an open system such as the 3-disk pinball game, we tend
to be interested in a finite region around the disks and ignorethe escapees. So a
typical dynamical system that we care about isbounded. If the price for keeping
going is high - for example, we try to stir up some tar, and observe it come to
a dead stop the moment we cease our labors - the dynamics tendsto settle into
a simple limiting state. However, as the resistance to change decreases - the tar
is heated up and we are more vigorous in our stirring - the dynamics becomes
unstable.

If a flow is locally unstable but globally bounded, any open ball of initial
points will be stretched out and then folded back.

At this juncture we show how this works on the simplest example: unimodal
mappings of the interval. The erudite reader should skim through this chapter
and then take a more demanding path, via the Smale horseshoesof chapter11.
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Figure 10.5: (a) A recurrent flow that stretches
and folds. (b) The “stretch & fold” return map on
the Poincaré section. (a)
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Unimodal maps are easier, but physically less motivated. The Smale horseshoes
are the high road, more complicated, but the right tool to generalize what we
learned from the 3-disk dynamics, and begin analysis of general dynamical systems.
It is up to you - unimodal maps suffice to get quickly to the heart of this treatise.

10.2.1 Temporal ordering: itineraries

In this section we learn how toname(and, in chapter13, how tocount) periodic
orbits for the simplest, and nevertheless very instructivecase, for 1-dimensional
maps of an interval.

Suppose that the compression of the folded interval in figure10.5is so fierce
that we can neglect the thickness of the attractor. For example, the Rössler flow
(2.17) is volume contracting, and an interval transverse to the attractor is stretched,
folded and pressed back into a nearly 1-dimensional interval, typically compressed
transversally by a factor of≈ 1013 in one Poincaré section return. In such cases
it makes sense to approximate the return map of a “stretch & fold” flow by a
1-dimensional map.

The simplest mapping of this type isunimodal;interval is stretched and folded
only once, with at most two points mapping into a point in the refolded interval.
A unimodal mapf (x) is a 1-dimensional functionR → R defined on an interval
M ∈ Rwith a monotonically increasing (or decreasing) branch, acritical point (or
interval) xc for which f (xc) attains the maximum (minimum) value, followed by
a monotonically decreasing (increasing) branch.Uni-modal means that the map
is a 1-humped map with one critical point within intervalM. A multi-modal map
has several critical points within intervalM.

Example 10.4 Complete tent map, quadratic map: The simplest examples of
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Figure 10.6: (a) The complete tent map together
with intervals that follow the indicated itinerary
for n steps. (b) A unimodal repeller with the
remaining intervals after 1, 2 and 3 iterations.
Intervals markeds1s2 · · · sn are unions of all points
that do not escape inn iterations, and follow the
itinerary S+ = s1s2 · · · sn. Note that the spatial
ordering does not respect the binary ordering; for
examplex00 < x01 < x11 < x10. Also indicated:
the fixed pointsx0, x1, the 2-cycle01, and the 3-
cycle011. (a) (b)

unimodal maps are the complete tent map, figure 10.6 (a),

f (γ) = 1− 2|γ − 1/2| , (10.6)

and the quadratic map (sometimes also called the logistic map)

xt+1 = 1− ax2
t , (10.7)

with the one critical point at xc = 0. Further examples are the repelling unimodal map
of figure 10.6 (b) and the piecewise linear tent map (10.6).

Such dynamical systems are irreversible (the inverse of f is double-valued),
but, as we shall show in sect. 11.3, they may nevertheless serve as effective descriptions
of invertible 2-dimensional hyperbolic flows.

For the unimodal maps of figure 10.6 a Markov partition of the unit interval
M is given by the two intervals {M0,M1}. We refer to (10.6) as the “complete” tent
map because its symbolic dynamics is complete binary: as both f (M0) and f (M1)
fully cover M0 and M1, the corresponding transition matrix is a [2×2] matrix with all
entries equal to 1, as in (10.3). As binary symbolic dynamics pops up frequently in
applications, we list the shortest binary prime cycles in table 10.1.

Example 10.5 Lorenz flow: a 1 −d return map We now deploy the symmetry
of Lorenz flow to streamline and complete analysis of the Lorenz strange attractor
commenced in example 9.2.

The dihedral D1 = {e,R} symmetry identifies the two equilibria EQ1 and EQ2,
and the traditional “two-eared” Lorenz flow figure 2.4 is replaced by the “single-eared”
flow of figure 9.2 (a). Furthermore, symmetry identifies two sides of any plane through
the z axis, replacing a full-space Poincaré section plane by a half-plane, and the two
directions of a full-space eigenvector of EQ0 by a one-sided eigenvector, see figure 9.2 (a).

Example 4.7 explained the genesis of the xEQ1 equilibrium unstable manifold, its
orientation and thickness, its collision with the z-axis, and its heteroclinic connection to
the xEQ0 = (0, 0, 0) equilibrium. All that remains is to describe how the EQ0 neighborhood
connects back to the EQ1 unstable manifold. Figure 9.2 now shows clearly how the
Lorenz dynamics is pieced together from the 2 equilibria and their unstable manifolds:

Having completed the descent to EQ0, the infinitesimal neighborhood of the
heteroclinic EQ1→ EQ0 trajectory is ejected along the unstable manifold of EQ0 and is
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Figure 10.7: (a) A Poincaré section of the Lorenz
flow in the doubled-polar angle representation,
figure10.7, given by the [y′, z] plane that contains
thez-axis and the equilibriumEQ1. x′ axis points
toward the viewer. (b) The Poincaré section of the
Lorenz flow by the section plane (a); compare with
figure 3.7. Crossingsinto the section are marked
red (solid) and crossingsout of the section are
marked blue (dotted). Outermost points of both
in- and out-sections are given by theEQ0 unstable
manifoldWu(EQ0) intersections. (E. Siminos) (a) (b)
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Siminos)
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re-injected into the unstable manifold of EQ1. Both sides of the narrow strip enclosing
the EQ0 unstable manifold lie above it, and they get folded onto each other with a knife-
edge crease (contracted exponentially for infinite time at the EQ0 heteroclinic point),
with the heteroclinic out-trajectory defining the outer edge of the strange attractor. This
leads to the folding of the outer branch of the Lorenz strange attractor, illustrated in the
figure 10.7 (b), with the outermost edge following the unstable manifold of EQ0.

Now the stage is set for construction of Poincaré sections and associated
Poincaré return maps. There are two natural choices; the section at EQ0, lower part
of figure 10.7 (b), and the section (blue) above EQ1. The first section, together with
the blowup of the EQ0 neighborhood, figure 4.7 (b), illustrates clearly the scarcity of
trajectories (vanishing natural measure) in the neighborhood of EQ0. The flat section
above EQ1 (which is, believe it or not, a smooth conjugacy by the flow of the knife-
sharp section at EQ0) is more convenient for our purposes. Its return map is given by
figure 10.8.

The rest is straight sailing: to accuracy 10−4 the return map is unimodal, its
“critical” point’s forward trajectory yields the kneading sequence, and the admissible
binary sequences, so any number of cycle points can be accurately determined from
this 1-dimensional return map, and the 3−d cycles then verified by integrating the Lorenz
differential equations (2.12). The map is everywhere expanding on the strange attractor,
so it is no wonder mathematicians can here make the ergodicity rigorous.

Finally, the relation between the full state space periodic orbits, and the fundamental
domain (9.16) reduced orbits: Full state space cycle pairs p, Rpmap into a single cycles
p̃ in the fundamental domain, and any self-dual cycle p = Rp = p̃Rp̃ is a repeat of a
relative periodic orbit p̃.
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But there is trouble in paradise. By a fluke, the Lorenz attractor, the first flow
to popularize strange attractors, turns to be topologically one of the simplest strange
attractors. But it is not “uniformly hyperbolic.” The flow near EQ1 is barely unstable,
while the flow near EQ0 is arbitrarily unstable. So binary enumeration of cycles mixes
cycles of vastly different stabilities, and is not very useful - presumably the practical
way to compute averages is by stability ordering.

(E. Siminos and J. Halcrow)

Thecritical valuedenotes either the maximum or the minimum value off (x)
on the defining interval; we assume here that it is a maximum,f (xc) ≥ f (x) for all
x ∈ M. The critical valuef (xc) belongs neither to the left nor to the right partition
Mi , and is denoted by its own symbols = C. As we shall see, its preimages serve
as partition boundary points.

The trajectoryx1, x2, x3, . . . of the initial point x0 is given by the iteration
xn+1 = f (xn) . Iterating f and checking whether the point lands to the left or to the
right of xc generates atemporallyordered topological itinerary (10.15) for a given
trajectory,

sn =

{
1 if xn > xc
0 if xn < xc

. (10.8)

We shall refer toS+(x0) = .s1s2s3 · · · as thefuture itinerary. Our next task is to
answer the reverse problem: given an itinerary, what is the correspondingspatial
ordering of points that belong to a given trajectory?

10.2.2 Spatial ordering, 1-d maps

Tired of being harassed by your professors? Finish, get a
job, do combinatorics your own way, while you still know
everything.

—Professor Gatto Nero

Suppose you have succeeded in constructing a covering symbolic dynamics, such
as for a well-separated 3-disk system. Now start moving the disks toward each
other. At some critical separation a disk will start blocking families of trajectories
traversing the other two disks. The order in which trajectories disappear is determined
by their relative ordering in space; the ones closest to the intervening disk will
be pruned first. Determining inadmissible itineraries requires that we relate the
spatial ordering of trajectories to their time ordered itineraries.

[exercise 11.8]

The easiest point of departure is to start out by working out this relation for
the symbolic dynamics of 1-dimensional mappings. As it appears impossible
to present this material without getting bogged down in a seaof 0’s, 1’s and
subscripted subscripts, we announce the main result beforeembarking upon its
derivation:

[section 10.3]

The admissibility criterion eliminatesall itineraries
that cannot occur for a given unimodal map.
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Figure 10.9: Alternating binary tree relates the
itinerary labeling of the unimodal map figure10.6
intervals to their spatial ordering. Dotted line stands
for 0, full line for 1; the binary sub-tree whose root is a
full line (symbol 1) reverses the orientation, due to the
orientation reversing fold in figures10.5and10.6.

000

0 1

00 01 11 10

001 011 010 110 111 101 100

The tent map (10.6) consists of two straight segments joined atx = 1/2. The
symbolsn defined in (10.8) equals 0 if the function increases, and 1 if the function
decreases. The piecewise linearity of the map makes it possible to analytically
determine an initial point given its itinerary, a property that we now use to define
a topological coordinatization common to all unimodal maps.

Here we have to face the fundamental problem of pedagogy: combinatorics
cannot be taught. The best one can do is to state the answer, and then hope that
you will figure it out by yourself. Once you figure it out, feel free to complain that
the way the rule is stated here is incomprehensible, and shows us how you did it
better.

The tent map pointγ(S+) with future itineraryS+ is given by converting the
sequence ofsn’s into a binary number by the following algorithm:

wn+1 =

{
wn if sn+1 = 0
1− wn if sn+1 = 1 , w1 = s1

γ(S+) = 0.w1w2w3 . . . =

∞∑

n=1

wn/2
n. (10.9)

This follows by inspection from the binary tree of figure10.9.
[exercise 10.4]

Example 10.6 Converting γ to S+: γ whose itinerary is S+ = 0110000· · · is given
by the binary number γ = .010000· · ·. Conversely, the itinerary of γ = .01 is s1 = 0,
f (γ) = .1→ s2 = 1, f 2(γ) = f (.1) = 1→ s3 = 1, etc..

We shall refer toγ(S+) as the(future) topological coordinate. wt’s are the
digits in the binary expansion of the starting pointγ for the complete tent map
(10.6). In the left half-interval the mapf (x) acts by multiplication by 2, while in
the right half-interval the map acts as a flip as well as multiplication by 2, reversing
the ordering, and generating in the process the sequence ofsn’s from the binary
digits wn.

The mapping x0→ S+(x0)→ γ0 = γ(S+) is atopological conjugacy
which maps the trajectory of an initial pointx0 under iteration of a given unimodal
map to that initial pointγ for which the trajectory of the “canonical” unimodal
map (10.6) has the same itinerary. The virtue of this conjugacy is thatit preserves
the ordering for any unimodal map in the sense that ifx > x, thenγ > γ.
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Figure 10.10: The “dike” map obtained by slicing
of a top portion of the tent map figure10.6 (a).
Any orbit that visits the primary pruning interval
(κ, 1] is inadmissible. The admissible orbits form
the Cantor set obtained by removing from the unit
interval the primary pruning interval and all its
iterates. Any admissible orbit has the same topological
coordinate and itinerary as the corresponding tent map
figure10.6(a) orbit.

10.3 Kneading theory

(K.T. Hansen and P. Cvitanović)

The main motivation for being mindful of spatial ordering oftemporal itineraries
is that this spatial ordering provides us with criteria thatseparate inadmissible
orbits from those realizable by the dynamics. For 1-dimensional mappings the
kneading theoryprovides such criterion of admissibility.

If the parameter in the quadratic map (10.7) is a > 2, then the iterates of the
critical pointxc diverge forn→ ∞. As long asa ≥ 2, any sequenceS+ composed
of letterssi = {0, 1} is admissible, and any value of 0≤ γ < 1 corresponds to an
admissible orbit in the non–wandering set of the map. The corresponding repeller
is a complete binary labeled Cantor set, then→ ∞ limit of the nth level covering
intervals sketched in figure10.6.

For a < 2 only a subset of the points in the intervalγ ∈ [0, 1] corresponds
to admissible orbits. The forbidden symbolic values are determined by observing
that the largestxn value in an orbitx1→ x2→ x3→ . . . has to be smaller than or
equal to the image of the critical point,the critical value f(xc). Let K = S+(xc)
be the itinerary of the critical pointxc, denoted thekneading sequenceof the map.
The corresponding topological coordinate is called thekneading value

κ = γ(K) = γ(S+(xc)). (10.10)

A map with the same kneading sequenceK as f (x), such as the dike map figure10.10,
is obtained by slicing off all γ

(
S+(x0)

)
> κ,

f (γ) =



f0(γ) = 2γ γ ∈ I0 = [0, κ/2)
fc(γ) = κ γ ∈ Ic = [κ/2, 1− κ/2]
f1(γ) = 2(1− γ) γ ∈ I1 = [1 − κ/2, 1]

. (10.11)

The dike map is the complete tent map figure10.6(a) with the top sliced off. It is
convenient for coding the symbolic dynamics, as thoseγ values that survive the
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pruning are the same as for the complete tent map figure10.6(a), and are easily
converted into admissible itineraries by (10.9).

If γ(S+) > γ(K), the pointx whose itinerary isS+ would exceed the critical
value,x > f (xc), and hence cannot be an admissible orbit. Let

γ̂(S+) = sup
m
γ(σm(S+)) (10.12)

be themaximal value, the highest topological coordinate reached by the orbit
x1→ x2→ x3→ . . .. We shall call the interval (κ, 1] theprimary pruned interval.
The orbit S+ is inadmissible ifγ of any shifted sequence ofS+ falls into this
interval.

Criterion of admissibility: Let κ be the kneading value of the critical point,
and γ̂(S+) be the maximal value of the orbit S+. Then the orbit S+ is admissible
if and only if γ̂(S+) ≤ κ.

While a unimodal map may depend on many arbitrarily chosen parameters, its
dynamics determines the unique kneading valueκ. We shall callκ thetopological
parameterof the map. Unlike the parameters of the original dynamical system,
the topological parameter has no reason to be either smooth or continuous. The
jumps inκ as a function of the map parameter such asa in (10.7) correspond to
inadmissible values of the topological parameter. Each jump in κ corresponds to
a stability window associated with a stable cycle of a smoothunimodal map. For
the quadratic map (10.7) κ increases monotonically with the parametera, but for
a general unimodal map such monotonicity need not hold.

For further details of unimodal dynamics, the reader is referred to appendixD.1.
As we shall see in sect.11.5, for higher dimensional maps and flows there is no
single parameter that orders dynamics monotonically; as a matter of fact, there
is an infinity of parameters that need adjustment for a given symbolic dynamics.
This difficult subject is beyond our current ambition horizon.

10.4 Markov graphs

10.4.1 Finite memory

In the completeN-ary symbolic dynamics case (see example (10.3)) the choice of
the next symbol requires no memory of the previous ones. However, any further
refinement of the partition requires finite memory.

For example, for the binary labeled repeller with complete binary symbolic
dynamics, we might chose to partition the state space into four regions{M00,M01,M10,M11},
a 1-step refinement of the initial partition{M0,M1}. Such partitions are drawn
in figure 10.4, as well as figure1.9. Topologically f acts as a left shift (11.10),
and its action on the rectangle [.01] is to move the decimal point to the right, to
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Figure 10.11: (a) The self-similarity of the
complete binary symbolic dynamics represented
by a binary tree (b) identification of nodesB = A,
C = A leads to the finite 1-node, 2-links Markov
graph. All admissible itineraries are generated as
walks on this finite Markov graph. (a)
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Figure 10.12: (a) The 2-step memory Markov
graph, links version obtained by identifying nodes
A = D = E = F = G in figure10.11(a). Links of
this graph correspond to the matrix entries in the
transition matrix (10.13). (b) the 2-step memory
Markov graph, node version. (b) (a)

[0.1], forget the past, [.1], and land in either of the two rectangles{[.10], [.11]}.
Filling in the matrix elements for the other three initial states we obtain the 1-step
memory transition matrix acting on the 4-state vector

[exercise 10.7]

φ′ = Tφ =



T00,00 0 T00,10 0
T01,00 0 T01,10 0

0 T10,01 0 T10,11

0 T11,01 0 T11,11





φ00

φ01

φ10

φ11


. (10.13)

By the same token, forM-step memory the only nonvanishing matrix elements are
of the formTs1s2...sM+1,s0s1...sM , sM+1 ∈ {0, 1}. This is a sparse matrix, as the only
non vanishing entries in them = s0s1 . . . sM column ofTdm are in the rowsd =
s1 . . . sM0 andd = s1 . . . sM1. If we increase the number of steps remembered, the

[exercise 13.1]
transition matrix grows big quickly, as theN-ary dynamics withM-step memory
requires an [NM+1×NM+1] matrix. Since the matrix is very sparse, it pays to find a
compact representation forT. Such representation is afforded by Markov graphs,
which are not only compact, but also give us an intuitive picture of the topological
dynamics.

Construction of a good Markov graph is, like combinatorics,unexplainable.
The only way to learn is by some diagrammatic gymnastics, so we work our way
through a sequence of exercises in lieu of plethora of baffling definitions.

[exercise 13.4]

[exercise 13.1]
To start with, what do finite graphs have to do with infinitely long trajectories?

To understand the main idea, let us construct a graph that enumerates all possible
itineraries for the case of complete binary symbolic dynamics.

Mark a dot “·” on a piece of paper. Draw two short lines out of the dot, end
each with a dot. The full line will signify that the first symbol in an itinerary is
“1”, and the dotted line will signifying “0”. Repeat the procedure for each of the
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Figure 10.13: (a) The self-similarity of the00
pruned binary tree: trees originating from nodes
C and E are the same as the entire tree. (b)
Identification of nodesA = C = E leads to the
finite 2-node, 3-links Markov graph; as 0 is always
followed by 1, the walks on this graph generate
only the admissible itineraries. (a)
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BA=C=E

two new dots, and then for the four dots, and so on. The result is the binary tree
of figure10.11(a). Starting at the top node, the tree enumerates exhaustively all
distinct finite itineraries

{0, 1},
{00, 01, 10, 11},
{000, 001, 010, · · ·}, · · · .

The M = 4 nodes in figure10.11(a) correspond to the 16 distinct binary strings
of length 4, and so on. By habit we have drawn the tree as the alternating binary
tree of figure10.9, but that has no significance as far as enumeration of itineraries
is concerned - an ordinary binary tree would serve just as well.

The trouble with an infinite tree is that it does not fit on a piece of paper.
On the other hand, we are not doing much - at each node we are turning either
left or right. Hence all nodes are equivalent, and can be identified. To say it in
other words, the tree is self-similar; the trees originating in nodesB andC are
themselves copies of the entire tree. The result of identifying B = A, C = A is a
single node, 2-link Markov graph of figure10.11(b): any itinerary generated by
the binary tree figure10.11(a), no matter how long, corresponds to a walk on this
graph.

This is the most compact encoding of the complete binary symbolic dynamics.
Any number of more complicated Markov graphs can do the job aswell, and
might be sometimes preferable. For example, identifying the trees originating in
D, E, F andG with the entire tree leads to the 2-step memory Markov graph of
figure10.12a. The corresponding transition matrix is given by (10.13).

in depth:

chapter 11, p. 174

fast track:

chapter 13, p. 212
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10.5 Symbolic dynamics, basic notions

In this section we collect the basic notions and definitions of symbolic dynamics.
The reader might prefer to skim through this material on firstreading, return to it
later as the need arises.

Shifts. We associate with every initial pointx0 ∈ M the future itinerary, a
sequence of symbolsS+(x0) = s1s2s3 · · · which indicates the order in which the
regions are visited. If the trajectoryx1, x2, x3, . . . of the initial pointx0 is generated
by

xn+1 = f (xn) , (10.14)

then the itinerary is given by the symbol sequence

sn = s if xn ∈ MsF . (10.15)

Similarly, thepast itinerary S-(x0) = · · · s−2s−1s0 describes the history ofx0, the
order in which the regions were visited before arriving to the point x0. To each
point x0 in the dynamical space we thus associate a bi-infinite itinerary

S(x0) = (sk)k∈Z = S-.S+ = · · · s−2s−1s0.s1s2s3 · · · . (10.16)

The itinerary will be finite for a scattering trajectory, entering and then escaping
M after a finite time, infinite for a trapped trajectory, and infinitely repeating for
a periodic trajectory.

The set of all bi-infinite itineraries that can be formed fromthe letters of the
alphabetA is called thefull shift

AZ = {(sk)k∈Z : sk ∈ A for all k ∈ Z} . (10.17)

The jargon is not thrilling, but this is how professional dynamicists talk to each
other. We will stick to plain English to the extent possible.

We refer to this set of all conceivable itineraries as thecoveringsymbolic
dynamics. The nameshift is descriptive of the way the dynamics acts on these
sequences. As is clear from the definition (10.15), a forward iterationx →
x′ = f (x) shifts the entire itinerary to the left through the “decimal point.” This
operation, denoted by the shift operatorσ,

σ(· · · s−2s−1s0.s1s2s3 · · ·) = · · · s−2s−1s0s1.s2s3 · · · , (10.18)

demoting the current partition labels1 from the futureS+ to the “has been”
itineraryS-. The inverse shiftσ−1 shifts the entire itinerary one step to the right.

knead - 20apr2008.tex



CHAPTER 10. QUALITATIVE DYNAMICS, FOR PEDESTRIANS 168

A finite sequenceb = sksk+1 · · · sk+nb−1 of symbols fromA is called ablockof
lengthnb. A state space trajectory isperiodic if it returns to its initial point after a
finite time; in the shift space the trajectory is periodic if its itinerary is an infinitely
repeating blockp∞. We shall refer to the set of periodic points that belong to a
given periodic orbit as acycle

p = s1s2 · · · snp = {xs1s2···snp
, xs2···snp s1, · · · , xsnp s1···snp−1} . (10.19)

By its definition, a cycle is invariant under cyclic permutations of the symbols
in the repeating block. A bar over a finite block of symbols denotes a periodic
itinerary with infinitely repeating basic block; we shall omit the bar whenever it is
clear from the context that the trajectory is periodic. Eachcycle pointis labeled by
the firstnp steps of its future itinerary. For example, the 2nd cycle point is labeled
by

xs2···snp s1 = xs2···snp s1·s2···snp s1 .

A primecycle p of lengthnp is a single traversal of the orbit; its label is a block of
np symbols that cannot be written as a repeat of a shorter block (in literature such
cycle is sometimes calledprimitive; we shall refer to it as “prime” throughout this
text).

Partitions. A partition is calledgenerating if every infinite symbol sequence
corresponds to a distinct point in the state space. Finite Markov partition (10.4)
is an example. Constructing a generating partition for a given system is a difficult
problem. In examples to follow we shall concentrate on caseswhich allow finite
partitions, but in practice almost any generating partition of interest is infinite.

A mapping f : M → M together with a partitionA inducestopological
dynamics(Σ, σ), where thesubshift

Σ = {(sk)k∈Z} , (10.20)

is the set of alladmissibleinfinite itineraries, andσ : Σ→ Σ is the shift operator
(10.18). The designation “subshift” comes form the fact thatΣ ⊂ AZ is the
subset of the full shift (10.17). One of our principal tasks in developing symbolic
dynamics of dynamical systems that occur in nature will be todetermineΣ, the
set of all bi-infinite itinerariesS that are actually realized by the given dynamical
system.

A partition too coarse, coarser than, for example, a Markov partition, would
assign the same symbol sequence to distinct dynamical trajectories. To avoid that,
we often find it convenient to work with partitions finer than strictly necessary.
Ideally the dynamics in the refined partition assigns a unique infinite itinerary
· · · s−2s−1s0.s1s2s3 · · · to each distinct trajectory, but there might exist full shift
symbol sequences (10.17) which are not realized as trajectories; such sequences
are calledinadmissible, and we say that the symbolic dynamics ispruned. The
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word is suggested by “pruning” of branches corresponding toforbidden sequences
for symbolic dynamics organized hierarchically into a treestructure, as explained
in sect.10.4.

Pruning. If the dynamics is pruned, the alphabet must be supplementedby
a grammar, a set of pruning rules. After the inadmissible sequences have been
pruned, it is often convenient to parse the symbolic stringsinto words of variable
length - this is calledcoding. Suppose that the grammar can be stated as a finite
number of pruning rules, each forbidding a block of finite length,

G = {b1, b2, · · · bk} , (10.21)

where apruning block bis a sequence of symbolsb = s1s2 · · · snb, s ∈ A, of
finite lengthnb. In this case we can always construct a finite Markov partition
(10.4) by replacing finite length words of the original partition by letters of a new
alphabet. In particular, if the longest forbidden block is of length M + 1, we say
that the symbolic dynamics is a shift of finite type withM-step memory. In that
case we canrecodethe symbolic dynamics in terms of a new alphabet, with each
new letter given by an admissible block of at most lengthM. In the new alphabet
the grammar rules are implemented by settingTi j = 0 in (10.3) for forbidden
transitions.

A topological dynamical system (Σ, σ) for which all admissible itineraries are
generated by a finite transition matrix

Σ =
{
(sk)k∈Z : Tsksk+1 = 1 for all k

}
(10.22)

is called a subshift offinite type. Such systems are particularly easy to handle; the
topology can be converted into symbolic dynamics by representing the transition
matrix by a finite directedMarkov graph, a convenient visualization of topological
dynamics.

Markov graphs. A Markov graph describes compactly the ways in which the
state space regions map into each other, accounts for finite memory effects in
dynamics, and generates the totality of admissible trajectories as the set of all
possible walks along its links.

A Markov graph consists of a set ofnodes(or vertices, or states), one for each
state in the alphabetA = {A, B,C, · · · ,Z}, connected by a set of directedlinks
(edges, arcs). Nodei is connected by a directed link to nodej whenever the
transition matrix element (10.2) takes valueTi j = 1. There might be a set of links
connecting two nodes, or links that originate and terminateon the same node.
Two graphs are isomorphic if one can be obtained from the other by relabeling
links and nodes; for us they are one and the same graph. As we are interested in
recurrent dynamics, we restrict our attention toirreducible or strongly connected
graphs, i.e., graphs for which there is a path from any node toany other node.

Example 10.7 “Golden mean” pruning Consider a simple subshift on two-state
partition A = {0, 1}, with the simplest grammar G possible: a single pruning block b =
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Figure 10.14: (a) The transition matrix for binary
alphabetA = {0,1}, b = 11 pruned. (b) The
corresponding Markov graph. T =

( 1 1
1 0

)
(b)



0 1a

b

c

11 (consecutive repeat of symbol 1 is inadmissible): the stateM0 maps both ontoM0

andM1, but the stateM1 maps only ontoM0. The transition matrix for this grammar
is given in figure 10.14 (a). The corresponding finite 2-node, 3-links Markov graph, with
nodes coding the symbols, is given in figure 10.14 (b). All admissible itineraries are
generated as walks on this finite Markov graph.

in depth:

chapter 11, p. 174

Résum é

In chapters16 and17 we will establish that spectra of evolution operators can be
extracted from periodic orbit sums:

∑
(spectral eigenvalues)=

∑
(periodic orbits).

In order to implement this theory we need to know what periodic orbits can exist,
and the symbolic dynamics developed above and in chapter11 is an invaluable
tool toward this end.

Commentary

Remark 10.1 Symbolic dynamics, history and good taste. For a brief history of
symbolic dynamics, from J. Hadamard in 1898 onward, see Notes to chapter 1 of Kitchens
monograph [1], a very clear and enjoyable mathematical introduction to topics discussed
here. Diacu and Holmes [2] provide an excellent survey of symbolic dynamics applied
to of celestial mechanics. Finite Markov graphs or finite automata are discussed in
refs. [3, 4, 5, 6]. They belong to the category of regular languages. A good hands-on
introduction to symbolic dynamics is given in ref. [12].

The binary labeling of the once-folding map periodic pointswas introduced by Myrberg [13]
for 1-dimensional maps, and its utility to 2-dimensional maps has been emphasized in
refs. [8, 12]. For 1-dimensional maps it is now customary to use theR-L notation of
Metropolis, Stein and Stein [14, 15], indicating that the pointxn lies either to the left or
to the right of the critical point in figure10.6. The symbolic dynamics of such mappings
has been extensively studied by means of the Smale horseshoes, see for example ref. [16].
Using letters rather than numerals in symbol dynamics alphabets probably reflects good
taste. We prefer numerals for their computational convenience, as they speed up the
implementation of conversions into the topological coordinates (δ, γ) introduced in sect.11.4.1.
The alternating binary ordering of figure10.9is related to the Gray codes of computer

science [12].
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Remark 10.2 Counting prime cycles. Duval has an efficient algorithm for generating
Lyndon words (non-periodic necklaces, i.e., prime cycle itineraries).

Remark 10.3 Inflating Markov graphs. In the above examples the symbolic dynamics
has been encoded by labeling links in the Markov graph. Alternatively one can encode the
dynamics by labeling the nodes, as in figure10.12, where the 4 nodes refer to 4 Markov
partition regions{M00,M01,M10,M11}, and the 8 links to the 8 non-zero entries in the
2-step memory transition matrix (10.13).

fast track:
chapter 13, p. 212

Exercises

10.1. Binary symbolic dynamics. Verify that the shortest
prime binary cycles of the unimodal repeller of
figure 10.6 are 0, 1, 01, 001, 011, · · ·. Compare
with table 10.1. Try to sketch them in the graph of
the unimodal functionf (x); compare ordering of the
periodic points with figure10.9. The point is that
while overlayed on each other the longer cycles look
like a hopeless jumble, the cycle points are clearly and
logically ordered by the alternating binary tree.

10.2. Generating prime cycles. Write a program that
generates all binary prime cycles up to given finite
length.

10.3. A contracting baker’s map. Consider a contracting
(or “dissipative”) baker’s defined in exercise4.6.

The symbolic dynamics encoding of trajectories is
realized via symbols 0 (y ≤ 1/2) and 1 (y > 1/2).
Consider the observablea(x, y) = x. Verify that for any
periodic orbitp (ǫ1 . . . ǫnp), ǫi ∈ {0, 1}

Ap =
3
4

np∑

j=1

δ j,1 .

10.4. Unimodal map symbolic dynamics. Show that the
tent map pointγ(S+) with future itineraryS+ is given
by converting the sequence ofsn’s into a binary number
by the algorithm (10.9). This follows by inspection from
the binary tree of figure10.9.

10.5. Unimodal map kneading value. Consider the 1-d
quadratic map

f (x) = Ax(1− x) , A = 3.8 . (10.23)

(a) (easy) Plot (10.23), and the first 4-8 (whatever
looks better) iterates of the critical pointxc = 1/2.

(b) (hard) Draw corresponding intervals of the
partition of the unit interval as levels of a Cantor
set, as in the symbolic dynamics partition of
figure 10.6 (b). Note, however, that some of the
intervals of figure10.6 (b) do not appear in this
case - they arepruned.

(c) (medium) Produce ChaosBook.org quality
figure10.6(a).

(d) (easy) Check numerically thatK = S+(xc), the
itinerary or the “kneading sequence” of the critical
point is

K = 1011011110110111101011110111110

The tent map pointγ(S+) with future itineraryS+

is given by converting the sequence ofsn’s into a
binary number by the algorithm (10.9),

wn+1 =

{
wn if sn+1 = 0
1− wn if sn+1 = 1 ,

γ(S+) = 0.w1w2w3 . . . =

∞∑

n=1

wn/2n .

(e) (medium) List the the corresponding kneading
value (10.10) sequenceκ = γ(K) to the same
number of digits asK.

(f) (hard) Plot the missing dike map, figure10.10, in
ChaosBook.org quality, with the same kneading
sequenceK as f (x). The dike map is obtained by
slicing off all γ

(
S+(x0)

)
> κ, from the complete

tent map figure10.6(a), see (10.11).
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How this kneading sequence is converted into a series of
pruning rules is a dark art, relegated to sect.13.6.

10.6. “Golden mean” pruned map. Consider a
symmetrical tent map on the unit interval such that its
highest point belongs to a 3-cycle:

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a) Find the absolute valueΛ for the slope (the two
different slopes±Λ just differ by a sign) where the
maximum at 1/2 is part of a period three orbit, as
in the figure.

(b) Show that no orbit of this map can visit the region
x > (1+

√
5)/4 more than once. Verify that once

an orbit exceedsx > (
√

5−1)/4, it does not reenter
the regionx < (

√
5− 1)/4.

(c) If an orbit is in the interval (
√

5− 1)/4 < x < 1/2,
where will it be on the next iteration?

(d) If the symbolic dynamics is such that forx < 1/2
we use the symbol 0 and forx > 1/2 we use the
symbol 1, show that no periodic orbit will have the
substring 00 in it.

(e) On the second thought, is there a periodic orbit
that violates the above00 pruning rule?

For continuation, see exercise13.6 and exercise17.2.
See also exercise13.7and exercise13.8.

10.7. Binary 3-step transition matrix. Construct [8×8]
binary 3-step transition matrix analogous to the 2-step
transition matrix (10.13). Convince yourself that the
number of terms of contributing to trTn is independent
of the memory length, and that this [2m×2m] trace is well
defined in the infinite memory limitm→ ∞.
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Chapter 11

Qualitative dynamics, for cyclists

I.1. Introduction to conjugacy problems for
diffeomorphisms. This is a survey article on the area
of global analysis defined by differentiable dynamical
systems or equivalently the action (differentiable) of a
Lie groupG on a manifoldM. Here Diff(M) is the group
of all diffeomorphisms ofM and a diffeomorphism is a
differentiable map with a differentiable inverse. (. . .) Our
problem is to study the global structure, i.e., all of the
orbits ofM.

—Stephen Smale,Differentiable Dynamical Systems

I  . 14.1 10.1we introduced the concept of partitioning the state space,
in any way you please. In chapter5 we established that stability eigenvalues
of periodic orbits are invariants of a given flow. The invariance of stabilities

of a periodic orbit is a local property of the flow.

For the Rössler flow of example3.4, we have learned that the attractor is very
thin, but otherwise the return maps that we found were disquieting – figure3.6
did not appear to be a one-to-one map. This apparent loss of invertibility is an
artifact of projection of higher-dimensional return maps onto lower-dimensional
subspaces. As the choice of lower-dimensional subspace is arbitrary, the resulting
snapshots of return maps look rather arbitrary, too. Other projections might look
even less suggestive.

Such observations beg a question: Does there exist a “natural,” intrinsically
optimal coordinate system in which we should plot of a returnmap?

As we shall now argue (see also sect.12.1), the answer is yes: The intrinsic
coordinates are given by the stable/unstable manifolds, and a return map should be
plotted as a map from the unstable manifold back onto the immediate neighborhood
of the unstable manifold.

In this chapter we show that every equilibrium point and every periodic orbit
carries with it stable and unstable manifolds which providea topologically invariant
global foliation of the state space. This qualitative dynamics of stretching and
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Figure 11.1: Binary labeling of trajectories of the
symmetric 3-disk pinball; a bounce in which the
trajectory returns to the preceding disk is labeled 0, and
a bounce which results in continuation to the third disk
is labeled 1.

mixing enables us to partition the state space and assign symbolic dynamics itineraries
to trajectories.

Given an itinerary, the topology of stretching and folding fixes the relative
spatial ordering of trajectories, and separates the admissible and inadmissible
itineraries. The level is distinctly cyclist, in distinction to the pedestrian tempo
of the preceding chapter. Skip this chapter unless you really need to get into nitty-
gritty details of symbolic dynamics.

fast track:

chapter 13, p. 212

11.1 Recoding, symmetries, tilings

In chapter9 we made a claim that if there is a symmetry of dynamics, we mustuse
it. So let’s take the old pinball game and “quotient the statespace by the symmetry
or “desymmetrize.”

Though a useful tool, Markov partitioning is not without drawbacks. One glaring
shortcoming is that Markov partitions are not unique: any ofmany different
partitions might do the job. The 3-disk system offers a simple illustration of
different Markov partitioning strategies for the same dynamical system.

TheA = {1, 2, 3} symbolic dynamics for 3-disk system is neither unique, nor
necessarily the smartest one - before proceeding it pays to exploit the symmetries
of the pinball in order to obtain a more efficient description. In chapter19we shall
be handsomely rewarded for our labors.

As the three disks are equidistantly spaced, our game of pinball has a sixfold
symmetry. For instance, the cycles12, 23, and13 are related to each other by
rotation by±2π/3 or, equivalently, by a relabeling of the disks. The disk labels
are arbitrary; what is important is how a trajectory evolvesas it hits subsequent
disks, not what label the starting disk had. We exploit this symmetry byrecoding,
in this case replacing the absolute disk labels by relative symbols, indicating the
type of the collision. For the 3-disk game of pinball there are two topologically
distinct kinds of collisions, figure11.1:

[exercise 10.1]

[exercise 9.1]

si =

{
0 : pinball returns to the disk it came from
1 : pinball continues to the third disk. (11.1)

This binary symbolic dynamics has two immediate advantages over the ternary
one; the prohibition of self-bounces is automatic, and the coding utilizes the
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Figure 11.2: The 3-disk game of pinball with the
disk radius : center separation ratio a:R= 1:2.5.
(a) 2-cycles12, 13, 23, and 3-cycles123 and132
(not drawn). (b) The fundamental domain, i.e., the
small 1/6th wedge indicated in (a), consisting of a
section of a disk, two segments of symmetry axes
acting as straight mirror walls, and an escape gap.
The above five cycles restricted to the fundamental
domain are the two fixed points0,1. See figure9.4
for cycle10 and further examples. (a) (b)

symmetry of the 3-disk pinball game in elegant manner. If thedisks are sufficiently
far apart there are no further restrictions on symbols, the symbolic dynamics is
complete, andall binary sequences (see table10.1) are admissible itineraries.

[exercise 10.2]

Example 11.1 Recoding ternary symbolic dynamics in binary: Given a ternary
sequence and labels of 2 preceding disks, rule (11.1) fixes the subsequent binary
symbols. Here we list an arbitrary ternary itinerary, and the corresponding binary
sequence:

ternary : 3 1 2 1 3 1 2 3 2 1 2 3 1 3 2 3

binary : · 1 0 1 0 1 1 0 1 0 1 1 0 1 0 (11.2)

The first 2 disks initialize the trajectory and its direction; 3 7→ 1 7→ 2 7→ · · ·. Due to
the 3-disk symmetry the six distinct 3-disk sequences initialized by 12, 13, 21, 23, 31,
32 respectively have the same weights, the same size partitions, and are coded by a
single binary sequence. For periodic orbits, the equivalent ternary cycles reduce to
binary cycles of 1/3, 1/2 or the same length. How this works is best understood by
inspection of table 11.1, figure 11.2 and figure 9.5.

The 3-disk game of pinball is tiled by six copies of thefundamental domain,
a one-sixth slice of the full 3-disk system, with the symmetry axes acting as
reflecting mirrors, see figure11.2(b). Every global 3-disk trajectory has a corresponding
fundamental domain mirror trajectory obtained by replacing every crossing of a
symmetry axis by a reflection. Depending on the symmetry of the full state
space trajectory, a repeating binary symbols block corresponds either to the full
periodic orbit or to a relative periodic orbit (examples areshown in figure11.2
and table11.1). An irreducible segment corresponds to a periodic orbit inthe
fundamental domain. Table11.1lists some of the shortest binary periodic orbits,
together with the corresponding full 3-disk symbol sequences and orbit symmetries.
For a number of deep reasons that will be elucidated in chapter 19, life is much
simpler in the fundamental domain than in the full system, sowhenever possible
our computations will be carried out in the fundamental domain.

Example 11.2 C2 recoded: As the simplest example of implementing the above
[exercise 9.2]

scheme consider the C2 symmetry of example 9.4. For our purposes, all that we need
to know here is that each orbit or configuration is uniquely labeled by an infinite string
{si}, si = +,− and that the dynamics is invariant under the + ↔ − interchange, i.e.,
it is C2 symmetric. The C2 symmetry cycles separate into two classes, the self-dual
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Table 11.1: C3v correspondence between the binary labeled fundamental domain prime
cyclesp̃ and the full 3-disk ternary labeled cyclesp, together with theC3v transformation
that maps the end point of the ˜p cycle into the irreducible segment of thep cycle, see
sect.9.3. Breaks in the above ternary sequences mark repeats of the irreducible segment.
The multiplicity of p cycle ismp = 6np̃/np. The shortest pair of the fundamental domain
cycles related by time reversal (but no spatial symmetry) are the 6-cycles001011 and
001101.

p̃ p gp̃

0 1 2 σ12
1 1 2 3 C
01 12 13 σ23
001 121 232 313 C
011 121 323 σ13
0001 1212 1313 σ23

0011 1212 3131 2323 C2

0111 1213 2123 σ12
00001 12121 2323231313C
00011 12121 32323 σ13
00101 12123 21213 σ12
00111 12123 e
01011 12131 2321231323C
01111 12132 13123 σ23

p̃ p gp̃

000001 121212131313 σ23

000011 121212313131232323 C2

000101 121213 e
000111 121213212123 σ12
001011 121232131323 σ23
001101 121231323213 σ13
001111 121231232312313123 C
010111 121312313231232123 C2

011111 121321323123 σ13
0000001 121212123232323131313C
0000011 12121213232323 σ13
0000101 12121232121213 σ12
0000111 1212123 e
· · · · · · · · ·

configurations +−, ++−−, +++−−−, +−−+−++−, · · ·, with multiplicity mp = 1, and
the asymmetric pairs +, −, + + −, − − +, · · ·, with multiplicity mp = 2. For example, as
there is no absolute distinction between the “up” and the “down” spins, or the “left” or
the “right” lobe, Λ+ = Λ−, Λ++− = Λ+−−, and so on.

[exercise 19.4]
The symmetry reduced labeling ρi ∈ {0, 1} is related to the standard si ∈ {+,−}

Ising spin labeling by

If si = si−1 then ρi = 1

If si , si−1 then ρi = 0 (11.3)

For example, + = · · · + + + + · · · maps into · · ·111· · · = 1 (and so does −), −+ =
· · · − + − + · · · maps into · · ·000· · · = 0, − + +− = · · · − − + + − − + + · · · maps into
· · ·0101· · · = 01, and so forth. A list of such reductions is given in table 11.2.

Example 11.3 C3v recoded - 3-disk game of pinball:

The C3v recoding can be worked out by a glance at figure 11.2 (a) (continuation
of example 9.5). For the symmetric 3-disk game of pinball the fundamental domain is
bounded by a disk segment and the two adjacent sections of the symmetry axes that
act as mirrors (see figure 11.2 (b)). The three symmetry axes divide the space into
six copies of the fundamental domain. Any trajectory on the full space can be pieced
together from bounces in the fundamental domain, with symmetry axes replaced by flat
mirror reflections. The binary {0, 1} reduction of the ternary three disk {1, 2, 3} labels has
a simple geometric interpretation: a collision of type 0 reflects the projectile to the disk
it comes from (back–scatter), whereas after a collision of type 1 projectile continues to
the third disk. For example, 23 = · · ·232323· · ·maps into · · ·000· · · = 0 (and so do 12
and 13), 123= · · ·12312· · ·maps into · · ·111· · · = 1 (and so does 132), and so forth. A
list of such reductions for short cycles is given in table 11.1, figure 11.2 and figure 9.5.

smale - 5jun2005.tex



CHAPTER 11. QUALITATIVE DYNAMICS, FOR CYCLISTS 178

Table 11.2: Correspondence between theC2 symmetry reduced cycles ˜p and the standard
Ising model periodic configurationsp, together with their multiplicitiesmp. Also listed
are the two shortest cycles (length 6) related by time reversal, but distinct underC2.

p̃ p mp

1 + 2
0 −+ 1
01 − − ++ 1
001 − + + 2
011 − − − + ++ 1
0001 − + − − + − ++ 1
0011 − + ++ 2
0111 − − − − + + ++ 1
00001 − + − + − 2
00011 − + − − − + − + ++ 1
00101 − + + − − + − − ++ 1
00111 − + − − − + − + ++ 1
01011 − − + + + 2
01111 − − − − − + + + ++ 1
001011 − + + − − − + − − + ++ 1
001101 − + + + − − + − − − ++ 1

11.2 Going global: Stable/unstable manifolds

In the linear approximation, the fundamental matrixMt describes the shearing
of an infinitesimal neighborhood in after a finite timet. Its eigenvalues and
eigendirections describe deformation of an initial infinitesimal sphere of neighboring
trajectories into an ellipsoid timet later. Nearby trajectories separate exponentially
along the unstable directions, approach each other along the stable directions, and
maintain their distance along the marginal directions.

The fixed or periodic pointx∗ fundamental matrixMp(x∗) eigenvectors (5.12)
form a rectilinear coordinate frame in which the flow into, out of, or encircling the
fixed point is linear in the sense of sect.4.2. These eigendirections are numerically
continued into global curvilinear invariant manifolds as follows.

The global continuations of the local stable, unstable eigendirections are called
the stable, respectivelyunstable manifolds. They consist of all points which
march into the fixed point forward, respectively backward intime

Ws =
{
x ∈ M : f t(x) − x∗ → 0 ast → ∞

}

Wu =
{
x ∈ M : f −t(x) − x∗ → 0 ast → ∞

}
. (11.4)

The stable/unstable manifolds of a flow are rather hard to visualize, so as long as
we are not worried about a global property such as the number of times they wind
around a periodic trajectory before completing a par-course, we might just as well
look at their Poincaré section return maps. Stable, unstable manifolds for maps
are defined by

Ws =
{
x ∈ P : f n(x) − x∗ → 0 asn→ ∞}

Wu =
{
x ∈ P : f −n(x) − x∗ → 0 asn→∞}

. (11.5)

smale - 5jun2005.tex

CHAPTER 11. QUALITATIVE DYNAMICS, FOR CYCLISTS 179

Eigenvectors (real or complex pairs) of fundamental matrixMp(x∗) play a special
role - on them the action of the dynamics is the linear multiplication byΛi (for
a real eigenvector) along 1-d invariant curveWu,s

(i) or spiral in/out action in a 2-D
surface (for a complex pair). Forn→ ∞ a finite segment onWs

(e), respectivelyWu
(c)

converges to the linearized map eigenvectore(e), respectivelye(c). In this sense
each eigenvector defines a (curvilinear) axis of the stable,respectively unstable
manifold.

Conversely, we can use an arbitrarily small segment of a fixedpoint eigenvector
to construct a finite segment of the associated manifold. Precise construction
depends on the type of the eigenvalue(s).

Expanding real and positive eigendirection. Considerith expanding eigenvalue,
eigenvector pair (Λi , ei) computed fromJ evaluated at a cycle point,

J(x)ei (x) = Λiei(x) , x ∈ p , Λi > 1 . (11.6)

Take an infinitesimal eigenvectorǫ ei(x), ǫ ≪ 1, and its imageJp(x)ǫ ei(x) =
Λiǫ ei(x) . Sprinkle the interval|Λi−1|ǫ with a large number of pointsxm, equidistantly
spaced on logarithmic scale ln|Λi−1|+ ln ǫ . The successive images of these points
f (x j), f 2(x j), · · ·, f m(x j) trace out the curvilinear unstable manifold in direction
ei . Repeat for−ǫ ei(x).

Contracting real, positive eigendirection. Reverse the action of the map
backwards in time. This turns a contracting direction into an expanding one,
tracing out the curvilinear stable manifold in continuation of ǫ ej .

Expanding/contracting real negative eigendirection. As above, but every
even iteratef 2(x j), f 4(x j), f 6(x j) continues in the directionei , every odd one in
the direction−ei .

Complex eigenvalue pair. Construct an orthonormal pair of eigenvectors
spanning the plane{ǫ ej , ǫ ej+1}. Iteration of the annulus between an infinitesimal
circle and its image byJ spans the spiralling/circle unstable manifold of the
complex eigenvalue pair{Λi ,Λi+1 = Λ

∗
i }.

11.3 Horseshoes

If a flow is locally unstable but globally bounded, any open ball of initial points
will be stretched out and then folded back. An example is a 3-dimensional invertible
flow sketched in figure10.5which returns an area of a Poincaré section of the flow
stretched and folded into a “horseshoe,” such that the initial area is intersected at
most twice (see exercise11.4, the first Figure). Run backwards, the flow generates
the backward horseshoe which intersects the forward horseshoe at most 4 times,
and so forth. Such flows exist, and are easily constructed–anexample is the

[exercise 11.1]
Rössler flow, discussed in example3.4.
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Now we shall construct an example of a locally unstable but globally bounded
mapping which returns an initial area stretched and folded into a “horseshoe,” such
that the initial area is intersected at most twice. We shall refer to such mappings
with at most 2n transverse self-intersections at thenth iteration as theonce-folding
maps.

As an example is afforded by the 2-dimensionalHénon map
[exercise 3.5]

xn+1 = 1− ax2
n + byn

yn+1 = xn . (11.7)

The Hénon map models qualitatively the Poincaré section return map of figure10.5.
For b = 0 the Hénon map reduces to the parabola (10.7), and, as shown in
sects.3.3 and27.1, for b , 0 it is kind of a fattened parabola; by construction, it
takes a rectangular initial area and returns it bent as a horseshoe.

For definitiveness, fix the parameter values toa = 6, b = −1. The map is
quadratic, so it has 2 fixed pointsx0 = f (x0), x1 = f (x1) indicated in figure11.3(a).
For the parameter values at hand, they are both unstable. If you start with a
small ball of initial points centered aroundx1, and iterate the map, the ball will be
stretched and squashed along the lineWu

1. Similarly, a small ball of initial points
centered around the other fixed pointx0 iterated backward in time,

xn−1 = yn

yn−1 = −1
b

(1− ay2
n − xn) , (11.8)

traces out the lineWs
0. Ws

0 is the stable manifold ofx0 fixed point, andWu
1 is the

unstable manifold ofx1 fixed point, defined in sect.11.2. Their intersections
enclose the crosshatched regionM. . Any point outsideWu

1 border ofM. escapes
to infinity forward in time, while any point outsideWs

0 border escapes to infinity
backwards in time. In this way the unstable - stable manifolds define topologically,
invariant and optimalM. initial region; all orbits that stay confined for all times
are confined toM. .

Iterated one step forward, the regionM. is stretched and folded into asmale
horseshoe drawn in figure11.3(b). The horseshoe fattened parabola shape is the
consequence of the quadratic formx2 in (11.7). Parametera controls the amount
of stretching, while the parameterb controls the amount of compression of the
folded horseshoe. The casea = 6, b = 0.9 considered here corresponds to strong
stretching and weak compression. Label the two forward intersectionsf (M.)∩M.

byMs., with s ∈ {0, 1}, figure11.3(b). The horseshoe consists of the two strips
M0.,M1. , and the bent segment that lies entirely outside theWu

1 line. As all
points in this segment escape to infinity under forward iteration, this region can
safely be cut out and thrown away.

Iterated one step backwards, the regionM. is again stretched and folded into
a horseshoe, figure11.3 (c). As stability and instability are interchanged under
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Figure 11.3: The Hénon map fora = 6, b =

−1: fixed points 0, 1, with segments of the
Ws

0 stable manifold,Wu
0 unstable manifold. (a)

Their intersection bounds the regionM. which
contains the non–wandering setΩ. (b) The
intersection of the forward imagef 1(M.) with
the backward backwardf −1(M.) is a four-region
cover of Ω. (c) The intersection of the twice-
folded forward horseshoef 2(M.) with backward
horseshoe f −1(M.). (d) The intersection of
f 2(M.) with f −2(M.) is a 16-region cover of
Ω. Iteration yields the complete Smale horseshoe
non–wandering setΩ, i.e., the union of all non-
wandering points off , with every forward fold
intersecting every backward fold. (Y. Matsuoka)

(a) −1.0 0.0 1.0

−1.0

0.0

1.0

1

0

(b) −1.0 0.0 1.0

−1.0

0.0

1.0

1

0

(c) −1.0 0.0 1.0
−1.0

0.0

1.0

(d) −1.0 0.0 1.0

−1.0

0.0

1.0

time reversal, this horseshoe is transverse to the forward one. Again the points in
the horseshoe bend wonder off to infinity asn → −∞, and we are left with the
two (backward) stripsM.0,M.1 . Iterating two steps forward we obtain the four
stripsM11.,M01.,M00.,M10., and iterating backwards we obtain the four strips
M.00,M.01,M.11,M.10 transverse to the forward ones just as for 3-disk pinball
game figure10.3. Iterating three steps forward we get an 8 strips, and so onad
infinitum.

What is the significance of the subscript.011 which labels theM.011 backward
strip? The two stripsM.0,M.1 partition the state space into two regions labeled
by the two-letter alphabetA = {0, 1}. S+ = .011 is thefuture itinerary for all
x ∈ M.011. Likewise, for the forward strips allx ∈ Ms−m···s−1s0. have thepast
itinerary S- = s−m · · · s−1s0 . Which partition we use to present pictorially the
regions that do not escape inm iterations is a matter of taste, as the backward
strips are the preimages of the forward ones

M0. = f (M.0) , M1. = f (M.1) .

Ω, the non–wandering set (2.2) of M., is the union of all points whose forward
and backward trajectories remain trapped for all time. given by the intersections
of all images and preimages ofM:

Ω =

{
x : x ∈ lim

m,n→∞
f m(M.)

⋂
f −n(M.)

}
. (11.9)

Two important properties of the Smale horseshoe are that it has acomplete
binary symbolic dynamicsand that it isstructurally stable.
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For acompleteSmale horseshoe every forward foldf n(M) intersects transversally
every backward foldf −m(M), so a unique bi-infinite binary sequence can be
associated to every element of the non–wandering set. A point x ∈ Ω is labeled by
the intersection of its past and future itinerariesS(x) = · · · s−2s−1s0.s1s2 · · ·, where
sn = s if f n(x) ∈ M.s , s∈ {0, 1} andn ∈ Z. For sufficiently separated disks,

the 3-disk game of pinball figure10.3, is another example of a complete Smale
horseshoe; in this case the “folding” region of the horseshoe is cut out of the
picture by allowing the pinballs that fly between the disks tofall off the table and
escape.

The system is said to bestructurally stableif all intersections of forward and
backward iterates ofM remain transverse for sufficiently small perturbationsf →
f + δ of the flow, for example, for slight displacements of the disks, or sufficiently
small variations of the Hénon map parametersa, b while structural stability is
exceedingly desirable, it is also exceedingly rare. About this, more later.

11.4 Spatial ordering

Consider a system for which you have succeeded in constructing a covering symbolic
dynamics, such as a well-separated 3-disk system. Now startmoving the disks
toward each other. At some critical separation a disk will start blocking families
of trajectories traversing the other two disks. The order inwhich trajectories
disappear is determined by their relative ordering in space; the ones closest to the
intervening disk will be pruned first. Determining inadmissible itineraries requires
that we relate the spatial ordering of trajectories to theirtime ordered itineraries.

[exercise 11.8]

So far we have rules that, given a state space partition, generate atemporally
ordered itinerary for a given trajectory. Our next task is the reverse: given a
set of itineraries, what is thespatial ordering of corresponding points along the
trajectories? In answering this question we will be aided bySmale’s visualization
of the relation between the topology of a flow and its symbolicdynamics by means
of “horseshoes.”

11.4.1 Symbol square

For a better visualization of 2-dimensional non–wanderingsets, fatten the intersection
regions until they completely cover a unit square, as in figure 11.4. We shall refer
to such a “map” of the topology of a given “stretch & fold” dynamical system as
thesymbol square. The symbol square is a topologically accurate representation
of the non–wandering set and serves as a street map for labeling its pieces. Finite
memory ofmsteps and finite foresight ofn steps partitions the symbol square into
rectangles[s−m+1 · · · s0.s1s2 · · · sn]. In the binary dynamics symbol square the size
of such rectangle is 2−m × 2−n; it corresponds to a region of the dynamical state
space which contains all points that share commonn future andm past symbols.
This region maps in a nontrivial way in the state space, but inthe symbol square
its dynamics is exceedingly simple; all of its points are mapped by the decimal
point shift (10.18)

[exercise 11.2]
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Figure 11.4: Kneading Danish pastry: symbol
square representation of an orientation reversing
once-folding map obtained by fattening the Smale
horseshoe intersections of figure11.3 into a unit
square. In the symbol square the dynamics maps
rectangles into rectangles by a decimal point shift.

σ(· · · s−2s−1s0.s1s2s3 · · ·) = · · · s−2s−1s0s1.s2s3 · · · , (11.10)

For example, the square [01.01] gets mapped into the rectangleσ[01.01] = [010.1],
see exercise11.4, the first Figure (b).

[exercise 11.3]

As the horseshoe mapping is a simple repetitive operation, we expect a simple
relation between the symbolic dynamics labeling of the horseshoe strips, and
their relative placement. The symbol square pointsγ(S+) with future itinerary

[exercise 11.4]
S+ are constructed by converting the sequence ofsn’s into a binary number by
the algorithm (10.9). This follows by inspection from figure11.4. In order to
understand this relation between the topology of horseshoes and their symbolic
dynamics, it might be helpful to backtrace to sect.10.2.2and work through and
understand first the symbolic dynamics of 1-dimensional unimodal mappings.

Under backward iteration the roles of 0 and 1 symbols are interchanged;M−1
0

has the same orientation asM, whileM−1
1 has the opposite orientation. We assign

[exercise 11.5]
to an orientation preservingonce-folding map thepast topological coordinate
δ = δ(S-) by the algorithm:

wn−1 =

{
wn if sn = 0
1− wn if sn = 1 , w0 = s0

δ(S-) = 0.w0w−1w−2 . . . =

∞∑

n=1

w1−n/2
n . (11.11)

Such formulas are best derived by quiet contemplation of theaction of a folding
map, in the same way we derived the future topological coordinate (10.9).

The coordinate pair (δ, γ) maps a point (x, y) in the state space Cantor set
of figure 11.3 into a point in the symbol square of figure11.4, preserving the
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topological ordering; (δ, γ) serves as a topologically faithful representation of the
non–wandering set of any once-folding map, and aids us in partitioning the set
and ordering the partitions for any flow of this type.

11.5 Pruning

The complexity of this figure will be striking, and I shall
not even try to draw it.

— H. Poincaré, on his discovery of homoclinic
tangles,Les méthodes nouvelles de la méchanique céleste

In general, not all possible itineraries are realized as physical trajectories.
Trying to get from “here” to “there” we might find that a short path is excluded by
some obstacle, such as a disk that blocks the path, or a potential ridge. To count
correctly, we need toprunethe inadmissible trajectories, i.e., specify the grammar
of the admissible itineraries.

While the complete Smale horseshoe dynamics discussed so far is rather straightforward,
we had to get through it in order to be able to approach a situation that resembles
more the real life: adjust the parameters of a once-folding map so that the intersection
of the backward and forward folds is still transverse, but nolonger complete, as in
figure13.2(a). The utility of the symbol square lies in the fact that thesurviving,
admissible itineraries still maintain the same relative spatial ordering as for the
complete case.

In the example of figure13.2(a) the rectangles [10.1], [11.1] have been pruned,
and consequentlyany trajectory containing blocksb1 = 101,b2 = 111 is pruned.
We refer to the border of this primary pruned region as thepruning front; another
example of a pruning front is drawn in figure13.2 (d). We call it a “front”
as it can be visualized as a border between admissible and inadmissible; any
trajectory whose periodic point would fall to the right of the front in figure13.2
is inadmissible, i.e., pruned. The pruning front is a complete description of the
symbolic dynamics of once-folding maps.For now we need thisonly as a concrete
illustration of how pruning rules arise.

In the example at hand there are total of two forbidden blocks101, 111, so the
symbol dynamics is a subshift of finite type (10.22). For now we concentrate on
this kind of pruning because it is particularly clean and simple. Unfortunately, for
a generic dynamical system a subshift of finite type is the exception rather than
the rule. Only some repelling sets (like our game of pinball)and a few purely
mathematical constructs (called Anosov flows) are structurally stable - for most
systems of interest an infinitesimal perturbation of the flowdestroys and/or creates
an infinity of trajectories, and specification of the grammarrequires determination
of pruning blocks of arbitrary length. The repercussions are dramatic and counterintuitive;
for example, due to the lack of structural stability the transport coefficients such
as the deterministic diffusion constant of sect.24.2are emphaticallynot smooth
functions of the system parameters. This generic lack of structural stability is
what makes nonlinear dynamics so hard.
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The conceptually simpler finite subshift Smale horseshoes suffice to motivate
most of the key concepts that we shall need for time being.

11.5.1 Converting pruning blocks into Markov graphs

The complete binary symbolic dynamics is too simple to be illuminating, so
we turn next to the simplest example of pruned symbolic dynamics, the finite
subshift obtained by prohibition of repeats of one of the symbols, let us say00 .
This situation arises, for example, in studies of the circlemaps, where this kind

[exercise 13.7]
of symbolic dynamics describes “golden mean” rotations. Now the admissible

[exercise 13.8]
itineraries are enumerated by the pruned binary tree of figure 10.13(a), or the
corresponding Markov graph figure10.13(b). We recognize this as the Markov
graph example of figure10.14.

So we can already see the main ingredients of a general algorithm: (1) Markov
graph encodes self-similarities of the tree of all itineraries, and (2) if we have a
pruning block of lengthM, we need to descendM levels before we can start
identifying the self-similar sub-trees.

Suppose now that, by hook or crook, you have been so lucky fishing for
pruning rules that you now know the grammar (10.21) in terms of a finite set
of pruning blocksG = {b1, b2, · · ·bk}, of lengthsnbm ≤ M. Our task is to generate
all admissible itineraries. What to do?

A Markov graph algorithm.

1. Starting with the root of the tree, delineate all branchesthat correspond to
all pruning blocks; implement the pruning by removing the last node in each
pruning block.

2. Label all nodes internal to pruning blocks by the itinerary connecting the
root point to the internal node. Why? So far we have pruned forbidden
branches by lookingnb steps into future for all pruning blocks. into future
for pruning blockb = 10010. However, the blocks with a right combination
of past and future [1.0110], [10.110], [101.10] and [1011.0] are also pruned.
In other words, any node whose near past coincides with the beginning of
a pruning block is potentially dangerous - a branch further down the tree
might get pruned.

3. Add to each internal node all remaining branches allowed by the alphabet,
and label them. Why? Each one of them is the beginning point ofan infinite
tree, a tree that should be similar to another one originating closer to the root
of the whole tree.

4. Pick one of the free external nodes closest to the root of the entire tree,
forget the most distant symbol in its past. Does the truncated itinerary
correspond to an internal node? If yes, identify the two nodes. If not, forget
the next symbol in the past, repeat. If no such truncated pastcorresponds to
any internal node, identify with the root of the tree.
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This is a little bit abstract, so let’s say the free external node in question is
[1010.]. Three time steps back the past is [010.]. That is not dangerous, as
no pruning block in this example starts with 0. Now forget thethird step in
the past: [10.] is dangerous, as that is the start of the pruning block [10.110].
Hence the free external node [1010.] should be identified with the internal
node [10.].

5. Repeat until all free nodes have been tied back into the internal nodes.

6. Clean up: check whether every node can be reached from every other node.
Remove the transient nodes, i.e., the nodes to which dynamics never returns.

7. The result is a Markov diagram. There is no guarantee that this is the
smartest, most compact Markov diagram possible for given pruning (if
you have a better algorithm, teach us), but walks around it dogenerate all
admissible itineraries, and nothing else.

Heavy pruning.

We complete this training by examples by implementing the pruning of figure13.2(d).
The pruning blocks are

[100.10], [10.1], [010.01], [011.01], [11.1], [101.10]. (11.12)

Blocks 01101, 10110 contain the forbidden block 101, so theyare redundant as
pruning rules. Draw thepruning treeas a section of a binary tree with 0 and 1
branches and label each internal node by the sequence of 0’s and 1’s connecting it
to the root of the tree (figure13.3(a). These nodes are the potentially dangerous
nodes - beginnings of blocks that might end up pruned. Add theside branches
to those nodes (figure13.3(b). As we continue down such branches we have to
check whether the pruning imposes constraints on the sequences so generated:
we do this by knocking off the leading bits and checking whether the shortened
strings coincide with any of the internal pruning tree nodes: 00→ 0; 110→ 10;
011→ 11; 0101→ 101 (pruned); 1000→ 00 → 00 → 0; 10011→ 0011→
011→ 11; 01000→ 0.

As in the previous two examples, the trees originating in identified nodes
are identical, so the tree is “self-similar.” Now connect the side branches to the
corresponding nodes, figure13.3 (d). Nodes “.” and 1 are transient nodes; no
sequence returns to them, and as you are interested here onlyin infinitely recurrent
sequences, delete them. The result is the finite Markov graphof figure13.3(d);
the admissible bi-infinite symbol sequences are generated as all possible walks
along this graph.

Résum é

Given a partitionA of the state spaceM, a dynamical system (M, f ) induces
topological dynamics (Σ, σ) on the spaceΣ of all admissible bi–infinite itineraries.
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The itinerary describes the time evolution of an orbit, while (for 2-d hyperbolic
maps) the symbol square describes the spatial ordering of points along the orbit.
The rule that everything to one side of the pruning front is forbidden might (in
hindsight) seem obvious, but if you have ever tried to work out symbolic dynamics
of some “generic” dynamical system, you should be struck by its simplicity:
instead of pruning a Cantor set embedded within some larger Cantor set, the
pruning front cleanly cuts out acompactregion in the symbol square and that
is all - there are no additional pruning rules.

The symbol square is a useful tool in transforming topological pruning into
pruning rules for inadmissible sequences; those are implemented by constructing
transition matrices and/or Markov graphs. These matrices are the simplest examples
of evolution operators prerequisite to developing a theoryof averaging over chaotic
flows.

Importance of symbolic dynamics is often grossly unappreciated; as we shall
see in chapters21 and18, coupled with uniform hyperbolicity, the existence of a
finite grammar is the crucial prerequisite for constructionof zeta functions with
nice analyticity properties.
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Commentary

Remark 11.1 Stable/unstable manifolds. For pretty pictures of invariant manifolds
other than Lorenz, see Abraham and Shaw [26].

Remark 11.2 Smale horseshoe. S. Smale understood clearly that the crucial ingredient
in the description of a chaotic flow is the topology of its non–wandering set, and he
provided us with the simplest visualization of such sets as intersections of Smale horseshoes.
In retrospect, much of the material covered here can alreadybe found in Smale’s fundamental
paper [23], but a physicist who has run into a chaotic time series in hislaboratory might
not know that he is investigating the action (differentiable) of a Lie groupG on a manifold
M, and that the Lefschetz trace formula is the way to go. If you find yourself mystified by
Smale’s article abstract about “the action (differentiable) of a Lie groupG on a manifold
M,” quoted on page179, rereading chapter14 might help; for example, the Liouville
operators form a Lie group (of symplectic, or canonical transformations) acting on the
manifold (p, q).

Remark 11.3 Kneading theory. The admissible itineraries are studied in refs. [12,
14, 16, 17], as well as many others. We follow here the Milnor-Thurstonexposition [13].
They study the topological zeta function for piecewise monotone maps of the interval, and
show that for the finite subshift case it can be expressed in terms of a finite dimensional
kneading determinant. As the kneading determinant is essentially the topological zeta
function that we introduce in (13.4), we shall not discuss it here. Baladi and Ruelle have
reworked this theory in a series of papers [15, 16, 17] and in ref. [18] replaced it by a power
series manipulation. The kneading theory is covered here inP. Dahlqvist’s appendixD.1.

Remark 11.4 Pruning fronts. The notion of a pruning front was introduced in ref. [19],
and developed by K.T. Hansen for a number of dynamical systems in his Ph.D. thesis [8]
and a series of papers [26]-[30]. Detailed studies of pruning fronts are carried out in
refs. [20, 22, 21]; ref. [5] is the most detailed study carried out so far. The rigorous
theory of pruning fronts has been developed by Y. Ishii [23, 24] for the Lozi map, and A.
de Carvalho [25] in a very general setting.

Remark 11.5 The unbearable growth of Markov graphs. A construction of finite
Markov partitions is described in refs. [10, 11], as well as in the innumerably many other
references.

If two regions in a Markov partition are not disjoint but share a boundary, the boundary
trajectories require special treatment in order to avoid overcounting, see sect.19.3.1. If
the image of a trial partition region cuts across only a part of another trial region and
thus violates the Markov partition condition (10.4), a further refinement of the partition is
needed to distinguish distinct trajectories - figure13.2is an example of such refinements.

The finite Markov graph construction sketched above is not necessarily the minimal
one; for example, the Markov graph of figure13.3does not generate only the “fundamental”
cycles (see chapter18), but shadowed cycles as well, such ast00011 in (13.17). For
methods of reduction to a minimal graph, consult refs. [6, 51, 7]. Furthermore, when one
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implements the time reversed dynamics by the same algorithm, one usually gets a graph of
very different topology even though both graphs generate the same admissible sequences,
and have the same determinant. The algorithm described heremakes some sense for 1-d
dynamics, but is unnatural for 2-d maps whose dynamics it treats as 1-dimensional. In
practice, generic pruning grows longer and longer, and moreplentiful pruning rules. For
generic flows the refinements might never stop, and almost always we might have to deal
with infinite Markov partitions, such as those that will be discussed in sect.13.6. Not only
do the Markov graphs get more and more unwieldy, they have theunpleasant property that
every time we add a new rule, the graph has to be constructed from scratch, and it might
look very different form the previous one, even though it leads to a minute modification
of the topological entropy. The most determined effort to construct such graphs may be
the one of ref. [20]. Still, this seems to be the best technology available, unless the reader
alerts us to something superior.

smale - 5jun2005.tex



EXERCISES 190

Exercises

11.1. A Smale horseshoe. The Hénon map
[

x′

y′

]
=

[
1− ax2 + y
bx

]
(11.13)

maps the (x, y) plane into itself - it was constructed
by Hénon [2] in order to mimic the Poincaré section
of once-folding map induced by a flow like the one
sketched in figure10.5. For definitiveness fix the
parameters toa = 6, b = −1.

a) Draw a rectangle in the (x, y) plane such that
its nth iterate by the Hénon map intersects the
rectangle 2n times.

b) Construct the inverse of the (11.13).

c) Iterate the rectangle back in the time; how many
intersections are there between then forward and
mbackward iterates of the rectangle?

d) Use the above information about the intersections
to guess the (x, y) coordinates for the two fixed
points, a 2-cycle point, and points on the two
distinct 3-cycles from table10.1. The exact cycle
points are computed in exercise12.10.

11.2. Kneading Danish pastry. Write down the (x, y) →
(x, y) mapping that implements the baker’s map of
figure11.4, together with the inverse mapping. Sketch
a few rectangles in symbol square and their forward and
backward images. (Hint: the mapping is very much like
the tent map (10.6)).

11.3. Kneading Danish without flipping. The baker’s
map of figure11.4includes a flip - a map of this type is
called an orientation reversing once-folding map. Write
down the (x, y) → (x, y) mapping that implements an
orientation preserving baker’s map (no flip; Jacobian
determinant= 1). Sketch and label the first few folds
of the symbol square.

11.4. Fix this manuscript. Check whether the layers of the
baker’s map of figure11.4 are indeed ordered as the
branches of the alternating binary tree of figure10.9.
(They might not be - we have not rechecked them).
Draw the correct binary trees that order both the future
and past itineraries.

For once-folding maps there are four topologically
distinct ways of laying out the stretched and folded
image of the starting region,

(a) orientation preserving: stretch, fold upward, as in
figure??.

(b) orientation preserving: stretch, fold downward, as
in figure13.2

(c) orientation reversing: stretch, fold upward, flip, as
in figure??.

(d) orientation reversing: stretch, fold downward, flip,
as in figure11.4,

with the corresponding four distinct binary-labeled
symbol squares. Forn-fold “stretch & fold” flows
the labeling would benary. The intersectionM0 for
the orientation preserving Smale horseshoe, the first
Figure (a) above. is oriented the same way asM, while
M1 is oriented opposite toM. Brief contemplation of
figure11.4indicates that the forward iteration strips are
ordered relative to each other as the branches of the
alternating binary tree in figure10.9.

Check the labeling for all four cases.

11.5. Orientation reversing once-folding map. By adding
a reflection around the vertical axis to the horseshoe map
g we get the orientation reversing map ˜g shown in the
second Figure above.̃Q0 andQ̃1 are oriented asQ0 and
Q1, so the definition of the future topological coordinate
γ is identical to theγ for the orientation preserving
horseshoe. The inverse intersectionsQ̃−1

0 and Q̃−1
1 are

oriented so that̃Q−1
0 is opposite toQ, while Q̃−1

1 has the
same orientation asQ. Check that the past topological
coordinateδ is given by

wn−1 =

{
1− wn if sn = 0
wn if sn = 1 , w0 = s0

δ(x) = 0.w0w−1w−2 . . . =

∞∑

n=1

w1−n/2
n .(11.14)

11.6. Infinite symbolic dynamics. Let σ be a function
that returns zero or one for every infinite binary string:
σ : {0, 1}N → {0, 1}. Its value is represented by
σ(ǫ1, ǫ2, . . .) where theǫi are either 0 or 1. We will
now define an operatorT that acts on observables on the
space of binary strings. A functiona is an observable if
it has bounded variation, that is, if

‖a‖ = sup
{ǫi }
|a(ǫ1, ǫ2, . . .)| < ∞ .

For these functions

Ta(ǫ1, ǫ2, . . .) = a(0, ǫ1, ǫ2, . . .)σ(0, ǫ1, ǫ2, . . .)

+a(1, ǫ1, ǫ2, . . .)σ(1, ǫ1, ǫ2, . . .) .

exerSmale - 20sep2003.tex

REFERENCES 191

(a) (easy) Consider a finite versionTn of the operator
T :

Tna(ǫ1, ǫ2, . . . , ǫ1,n) =

a(0, ǫ1, ǫ2, . . . , ǫn−1)σ(0, ǫ1, ǫ2, . . . , ǫn−1) +

a(1, ǫ1, ǫ2, . . . , ǫn−1)σ(1, ǫ1, ǫ2, . . . , ǫn−1) .

Show thatTn is a 2n × 2n matrix. Show that its
trace is bounded by a number independent ofn.

(b) (medium) With the operator norm induced by the
function norm, show thatT is a bounded operator.

(c) (hard) Show thatT is not trace class.

11.7. Time reversibility. ∗∗ Hamiltonian flows are time
reversible. Does that mean that their Markov graphs
are symmetric in all node → node links, their
transition matrices are adjacency matrices, symmetric
and diagonalizable, and that they have only real
eigenvalues?

11.8. 3-disk pruning (Not easy) Show that for 3-disk
game of pinball the pruning of orbits starts atR : a =
2.04821419. . ..

(Kai T. Hansen)

11.9. Alphabet {0,1}, prune 1000 , 00100, 01100.
This example is motivated by the pruning front
description of the symbolic dynamics for the Hénon-
type maps.

step 1. 1000 prunes all cycles with a 000
subsequence with the exception of the fixed point0;
hence we factor out (1− t0) explicitly, and prune000
from the rest. This means thatx0 is an isolated fixed
point - no cycle stays in its vicinity for more than 2
iterations. In the notation of sect.11.5.1, the alphabet
is {1, 2, 3; 0}, and the remaining pruning rules have to
be rewritten in terms of symbols 2=10, 3=100:

step 2. alphabet{1, 2, 3; 0}, prune 33 , 213 , 313 .
This means that the 3-cycle3 = 100 is pruned and no
long cycles stay close enough to it for a single100
repeat. As in example 1?!, prohibition of33 is
implemented by dropping the symbol “3” and extending
the alphabet by the allowed blocks 13, 23:

step 3. alphabet{1, 2, 13, 23; 0}, prune 213 , 2313 ,
1313 , where 13= 13, 23= 23 are now used as single

letters. Pruning of the repetitions1313 (the 4-cycle
13= 1100 is pruned) yields the

result: alphabet{1, 2, 23, 113; 0}, unrestricted 4-ary
dynamics. The other remaining possible blocks213 ,
2313 are forbidden by the rules of step 3. (continued

as exercise13.20)
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type,” Nonlinearity11, 1233 (1998).

[11.43] R.W. Easton, “Trellises formed by stable and unstable manifolds in
plane,”Trans. Am. Math. Soc.294, 2 (1986).

[11.44] V. Rom-Kedar, “Transport rates of a class of two-dimensional maps and
flows,” Physica D43, 229 (1990);

[11.45] V. Daniels, M. Vallières and J-M. Yuan, “Chaotic scattering on a double
well: Periodic orbits, symbolic dynamics, and scaling,”Chaos, 3, 475,
(1993).

refsSmale - 22apr2007.tex

http://www.fi.isc.cnr.it/users/antonio.politi/Reprints/063.pdf
http://www.fi.isc.cnr.it/users/antonio.politi/Reprints/053.pdf
http://arXiv.org/abs/chao-dyn/9411005


References 194

[11.46] P.H. Richter, H.-J. Scholz and A. Wittek, “A Breathing Chaos,”
Nonlinearity1, 45 (1990).

[11.47] F. Hofbauer, “Periodic points for piecewise monotone transformations,”
Ergod. The. and Dynam Sys.5, 237 (1985).

[11.48] F. Hofbauer, “Piecewise invertible dynamical systems,” Prob. Th. Rel.
Fields72, 359 (1986).

[11.49] K.T. Hansen, “Pruning of orbits in 4-disk and hyperbola billiards,”
CHAOS2, 71 (1992).

[11.50] G. Troll, “A devil’s staircase into chaotic scattering,” Pysica D50, 276
(1991)

[11.51] P. Grassberger, “Toward a quantitative theory of self-generated
Complexity,” Int. J. Theor. Phys25, 907 (1986).

[11.52] D.L. Rod,J. Diff. Equ.14, 129 (1973).

[11.53] R.C. Churchill, G. Pecelli and D.L. Rod,J. Diff. Equ.17, 329 (1975).

[11.54] R.C. Churchill, G. Pecelli and D.L. Rod, in G. Casatiand J. Ford,
eds.,Como Conf. Proc. on Stochastic Behavior in Classical and Quantum
Hamiltonian Systems(Springer, Berlin 1976).

[11.55] R. Mainieri, Ph. D. thesis, New York University (Aug1990);Phys. Rev.
A 45,3580 (1992)

[11.56] M.J. Giannoni and D. Ullmo, “Coding chaotic billiards: I. Non-compact
billiards on a negative curvature manifold,”PhysicaD 41, 371 (1990).

[11.57] D. Ullmo and M.J. Giannoni, “Coding chaotic billiards: II. Compact
billiards defined on the pseudosphere,”PhysicaD 84, 329 (1995).

[11.58] H. Solari, M. Natiello and G.B. Mindlin, “NonlinearPhysics and its
Mathematical Tools,” (IOP Publishing Ltd., Bristol, 1996).

[11.59] R. Gilmore, “Topological analysis of chaotic dynamical systems,”
submitted toRev. Mod. Phys.(1997).

[11.60] P. Dahlqvist,On the effect of pruning on the singularity structure of zeta
functions, J. Math. Phys.38, 4273 (1997).

[11.61] E. Hille,Analytic function theory II, (Ginn and Co., Boston 1962).

refsSmale - 22apr2007.tex

Chapter 12

Fixed points, and how to get them

H   the dynamical context, now we turn to the key and unavoidable
piece of numerics in this subject; search for the solutions (x,T), x ∈ Rd,
T ∈ R of theperiodic orbit condition

f t+T(x) = f t(x) , T > 0 (12.1)

for a given flow or mapping.

We know from chapter16that cycles are the necessary ingredient for evaluation
of spectra of evolution operators. In chapter10 we have developed a qualitative
theory of how these cycles are laid out topologically.

This chapter is intended as a hands-on guide to extraction ofperiodic orbits,
and should be skipped on first reading - you can return to it whenever the need for
finding actual cycles arises. Sadly, searching for periodicorbits will never become
as popular as a week on Côte d’Azur, or publishing yet another log-log plot in
Phys. Rev. Letters. A serious cyclist will want to also learn about the variational

[chapter 27]
methods to find cycles, chapter27. They are particularly useful when little is
understood about the topology of a flow, such as in high-dimensional periodic
orbit searches.

fast track:

chapter 13, p. 212

A prime cycle p of periodTp is a single traversal of the periodic orbit, so
our task will be to find a cycle pointx ∈ p and the shortest timeTp for which
(12.1) has a solution. A cycle point of a flowf t which crosses a Poincaré section
n times is a fixed point of thePn iterate ofP, the return map (3.1), hence we shall
refer to all cycles as “fixed points” in this chapter. By cyclic invariance, stability

[section 5.2]
eigenvalues and the period of the cycle are independent of the choice of the initial
point, so it will suffice to solve (12.1) at a single cycle point.

195



CHAPTER 12. FIXED POINTS, AND HOW TO GET THEM 196

If the cycle is an attracting limit cycle with a sizable basinof attraction, it can
be found by integrating the flow for sufficiently long time. If the cycle is unstable,
simple integration forward in time will not reveal it, and methods to be described
here need to be deployed. In essence, any method for finding a cycle is based on
devising a new dynamical system which possesses the same cycle, but for which
this cycle is attractive. Beyond that, there is a great freedom in constructing such
systems, and many different methods are used in practice.

Due to the exponential divergence of nearby trajectories inchaotic dynamical
systems, fixed point searches based on direct solution of thefixed-point condition
(12.1) as an initial value problem can be numerically very unstable. Methods

[chapter 27]
that start with initial guesses for a number of points along the cycle, such as
the multipoint shooting method described here in sect.12.3, and the variational
methods of chapter27, are considerably more robust and safer.

A prerequisite for any exhaustive cycle search is a good understanding of the
topology of the flow: a preliminary step to any serious periodic orbit calculation
is preparation of a list of all distinct admissible prime periodic symbol sequences,
such as the list given in table10.1. The relations between the temporal symbol
sequences and the spatial layout of the topologically distinct regions of the state
space discussed in chapters10and11should enable us to guess location of a series
of periodic points along a cycle. Armed with such informed guess we proceed to
improve it by methods such as the Newton-Raphson iteration;we show how this
works by applying the Newton method to 1- andd-dimensional maps. But first,
where are the cycles?

12.1 Where are the cycles?

Q: What if you choose a really bad initial condition and it
doesn’t converge? A: Well then you only have yourself to
blame.

— T.D. Lee

The simplest and conceptually easiest setting for guessingwhere the cycles are is
the case of planar billiards. The Maupertuis principle of least action here dictates
that the physical trajectories extremize the length of an approximate orbit that
visits a desired sequence of boundary bounces.

Example 12.1 Periodic orbits of billiards. Consider how this works for 3-disk
pinball game of sect. 11.1. . Label the three disks by 1, 2 and 3, and associate to

[section 11.1]

[section 1.4]
every trajectory an itinerary, a sequence of labels indicating the order in which the disks
are visited, as in figure 3.2. Given the itinerary, you can construct a guess trajectory by
taking a point on the boundary of each disk in the sequence, and connecting them by
straight lines. Imagine that this is a rubber band wrapped through 3 rings, and shake
the band until it shrinks into the physical trajectory, the rubber band of shortest length.

Extremization of a cycle length requires variation of n bounce positions si .
The computational problem is to find the extremum values of cycle length L(s) where
s = (s1, . . . , sn) , a task that we postpone to sect. 27.3. As an example, the short

[exercise 27.2]

[exercise 12.10]
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periods and stabilities of 3-disk cycles computed this way are listed table 27.2, and
some examples are plotted in figure 3.2. It’s a no brainer, and millions of such cycles
have been computed.

If we were only so lucky. Real life finds us staring at something like Yang-
Mills or Navier-Stokes equations, utterly clueless. What to do?

One, there is always mindless computation. In practice one might be satisfied
with any rampaging robot that finds “the most important” cycles. Ergodic exploration
of recurrences that we turn to next sometimes perform admirably well.

12.1.1 Cycles from long time series

Two wrongs don’t make a right, but three lefts do.
—Appliance guru

(L. Rondoni and P. Cvitanović)

The equilibria and periodic orbits (with the exception of sinks and stable limit
[remark 12.1]

cycles) are never seen in simulations and experiments because they are unstable.
Nevertheless, one does observe close passes to the least unstable equilibria and
periodic orbits. Ergodic exploration by long-time trajectories (or long-lived transients,
in case of strange repellers) can uncover state space regions of low velocity, or
finite time recurrences. In addition, such trajectories preferentially sample the

[section 14.1]
natural measure of the ‘turbulent’ flow, and by initiating searches within the state
space concentrations of natural measure bias the search toward the dynamically
important invariant solutions.

The search consists of following a long trajectory in state space, and looking
for close returns of the trajectory to itself. Whenever the trajectory almost closes in
a loop (within a given tolerance), another point of this nearmiss of a cycle can be
taken as an initial condition. Supplemented by a Newton routine described below,
a sequence of improved initial conditions may indeed rapidly lead to closing a
cycle. The method preferentially finds the least unstable orbits, while missing the
more unstable ones that contribute little to the cycle expansions.

This blind search is seriously flawed: in contrast to the 3-disk example12.1,
it is not systematic, it gives no insight into organization of the ergodic sets, and
can easily miss very important cycles. Foundations to a systematic exploration
of ergodic state space are laid in chapters10 and 11, but are a bit of work to
implement.

12.1.2 Cycles found by thinking

Thinking is extra price.
—Argentine saying
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A systematic charting out of state space starts out by a hunt for equilibrium points.
If the equations of motion are a finite set of ODEs, setting thevelocity fieldv(x)
in (2.6) to zero reduces search for equilibria to a search for zeros of a set of
algebraic equations. We should be able, in principle, to enumerate and determine
all real and complex zeros in such cases, e.g. the Lorenz example 2.2 and the
Rössler example2.3. If the equations of motion and the boundary conditions are
invariant under some symmetry, some equilibria can be determined by symmetry
considerations: if a function is e.g. antisymmetric, it must vanish at origin, e.g.
the LorenzEQ0 = (0, 0, 0) equilibrium.

As to other equilibria: if you have no better idea, create a state space grid,
about 50xk acrossM in each dimension, and compute the velocity fieldvk = v(xk)
at each grid point; a few millionvk values are easily stored. Plotxk for which
|vk|2 < ǫ, ǫ << |vmax|2 but sufficiently large that a few thousandxk are plotted.
If the velocity field varies smoothly across the state space,the regions|vk|2 < ǫ

isolate the (candidate) equilibria. Start a Newton iteration with the smallest|vk|2
point within each region. Barring exceptionally fast variations inv(x) this should
yield all equilibrium points.

For ODEs equilibria are fixed points of algebraic sets of equations, but steady
states of PDEs such as the Navier-Stokes flow are themselves solutions of ODEs
or PDEs, and much harder to determine.

Equilibria–by definition–do not move, so they cannot be “turbulent.” What
makes them dynamically important are their stable/unstable manifolds. A chaotic
trajectory can be though of as a sequence of near visitationsof equilibria. Typically
such neighborhoods have many stable, contracting directions and a handful of
unstable directions. Our strategy will be to generalize thebilliard Poincaré section
mapsPsn+1←sn of example3.2 to maps from a section of the unstable manifold of
equilibrium sn to the section of unstable manifold of equilibriumsn+1, and thus
reduce the continuous time flow to a sequence of maps. These Poincaré section
maps do double duty, providing us both with an exact representation of dynamics
in terms of maps, and with a covering symbolic dynamics.

invariant

We showed in the Lorenz flow example10.5how to reduce the 3-dimensional
Lorenz flow to a 1−d return map.

In the Rössler flow example2.3 we sketched the attractor by running a long
chaotic trajectory, and noted that the attractor is very thin, but otherwise the return
maps that we plotted were disquieting – figure3.6 did not appear to be a 1-to-1
map. In the next example we show how to use such information toapproximately
locate cycles. In the remainder of this chapter and in chapter 27 we shall learn
how to turn such guesses into highly accurate cycles.

Example 12.2 Rössler attractor (G. Simon and P. Cvitanović)

Run a long simulation of the Rössler flow f t, plot a Poincaré section, as in figure 3.5,
and extract the corresponding Poincaré return map P, as in figure 3.6. Luck is with
us; the figure 12.1 (a) return map y → P1(y, z) looks much like a parabola, so we
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Figure 12.1: (a) y → P1(y, z) return map for
x = 0, y > 0 Poincaré section of the Rössler flow
figure 2.5. (b) The 1-cycle found by taking the
fixed pointyk+n = yk together with the fixed point
of the z → z return map (not shown) an initial
guess (0, y(0), z(0)) for the Newton-Raphson search.
(c) yk+3 = P3

1(yk, zk), the third iterate of Poincaré
return map (3.1) together with the corresponding
plot for zk+3 = P3

2(yk, zk), is used to pick starting
guesses for the Newton-Raphson searches for the
two 3-cycles: (d) the001 cycle, and (e) the011
cycle. (G. Simon)
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take the unimodal map symbolic dynamics, sect. 10.2.1, as our guess for the covering
dynamics. Strictly speaking, the attractor is “fractal,” but for all practical purposes the
return map is 1-dimensional; your printer will need a resolution better than 1014 dots
per inch to start resolving its structure.

Periodic points of a prime cycle p of cycle length np for the x = 0, y > 0 Poincaré
section of the Rössler flow figure 2.5 are fixed points (y, z) = Pn(y, z) of the nth Poincaré
return map.

Using the fixed point yk+1 = yk in figure 12.1 (a) together with the simultaneous
fixed point of the z→ P1(y, z) return map (not shown) as a starting guess (0, y(0), z(0)) for
the Newton-Raphson search for the cycle p with symbolic dynamics label 1, we find the
cycle figure 12.1 (b) with the Poincaré section point (0, yp, zp), period Tp, expanding,
marginal, contracting stability eigenvalues (Λp,e,Λp,m,Λp,c), and Lyapunov exponents
(λp,e, λp,m, λp,c): [exercise 12.7]

1-cycle: (x, y, z) = (0, 6.09176832,1.2997319)

T1 = 5.88108845586

(Λ1,e,Λ1,m,Λ1,c) = (−2.40395353, 1+ 10−14,−1.29× 10−14)

(λ1,e, λ1,m, λ1,c) = (0.149141556, 10−14,−5.44). (12.2)

The Newton-Raphson method that we used is described in sect. 12.4.

As an example of a search for longer cycles, we use yk+3 = P3
1(yk, zk), the

third iterate of Poincaré return map (3.1) plotted in figure 12.1 (c), together with a
corresponding plot for zk+3 = f 3(yk, zk), to pick starting guesses for the Newton-Raphson
searches for the two 3-cycles plotted in figure 12.1 (d), (e). For a listing of the short
cycles of the Rössler flow, consult exercise 12.7.

The numerical evidence suggests (but a proof is lacking) that all cycles that
comprise the strange attractor of the Rössler flow are hyperbolic, each with an expanding
eigenvalue |Λe| > 1, a contracting eigenvalue |Λc| < 1, and a marginal eigenvalue
|Λm| = 1 corresponding to displacements along the direction of the flow.

For the Rössler flow the contracting eigenvalues turn out to be insanely contracting,
a factor of e−32 per one par-course of the attractor, so their numerical determination is
quite difficult. Fortunately, they are irrelevant; for all practical purposes the strange
attractor of the Rössler flow is 1-dimensional, a very good realization of a horseshoe
template.
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Figure 12.2: The inverse time path to the01-cycle of
the logistic mapf (x) = 4x(1− x) from an initial guess
of x = 0.2. At each inverse iteration we chose the 0,
respectively 1 branch.
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Figure 12.3: Convergence of Newton method (♦)
vs. inverse iteration (+). The error aftern iterations
searching for the01-cycle of the logistic mapf (x) =
4x(1 − x) with an initial starting guess ofx1 =

0.2, x2 = 0.8. y-axis is log10 of the error. The
difference between the exponential convergence of
the inverse iteration method and the super-exponential
convergence of Newton method is dramatic.
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12.2 One-dimensional mappings

(F. Christiansen)

12.2.1 Inverse iteration

Let us first consider a very simple method to find unstable cycles of a 1-dimensional
map such as the logistic map. Unstable cycles of 1-d maps are attracting cycles
of the inverse map. The inverse map is not single valued, so ateach backward
iteration we have a choice of branch to make. By choosing branch according to
the symbolic dynamics of the cycle we are trying to find, we will automatically
converge to the desired cycle. The rate of convergence is given by the stability of
the cycle, i.e., the convergence is exponentially fast. Figure12.2shows such path
to the01-cycle of the logistic map.

[exercise 12.10]

The method of inverse iteration is fine for finding cycles for 1-d maps and
some 2-d systems such as the repeller of exercise12.10. It is not particularly fast,
especially if the inverse map is not known analytically. However, it completely
fails for higher dimensional systems where we have both stable and unstable
directions. Inverse iteration will exchange these, but we will still be left with both
stable and unstable directions. The best strategy is to directly attack the problem
of finding solutions off T(x) = x.

12.2.2 Newton method

Newton method for determining a zerox∗ of a functionF(x) of one variable is
based on a linearization around a starting guessx0:

F(x) ≈ F(x0) + F′(x0)(x− x0). (12.3)
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An approximate solutionx1 of F(x) = 0 is

x1 = x0 − F(x0)/F′(x0). (12.4)

The approximate solution can then be used as a new starting guess in an iterative
process. A fixed point of a mapf is a solution toF(x) = x − f (x) = 0. We
determinex by iterating

xm = g(xm−1) = xm−1 − F(xm−1)/F′(xm−1)

= xm−1 −
1

1− f ′(xm−1)
(xm−1 − f (xm−1)) . (12.5)

Provided that the fixed point is not marginally stable,f ′(x) , 1 at the fixed point
x, a fixed point off is a super-stable fixed point of the Newton-Raphson mapg,
g′(x) = 0, and with a sufficiently good initial guess, the Newton-Raphson iteration
will converge super-exponentially fast.

To illustrate the efficiency of the Newton method we compare it to the inverse
iteration method in figure12.3. Newton method wins hands down: the number of
significant digits of the accuracy ofx estimate doubles with each iteration.

In order to avoid jumping too far from the desiredx∗ (see figure12.4), one
often initiates the search by thedamped Newton method,

∆xm = xm+1 − xm = −
F(xm)
F′(xm)

∆τ , 0 < ∆τ ≤ 1 ,

takes small∆τ steps at the beginning, reinstating to the full∆τ = 1 jumps only
when sufficiently close to the desiredx∗.

12.3 Multipoint shooting method

(F. Christiansen)

Periodic orbits of lengthn are fixed points off n so in principle we could use
the simple Newton method described above to find them. However, this is not an
optimal strategy. f n will be a highly oscillating function with perhaps as many
as 2n or more closely spaced fixed points, and finding a specific periodic point,
for example one with a given symbolic sequence, requires avery good starting
guess. For binary symbolic dynamics we must expect to improve the accuracy of
our initial guesses by at least a factor of 2n to find orbits of lengthn. A better
alternative is themultipoint shooting method. While it might very hard to give
a precise initial point guess for a long periodic orbit, if our guesses are informed
by a good state space partition, a rough guess for each point along the desired
trajectory might suffice, as for the individual short trajectory segments the errors
have no time to explode exponentially.
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Figure 12.4: Newton method: bad initial
guess x(b) leads to the Newton estimatex(b+1) far
away from the desired zero ofF(x). Sequence
· · · , x(m), x(m+1), · · ·, starting with a good guess
converges super-exponentially tox∗. The method
diverges if it iterates into the basin of attraction of a
local minimumxc.

x(b)
x

F(x)

x

(m)F(x    )
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A cycle of lengthn is a zero of then-dimensional vector functionF:

F(x) = F



x1
x2
·
xn


=



x1 − f (xn)
x2 − f (x1)
· · ·

xn − f (xn−1)


.

The relations between the temporal symbol sequences and thespatial layout of
the topologically distinct regions of the state space discussed in chapter10enable
us to guess location of a series of periodic points along a cycle. Armed with such
informed initial guesses we can initiate a Newton-Raphson iteration. The iteration
in the Newton method now takes the form of

d
dx

F(x)(x′ − x) = −F(x), (12.6)

where d
dxF(x) is an [n× n] matrix:

d
dxF(x) =



1 − f ′(xn)
− f ′(x1) 1

· · · 1
· · · 1

− f ′(xn−1) 1


. (12.7)

This matrix can easily be inverted numerically by first eliminating the elements
below the diagonal. This creates non-zero elements in thenth column. We
eliminate these and are done.

Example 12.3 Newton inversion for a 3-cycle. Let us illustrate how this works step
by step for a 3-cycle. The initial setup for a Newton step is:


1 0 − f ′(x3)

− f ′(x1) 1 0
0 − f ′(x2) 1




∆x1
∆x2
∆x3

 = −


F1
F2
F3

 ,

where ∆xi = x′i − xi is the correction to our initial guess xi , and Fi = xi − f (xi−1) is the
error at ith cycle point. Eliminate the sub-diagonal elements by adding f ′(x1) times the
first row to the second row, then adding f ′(x2) times the second row to the third row:


1 0 − f ′(x3)
0 1 − f ′(x1) f ′(x3)
0 0 1− f ′(x2) f ′(x1) f ′(x3)




∆x1
∆x2
∆x3

 =

−


F1
F2 + f ′(x1)F1

F3 + f ′(x2)F2 + f ′(x2) f ′(x1)F1

 .
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The next step is to invert the last element in the diagonal, i.e., divide the third row
by 1 − f ′(x2) f ′(x1) f ′(x3). If this element is zero at the periodic orbit this step cannot
work. As f ′(x2) f ′(x1) f ′(x3) is the stability of the cycle (when the Newton iteration has
converged), this is not a good method to find marginally stable cycles. We now have


1 0 − f ′(x3)
0 1 − f ′(x1) f ′(x3)
0 0 1




∆x1
∆x2
∆x3

 =

−



F1
F2 + f ′(x1)F1

F3+ f ′(x2)F2+ f ′(x2) f ′(x1)F1

1− f ′(x2) f ′(x1) f ′(x3)

 .

Finally we add f ′(x3) times the third row to the first row and f ′(x1) f ′(x3) times the third
row to the second row. The left hand side matrix is now the unit matrix, the right hand
side is an explicit formula for the corrections to our initial guess. We have gone through
one Newton iteration.

When one sets up the Newton iteration on the computer it is notnecessary
to write the left hand side as a matrix. All one needs is a vector containing the
f ′(xi)’s, a vector containing then’th column, i.e., the cumulative product of the
f ′(xi)’s, and a vector containing the right hand side. After the iteration the vector
containing the right hand side should be the correction to the initial guess.

[exercise 12.1]

12.3.1 d-dimensional mappings

Armed with clever, symbolic dynamics informed initial guesses we can easily
extend the Newton-Raphson iteration method tod-dimensional mappings. In this
casef ′(xi) is a [d × d] matrix, and d

dxF(x) is an [nd× nd] matrix. In each of the
steps that we went through above we are then manipulatingd rows of the left hand
side matrix. (Remember that matrices do not commute - alwaysmultiply from the
left.) In the inversion of thenth element of the diagonal we are inverting a [d× d]
matrix (1−∏

f ′(xi)) which can be done if none of the eigenvalues of
∏

f ′(xi)
equals 1, i.e., if the cycle has no marginally stable eigen-directions.

Example 12.4 Newton method for time delay maps. Some d-dimensional mappings
(such as the Hénon map (3.18)) can be written as 1-dimensional time delay mappings
of the form

f (xi) = f (xi−1, xi−2, . . . , xi−d). (12.8)

In this case d
dxF(x) is an [n × n] matrix as in the case of usual 1-dimensional maps

but with non-zero matrix elements on d off-diagonals. In the elimination of these off-
diagonal elements the last d columns of the matrix will become non-zero and in the final
cleaning of the diagonal we will need to invert a [d × d] matrix. In this respect, nothing
is gained numerically by looking at such maps as 1-dimensional time delay maps.
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12.4 Flows

(F. Christiansen)

Further complications arise for flows due to the fact that fora periodic orbit
the stability eigenvalue corresponding to the flow direction of necessity equals
unity; the separation of any two points along a cycle remainsunchanged after a
completion of the cycle. More unit eigenvalues can arise if the flow satisfies

[section 5.2.1]
conservation laws, such as the energy invariance for Hamiltonian systems. We
now show how such problems are solved by increasing the number of fixed point
conditions.

12.4.1 Newton method for flows

A flow is equivalent to a mapping in the sense that one can reduce the flow to a
mapping on the Poincaré surface of section. An autonomous flow (2.6) is given as

ẋ = v(x), (12.9)

The corresponding fundamental matrixM (4.43) is obtained by integrating the
linearized equation (4.9)

Ṁ = AM , Ai j (x) =
∂vi(x)
∂x j

along the trajectory. The flow and the corresponding fundamental matrix are
integrated simultaneously, by the same numerical routine.Integrating an initial
condition on the Poincaré surface until a later crossing ofthe same and linearizing
around the flow we can write

f (x′) ≈ f (x) + M(x′ − x). (12.10)

Notice here, that, even though all ofx′, x and f (x) are on the Poincaré surface,
f (x′) is usually not. The reason for this is thatM corresponds to a specific
integration time and has no explicit relation to the arbitrary choice of Poincaré
section. This will become important in the extended Newton method described
below.

To find a fixed point of the flow near a starting guessx we must solve the
linearized equation

(1− M)(x′ − x) = −(x− f (x)) = −F(x) (12.11)
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wheref (x) corresponds to integrating from one intersection of the Poincaré surface
to another andM is integrated accordingly. Here we run into problems with the
direction along the flow, since - as shown in sect.5.2.1- this corresponds to a unit
eigenvector ofM. The matrix (1−M) does therefore not have full rank. A related
problem is that the solutionx′ of (12.11) is not guaranteed to be in the Poincaré
surface of section. The two problems are solved simultaneously by adding a small
vector along the flow plus an extra equation demanding thatx be in the Poincaré
surface. Let us for the sake of simplicity assume that the Poincaré surface is a
(hyper)-plane, i.e., it is given by the linear equation

(x− x0) · a = 0, (12.12)

wherea is a vector normal to the Poincaré section andx0 is any point in the
Poincaré section. (12.11) then becomes

(
1− M v(x)

a 0

) (
x′ − x
δT

)
=

(
−F(x)

0

)
. (12.13)

The last row in this equation ensures thatx will be in the surface of section, and
the addition ofv(x)δT, a small vector along the direction of the flow, ensures that
such anx can be found at least ifx is sufficiently close to a solution, i.e., to a fixed
point of f .

To illustrate this little trick let us take a particularly simple example; consider
a 3-d flow with the (x, y, 0)-plane as Poincaré section. Let all trajectories cross
the Poincaré section perpendicularly, i.e., withv = (0, 0, vz), which means that the
marginally stable direction is also perpendicular to the Poincaré section. Furthermore,
let the unstable direction be parallel to thex-axis and the stable direction be
parallel to they-axis. In this case the Newton setup looks as follows



1− Λ 0 0 0
0 1− Λs 0 0
0 0 0 vz
0 0 1 0





δx
δy
δz
δτ


=



−Fx
−Fy
−Fz

0


. (12.14)

If you consider only the upper-left [3× 3] matrix (which is what we would have
without the extra constraints that we have introduced) thenthis matrix is clearly
not invertible and the equation does not have a unique solution. However, the full
[4×4] matrix is invertible, as det (·) = vzdet (1−M⊥), whereM⊥ is the monodromy
matrix for a surface of section transverse to the orbit, see sect.5.3.

For periodic orbits (12.13) generalizes in the same way as (12.7), but with n
additional equations – one for each point on the Poincaré surface. The Newton
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setup looks like this



1 −Jn
−J1 1

· · · 1
· · · 1

−Jn−1 1

v1
. . .

vn

a
. . .

a

0
. . .

0





δ1
δ2
·
·
δn
δt1
·
δtn



=



−F1
−F2
·
·
−Fn

0
.
0



.

Solving this equation resembles the corresponding task formaps. However, in the
process we will need to invert an [(d+ 1)n× (d+ 1)n] matrix rather than a [d× d]
matrix. The task changes with the length of the cycle.

This method can be extended to take care of the same kind of problems if
other eigenvalues of the fundamental matrix equal 1. This happens if the flow has
an invariant of motion, the most obvious example being energy conservation in
Hamiltonian systems. In this case we add an extra equation for x to be on the
energy shell plus and extra variable corresponding to adding a small vector along
the gradient of the Hamiltonian. We then have to solve

(
1− M v(x) ∇H(x)

a 0 0

) 
x′ − x
δτ
δE

 =
(
−(x− f (x))

0

)
(12.15)

simultaneously with

H(x′) − H(x) = 0. (12.16)

The last equation is nonlinear. It is often best to treat thisequation separately and
solve it in each Newton step. This might mean putting in an additional Newton
routine to solve the single step of (12.15) and (12.16) together. One might be
tempted to linearize (12.16) and put it into (12.15) to do the two different Newton
routines simultaneously, but this will not guarantee a solution on the energy shell.
In fact, it may not even be possible to find any solution of the combined linearized
equations, if the initial guess is not very good.

12.4.2 How good is my orbit?

Provided we understand the topology of the flow, multi-shooting methods and
their variational cousins of chapter27 enable us to compute periodic orbits of
arbitrary length. A notion that errors somehow grow exponentially with the cycle
length at Lyapunov exponent rate cannot be right. So how do wecharacterize the
accuracy of an orbit of arbitrary length?

The numerical round-off errors along a trajectory are uncorrelated and act
as noise, so the errors (x(t + ∆t) − f∆t(x(t))2 are expected to accumulate as the
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sum of squares of uncorrelated steps, linearly with time. Hence the accumulated
numerical noise along an orbit sliced byN intermediate sections separated by
∆tk = tk+1 − tk ∼ Tp/N can be characterized by an effective diffusion constant

Dp =
1

2(de + 1)

N∑

k=1

1
∆tk

(xk+1 − f∆tk(xk))
2 . (12.17)

For hyperbolic flows errors are exponentially amplified along unstable and contracted
along stable eigen-directions, sode+1 stands for the number of unstable directions
of the flow together with the single marginal direction alongthe flow. An honest
calculation requires an honest error estimate. If you are computing a large set of
periodic orbitsp, list Dp along withTp and other properties of cycles.

Résum é

There is no general computational algorithm that is guaranteed to find all solutions
(up to a given periodTmax) to the periodic orbit condition

f t+T(x) = f t(x) , T > 0

for a general flow or mapping. Due to the exponential divergence of nearby
trajectories in chaotic dynamical systems, direct solution of the periodic orbit
condition can be numerically very unstable.

A prerequisite for a systematic and complete cycle search isa good (but hard
to come by) understanding of the topology of the flow. Usuallyone starts by
- possibly analytic - determination of the equilibria of theflow. Their locations,
stabilities, stability eigenvectors and invariant manifolds offer skeletal information
about the topology of the flow. Next step is numerical long-time evolution of
“typical” trajectories of the dynamical system under investigation. Such numerical
experiments build up the “natural measure,” and reveal regions most frequently
visited. The periodic orbit searches can then be initialized by taking nearly

[section 14.4.1]
recurring orbit segments and deforming them into a closed orbits. With a sufficiently
good initial guess the Newton-Raphson formula

(
1− M v(x)

a 0

) (
δx
δT

)
=

(
f (x) − x

0

)

yields improved estimatex′ = x+δx,T′ = T+δT. Iteration then yields the period
T and the location of a periodic pointxp in the Poincaré surface (xp − x0) · a = 0,
wherea is a vector normal to the Poincaré section atx0.

The problem one faces with high-dimensional flows is that their topology
is hard to visualize, and that even with a decent starting guess for a point on
a periodic orbit, methods like the Newton-Raphson method are likely to fail.
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Methods that start with initial guesses for a number of points along the cycle, such
[chapter 27]

as the multipoint shooting method of sect.12.3, are more robust. The relaxation
(or variational) methods take this strategy to its logical extreme, and start by a
guess of not a few points along a periodic orbit, but a guess ofthe entire orbit. As
these methods are intimately related to variational principles and path integrals,
we postpone their introduction to chapter27.

Commentary

Remark 12.1 Close recurrence searches. For low-dimensional maps of flows (for
high-dimensional flows, forget about it) picking initial guesses for periodic orbits from
close recurrences of a long ergodic trajectory seems like anobvious idea. Nevertheless,
ref. [1] is frequently cited. Such methods have been deployed by many, among them
G. Tanner, L. Rondoni, G. Morris, C.P. Dettmann, and R.L. Davidchack [2, 13, 14, 10]
(see also sect.18.5). Sometimes one can determine most of the admissible itineraries and
their weights without working too hard, but method comes with no guarantee.

Remark 12.2 Piecewise linear maps. The Lozi map (3.20) is linear, and 100,000’s
of cycles can be easily computed by [2×2] matrix multiplication and inversion.

Remark 12.3 Newton gone wild. Skowronek and Gora [21] offer an interesting discussion
of Newton iterations gone wild while searching for roots of polynomials as simple as
x2 + 1 = 0.
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Exercises

12.1. Cycles of the Ulam map. Test your cycle-searching
routines by computing a bunch of short cycles and their
stabilities for the Ulam map

f (x) = 4x(1− x) . (12.18)

12.2. Cycles stabilities for the Ulam map, exact. In
exercise 12.1 you should have observed that the
numerical results for the cycle stability eigenvalues
(4.50) are exceptionally simple: the stability eigenvalue
of thex0 = 0 fixed point is 4, while the eigenvalue of any
othern-cycle is±2n. Prove this. (Hint: the Ulam map
can be conjugated to the tent map (10.6). This problem
is perhaps too hard, but give it a try - the answer is in
many introductory books on nonlinear dynamics.)

12.3. Stability of billiard cycles. Compute stabilities of few
simple cycles.

(a) A simple scattering billiard is the two-disk
billiard. It consists of a disk of radius one centered
at the origin and another disk of unit radius located
atL+2. Find all periodic orbits for this system and
compute their stabilities. (You might have done
this already in exercise1.2; at least now you will
be able to see where you went wrong when you
knew nothing about cycles and their extraction.)

(b) Find all periodic orbits and stabilities for a billiard
ball bouncing between the diagonaly = x and one
of the hyperbola branchesy = −1/x.

12.4. Cycle stability. Add to the pinball simulator of
exercise8.1 a routine that evaluates the expanding
eigenvalue for a given cycle.

12.5. Pinball cycles. Determine the stability and length
of all fundamental domain prime cycles of the binary
symbol string lengths up to 5 (or longer) for R : a = 6
3-disk pinball.

12.6. Newton-Raphson method. Implement the Newton-
Raphson method in 2-d and apply it to determination of
pinball cycles.

12.7. Rössler flow cycles. (continuation of exercise4.4)
Determine all cycles up to 5 Poincaré sections returns
for the Rössler flow (2.17), as well as their stabilities.

(Hint: implement (12.13), the multipoint shooting
methods for flows; you can cross-check your shortest
cycles against the ones listed in the table.)

Table: The Rössler flow (2.17): The itinerary p, a
periodic point xp = (0, yp, zp) and the expanding
eigenvalueΛp for all cycles up to the topological length
7. ( J. Mathiesen, G. Simon, A. Basu)

np p yp zp Λe
1 1 6.091768 1.299732 -2.403953
2 01 3.915804 3.692833 -3.512007
3 001 2.278281 7.416481 -2.341923

011 2.932877 5.670806 5.344908
4 0111 3.466759 4.506218 -16.69674
5 01011 4.162799 3.303903 -23.19958

01111 3.278914 4.890452 36.88633
6 001011 2.122094 7.886173 -6.857665

010111 4.059211 3.462266 61.64909
011111 3.361494 4.718206 -92.08255

7 0101011 3.842769 3.815494 77.76110
0110111 3.025957 5.451444 -95.18388
0101111 4.102256 3.395644 -142.2380
0111111 3.327986 4.787463 218.0284

12.8. Cycle stability, helium. Add to the helium integrator
of exercise2.10a routine that evaluates the expanding
eigenvalue for a given cycle.

12.9. Colinear helium cycles. Determine the stability
and length of all fundamental domain prime cycles up to
symbol sequence length 5 or longer for collinear helium
of figure7.2.

12.10. Uniqueness of unstable cycles∗∗∗. Prove that there
exists only one 3-disk prime cycle for a given finite
admissible prime cycle symbol string. Hints: look at the
Poincaré section mappings; can you show that there is
exponential contraction to a unique periodic point with
a given itinerary? Exercise27.1might be helpful in this
effort.

12.11. Inverse iteration method for a Hamiltonian repeller.

Table: All periodic orbits up to 6 bounces for the
Hamiltonian Hénon mapping (12.19) with a= 6. Listed
are the cycle itinerary, its expanding eigenvalueΛp, and
its “center of mass.” The “center of mass” is listed
because it turns out the “center of mass” is often a
simple rational or a quadratic irrational.
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p Λp
∑

xp,i

0 0.715168×101 -0.607625
1 -0.295285×101 0.274292
10 -0.989898×101 0.333333
100 -0.131907×103 -0.206011
110 0.558970×102 0.539345
1000 -0.104430×104 -0.816497
1100 0.577998×104 0.000000
1110 -0.103688×103 0.816497
10000 -0.760653×104 -1.426032
11000 0.444552×104 -0.606654
10100 0.770202×103 0.151375
11100 -0.710688×103 0.248463
11010 -0.589499×103 0.870695
11110 0.390994×103 1.095485
100000 -0.545745×105 -2.034134
110000 0.322221×105 -1.215250
101000 0.513762×104 -0.450662
111000 -0.478461×104 -0.366025
110100 -0.639400×104 0.333333
101100 -0.639400×104 0.333333
111100 0.390194×104 0.548583
111010 0.109491×104 1.151463
111110 -0.104338×104 1.366025

Consider the Hénon map (3.18) for area-preserving

(“Hamiltonian”) parameter valueb = −1. The
coordinates of a periodic orbit of lengthnp satisfy the
equation

xp,i+1 + xp,i−1 = 1− ax2
p,i , i = 1, ..., np , (12.19)

with the periodic boundary conditionxp,0 = xp,np. Verify
that the itineraries and the stabilities of the short periodic
orbits for the Hénon repeller (12.19) ata = 6 are as listed
above.

Hint : you can use any cycle-searching routine you wish,
but for the complete repeller case (all binary sequences
are realized), the cycles can be evaluated simply by
inverse iteration, using the inverse of (12.19)

x′′p,i = Sp,i

√
1− x′p,i+1 − x′p,i−1

a
, i = 1, ..., np .

HereSp,i are the signs of the corresponding cycle point
coordinates,Sp,i = xp,i/|xp,i |. (G. Vattay)

12.12. “Center of mass” puzzle∗∗. Why is the “center of
mass,” tabulated in exercise12.11,
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Chapter 13

Counting

That which is crooked cannot be made straight: and that
which is wanting cannot be numbered.

—Ecclestiastes 1.15

W   in a position to apply the periodic orbit theory to the first and
the easiest problem in theory of chaotic systems: cycle counting. This is
the simplest illustration of the raison d’etre of periodic orbit theory; we

shall develop a duality transformation that relateslocal information - in this case
the next admissible symbol in a symbol sequence - toglobalaverages, in this case
the mean rate of growth of the number of admissible itineraries with increasing
itinerary length. We shall transform the topological dynamics of chapter10 into
a multiplicative operation by means of transition matrices/Markov graphs, and
show that thenth power of a transition matrix counts all itineraries of length n.
The asymptotic growth rate of the number of admissible itineraries is therefore
given by the leading eigenvalue of the transition matrix; the leading eigenvalue is
in turn given by the leading zero of the characteristic determinant of the transition
matrix, which is - in this context - called thetopological zeta function. For flows
with finite Markov graphs this determinant is a finite polynomial which can be
read off the Markov graph.

The method goes well beyond the problem at hand, and forms thecore of the
entire treatise, making tangible a rather abstract notion of “spectral determinants”
yet to come.

13.1 How many ways to get there from here?

In the 3-disk system the number of admissible trajectories doubles with every
iterate: there areKn = 3 · 2n distinct itineraries of lengthn. If disks are too
close and some part of trajectories is pruned, this is only anupper bound and
explicit formulas might be hard to discover, but we still might be able to establish
a lower exponential bound of the formKn ≥ Cenĥ. Bounded exponentially by
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3en ln 2 ≥ Kn ≥ Cenĥ, the number of trajectories must grow exponentially as a
function of the itinerary length, with rate given by thetopological entropy:

h = lim
n→∞

1
n

ln Kn . (13.1)

We shall now relate this quantity to the spectrum of the transition matrix, with
the growth rate of the number of topologically distinct trajectories given by the
leading eigenvalue of the transition matrix.

The transition matrix elementTi j ∈ {0, 1} in (10.2) indicates whether the
transition from the starting partitionj into partition i in one step is allowed or
not, and the (i, j) element of the transition matrix iteratedn times

[exercise 13.1]

(Tn)i j =
∑

k1,k2,...,kn−1

Tik1Tk1k2 . . .Tkn−1 j

receives a contribution 1 from every admissible sequence oftransitions, so (Tn)i j

is the number of admissiblen symbol itineraries starting withj and ending withi.

Example 13.1 3-disk itinerary counting.

The (T2)13 = 1 element of T2 for the 3-disk transition matrix (10.5)


0 1 1
1 0 1
1 1 0



2

=


2 1 1
1 2 1
1 1 2

 . (13.2)

corresponds to 3→ 2→ 1, the only 2-step path from 3 to 1, while (T2)33 = 2 counts
the two itineraries 313 and 323.

The total number of admissible itineraries ofn symbols is

Kn =
∑

i j

(Tn)i j = ( 1, 1, . . . , 1 ) Tn



1
1
...

1


. (13.3)

We can also count the number of prime cycles and pruned periodic points,
but in order not to break up the flow of the main argument, we relegate these
pretty results to sects.13.5.2and13.7. Recommended reading if you ever have to
compute lots of cycles.

The matrix T has non-negative integer entries. A matrixM is said to be
Perron-Frobeniusif some powerk of M has strictly positive entries, (Mk)rs > 0.
In the case of the transition matrixT this means that every partition eventually
reaches all of the partitions, i.e., the partition is dynamically transitive or indecomposable,
as assumed in (2.2). The notion oftransitivity is crucial in ergodic theory: a
mapping is transitive if it has a dense orbit. This notion is inherited by the
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shift operation once we introduce a symbolic dynamics. If that is not the case,
state space decomposes into disconnected pieces, each of which can be analyzed
separately by a separate indecomposable Markov graph. Hence it suffices to
restrict our considerations to transition matrices of Perron-Frobenius type.

A finite [N×N] matrix T has eigenvaluesTϕα = λαϕα and (right) eigenvectors
{ϕ0, ϕ1, · · · , ϕM−1}. Expressing the initial vector in (13.3) in this basis (which
might be incomplete,M ≤ N),

Tn



1
1
...

1


= Tn

N−1∑

α=0

bαϕα =
N−1∑

α=0

bαλ
n
αϕα ,

and contracting with( 1, 1, . . . , 1 ), we obtain

Kn =

N−1∑

α=0

cαλ
n
α .

[exercise 13.2]

The constantscα depend on the choice of initial and final partitions: In this
example we are sandwichingTn between the vector( 1, 1, . . . , 1 ) and its transpose,
but any other pair of vectors would do, as long as they are not orthogonal to the
leading eigenvectorϕ0. In a experiment the vector( 1, 1, . . . , 1 ) would be replaced
by a description of the initial state,and the right vector would describe the measure
time n later.

Perron theorem states that a Perron-Frobenius matrix has a nondegenerate
positive real eigenvalueλ0 > 1 (with a positive eigenvector) which exceeds the
moduli of all other eigenvalues. Therefore asn increases, the sum is dominated
by the leading eigenvalue of the transition matrix,λ0 > |Reλα|, α = 1, 2, · · · ,N−1,
and the topological entropy (13.1) is given by

h = lim
n→∞

1
n

ln c0λ
n
0

[
1+

c1

c0

(
λ1

λ0

)n

+ · · ·
]

= ln λ0 + lim
n→∞

[
ln c0

n
+

1
n

c1

c0

(
λ1

λ0

)n

+ · · ·
]

= ln λ0 . (13.4)

What have we learned? The transition matrixT is a one-stepshort timeoperator,
advancing the trajectory from a partition to the next admissible partition. Its
eigenvalues describe the rate of growth of the total number of trajectories at the
asymptotic times. Instead of painstakingly countingK1,K2,K3, . . . and estimating
(13.1) from a slope of a log-linear plot, we have theexact topological entropy
if we can compute the leading eigenvalue of the transition matrix T. This is
reminiscent of the way the free energy is computed from transfer matrix for 1-
dimensional lattice models with finite range interactions.Historically, it is analogy
with statistical mechanics that led to introduction of evolution operator methods
into the theory of chaotic systems.
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13.2 Topological trace formula

There are two standard ways of getting at eigenvalues of a matrix - by evaluating
the trace trTn =

∑
λn
α, or by evaluating the determinant det (1− zT). We start by

evaluating the trace of transition matrices.

Consider anM-step memory transition matrix, like the 1-step memory example
(10.13). The trace of the transition matrix counts the number of partitions that map
into themselves. In the binary case the trace picks up only two contributions on
the diagonal,T0···0,0···0 + T1···1,1···1, no matter how much memory we assume. We
can even take infinite memoryM → ∞, in which case the contributing partitions
are shrunk to the fixed points, trT = T0,0 + T1,1.

[exercise 10.7]

More generally, each closed walk throughnconcatenated entries ofT contributes
to trTn a product of the matrix entries along the walk. Each step in such a walk
shifts the symbolic string by one symbol; the trace ensures that the walk closes
on a periodic stringc. Define tc to be thelocal trace, the product of matrix
elements along a cyclec, each term being multiplied by a book keeping variable
z. zntr Tn is then the sum oftc for all cycles of lengthn. For example, for an

[exercise 10.7]
[8×8] transition matrixTs1s2s3,s0s1s2 version of (10.13), or any refined partition
[2n×2n] transition matrix,n arbitrarily large, the periodic point100 contributes
t100 = z3T100,010T010,001T001,100 to z3tr T3. This product is manifestly cyclically
symmetric,t100 = t010 = t001, and so a prime cyclep of length np contributes
np times, once for each periodic point along its orbit. For the binary labeled
non–wandering set the first few traces are given by (consult tables10.1and13.2)

ztr T = t0 + t1,

z2tr T2 = t20 + t21 + 2t10,

z3tr T3 = t30 + t31 + 3t100+ 3t101,

z4tr T4 = t40 + t41 + 2t210+ 4t1000+ 4t1001+ 4t1011. (13.5)

For complete binary symbolic dynamicstp = znp for every binary prime cyclep;
if there is pruningtp = znp if p is admissible cycle andtp = 0 otherwise. Hence
tr Tn counts the number ofadmissible periodic pointsof periodn. In general, the
nth order trace (13.5) picks up contributions from all repeats of prime cycles, with
each cycle contributingnp periodic points, so the total number of periodic points
of periodn is given by

znNn = zntr Tn =
∑

np|n
npt

n/np
p =

∑

p

np

∞∑

r=1

δn,npr t
r
p . (13.6)

Herem|n means thatm is a divisor ofn, and (takingz = 1) tp = 1 if the cycle is
admissible, andtp = 0 otherwise.

In order to get rid of the awkward divisibility constraintn = npr in the above
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Table 13.1: The total numbers of periodic pointsNn of period n for binary symbolic
dynamics. The numbers of prime cycles contributing illustrates the preponderance of
long prime cycles of lengthn over the repeats of shorter cycles of lengthsnp, n = rnp.
Further listings of binary prime cycles are given in tables10.1and13.5.2. (L. Rondoni)

n Nn # of prime cycles of lengthnp

1 2 3 4 5 6 7 8 9 10
1 2 2
2 4 2 1
3 8 2 2
4 16 2 1 3
5 32 2 6
6 64 2 1 2 9
7 128 2 18
8 256 2 1 3 30
9 512 2 2 56

10 1024 2 1 6 99

sum, we introduce the generating function for numbers of periodic points

∞∑

n=1

znNn = tr
zT

1− zT
. (13.7)

Substituting (13.6) into the left hand side, and replacing the right hand side bythe
eigenvalue sum trTn =

∑
λn
α, we obtain our first example of a trace formula, the

topological trace formula

∑

α=0

zλα
1− zλα

=
∑

p

nptp

1− tp
. (13.8)

A trace formula relates the spectrum of eigenvalues of an operator - in this case the
transition matrix - to the spectrum of periodic orbits of thedynamical system. The
zn sum in (13.7) is a discrete version of the Laplace transform (see chapter16),
and the resolvent on the left hand side is the antecedent of the more sophisticated
trace formulas (16.10) and (16.23).We shall now use this result to compute the
spectral determinant of the transition matrix.

13.3 Determinant of a graph

Our next task is to determine the zeros of thespectral determinantof an [M × M]
transition matrix

det (1− zT) =
M−1∏

α=0

(1− zλα) . (13.9)
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We could now proceed to diagonalizeT on a computer, and get this over with. It
pays, however, to dissect det (1−zT) with some care; understanding this computation
in detail will be the key to understanding the cycle expansion computations of
chapter18 for arbitrary dynamical averages. ForT a finite matrix, (13.9) is just
the characteristic equation forT. However, we shall be able to compute this object
even when the dimension ofT and other such operators goes to∞, and for that
reason we prefer to refer to (13.9) loosely as the “spectral determinant.”

There are various definitions of the determinant of a matrix;they mostly
reduce to the statement that the determinant is a certain sumover all possible
permutation cycles composed of the traces trTk, in the spirit of the determinant–
trace relation (1.15):

[exercise 4.1]

det (1− zT) = exp(tr ln(1− zT)) = exp

−
∑

n=1

zn

n
tr Tn



= 1− ztr T − z2

2

(
(tr T)2 − tr (T2)

)
− . . . (13.10)

This is sometimes called a cumulant expansion. Formally, the right hand is an
infinite sum over powers ofzn. If T is an [M×M] finite matrix, then the characteristic
polynomial is at most of orderM. In that case the coefficients ofzn, n > M must
vanishexactly.

We now proceed to relate the determinant in (13.10) to the corresponding
Markov graph of chapter10: to this end we start by the usual algebra textbook
expression for a determinant as the sum of products of all permutations

det (1− zT) =
∑

{π}
(−1)π (1− zT)1,π1(1− zT)2,π2 · · · (1− zT)M,πM (13.11)

whereT is a [M×M] matrix, {π} denotes the set of permutations ofM symbols,
πk is whatk is permuted into by the permutationπ, and (−1)π = ±1 is the parity
of permutationπ. The right hand side of (13.11) yields a polynomial of orderM
in z: a contribution of ordern in z picks upM − n unit factors along the diagonal,
the remaining matrix elements yielding

(−z)n(−1)π̃Tη1,π̃η1
· · ·Tηn,π̃ηn

(13.12)

whereπ̃ is the permutation of the subset ofn distinct symbolsη1 . . . ηn indexingT
matrix elements. As in (13.5), we refer to any combinationtc = Tη1η2Tη2η3 · · ·Tηkη1,
for a given itineraryc = η1η2 · · · , ηk, as thelocal traceassociated with a closed
loop c on the Markov graph. Each term of form (13.12) may be factored in terms
of local tracestc1tc2 · · · tck, that is loops on the Markov graph. These loops are non-
intersecting, as each node may only be reached byone link, and they are indeed
loops, as if a node is reached by a link, it has to be the starting point of another
singlelink, as eachη j must appear exactlyonceas a row and column index.
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So the general structure is clear, a little more thinking is only required to get
the sign of a generic contribution. We consider only the caseof loops of length
1 and 2, and leave to the reader the task of generalizing the result by induction.
Consider first a term in which only loops of unit length appearon (13.12), that is,
only the diagonal elements ofT are picked up. We havek = n loops and an even
permutation ˜π so the sign is given by (−1)k, k being the number of loops. Now
take the case in which we havei single loops andj loops of lengthn = 2 j + i.
The parity of the permutation gives (−1) j and the first factor in (13.12) gives
(−1)n = (−1)2 j+i . So once again these terms combine into (−1)k, wherek = i + j
is the number of loops. We may summarize our findings as follows:

[exercise 13.3]

The characteristic polynomial of a transition matrix/Markov graph
is given by the sum of all possible partitions π of the graph into
products of non-intersecting loops, with each loop trace tp carrying
a minus sign:

det (1− zT) =
f∑

k=0

∑′

π

(−1)ktp1 · · · tpk (13.13)

Any self-intersecting loop isshadowedby a product of two loops that share the
intersection point. As both the long looptab and its shadowtatb in the case at hand
carry the same weightzna+nb, the cancellation is exact, and the loop expansion
(13.13) is finite, with f the maximal number of non-intersecting loops.

We refer to the set of all non-self-intersecting loops{tp1, tp2, · · · tpf } as the
fundamental cycles. This is not a very good definition, as the Markov graphs
are not unique – the most we know is that for a given finite-grammar language,
there exist Markov graph(s) with the minimal number of loops. Regardless of how
cleverly a Markov graph is constructed, it is always true that for any finite Markov
graph the number of fundamental cyclesf is finite. If you know a better way to
define the “fundamental cycles,” let us know.

fast track:

sect. 13.4, p. 220

13.3.1 Topological polynomials: learning by examples

The above definition of the determinant in terms of traces is most easily grasped by
working through a few examples. The complete binary dynamics Markov graph
of figure10.11(b) is a little bit too simple, but let us start humbly.

Example 13.2 Topological polynomial for complete binary dynamics: There are
only two non-intersecting loops, yielding

det (1− zT) = 1− t0 − t1 = 1− 2z. (13.14)

The leading (and only) zero of this characteristic polynomial yields the topological
entropy eh = 2. As we know that there are Kn = 2n binary strings of length N, we
are not surprised by this result.
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Figure 13.1: The golden mean pruning rule Markov
graph, see also figure10.13.

1 0

Figure 13.2: (a) An incomplete Smale horseshoe:
the inner forward fold does not intersect the two
rightmost backward folds. (b) The primary pruned
region in the symbol square and the corresponding
forbidden binary blocks. (c) An incomplete Smale
horseshoe which illustrates (d) the monotonicity of
the pruning front: the thick line which delineates
the left border of the primary pruned region is
monotone on each half of the symbol square. The
backward folding in figures (a) and (c) is only
schematic - in invertible mappings there are further
missing intersections, all obtained by the forward
and backward iterations of the primary pruned
region.

Similarly, for complete symbolic dynamics ofN symbols the Markov graph has
one node andN links, yielding

det (1− zT) = 1− Nz, (13.15)

whence the topological entropyh = ln N.

Example 13.3 Golden mean pruning: A more interesting example is the “golden
mean” pruning of figure 13.1. There is only one grammar rule, that a repeat of symbol
0 is forbidden. The non-intersecting loops are of length 1 and 2, so the topological

[exercise 13.4]
polynomial is given by

det (1− zT) = 1− t1 − t01 = 1− z− z2 . (13.16)

The leading root of this polynomial is the golden mean, so the entropy (13.4) is the
logarithm of the golden mean, h = ln 1+

√
5

2 .

Example 13.4 Nontrivial pruning: The non-self-intersecting loops of the Markov
graph of figure 13.3 (d) are indicated in figure 13.3 (e). The determinant can be written
down by inspection, as the sum of all possible partitions of the graph into products of
non-intersecting loops, with each loop carrying a minus sign:

det (1− zT) = 1− t0 − t0011− t0001− t00011

+t0t0011+ t0011t0001. (13.17)

With tp = znp, where np is the length of the p-cycle, the smallest root of

0 = 1− z− 2z4 + z8 (13.18)

yields the topological entropy h = − ln z, z= 0.658779. . ., h = 0.417367. . ., significantly
smaller than the entropy of the covering symbolic dynamics, the complete binary shift
h = ln 2 = 0.693. . .

[exercise 13.9]
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Figure 13.3: Conversion of the pruning front
of figure 13.2 (d) into a finite Markov graph.
(a) Starting with the start node “.”, delineate all
pruning blocks on the binary tree. A solid line
stands for “1” and a dashed line for “0”. Ends
of forbidden strings are marked with×. Label
all internal nodes by reading the bits connecting
“.”, the base of the tree, to the node. (b) Indicate
all admissible starting blocks by arrows. (c)
Drop recursively the leading bits in the admissible
blocks; if the truncated string corresponds to an
internal node in (a), connect them. (d) Delete
the transient, non-circulating nodes; all admissible
sequences are generated as walks on this finite
Markov graph. (e) Identify all distinct loops and
construct the determinant (13.17).

13.4 Topological zeta function

What happens if there is no finite-memory transition matrix,if the Markov graph
is infinite? If we are never sure that looking further into future will reveal no
further forbidden blocks? There is still a way to define the determinant, and this
idea is central to the whole treatise: the determinant is then defined by itscumulant
expansion (13.10)

[exercise 4.1]

det (1− zT) = 1−
∞∑

n=1

ĉnzn . (13.19)

For finite dimensional matrices the expansion is a finite polynomial, and (13.19)
is an identity; however, for infinite dimensional operatorsthe cumulant expansion
coefficientsĉn definethe determinant.

Let us now evaluate the determinant in terms of traces for an arbitrary transition
matrix. In order to obtain an expression for the spectral determinant (13.9) in
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terms of cycles, substitute (13.6) into (13.19) and sum over the repeats of prime
cycles using ln(1− x) =

∑
r xr/r ,

det (1− zT) = exp

−
∑

p

∞∑

r=1

trp
r

 =
∏

p

(1− tp) , (13.20)

where for the topological entropy the weight assigned to a prime cyclep of length
np is tp = znp if the cycle is admissible, ortp = 0 if it is pruned. This determinant
is called thetopologicalor theArtin-Mazurzeta function, conventionally denoted
by

1/ζtop =
∏

p

(1− znp) = 1−
∑

n=1

ĉnzn . (13.21)

Counting cycles amounts to giving each admissible prime cycle p weighttp = znp

and expanding the Euler product (13.21) as a power series inz. As the precise
expression for coefficientsĉn in terms of local tracestp is more general than the
current application to counting, we shall postpone its derivation to chapter18.

The topological entropyh can now be determined from the leading zeroz =
e−h of the topological zeta function. For a finite [M×M] transition matrix, the
number of terms in the characteristic equation (13.13) is finite, and we refer to this
expansion as thetopological polynomialof order≤ M. The power of defining a
determinant by the cumulant expansion is that it works even when the partition is
infinite, M → ∞; an example is given in sect.13.6, and many more later on.

fast track:

sect. 13.6, p. 226

13.4.1 Topological zeta function for flows

We now apply the method that we shall use in deriving (16.23) to the
problem of deriving the topological zeta functions for flows. The time-weighted
density of prime cycles of periodt is

Γ(t) =
∑

p

∑

r=1

Tp δ(t − rTp) . (13.22)

As in (16.22), a Laplace transform smooths the sum over Dirac delta spikes
and yields thetopological trace formula

∑

p

∑

r=1

Tp

∫ ∞

0+
dt e−st δ(t − rTp) =

∑

p

Tp

∞∑

r=1

e−sTpr (13.23)
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and thetopological zeta functionfor flows:

1/ζtop(s) =
∏

p

(
1− e−sTp

)
, (13.24)

related to the trace formula by

∑

p

Tp

∞∑

r=1

e−sTpr = − ∂
∂s

ln 1/ζtop(s) .

This is the continuous time version of the discrete time topological zeta function
(13.21) for maps; its leading zeros= −h yields the topological entropy for a flow.

13.5 Counting cycles

In what follows we shall occasionally need to compute all cycles up to topological
lengthn, so it is handy to know their exact number.

13.5.1 Counting periodic points

Nn, the number of periodic points of periodn can be computed from (13.19) and
(13.7) as a logarithmic derivative of the topological zeta function

∑

n=1

Nnzn = tr

(
−z

d
dz

ln(1− zT)

)
= −z

d
dz

ln det (1− zT)

=
−z d

dz1/ζtop

1/ζtop
. (13.25)

We see that the trace formula (13.8) diverges atz→ e−h, as the denominator has
a simple zero there.

Example 13.5 Complete N-ary dynamics: As a check of formula (13.19) in the
finite grammar context, consider the complete N-ary dynamics (10.3) for which the
number of periodic points of period n is simply tr Tn

c = Nn. Substituting

∞∑

n=1

zn

n
tr Tn

c =

∞∑

n=1

(zN)n

n
= ln(1− zN) ,

into (13.19) we verify (13.15). The logarithmic derivative formula (13.25) in this case
does not buy us much either, we recover

∑

n=1

Nnzn =
Nz

1− Nz
.
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Example 13.6 Nontrivial pruned dynamics: Consider the pruning of figure 13.3 (e).
Substituting (13.18) we obtain

∑

n=1

Nnzn =
z+ 8z4 − 8z8

1− z− 2z4 + z8
. (13.26)

Now the topological zeta function is not merely a tool for extracting the asymptotic
growth of Nn; it actually yields the exact and not entirely trivial recursion relation for the
numbers of periodic points: N1 = N2 = N3 = 1, Nn = 2n + 1 for n = 4, 5, 6, 7, 8, and
Nn = Nn−1 + 2Nn−4 − Nn−8 for n > 8.

13.5.2 Counting prime cycles

Having calculated the number of periodic points, our next objective is to evaluate
the number ofprimecyclesMn for a dynamical system whose symbolic dynamics
is built from N symbols. The problem of findingMn is classical in combinatorics
(counting necklaces made out ofn beads out ofN different kinds) and is easily
solved. There areNn possible distinct strings of lengthn composed ofN letters.
TheseNn strings include allMd primed-cycles whose periodd equals or divides
n. A prime cycle is a non-repeating symbol string: for example, p = 011= 101=
110 = . . .011011. . . is prime, but0101 = 010101. . . = 01 is not. A primed-
cycle contributesd strings to the sum of all possible strings, one for each cyclic
permutation. The total number of possible periodic symbol sequences of lengthn
is therefore related to the number of prime cycles by

Nn =
∑

d|n
dMd , (13.27)

whereNn equals trTn. The number of prime cycles can be computed recursively

Mn =
1
n

Nn −
d<n∑

d|n
dMd

 ,

or by theMöbius inversion formula
[exercise 13.10]

Mn = n−1
∑

d|n
µ

(n
d

)
Nd . (13.28)

where the Möbius functionµ(1) = 1, µ(n) = 0 if n has a squared factor, and
µ(p1p2 . . . pk) = (−1)k if all prime factors are different.

We list the number of prime cycles up to length 10 for 2-, 3- and4-letter
complete symbolic dynamics in table13.5.2. The number ofprimecycles follows
by Möbius inversion (13.28).

[exercise 13.11]
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Table 13.2: Number of prime cycles for various alphabets and grammars upto length 10.
The first column gives the cycle length, the second the formula (13.28) for the number
of prime cycles for completeN-symbol dynamics, columns three through five give the
numbers forN = 2, 3 and 4.

n Mn(N) Mn(2) Mn(3) Mn(4)
1 N 2 3 4
2 N(N − 1)/2 1 3 6
3 N(N2 − 1)/3 2 8 20
4 N2(N2 − 1)/4 3 18 60
5 (N5 − N)/5 6 48 204
6 (N6 − N3 − N2 + N)/6 9 116 670
7 (N7 − N)/7 18 312 2340
8 N4(N4 − 1)/8 30 810 8160
9 N3(N6 − 1)/9 56 2184 29120

10 (N10 − N5 − N2 + N)/10 99 5880 104754

Example 13.7 Counting N-disk periodic points: A simple example of
pruning is the exclusion of “self-bounces” in the N-disk game of pinball. The number of
points that are mapped back onto themselves after n iterations is given by Nn = tr Tn.
The pruning of self-bounces eliminates the diagonal entries, TN−disk = Tc − 1, so the
number of the N-disk periodic points is

Nn = tr Tn
N−disk = (N − 1)n + (−1)n(N − 1) (13.29)

(here Tc is the complete symbolic dynamics transition matrix (10.3)). For the N-disk
pruned case (13.29) Möbius inversion (13.28) yields

MN−disk
n =

1
n

∑

d|n
µ

(n
d

)
(N − 1)d +

N − 1
n

∑

d|n
µ

(n
d

)
(−1)d

= M(N−1)
n for n > 2 . (13.30)

There are no fixed points, MN−disk
1 = 0. The number of periodic points of period 2 is

N2 − N, hence there are MN−disk
2 = N(N − 1)/2 prime cycles of length 2; for lengths

n > 2, the number of prime cycles is the same as for the complete (N−1)-ary dynamics
of table 13.5.2.

Example 13.8 Pruning individual cycles: Consider the 3-disk game
of pinball. The prohibition of repeating a symbol affects counting only for the fixed
points and the 2-cycles. Everything else is the same as counting for a complete binary
dynamics (eq (13.30)). To obtain the topological zeta function, just divide out the binary
1- and 2-cycles (1− zt0)(1− zt1)(1− z2t01) and multiply with the correct 3-disk 2-cycles
(1− z2t12)(1− z2t13)(1− z2t23): [exercise 13.14]

[exercise 13.15]
1/ζ3−disk = (1− 2z)

(1− z2)3

(1− z)2(1− z2)

= (1− 2z)(1+ z)2 = 1− 3z2 − 2z3 . (13.31)

The factorization reflects the underlying 3-disk symmetry; we shall rederive it in (19.25).
As we shall see in chapter 19, symmetries lead to factorizations of topological polynomials
and topological zeta functions.
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Table 13.3: List of the 3-disk prime cycles up to length 10. Heren is the cycle length,
Mn the number of prime cycles,Nn the number of periodic points andSn the number
of distinct prime cycles under theC3v symmetry (see chapter19 for further details).
Column 3 also indicates the splitting ofNn into contributions from orbits of lengths that
divide n. The prefactors in the fifth column indicate the degeneracymp of the cycle; for
example, 3·12 stands for the three prime cycles12, 13 and23 related by 2π/3 rotations.
Among symmetry related cycles, a representative ˆp which is lexically lowest was chosen.
The cycles of length 9 grouped by parenthesis are related by time reversal symmetry, but
not by any otherC3v transformation.

n Mn Nn Sn mp · p̂
1 0 0 0
2 3 6=3·2 1 3·12
3 2 6=2·3 1 2·123
4 3 18=3·2+3·4 1 3·1213
5 6 30=6·5 1 6·12123
6 9 66=3·2+2·3+9·6 2 6·121213+ 3·121323
7 18 126=18·7 3 6·1212123+ 6·1212313+ 6·1213123
8 30 258=3·2+3·4+30·8 6 6·12121213+ 3·12121313+ 6·12121323

+ 6·12123123+ 6·12123213+ 3·12132123
9 56 510=2·3+56·9 10 6·121212123+ 6·(121212313+ 121212323)

+ 6·(121213123+ 121213213)+ 6·121231323
+ 6·(121231213+ 121232123)+ 2·121232313
+ 6·121321323

10 99 1022 18

Table 13.4: List of the 4-disk prime cycles up to length 8. The meaning of the symbols
is the same as in table13.5.2. Orbits related by time reversal symmetry (but no other
symmetry) already appear at cycle length 5. List of the cycles of length 7 and 8 has been
omitted.

n Mn Nn Sn mp · p̂
1 0 0 0
2 6 12=6·2 2 4·12+ 2·13
3 8 24=8·3 1 8·123
4 18 84=6·2+18·4 4 8·1213+ 4·1214+ 2·1234+ 4·1243
5 48 240=48·5 6 8·(12123+ 12124)+ 8·12313

+ 8·(12134+ 12143)+ 8·12413
6 116 732=6·2+8·3+116·6 17 8·121213+ 8·121214+ 8·121234

+ 8·121243+ 8·121313+ 8·121314
+ 4·121323+ 8·(121324+ 121423)
+ 4·121343+ 8·121424+ 4·121434
+ 8·123124+ 8·123134+ 4·123143
+ 4·124213+ 8·124243

7 312 2184 39
8 810 6564 108
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Example 13.9 Alphabet {a, cbk; b}: (continuation of exercise 13.16) In the cycle
[exercise 13.16]

counting case, the dynamics in terms of a → z, cbk → z
1−z is a complete binary

dynamics with the explicit fixed point factor (1− tb) = (1− z):

1/ζtop = (1− z)
(
1− z− z

1− z

)
= 1− 3z+ z2 .

[exercise 13.19]

13.6 Topological zeta function for an infinite partition

(K.T. Hansen and P. Cvitanović)

Now consider an example of a dynamical system which (as far aswe
know - there is no proof) has an infinite partition, or an infinity of longer and
longer pruning rules. Take the 1-d quadratic map

f (x) = Ax(1− x)

with A = 3.8. It is easy to check numerically that the itinerary or the “kneading
sequence” of the critical pointx = 1/2 is

K = 1011011110110111101011110111110. . .

where the symbolic dynamics is defined by the partition of figure 10.6. How this
kneading sequence is converted into a series of pruning rules is a dark art.For
the moment it suffices to state the result, to give you a feeling for what a “typical”
infinite partition topological zeta function looks like. Approximating the dynamics
by a Markov graph corresponding to a repeller of the period 29attractive cycle
close to theA = 3.8 strange attractor yields a Markov graph with 29 nodes and
the characteristic polynomial

1/ζ(29)
top = 1− z1 − z2 + z3 − z4 − z5 + z6 − z7 + z8 − z9 − z10

+z11− z12− z13+ z14− z15+ z16− z17 − z18+ z19+ z20

−z21+ z22− z23+ z24+ z25− z26+ z27 − z28 . (13.32)

The smallest real root of this approximate topological zetafunction is
[exercise 13.21]

z= 0.62616120. . . (13.33)

Constructing finite Markov graphs of increasing length corresponding toA→ 3.8
we find polynomials with better and better estimates for the topological entropy.
For the closest stable period 90 orbit we obtain our best estimate of the topological
entropy of the repeller:
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Figure 13.4: The logarithm of the difference
between the leading zero of the finite polynomial
approximations to topological zeta function and our
best estimate, as a function of the length for the
quadratic mapA = 3.8.

Figure 13.5: The 90 zeroes of the characteristic
polynomial for the quadratic mapA = 3.8
approximated by symbolic strings up to length 90.
(from ref. [8])

h = − ln 0.62616130424685. . . = 0.46814726655867. . . . (13.34)

Figure 13.4 illustrates the convergence of the truncation approximations to the
topological zeta function as a plot of the logarithm of the difference between the
zero of a polynomial and our best estimate (13.34), plotted as a function of the
length of the stable periodic orbit. The error of the estimate (13.33) is expected
to be of orderz29 ≈ e−14 because going from length 28 to a longer truncation
yields typically combinations of loops with 29 and more nodes giving terms±z29

and of higher order in the polynomial. Hence the convergenceis exponential,
with exponent of−0.47 = −h, the topological entropy itself. In figure13.5
we plot the zeroes of the polynomial approximation to the topological zeta func-
tion obtained by accounting for all forbidden strings of length 90 or less. The
leading zero giving the topological entropy is the point closest to the origin.
Most of the other zeroes are close to the unit circle; we conclude that for infinite
Markov partitions the topological zeta function has a unit circle as the radius of
convergence. The convergence is controlled by the ratio of the leading to the
next-to-leading eigenvalues, which is in this case indeedλ1/λ0 = 1/eh = e−h.

13.7 Shadowing

The topological zeta function is a pretty function, but the infinite product (13.20)
should make you pause. For finite transfer matrices the left hand side is a determinant
of a finite matrix, therefore a finite polynomial; so why is theright hand side an
infinite product over the infinitely many prime periodic orbits of all periods?

The way in which this infinite product rearranges itself intoa finite polynomial
is instructive, and crucial for all that follows. You can already take a peek at the
full cycle expansion (18.7) of chapter18; all cycles beyond the fundamentalt0
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andt1 appear in the shadowing combinations such as

ts1s2···sn − ts1s2···smtsm+1···sn .

For subshifts of finite type such shadowing combinations cancel exactly, if we
are counting cycles as we do here, or if the dynamics is piecewise linear, as in
exercise17.3. As we have already argued in sect.1.5.4, for nice hyperbolic flows
whose symbolic dynamics is a subshift of finite type, the shadowing combinations
almost cancel, and the spectral determinant is dominated by the fundamental
cycles from (13.13), with longer cycles contributing only small “curvature” corrections.

These exact or nearly exact cancelations depend on the flow being smooth
and the symbolic dynamics being a subshift of finite type. If the dynamics
requires infinite Markov partition with pruning rules for longer and longer blocks,
most of the shadowing combinations still cancel, but the fewcorresponding to the
forbidden blocks do not, leading to a finite radius of convergence for the spectral
determinant as in figure13.5.

One striking aspect of the pruned cycle expansion (13.32) compared to the
trace formulas such as (13.7) is that coefficients are not growing exponentially -
indeed they all remain of order 1, so instead having a radius of convergencee−h, in
the example at hand the topological zeta function has the unit circle as the radius
of convergence. In other words, exponentiating the spectral problem from a trace
formula to a spectral determinant as in (13.19) increases theanalyticity domain:
the pole in the trace (13.8) at z= e−h is promoted to a smooth zero of the spectral
determinant with a larger radius of convergence.

The very sensitive dependence of spectral determinants on whether the symbolic
dynamics is or is not a subshift of finite type is the bad news that we should
announce already now. If the system is generic and not structurally stable (see
sect.11.3), a smooth parameter variation is in no sense a smooth variation of
topological dynamics - infinities of periodic orbits are created or destroyed, Markov
graphs go from being finite to infinite and back. That will imply that the global
averages that we intend to compute are generically nowhere differentiable functions
of the system parameters, and averaging over families of dynamical systems can
be a highly nontrivial enterprise; a simple illustration isthe parameter dependence
of the diffusion constant computed in a remark in chapter24.

You might well ask: What is wrong with computing the entropy from (13.1)?
Does all this theory buy us anything? An answer: If we countKn level by level, we
ignore the self-similarity of the pruned tree - examine for example figure10.13, or
the cycle expansion of (13.26) - and the finite estimates ofhn = ln Kn/n converge
nonuniformly toh, and on top of that with a slow rate of convergence,|h− hn| ≈
O(1/n) as in (13.4). The determinant (13.9) is much smarter, as by construction it
encodes the self-similarity of the dynamics, and yields theasymptotic value ofh
with no need for any finiten extrapolations.

So, the main lesson of learning how to count well, a lesson that will be
affirmed over and over, is that while the trace formulas are a conceptually essential
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step in deriving and understanding periodic orbit theory, the spectral determin-
ant is the right object to use in actual computations. Instead of resumming all
of the exponentially many periodic points required by traceformulas at each
level of truncation, spectral determinants incorporate only the small incremental
corrections to what is already known - and that makes them more convergent and
economical to use.

Résum é

What have we accomplished? We have related the number of topologically distinct
paths from “this region” to “that region” in a chaotic systemto the leading eigenvalue
of the transition matrixT. The eigenspectrum ofT is given by a certain sum over
traces trTn, and in this way the periodic orbit theory has entered the arena, already
at the level of the topological dynamics, the crudest description of dynamics.

The main result of this chapter is the cycle expansion (13.21) of the topologi-
cal zeta function (i.e., the spectral determinant of the transition matrix):

1/ζtop(z) = 1−
∑

k=1

ĉkz
k .

For subshifts of finite type, the transition matrix is finite,and the topological zeta
function is a finite polynomial evaluated by the loop expansion (13.13) of det (1−
zT). For infinite grammars the topological zeta function is defined by its cycle
expansion. The topological entropyh is given by the smallest zeroz = e−h. This
expression for the entropy isexact; in contrast to the definition (13.1), non→ ∞
extrapolations of lnKn/n are required.

Historically, these topological zeta functions were the inspiration for applying
the transfer matrix methods of statistical mechanics to theproblem of computation
of dynamical averages for chaotic flows. The key result was the dynamical zeta
function to be derived in chapter16, a weighted generalization of the topological
zeta function.

Contrary to claims one sometimes encounters in the literature, “exponential
proliferation of trajectories” is not the problem; what limits the convergence of
cycle expansions is the proliferation of the grammar rules,or the “algorithmic
complexity,” as illustrated by sect.13.6, and figure13.5in particular.

Commentary

Remark 13.1 “Entropy.” The ease with which the topological entropy can be motivated
obscures the fact that our construction does not lead to an invariant characterization of the
dynamics, as the choice of symbolic dynamics is largely arbitrary: the same caveat applies
to other entropies.In order to obtain proper invariants oneneeds to evaluate a supremum
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over all possible partitions. The key mathematical point that eliminates the need of such
search is the existence ofgenerators, i.e., partitions that under dynamics are able to probe
the whole state space on arbitrarily small scales: more precisely a generator is a finite
partitionΩ = ω1 . . . ωN, with the following property: takeM the subalgebra of the
state space generated byΩ, and consider the partition built upon all possible intersections
of setsφk(βi), whereφ is dynamical evolution,βi is an element ofM and k takes all
possible integer values (positive as well as negative), then the closure of such a partition
coincides with the algebra of all measurable sets. For a thorough (and readable) discussion
of generators and how they allow a computation of the Kolmogorov entropy, see ref. [1].

Remark 13.2 Perron-Frobenius matrices. For a proof of Perron theorem on the
leading eigenvalue see ref. [22]. Sect. A4.1 of ref. [2] offers a clear discussion of the
spectrum of the transition matrix.

Remark 13.3 Determinant of a graph. Many textbooks offer derivations of the loop
expansions of characteristic polynomials for transition matrices and their Markov graphs,
see for example refs. [3, 4, 5].

Remark 13.4 T is not trace class. Note to the erudite reader: the transition matrixT
(in the infinite partition limit (13.19)) is not trace class.Still the trace is well defined in the
n→ ∞ limit.

Remark 13.5 Artin-Mazur zeta functions. Motivated by A. Weil’s zeta function for
the Frobenius map [8], Artin and Mazur [12] introduced the zeta function (13.21) that
counts periodic points for diffeomorphisms (see also ref. [9] for their evaluation for maps
of the interval). Smale [10] conjectured rationality of the zeta functions for Axiom A
diffeomorphisms, later proved by Guckenheimer [11] and Manning [12]. See remark17.4
on page296for more zeta function history.

Remark 13.6 Ordering periodic orbit expansions. In sect.18.5we will introduce an
alternative way of hierarchically organizing cumulant expansions, in which the order is
dictated by stability rather than cycle length: such a procedure may be better suited to
perform computations when the symbolic dynamics is not wellunderstood.

Exercises

13.1. A transition matrix for 3-disk pinball.

a) Draw the Markov graph corresponding to the 3-

disk ternary symbolic dynamics, and write down
the corresponding transition matrix corresponding
to the graph. Show that iteration of the transition
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matrix results in two coupled linear difference
equations, - one for the diagonal and one for
the off diagonal elements. (Hint: relate trTn to
tr Tn−1 + . . ..)

b) Solve the above difference equation and obtain the
number of periodic orbits of lengthn. Compare
with table13.5.2.

c) Find the eigenvalues of the transition matrixT for
the 3-disk system with ternary symbolic dynamics
and calculate the topological entropy. Compare
this to the topological entropy obtained from the
binary symbolic dynamics{0, 1}.

13.2. Sum of Ai j is like a trace. Let A be a matrix with
eigenvaluesλk. Show that

Γn =
∑

i, j

[An] i j =
∑

k

ckλ
n
k .

(a) Use this to show that ln|tr An| and ln|Γn| have the
same asymptotic behavior asn → ∞, i.e., their
ratio converges to one.

(b) Do eigenvaluesλk need to be distinct,λk , λl for
k , l?

13.3. Loop expansions. Prove by induction the sign rule in
the determinant expansion (13.13):

det (1− zT) =
∑

k≥0

∑

p1+···+pk

(−1)ktp1tp2 · · · tpk .

13.4. Transition matrix and cycle counting. Suppose you
are given the Markov graph



0 1a

b

c
This diagram can be encoded by a matrixT, where the
entryTi j means that there is a link connecting nodei to
node j. The value of the entry is the weight of the link.

a) Walks on the graph are given the weight that is the
product of the weights of all links crossed by the
walk. Convince yourself that the transition matrix
for this graph is:

T =

[
a b
c 0

]
.

b) Enumerate all the walks of length three on the
Markov graph. Now computeT3 and look at the
entries. Is there any relation between the terms in
T3 and all the walks?

c) Show thatTn
i j is the number of walks from point

i to point j in n steps. (Hint: one might use the
method of induction.)

d) Try to estimate the numberN(n) of walks of length
n for this simple Markov graph.

e) The topological entropyh measures the rate of
exponential growth of the total number of walks
N(n) as a function ofn. What is the topological
entropy for this Markov graph?

13.5. 3-disk prime cycle counting. A prime cycle p
of lengthnp is a single traversal of the orbit; its label
is a non-repeating symbol string ofnp symbols. For
example,12 is prime, but2121 is not, since it is21 =
12 repeated.

Verify that a 3-disk pinball has 3, 2, 3, 6, 9,· · · prime
cycles of length 2, 3, 4, 5, 6,· · ·.

13.6. “Golden mean” pruned map. Continuation of
exercise10.6: Show that the total number of periodic
orbits of lengthn for the “golden mean” tent map is

(1+
√

5)n + (1−
√

5)n

2n
.

For continuation, see exercise17.2. See also
exercise13.8.

13.7. Alphabet {0,1}, prune 00 . The Markov diagram
figure 10.13 (b) implements this pruning rule. The
pruning rule implies that “0” must always be bracketed
by “1”s; in terms of a new symbol 2= 10, the
dynamics becomes unrestricted symbolic dynamics with
with binary alphabet{1,2}. The cycle expansion (13.13)
becomes

1/ζ = (1− t1)(1− t2)(1− t12)(1− t112) . . .(13.35)

= 1− t1 − t2 − (t12 − t1t2)

−(t112− t12t1) − (t122− t12t2) . . .

In the original binary alphabet this corresponds to:

1/ζ = 1− t1 − t10 − (t110− t1t10)

−(t1110− t110t1) − (t11010− t110t10) . . .(13.36)

This symbolic dynamics describes, for example, circle
maps with the golden mean winding number. For
unimodal maps this symbolic dynamics is realized by
the tent map of exercise13.6.

13.8. A unimodal map example. Consider a unimodal
map, this Figure (a):
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Figure: (a) A unimodal map for which the critical point
maps into the right hand fixed point in three iterations,
and (b) the corresponding Markov graph (K.T. Hansen).
for which the critical point maps into the right hand

fixed point in three iterations,S+ = 1001. Show that
the admissible itineraries are generated by the Markov
graph of the Figure (b).

(Kai T. Hansen)

13.9. Glitches in shadowing.∗∗ Note that the combination
t00011 minus the “shadow”t0t0011 in (13.17) cancels
exactly, and does not contribute to the topological zeta
function (13.18). Are you able to construct a smaller
Markov graph than figure13.3(e)?

13.10. Whence Möbius function? To understand where the
Möbius function comes from consider the function

f (n) =
∑

d|n
g(d) (13.37)

whered|n stands for sum over all divisorsd of n. Invert
recursively this infinite tower of equations and derive the
Möbius inversion formula

g(n) =
∑

d|n
µ(n/d) f (d) (13.38)

13.11. Counting prime binary cycles. In order to get
comfortable with Möbius inversion reproduce the results
of the second column of table13.5.2.

Write a program that determines the number of prime
cycles of lengthn. You might want to have this program
later on to be sure that you have missed no 3-pinball
prime cycles.

13.12. Counting subsets of cycles. The techniques
developed above can be generalized to counting subsets
of cycles. Consider the simplest example of a dynamical
system with a complete binary tree, a repeller map (10.6)
with two straight branches, which we label 0 and 1.
Every cycle weight for such map factorizes, with a factor
t0 for each 0, and factort1 for each 1 in its symbol string.
Prove that the transition matrix traces (13.5) collapse to
tr(Tk) = (t0 + t1)k, and 1/ζ is simply

∏

p

(
1− tp

)
= 1− t0 − t1 (13.39)

Substituting (13.39) into the identity

∏

p

(
1+ tp

)
=

∏

p

1− tp
2

1− tp

we obtain

∏

p

(
1+ tp

)
=

1− t20 − t21
1− t0 − t1

= 1+ t0 + t1 +
2t0t1

1− t0 − t1
= 1+ t0 + t1

+

∞∑

n=2

n−1∑

k=1

2

(
n− 2
k− 1

)
tk0tn−k

1 .

Hence forn ≥ 2 the number of terms in the cumulant
expansion withk 0’s and n − k 1’s in their symbol
sequences is 2

(
n−2
k−1

)
.

In order to count the number of prime cycles in each
such subset we denote withMn,k (n = 1, 2, . . . ; k =
{0, 1} for n = 1; k = 1, . . . , n− 1 for n ≥ 2) the number
of prime n-cycles whose labels containk zeros. Show
that

M1,0 = M1,1 = 1 , n ≥ 2 , k = 1, . . . , n− 1

nMn,k =
∑

m
∣∣∣ n

k

µ(m)

(
n/m
k/m

)

where the sum is over allm which divide bothn andk.
(Continued as exercise18.7.)

13.13. Logarithmic periodicity of ln Nn
∗. Plot lnNn − nh

for a system with a nontrivial finite Markov graph. Do
you see any periodicity? If yes, why?

13.14. 4-disk pinball topological zeta function. Show that
the 4-disk pinball topological zeta function (the pruning
affects only the fixed points and the 2-cycles) is given by

1/ζ4−disk
top = (1− 3z)

(1− z2)6

(1− z)3(1− z2)3

= (1− 3z)(1+ z)3

= 1− 6z2 − 8z3 − 3z4 . (13.40)

13.15. N-disk pinball topological zeta function. Show
that for anN-disk pinball, the topological zeta function
is given by

1/ζN−disk
top = (1− (N − 1)z) ×

(1− z2)N(N−1)/2

(1− z)N−1(1− z2)(N−1)(N−2)/2

= (1− (N − 1)z) (1+ z)N−1 .(13.41)

The topological zeta function has a rootz−1 = N − 1,
as we already know it should from (13.29) or (13.15).
We shall see in sect.19.4that the other roots reflect the
symmetry factorizations of zeta functions.

13.16. Alphabet {a, b, c}, prune ab . The pruning rule
implies that any string of “b”s must be preceeded by a
“c”; so one possible alphabet is{a, cbk; b}, k=0,1,2. . ..
As the rule does not prune the fixed pointb, it is
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explicitly included in the list. The cycle expansion
(13.13) becomes

1/ζ = (1− ta)(1− tb)(1− tc) ×
(1− tcb)(1− tac)(1− tcbb) . . .

= 1− ta − tb − tc + tatb − (tcb− tctb)

−(tac− tatc) − (tcbb− tcbtb) . . .

The effect of the ab pruning is essentially to unbalance
the 2 cycle curvaturetab−tatb; the remainder of the cycle
expansion retains the curvature form.

13.17. Alphabet {0,1}, prune n repeats of “0” 000. . .00 .

This is equivalent to then symbol alphabet{1, 2,
. . ., n} unrestricted symbolic dynamics, with symbols
corresponding to the possible 10. . .00 block lengths:
2=10, 3=100, . . ., n=100. . .00. The cycle expansion
(13.13) becomes

1/ζ = 1−t1−t2 . . .−tn−(t12−t1t2) . . .−(t1n−t1tn) . . . .(13.42)

13.18. Alphabet {0,1}, prune 1000 , 00100, 01100.

Show that the topological zeta function is given by

1/ζ = (1− t0)(1− t1 − t2 − t23− t113) (13.43)

with the unrestricted 4-letter alphabet{1, 2, 23, 113}.
Here 2, 3, refer to 10, 100 respectively, as in
exercise13.17.

13.19. Alphabet {0,1}, prune 1000 , 00100, 01100,
10011. The first three pruning rules were

incorporated in the preceeding exercise.

(a) Show that the last pruning rule10011 leads (in a
way similar to exercise13.18) to the alphabet{21k, 23,
21k113; 1, 0}, and the cycle expansion

1/ζ = (1− t0)(1− t1− t2− t23+ t1t23− t2113)(13.44)

Note that this says that 1, 23, 2, 2113 are the
fundamental cycles; not all cycles up to length 7 are
needed, only 2113.

(b) Show that the topological zeta function is

1/ζtop = (1− z)(1− z− z2 − z5 + z6 − z7) (13.45)

and check that it yields the exact value of the entropy
h = 0.522737642. . ..

13.20. Topological zeta function for alphabet {0,1}, prune
1000 , 00100, 01100. (continuation of

exercise11.9) Show that topological zeta function is

1/ζ = (1− t0)(1− t1 − t2 − t23− t113) (13.46)

for unrestricted 4-letter alphabet{1, 2, 23, 113}.

13.21. Alphabet {0,1}, prune only the fixed point 0 . This
is equivalent to theinfinite alphabet{1, 2, 3, 4, . . .}
unrestricted symbolic dynamics. The prime cycles
are labeled by all non-repeating sequences of integers,
ordered lexically:tn, n > 0; tmn, tmmn, . . . , n > m > 0;
tmnr, r > n > m> 0, . . . (see sect.23.3). Now the number
of fundamental cycles is infinite as well:

1/ζ = 1−
∑

n>0

tn −
∑

n>m>0

(tmn− tntm)

−
∑

n>m>0

(tmmn− tmtmn)

−
∑

n>m>0

(tmnn− tmntn) (13.47)

−
∑

r>n>m>0

(tmnr + tmrn− tmntr

− tmrtn − tmtnr + tmtntr ) · · · (13.48)

As shown in table23.3, this grammar plays an important
role in description of fixed points of marginal stability.
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Chapter 14

Transporting densities

Paulina: I’ll draw the curtain:
My lord’s almost so far transported that
He’ll think anon it lives.

—W. Shakespeare:The Winter’s Tale

(P. Cvitanović, R. Artuso, L. Rondoni, and E.A. Spiegel)

I   2, 3, 7 and8 we learned how to track an individual trajectory, and
saw that such a trajectory can be very complicated. In chapter 4 we studied
a small neighborhood of a trajectory and learned that such neighborhood

can grow exponentially with time, making the concept of tracking an individual
trajectory for long times a purely mathematical idealization.

While the trajectory of an individual representative pointmay be highly convoluted,
as we shall see, the density of these points might evolve in a manner that is
relatively smooth. The evolution of the density of representative points is for
this reason (and other that will emerge in due course) of great interest. So are
the behaviors of other properties carried by the evolving swarm of representative
points.

We shall now show that the global evolution of the density of representative
points is conveniently formulated in terms of linear actionof evolution operators.
We shall also show that the important, long-time “natural” invariant densities
are unspeakably unfriendly and essentially uncomputable everywhere singular
functions with support on fractal sets. Hence, in chapter15 we rethink what is
it that the theory needs to predict (“expectation values” of“observables”), relate
these to the eigenvalues of evolution operators, and in chapters16to 18show how
to compute these without ever having to compute a natural” invariant densitiesρ0.
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Figure 14.1: (a) First level of partitioning: A
coarse partition ofM into regionsM0, M1,
andM2. (b) n = 2 level of partitioning: A
refinement of the above partition, with each region
Mi subdivided intoMi0,Mi1, andMi2. (a)
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14.1 Measures

Do I then measure, O my God, and know not what I
measure?

—St. Augustine,The confessions of Saint Augustine

A fundamental concept in the description of dynamics of a chaotic system is that
of measure, which we denote bydµ(x) = ρ(x)dx. An intuitive way to define and
construct a physically meaningful measure is by a process ofcoarse-graining.
Consider a sequence 1, 2, ...,n, ... of increasingly refined partitions of state space,
figure14.1, into regionsMi defined by the characteristic function

χi(x) =

{
1 if x ∈ Mi ,
0 otherwise. (14.1)

A coarse-grained measure is obtained by assigning the “mass,” or the fraction of
trajectories contained in theith regionMi ⊂ M at thenth level of partitioning of
the state space:

∆µi =

∫

M
dµ(x)χi (x) =

∫

Mi

dµ(x) =
∫

Mi

dxρ(x) . (14.2)

The functionρ(x) = ρ(x, t) denotes thedensityof representative points in state
space at timet. This density can be (and in chaotic dynamics, often is) an arbitrarily
ugly function, and it may display remarkable singularities; for instance, there may
exist directions along which the measure is singular with respect to the Lebesgue
measure. We shall assume that the measure is normalized

(n)∑

i

∆µi = 1 , (14.3)

where the sum is over subregionsi at thenth level of partitioning. The infinitesimal
measureρ(x) dx can be thought of as an infinitely refined partition limit of∆µi =

|Mi |ρ(xi ) , xi ∈ Mi , with normalization

∫

M
dxρ(x) = 1 . (14.4)
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Figure 14.2: The evolution rulef tcan be used to map
a regionMi of the state space into the regionf t(Mi).
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t
ff (     )Mi

Here|Mi | is the volume of regionMi, and all|Mi | → 0 asn→ ∞.

So far, any arbitrary sequence of partitions will do. What are intelligent ways
of partitioning state space? We already know the answer fromchapter10, but let
us anyway develope some intuition about how the dynamics transports densities.

[chapter 10]

14.2 Perron-Frobenius operator

Given a density, the question arises as to what it might evolve into with time.
Consider a swarm of representative points making up the measure contained in a
regionMi at timet = 0. As the flow evolves, this region is carried intof t(Mi),
as in figure14.2. No trajectory is created or destroyed, so the conservationof
representative points requires that

∫

f t(Mi )
dxρ(x, t) =

∫

Mi

dx0 ρ(x0, 0) .

Transform the integration variable in the expression on theleft hand side to the
initial points x0 = f −t(x),

∫

Mi

dx0 ρ( f t(x0), t)
∣∣∣detJt(x0)

∣∣∣ =
∫

Mi

dx0 ρ(x0, 0) .

The density changes with time as the inverse of the Jacobian (4.46)

ρ(x, t) =
ρ(x0, 0)
|detJt(x0)| , x = f t(x0) , (14.5)

which makes sense: the density varies inversely with the infinitesimal volume
occupied by the trajectories of the flow.

The relation (14.5) is linear inρ, so the manner in which a flow transports
densities may be recast into the language of operators, by writing

[exercise 14.1]

ρ(x, t) =
(
Lt ◦ ρ

)
(x) =

∫

M
dx0 δ

(
x− f t(x0)

)
ρ(x0, 0) . (14.6)
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Figure 14.3: A piecewise-linear skew “Ulam tent”
map (14.11) (Λ0 = 4/3,Λ1 = −4). 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Λ0

Λ1

Let us check this formula. As long as the zero is not smack on the border of∂M,
integrating Dirac delta functions is easy:

∫
M dxδ(x) = 1 if 0 ∈ M, zero otherwise.

The integral over a 1-dimensional Dirac delta function picks up the Jacobian of its
argument evaluated at all of its zeros:

∫
dxδ(h(x)) =

∑

{x:h(x)=0}

1
|h′(x)| , (14.7)

and ind dimensions the denominator is replaced by

∫
dxδ(h(x)) =

(x−x )h’(x )* *

x*

h(x)

x (14.8)

=
∑

j

∫

M j

dxδ(h(x)) =
∑

{x:h(x)=0}

1∣∣∣∣det ∂h(x)
∂x

∣∣∣∣
.

Now you can check that (14.6) is just a rewrite of (14.5):
[exercise 14.2]

(
Lt ◦ ρ

)
(x) =

∑

x0= f −t(x)

ρ(x0)
| f t′ (x0)| (1-dimensional)

=
∑

x0= f −t(x)

ρ(x0)
|detJt(x0)| (d-dimensional). (14.9)

For a deterministic, invertible flowx has only one preimagex0; allowing for
multiple preimages also takes account of noninvertible mappings such as the “stretch
& fold” maps of the interval, to be discussed briefly in the next example, and in
more detail in sect.10.2.1.

We shall refer to the kernel of (14.6) as thePerron-Frobenius operator:
[exercise 14.3]

[example 21.7]

Lt(x, y) = δ
(
x− f t(y)

)
. (14.10)

measure - 13jun2008.tex

CHAPTER 14. TRANSPORTING DENSITIES 239

If you do not like the word “kernel” you might prefer to think of Lt(x, y) as a
matrix with indicesx, y, and index summation in matrix multiplication replaced by
an integral overy,

(Lt ◦ ρ) (x) =
∫

dyLt(x, y)ρ(y) . The Perron-Frobenius oper-
[remark 17.4]

ator assembles the densityρ(x, t) at time t by going back in time to the density
ρ(x0, 0) at timet = 0.

Example 14.1 Perron-Frobenius operator for a piecewise-linear map: Assume
the expanding 1-d map f (x) of figure 14.3, a piecewise-linear 2–branch map with slopes
Λ0 > 1 and Λ1 = −Λ0/(Λ0 − 1) < −1 :

[exercise 14.7]

f (x) =

{
f0(x) = Λ0x , x ∈ M0 = [0, 1/Λ0)
f1(x) = Λ1(1− x) , x ∈ M1 = (1/Λ0, 1] . (14.11)

Both f (M0) and f (M1) map onto the entire unit intervalM = [0, 1]. We shall refer to
any unimodal map whose critical point maps onto the “left” unstable fixed point x0 as
the “Ulam” map. Assume a piecewise constant density

ρ(x) =

{
ρ0 if x ∈ M0
ρ1 if x ∈ M1

. (14.12)

As can be easily checked using (14.9), the Perron-Frobenius operator acts on this
piecewise constant function as a [2×2] Markov matrix L with matrix elements

[exercise 14.1]

[exercise 14.5](
ρ0

ρ1

)
→ Lρ =

( 1
|Λ0|

1
|Λ1|

1
|Λ0|

1
|Λ1|

) (
ρ0

ρ1

)
, (14.13)

stretching both ρ0 and ρ1 over the whole unit interval Λ. In this example the density is
constant after one iteration, so L has only a unit eigenvalue es0 = 1/|Λ0| + 1/|Λ1| = 1,
with constant density eigenvector ρ0 = ρ1. The quantities 1/|Λ0|, 1/|Λ1| are, respectively,
the fractions of state space taken up by the |M0|, |M1| intervals. This simple explicit
matrix representation of the Perron-Frobenius operator is a consequence of the piecewise
linearity of f , and the restriction of the densities ρ to the space of piecewise constant
functions. The example gives a flavor of the enterprize upon which we are about to
embark in this book, but the full story is much subtler: in general, there will exist no
such finite-dimensional representation for the Perron-Frobenius operator. (Continued
in example 15.2.)

14.3 Why not just leave it to a computer?

(R. Artuso and P. Cvitanović)

To a student with a practical bent the above Example14.1suggests a strategy for
constructing evolution operators for smooth maps, as limits of partitions of state
space into regionsMi , with a piecewise-linear approximationsfi to the dynamics
in each region, but that would be too naive; much of the physically interesting
spectrum would be missed. As we shall see, the choice of function space forρ is

[chapter 21]
crucial, and the physically motivated choice is a space of smooth functions, rather
than the space of piecewise constant functions.
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All of the insight gained in this chapter and in what is to follow is nothing but
an elegant way of thinking of the evolution operator,L, as a matrix (this point of
view will be further elaborated in chapter21). There are many textbook methods
of approximating an operatorL by sequences of finite matrix approximationsL,
but in what follows the great achievement will be that we shall avoid constructing
any matrix approximation toL altogether. Why a new method? Why not just
run it on a computer, as many do with such relish in diagonalizing quantum
Hamiltonians?

The simplest possible way of introducing a state space discretization, figure14.4,
is to partition the state spaceM with a non-overlapping collection of setsMi , i =
1, . . . ,N, and to consider piecewise constant densities (14.2), constant on each
Mi :

ρ(x) =
N∑

i=1

ρi
χi(x)
|Mi |

whereχi(x) is the characteristic function (14.1) of the setMi . The densityρi at a
given instant is related to the densities at the previous step in time by the action of
the Perron-Frobenius operator, as in (14.6):

ρ′j =

∫

M
dyχ j(y)ρ′(y) =

∫

M
dx dyχ j (y) δ(y− f (x)) ρ(x)

=

N∑

i=1

ρi
|Mi ∩ f −1(M j)|

|Mi |
.

In this way

L i j =
|Mi ∩ f −1(M j)|

|Mi |
, ρ′ = ρL (14.14)

is a matrix approximation to the Perron-Frobenius operator, and its leading left
eigenvector is a piecewise constant approximation to the invariant measure. It is
an old idea of Ulam that such an approximation for the Perron-Frobenius operator
is a meaningful one.

[remark 14.3]

The problem with such state space discretization approaches is that they are
blind, the grid knows not what parts of the state space are more or less important.
This observation motivated the development of the invariant partitions of chaotic
systems undertaken in chapter10, we exploited the intrinsic topology of a flow to
give us both an invariant partition of the state space and a measure of the partition
volumes, in the spirit of figure1.11.

Furthermore, a piecewise constantρ belongs to an unphysical function space,
and with such approximations one is plagued by numerical artifacts such as spurious
eigenvalues. In chapter21 we shall employ a more refined approach to extracting
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Figure 14.4: State space discretization approach to
computing averages.

spectra, by expanding the initial and final densitiesρ, ρ′ in some basisϕ0, ϕ1,
ϕ2, · · · (orthogonal polynomials, let us say), and replacingL(y, x) by its ϕα basis
representationLαβ = 〈ϕα|L|ϕβ〉. The art is then the subtle art of finding a “good”
basis for which finite truncations ofLαβ give accurate estimates of the eigenvalues
of L.

[chapter 21]

Regardless of how sophisticated the choice of basis might be, the basic problem
cannot be avoided - as illustrated by the natural measure forthe Hénon map (3.18)
sketched in figure14.5, eigenfunctions ofL are complicated, singular functions
concentrated on fractal sets, and in general cannot be represented by a nice basis
set of smooth functions. We shall resort to matrix representations ofL and theϕα
basis approach only insofar this helps us prove that the spectrum that we compute
is indeed the correct one, and that finite periodic orbit truncations do converge.

in depth:

chapter 1, p. 1

14.4 Invariant measures

A stationaryor invariant densityis a density left unchanged by the flow

ρ(x, t) = ρ(x, 0) = ρ(x) . (14.15)

Conversely, if such a density exists, the transformationf t(x) is said to bemeasure-
preserving. As we are given deterministic dynamics and our goal is the computation
of asymptotic averages of observables, our task is to identify interesting invariant
measures for a givenf t(x). Invariant measures remain unaffected by dynamics, so
they are fixed points (in the infinite-dimensional function space ofρ densities) of
the Perron-Frobenius operator (14.10), with the unit eigenvalue:

[exercise 14.3]

Ltρ(x) =
∫

M
dyδ(x− f t(y))ρ(y) = ρ(x). (14.16)
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In general, depending on the choice off t(x) and the function space forρ(x), there
may be no, one, or many solutions of the eigenfunction condition (14.16). For
instance, a singular measuredµ(x) = δ(x− xq)dx concentrated on an equilibrium
point xq = f t(xq), or any linear combination of such measures, each concentrated
on a different equilibrium point, is stationary. There are thus infinitely many
stationary measures that can be constructed. Almost all of them are unnatural
in the sense that the slightest perturbation will destroy them.

From a physical point of view, there is no way to prepare initial densities
which are singular, so we shall focus on measures which are limits of transformations
experienced by an initial smooth distributionρ(x) under the action off ,

ρ0(x) = lim
t→∞

∫

M
dyδ(x− f t(y))ρ(y, 0) ,

∫

M
dyρ(y, 0) = 1 . (14.17)

Intuitively, the “natural” measure should be the measure that is the least sensitive
to the (in practice unavoidable) external noise, no matter how weak.

14.4.1 Natural measure

Huang: Chen-Ning, do you think ergodic theory gives us
useful insight into the foundation of statistical mechanics?
Yang: I don’t think so.

—Kerson Huang,C.N. Yang interview

In computer experiments, as the Hénon example of figure14.5, the long time
evolution of many “typical” initial conditions leads to thesame asymptotic distribution.
Hence thenatural (also called equilibrium measure, SRB measure, Sinai-Bowen-
Ruelle measure, physical measure, invariant density, natural density, or even “natural
invariant”) is defined as the limit

[exercise 14.8]

[exercise 14.9]

ρx0
(y) =



limt→∞
1
t

∫ t

0 dτ δ(y− f τ(x0)) flows

limn→∞
1
n

∑n−1
k=0 δ

(
y− f k(x0)

)
maps,

(14.18)

where x0 is a generic initial point. Generated by the action off , the natural
measure satisfies the stationarity condition (14.16) and is thus invariant by construction.

Staring at an average over infinitely many Dirac deltas is nota prospect we
cherish. From a computational point of view, the natural measure is the visitation
frequency defined by coarse-graining, integrating (14.18) over theMi region

∆µi = lim
t→∞

ti
t
, (14.19)

whereti is the accumulated time that a trajectory of total durationt spends in the
Mi region, with the initial pointx0 picked from some smooth densityρ(x).
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Figure 14.5: Natural measure (14.19) for the Hénon
map (3.18) strange attractor at parameter values
(a, b) = (1.4, 0.3). See figure3.9 for a sketch
of the attractor without the natural measure binning.
(Courtesy of J.-P. Eckmann) -0.4
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Let a = a(x) be anyobservable. In the mathematical literaturea(x) is a
function belonging to some function space, for instance thespace of integrable
functions L1, that associates to each point in state space a number or a setof
numbers. In physical applications the observablea(x) is necessarily a smooth
function. The observable reports on some property of the dynamical system.
Several examples will be given in sect.15.1.

Thespace averageof the observablea with respect to a measureρ is given by
thed-dimensional integral over the state spaceM:

〈a〉ρ =
1
|ρM|

∫

M
dxρ(x)a(x)

|ρM| =
∫

M
dxρ(x) = mass inM . (14.20)

For now we assume that the state spaceM has a finite dimension and a finite
volume. By definition,〈a〉ρ is a function(al) ofρ. Forρ = ρ0 natural measure we
shall drop the subscript in the definition of the space average; 〈a〉ρ = 〈a〉.

Inserting the right-hand-side of (14.18) into (14.20), we see that the natural
measure corresponds to atime averageof the observablea along a trajectory of
the initial pointx0,

ax0 = lim
t→∞

1
t

∫ t

0
dτa( f τ(x0)) . (14.21)

Analysis of the above asymptotic time limit is the central problem of ergodic
theory. TheBirkhoff ergodic theoremasserts that if a natural measureρ exists,

[remark 14.1]

[appendix A]
the limit a(x0) for the time average (14.21) exists for all initial x0. As we shall
not rely on this result in what follows we forgo a proof here. Furthermore, if the
dynamical system isergodic, the time average tends to the space average

lim
t→∞

1
t

∫ t

0
dτa( f τ(x0)) = 〈a〉 (14.22)

for “almost all” initial x0. By “almost all” we mean that the time average is
independent of the initial point apart from a set ofρ-measure zero.

For future reference, we note a further property that is stronger than ergodicity:
if the space average of a product of any two variables decorrelates with time,

lim
t→∞

〈
a(x)b( f t(x))

〉
= 〈a〉 〈b〉 , (14.23)
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[section 20.4]

the dynamical system is said to bemixing.

Example 14.2 The Hénon attractor natural measure: A numerical calculation of
the natural measure (14.19) for the Hénon attractor (3.18) is given by the histogram
in figure 14.5. The state space is partitioned into many equal-size areasMi , and the
coarse grained measure (14.19) is computed by a long-time iteration of the Hénon map,
and represented by the height of the column over area Mi . What we see is a typical
invariant measure - a complicated, singular function concentrated on a fractal set.

If an invariant measure is quite singular (for instance a Dirac δ concentrated
on a fixed point or a cycle), its existence is most likely of no physical import;
no smooth initial density will converge to this measure if its neighborhood is
repelling. In practice the average (14.18) is problematic and often hard to control,
as generic dynamical systems are neither uniformly hyperbolic nor structurally
stable: it is not known whether even the simplest model of a strange attractor, the
Hénon attractor of figure14.5, is “strange,” or merely a transient to a very long
stable cycle.

[exercise 15.1]

14.4.2 Determinism vs. stochasticity

While dynamics can lead to very singularρ’s, in any physical setting we cannot
do better than to measureρ averaged over some regionMi ; the coarse-graining is
not an approximation but a physical necessity. One is free tothink of a measure
as a probability density, as long as one keeps in mind the distinction between
deterministic and stochastic flows. In deterministic evolution the evolution
kernels are not probabilistic; the density of trajectoriesis transporteddeterministically.
What this distinction means will became apparent later: fordeterministic flows

[chapter 17]
our trace and determinant formulas will beexact, while for quantum and stochastic
flows they will only be the leading saddle point (stationary phase, steepest descent)
approximations.

Clearly, while deceptively easy to define, measures spell trouble. The good
news is that if you hang on, you willnever need to compute them, at least not
in this book. How so? The evolution operators to which we nextturn, and the
trace and determinant formulas to which they will lead us, will assign the correct
weights to desired averages without recourse to any explicit computation of the
coarse-grained measure∆ρi .

14.5 Density evolution for infinitesimal times

Consider the evolution of a smooth densityρ(x) = ρ(x, 0) under an infinitesimal
stepδτ, by expanding the action ofLδτ to linear order inδτ:

Lδτρ(y) =
∫

M
dxδ

(
y− f δτ(x)

)
ρ(x)
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=

∫

M
dxδ(y− x− δτv(x)) ρ(x)

=
ρ(y− δτv(y))∣∣∣∣det

(
1+ δτ∂v(y)

∂x

)∣∣∣∣
=
ρ(y) − δτvi(y)∂iρ(y)

1+ δτ
∑d

i=1 ∂ivi(y)

ρ(x, δτ) = ρ(x, 0)− δτ . (14.24)

Here we have used the infinitesimal form of the flow (2.6), the Dirac delta
[exercise 4.1]

Jacobian (14.9), and the ln det= tr ln relation. By the Einstein summation
convention, repeated indices imply summation,vi(y)∂i =

∑d
i=1 vi(y)∂i . Moving

ρ(y, 0) to the left hand side and dividing byδτ, we discover that the rate of the
deformation ofρ under the infinitesimal action of the Perron-Frobenius operator
is nothing but thecontinuity equationfor the density:

∂tρ + ∂ · (ρv) = 0 . (14.25)

The family of Perron-Frobenius operators operators
{Lt}

t∈R+ forms a semigroup
parameterize by time

(a) L0 = I

(b) LtLt′ = Lt+t′ t, t′ ≥ 0 (semigroup property) .

From (14.24), time evolution by an infinitesimal stepδτ forward in time is generated
by

Aρ(x) = + lim
δτ→0+

1
δτ

(
Lδτ − I

)
ρ(x) = −∂i(vi(x)ρ(x)) . (14.26)

We shall refer to

A = −∂ · v+
d∑

i

vi(x)∂i (14.27)

as the time evolutiongenerator. If the flow is finite-dimensional and invertible,A
is a generator of a full-fledged group. The left hand side of (14.26) is the definition
of time derivative, so the evolution equation forρ(x) is

(
∂

∂t
−A

)
ρ(x) = 0 . (14.28)

The finite time Perron-Frobenius operator (14.10) can be formally expressed
by exponentiating the time evolution generatorA as

Lt = etA . (14.29)
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The generatorA is reminiscent of the generator of translations. Indeed, for a
constant velocity field dynamical evolution is nothing but atranslation by (time× velocity):

[exercise 14.10]

e−tv ∂
∂x a(x) = a(x− tv) . (14.30)

14.5.1 Resolvent ofL

Here we limit ourselves to a brief remark about the notion of the “spectrum” of a
linear operator.

The Perron-Frobenius operatorL acts multiplicatively in time, so it is reasonable
to suppose that there exist constantsM > 0, β ≥ 0 such that||Lt || ≤ Metβ

for all t ≥ 0. What does that mean? The operator norm is defined in the same
spirit in which one defines matrix norms:We are assuming thatno value ofLtρ(x)
grows faster than exponentially for any choice of functionρ(x), so that the fastest
possible growth can be bounded byetβ, a reasonable expectation in the light of
the simplest example studied so far, the exact escape rate (15.20). If that is so,
multiplyingLt by e−tβ we construct a new operatore−tβLt = et(A−β) which decays
exponentially for larget, ||et(A−β) || ≤ M. We say thate−tβLt is an element of a
boundedsemigroup with generatorA − βI . Given this bound, it follows by the
Laplace transform

∫ ∞

0
dt e−stLt =

1
s−A , Re s> β , (14.31)

that theresolventoperator (s− A)−1 is bounded (“resolvent”= able to cause
separation into constituents)

∣∣∣∣∣
∣∣∣∣∣

1
s−A

∣∣∣∣∣
∣∣∣∣∣ ≤

∫ ∞

0
dt e−stMetβ =

M
s− β .

If one is interested in the spectrum ofL, as we will be, the resolvent operator is
a natural object to study; it has no time dependence, and it isbounded. The main
lesson of this brief aside is that for continuous time flows, the Laplace transform is
the tool that brings down the generator in (14.29) into the resolvent form (14.31)
and enables us to study its spectrum.

14.6 Liouville operator

A case of special interest is the Hamiltonian or symplectic flow defined by
Hamilton’s equations of motion (7.1). A reader versed in quantum mechanics will
have observed by now that with replacementA → − i

~
Ĥ , whereĤ is the quantum
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Hamiltonian operator, (14.28) looks rather like the time dependent Schrödinger
equation, so this is probably the right moment to figure out what all this means in
the case of Hamiltonian flows.

The Hamilton’s evolution equations (7.1) for any time-independent quantity
Q = Q(q, p) are given by

dQ
dt
=
∂Q
∂qi

dqi

dt
+
∂Q
∂pi

dpi

dt
=
∂H
∂pi

∂Q
∂qi
− ∂Q
∂pi

∂H
∂qi

. (14.32)

As equations with this structure arise frequently for symplectic flows, it is convenient
to introduce a notation for them, thePoisson bracket

[remark 14.4]

{A, B} = ∂A
∂pi

∂B
∂qi
− ∂A
∂qi

∂B
∂pi

. (14.33)

In terms of Poisson brackets the time evolution equation (14.32) takes the compact
form

dQ
dt
= {H,Q} . (14.34)

The full state space flow velocity is ˙x = v = (q̇, ṗ), where the dot signifies
time derivative.

The discussion of sect.14.5applies to any deterministic flow. If the density
itself is a material invariant, combining

∂tI + v · ∂I = 0 .

and (14.25) we conclude that∂ivi = 0 and detJt(x0) = 1. An example of such
incompressible flow is the Hamiltonian flow of sect.7.2. For incompressible flows
the continuity equation (14.25) becomes a statement of conservation of the state
space volume (see sect.7.2), or theLiouville theorem

∂tρ + vi∂iρ = 0 . (14.35)

Hamilton’s equations (7.1) imply that the flow is incompressible,∂ivi = 0, so
for Hamiltonian flows the equation forρ reduces to thecontinuity equationfor the
phase space density:

∂tρ + ∂i(ρvi) = 0 , i = 1, 2 . . . ,D . (14.36)

Consider the evolution of the phase space densityρ of an ensemble of noninteracting
particles; the particles are conserved, so

d
dt
ρ(q, p, t) =

(
∂

∂t
+ q̇i

∂

∂qi
+ ṗi

∂

∂pi

)
ρ(q, p, t) = 0 .
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Inserting Hamilton’s equations (7.1) we obtain theLiouville equation, a special
case of (14.28):

∂

∂t
ρ(q, p, t) = −Aρ(q, p, t) = {H, ρ(q, p, t)} , (14.37)

where{ , } is the Poisson bracket (14.33). The generator of the flow (14.27) is in
this case a generator of infinitesimal symplectic transformations,

A = q̇i
∂

∂qi
+ ṗi

∂

∂pi
=
∂H
∂pi

∂

∂qi
− ∂H
∂qi

∂

∂pi
. (14.38)

For example, for separable Hamiltonians of formH = p2/2m+V(q), the equations
of motion are

q̇i =
pi

m
, ṗi = −

∂V(q)
∂qi

. (14.39)

and the action of the generator
[exercise 14.11]

A = − pi

m
∂

∂qi
+ ∂iV(q)

∂

∂pi
. (14.40)

can be interpreted as a translation (14.30) in configuration space, followed by
acceleration by force∂V(q) in the momentum space.

The time evolution generator (14.27) for the case of symplectic flows is called
the Liouville operator. You might have encountered it in statistical mechanics,
while discussing what ergodicity means for 1023 hard balls. Here its action will
be very tangible; we shall apply the Liouville operator to systems as small as 1 or
2 hard balls and to our surprise learn that this suffices to already get a bit of a grip
on foundations of the nonequilibrium statistical mechanics.

Résum é

In physically realistic settings the initial state of a system can be specified only
to a finite precision. If the dynamics is chaotic, it is not possible to calculate
accurately the long time trajectory of a given initial point. Depending on the
desired precision, and given a deterministic law of evolution, the state of the
system can then be tracked for a finite time.

The study of long-time dynamics thus requires trading in theevolution of a
single state space point for the evolution of ameasure, or thedensityof representative
points in state space, acted upon by anevolution operator. Essentially this means
trading innonlineardynamical equations on a finite dimensional spacex = (x1, x2 · · · xd)
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for a linear equation on an infinite dimensional vector space of density functions
ρ(x). For finite times and for maps such densities are evolved by the Perron-
Frobenius operator,

ρ(x, t) =
(
Lt ◦ ρ

)
(x) ,

and in a differential formulation they satisfy the thecontinuity equation:

∂tρ + ∂ · (ρv) = 0 .

The most physical of stationary measures is the natural measure, a measure robust
under perturbations by weak noise.

Reformulated this way, classical dynamics takes on a distinctly quantum-
mechanical flavor. If the Lyapunov time (1.1), the time after which the notion
of an individual deterministic trajectory loses meaning, is much shorter than the
observation time, the “sharp” observables are those dual totime, the eigenvalues
of evolution operators. This is very much the same situationas in quantum
mechanics; as atomic time scales are so short, what is measured is the energy, the
quantum-mechanical observable dual to the time. For long times the dynamics
is described in terms of stationary measures, i.e., fixed points of the appropriate
evolution operators. Both in classical and quantum mechanics one has a choice of
implementing dynamical evolution on densities (“Schrödinger picture,” sect.14.5)
or on observables (“Heisenberg picture,” sect.15.2and chapter16).

In what follows we shall find the second formulation more convenient, but the
alternative is worth keeping in mind when posing and solvinginvariant density
problems. However, as classical evolution operators are not unitary, their eigenstates
can be quite singular and difficult to work with. In what follows we shall learn how
to avoid dealing with these eigenstates altogether. As a matter of fact, what follows
will be a labor of radical deconstruction; after having argued so strenuously here
that only smooth measures are “natural,” we shall merrily proceed to erect the
whole edifice of our theory on periodic orbits, i.e., objectsthat areδ-functions
in state space. The trick is that each comes with an interval,its neighborhood –
cycle points only serve to pin these intervals, just as the millimeter marks on a
measuring rod partition continuum into intervals.

Commentary

Remark 14.1 Ergodic theory: An overview of ergodic theory is outside the scope of
this book: the interested reader may find it useful to consultref. [1]. The existence of
time average (14.21) is the basic result of ergodic theory, known as the Birkhoff theorem,
see for example refs. [1, 22], or the statement of theorem 7.3.1 in ref. [8]. The natural
measure (14.19) of sect.14.4.1is often referred to as the SRB or Sinai-Ruelle-Bowen
measure [26, 24, 28].
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Remark 14.2 Time evolution as a Lie group: Time evolution of sect.14.5is an example
of a 1-parameter Lie group. Consult, for example, chapter 2.of ref. [9] for a clear
and pedagogical introduction to Lie groups of transformations. For a discussion of the
bounded semigroups of page246see, for example, Marsden and Hughes [2].

Remark 14.3 Discretization of the Perron-Frobenius operator operator It is an old
idea of Ulam [12] that such an approximation for the Perron-Frobenius operator is a
meaningful one. The piecewise-linear approximation of thePerron-Frobenius operator
(14.14) has been shown to reproduce the spectrum for expanding maps, once finer and
finer Markov partitions are used [13, 17, 14]. The subtle point of choosing a state space
partitioning for a “generic case” is discussed in ref. [15, 22].

Remark 14.4 The sign convention of the Poisson bracket: The Poisson bracket is
antisymmetric in its arguments and there is a freedom to define it with either sign convention.
When such freedom exists, it is certain that both conventions are in use and this is no
exception. In some texts [9, 3] you will see the right hand side of (14.33) defined as{B,A}
so that (14.34) is dQ

dt = {Q,H}. Other equally reputable texts [18] employ the convention
used here. Landau and Lifshitz [4] denote a Poisson bracket by [A, B], notation that we
reserve here for the quantum-mechanical commutator. As long as one is consistent, there
should be no problem.

Remark 14.5 “Anon it lives”? “Anon it lives” refers to a statue of King Leontes’s wife,
Hermione, who died in a fit of grief after he unjustly accused her of infidelity. Twenty
years later, the servant Paulina shows Leontes this statue of Hermione. When he repents,
the statue comes to life. Or perhaps Hermione actually livedand Paulina has kept her
hidden all these years. The text of the play seems deliberately ambiguous. It is probably
a parable for the resurrection of Christ. (John F. Gibson)

Exercises

14.1. Integrating over Dirac delta functions. Let us verify
a few of the properties of the delta function and check
(14.9), as well as the formulas (14.7) and (14.8) to be
used later.

(a) If f : Rd → Rd, show that

∫

Rd
dxδ ( f (x)) =

∑

x∈ f−1(0)

1
|det∂x f | .

(b) The delta function can be approximated by a

sequence of Gaussians

∫
dxδ(x) f (x) = lim

σ→0

∫
dx

e−
x2

2σ

√
2πσ

f (x) .

Use this approximation to see whether the formal
expression

∫

R

dxδ(x2)

makes sense.
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14.2. Derivatives of Dirac delta functions. Consider
δ(k)(x) = ∂k

∂xk δ(x) .

Using integration by parts, determine the value of

∫

R

dxδ′(y) , wherey = f (x) − x (14.41)

∫
dxδ(2) (y) =

∑

{x:y(x)=0}

1
|y′|

{
3

(y′′)2

(y′)4
− y′′′

(y′)3

}
(14.42)

∫
dx b(x)δ(2)(y) =

∑

{x:y(x)=0}

1
|y′|

{
b′′

(y′)2
− b′y′′

(y′)3

+b

(
3

(y′′)2

(y′)4
− y′′′

(y′)3

)}
.(14.43)

These formulas are useful for computing effects of weak
noise on deterministic dynamics [5].

14.3. Lt generates a semigroup. Check that the Perron-
Frobenius operator has the semigroup property,

∫

M
dzLt2(y, z)Lt1(z, x) = Lt2+t1(y, x) , t1, t2 ≥ 0 .(14.44)

As the flows in which we tend to be interested are
invertible, theL’s that we will use often do form a
group, witht1, t2 ∈ R.

14.4. Escape rate of the tent map.

(a) Calculate by numerical experimentation the log of
the fraction of trajectories remaining trapped in
the interval [0, 1] for the tent map

f (x) = a(1− 2|x− 0.5|)

for several values ofa.

(b) Determine analytically thea dependence of the
escape rateγ(a).

(c) Compare your results for (a) and (b).

14.5. Invariant measure. We will compute the invariant
measure for two different piecewise linear maps.

α0 1 0 1

(a) Verify the matrixL representation (15.19).

(b) The maximum value of the first map is 1.
Compute an invariant measure for this map.

(c) Compute the leading eigenvalue ofL for this map.

(d) For this map there is an infinite number of
invariant measures, but only one of them will
be found when one carries out a numerical
simulation. Determine that measure, and explain
why your choice is the natural measure for this
map.

(e) In the second map the maximum occurs atα =

(3−
√

5)/2 and the slopes are±(
√

5+ 1)/2. Find
the natural measure for this map. Show that it is
piecewise linear and that the ratio of its two values
is (
√

5+ 1)/2.
(medium difficulty)

14.6. Escape rate for a flow conserving map. AdjustΛ0,
Λ1 in (15.17) so that the gap between the intervalsM0,
M1 vanishes. Show that the escape rate equals zero in
this situation.

14.7. Eigenvalues of the Perron-Frobenius operator for the
skew Ulam tent map. Show that for the skew Ulam
tent map

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Λ0

Λ1

f (x) =

{
f0(x) = Λ0x , x ∈ M0 = [0,
f1(x) = Λ0

Λ0−1(1− x) , x ∈ M1 = (1/

the eigenvalues are available analytically, compute the
first few.

14.8. “Kissing disks” ∗ (continuation of exercises8.1 and
8.2). Close off the escape by settingR = 2, and look in
real time at the density of the Poincaré section iterates
for a trajectory with a randomly chosen initial condition.
Does it look uniform? Should it be uniform? (Hint
- phase space volumes are preserved for Hamiltonian
flows by the Liouville theorem). Do you notice the
trajectories that loiter near special regions of phase space
for long times? These exemplify “intermittency,” a bit of
unpleasantness to which we shall return in chapter23.

14.9. Invariant measure for the Gauss map. Consider
the Gauss map:

f (x) =

{
1
x −

[
1
x

]
x , 0

0 x = 0
(14.46)

where [ ] denotes the integer part.
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(a) Verify that the density

ρ(x) =
1

log 2
1

1+ x

is an invariant measure for the map.

(b) Is it the natural measure?

14.10.A as a generator of translations. Verify that for
a constant velocity field the evolution generatorA in

(14.30) is the generator of translations,

etv ∂
∂x a(x) = a(x+ tv) .

14.11. Incompressible flows. Show that (14.9) implies that
ρ0(x) = 1 is an eigenfunction of a volume-preserving
flow with eigenvalues0 = 0. In particular, this implies
that the natural measure of hyperbolic and mixing
Hamiltonian flows is uniform. Compare this results with
the numerical experiment of exercise14.8.
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Chapter 15

Averaging

For it, the mystic evolution;
Not the right only justified
– what we call evil also justified.

—Walt Whitman,
Leaves of Grass: Song of the Universal

W   the necessity of studying the averages of observables in
chaotic dynamics, and then cast the formulas for averages ina multiplicative
form that motivates the introduction of evolution operators and further

formal developments to come. The main result is that anydynamicalaverage
measurable in a chaotic system can be extracted from the spectrum of an appropriately
constructed evolution operator. In order to keep our toes closer to the ground,
in sect.15.3 we try out the formalism on the first quantitative diagnosis that a
system’s got chaos, Lyapunov exponents.

15.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible, as any finitely specified
initial condition, no matter how precise, will fill out the entire accessible state
space. Hence for chaotic dynamics one cannot follow individual trajectories for a
long time; what is attainable is a description of the geometry of the set of possible
outcomes, and evaluation of long time averages. Examples ofsuch averages are
transport coefficients for chaotic dynamical flows, such as escape rate, meandrift
and diffusion rate; power spectra; and a host of mathematical constructs such
as generalized dimensions, entropies and Lyapunov exponents. Here we outline
how such averages are evaluated within the evolution operator framework. The
key idea is to replace the expectation values of observablesby the expectation
values of generating functionals. This associates an evolution operator with a
given observable, and relates the expectation value of the observable to the leading
eigenvalue of the evolution operator.

254

CHAPTER 15. AVERAGING 255

15.1.1 Time averages

Let a = a(x) be anyobservable, a function that associates to each point in state
space a number, a vector, or a tensor. The observable reportson a property of
the dynamical system. It is a device, such as a thermometer orlaser Doppler
velocitometer. The device itself does not change during themeasurement. The
velocity field ai(x) = vi(x) is an example of a vector observable; the length of
this vector, or perhaps a temperature measured in an experiment at instantτ are
examples of scalar observables. We define theintegrated observable At as the
time integral of the observablea evaluated along the trajectory of the initial point
x0,

At(x0) =
∫ t

0
dτa( f τ(x0)) . (15.1)

If the dynamics is given by an iterated mapping and the time isdiscrete,t → n,
the integrated observable is given by

An(x0) =
n−1∑

k=0

a( f k(x0)) (15.2)

(we suppress possible vectorial indices for the time being).

Example 15.1 Integrated observables. If the observable is the velocity, ai(x) =
vi(x), its time integral At

i(x0) is the trajectory At
i(x0) = xi(t).

For Hamiltonian flows the action associated with a trajectory x(t) = [q(t), p(t)]
passing through a phase space point x0 = [q(0), p(0)] is:

At(x0) =
∫ t

0
dτ q̇(τ) · p(τ) . (15.3)

Thetime averageof the observable along a trajectory is defined by

a(x0) = lim
t→∞

1
t
At(x0) . (15.4)

If a does not behave too wildly as a function of time – for example,if ai(x) is the
Chicago temperature, bounded between−80oF and+130oF for all times –At(x0)
is expected to grow not faster thant, and the limit (15.4) exists. For an example
of a time average - the Lyapunov exponent - see sect.15.3.

The time average depends on the trajectory, but not on the initial point on that
trajectory: if we start at a later state space pointf T(x0) we get a couple of extra
finite contributions that vanish in thet → ∞ limit:

a( f T (x0)) = lim
t→∞

1
t

∫ t+T

T
dτa( f τ(x0))

= a(x0) − lim
t→∞

1
t

(∫ T

0
dτa( f τ(x0)) −

∫ t+T

t
dτa( f τ(x0))

)

= a(x0) .
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Figure 15.1: (a) A typical chaotic trajectory
explores the phase space with the long time
visitation frequency building up the natural
measureρ0(x). (b) time average evaluated along
an atypical trajectory such as a periodic orbit
fails to explore the entire accessible state space.
(A. Johansen) (a)

x

M (b)

The integrated observableAt(x0) and the time averagea(x0) take a particularly
simple form when evaluated on a periodic orbit. Define

[exercise 4.6]

flows: Ap = apTp =

∫ Tp

0
dτa

(
f τ(x0)

)
, x0 ∈ p

maps: = apnp =

np−1∑

i=0

a
(
f i(x0)

)
, (15.5)

where p is a prime cycle,Tp is its period, andnp is its discrete time period in
the case of iterated map dynamics.Ap is a loop integral of the observable along
a single traversal of a prime cyclep, so it is an intrinsic property of the cycle,
independent of the starting pointx0 ∈ p. (If the observablea is not a scalar but a
vector or matrix we might have to be more careful in defining anaverage which
is independent of the starting point on the cycle). If the trajectory retraces itself
r times, we just obtainAp repeatedr times. Evaluation of the asymptotic time
average (15.4) requires therefore only a single traversal of the cycle:

ap = Ap/Tp . (15.6)

However,a(x0) is in general a wild function ofx0; for a hyperbolic system
ergodic with respect to a smooth measure, it takes the same value 〈a〉 for almost
all initial x0, but a different value (15.6) on any periodic orbit, i.e., on a dense set of
points (figure15.1(b)). For example, for an open system such as the Sinai gas of
sect.24.1 (an infinite 2-dimensional periodic array of scattering disks) the phase

[chapter 24]
space is dense with initial points that correspond to periodic runaway trajectories.
The mean distance squared traversed by any such trajectory grows asx(t)2 ∼
t2, and its contribution to the diffusion rateD ≈ x(t)2/t, (15.4) evaluated with
a(x) = x(t)2, diverges. Seemingly there is a paradox; even though intuition says
the typical motion should be diffusive, we have an infinity of ballistic trajectories.

For chaotic dynamical systems, this paradox is resolved by robust averaging,
i.e., averaging also over the initialx, and worrying about the measure of the
“pathological” trajectories.

15.1.2 Space averages

Thespace averageof a quantitya that may depend on the pointx of state space
M and on the timet is given by thed-dimensional integral over thed coordinates
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of the dynamical system:

〈a〉(t) = 1
|M|

∫

M
dx a( f t(x))

|M| =
∫

M
dx = volume ofM . (15.7)

The spaceM is assumed to have finite dimension and volume (open systems like
the 3-disk game of pinball are discussed in sect.15.1.3).

What is it wereally do in experiments? We cannot measure the time average
(15.4), as there is no way to prepare a single initial condition with infinite precision.
The best we can do is to prepare some initial densityρ(x) perhaps concentrated
on some small (but always finite) neighborhoodρ(x) = ρ(x, 0), so one should
abandon the uniform space average (15.7), and consider instead

〈a〉ρ(t) =
1
|M|

∫

M
dxρ(x)a( f t(x)) . (15.8)

We do not bother to lug the initialρ(x) around, as for the ergodic and mixing
systems that we shall consider hereany smooth initial density will tend to the
asymptotic natural measuret → ∞ limit ρ(x, t) → ρ0(x), so we can just as well
take the initialρ(x) = const. The worst we can do is to start out withρ(x) = const.,
as in (15.7); so let us take this case and define theexpectation value〈a〉 of an
observablea to be the asymptotic time and space average over the state spaceM

〈a〉 = lim
t→∞

1
|M|

∫

M
dx

1
t

∫ t

0
dτa( f τ(x)) . (15.9)

We use the same〈· · ·〉 notation as for the space average (15.7), and distinguish the
two by the presence of the time variable in the argument: if the quantity〈a〉(t)
being averaged depends on time, then it is a space average, ifit does not, it is the
expectation value〈a〉.

The expectation value is a space average of time averages, with everyx ∈ M
used as a starting point of a time average. The advantage of averaging over space is
that it smears over the starting points which were problematic for the time average
(like the periodic points). While easy to define, the expectation value〈a〉 turns
out not to be particularly tractable in practice. Here comesa simple idea that
is the basis of all that follows: Such averages are more conveniently studied by
investigating instead of〈a〉 the space averages of form

〈
eβ·A

t〉
=

1
|M|

∫

M
dx eβ·A

t(x). (15.10)

In the present contextβ is an auxiliary variable of no particular physical significance.
In most applicationsβ is a scalar, but if the observable is ad-dimensional vector
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ai(x) ∈ Rd, thenβ is a conjugate vectorβ ∈ Rd; if the observable is ad× d tensor,
β is also a rank-2 tensor, and so on. Here we will mostly limit the considerations
to scalar values ofβ.

If the limit a(x0) for the time average (15.4) exists for “almost all” initialx0

and the system is ergodic and mixing (in the sense of sect.1.3.1), we expect
the time average along almost all trajectories to tend to thesame valuea, and the
integrated observableAt to tend tota. The space average (15.10) is an integral over
exponentials, and such integral also grows exponentially with time. So ast → ∞
we would expect the space average of

〈
exp(β · At)

〉
itself to grow exponentially

with time

〈
eβ·A

t〉 ∝ ets(β) ,

and its rate of growth to go to a limit

s(β) = lim
t→∞

1
t

ln
〈
eβ·A

t〉
. (15.11)

Now we understand one reason for why it is smarter to compute
〈
exp(β · At)

〉

rather than〈a〉: the expectation value of the observable (15.9) and the moments of
the integrated observable (15.1) can be computed by evaluating the derivatives of
s(β)

∂s
∂β

∣∣∣∣∣
β=0

= lim
t→∞

1
t

〈
At

〉
= 〈a〉 ,

∂2s

∂β2

∣∣∣∣∣∣
β=0

= lim
t→∞

1
t

(〈
AtAt

〉
−

〈
At

〉 〈
At

〉)

= lim
t→∞

1
t

〈
(At − t 〈a〉)2

〉
,

(15.12)

and so forth. We have written out the formulas for a scalar observable; the vector
[exercise 15.2]

case is worked out in the exercise15.2. If we can compute the functions(β), we
have the desired expectation value without having to estimate any infinite time
limits from finite time data.

Suppose we could evaluates(β) and its derivatives. What are such formulas
good for? A typical application is to the problem of describing a particle scattering
elastically off a 2-dimensional triangular array of disks. If the disks are sufficiently
large to block any infinite length free flights, the particle will diffuse chaotically,
and the transport coefficient of interest is the diffusion constant given by

〈
x(t)2

〉
≈

4Dt. In contrast toD estimated numerically from trajectoriesx(t) for finite but
large t, the above formulas yield the asymptoticD without any extrapolations to
the t → ∞ limit. For example, forai = vi and zero mean drift〈vi〉 = 0, in d
dimensions the diffusion constant is given by the curvature ofs(β) atβ = 0,

D = lim
t→∞

1
2dt

〈
x(t)2

〉
=

1
2d

d∑

i=1

∂2s

∂β2
i

∣∣∣∣∣∣
β=0

, (15.13)
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[section 24.1]

so if we can evaluate derivatives ofs(β), we can compute transport coefficients
that characterize deterministic diffusion. As we shall see in chapter24, periodic
orbit theory yields an explicit closed form expression forD.

fast track:

sect. 15.2, p. 261

15.1.3 Averaging in open systems

If the M is a compact region or set of regions to which the dynamics
is confined for all times, (15.9) is a sensible definition of the expectation value.
However, if the trajectories can exitM without ever returning,

∫

M
dyδ(y− f t(x0)) = 0 for t > texit , x0 ∈ M ,

we might be in trouble. In particular, for a repeller the trajectory f t(x0) will
eventually leave the regionM, unless the initial pointx0 is on the repeller, so
the identity

∫

M
dyδ(y− f t(x0)) = 1 , t > 0 , iff x0 ∈ non–wandering set (15.14)

might apply only to a fractal subset of initial points a set ofzero Lebesgue measure.
Clearly, for open systems we need to modify the definition of the expectation value
to restrict it to the dynamics on the non–wandering set, the set of trajectories which
are confined for all times.

Note byM a state space region that encloses all interesting initial points, say
the 3-disk Poincaré section constructed from the disk boundaries and all possible
incidence angles, and denote by|M| the volume ofM. The volume of the state
space containing all trajectories which start out within the state space regionM
and recur within that region at the timet

|M(t)| =
∫

M
dxdyδ

(
y− f t(x)

)
∼ |M|e−γt (15.15)

is expected to decrease exponentially, with the escape rateγ. The integral over
[section 1.4.3]

x takes care of all possible initial points; the integral overy checks whether their
trajectories are still withinM by the timet. For example, any trajectory that falls

[section 20.1]
off the pinball table in figure1.1 is gone for good.

The non–wandering set can be very difficult object to describe; but for any
finite time we can construct a normalized measure from the finite-time covering
volume (15.15), by redefining the space average (15.10) as
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Figure 15.2: A piecewise-linear repeller (15.17): All
trajectories that land in the gap between thef0 and f1
branches escape (Λ0 = 4,Λ1 = −2).

0 0.5 1

x

0

0.5

1

f(x)

〈
eβ·A

t〉
=

∫

M
dx

1
|M(t)|e

β·At(x) ∼ 1
|M|

∫

M
dx eβ·A

t(x)+γt . (15.16)

in order to compensate for the exponential decrease of the number of surviving
trajectories in an open system with the exponentially growing factoreγt. What
does this mean? Once we have computedγ we can replenish the density lost to
escaping trajectories, by pumping ineγt in such a way that the overall measure is
correctly normalized at all times,〈1〉 = 1.

Example 15.2 A piecewise-linear repeller: (continuation of example 14.1) What is
gained by reformulating the dynamics in terms of “operators?” We start by considering
a simple example in which the operator is a [2×2] matrix. Assume the expanding 1-d
map f (x) of figure 15.2, a piecewise-linear 2–branch repeller with slopes Λ0 > 1 and
Λ1 < −1 :

f (x) =



f0 = Λ0x if x ∈ M0 = [0, 1/Λ0]

f1 = Λ1(x− 1) if x ∈ M1 = [1 + 1/Λ1, 1]
. (15.17)

Both f (M0) and f (M1) map onto the entire unit interval M = [0, 1]. Assume a
piecewise constant density

ρ(x) =

{
ρ0 if x ∈ M0
ρ1 if x ∈ M1

. (15.18)

There is no need to define ρ(x) in the gap betweenM0 andM1, as any point that lands
in the gap escapes.

The physical motivation for studying this kind of mapping is the pinball game: f
is the simplest model for the pinball escape, figure 1.8, with f0 and f1 modelling its two
strips of survivors.

As can be easily checked using (14.9), the Perron-Frobenius operator acts on
this piecewise constant function as a [2×2] “transfer” matrix with matrix elements

[exercise 14.1]

[exercise 14.5](
ρ0

ρ1

)
→ Lρ =

( 1
|Λ0|

1
|Λ1|

1
|Λ0|

1
|Λ1|

) (
ρ0

ρ1

)
, (15.19)

stretching both ρ0 and ρ1 over the whole unit interval Λ, and decreasing the density
at every iteration. In this example the density is constant after one iteration, so L has
only one non-zero eigenvalue es0 = 1/|Λ0| + 1/|Λ1|, with constant density eigenvector
ρ0 = ρ1. The quantities 1/|Λ0|, 1/|Λ1| are, respectively, the sizes of the |M0|, |M1|
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Figure 15.3: Space averaging pieces together the
time average computed along thet → ∞ trajectory
of figure 15.1 by a space average over infinitely
many shortt trajectory segments starting at all
initial points at once. (A. Johansen)

intervals, so the exact escape rate (1.3) – the log of the fraction of survivors at each
iteration for this linear repeller – is given by the sole eigenvalue of L:

γ = −s0 = − ln(1/|Λ0| + 1/|Λ1|) . (15.20)

Voila! Here is the rationale for introducing operators – in one time step we have solved
the problem of evaluating escape rates at infinite time. This simple explicit matrix
representation of the Perron-Frobenius operator is a consequence of the piecewise
linearity of f , and the restriction of the densities ρ to the space of piecewise constant
functions. The example gives a flavor of the enterprise upon which we are about to
embark in this book, but the full story is much subtler: in general, there will exist no
such finite-dimensional representation for the Perron-Frobenius operator.

We now turn to the problem of evaluating
〈
eβ·A

t〉
.

15.2 Evolution operators

The above simple shift of focus, from studying〈a〉 to studying
〈
exp

(
β · At)〉 is the

key to all that follows. Make the dependence on the flow explicit by rewriting this
quantity as

〈
eβ·A

t〉
=

1
|M|

∫

M
dx

∫

M
dyδ

(
y− f t(x)

)
eβ·A

t(x) . (15.21)

Hereδ
(
y− f t(x)

)
is the Dirac delta function: for a deterministic flow an initial

point x maps into a unique pointy at timet. Formally, all we have done above is
to insert the identity

1 =
∫

M
dyδ

(
y− f t(x)

)
, (15.22)

into (15.10) to make explicit the fact that we are averaging only over thetrajectories
that remain inM for all times. However, having made this substitution we have
replaced the study of individual trajectoriesf t(x) by the study of the evolution of
density ofthe totalityof initial conditions. Instead of trying to extract a temporal
average from an arbitrarily long trajectory which exploresthe phase space ergodically,
we can now probe the entire state space with short (and controllable) finite time
pieces of trajectories originating from every point inM.
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As a matter of fact (and that is why we went to the trouble of defining the
generator (14.27) of infinitesimal transformations of densities)infinitesimallyshort
time evolution can suffice to determine the spectrum and eigenvalues ofLt.

We shall refer to the kernel of the operation (15.21) asLt(y, x).

Lt(y, x) = δ
(
y− f t(x)

)
eβ·A

t(x) . (15.23)

The evolution operator acts on scalar functionsφ(x) as

(y) =
∫

M
dxδ

(
y− f t(x)

)
eβ·A

t(x)φ(x) . (15.24)

In terms of the evolution operator, the space average of the generating function
(15.21) is given by

〈
eβ·A

t〉
= 〈〉 ,

and, if the spectrum of the linear operatorLt can be described, by (15.11) this
limit

s(β) = lim
t→∞

1
t

ln
〈
Lt

〉
.

yields the leading eigenvalue ofs0(β), and, through it, all desired expectation
values (15.12).

The evolution operator is different for different observables, as its definition
depends on the choice of the integrated observableAt in the exponential. Its job
is deliver to us the expectation value ofa, but before showing that it accomplishes
that, we need to verify the semigroup property of evolution operators.

By its definition, the integral over the observablea is additive along the trajectory

x(t1+t2)

x(0) = x(0)
x(t1)

+

x(t1+t2)

x(t1)

At1+t2(x0) =
∫ t1

0
dτ +

∫ t1+t2

t1
dτ

= At1(x0) + At2( f t1(x0)) .

[exercise 14.3]

If At(x) is additive along the trajectory, the evolution operator generates a semigroup

[section 14.5]

Lt1+t2(y, x) =
∫

M
dzLt2(y, z)Lt1(z, x) , (15.25)
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Figure 15.4: A long-time numerical calculation
of the leading Lyapunov exponent requires rescaling
the distance in order to keep the nearby trajectory
separation within the linearized flow range. δ  x

  xδ

  xδ

2

x(t )1

1

x(0)

0

x(t )2

as is easily checked by substitution

Lt2Lt1a(y) =
∫

M
dxδ(y− f t2(x))eβ·A

t2(x)(Lt1a)(x) = Lt1+t2a(y) .

This semigroup property is the main reason why (15.21) is preferable to (15.9) as
a starting point for evaluation of dynamical averages: it recasts averaging in form
of operators multiplicative along the flow.

15.3 Lyapunov exponents

(J. Mathiesen and P. Cvitanović)

Let us apply the newly acquired tools to the fundamental diagnostics in this subject:
Is a given system “chaotic”? And if so, how chaotic? If all points in a neighborhood

[example 2.3]
of a trajectory converge toward the same trajectory, the attractor is a fixed point or
a limit cycle. However, if the attractor is strange, any two trajectories

[section 1.3.1]

x(t) = f t(x0) and x(t) + δx(t) = f t(x0 + δx0) (15.26)

that start out very close to each other separate exponentially with time, and in
a finite time their separation attains the size of the accessible state space. This
sensitivity to initial conditionscan be quantified as

|δx(t)| ≈ eλt |δx0| (15.27)

whereλ, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent.

15.3.1 Lyapunov exponent as a time average

We can start out with a smallδxand try to estimateλ from (15.27), but now that we
have quantified the notion of linear stability in chapter4 and defined the dynamical
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Figure 15.5: The symmetric matrix
(
Jt
)T

Jt maps a
swarm of initial points in an infinitesimal spherical
neighborhood ofx0 into a cigar-shaped neighborhood
finite time t later, with semiaxes determined by the
local stretching/shrinking |Λ1|, but local individual
trajectory rotations by the complex phase ofJt ignored.
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time averages in sect.15.1.1, we can do better. The problem with measuring the
growth rate of the distance between two points is that as the points separate, the
measurement is less and less a local measurement. In study ofexperimental time
series this might be the only option, but if we have the equations of motion, a
better way is to measure the growth rate of vectors transverse to a given orbit.

The mean growth rate of the distance|δx(t)|/|δx0| between neighboring trajectories
(15.27) is given by theLyapunov exponent

λ = lim
t→∞

1
t

ln |δx(t)|/|δx0| (15.28)

(For notational brevity we shall often suppress the dependence of quantities such
as λ = λ(x0), δx(t) = δx(x0, t) on the initial point x0 and the timet). One
can take (15.28) as is, take a small initial separationδx0, track distance between
two nearby trajectories until|δx(t1)| gets significantly bigger, then recordt1λ1 =

ln(|δx(t1)|/|δx0|), rescaleδx(t1) by factor|δx0|/|δx(t1)|, and continue add infinitum,
with the leading Lyapunov exponent given by

λ = lim
t→∞

1
t

∑

i

tiλi . (15.29)

However, we can do better. Given the equations of motion and baring numerical
problems (such as evaluating the fundamental matrix (4.43) for high-dimensional
flows), for infinitesimalδx we know theδxi(t)/δx j(0) ratio exactly, as this is by
definition the fundamental matrix (4.43)

lim
δx→0

δxi(t)
δx j(0)

=
∂xi(t)
∂x j(0)

= Jt
i j (x0) ,

so the leading Lyapunov exponent can be computed from the linear approximation
(4.28)

λ = lim
t→∞

1
t

ln

∣∣∣Jt(x0)δx0

∣∣∣
|δx0|

= lim
t→∞

1
2t

ln
∣∣∣∣n̂T(

Jt)T Jtn̂
∣∣∣∣ . (15.30)

In this formula the scale of the initial separation drops out, only its orientation
given by the initial orientation unit vector ˆn = δx/|δx| matters. The eigenvalues
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Figure 15.6: A numerical estimate of the leading
Lyapunov exponent for the Rössler flow (2.17) from
the dominant expanding eigenvalue formula (15.30).
The leading Lyapunov exponentλ ≈ 0.09 is positive,
so numerics supports the hypothesis that the Rössler
attractor is strange. (J. Mathiesen)
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of J are either real or come in complex conjugate pairs. AsJ is in general
not symmetric and not diagonalizable, it is more convenientto work with the
symmetric and diagonalizable matrixJ =

(
Jt)T Jt, with real positive eigenvalues

{|Λ1|2 ≥ . . . ≥ |Λd|2}, and a complete orthonormal set of eigenvectors of{u1, . . . , ud}.
Expanding the initial orientation ˆn =

∑
(n̂·ui)ui in theJui = ui eigenbasis, we have

n̂TJn̂ =
d∑

i=1

(n̂ · ui)
2|Λi |2 = (n̂ · u1)2e2λ1t

(
1+O(e−2(λ1−λ2)t)

)
, (15.31)

wheretλi = ln |Λi(x0, t)|, with exponents ordered byλ1 > λ2 ≥ λ3 · · ·. For long
times the largest Lyapunov exponent dominates exponentially (15.30), provided
the orientation ˆn of the initial separation was not chosen perpendicular to the
dominant expanding eigendirectionu1. The Lyapunov exponent is the time average

λ(x0) = lim
t→∞

1
t

{
ln |n̂ · u1| + ln |Λ1(x0, t)| +O(e−2(λ1−λ2)t)

}

= lim
t→∞

1
t

ln |Λ1(x0, t)| , (15.32)

whereΛ1(x0, t) is the leading eigenvalue ofJt(x0). By choosing the initial displacement
such that ˆn is normal to the first (i-1) eigendirections we can define not only the
leading, but all Lyapunov exponents as well:

λi(x0) = lim
t→∞

1
t

ln |Λi(x0, t)| , i = 1, 2, · · · , d . (15.33)

The leading Lyapunov exponent now follows from the fundamental matrix by
numerical integration of (4.9).

The equations can be integrated accurately for a finite time,hence the infinite
time limit of (15.30) can be only estimated from plots of1

2 ln |n̂TJn̂| as function of
time, such as the figure15.6for the Rössler flow (2.17).

As the local expansion and contraction rates vary along the flow, the temporal
dependence exhibits small and large humps. The sudden fall to a low level is
caused by a close passage to a folding point of the attractor,an illustration of why
numerical evaluation of the Lyapunov exponents, and proving the very existence
of a strange attractor is a very difficult problem. The approximately monotone
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part of the curve can be used (at your own peril) to estimate the leading Lyapunov
exponent by a straight line fit.

As we can already see, we are courting difficulties if we try to calculate the
Lyapunov exponent by using the definition (15.32) directly. First of all, the state
space is dense with atypical trajectories; for example, ifx0 happened to lie on a
periodic orbit p, λ would be simply ln|Λp|/Tp, a local property of cyclep, not
a global property of the dynamical system. Furthermore, even if x0 happens to
be a “generic” state space point, it is still not obvious thatln |Λ(x0, t)|/t should
be converging to anything in particular. In a Hamiltonian system with coexisting
elliptic islands and chaotic regions, a chaotic trajectorygets every so often captured
in the neighborhood of an elliptic island and can stay there for arbitrarily long
time; as there the orbit is nearly stable, during such episode ln|Λ(x0, t)|/t can dip
arbitrarily close to 0+. For state space volume non-preserving flows the trajectory
can traverse locally contracting regions, and ln|Λ(x0, t)|/t can occasionally go
negative; even worse, one never knows whether the asymptotic attractor is periodic
or “strange,” so any finite estimate ofλ might be dead wrong.

[exercise 15.1]

15.3.2 Evolution operator evaluation of Lyapunov exponents

A cure to these problems was offered in sect.15.2. We shall now replace time
averaging along a single trajectory by action of a multiplicative evolution operator
on the entire state space, and extract the Lyapunov exponentfrom its leading
eigenvalue. If the chaotic motion fills the whole state space, we are indeed computing
the asymptotic Lyapunov exponent. If the chaotic motion is transient, leading
eventually to some long attractive cycle, our Lyapunov exponent, computed on
non-wandering set, will characterize the chaotic transient; this is actually what
any experiment would measure, as even very small amount of external noise
will suffice to destabilize a long stable cycle with a minute immediatebasin of
attraction.

Due to the chain rule (4.51) for the derivative of an iterated map, the stability
of a 1-d mapping is multiplicative along the flow, so the integral (15.1) of the
observablea(x) = ln | f ′(x)|, the local trajectory divergence rate, evaluated along
the trajectory ofx0 is additive:

An(x0) = ln
∣∣∣ f n′(x0)

∣∣∣ =
n−1∑

k=0

ln
∣∣∣ f ′(xk)

∣∣∣ . (15.34)

The Lyapunov exponent is then the expectation value (15.9) given by a spatial
integral (15.8) weighted by the natural measure

λ =
〈
ln | f ′(x)|〉 =

∫

M
dxρ0(x) ln | f ′(x)| . (15.35)

The associated (discrete time) evolution operator (15.23) is

L(y, x) = δ(y− f (x)) eβ ln | f ′(x)| . (15.36)
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Here we have restricted our considerations to 1−d maps, as for higher-dimensional
flows only the fundamental matrices are multiplicative, notthe individual eigenvalues.
Construction of the evolution operator for evaluation of the Lyapunov spectra
in the general case requires more cleverness than warrantedat this stage in the
narrative: an extension of the evolution equations to a flow in the tangent space.

All that remains is to determine the value of the Lyapunov exponent

λ =
〈
ln | f ′(x)|〉 = ∂s(β)

∂β

∣∣∣∣∣
β=1
= s′(1) (15.37)

from (15.12), the derivative of the leading eigenvalues0(β) of the evolution oper-
ator (15.36).

[example 18.1]

The only question is: how?

Résum é

The expectation value〈a〉 of an observablea(x) measuredAt(x) =
∫ t

0 dτa(x(τ))
and averaged along the flowx→ f t(x) is given by the derivative

〈a〉 = ∂s
∂β

∣∣∣∣∣
β=0

of the leading eigenvalueets(β) of the corresponding evolution operatorLt.

Instead of using the Perron-Frobenius operator (14.10) whose leading eigenfunction,
the natural measure, once computed, yields expectation value (14.20) of any observable
a(x), we construct a specific, hand-tailored evolution operator L for each and
every observable. However, by time we arrive to chapter18, the scaffolding

[chapter 18]
will be removed, bothL’s and their eigenfunctions will be gone, and only the
explicit and exact periodic orbit formulas for expectationvalues of observables
will remain.

The next question is: how do we evaluate the eigenvalues ofL? We saw
in example15.2, in the case of piecewise-linear dynamical systems, that these
operators reduce to finite matrices, but for generic smooth flows, they are infinite-
dimensional linear operators, and finding smart ways of computing their eigenvalues
requires some thought. In chapter10we undertook the first step, and replaced the
ad hocpartitioning (14.14) by the intrinsic, topologically invariant partitioning.
In chapter13 we applied this information to our first application of the evolution
operator formalism, evaluation of the topological entropy, the growth rate of the
number of topologically distinct orbits. This small victory will be refashioned
in chapters16 and 17 into a systematic method for computing eigenvalues of
evolution operators in terms of periodic orbits.
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Commentary

Remark 15.1 “Pressure.” The quantity
〈
exp(β · At)

〉
is called a “partition function” by

Ruelle [1]. Mathematicians decorate it with considerably more Greekand Gothic letters
than is the case in this treatise. Ruelle [1] and Bowen [2] had given name “pressure”P(a)
to s(β) (wherea is the observable introduced here in sect.15.1.1), defined by the “large
system” limit (15.11). As we shall apply the theory also to computation of the physical
gas pressure exerted on the walls of a container by a bouncingparticle, we prefer to refer
to s(β) as simply the leading eigenvalue of the evolution operatorintroduced in sect.14.5.
The “convexity” properties such asP(a) ≤ P(|a|) will be pretty obvious consequence of
the definition (15.11). In the case thatL is the Perron-Frobenius operator (14.10), the
eigenvalues{s0(β), s1(β), · · ·} are called theRuelle-Pollicott resonances[3, 4, 5], with the
leading one,s(β) = s0(β) being the one of main physical interest. In order to aid
the reader in digesting the mathematics literature, we shall try to point out the notational
correspondences whenever appropriate. The rigorous formalism is replete with lims, sups,
infs,Ω-sets which are not really essential to understanding of thetheory, and are avoided
in this presentation.

Remark 15.2 Microcanonical ensemble. In statistical mechanics the space average
(15.7) performed over the Hamiltonian system constant energy surface invariant measure
ρ(x)dx= dqdpδ(H(q, p)− E) of volumeω(E) =

∫
Mdqdpδ(H(q, p)− E)

〈a(t)〉 = 1
ω(E)

∫

M
dqdpδ(H(q, p)− E)a(q, p, t) (15.38)

is called themicrocanonical ensemble average.

Remark 15.3 Lyapunov exponents. The Multiplicative Ergodic Theorem of Oseledec [6]
states that the limits (15.30–15.33) exist for almost all pointsx0 and all tangent vectors ˆn.
There are at mostd distinct values ofλ as we let ˆn range over the tangent space. These
are the Lyapunov exponents [8] λi(x0).

There is much literature on numerical computation of the Lyapunov exponents, see
for example refs. [14, 15, 16].

Remark 15.4 State space discretization. Ref. [17] discusses numerical discretizatons
of state space, and construction of Perron-Frobenius operators as stochastic matrices, or
directed weighted graphs, as coarse-grained models of the global dynamics, with transport
rates between state space partitions computed using this matrix of transition probabilities;
a rigorous discussion of some of the former features is included in Ref. [18].

Exercises
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15.1. How unstable is the H́enon attractor?

(a) Evaluate numerically the Lyapunov exponentλ by
iterating the Hénon map

[
x′

y′

]
=

[
1− ax2 + y
bx

]

for a = 1.4, b = 0.3.

(b) Now check how robust is the Lyapunov exponent
for the Hénon attractor? Evaluate numerically the
Lyapunov exponent by iterating the Hénon map
for a = 1.39945219,b = 0.3. How much do
you trust now your result for the part (a) of this
exercise?

15.2. Expectation value of a vector observable.

Check and extend the expectation value formulas
(15.12) by evaluating the derivatives ofs(β) up to 4-th
order for the space average

〈
exp(β · At)

〉
with ai a vector

quantity:

(a)

∂s
∂βi

∣∣∣∣∣
β=0

= lim
t→∞

1
t

〈
At

i

〉
= 〈ai〉 , (15.39)

(b)

∂2s
∂βi∂β j

∣∣∣∣∣∣
β=0

= lim
t→∞

1
t

(〈
At

i A
t
j

〉
−

〈
At

i

〉 〈
At

j

〉)

= lim
t→∞

1
t

〈
(At

i − t 〈ai〉)(At
j − t

〈
a j

〉
)
〉
.(15.40)

Note that the formalism is smart: it automatically
yields thevariance from the mean, rather than
simply the 2nd moment

〈
a2

〉
.

(c) compute the third derivative ofs(β).

(d) compute the fourth derivative assuming that the
mean in (15.39) vanishes,〈ai〉 = 0. The 4-th order
moment formula

K(t) =

〈
x4(t)

〉

〈
x2(t)

〉2
− 3 (15.41)

that you have derived is known askurtosis: it
measures a deviation from what the 4-th order
moment would be were the distribution a pure
Gaussian (see (24.22) for a concrete example).
If the observable is a vector, the kurtosisK(t) is
given by

∑
i j

[〈
AiAiA jA j

〉
+ 2

(〈
AiA j

〉 〈
A jAi

〉
− 〈AiA

(∑
i 〈AiAi〉

)2

15.3. Pinball escape rate from numerical simulation∗.
Estimate the escape rate forR : a = 6 3-disk pinball
by shooting 100,000 randomly initiated pinballs into the
3-disk system and plotting the logarithm of the number
of trapped orbits as function of time. For comparison,
a numerical simulation of ref. [3] yieldsγ = .410. . ..

15.4. Rössler attractor Lyapunov exponents.

(a) Evaluate numerically the expanding Lyapunov
exponentλe of the Rössler attractor (2.17).

(b) Plot your own version of figure15.6. Do not worry
if it looks different, as long as you understand why
your plot looks the way it does. (Remember the
nonuniform contraction/expansion of figure4.3.)

(c) Give your best estimate ofλe. The literature gives
surprisingly inaccurate estimates - see whether
you can do better.

(d) Estimate the contracting Lyapunov exponentλc.
Even though it is much smaller thanλe, a glance
at the stability matrix (4.4) suggests that you can
probably get it by integrating the infinitesimal
volume along a long-time trajectory, as in (4.47).
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Chapter 16

Trace formulas

The trace formula is not a formula, it is an idea.

—Martin Gutzwiller

D   in terms of local equations, but the ergodic averages require
global information. How can we use a local description of a flow to learn
something about the global behavior? We have given a quick sketch of this

program in sects.1.5 and1.6; now we redo the same material in greater depth.
In chapter15 we have related global averages to the eigenvalues of appropriate
evolution operators. Here we show that the traces of evolution operators can be
evaluated as integrals over Dirac delta functions, and in this way the spectra of
evolution operators become related to periodic orbits. If there is one idea that one
should learn about chaotic dynamics, it happens in this chapter, and it is this: there
is a fundamental local↔ global duality which says that

the spectrum of eigenvalues is dual to the spectrum of periodic orbits

For dynamics on the circle, this is called Fourier analysis;for dynamics on
well-tiled manifolds, Selberg traces and zetas; and for generic nonlinear
dynamical systems the duality is embodied in the trace formulas that we

will now derive. These objects are to dynamics what partition functions are to
statistical mechanics.

16.1 A trace formula for maps

Our extraction of the spectrum ofL commences with the evaluation of the trace.
As the case of discrete time mappings is somewhat simpler, wefirst derive the
trace formula for maps, and then, in sect.16.2, for flows. The final formula (16.23)
covers both cases.

To compute an expectation value using (15.21) we have to integrate over all
the values of the kernelLn(x, y). If Ln were a matrix we would be computing a
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weighted sum of its eigenvalues which is dominated by the leading eigenvalue as
n→ ∞. As the trace ofLn is also dominated by the leading eigenvalue ast →∞,
we might just as well look at the trace

[exercise 13.2]

trLn =

∫
dxLn(x, x) =

∫
dxδ

(
x− f n(x)

)
eβ·A

n(x) . (16.1)

By definition, the trace is the sum over eigenvalues,

trLn =

∞∑

α=0

esαn . (16.2)

We find it convenient to write the eigenvalues as exponentsesα rather than as
multipliersλα, and we assume that spectrum ofL is discrete,s0, s1, s2, · · ·, ordered
so that Re sα ≥ Re sα+1.

For the time being we choose not to worry about convergence ofsuch sums,
ignore the question of what function space the eigenfunctions belong to, and
compute the eigenvalue spectrum without constructing any explicit eigenfunctions.
We shall revisit these issues in more depth in chapter21, and discuss how lack of
hyperbolicity leads to continuous spectra in chapter23.

16.1.1 Hyperbolicity assumption

We have learned in sect.14.2how to evaluate the delta-function integral (16.1).

According to (14.8) the trace (16.1) picks up a contribution wheneverx −
f n(x) = 0, i.e., wheneverx belongs to a periodic orbit. For reasons which we
will explain in sect.16.2, it is wisest to start by focusing on discrete time systems.
The contribution of an isolated prime cyclep of period np for a map f can be
evaluated by restricting the integration to an infinitesimal open neighborhoodMp

around the cycle,

tr pLnp =

∫

Mp

dxδ
(
x− f np(x)

)

=
np∣∣∣∣det

(
1− Mp

)∣∣∣∣
= np

d∏

i=1

1
|1− Λp,i |

. (16.3)

For the time being we set here and in (14.9) the observableeβAp = 1. Periodic
orbit fundamental matrixMp is also known as themonodromy matrix, and its
eigenvaluesΛp,1, Λp,2, . . ., Λp,d as the Floquet multipliers.

We sort the eigenvaluesΛp,1,Λp,2, . . .,Λp,d of the p-cycle [d×d] fundamental
matrix Mp into expanding, marginal and contracting sets{e,m, c}, as in (5.5).

As the integral (16.3) can be evaluated only ifMp has no eigenvalue of
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unit magnitude, we assume that no eigenvalue is marginal (weshall show in
sect.16.2that the longitudinalΛp,d+1 = 1 eigenvalue for flows can be eliminated
by restricting the consideration to the transverse fundamental matrix Mp), and
factorize the trace (16.3) into a product over the expanding and the contracting
eigenvalues

∣∣∣∣det
(
1− Mp

)∣∣∣∣
−1
=

1
|Λp|

∏

e

1
1− 1/Λp,e

∏

c

1
1− Λp,c

, (16.4)

whereΛp =
∏

eΛp,e is the product of expanding eigenvalues. BothΛp,c and
1/Λp,e are smaller than 1 in absolute value, and as they are either real or come in
complex conjugate pairs we are allowed to drop the absolute value brackets| · · · |
in the above products.

Thehyperbolicity assumptionrequires that the stabilities of all cycles included
in the trace sums be exponentially bounded away from unity:

|Λp,e| > eλeTp any p, any expanding|Λp,e| > 1

|Λp,c| < e−λcTp any p, any contracting|Λp,c| < 1 , (16.5)

whereλe, λc > 0 are strictly positive bounds on the expanding, contracting cycle
Lyapunov exponents. If a dynamical system satisfies the hyperbolicity assumption
(for example, the well separated 3-disk system clearly does), theLt spectrum
will be relatively easy to control. If the expansion/contraction is slower than
exponential, let us say|Λp,i | ∼ Tp

2, the system may exhibit “phase transitions,”
and the analysis is much harder - we shall discuss this in chapter 23.

Elliptic stability, with a pair of purely imaginary exponentsΛm = e±iθ is
excluded by the hyperbolicity assumption. While the contribution of a single
repeat of a cycle

1
(1− eiθ)(1− e−iθ)

=
1

2(1− cosθ)
(16.6)

does not make (14.9) diverge, ifΛm = ei2πp/r is rth root of unity, 1/
∣∣∣∣det

(
1− Mr

p

)∣∣∣∣
diverges. For a genericθ repeats cos(rθ) behave badly and by ergodicity 1−cos(rθ)
is arbitrarily small, 1− cos(rθ) < ǫ, infinitely often. This goes by the name of
“small divisor problem,” and requires a separate treatment.

It follows from (16.4) that for long times,t = rTp → ∞, only the product of

expanding eigenvalues matters,
∣∣∣∣det

(
1− Mr

p

)∣∣∣∣ → |Λp|r . We shall use this fact to
motivate the construction of dynamical zeta functions in sect. 17.3. However, for
evaluation of the full spectrum the exact cycle weight (16.3) has to be kept.

16.1.2 A classical trace formula for maps

If the evolution is given by a discrete time mapping, and all periodic points have
stability eigenvalues|Λp,i | , 1 strictly bounded away from unity, the traceLn is
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given by the sum over allperiodic points iof periodn:

trLn =

∫
dxLn(x, x) =

∑

xi∈Fix f n

eβ·Ai

|det (1− Mn(xi))|
. (16.7)

Here Fix f n = {x : f n(x) = x} is the set of all periodic points of periodn, and
Ai is the observable (15.5) evaluated overn discrete time steps along the cycle to
which the periodic pointxi belongs. The weight follows from the properties of
the Dirac delta function (14.8) by taking the determinant of∂i(x j − f n(x) j). If a
trajectory retraces itselfr times, its fundamental matrix isMr

p, whereMp is the
[d×d] fundamental matrix (4.6) evaluated along a single traversal of the prime
cycle p. As we saw in (15.5), the integrated observableAn is additive along the
cycle: If a prime cyclep trajectory retraces itselfr times,n = rnp, we obtainAp

repeatedr times,Ai = An(xi) = rAp, xi ∈ p.

A prime cycle is a single traversal of the orbit, and its labelis a non-repeating
symbol string. There is only one prime cycle for each cyclic permutation class.
For example, the four cycle points0011= 1001= 1100= 0110 belong to the

[chapter 10]
same prime cyclep = 0011 of length 4. As both the stability of a cycle and the
weightAp are the same everywhere along the orbit, each prime cycle of lengthnp

contributesnp terms to the sum, one for each cycle point. Hence (16.7) can be
rewritten as a sum over all prime cycles and their repeats

trLn =
∑

p

np

∞∑

r=1

erβ·Ap

∣∣∣∣det
(
1− Mr

p

)∣∣∣∣
δn,npr , (16.8)

with the Kronecker deltaδn,npr projecting out the periodic contributions of total
period n. This constraint is awkward, and will be more awkward still for the
continuous time flows, where it would yield a series of Dirac delta spikes. In both
cases a Laplace transform rids us of the time periodicity constraint.

In the sum over all cycle periods,

∞∑

n=1

zntrLn = tr
zL

1− zL =
∑

p

np

∞∑

r=1

znprerβ·Ap

∣∣∣∣det
(
1− Mr

p

)∣∣∣∣
, (16.9)

the constraintδn,npr is replaced by weightzn. Such discrete time Laplace transform
of trLn is usually referred to as a “generating function.” Why this transform? We
are actually not interested in evaluating the sum (16.8) for any particular fixed
period n; what we are interested in is the long timen → ∞ behavior. The
transform trades in the large timen behavior for the smallzbehavior. Expressing
the trace as in (16.2), in terms of the sum of the eigenvalues ofL, we obtain the
trace formula for maps:

∞∑

α=0

zesα

1− zesα
=

∑

p

np

∞∑

r=1

znpr erβ·Ap

∣∣∣∣det
(
1− Mr

p

)∣∣∣∣
. (16.10)
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This is our second example of the duality between the spectrum of eigenvalues
and the spectrum of periodic orbits, announced in the introduction to this chapter.
(The first example was the topological trace formula (13.8).)

fast track:

sect. 16.2, p. 275

Example 16.1 A trace formula for transfer operators: For a piecewise-linear map
(15.17), we can explicitly evaluate the trace formula. By the piecewise linearity and the
chain rule Λp = Λ

n0
0 Λ

n1
1 , where the cycle p contains n0 symbols 0 and n1 symbols 1, the

trace (16.7) reduces to

trLn =

n∑

m=0

(
n
m

)
1

|1− Λm
0Λ

n−m
1 | =

∞∑

k=0


1

|Λ0|Λk
0

+
1

|Λ1|Λk
1


n

, (16.11)

with eigenvalues

esk =
1

|Λ0|Λk
0

+
1

|Λ1|Λk
1

. (16.12)

As the simplest example of spectrum for such dynamical system, consider the symmetric
piecewise-linear 2-branch repeller (15.17) for which Λ = Λ1 = −Λ0. In this case all odd
eigenvalues vanish, and the even eigenvalues are given by esk = 2/Λk+1, k even.

[exercise 14.7]
Asymptotically the spectrum (16.12) is dominated by the lesser of the two fixed

point slopes Λ = Λ0 (if |Λ0| < |Λ1|, otherwise Λ = Λ1), and the eigenvalues esk fall off
exponentially as 1/Λk, dominated by the single less unstable fixed-point.

[example 21.1]
For k = 0 this is in agreement with the explicit transfer matrix (15.19) eigenvalues

(15.20). The alert reader should experience anxiety at this point. Is it not true that we
have already written down explicitly the transfer operator in (15.19), and that it is clear
by inspection that it has only one eigenvalue es0 = 1/|Λ0|+1/|Λ1|? The example at hand
is one of the simplest illustrations of necessity of defining the space that the operator
acts on in order to define the spectrum. The transfer operator (15.19) is the correct
operator on the space of functions piecewise constant on the state space partition
{M0,M1}; on this space the operator indeed has only the eigenvalue es0. As we shall
see in example 21.1, the full spectrum (16.12) corresponds to the action of the transfer
operator on the space of real analytic functions.

The Perron-Frobenius operator trace formula for the piecewise-linear map (15.17)
follows from (16.9)

tr
zL

1− zL =
z
(

1
|Λ0−1| +

1
|Λ1−1|

)

1− z
(

1
|Λ0−1| +

1
|Λ1−1|

) , (16.13)

verifying the trace formula (16.10).

16.2 A trace formula for flows

Amazing! I did not understand a single word.

—Fritz Haake
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(R. Artuso and P. Cvitanović)

Our extraction of the spectrum ofLt commences with the evaluation of the trace

trLt = tr eAt =

∫
dxLt(x, x) =

∫
dxδ

(
x− f t(x)

)
eβ·A

t(x) . (16.14)

We are not interested in any particular timet, but into the long-time behavior
as t → ∞, so we need to transform the trace from the “time domain” intothe
“frequency domain.” A generic flow is a semi-flow defined forward in time, so
the appropriate transform is a Laplace rather than Fourier.

For a continuous time flow, the Laplace transform of an evolution operator
yields the resolvent (14.31). This is a delicate step, since the evolution operator
becomes the identity in thet → 0+ limit. In order to make sense of the trace we
regularize the Laplace transform by a lower cutoff ǫ smaller than the period of any
periodic orbit, and write

∫ ∞

ǫ

dt e−st trLt = tr
e−(s−A)ǫ

s−A =

∞∑

α=0

e−(s−sα)ǫ

s− sα
, (16.15)

whereA is the generator of the semigroup of dynamical evolution, see sect.14.5.
Our task is to evaluate trLt from its explicit state space representation.

16.2.1 Integration along the flow

As any pair of nearby points on a cycle returns to itself exactly at each cycle
period, the eigenvalue of the fundamental matrix corresponding to the eigenvector
along the flow necessarily equals unity for all periodic orbits. Hence for flows

[section 5.2.1]
the trace integral trLt requires a separate treatment for the longitudinal direction.
To evaluate the contribution of an isolated prime cyclep of periodTp, restrict the
integration to an infinitesimally thin tubeMp enveloping the cycle (see figure1.12),
and consider a local coordinate system with a longitudinal coordinatedx‖ along
the direction of the flow, andd−1 transverse coordinatesx⊥ ,

tr pLt =

∫

Mp

dx⊥dx‖ δ
(
x⊥ − f t

⊥(x)
)
δ
(
x‖ − f t(x‖)

)
. (16.16)

(we setβ = 0 in the exp(β · At) weight for the time being). Pick a point on the
prime cycle p, and let

v(x‖) =


d∑

i=1

vi(x)2



1/2

(16.17)
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be the magnitude of the tangential velocity at any pointx = (x‖, 0, · · · , 0) on the
cycle p. The velocityv(x) must be strictly positive, as otherwise the orbit would
stagnate for infinite time atv(x) = 0 points, and that would get us nowhere.

As 0 ≤ τ < Tp, the trajectoryx‖(τ) = f τ(xp) sweeps out the entire cycle, and
for larger timesx‖ is a cyclic variable of periodicityTp,

x‖(τ) = x‖(τ + rTp) r = 1, 2, · · · (16.18)

We parametrize both the longitudinal coordinatex‖(τ) and the velocityv(τ) =
v(x‖(τ)) by the flight timeτ, and rewrite the integral along the periodic orbit as

∮

p
dx‖ δ

(
x‖ − f t(x‖)

)
=

∮

p
dτ v(τ) δ

(
x‖(τ) − x‖(τ + t

)
) . (16.19)

By the periodicity condition (16.18) the Diracδ function picks up contributions
for t = rTp, so the Laplace transform can be split as

∫ ∞

0
dt e−st δ

(
x‖(τ) − x‖(τ + t)

)
=

∞∑

r=1

e−sTpr Ir

Ir =

∫ ǫ

−ǫ
dt e−st δ

(
x‖(τ) − x‖(τ + rTp + t

)
) .

Taylor expanding and applying the periodicity condition (16.18), we havex‖(τ +
rTp + t) = x‖(τ) + v(τ)t + . . .,

Ir =

∫ ǫ

−ǫ
dt e−st δ

(
x‖(τ) − x‖(τ + rTp + t

)
) =

1
v(τ)

,

so the remaining integral (16.19) over τ is simply the cycle period
∮

p
dτ = Tp.

The contribution of the longitudinal integral to the Laplace transform is thus

∫ ∞

0
dt e−st

∮

p
dx‖ δ

(
x‖ − f t(x‖)

)
= Tp

∞∑

r=1

e−sTpr . (16.20)

This integration is a prototype of what needs to be done for each marginal direction,
whenever existence of a conserved quantity (energy in Hamiltonian flows, angular
momentum, translational invariance, etc.) implies existence of a smooth manifold
of equivalent (equivariant) solutions of dynamical equations.

16.2.2 Stability in the transverse directions

Think of theτ = 0 point in above integrals along the cyclep as a choice of a
particular Poincaré section. As we have shown in sect.5.3, the transverse stability
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eigenvalues do not depend on the choice of a Poincaré section, so ignoring the
dependence onx‖(τ) in evaluating the transverse integral in (16.16) is justified.
For the transverse integration variables the fundamental matrix is defined in a
reduced Poincaré surface of sectionP of fixed x‖. Linearization of the periodic
flow transverse to the orbit yields

∫

P
dx⊥δ

(
x⊥ − f

rTp
⊥ (x)

)
=

1∣∣∣∣det
(
1− Mr

p

)∣∣∣∣
, (16.21)

where Mp is the p-cycle [d− 1× d− 1] transversefundamental matrix. As in
(16.5) we have to assume hyperbolicity, i.e., that the magnitudesof all transverse
eigenvalues are bounded away from unity.

Substitution (16.20), (16.21) in (16.16) leads to an expression for trLt as a
sum over all prime cyclesp and their repetitions

∫ ∞

ǫ

dt e−st trLt =
∑

p

Tp

∞∑

r=1

er(β·Ap−sTp)
∣∣∣∣det

(
1− Mr

p

)∣∣∣∣
. (16.22)

Theǫ → 0 limit of the two expressions for the resolvent, (16.15) and (16.22), now
yields theclassical trace formula for flows

∞∑

α=0

1
s− sα

=
∑

p

Tp

∞∑

r=1

er(β·Ap−sTp)
∣∣∣∣det

(
1− Mr

p

)∣∣∣∣
. (16.23)

[exercise 16.1]

(If you are worried about the convergence of the resolvent sum, keep theε regularization.)

This formula is still another example of the duality betweenthe (local) cycles
and (global) eigenvalues. IfTp takes only integer values, we can replacee−s→ z
throughout, so the trace formula for maps (16.10) is a special case of the trace
formula for flows. The relation between the continuous and discrete time cases
can be summarized as follows:

Tp ↔ np

e−s ↔ z

etA ↔ Ln . (16.24)

We could now proceed to estimate the location of the leading singularity of
tr (s−A)−1 by extrapolating finite cycle length truncations of (16.23) by methods
such as Padé approximants. However, it pays to first performa simple resummation
which converts this divergence of a trace into azeroof a spectral determinant. We
shall do this in sect.17.2, but first a brief refresher of how all this relates to the
formula for escape rate (1.7) offered in the introduction might help digest the
material.

fast track:

sect. 17, p. 283
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16.3 An asymptotic trace formula

In order to illuminate the manipulations of sect.16.1and relate them to
something we already possess intuition about, we now rederive the heuristic sum
of sect.1.5.1from the exact trace formula (16.10). The Laplace transforms (16.10)
or (16.23) are designed to capture the time→ ∞ asymptotic behavior of the trace
sums. By the hyperbolicity assumption (16.5), for t = Tpr large the cycle weight
approaches

∣∣∣∣det
(
1− Mr

p

)∣∣∣∣→ |Λp|r , (16.25)

whereΛp is the product of the expanding eigenvalues ofMp. Denote the corresponding
approximation to thenth trace (16.7) by

Γn =

(n)∑

i

1
|Λi |

, (16.26)

and denote the approximate trace formula obtained by replacing the cycle weights∣∣∣∣det
(
1− Mr

p

)∣∣∣∣ by |Λp|r in (16.10) byΓ(z). Equivalently, think of this as a replacement
of the evolution operator (15.23) by a transfer operator (as in example16.1). For
concreteness consider a dynamical system whose symbolic dynamics is complete
binary, for example the 3-disk system figure1.6. In this case distinct periodic
points that contribute to thenth periodic points sum (16.8) are labeled by all
admissible itineraries composed of sequences of letterssi ∈ {0, 1}:

Γ(z) =
∞∑

n=1

znΓn =

∞∑

n=1

zn
∑

xi∈Fix f n

eβ·A
n(xi )

|Λi |

= z

{
eβ·A0

|Λ0|
+

eβ·A1

|Λ1|

}
+ z2

{
e2β·A0

|Λ0|2
+

eβ·A01

|Λ01|
+

eβ·A10

|Λ10|
+

e2β·A1

|Λ1|2

}

+z3
{

e3β·A0

|Λ0|3
+

eβ·A001

|Λ001|
+

eβ·A010

|Λ010|
+

eβ·A100

|Λ100|
+ . . .

}
(16.27)

Both the cycle averagesAi and the stabilitiesΛi are the same for all pointsxi ∈ p
in a cyclep. Summing over repeats of all prime cycles we obtain

Γ(z) =
∑

p

nptp

1− tp
, tp = znpeβ·Ap/|Λp| . (16.28)

This is precisely our initial heuristic estimate (1.8). Note that we could not perform

such sum overr in the exact trace formula (16.10) as
∣∣∣∣det

(
1− Mr

p

)∣∣∣∣ ,
∣∣∣∣det

(
1− Mp

)∣∣∣∣
r
;

the correct way to resum the exact trace formulas is to first expand the factors
1/|1− Λp,i |, as we shall do in (17.9).

[section 17.2]
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Figure 16.1: Approximation to (a) a smooth
dynamics by (b) the skeleton of periodic points,
together with their linearized neighborhoods.
Indicated are segments of two 1-cycles and a 2-cycle
that alternates between the neighborhoods of the two
1-cycles, shadowing first one of the two 1-cycles, and
then the other.

If the weightseβAn(x) are multiplicative along the flow, and the flow is hyperbolic,
for givenβ the magnitude of each|eβAn(xi )/Λi | term is bounded by some constant
Mn. The total number of cycles grows as 2n (or asehn, h= topological entropy, in
general), and the sum is convergent forz sufficiently small,|z| < 1/2M. For large
n thenth level sum (16.7) tends to the leadingLn eigenvalueens0. Summing this
asymptotic estimate level by level

Γ(z) ≈
∞∑

n=1

(zes0)n
=

zes0

1− zes0
(16.29)

we see that we should be able to determines0 by determining the smallest value
of z= e−s0 for which the cycle expansion (16.28) diverges.

If one is interested only in the leading eigenvalue ofL, it suffices to consider
the approximate traceΓ(z). We will use this fact in sect.17.3 to motivate the
introduction of dynamical zeta functions (17.14), and in sect.17.5we shall give
the exact relation between the exact and the approximate trace formulas.

Résum é

The description of a chaotic dynamical system in terms of cycles can be visualized
as a tessellation of the dynamical system, figure16.1, with a smooth flow approximated
by itsperiodic orbit skeleton, each regionMi centered on a periodic pointxi of the
topological lengthn, and the size of the region determined by the linearization of
the flow around the periodic point. The integral over such topologically partitioned
state space yields theclassical trace formula

∞∑

α=0

1
s− sα

=
∑

p

Tp

∞∑

r=1

er(β·Ap−sTp)
∣∣∣∣det

(
1− Mr

p

)∣∣∣∣
.

Now that we have a trace formula, we might ask for what is it good? As it stands, it
is little more than a scary divergent formula which relates the unspeakable infinity
of global eigenvalues to the unthinkable infinity of local unstable cycles. However,
it is a good stepping stone on the way to construction of spectral determinants (to
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which we turn next), and a first hint that when the going is good, the theory might
turn out to be convergent beyond our wildest dreams (chapter21). In order to
implement such formulas, we will have to determine “all” prime cycles. The first
step is topological: enumeration of all admissible cycles undertaken in chapter11.
The more onerous enterprize of actually computing the cycles we first approach
traditionally, as a numerical task in chapter12, and then more boldly as a part and
parcel of variational foundations of classical and quantumdynamics in chapter27.

Commentary

Remark 16.1 Who’s dunne it? Continuous time flow traces weighted by cycle periods
were introduced by Bowen [1] who treated them as Poincaré section suspensions weighted
by the “time ceiling” function (3.5). They were used by Parry and Pollicott [2].

Remark 16.2 Flat and sharp traces. In the above formal derivation of trace formulas
we cared very little whether our sums were well posed. In the Fredholm theory traces like
(16.14) require compact operators with continuous function kernels. This is not the case
for our Dirac delta evolution operators: nevertheless, there is a large class of dynamical
systems for which our results may be shown to be perfectly legal. In the mathematical
literature expressions like (16.7) are calledflat traces (see the review [4] and chapter21).
Other names for traces appear as well: for instance, in the context of 1-d mappings,
sharptraces refer to generalizations of (16.7) where contributions of periodic points are
weighted by the Lefschetz sign±1, reflecting whether the periodic point sits on a branch
of nth iterate of the map which crosses the diagonal starting from below or starting from
above [11]. Such traces are connected to the theory of kneading invariants (see ref. [4]
and references therein). Traces weighted by±1 sign of the derivative of the fixed point
have been used to study the period doubling repeller, leading to high precision estimates
of the Feigenbaum constantδ, refs. [5, 6, 6].

Exercises

16.1. t → 0+ regularization of eigenvalue sums∗∗. In
taking the Laplace transform (16.23) we have ignored
the t → 0+ divergence, as we do not know how
to regularize the delta function kernel in this limit.
In the quantum (or heat kernel) case this limit gives
rise to the Weyl or Thomas-Fermi mean eigenvalue
spacing.Regularize the divergent sum in (16.23) and
assign to such volume term some interesting role in
the theory of classical resonance spectra. E-mail the
solution to the authors.

16.2. General weights. (easy) Letf t be a flow andLt the
operator

Ltg(x) =
∫

dyδ(x− f t(y))w(t, y)g(y)

wherew is a weight function. In this problem we will
try and determine some of the propertiesw must satisfy.

(a) ComputeLsLtg(x) to show that

w(s, f t(x))w(t, x) = w(t + s, x) .
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(b) Restrictt and s to be integers and show that the
most general form ofw is

w(n, x) = g(x)g( f (x))g( f 2(x)) · · ·g( f n−1(x)) ,

for someg that can be multiplied. Couldg be a
function fromRn1 7→ Rn2? (ni ∈ N.)
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Chapter 17

Spectral determinants

“It seems very pretty,” she said when she had finished it,
“but it’s rather hard to understand!” (You see she didn’t
like to confess, even to herself, that she couldn’t make it
out at all.) “Somehow it seems to fill my head with ideas
— only I don’t exactly know what they are!”

—Lewis Carroll,Through the Looking Glass

T  with the trace formulas (16.10), (16.23) and (16.28) is that they
diverge atz = e−s0, respectivelys = s0, i.e., precisely where one would
like to use them. While this does not prevent numerical estimation of

some “thermodynamic” averages for iterated mappings, in the case of the Gutz-
willer trace formula this leads to a perplexing observationthat crude estimates
of the radius of convergence seem to put the entire physical spectrum out of
reach. We shall now cure this problem by thinking, at no extracomputational
cost; while traces and determinants are formally equivalent, determinants are the
tool of choice when it comes to computing spectra. The idea isillustrated

[chapter 21]
by figure 1.13: Determinants tend to have larger analyticity domains because
if tr L/(1 − zL) = − d

dz ln det (1− zL) diverges at a particular value ofz, then
det (1− zL) might have an isolated zero there, and a zero of a function iseasier to
determine numerically than its poles.

17.1 Spectral determinants for maps

The eigenvalueszk of a linear operator are given by the zeros of the determinant

det (1− zL) =
∏

k

(1− z/zk) . (17.1)

For finite matrices this is the characteristic determinant;for operators this is the
Hadamard representation of thespectral determinant(sparing the reader from
pondering possible regularization factors). Consider first the case of maps, for
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which the evolution operator advances the densities by integer steps in time. In
this case we can use the formal matrix identity

[exercise 4.1]

ln det (1− M) = tr ln(1− M) = −
∞∑

n=1

1
n

tr Mn , (17.2)

to relate the spectral determinant of an evolution operatorfor a map to its traces
(16.8), and hence to periodic orbits:

det (1− zL) = exp

−
∞∑

n

zn

n
trLn



= exp

−
∑

p

∞∑

r=1

1
r

znprerβ·Ap

∣∣∣∣det
(
1− Mr

p

)∣∣∣∣

 . (17.3)

Going the other way, the trace formula (16.10) can be recovered from the
spectral determinant by taking a derivative

tr
zL

1− zL = −z
d
dz

ln det (1− zL) . (17.4)

fast track:

sect. 17.2, p. 285

Example 17.1 Spectral determinants of transfer operators:

For a piecewise-linear map (15.17) with a finite Markov partition, an explicit
formula for the spectral determinant follows by substituting the trace formula (16.11)
into (17.3):

det (1− zL) =
∞∏

k=0

1−
t0
Λk

0

− t1
Λk

1

 , (17.5)

where ts = z/|Λs|. The eigenvalues are necessarily the same as in (16.12), which we
already determined from the trace formula (16.10).

The exponential spacing of eigenvalues guarantees that the spectral determin-
ant (17.5) is an entire function. It is this property that generalizes to piecewise smooth
flows with finite Markov partitions, and singles out spectral determinants rather than
the trace formulas or dynamical zeta functions as the tool of choice for evaluation of
spectra.
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17.2 Spectral determinant for flows

. . . an analogue of the [Artin-Mazur] zeta function for
diffeomorphisms seems quite remote for flows. However
we will mention a wild idea in this direction. [· · ·] define
l(γ) to be the minimal period ofγ [· · ·] then define formally
(another zeta function!)Z(s) to be the infinite product

Z(s) =
∏

γ∈Γ

∞∏

k=0

(
1− [

expl(γ)
]−s−k

)
.

—Stephen Smale,Differentiable Dynamical Systems

We write the formula for the spectral determinant for flows byanalogy to
(17.3)

det (s−A) = exp

−
∑

p

∞∑

r=1

1
r

er(β·Ap−sTp)
∣∣∣∣det

(
1− Mr

p

)∣∣∣∣

 , (17.6)

and then check that the trace formula (16.23) is the logarithmic derivative of the
spectral determinant

tr
1

s−A =
d
ds

ln det (s−A) . (17.7)

With zset toz= e−s as in (16.24), the spectral determinant (17.6) has the same
form for both maps and flows. We refer to (17.6) asspectral determinant, as the
spectrum of the operatorA is given by the zeros of

det (s−A) = 0 . (17.8)

We now note that ther sum in (17.6) is close in form to the expansion of a
logarithm. This observation enables us to recast the spectral determinant into an
infinite product over periodic orbits as follows:

Let Mp be thep-cycle [d×d] transverse fundamental matrix, with eigenvalues
Λp,1, Λp,2, . . ., Λp,d. Expanding the expanding eigenvalue factors 1/(1− 1/Λp,e)
and the contracting eigenvalue factors 1/(1− Λp,c) in (16.4) as geometric series,
substituting back into (17.6), and resumming the logarithms, we find that the spec-
tral determinant is formally given by the infinite product

det (s−A) =
∞∏

k1=0

· · ·
∞∏

lc=0

1
ζk1···lc

1/ζk1···lc =
∏

p

1− tp

Λ
l1
p,e+1Λ

l2
p,e+2 · · ·Λ

lc
p,d

Λ
k1
p,1Λ

k2
p,2 · · ·Λ

ke
p,e

 (17.9)

tp = tp(z, s, β) =
1
|Λp|

eβ·Ap−sTpznp . (17.10)
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In such formulastp is a weight associated with thep cycle (lettert refers to
the “local trace” evaluated along thep cycle trajectory), and the indexp runs
through all distinct prime cycles. Why the factorznp? It is associated with
the trace formula (16.10) for maps, whereas the factore−sTp is specific to the
continuous time trace formuls (16.23); according to (16.24) we should use either
one or the other. But we have learned in sect.3.1 that flows can be represented
either by their continuous-time trajectories, or by their topological time Poincaré
section return maps. In cases when we have good control over the topology of the
flow, it is often convenient to insert theznp factor into cycle weights, as a formal
parameter which keeps track of the topological cycle lengths. These factors will

[chapter 18]
assist us in expanding zeta functions and determinants, eventually we shall set
z = 1. The subscriptse, c indicate that there aree expanding eigenvalues, and
c contracting eigenvalues. The observable whose average we wish to compute
contributes through theAt(x) term in thep cycle multiplicative weighteβ·Ap. By
its definition (15.1), the weight for maps is a product along the cycle points

eAp =

np−1∏

j=0

ea( f j (xp)) ,

and the weight for flows is an exponential of the integral (15.5) along the cycle

eAp = exp

(∫ Tp

0
a(x(τ))dτ

)
.

This formula is correct for scalar weighting functions; more general matrix valued
weights require a time-ordering prescription as in the fundamental matrix of sect.4.1.

Example 17.2 Expanding 1- d map: For expanding 1-d mappings the spec-
tral determinant (17.9) takes the form

det (1− zL) =
∏

p

∞∏

k=0

(
1− tp/Λ

k
p

)
, tp =

eβAp

|Λp|
znp . (17.11)

Example 17.3 Two-degree of freedom Hamiltonian flows: For a 2-degree of
freedom Hamiltonian flows the energy conservation eliminates on phase space variable,
and restriction to a Poincaré section eliminates the marginal longitudinal eigenvalue
Λ = 1, so a periodic orbit of 2-degree of freedom hyperbolic Hamiltonian flow has one
expanding transverse eigenvalueΛ, |Λ| > 1, and one contracting transverse eigenvalue
1/Λ. The weight in (16.4) is expanded as follows:

1∣∣∣∣det
(
1− Mr

p

)∣∣∣∣
=

1
|Λ|r(1− 1/Λr

p)2
=

1
|Λ|r

∞∑

k=0

k+ 1

Λkr
p

. (17.12)

The spectral determinant exponent can be resummed,

−
∞∑

r=1

1
r

e(βAp−sTp)r
∣∣∣∣det

(
1− Mr

p

)∣∣∣∣
=

∞∑

k=0

(k+ 1) log

1−
eβAp−sTp

|Λp|Λk
p

 ,
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and the spectral determinant for a 2-dimensional hyperbolic Hamiltonian flow rewritten
as an infinite product over prime cycles

det (s−A) =
∏

p

∞∏

k=0

(
1− tp/Λ

k
p

)k+1
. (17.13)

[exercise 21.4]

Now we are finally poised to deal with the problem posed at the beginning of
chapter16; how do we actually evaluate the averages introduced in sect. 15.1? The
eigenvalues of the dynamical averaging evolution operatorare given by the values
of s for which the spectral determinant (17.6) of the evolution operator (15.23)
vanishes. If we can compute the leading eigenvalues0(β) and its derivatives, we
are done. Unfortunately, the infinite product formula (17.9) is no more than a
shorthand notation for the periodic orbit weights contributing to the spectral det-
erminant; more work will be needed to bring such formulas into a tractable form.
This shall be accomplished in chapter18, but here it is natural to introduce still
another variant of a determinant, the dynamical zeta function.

17.3 Dynamical zeta functions

It follows from sect.16.1.1that if one is interested only in the leading eigenvalue
of Lt, the size of thep cycle neighborhood can be approximated by 1/|Λp|r , the
dominant term in therTp = t → ∞ limit, whereΛp =

∏
eΛp,e is the product of

the expanding eigenvalues of the fundamental matrixMp. With this replacement
the spectral determinant (17.6) is replaced by thedynamical zeta function

1/ζ = exp

−
∑

p

∞∑

r=1

1
r

trp

 (17.14)

that we have already derived heuristically in sect.1.5.2. Resumming the logarithms
using

∑
r trp/r = − ln(1−tp) we obtain theEuler product representationof the dyn-

amical zeta function:

1/ζ =
∏

p

(
1− tp

)
. (17.15)

In order to simplify the notation, we usually omit the explicit dependence of 1/ζ,
tp onz, s, β whenever the dependence is clear from the context.

The approximate trace formula (16.28) plays the same rolevis-à-vis the dyn-
amical zeta function (17.7)

Γ(s) =
d
ds

ln ζ−1 =
∑

p

Tptp

1− tp
, (17.16)
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as the exact trace formula (16.23) playsvis-à-vis the spectral determinant (17.6).
The heuristically derived dynamical zeta function of sect.1.5.2now re-emerges
as the 1/ζ0···0(z) part of theexactspectral determinant; other factors in the infinite
product (17.9) affect the non-leading eigenvalues ofL.

In summary, the dynamical zeta function (17.15) associated with the flowf t(x)
is defined as the product over all prime cyclesp. The quantities,Tp, np and
Λp, denote the period, topological length and product of the expanding stability
eigenvalues of prime cyclep, Ap is the integrated observablea(x) evaluated on a
single traversal of cyclep (see (15.5)), s is a variable dual to the timet, z is dual
to the discrete “topological” timen, andtp(z, s, β) denotes the local trace over the
cycle p. We have included the factorznp in the definition of the cycle weight in
order to keep track of the number of times a cycle traverses the surface of section.
The dynamical zeta function is useful because the term

1/ζ(s) = 0 (17.17)

when s= s0, Here s0 is the leading eigenvalue ofLt = etA, which is often all
that is necessary for application of this equation. The above argument completes
our derivation of the trace and determinant formulas for classical chaotic flows.
In chapters that follow we shall make these formulas tangible by working out a
series of simple examples.

The remainder of this chapter offers examples of zeta functions.

fast track:

chapter 18, p. 299

17.3.1 A contour integral formulation

The following observation is sometimes useful, in particular for zeta
functions with richer analytic structure than just zeros and poles, as in the case
of intermittency (chapter23): Γn, the trace sum (16.26), can be expressed in terms
of the dynamical zeta function (17.15)

1/ζ(z) =
∏

p

(
1− znp

|Λp|

)
. (17.18)

as a contour integral

Γn =
1

2πi

∮

γ−r

z−n
(

d
dz

logζ−1(z)

)
dz , (17.19)

[exercise 17.7]

where a small contourγ−r encircles the origin in negative (clockwise) direction.
If the contour is small enough, i.e., it lies inside the unit circle |z| = 1, we may
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Figure 17.1: The survival probabilityΓn can be split
into contributions from poles (x) and zeros (o) between
the small and the large circle and a contribution from
the large circle.

Im z

-

γ
R
-

γ z = 1
zα

r
Re z

write the logarithmic derivative ofζ−1(z) as a convergent sum over all periodic
orbits. Integrals and sums can be interchanged, the integrals can be solved term
by term, and the trace formula (16.26) is recovered. For hyperbolic maps, cycle

[chapter 18]
expansions or other techniques provide an analytical continuation of the dynam-
ical zeta function beyond the leading zero; we may thereforedeform the original
contour into a larger circle with radiusR which encircles both poles and zeros of
ζ−1(z), as depicted in figure17.1. Residue calculus turns this into a sum over the
zeroszα and poleszβ of the dynamical zeta function, that is

Γn =

zeros∑

|zα |<R

1
zn
α

−
poles∑

|zβ |<R

1
zn
β

+
1

2πi

∮

γ−R

dz z−n d
dz

logζ−1, (17.20)

where the last term gives a contribution from a large circleγ−R. It would be a
miracle if you still remembered this, but in sect.1.4.3we interpretedΓn as fraction
of survivors aftern bounces, and defined the escape rateγ as the rate of the find
exponential decay ofΓn. We now see that this exponential decay is dominated by
the leading zero or pole ofζ−1(z).

17.3.2 Dynamical zeta functions for transfer operators

Ruelle’s original dynamical zeta function was a generalization of the
topological zeta function (13.21) to a function that assigns different weights to

[chapter 13]
different cycles:

ζ(z) = exp
∞∑

n=1

zn

n


∑

xi∈Fix f n

tr
n−1∏

j=0

g( f j(xi))

 .

[exercise 16.2]

Here we sum over all periodic pointsxi of period n, and g(x) is any (matrix
valued) weighting function, where the weight evaluated multiplicatively along the
trajectory ofxi.

By the chain rule (4.50) the stability of anyn-cycle of a 1-d map is given
by Λp =

∏n
j=1 f ′(xi), so the 1-d map cycle stability is the simplest example
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of a multiplicative cycle weightg(xi) = 1/| f ′(xi)|, and indeed - via the Perron-
Frobenius evolution operator (14.9) - the historical motivation for Ruelle’s more
abstract construction.

In particular, for a piecewise-linear map with a finite Markov partition such
as the map of example14.1, the dynamical zeta function is given by a finite
polynomial, a straightforward generalization of the topological transition matrix
determinant (10.2). As explained in sect.13.3, for a finite [N×N] dimensional
matrix the determinant is given by

∏

p

(1− tp) =
N∑

n=1

zncn ,

wherecn is given by the sum over all non-self-intersecting closed paths of length
n together with products of all non-intersecting closed paths of total lengthn.

Example 17.4 A piecewise linear repeller: Due to piecewise linearity, the stability
of any n-cycle of the piecewise linear repeller (15.17) factorizes as Λs1s2...sn = Λ

m
0Λ

n−m
1 ,

where m is the total number of times the letter sj = 0 appears in the p symbol sequence,
so the traces in the sum (16.28) take the particularly simple form

tr Tn = Γn =

(
1
|Λ0|
+

1
|Λ1|

)n

.

The dynamical zeta function (17.14) evaluated by resumming the traces,
[exercise 17.3]

1/ζ(z) = 1− z/|Λ0| − z/|Λ1| , (17.21)

is indeed the determinant det (1− zT) of the transfer operator (15.19), which is almost
as simple as the topological zeta function (13.25).

[section 10.5]

More generally, piecewise-linear approximations to dynamical systems yield
polynomial or rational polynomial cycle expansions, provided that the symbolic
dynamics is a subshift of finite type.

We see that the exponential proliferation of cycles so dreaded by quantum
chaologians is a bogus anxiety; we are dealing with exponentially many cycles of
increasing length and instability, but all that really matters in this example are the
stabilities of the two fixed points. Clearly the informationcarried by the infinity
of longer cycles is highly redundant; we shall learn in chapter 18 how to exploit
this redundancy systematically.

17.4 False zeros

Compare (17.21) with the Euler product (17.15). For simplicity consider two
equal scales,|Λ0| = |Λ1| = eλ. Our task is to determine the leading zeroz = eγ

of the Euler product. It is a novice error to assume that the infinite Euler product
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(17.15) vanishes whenever one of its factors vanishes. If that weretrue, each factor
(1− znp/|Λp|) would yield

0 = 1− enp(γ−λp), (17.22)

so the escape rateγ would equal the Floquet exponent of a repulsive cycle, one
eigenvalueγ = γp for each prime cyclep. This is false! The exponentially
growing number of cycles with growing period conspires to shift the zeros of the
infinite product. The correct formula follows from (17.21)

0 = 1− eγ−λ+h , h = ln 2. (17.23)

This particular formula for the escape rate is a special caseof a general relation
between escape rates, Lyapunov exponents and entropies that is not yet included
into this book. Physically this means that the escape induced by the repulsion
by each unstable fixed point is diminished by the rate of backscatter from other
repelling regions, i.e., the entropyh; the positive entropy of orbits shifts the “false
zeros”z= eλp of the Euler product (17.15) to the true zeroz= eλ−h.

17.5 Spectral determinantsvs. dynamical zeta functions

In sect.17.3we derived the dynamical zeta function as an approximation to the
spectral determinant. Here we relate dynamical zeta functions to spectral deter-
minantsexactly, by showing that a dynamical zeta function can be expressed as a
ratio of products of spectral determinants.

The elementary identity ford-dimensional matrices

1 =
1

det (1− M)

d∑

k=0

(−1)ktr
(
∧kM

)
, (17.24)

inserted into the exponential representation (17.14) of the dynamical zeta func-
tion, relates the dynamical zeta function toweightedspectral determinants.

Example 17.5 Dynamical zeta function in terms of determinants, 1- d maps: For
1-d maps the identity

1 =
1

(1− 1/Λ)
− 1
Λ

1
(1− 1/Λ)

substituted into (17.14) yields an expression for the dynamical zeta function for 1-d
maps as a ratio of two spectral determinants

1/ζ =
det (1− zL)

det (1− zL(1))
(17.25)
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where the cycle weight in L(1) is given by replacement tp → tp/Λp. As we shall see
in chapter 21, this establishes that for nice hyperbolic flows 1/ζ is meromorphic, with
poles given by the zeros of det (1−zL(1)). The dynamical zeta function and the spectral
determinant have the same zeros, although in exceptional circumstances some zeros
of det (1− zL(1)) might be cancelled by coincident zeros of det (1− zL(1)). Hence even
though we have derived the dynamical zeta function in sect. 17.3 as an “approximation”
to the spectral determinant, the two contain the same spectral information.

Example 17.6 Dynamical zeta function in terms of determinants, 2- d Hamiltonian
maps: For 2-dimensional Hamiltonian flows the above identity yields

1
|Λ| =

1
|Λ|(1− 1/Λ)2

(1− 2/Λ + 1/Λ2) ,

so

1/ζ =
det (1− zL) det (1− zL(2))

det (1− zL(1))
. (17.26)

This establishes that for nice 2-d hyperbolic flows the dynamical zeta function is meromorphic.

Example 17.7 Dynamical zeta functions for 2- d Hamiltonian flows: The relation
(17.26) is not particularly useful for our purposes. Instead we insert the identity

1 =
1

(1− 1/Λ)2
− 2
Λ

1
(1− 1/Λ)2

+
1
Λ2

1
(1− 1/Λ)2

into the exponential representation (17.14) of 1/ζk, and obtain

1/ζk =
det (1− zL(k))det (1− zL(k+2))

det (1− zL(k+1))2
. (17.27)

Even though we have no guarantee that det (1− zL(k)) are entire, we do know that the
upper bound on the leading zeros of det (1−zL(k+1)) lies strictly below the leading zeros
of det (1− zL(k)), and therefore we expect that for 2-dimensional Hamiltonian flows the
dynamical zeta function 1/ζk generically has a double leading pole coinciding with the
leading zero of the det (1− zL(k+1)) spectral determinant. This might fail if the poles and
leading eigenvalues come in wrong order, but we have not encountered such situations
in our numerical investigations. This result can also be stated as follows: the theorem
establishes that the spectral determinant (17.13) is entire, and also implies that the
poles in 1/ζk must have the right multiplicities to cancel in the det (1− zL) =

∏
1/ζk+1

k
product.

17.6 All too many eigenvalues?

What does the 2-dimensional hyperbolic Hamiltonian flow spectral determinant
(17.13) tell us? Consider one of the simplest conceivable hyperbolic flows: the
game of pinball of figure??consisting of two disks of equal size in a plane. There
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Figure 17.2: The classical resonancesα = {k,n}
(17.28) for a 2-disk game of pinball.

s

s

Re

2π/Τ

−2π/Τ

4π/Τ

6π/Τ

−λ/Τ−2λ/Τ−3λ/Τ−4λ/Τ

−4π/Τ

s

{3,2}

{0,−3}

Im

is only one periodic orbit, with the periodT and expanding eigenvalueΛ given by
elementary considerations (see exercise9.3), and the resonances det (sα −A) = 0,
α = {k, n} plotted in figure17.2:

sα = −(k + 1)λ + n
2πi
T

, n ∈ Z , k ∈ Z+ , multiplicity k+ 1, (17.28)

can be read off the spectral determinant (17.13) for a single unstable cycle:

det (s−A) =
∞∏

k=0

(
1− e−sT/|Λ|Λk

)k+1
. (17.29)

In the aboveλ = ln |Λ|/T is the cycle Lyapunov exponent. For an open system,
the real part of the eigenvaluesα gives the decay rate ofαth eigenstate, and the
imaginary part gives the “node number” of the eigenstate. The negative real part
of sα indicates that the resonance is unstable, and the decay ratein this simple
case (zero entropy) equals the cycle Lyapunov exponent.

Rapidly decaying eigenstates with large negative Re sα are not a problem, but
as there are eigenvalues arbitrarily far in the imaginary direction, this might seem
like all too many eigenvalues. However, they are necessary -we can check this by
explicit computation of the right hand side of (16.23), the trace formula for flows:

∞∑

α=0

esαt =

∞∑

k=0

∞∑

n=−∞
(k+ 1)e(k+1)λt+i2πnt/T

=

∞∑

k=0

(k + 1)

(
1

|Λ|Λk

)t/T ∞∑

n=−∞
ei2πn/T

=

∞∑

k=0

k+ 1

|Λ|rΛkr

∞∑

r=−∞
δ(r − t/T)

= T
∞∑

r=−∞

δ(t − rT)

|Λ|(1− 1/Λr )2
. (17.30)

Hence, the two sides of the trace formula (16.23) are verified. The formula is fine
for t > 0; for t → 0+, however, sides are divergent and need regularization.

The reason why such sums do not occur for maps is that for discrete time we
work with the variablez= es, so an infinite strip along Im s maps into an annulus
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in the complexz plane, and the Dirac delta sum in the above is replaced by the
Kronecker delta sum in (16.8). In the case at hand there is only one time scale
T, and we could just as well replaces by the variablez = e−sT. In general, a
continuous time flow has an infinity of irrationally related cycle periods, and the
resonance arrays are more irregular,cf. figure18.1.

Résum é

The eigenvalues of evolution operators are given by the zeros of corresponding
determinants, and one way to evaluate determinants is to expand them in terms
of traces, using the matrix identity log det= tr log. Traces of evolution operators
can be evaluated as integrals over Dirac delta functions, and in this way the spectra
of evolution operators are related to periodic orbits. The spectral problem is now
recast into a problem of determining zeros of either thespectral determinant

det (s−A) = exp

−
∑

p

∞∑

r=1

1
r

e(β·Ap−sTp)r
∣∣∣∣det

(
1− Mr

p

)∣∣∣∣

 ,

or the leading zeros of thedynamical zeta function

1/ζ =
∏

p

(
1− tp

)
, tp =

1
|Λp|

eβ·Ap−sTp .

The spectral determinant is the tool of choice in actual calculations, as it
has superior convergence properties (this will be discussed in chapter21 and is
illustrated, for example, by table18.2.2). In practice both spectral determinants
and dynamical zeta functions are preferable to trace formulas because they yield
the eigenvalues more readily; the main difference is that while a trace diverges
at an eigenvalue and requires extrapolation methods, determinants vanish ats
corresponding to an eigenvaluesα, and are analytic ins in an open neighborhood
of sα.

The critical step in the derivation of the periodic orbit formulas for spec-
tral determinants and dynamical zeta functions is the hyperbolicity assumption
(16.5) that no cycle stability eigenvalue is marginal,|Λp,i | , 1. By dropping the
prefactors in (1.4), we have given up on any possibility of recovering the precise
distribution of the initialx (return to the past is rendered moot by the chaotic
mixing and the exponential growth of errors), but in exchange we gain an effective
description of the asymptotic behavior of the system. The pleasant surprise (to be
demonstrated in chapter18) is that the infinite time behavior of an unstable system
turns out to be as easy to determine as its short time behavior.
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Commentary

Remark 17.1 Piecewise monotone maps. A partial list of cases for which the transfer
operator is well defined: the expanding Hölder case, weighted subshifts of finite type,
expanding differentiable case, see Bowen [24]: expanding holomorphic case, see Ruelle [9];
piecewise monotone maps of the interval, see Hofbauer and Keller [14] and Baladi and
Keller [17].

Remark 17.2 Smale’s wild idea. Smale’s wild idea quoted on page285was technically
wrong because 1) the Selberg zeta function yields the spectrum of a quantum mechanical
Laplacian rather than the classical resonances, 2) the spectral determinant weights are
different from what Smale conjectured, as the individual cycle weights also depend on the
stability of the cycle, 3) the formula is not dimensionally correct, ask is an integer ands
represents inverse time. Only for spaces of constant negative curvature do all cycles have
the same Lyapunov exponentλ = ln |Λp|/Tp. In this case, one can normalize time so that
λ = 1, and the factorse−sTp/Λk

p in (17.9) simplify to s−(s+k)Tp, as intuited in Smale’s quote
on page285(wherel(γ) is the cycle period denoted here byTp). Nevertheless, Smale’s
intuition was remarkably on the target.

Remark 17.3 Is this a generalization of the Fourier analysis? Fourier analysis is a
theory of the space↔ eigenfunction duality for dynamics on a circle. The way in which
periodic orbit theory generalizes Fourier analysis to nonlinear flows is discussed in ref. [3],
a very readable introduction to the Selberg Zeta function.

Remark 17.4 Zeta functions, antecedents. For a function to be deserving of the
appellation “zeta function,” one expects it to have an Eulerproduct representation (17.15),
and perhaps also satisfy a functional equation. Various kinds of zeta functions are reviewed
in refs. [7, 8, 9]. Historical antecedents of the dynamical zeta function are the fixed-point
counting functions introduced by Weil [10], Lefschetz [11] and Artin and Mazur [12], and
the determinants of transfer operators of statistical mechanics [26].

In his review article Smale [23] already intuited, by analogy to the Selberg Zeta
function, that the spectral determinant is the right generalization for continuous time
flows. In dynamical systems theory, dynamical zeta functions arise naturally only for
piecewise linear mappings; for smooth flows the natural object for the study of classical
and quantal spectra are the spectral determinants. Ruelle derived the relation (17.3)
between spectral determinants and dynamical zeta functions, but since he was motivated
by the Artin-Mazur zeta function (13.21) and the statistical mechanics analogy, he did
not consider the spectral determinant to be a more natural object than the dynamical zeta
function. This has been put right in papers on “flat traces” [18, 23].

The nomenclature has not settled down yet; what we call evolution operators here is
elsewhere called transfer operators [28], Perron-Frobenius operators [5] and/or Ruelle-
Araki operators.

Here we refer to kernels such as (15.23) as evolution operators. We follow Ruelle in
usage of the term “dynamical zeta function,” but elsewhere in the literature the function
(17.15) is often called the Ruelle zeta function. Ruelle [29] points out that the corresponding
transfer operatorT was never considered by either Perron or Frobenius; a more appropriate
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designation would be the Ruelle-Araki operator. Determinants similar to or identical with
our spectral determinants are sometimes called Selberg Zetas, Selberg-Smale zetas [9],
functional determinants, Fredholm determinants, or even -to maximize confusion - dynamical
zeta functions [13]. A Fredholm determinant is a notion that applies only to trace class
operators - as we consider here a somewhat wider class of operators, we prefer to refer to
their determinants loosely as “spectral determinants.”

Exercises

17.1. Escape rate for a 1-d repeller, numerically. Consider
the quadratic map

f (x) = Ax(1− x) (17.31)

on the unit interval. The trajectory of a point starting
in the unit interval either stays in the interval forever
or after some iterate leaves the interval and diverges
to minus infinity. Estimate numerically the escape rate
(20.8), the rate of exponential decay of the measure of
points remaining in the unit interval, for eitherA = 9/2
or A = 6. Remember to compare your numerical
estimate with the solution of the continuation of this
exercise, exercise18.2.

17.2. Spectrum of the “golden mean” pruned map.
(medium - Exercise13.6continued)

(a) Determine an expression for trLn, the trace of
powers of the Perron-Frobenius operator (14.10)
for the tent map of exercise13.6.

(b) Show that the spectral determinant for the Perron-
Frobenius operator is

det (1− zL) =
∏

k even

(
1− z

Λk+1
− z2

Λ2k+2

)

∏

k odd

(
1+

z

Λk+1
+

z2

Λ2k+2

)
.(17.32)

17.3. Dynamical zeta functions. (easy)

(a) Evaluate in closed form the dynamical zeta func-
tion

1/ζ(z) =
∏

p

(
1− znp

|Λp|

)
,

for the piecewise-linear map (15.17) with the left
branch slopeΛ0, the right branch slopeΛ1.

x

f(x)

Λ0 Λ1

x

f(x)

s10s00

s01 s11

(b) What if there are four different slopess00, s01, s10,
and s11 instead of just two, with the preimages
of the gap adjusted so that junctions of branches
s00, s01 ands11, s10 map in the gap in one iteration?
What would the dynamical zeta function be?

17.4. Dynamical zeta functions from Markov graphs.
Extend sect.13.3to evaluation of dynamical zeta func-
tions for piecewise linear maps with finite Markov
graphs. This generalizes the results of exercise17.3.

17.5. Zeros of infinite products. Determination of the
quantities of interest by periodic orbits involves working
with infinite product formulas.

(a) Consider the infinite product

F(z) =
∞∏

k=0

(1+ fk(z))

where the functionsfk are “sufficiently nice.” This
infinite product can be converted into an infinite
sum by the use of a logarithm. Use the properties
of infinite sums to develop a sensible definition of
infinite products.

(b) If z∗ is a root of the functionF, show that the
infinite product diverges when evaluated atz∗.

(c) How does one compute a root of a function
represented as an infinite product?
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(d) Let p be all prime cycles of the binary alphabet
{0, 1}. Apply your definition ofF(z) to the infinite
product

F(z) =
∏

p

(1− znp

Λnp
)

(e) Are the roots of the factors in the above product
the zeros ofF(z)?

(Per Rosenqvist)

17.6. Dynamical zeta functions as ratios of spectral determinants.
(medium) Show that the zeta function

1/ζ(z) = exp

−
∑

p

∑

r=1

1
r

znp

|Λp|r



can be written as the ratio 1/ζ(z) =

det (1− zL(0))/det (1− zL(1)) ,
where det (1− zL(s)) =

∏
p
∏∞

k=0(1− znp/|Λp|Λk+s
p ).

17.7. Contour integral for survival probability. Perform
explicitly the contour integral appearing in (17.19).

17.8. Dynamical zeta function for maps. In this problem
we will compare the dynamical zeta function and the
spectral determinant. Compute the exact dynamical zeta
function for the skew Ulam tent map (14.45)

1/ζ(z) =
∏

p∈P

(
1− znp

|Λp|

)
.

What are its roots? Do they agree with those computed
in exercise14.7?

17.9. Dynamical zeta functions for Hamiltonian maps.
Starting from

1/ζ(s) = exp

−
∑

p

∞∑

r=1

1
r

trp



for a 2-dimensional Hamiltonian map. Using the
equality

1 =
1

(1− 1/Λ)2
(1− 2/Λ + 1/Λ2) ,

show that

1/ζ = det (1− L) det (1− L(2))/det (1− L(1))
2 .

In this expression det (1−zL(k)) is the expansion one gets
by replacingtp → tp/Λ

k
p in the spectral determinant.

17.10. Riemann ζ function. The Riemannζ function is
defined as the sum

ζ(s) =
∞∑

n=1

1
ns
, s ∈ C .

(a) Use factorization into primes to derive the Euler
product representation

ζ(s) =
∏

p

1
1− p−s

.

The dynamical zeta function exercise17.15 is
called a “zeta” function because it shares the
form of the Euler product representation with the
Riemann zeta function.

(b) (Not trivial:) For which complex values ofs is the
Riemann zeta sum convergent?

(c) Are the zeros of the terms in the product,s =
− ln p, also the zeros of the Riemannζ function?
If not, why not?

17.11. Finite truncations. (easy) Suppose we have a 1-
dimensional system with complete binary dynamics,
where the stability of each orbit is given by a simple
multiplicative rule:

Λp = Λ
np,0

0 Λ
np,1

1 , np,0 = #0 in p , np,1 = #1 in

so that, for example,Λ00101= Λ
3
0Λ

2
1.

(a) Compute the dynamical zeta function for this
system; perhaps by creating a transfer matrix
analogous to (15.19), with the right weights.

(b) Compute the finitep truncations of the cycle
expansion, i.e. take the product only over thep
up to given length withnp ≤ N, and expand as a
series inz

∏

p

(
1− znp

|Λp|

)
.

Do they agree? If not, how does the disagreement
depend on the truncation lengthN?
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Chapter 18

Cycle expansions

Recycle... It’s the Law!
—Poster, New York City Department of Sanitation

T E  representations of spectral determinants (17.9) and dyn-
amical zeta functions (17.15) are really only a shorthand notation - the
zeros of the individual factors arenot the zeros of the zeta function, and

convergence of such objects is far from obvious. Now we shallgive meaning
to the dynamical zeta functions and spectral determinants by expanding them as
cycle expansions, series representations ordered by increasing topological cycle
length, with products in (17.9), (17.15) expanded as sums overpseudocycles,
products oftp’s. The zeros of correctly truncated cycle expansions yieldthe
desired eigenvalues, and the expectation values of observables are given by the
cycle averaging formulas obtained from the partial derivatives of dynamical zeta
functions (or spectral determinants).

18.1 Pseudocycles and shadowing

How are periodic orbit formulas such as (17.15) evaluated? We start by computing
the lengths and stability eigenvalues of the shortest cycles. This always requires
numerical work, such as the Newton method searches for periodic solutions; we
shall assume that the numerics is under control, and thatall short cycles up to
a given (topological) length have been found. Examples of the data required for
application of periodic orbit formulas are the lists of cycles given in table27.2and
exercise12.11. It is important not to missany short cycles, as the calculation is as
accurate as the shortest cycle dropped - including cycles longer than the shortest
omitted does not improve the accuracy (more precisely, improves it, but painfully
slowly).

Expand the dynamical zeta function (17.15) as a formal power series,

1/ζ =
∏

p

(1− tp) = 1−
∑′

{p1p2...pk}
(−1)k+1tp1tp2 . . . tpk (18.1)
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where the prime on the sum indicates that the sum is over all distinct non-repeating
combinations of prime cycles. As we shall frequently use such sums, let us denote
by tπ = (−1)k+1tp1tp2 . . . tpk an element of the set of all distinct products of the
prime cycle weightstp. The formal power series (18.1) is now compactly written
as

1/ζ = 1−
∑′

π

tπ . (18.2)

For k > 1, tπ are weights ofpseudocycles; they are sequences of shorter cycles
that shadow a cycle with the symbol sequencep1p2 . . . pk along segmentsp1,
p2, . . ., pk.

∑′ denotes the restricted sum, for which any given prime cyclep
contributes at most once to a given pseudocycle weighttπ.

The pseudocycle weight, i.e., the product of weights (17.10) of prime cycles
comprising the pseudocycle,

tπ = (−1)k+1 1
|Λπ|

eβAπ−sTπznπ , (18.3)

depends on the pseudocycle topological lengthnπ, integrated observableAπ, period
Tπ, and stabilityΛπ

nπ = np1 + . . . + npk , Tπ = Tp1 + . . . + Tpk

Aπ = Ap1 + . . . + Apk , Λπ = Λp1Λp2 · · ·Λpk . (18.4)

Throughout this text, the terms “periodic orbit” and “cycle” are used interchangeably;
while “periodic orbit” is more precise, “cycle” (which has many other uses in
mathematics) is easier on the ear than “pseudo-periodic-orbit.” While in Soviet
times acronyms were a rage (and in France they remain so), we shy away from
acronyms such as UPOs (Unstable Periodic Orbits).

18.1.1 Curvature expansions

The simplest example is the pseudocycle sum for a system described by a complete
binary symbolic dynamics. In this case the Euler product (17.15) is given by

1/ζ = (1− t0)(1− t1)(1− t01)(1− t001)(1− t011) (18.5)

(1− t0001)(1− t0011)(1− t0111)(1− t00001)(1− t00011)

(1− t00101)(1− t00111)(1− t01011)(1− t01111) . . .

(see table10.1), and the first few terms of the expansion (18.2) ordered by increasing
total pseudocycle length are:

1/ζ = 1− t0 − t1 − t01− t001− t011− t0001− t0011− t0111− . . .
+t0t1 + t0t01+ t01t1 + t0t001+ t0t011+ t001t1 + t011t1
−t0t01t1 − . . . (18.6)
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We refer to such series representation of a dynamical zeta function or a spectral
determinant, expanded as a sum over pseudocycles, and ordered by increasing
cycle length and instability, as acycle expansion.

The next step is the key step: regroup the terms into the dominantfundamental
contributionst f and the decreasingcurvaturecorrections ˆcn, each ˆcn split into
prime cyclesp of length np=n grouped together with pseudocycles whose full
itineraries build up the itinerary ofp. For the binary case this regrouping is given
by

1/ζ = 1− t0 − t1 − [(t01 − t1t0)] − [(t001− t01t0) + (t011− t01t1)]

−[(t0001− t0t001) + (t0111− t011t1)

+(t0011− t001t1 − t0t011+ t0t01t1)] − . . .
= 1−

∑

f

t f −
∑

n

ĉn . (18.7)

All terms in this expansion up to lengthnp = 6 are given in table18.1.1. We
refer to such regrouped series ascurvature expansions. .

Such separation into “fundamental” and “curvature” parts of cycle expansions
is possibleonlyfor dynamical systems whose symbolic dynamics has finite grammar.
The fundamental cyclest0, t1 have no shorter approximants; they are the “building
blocks” of the dynamics in the sense that all longer orbits can be approximately
pieced together from them. The fundamental part of a cycle expansion is given
by the sum of the products of all non-intersecting loops of the associated Markov
graph. The terms grouped in brackets are the curvature corrections; the terms

[section 13.3]

[section 18.4]
grouped in parenthesis are combinations of longer cycles and corresponding sequences
of “shadowing” pseudocycles. If all orbits are weighted equally (tp = znp), such
combinations cancel exactly, and the dynamical zeta function reduces to the topological
polynomial (13.21). If the flow is continuous and smooth, orbits of similar symbolic
dynamics will traverse the same neighborhoods and will havesimilar weights,
and the weights in such combinations will almost cancel. Theutility of cycle
expansions of dynamical zeta functions and spectral determinants, in contrast
to direct averages over periodic orbits such as the trace formulas discussed in
sect.20.5, lies precisely in this organization into nearly cancelingcombinations:
cycle expansions are dominated by short cycles, with long cycles giving exponentially
decaying corrections.

In the case where we know of no finite grammar symbolic dynamics that
would help us organize the cycles, the best thing to use is astability cutoff which
we shall discuss in sect.18.5. The idea is to truncate the cycle expansion by
including only the pseudocycles such that|Λp1 · · ·Λpk | ≤ Λmax, with the cutoff
Λmax equal to or greater than the most unstableΛp in the data set.
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Table 18.1: The binary curvature expansion (18.7) up to length 6, listed in such way that
the sum of terms along thepth horizontal line is the curvature ˆcp associated with a prime
cycle p, or a combination of prime cycles such as thet100101+ t100110pair.
- t0
- t1
- t10 + t1t0
- t100 + t10t0
- t101 + t10t1
- t1000 + t100t0
- t1001 + t100t1 + t101t0 - t1t10t0
- t1011 + t101t1
- t10000 + t1000t0
- t10001 + t1001t0 + t1000t1 - t0t100t1
- t10010 + t100t10
- t10101 + t101t10
- t10011 + t1011t0 + t1001t1 - t0t101t1
- t10111 + t1011t1
- t100000 + t10000t0
- t100001 + t10001t0 + t10000t1 - t0t1000t1
- t100010 + t10010t0 + t1000t10 - t0t100t10
- t100011 + t10011t0 + t10001t1 - t0t1001t1
- t100101 - t100110 + t10010t1 + t10110t0

+ t10t1001 + t100t101 - t0t10t101 - t1t10t100
- t101110 + t10110t1 + t1011t10 - t1t101t10
- t100111 + t10011t1 + t10111t0 - t0t1011t1
- t101111 + t10111t1

18.2 Construction of cycle expansions

18.2.1 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluatednumerically by first
computing the weightstp = tp(β, s) of all prime cyclesp of topological length
np ≤ N for given fixedβ and s. Denote by subscript (i) the ith prime cycle
computed, ordered by the topological lengthn(i) ≤ n(i+1). The dynamical zeta
function 1/ζN truncated to thenp ≤ N cycles is computed recursively, by multiplying

1/ζ(i) = 1/ζ(i−1)(1− t(i)z
n(i)) , (18.8)

and truncating the expansion at each step to a finite polynomial in zn, n ≤ N. The
result is theNth order polynomial approximation

1/ζN = 1−
N∑

n=1

cnzn . (18.9)

In other words, a cycle expansion is a Taylor expansion in thedummy variable
z raised to the topological cycle length. If both the number ofcycles and their
individual weights grow not faster than exponentially withthe cycle length, and
we multiply the weight of each cyclep by a factorznp, the cycle expansion
converges for sufficiently small|z|.

If the dynamics is given by iterated mapping, the leading zero of (18.9) as
function ofz yields the leading eigenvalue of the appropriate evolutionoperator.
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For continuous time flows,z is a dummy variable that we set toz = 1, and the
leading eigenvalue of the evolution operator is given by theleading zero of (18.9)
as function ofs.

18.2.2 Evaluation of traces, spectral determinants

Due to the lack of factorization of the full pseudocycle weight,

det
(
1− Mp1p2

)
, det

(
1− Mp1

)
det

(
1− Mp2

)
,

the cycle expansions for the spectral determinant (17.9) are somewhat less transparent
than is the case for the dynamical zeta functions.

We commence the cycle expansion evaluation of a spectral determinant by
computing recursively the trace formula (16.10) truncated to all prime cyclesp
and their repeats such thatnpr ≤ N:

tr
zL

1− zL

∣∣∣∣∣
(i)
= tr

zL
1− zL

∣∣∣∣∣
(i−1)
+ n(i)

n(i)r≤N∑

r=1

e(β·A(i)−sT(i))r
∣∣∣∣
∏ (

1− Λr
(i), j

)∣∣∣∣
zn(i)r

tr
zL

1− zL

∣∣∣∣∣
N
=

N∑

n=1

Cnzn , Cn = trLn . (18.10)

This is done numerically: the periodic orbit data set consists of the list of the
cycle periodsTp, the cycle stability eigenvaluesΛp,1,Λp,2, . . . ,Λp,d, and the cycle
averages of the observableAp for all prime cyclesp such thatnp ≤ N. The
coefficient of znpr is then evaluated numerically for the given (β, s) parameter
values. Now that we have an expansion for the trace formula (16.9) as a power
series, we compute theNth order approximation to the spectral determinant (17.3),

det (1− zL)|N = 1−
N∑

n=1

Qnzn , Qn = nth cumulant, (18.11)

as follows. The logarithmic derivative relation (17.4) yields

(
tr

zL
1− zL

)
det (1− zL) = −z

d
dz

det (1− zL)

(C1z+C2z2 + · · ·)(1− Q1z− Q2z2 − · · ·) = Q1z+ 2Q2z2 + 3Q3z3 · · ·

so thenth order term of the spectral determinant cycle (or in this case, the cumulant)
expansion is given recursively by the trace formula expansion coefficients

Qn =
1
n

(Cn −Cn−1Q1 − · · ·C1Qn−1) , Q1 = C1 . (18.12)
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Table 18.2: 3-disk repeller escape rates computed from the cycle expansions of the
spectral determinant (17.6) and the dynamical zeta function (17.15), as function of the
maximal cycle lengthN. The first column indicates the disk-disk center separation
to disk radius ratioR:a, the second column gives the maximal cycle length used, and
the third the estimate of the classical escape rate from the fundamental domain spec-
tral determinant cycle expansion. As for larger disk-disk separations the dynamics
is more uniform, the convergence is better forR:a = 6 than for R:a = 3. For
comparison, the fourth column lists a few estimates from from the fundamental domain
dynamical zeta function cycle expansion (18.7), and the fifth from the full 3-disk cycle
expansion (18.36). The convergence of the fundamental domain dynamical zetafunction
is significantly slower than the convergence of the corresponding spectral determinant,
and the full (unfactorized) 3-disk dynamical zeta functionhas still poorer convergence.
(P.E. Rosenqvist.)

R:a N . det (s− A) 1/ζ(s) 1/ζ(s)3-disk
1 0.39 0.407
2 0.4105 0.41028 0.435
3 0.410338 0.410336 0.4049

6 4 0.4103384074 0.4103383 0.40945
5 0.4103384077696 0.4103384 0.410367
6 0.410338407769346482 0.4103383 0.410338
7 0.4103384077693464892 0.4103396
8 0.410338407769346489338468
9 0.4103384077693464893384613074

10 0.4103384077693464893384613078192
1 0.41
2 0.72
3 0.675
4 0.67797

3 5 0.677921
6 0.6779227
7 0.6779226894
8 0.6779226896002
9 0.677922689599532

10 0.67792268959953606
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Given the trace formula (18.10) truncated tozN, we now also have the spectral
determinant truncated tozN.

The same program can also be reused to compute the dynamical zeta function
cycle expansion (18.9), by replacing

∏(
1− Λr

(i), j

)
in (18.10) by the product of

expanding eigenvaluesΛ(i) =
∏

eΛ(i),e (see sect.17.3).

The calculation of the leading eigenvalue of a given continuous flow evolution
operator is now straightforward. After the prime cycles andthe pseudocycles have
been grouped into subsets of equal topological length, the dummy variable can be
set equal toz= 1. With z= 1, expansion (18.11) is the cycle expansion for (17.6),
the spectral determinant det (s− A) . We varys in cycle weights, and determine
the eigenvaluesα by finding s = sα for which (18.11) vanishes. As an example,
the convergence of a leading eigenvalue for a nice hyperbolic system is illustrated
in table 18.2.2by the listing of pinball escape rateγ estimates computed from
truncations of (18.7) and (18.11) to different maximal cycle lengths.

[chapter 21]

The pleasant surprise is that the coefficients in these cycle expansions can be
proven to fall off exponentially or even faster, due to analyticity of det (s−A) or

[chapter 21]
1/ζ(s) for s values well beyond those for which the corresponding trace formula
diverges.

18.2.3 Newton algorithm for determination of the evolutionoperator
eigenvalues

The cycle expansions of spectral determinants yield the eigenvalues of the
evolution operator beyond the leading one. A convenient wayto search for these
is by plotting either the absolute magnitude ln|det (s−A)| or the phase of spectral
determinants and dynamical zeta functions as functions of the complex variables.
The eye is guided to the zeros of spectral determinants and dynamical zeta func-
tions by means of complexs plane contour plots, with different intervals of the
absolute value of the function under investigation assigned different colors; zeros
emerge as centers of elliptic neighborhoods of rapidly changing colors. Detailed
scans of the whole area of the complexs plane under investigation and searches
for the zeros of spectral determinants, figure18.1, reveal complicated patterns of
resonances even for something so simple as the 3-disk game ofpinball. With
a good starting guess (such as a location of a zero suggested by the complexs
scan of figure18.1), a zero 1/ζ(s) = 0 can now be easily determined by standard
numerical methods, such as the iterative Newton algorithm (12.4), with themth
Newton estimate given by

sm+1 = sm −
(
ζ(sm)

∂

∂s
ζ−1(sm)

)−1

= sm−
1/ζ(sm)
〈T〉ζ

. (18.13)

The dominator〈T〉ζ required for the Newton iteration is given below, by the
cycle expansion (18.22). We need to evaluate it anyhow, as〈T〉ζ enters our cycle
averaging formulas.
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Figure 18.1: Examples of the complexs plane
scans: contour plots of the logarithm of the
absolute values of (a) 1/ζ(s), (b) spectral deter-
minant det (s−A) for the 3-disk system, separation
a : R = 6, A1 subspace are evaluated numerically.
The eigenvalues of the evolution operatorL are
given by the centers of elliptic neighborhoods of
the rapidly narrowing rings. While the dynamical
zeta function is analytic on a strip Im s≥ −1, the
spectral determinant is entire and reveals further
families of zeros. (P.E. Rosenqvist)

Figure 18.2: The eigenvalue condition is satisfied on
the curveF = 0 the (β, s) plane. The expectation value
of the observable (15.12) is given by the slope of the
curve.

s

β F(  ,s(  ))=0 lineβ β

__ds
dβ

18.3 Cycle formulas for dynamical averages

The eigenvalue condition in any of the three forms that we have given so far -
the level sum (20.18), the dynamical zeta function (18.2), the spectral determinant
(18.11):

1 =

(n)∑

i

ti , ti = ti(β, s(β)) , ni = n , (18.14)

0 = 1−
∑′

π

tπ , tπ = tπ(z, β, s(β)) (18.15)

0 = 1−
∞∑

n=1

Qn , Qn = Qn(β, s(β)) , (18.16)

is an implicit equation for the eigenvalues = s(β) of form F(β, s(β)) = 0. The
eigenvalues = s(β) as a function ofβ is sketched in figure18.2; the eigenvalue
condition is satisfied on the curveF = 0. The cycle averaging formulas for the
slope and the curvature ofs(β) are obtained as in (15.12) by taking derivatives of
the eigenvalue condition. Evaluated alongF = 0, the first derivative leads to

0 =
d
dβ

F(β, s(β))

=
∂F
∂β
+

ds
dβ

∂F
∂s

∣∣∣∣∣
s=s(β)

=⇒ ds
dβ
= −∂F

∂β
/
∂F
∂s

, (18.17)
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and the second derivative ofF(β, s(β)) = 0 yields

d2s

dβ2
= −


∂2F

∂β2
+ 2

ds
dβ

∂2F
∂β∂s

+

(
ds
dβ

)2
∂2F

∂s2

 /
∂F
∂s

. (18.18)

Denoting by

〈A〉F = − ∂F
∂β

∣∣∣∣∣
β,s=s(β)

, 〈T〉F =
∂F
∂s

∣∣∣∣∣
β,s=s(β)

,

〈
(A− 〈A〉)2

〉
F
=

∂2F

∂β2

∣∣∣∣∣∣
β,s=s(β)

(18.19)

respectively the mean cycle expectation value ofA, the mean cycle period, and the
second derivative ofF computed forF(β, s(β)) = 0, we obtain the cycle averaging
formulas for the expectation value of the observable (15.12), and its variance:

〈a〉 = 〈A〉F
〈T〉F

(18.20)

〈
(a− 〈a〉)2

〉
=

1
〈T〉F

〈
(A− 〈A〉)2

〉
F
. (18.21)

These formulas are the central result of the periodic orbit theory. As we shall
now show, for each choice of the eigenvalue condition function F(β, s) in (20.18),
(18.2) and (18.11), the above quantities have explicit cycle expansions.

18.3.1 Dynamical zeta function cycle expansions

For the dynamical zeta function condition (18.15), the cycle averaging formulas
(18.17), (18.21) require evaluation of the derivatives of dynamical zeta function
at a given eigenvalue. Substituting the cycle expansion (18.2) for dynamical zeta
function we obtain

〈A〉ζ := − ∂
∂β

1
ζ
=

∑′
Aπtπ (18.22)

〈T〉ζ :=
∂

∂s
1
ζ
=

∑′
Tπtπ , 〈n〉ζ := −z

∂

∂z
1
ζ
=

∑′
nπtπ ,

where the subscript in〈· · ·〉ζ stands for the dynamical zeta function average over
prime cycles,Aπ, Tπ, andnπ are evaluated on pseudocycles (18.4), and pseudocycle
weightstπ = tπ(z, β, s(β)) are evaluated at the eigenvalues(β). In most applications
β = 0, ands(β) of interest is typically the leading eigenvalues0 = s0(0) of the
evolution generatorA.
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For bounded flows the leading eigenvalue (the escape rate) vanishes,s(0) = 0,
the exponentβAπ − sTπ in (18.3) vanishes, so the cycle expansions take a simple
form

〈A〉ζ =
∑′

π

(−1)k+1 Ap1 + Ap2 · · · + Apk

|Λp1 · · ·Λpk |
, (18.23)

and similarly for 〈T〉ζ , 〈n〉ζ . For example, for the complete binary symbolic
dynamics the mean cycle period〈T〉ζ is given by

〈T〉ζ =
T0

|Λ0|
+

T1

|Λ1|
+

(
T01

|Λ01|
− T0 + T1

|Λ0Λ1|

)
(18.24)

+

(
T001

|Λ001|
− T01+ T0

|Λ01Λ0|

)
+

(
T011

|Λ011|
− T01+ T1

|Λ01Λ1|

)
+ . . . .

Note that the cycle expansions for averages are grouped intothe same shadowing
combinations as the dynamical zeta function cycle expansion (18.7), with nearby
pseudocycles nearly cancelling each other.

The cycle averaging formulas for the expectation value of the observable〈a〉
follow by substitution into (18.21). Assuming zero mean drift〈a〉 = 0, the cycle
expansion (18.11) for the variance

〈
(A− 〈A〉)2

〉
ζ

is given by

〈
A2

〉
ζ
=

∑′
(−1)k+1

(
Ap1 + Ap2 · · · + Apk

)2

|Λp1 · · ·Λpk |
. (18.25)

18.3.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a particularly simple structure,
with the shadowing apparent already by a term-by-term inspection of table18.2.2.
For “nice” hyperbolic systems the shadowing ensures exponential convergence
of the dynamical zeta function cycle expansions. This, however, is not the best
achievable convergence. As has been explained in chapter21, for such systems
the spectral determinant constructed from the same cycle data base is entire, and
its cycle expansion converges faster than exponentially. In practice, the best
convergence is attained by the spectral determinant cycle expansion (18.16) and
its derivatives. The∂/∂s, ∂/∂β derivatives are in this case computed recursively,
by taking derivatives of the spectral determinant cycle expansion contributions
(18.12) and (18.10).

The cycle averaging formulas are exact, and highly convergent for nice hyperbolic
dynamical systems. An example of its utility is the cycle expansion formula for
the Lyapunov exponent of example18.1. Further applications of cycle expansions
will be discussed in chapter20.
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18.3.3 Continuous vs. discrete mean return time

Sometimes it is convenient to compute an expectation value along a flow, in
continuous time, and sometimes it might be easier to computeit in discrete time,
from a Poincaré return map. Return times (3.1) might vary wildly, and it is not at
all clear that the continuous and discrete time averages arerelated in any simple
way. The relationship turns on to be both elegantly simple, and totally general.

The mean cycle period〈T〉ζ fixes the normalization of the unit of time; it
can be interpreted as the average near recurrence or the average first return time.
For example, if we have evaluated a billiard expectation value 〈a〉 in terms of
continuous time, and would like to also have the corresponding average〈a〉dscr
measured in discrete time, given by the number of reflectionsoff billiard walls,
the two averages are related by

〈a〉dscr= 〈a〉 〈T〉ζ / 〈n〉ζ , (18.26)

where〈n〉ζ is the average of the number of bouncesnp along the cyclep.

Example 18.1 Cycle expansion formula for Lyapunov exponents:

In sect. 15.3 we defined the Lyapunov exponent for a 1-d mapping, related it to
the leading eigenvalue of an evolution operator and promised to evaluate it. Now we
are finally in position to deliver on our promise.

The cycle averaging formula (18.23) yields an exact explict expression for the
Lyapunov exponent in terms of prime cycles:

λ =
1
〈n〉ζ

∑′
(−1)k+1 log |Λp1 | + · · · + log |Λpk |

|Λp1 · · ·Λpk |
. (18.27)

For a repeller, the 1/|Λp| weights are replaced by normalized measure (20.10) exp(γnp)/|Λp|,
where γ is the escape rate.

We mention here without proof that for 2-d Hamiltonian flows such as our game
of pinball there is only one expanding eigenvalue and (18.27) applies as it stands.

18.4 Cycle expansions for finite alphabets

A finite Markov graph like the one given in figure13.3(d) is a compact
encoding of the transition or the Markov matrix for a given subshift. It is a sparse
matrix, and the associated determinant (13.17) can be written down by inspection:
it is the sum of all possible partitions of the graph into products of non-intersecting
loops, with each loop carrying a minus sign:

det (1− T) = 1− t0 − t0011− t0001− t00011+ t0t0011+ t0011t0001 (18.28)
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The simplest application of this determinant is to the evaluation of the topological
entropy; if we settp = znp, wherenp is the length of thep-cycle, the determinant
reduces to the topological polynomial (13.18).

The determinant (18.28) is exact for the finite graph figure13.3 (e), as well
as for the associated finite-dimensional transfer operatorof example15.2. For
the associated (infinite dimensional) evolution operator,it is the beginning of the
cycle expansion of the corresponding dynamical zeta function:

1/ζ = 1− t0 − t0011− t0001+ t0001t0011

−(t00011− t0t0011+ . . . curvatures). . . (18.29)

The cycles0, 0001 and0011 are thefundamentalcycles introduced in (18.7); they
are not shadowed by any combinations of shorter cycles, and are the basic building
blocks of the dynamics.All other cycles appear together with their shadows (for
example, thet00011−t0t0011combination) and yield exponentially small corrections
for hyperbolic systems.

For the cycle counting purposes bothtab and the pseudocycle combination
ta+b = tatb in (18.2) have the same weightzna+nb, so all curvature combinations
tab− tatb vanish exactly, and the topological polynomial (13.21) offers a quick way
of checking the fundamental part of a cycle expansion.

Since for finite grammars the topological zeta functions reduce to polynomials,
we are assured that there are just a few fundamental cycles and that all long cycles
can be grouped into curvature combinations. For example, the fundamental cycles
in exercise9.2 are the three 2-cycles which bounce back and forth between two
disks and the two 3-cycles which visit every disk. It is only after these fundamental
cycles have been included that a cycle expansion is expectedto start converging
smoothly, i.e., only forn larger than the lengths of the fundamental cycles are
the curvatures ˆcn (in expansion (18.7)), a measure of the deviations between long
orbits and their short cycle approximants, expected to falloff rapidly withn.

18.5 Stability ordering of cycle expansions

There is never a second chance. Most often there is not
even the first chance.

—John Wilkins

(C.P. Dettmann and P. Cvitanović)

Most dynamical systems of interest have no finite grammar, soat any order in
z a cycle expansion may contain unmatched terms which do not fitneatly into
the almost cancelling curvature corrections. Similarly, for intermittent systems
that we shall discuss in chapter23, curvature corrections are in general not small,
so again the cycle expansions may converge slowly. For such systems schemes
which collect the pseudocycle terms according to some criterion other than the
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topology of the flow may converge more quickly than expansions based on the
topological length.

All chaotic systems exhibit some degree of shadowing, and a good truncation
criterion should do its best to respect the shadowing at least approximately. If
a long cycle is shadowed by two or more shorter cycles and the flow is smooth,
the period and the action will be additive in sense that the period of the longer
cycle is approximately the sum of the shorter cycle periods.Similarly, stability
is multiplicative, so shadowing is approximately preserved by including all terms
with pseudocycle stability

∣∣∣Λp1 · · ·Λpk

∣∣∣ ≤ Λmax (18.30)

and ignoring all more unstable pseudocycles.

Two such schemes for ordering cycle expansions which approximately respect
shadowing are truncations by the pseudocycle period (or action) and the stability
ordering that we shall discuss here. In these schemes a dynamical zeta function or
a spectral determinant is expanded keeping all terms for which the period, action
or stability for a combination of cycles (pseudocycle) is less than a given cutoff.

The two settings in which the stability ordering may be preferable to the
ordering by topological cycle length are the cases of bad grammar and of intermittency.

18.5.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of the state space generates the
“optimal” symbolic dynamics. Stability ordering does not require understanding
dynamics in such detail: if you can find the cycles, you can usestability ordered
cycle expansions. Stability truncation is thus easier to implement for a generic
dynamical system than the curvature expansions (18.7) which rely on finite subshift
approximations to a given flow.

Cycles can be detected numerically by searching a long trajectory for near
recurrences. The long trajectory method for detecting cycles preferentially finds
the least unstable cycles, regardless of their topologicallength. Another practical
advantage of the method (in contrast to Newton method searches) is that it only
finds cycles in a given connected ergodic component of state space, ignoring
isolated cycles or other ergodic regions elsewhere in the state space.

Why should stability ordered cycle expansion of a dynamicalzeta function
converge better than the rude trace formula (20.9)? The argument has essentially
already been laid out in sect.13.7: in truncations that respect shadowing most of
the pseudocycles appear in shadowing combinations and nearly cancel, while only
the relatively small subset affected by the longer and longer pruning rules is not
shadowed. So the error is typically of the order of 1/Λ, smaller by factorehT than
the trace formula (20.9) error, whereh is the entropy andT typical cycle length
for cycles of stabilityΛ.
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18.5.2 Smoothing

The breaking of exact shadowing cancellations deserves further comment.
Partial shadowing which may be present can be (partially) restored by smoothing
the stability ordered cycle expansions by replacing the 1/Λ weight for each term
with pseudocycle stabilityΛ = Λp1 · · ·Λpk by f (Λ)/Λ. Here, f (Λ) is a monotonically
decreasing function fromf (0) = 1 to f (Λmax) = 0. No smoothing corresponds to
a step function.

A typical “shadowing error” induced by the cutoff is due to two pseudocycles
of stability Λ separated by∆Λ, and whose contribution is of opposite signs.
Ignoring possible weighting factors the magnitude of the resulting term is of order
1/Λ − 1/(Λ + ∆Λ) ≈ ∆Λ/Λ2. With smoothing there is an extra term of the form
f ′(Λ)∆Λ/Λ, which we want to minimise. A reasonable guess might be to keep
f ′(Λ)/Λ constant and as small as possible, that is

f (Λ) = 1−
(
Λ

Λmax

)2

The results of a stability ordered expansion (18.30) should always be tested
for robustness by varying the cutoff Λmax. If this introduces significant variations,
smoothing is probably necessary.

18.5.3 Stability ordering for intermittent flows

Longer but less unstable cycles can give larger contributions to a cycle
expansion than short but highly unstable cycles. In such situation truncation by
length may require an exponentially large number of very unstable cycles before
a significant longer cycle is first included in the expansion.This situation is best
illustrated by intermittent maps that we shall study in detail in chapter23, the
simplest of which is the Farey map

f (x) =

{
f0 = x/(1− x) 0 ≤ x ≤ 1/2
f1 = (1− x)/x 1/2 ≤ x ≤ 1 ,

(18.31)

a map which will reappear in the intermittency chapter23.

For this map the symbolic dynamics is of complete binary type, so lack of
shadowing is not due to lack of a finite grammar, but rather to the intermittency
caused by the existence of the marginal fixed pointx0 = 0, for which the stability
equalsΛ0 = 1. This fixed point does not participate directly in the dynamics and is
omitted from cycle expansions. Its presence is felt in the stabilities of neighboring
cycles withn consecutive repeats of the symbol 0’s whose stability fallsof only as
Λ ∼ n2, in contrast to the most unstable cycles withn consecutive 1’s which are
exponentially unstable,|Λ01n | ∼ [(

√
5+ 1)/2]2n.
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Figure 18.3: Comparison of cycle expansion
truncation schemes for the Farey map (18.31); the
deviation of the truncated cycles expansion for
|1/ζN(0)| from the exact flow conservation value
1/ζ(0) = 0 is a measure of the accuracy of
the truncation. The jagged line is logarithm of
the stability ordering truncation error; the smooth
line is smoothed according to sect.18.5.2; the
diamonds indicate the error due the topological
length truncation, with the maximal cycle length
N shown. They are placed along the stability
cutoff axis at points determined by the condition
that the total number of cycles is the same for both
truncation schemes.
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The symbolic dynamics is of complete binary type. A quick count in the style
of sect.13.5.2leads to a total of 74,248,450 prime cycles of length 30 or less, not
including the marginal pointx0 = 0. Evaluating a cycle expansion to this order
would be no mean computational feat. However, the least unstable cycle omitted
has stability of roughlyΛ1030 ∼ 302 = 900, and so amounts to a 0.1% correction.
The situation may be much worse than this estimate suggests,because the next,
1031 cycle contributes a similar amount, and could easily reinforce the error.
Adding up all such omitted terms, we arrive at an estimated error of about 3%,
for a cycle-length truncated cycle expansion based on more than 109 pseudocycle
terms! On the other hand, truncating by stability at sayΛmax = 3000, only 409
prime cycles suffice to attain the same accuracy of about 3% error, figure18.3.

As the Farey map maps the unit interval onto itself, the leading eigenvalue
of the Perron-Frobenius operator should equals0 = 0, so 1/ζ(0) = 0. Deviation
from this exact result serves as an indication of the convergence of a given cycle
expansion. The errors of different truncation schemes are indicated in figure18.3.
We see that topological length truncation schemes are hopelessly bad in this case;
stability length truncations are somewhat better, but still rather bad. In simple
cases like this one, where intermittency is caused by a single marginal fixed point,
the convergence can be improved by going to infinite alphabets.

18.6 Dirichlet series

The most patient reader will thank me for compressing so
much nonsense and falsehood into a few lines.

—Gibbon

A Dirichlet series is defined as

f (s) =
∞∑

j=1

a je
−λ j s (18.32)

wheres, a j are complex numbers, and{λ j} is a monotonically increasing series
of real numbersλ1 < λ2 < · · · < λ j < · · ·. A classical example of a Dirichlet
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series is the Riemann zeta function for whicha j = 1, λ j = ln j. In the present
context, formal series over individual pseudocycles such as (18.2) ordered by the
increasing pseudocycle periods are often Dirichlet series. For example, for the
pseudocycle weight (18.3), the Dirichlet series is obtained by ordering pseudocycles
by increasing periodsλπ = Tp1 + Tp2 + . . . + Tpk, with the coefficients

aπ =
eβ·(Ap1+Ap2+...+Apk)
∣∣∣Λp1Λp2 . . .Λpk

∣∣∣
dπ ,

wheredπ is a degeneracy factor, in the case thatdπ pseudocycles have the same
weight.

If the series
∑ |a j | diverges, the Dirichlet series is absolutely convergent for

Re s> σa and conditionally convergent for Re s> σc, whereσa is theabscissa of
absolute convergence

σa = lim
N→∞

sup
1
λN

ln
N∑

j=1

|a j | , (18.33)

andσc is theabscissa of conditional convergence

σc = lim
N→∞

sup
1
λN

ln

∣∣∣∣∣∣∣∣

N∑

j=1

a j

∣∣∣∣∣∣∣∣
. (18.34)

We shall encounter another example of a Dirichlet series in the semiclassical
quantization, the quantum chaos part ofChaosBook.org.

Résum é

A cycle expansionis a series representation of a dynamical zeta function, trace
formula or a spectral determinant, with products in (17.15) expanded as sums
overpseudocycles, products of the prime cycle weightstp.

If a flow is hyperbolic and has a topology of a Smale horseshoe (a subshift
of finite type), the dynamical zeta functions are holomorphic, the spectral det-
erminants are entire, and the spectrum of the evolution operator is discrete. The
situation is considerably more reassuring than what practitioners of quantum chaos
fear; there is no “abscissa of absolute convergence” and no “entropy barier,” the
exponential proliferation of cycles is no problem, spectral determinants are entire
and converge everywhere, and the topology dictates the choice of cycles to be
used in cycle expansion truncations.
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In that case, the basic observation is that the motion in dynamical systems of
few degrees of freedom is in this case organized around a fewfundamentalcycles,
with the cycle expansion of the Euler product

1/ζ = 1−
∑

f

t f −
∑

n

ĉn,

regrouped into dominantfundamentalcontributionst f and decreasingcurvature
corrections ˆcn. The fundamental cyclest f have no shorter approximants; they are
the “building blocks” of the dynamics in the sense that all longer orbits can be
approximately pieced together from them. A typical curvature contribution to ˆcn

is adifferenceof a long cycle{ab} minus its shadowing approximation by shorter
cycles{a} and{b}:

tab− tatb = tab(1− tatb/tab)

The orbits that follow the same symbolic dynamics, such as{ab} and a “pseudocycle”
{a}{b}, lie close to each other, have similar weights, and for longer and longer
orbits the curvature corrections fall off rapidly. Indeed, for systems that satisfy
the “axiom A” requirements, such as the 3-disk billiard, curvature expansions
converge very well.

Once a set of the shortest cycles has been found, and the cycleperiods, stabilities
and integrated observable computed, the cycle averaging formulas such as the
ones associated with the dynamical zeta function

〈a〉 = 〈A〉ζ / 〈T〉ζ

〈A〉ζ = − ∂
∂β

1
ζ
=

∑′
Aπtπ , 〈T〉ζ =

∂

∂s
1
ζ
=

∑′
Tπtπ

yield the expectation value (the chaotic, ergodic average over the non–wandering
set) of the observablea(x).

Commentary

Remark 18.1 Pseudocycle expansions. Bowen’s introduction of shadowingǫ-pseudoorbits [24]
was a significant contribution to Smale’s theory. Expression “pseudoorbits” seems to have
been introduced in the Parry and Pollicott’s 1983 paper [4]. Following them M. Berry [9]
had used the expression “pseudoorbits” in his 1986 paper on Riemann zeta and quantum
chaos. Cycle and curvature expansions of dynamical zeta functions and spectral deter-
minants were introduced in refs. [10, 2]. Some literature [13] refers to the pseudoorbits as
“composite orbits,” and to the cycle expansions as “Dirichlet series” (see also remark18.6
and sect.18.6).
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Remark 18.2 Cumulant expansion. To a statistical mechanician the curvature expansions
are very reminiscent of cumulant expansions. Indeed, (18.12) is the standard Plemelj-
Smithies cumulant formula for the Fredholm determinant.The difference is that in cycle
expansions eachQn coefficient is expressed as a sum over exponentially many cycles.

Remark 18.3 Exponential growth of the number of cycles. Going from Nn ≈ Nn

periodic points of lengthn to Mn prime cycles reduces the number of computations from
Nn to Mn ≈ Nn−1/n. Use of discrete symmetries (chapter19) reduces the number ofnth
level terms by another factor. While the reformulation of the theory from the trace (16.28)
to the cycle expansion (18.7) thus does not eliminate the exponential growth in the number
of cycles, in practice only the shortest cycles are used, andfor them the computational
labor saving can be significant.

Remark 18.4 Shadowing cycle-by-cycle. A glance at the low order curvatures in the
table18.1.1leads to the temptation of associating curvatures to individual cycles, such as
ĉ0001 = t0001− t0t001. Such combinations tend to be numerically small (see for example
ref. [3], table 1). However, splitting ˆcn into individual cycle curvatures is not possible in
general [20]; the first example of such ambiguity in the binary cycle expansion is given by
thet100101, t1001100↔ 1 symmetric pair of 6-cycles; the countertermt001t011 in table18.1.1
is shared by the two cycles.

Remark 18.5 Stability ordering. The stability ordering was introduced by Dahlqvist
and Russberg [12] in a study of chaotic dynamics for the (x2y2)1/a potential. The presentation
here runs along the lines of Dettmann and Morriss [13] for the Lorentz gas which is
hyperbolic but the symbolic dynamics is highly pruned, and Dettmann and Cvitanović [14]
for a family of intermittent maps. In the applications discussed in the above papers, the
stability ordering yields a considerable improvement overthe topological length ordering.
In quantum chaos applications cycle expansion cancelations are affected by the phases
of pseudocycles (their actions), henceperiod orderingrather than stability is frequently
employed.

Remark 18.6 Are cycle expansions Dirichlet series?

Even though some literature [13] refers to cycle expansions as “Dirichlet series,” they
are not Dirichlet series. Cycle expansions collect contributions of individual cycles into
groups that correspond to the coefficients in cumulant expansions of spectral determin-
ants, and the convergence of cycle expansions is controlledby general properties of spec-
tral determinants. Dirichlet series order cycles by their periods or actions, and are only
conditionally convergent in regions of interest. The abscissa of absolute convergence is in
this context called the “entropy barrier”; contrary to the frequently voiced anxieties, this
number does not necessarily has much to do with the actual convergence of the theory.
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Exercises

18.1. Cycle expansions. Write programs that implement
binary symbolic dynamics cycle expansions for (a)
dynamical zeta functions, (b) spectral determinants.
Combined with the cycles computed for a 2-branch
repeller or a 3-disk system they will be useful in problem
that follow.

18.2. Escape rate for a 1-d repeller. (Continuation of
exercise17.1- easy, but long)
Consider again the quadratic map (17.31)

f (x) = Ax(1− x)

on the unit interval, for definitiveness take eitherA =
9/2 or A = 6. Describing the itinerary of any trajectory
by the binary alphabet{0, 1} (’0’ if the iterate is in the
first half of the interval and ’1’ if is in the second half),
we have a repeller with a complete binary symbolic
dynamics.

(a) Sketch the graph off and determine its two fixed
points0 and1, together with their stabilities.

(b) Sketch the two branches off −1. Determine all
the prime cycles up to topological length 4 using
your pocket calculator and backwards iteration of
f (see sect.12.2.1).

(c) Determine the leading zero of the zeta function
(17.15) using the weightstp = znp/|Λp| whereΛp

is the stability of thep cycle.

(d) Show that for A = 9/2 the escape rate of
the repeller is 0.361509. . . using the spectral
determinant, with the same cycle weight. If
you have takenA = 6, the escape rate is
in 0.83149298. . ., as shown in solution18.2.
Compare the coefficients of the spectral determin-
ant and the zeta function cycle expansions. Which
expansion converges faster?

(Per Rosenqvist)

18.3. Escape rate for the Ulam map. (Medium; repeat of
exercise12.1) We will try to compute the escape rate for
the Ulam map (12.18)

f (x) = 4x(1− x),

using the method of cycle expansions. The answer
should be zero, as nothing escapes.

(a) Compute a few of the stabilities for this map.
Show thatΛ0 = 4,Λ1 = −2,Λ01 = −4,Λ001 = −8
andΛ011 = 8.

(b) Show that

Λǫ1...ǫn = ±2n

and determine a rule for the sign.

(c) (hard) Compute the dynamical zeta function for
this system

ζ−1 = 1− t0 − t1 − (t01 − t0t1) − · · ·

You might note that the convergence as function
of the truncation cycle length is slow. Try to
fix that by treating theΛ0 = 4 cycle separately.
(Continued as exercise18.12.)

18.4. Pinball escape rate, semi-analytical. Estimate the 3-
disk pinball escape rate forR : a = 6 by substituting
analytical cycle stabilities and periods (exercise9.3
and exercise9.4) into the appropriate binary cycle
expansion. Compare with the numerical estimate
exercise15.3.

18.5. Pinball escape rate, from numerical cycles.Compute
the escape rate forR : a = 6 3-disk pinball
by substituting list of numerically computed cycle
stabilities of exercise12.5 into the binary cycle
expansion.

18.6. Pinball resonances, in the complex plane. Plot the
logarithm of the absolute value of the dynamical zeta
function and/or the spectral determinant cycle expansion
(18.5) as contour plots in the complexs plane. Do
you find zeros other than the one corresponding to the
complex one? Do you see evidence for a finite radius of
convergence for either cycle expansion?

18.7. Counting the 3-disk psudocycles. (Continuation of
exercise13.12.) Verify that the number of terms in the
3-disk pinball curvature expansion (18.35) is given by

∏

p

(
1+ tp

)
=

1− 3z4 − 2z6

1− 3z2 − 2z3

= 1+ 3z2 + 2z3 +
z4(6+ 12z+ 2z

1− 3z2 − 2z3

= 1+ 3z2 + 2z3 + 6z4 + 12z5

+20z6 + 48z7 + 84z8 + 184z9 +

This means that, for example,c6 has a total of 20 terms,
in agreement with the explicit 3-disk cycle expansion
(18.36).
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18.8. 3–disk unfactorized zeta cycle expansions. Check
that the curvature expansion (18.2) for the 3-disk
pinball, assuming no symmetries between disks, is given
by

1/ζ = (1− z2t12)(1− z2t13)(1− z2t23)

(1− z3t123)(1− z3t132)(1− z4t1213)

(1− z4t1232)(1− z4t1323)(1− z5t12123) · · ·
= 1− z2t12− z2t23 − z2t31 − z3(t123+ t132)

−z4[(t1213− t12t13) + (t1232− t12t23)

+(t1323− t13t23)]

−z5[(t12123− t12t123) + · · ·] − · · · (18.35)

The symmetrically arranged 3-disk pinball cycle
expansion of the Euler product (18.2) (see table13.5.2
and figure9.3) is given by:

1/ζ = (1− z2t12)3(1− z3t123)2(1− z4t1213)3

(1− z5t12123)
6(1− z6t121213)

6

(1− z6t121323)3 . . .

= 1− 3z2 t12 − 2z3 t123− 3z4 (t1213− t212)

−6z5 (t12123− t12t123)

−z6 (6 t121213+ 3 t121323+ t312 − 9 t12t1213− t2123)

−6z7 (t1212123+ t1212313+ t1213123+ t212t123

−3 t12t12123− t123t1213)

−3z8 (2 t12121213+ t12121313+ 2 t12121323

+2 t12123123+ 2 t12123213+ t12132123

+ 3 t212t1213+ t12t
2
123− 6 t12t121213

− 3 t12t121323− 4 t123t12123− t21213) − · · ·(18.36)

Remark 18.7 Unsymmetrized cycle expansions.
The above 3-disk cycle expansions might be useful
for cross-checking purposes, but, as we shall see
in chapter19, they are not recommended for actual
computations, as the factorized zeta functions yield
much better convergence.

18.9. 4–disk unfactorized dynamical zeta function cycle
expansions For the symmetriclly arranged 4-disk
pinball the symmetry group is C4v, of order 8. The
degenerate cycles can have multiplicities 2, 4 or 8 (see
table13.5.2):

1/ζ = (1− z2t12)4(1− z2t13)2(1− z3t123)8

(1− z4t1213)8(1− z4t1214)4(1− z4t1234)2

(1− z4t1243)4(1− z5t12123)8(1− z5t12124)8

(1− z5t12134)
8(1− z5t12143)

8

(1− z5t12313)8(1− z5t12413)8 · · · (18.37)

and the cycle expansion is given by

1/ζ = 1− z2(4 t12+ 2 t13) − 8z3 t123

−z4(8 t1213+ 4 t1214+ 2 t1234+ 4 t1243

−6 t212− t213 − 8 t12t13)

−8z5(t12123+ t12124+ t12134+ t12143+ t12313

+t12413− 4 t12t123− 2 t13t123)

−4z6(2S8 + S4 + t312 + 3 t212 t13 + t12t
2
13

−8 t12t1213− 4 t12t1214

−2 t12t1234− 4 t12t1243

−4 t13t1213− 2 t13t1214− t13t1234

−2 t13t1243− 7 t2123) − · · · (18.38)

where in the coefficient toz6 the abbreviationsS8 and
S4 stand for the sums over the weights of the 12 orbits
with multiplicity 8 and the 5 orbits of multiplicity 4,
respectively; the orbits are listed in table13.5.2.

18.10. Tail resummations. A simple illustration of such tail
resummation is theζ function for the Ulam map (12.18)
for which the cycle structure is exceptionally simple: the
eigenvalue of thex0 = 0 fixed point is 4, while the
eigenvalue of any othern-cycle is±2n. Typical cycle
weights used in thermodynamic averaging aret0 = 4τz,
t1 = t = 2τz, tp = tnp for p , 0. The simplicity of the
cycle eigenvalues enables us to evaluate theζ function
by a simple trick: we note that if the value of anyn-cycle
eigenvalue weretn, (17.21) would yield 1/ζ = 1 − 2t.
There is only one cycle, thex0 fixed point, that has a
different weight (1− t0), so we factor it out, multiply the
rest by (1− t)/(1− t), and obtain a rationalζ function

1/ζ(z) =
(1− 2t)(1− t0)

(1− t)
(18.39)

Consider how we would have detected the pole atz =
1/t without the above trick. As the0 fixed point is
isolated in its stability, we would have kept the factor
(1−t0) in (18.7) unexpanded, and noted that all curvature
combinations in (18.7) which include thet0 factor are
unbalanced, so that the cycle expansion is an infinite
series:

∏

p

(
1− tp

)
= (1−t0)(1−t−t2−t3−t4−. . .)(18.40)

(we shall return to such infinite series in chapter23).
The geometric series in the brackets sums up to (18.39).
Had we expanded the (1−t0) factor, we would have noted
that the ratio of the successive curvatures is exactly
cn+1/cn = t; summing we would recover the rationalζ
function (18.39).

18.11. Escape rate for the R̈ossler flow. (continuation
of exercise12.7) Try to compute the escape rate for
the Rössler flow (2.17) using the method of cycle
expansions. The answer should be zero, as nothing
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escapes. Ideally you should already have computed the
cycles and have an approximate grammar, but failing
that you can cheat a bit and peak into exercise12.7.

18.12. Ulam map is conjugate to the tent map.
(Continuation of exercise18.3 / repeat of exercise6.3
and exercise12.2; requires real smarts, unless you
look it up) Explain the magically simple form of cycle

stabilities of exercise18.3 by constructing an explicit
smooth conjugacy (6.1)

gt(y0) = h ◦ f t ◦ h−1(y0)

that conjugates the Ulam map (12.18) into the tent map
(10.6).
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Chapter 19

Discrete factorization

No endeavor that is worthwhile is simple in prospect; if it
is right, it will be simple in retrospect.

—Edward Teller

T  of discrete symmetries in reducing spectrum calculations is familiar
from quantum mechanics. Here we show that the classical spectral deter-
minants factor in essentially the same way as the quantum ones. In the

process we 1.) learn that the classical dynamics, once recast into the language of
evolution operators, is much closer to quantum mechanics than is apparent in the
Newtonian, ODE formulation (linear evolution operators/PDEs, group-theoretical
spectral decompositions,. . .), 2.) that once the symmetry group is quotiented
out, the dynamics simplifies, and 3.) it’s a triple home run: simpler symbolic
dynamics, fewer cycles needed, much better convergence of cycle expansions.
Once you master this, going back is unthinkable.

The main result of this chapter can be stated as follows:

If the dynamics possesses a discrete symmetry, the contribution of a cyclep
of multiplicity mp to a dynamical zeta function factorizes into a product over the
dα-dimensional irreducible representationsDα of the symmetry group,

(1− tp)mp =
∏

α

det
(
1− Dα(hp̃)tp̃

)dα
, tp = t

g/mp

p̃ ,

wheretp̃ is the cycle weight evaluated on the relative periodic orbitp̃, g = |G| is
the order of the group,hp̃ is the group element relating the fundamental domain
cycle p̃ to a segment of the full space cyclep, andmp is the multiplicity of thep
cycle. As dynamical zeta functions have particularly simple cycle expansions, a
geometrical shadowing interpretation of their convergence, and suffice for determination
of leading eigenvalues, we shall use them to explain the group-theoretic factorizations;
the full spectral determinants can be factorized using the same techniques.p-cycle
into a cycle weighttp.
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This chapter is meant to serve as a detailed guide to the computation of dynam-
ical zeta functions and spectral determinants for systems with discrete symmetries.
Familiarity with basic group-theoretic notions is assumed, with the definitions
relegated to appendixH.1. We develop here the cycle expansions for factorized
determinants, and exemplify them by working two cases of physical interest:C2 =

D1, C3v = D3 symmetries.C2v = D2×D2 andC4v = D4 symmetries are discussed
in appendixH.

19.1 Preview

As we saw in chapter9, discrete symmetries relate classes of periodic orbits
and reduce dynamics to a fundamental domain. Such symmetries simplify and
improve the cycle expansions in a rather beautiful way; in classical dynamics,
just as in quantum mechanics, the symmetrized subspaces canbe probed by linear
operators of different symmetries. If a linear operator commutes with the symmetry,
it can be block-diagonalized, and, as we shall now show, the associated spectral
determinants and dynamical zeta functions factorize.

19.1.1 Reflection symmetric 1-d maps

Consider f , a map on the interval with reflection symmetryf (−x) = − f (x). A
simple example is the piecewise-linear sawtooth map of figure 9.1. Denote the
reflection operation byRx= −x. The symmetry of the map implies that if{xn} is a
trajectory, than also{Rxn} is a trajectory becauseRxn+1 = R f(xn) = f (Rxn) . The
dynamics can be restricted to a fundamental domain, in this case to one half of
the original interval; every time a trajectory leaves this interval, it can be mapped
back usingR. Furthermore, the evolution operator commutes withR, L(y, x) =
L(Ry,Rx). R satisfiesR2 = e and can be used to decompose the state space
into mutually orthogonal symmetric and antisymmetric subspaces by means of
projection operators

PA1 =
1
2

(e+ R) , PA2 =
1
2

(e− R) ,

LA1(y, x) = PA1L(y, x) =
1
2

(L(y, x) +L(−y, x)) ,

LA2(y, x) = PA2L(y, x) =
1
2

(L(y, x) − L(−y, x)) . (19.1)

To compute the traces of the symmetrization and antisymmetrization projection
operators (19.1), we have to distinguish three kinds of cycles: asymmetric cycles
a, symmetric cycless built by repeats of irreducible segments ˜s, and boundary
cyclesb. Now we show that the spectral determinant can be written as the product
over the three kinds of cycles: det (1− L) = det (1− L)adet (1− L)s̃det (1− L)b.
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Asymmetric cycles:A periodic orbits is not symmetric if{xa}∩ {Rxa} = ∅, where
{xa} is the set of periodic points belonging to the cyclea. ThusR generates a
second orbit with the same number of points and the same stability properties.
Both orbits give the same contribution to the first term and nocontribution to the
second term in (19.1); as they are degenerate, the prefactor 1/2 cancels. Resuming
as in the derivation of (17.15) we find that asymmetric orbits yield the same
contribution to the symmetric and the antisymmetric subspaces:

det (1− L±)a =
∏

a

∞∏

k=0

(
1− ta
Λk

a

)
, ta =

zna

|Λa|
.

Symmetric cycles: A cycle s is reflection symmetric if operating withR on the
set of cycle points reproduces the set. The period of a symmetric cycle is always
even (ns = 2ns̃) and the mirror image of thexs cycle point is reached by traversing
the irreducible segment ˜s of lengthns̃, f ns̃(xs) = Rxs. δ(x− f n(x)) picks up 2ns̃

contributions for every even traversal,n = rns̃, r even, andδ(x+ f n(x)) for every
odd traversal,n = rns̃, r odd. Absorb the group-theoretic prefactor in the stability
eigenvalue by defining the stability computed for a segment of lengthns̃,

Λs̃ = −
∂ f ns̃(x)
∂x

∣∣∣∣∣
x=xs

.

Restricting the integration to the infinitesimal neighborhoodMs of the s cycle,
we obtain the contribution to trLn

±:

zntrLn
± →

∫

Ms

dx zn
1
2

(
δ
(
x− f n(x)

) ± δ(x+ f n(x)
))

= ns̃


even∑

r=2

δn,rns̃

trs̃
1− 1/Λr

s̃

±
odd∑

r=1

δn,rns̃

trs̃
1− 1/Λr

s̃



= ns̃

∞∑

r=1

δn,rns̃

(±ts̃)r

1− 1/Λr
s̃

.

Substituting all symmetric cycless into det (1− L±) and resuming we obtain:

det (1− L±)s̃ =
∏

s̃

∞∏

k=0

1∓
ts̃
Λk

s̃



Boundary cycles: In the example at hand there is only one cycle which is neither
symmetric nor antisymmetric, but lies on the boundary of thefundamental domain,
the fixed point at the origin. Such cycle contributes simultaneously to bothδ(x− f n(x))
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andδ(x+ f n(x)):

zntrLn
± →

∫

Mb

dx zn
1
2

(
δ
(
x− f n(x)

) ± δ(x+ f n(x)
))

=

∞∑

r=1

δn,r trb
1
2

(
1

1− 1/Λr
b

± 1
1+ 1/Λr

b

)

zn trLn
+ →

∞∑

r=1

δn,r
trb

1− 1/Λ2r
b

; zn trLn
− →

∞∑

r=1

δn,r
1
Λr

b

trb
1− 1/Λ2r

b

.

Boundary orbit contributions to the factorized spectral determinants follow by
resummation:

det (1− L+)b =

∞∏

k=0

1−
tb
Λ2k

b

 , det (1− L−)b =

∞∏

k=0

1−
tb
Λ2k+1

b



Only the even derivatives contribute to the symmetric subspace, and only the odd
ones to the antisymmetric subspace, because the orbit lies on the boundary.

Finally, the symmetry reduced spectral determinants follow by collecting the
above results:

F+(z) =
∏

a

∞∏

k=0

(
1− ta
Λk

a

)∏

s̃

∞∏

k=0

1−
ts̃
Λk

s̃


∞∏

k=0

1−
tb
Λ2k

b



F−(z) =
∏

a

∞∏

k=0

(
1− ta
Λk

a

)∏

s̃

∞∏

k=0

1+
ts̃
Λk

s̃


∞∏

k=0

1−
tb
Λ2k+1

b

 (19.2)

We shall work out the symbolic dynamics of such reflection symmetric systems in
some detail in sect.19.5. As reflection symmetry is essentially the only discrete
symmetry that a map of the interval can have, this example completes the group-
theoretic factorization of determinants and zeta functions for 1-d maps. We now
turn to discussion of the general case.

[exercise 19.1]

19.2 Discrete symmetries

A dynamical system is invariant under a symmetry groupG = {e, g2, . . . , g|G|} if
the equations of motion are invariant under all symmetriesg ∈ G. For a map
xn+1 = f (xn) and the evolution operatorL(y, x) defined by (15.23) this means

f (x) = g−1 f (gx)

L(y, x) = L(gy, gx) . (19.3)
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Bold face letters for group elements indicate a suitable representation on state
space. For example, if a 2-dimensional map has the symmetryx1 → −x1, x2 →
−x2, the symmetry groupG consists of the identity andC, a rotation byπ around
the origin. The mapf must then commute with rotations byπ, f (Rx) = C f (x),
with Rgiven by the [2× 2] matrix

R=

(
−1 0
0 −1

)
. (19.4)

R satisfiesR2 = e and can be used to decompose the state space into mutually
orthogonal symmetric and antisymmetric subspaces by meansof projection operators
(19.1). More generally the projection operator onto theα irreducible subspace of
dimensiondα is given byPα = (dα/|G|)

∑
χα(h)h−1, whereχα(h) = tr Dα(h) are

the group characters, and the transfer operatorL splits into a sum of inequivalent
irreducible subspace contributions

∑
α trLα,

Lα(y, x) =
dα
|G|

∑

h∈G
χα(h)L(h−1y, x) . (19.5)

The prefactordα in the above reflects the fact that adα-dimensional representation
occursdα times.

19.2.1 Cycle degeneracies

Taking into account these degeneracies, the Euler product (17.15) takes the form

∏

p

(1− tp) =
∏

p̂

(1− tp̂)mp̂. (19.6)

The Euler product (17.15) for theC3v symmetric 3-disk problem is given in
(18.36).

19.3 Dynamics in the fundamental domain

If the dynamics is invariant under a discrete symmetry, the state spaceM can be
completely tiled by the fundamental domaiñM and its imagesaM̃, bM̃, . . . under
the action of the symmetry groupG = {e, a, b, . . .},

M =
∑

a∈G
Ma =

∑

a∈G
aM̃ .

In the above example (19.4) with symmetry groupG = {e,C}, the state space
M = {x1-x2 plane} can be tiled by a fundamental domaiñM = {half-planex1 ≥ 0},
andCM̃ = {half-planex1 ≤ 0}, its image under rotation byπ.
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If the spaceM is decomposed intog tiles, a functionφ(x) over M splits into
a g-dimensional vectorφa(x) defined byφa(x) = φ(x) if x ∈ Ma, φa(x) = 0
otherwise. Leth = ab−1 conflicts with be the symmetry operation that maps the
endpoint domainMb into the starting point domainMa, and letD(h)ba, the left
regular representation, be the [g × g] matrix whoseb, a-th entry equals unity if
a = hb and zero otherwise;D(h)ba = δbh,a. Since the symmetries act on state
space as well, the operationh enters in two guises: as a [g× g] matrix D(h) which
simply permutes the domain labels, and as a [d × d] matrix representationh of a
discrete symmetry operation on thed state space coordinates. For instance, in the
above example (19.4) h ∈ C2 andD(h) can be either the identity or the interchange
of the two domain labels,

D(e) =

(
1 0
0 1

)
, D(C) =

(
0 1
1 0

)
. (19.7)

Note thatD(h) is a permutation matrix, mapping a tileMa into a different tile
Mha , Ma if h , e. Consequently onlyD(e) has diagonal elements, and trD(h) =
gδh,e. However, the state space transformationh , e leaves invariant sets of
boundarypoints; for example, under reflectionσ across a symmetry axis, the
axis itself remains invariant. The boundary periodic orbits that belong to such
pointwise invariant sets will require special care in trL evaluations.

One can associate to the evolution operator (15.23) a [g× g] matrix evolution
operator defined by

Lba(y, x) = D(h)baL(y, x) ,

if x ∈ Ma and y ∈ Mb, and zero otherwise. Now we can use the invariance
condition (19.3) to move the starting pointx into the fundamental domainx = ax̃,
L(y, x) = L(a−1y, x̃), and then use the relationa−1b = h−1 to also relate the
endpointy to its image in the fundamental domain,L̃(ỹ, x̃) := L(h−1ỹ, x̃). With
this operator which is restricted to the fundamental domain, the global dynamics
reduces to

Lba(y, x) = D(h)baL̃(ỹ, x̃) .

While the global trajectory runs over the full spaceM, the restricted trajectory is
brought back into the fundamental domaiñM any time it crosses into adjoining
tiles; the two trajectories are related by the symmetry operationh which maps the
global endpoint into its fundamental domain image.

Now the traces (17.3) required for the evaluation of the eigenvalues of the
transfer operator can be evaluated on the fundamental domain alone

trL =
∫

M
dxL(x, x) =

∫

M̃
dx̃

∑

h

tr D(h) L(h−1x̃, x̃) (19.8)
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The fundamental domain integral
∫

dx̃ L(h−1x̃, x̃) picks up a contribution from
every global cycle (for whichh = e), but it also picks up contributions from
shorter segments of global cycles. The permutation matrixD(h) guarantees by the
identity trD(h) = 0, h , e, that only those repeats of the fundamental domain
cycles p̃ that correspond to complete global cyclesp contribute. Compare, for
example, the contributions of the12 and0 cycles of figure11.2. tr D(h)L̃ does
not get a contribution from the0 cycle, as the symmetry operation that maps the
first half of the12 into the fundamental domain is a reflection, and trD(σ) = 0. In
contrast,σ2 = e, tr D(σ2) = 6 insures that the repeat of the fundamental domain
fixed point tr (D(h)L̃)2 = 6t20, gives the correct contribution to the global trace
trL2 = 3 · 2t12.

Let pbe the full orbit,p̃ the orbit in the fundamental domain andhp̃ an element
of Hp, the symmetry group ofp. Restricting the volume integrations to the
infinitesimal neighborhoods of the cyclesp and p̃, respectively, and performing
the standard resummations, we obtain the identity

(1− tp)mp = det
(
1− D(hp̃)tp̃

)
, (19.9)

valid cycle by cycle in the Euler products (17.15) for det (1−L). Here “det” refers
to the [g×g] matrix representationD(hp̃); as we shall see, this determinant can be
evaluated in terms of standard characters, and no explicit representation ofD(hp̃)
is needed. Finally, if a cyclep is invariant under the symmetry subgroupHp ⊆ G
of order hp, its weight can be written as a repetition of a fundamental domain
cycle

tp = t
hp

p̃ (19.10)

computed on the irreducible segment that corresponds to a fundamental domain
cycle. For example, in figure11.2we see by inspection thatt12 = t20 andt123 = t31.

19.3.1 Boundary orbits

Before we can turn to a presentation of the factorizations ofdynamical zeta func-
tions for the different symmetries we have to discuss an effect that arises for
orbits that run on a symmetry line that borders a fundamentaldomain. In our
3-disk example, no such orbits are possible, but they exist in other systems, such
as in the bounded region of the Hénon-Heiles potential and in 1-d maps. For
the symmetrical 4-disk billiard, there are in principle twokinds of such orbits,
one kind bouncing back and forth between two diagonally opposed disks and the
other kind moving along the other axis of reflection symmetry; the latter exists for
bounded systems only. While there are typically very few boundary orbits, they
tend to be among the shortest orbits, and their neglect can seriously degrade the
convergence of cycle expansions, as those are dominated by the shortest cycles.

While such orbits are invariant under some symmetry operations, their neighborhoods
are not. This affects the fundamental matrixMp of the linearization perpendicular
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to the orbit and thus the eigenvalues. Typically,e.g.if the symmetry is a reflection,
some eigenvalues ofMp change sign. This means that instead of a weight 1/det (1−
Mp) as for a regular orbit, boundary cycles also pick up contributions of form
1/det (1− hMp), whereh is a symmetry operation that leaves the orbit pointwise
invariant; see for example sect.19.1.1.

Consequences for the dynamical zeta function factorizations are that sometimes
a boundary orbit does not contribute. A derivation of a dynamical zeta function
(17.15) from a determinant like (17.9) usually starts with an expansion of the
determinants of the Jacobian. The leading order terms just contain the product of
the expanding eigenvalues and lead to the dynamical zeta function (17.15). Next
to leading order terms contain products of expanding and contracting eigenvalues
and are sensitive to their signs. Clearly, the weightstp in the dynamical zeta
function will then be affected by reflections in the Poincaré surface of section
perpendicular to the orbit. In all our applications it was possible to implement
these effects by the following simple prescription.

If an orbit is invariant under a little groupHp = {e, b2, . . . , bh}, then the
corresponding group element in (19.9) will be replaced by a projector. If the
weights are insensitive to the signs of the eigenvalues, then this projector is

gp =
1
h

h∑

i=1

bi . (19.11)

In the cases that we have considered, the change of sign may betaken into account
by defining a sign functionǫp(g) = ±1, with the “-” sign if the symmetry element
g flips the neighborhood. Then (19.11) is replaced by

gp =
1
h

h∑

i=1

ǫ(bi ) bi . (19.12)

We have illustrated the above in sect.19.1.1by working out the full factorization
for the 1-dimensional reflection symmetric maps.

19.4 Factorizations of dynamical zeta functions

In chapter9 we have shown that a discrete symmetry induces degeneraciesamong
periodic orbits and decomposes periodic orbits into repetitions of irreducible segments;
this reduction to a fundamental domain furthermore leads toa convenient symbolic
dynamics compatible with the symmetry, and, most importantly, to a factorization
of dynamical zeta functions. This we now develop, first in a general setting and
then for specific examples.
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19.4.1 Factorizations of dynamical dynamical zeta functions

According to (19.9) and (19.10), the contribution of a degenerate class of global
cycles (cyclep with multiplicity mp = g/hp) to a dynamical zeta function is given
by the corresponding fundamental domain cycle ˜p:

(1− t
hp

p̃ )g/hp = det
(
1− D(hp̃)tp̃

)
(19.13)

Let D(h) =
⊕

α
dαDα(h) be the decomposition of the matrix representationD(h)

into thedα dimensional irreducible representationsα of a finite groupG. Such
decompositions are block-diagonal, so the corresponding contribution to the Euler
product (17.9) factorizes as

det (1− D(h)t) =
∏

α

det (1− Dα(h)t)dα , (19.14)

where now the product extends over all distinctdα-dimensional irreducible representations,
each contributingdα times. For the cycle expansion purposes, it has been convenient
to emphasize that the group-theoretic factorization can beeffected cycle by cycle,
as in (19.13); but from the transfer operator point of view, the key observation
is that the symmetry reduces the transfer operator to a blockdiagonal form; this
block diagonalization implies that the dynamical zeta functions (17.15) factorize
as

1
ζ
=

∏

α

1

ζ
dα
α

,
1
ζα
=

∏

p̃

det
(
1− Dα(hp̃)tp̃

)
. (19.15)

Determinants ofd-dimensional irreducible representations can be evaluated
using the expansion of determinants in terms of traces,

det (1+ M) = 1+ tr M +
1
2

(
(tr M)2 − tr M2

)

+
1
6

(
(tr M)3 − 3 (tr M)(tr M2) + 2 tr M3

)

+ · · · + 1
d!

(
(tr M)d − · · ·

)
, (19.16)

and each factor in (19.14) can be evaluated by looking up the charactersχα(h) =
tr Dα(h) in standard tables [10]. In terms of characters, we have for the 1-dimensional
representations

det (1− Dα(h)t) = 1− χα(h)t ,

for the 2-dimensional representations

det (1− Dα(h)t) = 1− χα(h)t +
1
2

(
χα(h)2 − χα(h2)

)
t2,
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and so forth.

In the fully symmetric subspace trDA1(h) = 1 for all orbits; hence a straightforward
fundamental domain computation (with no group theory weights) always yields a
part of the full spectrum. In practice this is the most interesting subspectrum, as it
contains the leading eigenvalue of the transfer operator.

[exercise 19.2]

19.4.2 Factorizations of spectral determinants

Factorization of the full spectral determinant (17.3) proceeds in essentially the
same manner as the factorization of dynamical zeta functions outlined above.
By (19.5) and (19.8) the trace of the transfer operatorL splits into the sum of
inequivalent irreducible subspace contributions

∑
α trLα, with

trLα = dα
∑

h∈G
χα(h)

∫

M̃
dx̃L(h−1x̃, x̃) .

This leads by standard manipulations to the factorization of (17.9) into

F(z) =
∏

α

Fα(z)dα

Fα(z) = exp

−
∑

p̃

∞∑

r=1

1
r

χα(hr
p̃)znp̃r

|det
(
1− M̃r

p̃

)
|

 , (19.17)

whereM̃p̃ = hp̃Mp̃ is the fundamental domain Jacobian. Boundary orbits require
special treatment, discussed in sect.19.3.1, with examples given in the next section
as well as in the specific factorizations discussed below.

The factorizations (19.15), (19.17) are the central formulas of this chapter.
We now work out the group theory factorizations of cycle expansions of dynam-
ical zeta functions for the cases ofC2 andC3v symmetries. The cases of theC2v,
C4v symmetries are worked out in appendixH below.

19.5 C2 factorization

As the simplest example of implementing the above scheme consider theC2

symmetry. For our purposes, all that we need to know here is that each orbit
or configuration is uniquely labeled by an infinite string{si}, si = +,− and that
the dynamics is invariant under the+ ↔ − interchange, i.e., it isC2 symmetric.
The C2 symmetry cycles separate into two classes, the self-dual configurations
+−, + + −−, + + + − −−, + − − + − + +−, · · ·, with multiplicity mp = 1, and
the asymmetric configurations+, −, + + −, − − +, · · ·, with multiplicity mp = 2.
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For example, as there is no absolute distinction between the“up” and the “down”
spins, or the “left” or the “right” lobe,t+ = t−, t++− = t+−−, and so on.

[exercise 19.4]

The symmetry reduced labelingρi ∈ {0, 1} is related to the standardsi ∈ {+,−}
Ising spin labeling by

If si = si−1 then ρi = 1

If si , si−1 then ρi = 0 (19.18)

For example,+ = · · · + + + + · · · maps into· · · 111· · · = 1 (and so does−),
−+ = · · · − + − + · · · maps into· · ·000· · · = 0,− + +− = · · · − − + + − − + + · · ·
maps into· · · 0101· · · = 01, and so forth. A list of such reductions is given in
table11.2.

Depending on the maximal symmetry groupHp that leaves an orbitp invariant
(see sects.19.2and19.3as well as sect.19.1.1), the contributions to the dynamical
zeta function factor as

A1 A2

Hp = {e} : (1− tp̃)2 = (1− tp̃)(1− tp̃)

Hp = {e, σ} : (1− t2p̃) = (1− tp̃)(1+ tp̃) , (19.19)

For example:

H++− = {e} : (1− t++−)2 = (1− t001)(1− t001)

H+− = {e, σ} : (1− t+−) = (1− t0) (1+ t0), t+− = t20

This yields two binary cycle expansions. TheA1 subspace dynamical zeta function
is given by the standard binary expansion (18.7). The antisymmetricA2 subspace
dynamical zeta functionζA2 differs fromζA1 only by a minus sign for cycles with
an odd number of 0’s:

1/ζA2 = (1+ t0)(1− t1)(1+ t10)(1− t100)(1+ t101)(1+ t1000)

(1− t1001)(1+ t1011)(1− t10000)(1+ t10001)

(1+ t10010)(1− t10011)(1− t10101)(1+ t10111) . . .

= 1+ t0 − t1 + (t10 − t1t0) − (t100− t10t0) + (t101− t10t1)

−(t1001− t1t001− t101t0 + t10t0t1) − . . . . . . (19.20)

Note that the group theory factors do not destroy the curvature corrections (the
cycles and pseudo cycles are still arranged into shadowing combinations).

If the system under consideration has a boundary orbit (cf. sect.19.3.1) with
group-theoretic factorhp = (e+ σ)/2, the boundary orbit does not contribute to
the antisymmetric subspace

A1 A2

boundary: (1− tp) = (1− tp̃)(1− 0tp̃) (19.21)
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This is the 1/ζ part of the boundary orbit factorization of sect.19.1.1.

19.6 C3v factorization: 3-disk game of pinball

The next example, theC3v symmetry, can be worked out by a glance at figure11.2(a).
For the symmetric 3-disk game of pinball the fundamental domain is bounded by
a disk segment and the two adjacent sections of the symmetry axes that act as
mirrors (see figure11.2(b)). The three symmetry axes divide the space into six
copies of the fundamental domain. Any trajectory on the fullspace can be pieced
together from bounces in the fundamental domain, with symmetry axes replaced
by flat mirror reflections. The binary{0, 1} reduction of the ternary three disk
{1, 2, 3} labels has a simple geometric interpretation: a collision of type 0 reflects
the projectile to the disk it comes from (back–scatter), whereas after a collision
of type 1 projectile continues to the third disk. For example, 23 = · · ·232323· · ·
maps into· · · 000· · · = 0 (and so do12 and13), 123 = · · · 12312· · · maps into
· · · 111· · · = 1 (and so does132), and so forth. A list of such reductions for short
cycles is given in table11.1.

C3v has two 1-dimensional irreducible representations, symmetric and antisymmetric
under reflections, denotedA1 and A2, and a pair of degenerate 2-dimensional
representations of mixed symmetry, denotedE. The contribution of an orbit with
symmetryg to the 1/ζ Euler product (19.14) factorizes according to

det (1−D(h)t) =
(
1− χA1(h)t

) (
1− χA2(h)t

) (
1− χE(h)t + χA2(h)t2

)2
(19.22)

with the three factors contributing to theC3v irreducible representationsA1, A2

and E, respectively, and the 3-disk dynamical zeta function factorizes intoζ =
ζA1ζA2ζ

2
E. Substituting theC3v characters [10]

C3v A1 A2 E
e 1 1 2

C,C2 1 1 −1
σv 1 −1 0

into (19.22), we obtain for the three classes of possible orbit symmetries (indicated
in the first column)

hp̃ A1 A2 E

e : (1− tp̃)6 = (1− tp̃)(1− tp̃)(1− 2tp̃ + t2p̃)2

C,C2 : (1− t3p̃)2 = (1− tp̃)(1− tp̃)(1+ tp̃ + t2p̃)2

σv : (1− t2p̃)3 = (1− tp̃)(1+ tp̃)(1+ 0tp̃ − t2p̃)2. (19.23)

whereσv stands for any one of the three reflections.
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The Euler product (17.15) on each irreducible subspace follows from the
factorization (19.23). On the symmetricA1 subspace theζA1 is given by the
standard binary curvature expansion (18.7). The antisymmetricA2 subspaceζA2

differs fromζA1 only by a minus sign for cycles with an odd number of 0’s, and is
given in (19.20). For the mixed-symmetry subspaceE the curvature expansion is
given by

1/ζE = (1+ zt1 + z2t21)(1− z2t20)(1+ z3t100+ z6t2100)(1− z4t210)

(1+ z4t1001+ z8t21001)(1+ z5t10000+ z10t210000)

(1+ z5t10101+ z10t210101)(1− z5t10011)
2 . . .

= 1+ zt1 + z2(t21 − t20) + z3(t001− t1t20)

+z4
[
t0011+ (t001− t1t20)t1 − t201

]

+z5
[
t00001+ t01011− 2t00111+ (t0011− t201)t1 + (t21 − t20)t100

]
+ · · ·(19.24)

We have reinserted the powers ofz in order to group together cycles and pseudocycles
of the same length. Note that the factorized cycle expansions retain the curvature
form; long cycles are still shadowed by (somewhat less obvious) combinations of
pseudocycles.

Referring back to the topological polynomial (13.31) obtained by settingtp =

1, we see that its factorization is a consequence of theC3v factorization of theζ
function:

1/ζA1 = 1− 2z , 1/ζA2 = 1 , 1/ζE = 1+ z , (19.25)

as obtained from (18.7), (19.20) and (19.24) for tp = 1.

Their symmetry isK = {e, σ}, so according to (19.11), they pick up the group-
theoretic factorhp = (e+ σ)/2. If there is no sign change intp, then evaluation of
det (1− e+σ

2 tp̃) yields

A1 A2 E

boundary: (1− tp)3 = (1− tp̃)(1− 0tp̃)(1− tp̃)2 , tp = tp̃ . (19.26)

However, if the cycle weight changes sign under reflection,tσp̃ = −tp̃, the boundary
orbit does not contribute to the subspace symmetric under reflection across the
orbit;

A1 A2 E

boundary: (1− tp)3 = (1− 0tp̃)(1− tp̃)(1− tp̃)2 , tp = tp̃ . (19.27)

Résum é

If a dynamical system has a discrete symmetry, the symmetry should be exploited;
much is gained, both in understanding of the spectra and easeof their evaluation.
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Once this is appreciated, it is hard to conceive of a calculation without factorization;
it would correspond to quantum mechanical calculations without wave–function
symmetrizations.

While the reformulation of the chaotic spectroscopy from the trace sums to
the cycle expansions does not reduce the exponential growthin number of cycles
with the cycle length, in practice only the short orbits are used, and for them the
labor saving is dramatic. For example, for the 3-disk game ofpinball there are
256 periodic points of length 8, but reduction to the fundamental domain non-
degenerate prime cycles reduces the number of the distinct cycles of length 8 to
30.

In addition, cycle expansions of the symmetry reduced dynamical zeta func-
tions converge dramatically faster than the unfactorized dynamical zeta func-
tions. One reason is that the unfactorized dynamical zeta function has many
closely spaced zeros and zeros of multiplicity higher than one; since the cycle
expansion is a polynomial expansion in topological cycle length, accommodating
such behavior requires many terms. The dynamical zeta functions on separate
subspaces have more evenly and widely spaced zeros, are smoother, do not have
symmetry-induced multiple zeros, and fewer cycle expansion terms (short cycle
truncations) suffice to determine them. Furthermore, the cycles in the fundamental
domain sample state space more densely than in the full space. For example, for
the 3-disk problem, there are 9 distinct (symmetry unrelated) cycles of length 7 or
less in full space, corresponding to 47 distinct periodic points. In the fundamental
domain, we have 8 (distinct) periodic orbits up to length 4 and thus 22 different
periodic points in 1/6-th the state space, i.e., an increase in density by a factor3
with the same numerical effort.

We emphasize that the symmetry factorization (19.23) of the dynamical zeta
function isintrinsic to the classical dynamics, and not a special property of quantal
spectra. The factorization is not restricted to the Hamiltonian systems, or only
to the configuration space symmetries; for example, the discrete symmetry can
be a symmetry of the Hamiltonian phase space [2]. In conclusion, the manifold
advantages of the symmetry reduced dynamics should thus be obvious; full state
space cycle expansions, such as those of exercise18.8, are useful only for cross
checking purposes.

Commentary

Remark 19.1 Symmetry reductions in periodic orbit theory. This chapter is based on
long collaborative effort with B. Eckhardt, ref. [1]. The group-theoretic factorizations of
dynamical zeta functions that we develop here were first introduced and applied in ref. [4].
They are closely related to the symmetrizations introducedby Gutzwiller [4] in the context
of the semiclassical periodic orbit trace formulas, put into more general group-theoretic
context by Robbins [2], whose exposition, together with Lauritzen’s [3] treatment of the
boundary orbits, has influenced the presentation given here. The symmetry reduced trace
formula for a finite symmetry groupG = {e, g2, . . . , g|G|} with |G| group elements, where
the integral over Haar measure is replaced by a finite group discrete sum|G|−1 ∑

g∈G = 1 ,
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was derived in ref. [1]. A related group-theoretic decomposition in context of hyperbolic
billiards was utilized in ref. [10], and for the Selberg’s zeta function in ref. [11]. One of
its loftier antecedents is the Artin factorization formulaof algebraic number theory, which
expresses the zeta-function of a finite extension of a given field as a product ofL-functions
over all irreducible representations of the correspondingGalois group.

Remark 19.2 Computations. The techniques of this chapter have been applied to
computations of the 3-disk classical and quantum spectra inrefs. [7, 13], and to a “Zeeman
effect” pinball and thex2y2 potentials in ref. [12]. In a larger perspective, the factorizations
developed above are special cases of a general approach to exploiting the group-theoretic
invariances in spectra computations, such as those used in enumeration of periodic geodesics [10,
3, 13] for hyperbolic billiards [12] and Selberg zeta functions [18].

Remark 19.3 Other symmetries. In addition to the symmetries exploited here, time
reversal symmetry and a variety of other non-trivial discrete symmetries can induce further
relations among orbits; we shall point out several of examples of cycle degeneracies under
time reversal. We do not know whether such symmetries can be exploited for further
improvements of cycle expansions.

Exercises

19.1. Sawtooth map desymmetrization. Work out the
some of the shortest global cycles of different
symmetries and fundamental domain cycles for the
sawtooth map of figure9.1. Compute the dynamical
zeta function and the spectral determinant of the Perron-
Frobenius operator for this map; check explicitly the
factorization (19.2).

19.2. 2-d asymmetric representation. The above
expressions can sometimes be simplified further using
standard group-theoretical methods. For example, the
1
2

(
(tr M)2 − tr M2

)
term in (19.16) is the trace of the

antisymmetric part of theM × M Kronecker product.
Show that ifα is a 2-dimensional representation, this is
theA2 antisymmetric representation, and

2-dim: det (1−Dα(h)t) = 1−χα(h)t+χA2(h)t2.(19.28)

19.3. 3-disk desymmetrization.

a) Work out the 3-disk symmetry factorization for
the 0 and 1 cycles, i.e. which symmetry do they
have, what is the degeneracy in full space and how
do they factorize (how do they look in theA1, A2

and theE representations).

b) Find the shortest cycle with no symmetries and
factorize it as in a)

c) Find the shortest cycle that has the property that
its time reversal is not described by the same
symbolic dynamics.

d) Compute the dynamical zeta functions and the
spectral determinants (symbolically) in the three
representations; check the factorizations (19.15)
and (19.17).

(Per Rosenqvist)

19.4. C2 factorizations: the Lorenz and Ising systems. In
the Lorenz system [1, 3] the labels+ and − stand
for the left or the right lobe of the attractor and the
symmetry is a rotation byπ around thez-axis. Similarly,
the Ising Hamiltonian (in the absence of an external
magnetic field) is invariant under spin flip. Work out
the factorizations for some of the short cycles in either
system.

19.5. Ising model. The Ising model with two states
ǫi = {+,−} per site, periodic boundary condition, and
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Hamiltonian

H(ǫ) = −J
∑

i

δǫi ,ǫi+1 ,

is invariant under spin-flip:+ ↔ −. Take advantage of
that symmetry and factorize the dynamical zeta function
for the model, i.e., find all the periodic orbits that
contribute to each factor and their weights.

19.6. One orbit contribution. If p is an orbit in the
fundamental domain with symmetryh, show that it
contributes to the spectral determinant with a factor

det

1− D(h)
tp

λk
p

 ,

where D(h) is the representation ofh in the regular
representation of the group.
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Chapter 20

Why cycle?

“Progress was a labyrinth ... people plunging blindly in
and then rushing wildly back, shouting that they had found
it ... the invisible king the élan vital the principle of
evolution ... writing a book, starting a war, founding a
school....”

—F. Scott Fitzgerald,This Side of Paradise

I     we have moved rather briskly through the evolution
operator formalism. Here we slow down in order to develop some fingertip
feeling for the traces of evolution operators.

20.1 Escape rates

We start by verifying the claim (15.11) that for a nice hyperbolic flow the trace of
the evolution operator grows exponentially with time. Consider again the game
of pinball of figure1.1. Designate byM a state space region that encloses the
three disks, say the surface of the table× all pinball directions. The fraction of
initial points whose trajectories start out within the state space regionM and recur
within that region at the timet is given by

Γ̂M(t) =
1
|M|

∫ ∫

M
dxdyδ

(
y− f t(x)

)
. (20.1)

This quantity is eminently measurable and physically interesting in a variety of
problems spanning nuclear physics to celestial mechanics.The integral overx
takes care of all possible initial pinballs; the integral over y checks whether they
are still withinM by the timet. If the dynamics is bounded, andM envelops the
entire accessible state space,Γ̂M(t) = 1 for all t. However, if trajectories exitM
the recurrence fraction decreases with time. For example, any trajectory that falls
off the pinball table in figure1.1 is gone for good.
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These observations can be made more concrete by examining the pinball phase
space of figure1.9. With each pinball bounce the initial conditions that survive
get thinned out, each strip yielding two thinner strips within it. The total fraction
of survivors (1.2) aftern bounces is given by

Γ̂n =
1
|M|

(n)∑

i

|Mi | , (20.2)

where i is a binary label of theith strip, and|Mi | is the area of theith strip.
The phase space volume is preserved by the flow, so the strips of survivors are
contracted along the stable eigendirections, and ejected along the unstable eigendirections.
As a crude estimate of the number of survivors in theith strip, assume that the
spreading of a ray of trajectories per bounce is given by a factor Λ, the mean
value of the expanding eigenvalue of the corresponding fundamental matrix of the
flow, and replace|Mi | by the phase space strip width estimate|Mi |/|M| ∼ 1/Λi .
This estimate of a size of a neighborhood (given already on p.85) is right in spirit,
but not without drawbacks. One problem is that in general theeigenvalues of a
fundamental matrix for a finite segment of a trajectory have no invariant meaning;
they depend on the choice of coordinates. However, we saw in chapter16 that the
sizes of neighborhoods are determined by stability eigenvalues of periodic points,
and those are invariant under smooth coordinate transformations.

In the approximation̂Γn receives 2n contributions of equal size

Γ̂1 ∼
1
Λ
+

1
Λ
, · · · , Γ̂n ∼

2n

Λn = e−n(λ−h) = e−nγ , (20.3)

up to pre-exponential factors. We see here the interplay of the two key ingredients
of chaos first alluded to in sect.1.3.1: the escape rateγ equals local expansion
rate (the Lyapunov exponentλ = lnΛ), minus the rate of global reinjection back
into the system (the topological entropyh = ln 2).

As at each bounce one loses routinely the same fraction of trajectories, one
expects the sum (20.2) to fall off exponentially withn. More precisely, by the
hyperbolicity assumption of sect.16.1.1the expanding eigenvalue of the fundamental
matrix of the flow is exponentially bounded from both above and below,

1 < |Λmin| ≤ |Λ(x)| ≤ |Λmax| , (20.4)

and the area of each strip in (20.2) is bounded by|Λ−n
max| ≤ |Mi | ≤ |Λ−n

min|. Replacing
|Mi | in (20.2) by its over (under) estimates in terms of|Λmax|, |Λmin| immediately
leads to exponential bounds (2/|Λmax|)n ≤ Γ̂n ≤ (2/|Λmin|)n, i.e.,

ln |Λmax| − ln 2 ≥ −1
n

ln Γ̂n ≥ ln |Λmin| − ln 2 . (20.5)

The argument based on (20.5) establishes only that the sequenceγn = − 1
n ln Γn

has a lower and an upper bound for anyn. In order to prove thatγn converge to the
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limit γ, we first show that for hyperbolic systems the sum over survivor intervals
(20.2) can be replaced by the sum over periodic orbit stabilities.By (20.4) the size
ofMi strip can be bounded by the stabilityΛi of ith periodic point:

C1
1
|Λi |

<
|Mi |
|M| < C2

1
|Λi |

, (20.6)

for any periodic pointi of periodn, with constantsC j dependent on the dynamical
system but independent ofn. The meaning of these bounds is that for longer and
longer cycles in a system of bounded hyperbolicity, the shrinking of theith strip is
better and better approximated by the derivatives evaluated on the periodic point
within the strip. Hence the survival probability can be bounded close to the cycle
point stability sum

Ĉ1 Γn <

(n)∑

i

|Mi |
|M| < Ĉ2 Γn , (20.7)

whereΓn =
∑(n)

i 1/|Λi | is the asymptotic trace sum (16.26). In this way we have
established that for hyperbolic systems the survival probability sum (20.2) can be
replaced by the periodic orbit sum (16.26).

[exercise 20.1]

[exercise 14.4]
We conclude that for hyperbolic, locally unstable flows the fraction (20.1) of

initial x whose trajectories remain trapped withinM up to timet is expected to
decay exponentially,

ΓM(t) ∝ e−γt ,

whereγ is the asymptoticescape ratedefined by

γ = − lim
t→∞

1
t

ln ΓM(t) . (20.8)

20.2 Natural measure in terms of periodic orbits

We now refine the reasoning of sect.20.1. Consider the trace (16.7) in the asymptotic
limit (16.25):

trLn =

∫
dxδ

(
x− f n(x)

)
eβAn(x) ≈

(n)∑

i

eβAn(xi )

|Λi |
.

The factor 1/|Λi | was interpreted in (20.2) as the area of theith phase space
strip. Hence trLn is a discretization of theintegral

∫
dxeβAn(x) approximated by a

tessellation into strips centered on periodic pointsxi, figure1.11, with the volume
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of the ith neighborhood given by estimate|Mi | ∼ 1/|Λi |, andeβAn(x) estimated by
eβAn(xi ), its value at theith periodic point. If the symbolic dynamics is a complete,
any rectangle [s−m · · · s0.s1s2 · · · sn] of sect.11.4.1always contains the cycle point
s−m · · · s0s1s2 · · · sn; hence even though the periodic points are of measure zero
(just like rationals in the unit interval), they are dense onthe non–wandering set.
Equipped with a measure for the associated rectangle, periodic orbits suffice to
cover the entire non–wandering set. The average ofeβAn

evaluated on the non–
wandering set is therefore given by the trace, properly normalized so〈1〉 = 1:

〈
eβAn〉

n
≈

∑(n)
i eβAn(xi )/|Λi |
∑(n)

i 1/|Λi |
=

(n)∑

i

µi eβAn(xi ) . (20.9)

Hereµi is thenormalized natural measure

(n)∑

i

µi = 1 , µi = enγ/|Λi | , (20.10)

correct both for the closed systems as well as the open systems of sect.15.1.3.

Unlike brute numerical slicing of the integration space into an arbitrary lattice
(for a critique, see sect.14.3), the periodic orbit theory is smart, as it automatically
partitions integrals by the intrinsic topology of the flow, and assigns to each tile
the invariant natural measureµi.

20.2.1 Unstable periodic orbits are dense

(L. Rondoni and P. Cvitanović)

Our goal in sect.15.1 was to evaluate the space and time averaged expectation
value (15.9). An average over all periodic orbits can accomplish the jobonly if
the periodic orbits fully explore the asymptotically accessible state space.

Why should the unstable periodic points end up being dense? The cycles
are intuitively expected to bedensebecause on a connected chaotic set a typical
trajectory is expected to behave ergodically, and pass infinitely many times arbitrarily
close to any point on the set, including the initial point of the trajectory itself. The
argument is more or less the following. Take a partition ofM in arbitrarily small
regions, and consider particles that start out in regionMi , and return to it inn
steps after some peregrination in state space. In particular, a particle might return
a little to the left of its original position, while a close neighbor might return a
little to the right of its original position. By assumption,the flow is continuous,
so generically one expects to be able to gently move the initial point in such a
way that the trajectory returns precisely to the initial point, i.e., one expects a
periodic point of periodn in cell i. As we diminish the size of regionsMi , aiming
a trajectory that returns toMi becomes increasingly difficult. Therefore, we are
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guaranteed that unstable orbits of larger and larger periodare densely interspersed
in the asymptotic non–wandering set.

The above argument is heuristic, by no means guaranteed to work, and it
must be checked for the particular system at hand. A variety of ergodic but
insufficiently mixing counter-examples can be constructed - the most familiar
being a quasiperiodic motion on a torus.

20.3 Flow conservation sum rules

If the dynamical system is bounded, all trajectories remainconfined for all times,
escape rate (20.8) vanishesγ = −s0 = 0, and the leading eigenvalue of the Perron-
Frobenius operator (14.10) is simply exp(−tγ) = 1. Conservation of material flow
thus implies that for bound flows cycle expansions of dynamical zeta functions
and spectral determinants satisfy exactflow conservationsum rules:

1/ζ(0, 0) = 1+
∑′

π

(−1)k

|Λp1 · · ·Λpk |
= 0

F(0, 0) = 1−
∞∑

n=1

cn(0, 0) = 0 (20.11)

obtained by settings = 0 in (18.15), (18.16) cycle weightstp = e−sTp/|Λp| →
1/|Λp| . These sum rules depend neither on the cycle periodsTp nor on the
observablea(x) under investigation, but only on the cycle stabilitiesΛp,1,Λp,2, · · ·,
Λp,d, and their significance is purely geometric: they are a measure of how well
periodic orbits tessellate the state space. Conservation of material flow provides
the first and very useful test of the quality of finite cycle length truncations, and is
something that you should always check first when constructing a cycle expansion
for a bounded flow.

The trace formula version of the flow conservation flow sum rule comes in
two varieties, one for the maps, and another for the flows. By flow conservation
the leading eigenvalue iss0 = 0, and for maps (18.14) yields

trLn =
∑

i∈Fix f n

1
|det (1− Mn(xi)) |

= 1+ es1n + . . . . (20.12)

For flows one can apply this rule by grouping together cycles from t = T to
t = T + ∆T

1
∆T

T≤rTp≤T+∆T∑

p,r

Tp∣∣∣∣det
(
1− Mr

p

)∣∣∣∣
=

1
∆T

∫ T+∆T

T
dt

(
1+ es1t + . . .

)

= 1+
1
∆T

∞∑

α=1

esαT

sα

(
esα∆T − 1

)
≈ 1+ es1T + · · · .(20.13)
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As is usual for the the fixed level trace sums, the convergenceof (20.12) is controled
by the gap between the leading and the next-to-leading eigenvalues of the evolution
operator.

20.4 Correlation functions

The time correlation function CAB(t) of two observablesA and B along the
trajectoryx(t) = f t(x0) is defined as

CAB(t; x0) = lim
T→∞

1
T

∫ T

0
dτA(x(τ + t))B(x(τ)) , x0 = x(0) . (20.14)

If the system is ergodic, with invariant continuous measureρ0(x)dx, then correlation
functions do not depend onx0 (apart from a set of zero measure), and may be
computed by a state space average as well

CAB(t) =
∫

M
dx0 ρ0(x0)A( f t(x0))B(x0) . (20.15)

For a chaotic system we expect that time evolution will loosethe information
contained in the initial conditions, so thatCAB(t) will approach theuncorrelated
limit 〈A〉 · 〈B〉. As a matter of fact the asymptotic decay of correlation functions

ĈAB := CAB− 〈A〉 〈B〉 (20.16)

for any pair of observables coincides with the definition ofmixing, a fundamental
property in ergodic theory. We now assume〈B〉 = 0 (otherwise we may define
a new observable byB(x) − 〈B〉). Our purpose is now to connect the asymptotic
behavior of correlation functions with the spectrum of the Perron-Frobenius oper-
atorL. We can write (20.15) as

C̃AB(t) =
∫

M
dx

∫

M
dy A(y)B(x)ρ0(x)δ(y− f t(x)) ,

and recover the evolution operator

C̃AB(t) =
∫

M
dx

∫

M
dy A(y)Lt(y, x)B(x)ρ0(x)

We recall that in sect.14.1 we showed thatρ(x) is the eigenvector ofL
corresponding to probability conservation

∫

M
dyLt(x, y)ρ(y) = ρ(x) .
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Now, we can expand thex dependent part in terms of the eigenbasis ofL:

B(x)ρ0(x) =
∞∑

α=0

cαρα(x) ,

whereρ0(x) is the natural measure. Since the average of the left hand side is zero
the coefficientc0 must vanish. The action ofL then can be written as

C̃AB(t) =
∑

α,0

e−sαtcα

∫

M
dy A(y)ρα(y). (20.17)

[exercise 20.2]

We see immediately that if the spectrum has agap, i.e., if the second largest
leading eigenvalue is isolated from the largest eigenvalue(s0 = 0) then (20.17)
impliesexponentialdecay of correlations

C̃AB(t) ∼ e−νt .

The correlation decay rateν = s1 then depends only on intrinsic properties of the
dynamical system (the position of the next-to-leading eigenvalue of the Perron-
Frobenius operator), while the choice of a particular observable influences only
the prefactor.

Correlation functions are often accessible from time series measurable in laboratory
experiments and numerical simulations: moreover they are linked to transport
exponents.

20.5 Trace formulasvs. level sums

Trace formulas (16.10) and (16.23) diverge precisely where one would
like to use them, atsequal to eigenvaluessα. Instead, one can proceed as follows;
according to (16.27) the “level” sums (all symbol strings of lengthn) are asymptotically
going likees0n

∑

i∈Fix f n

eβAn(xi )

|Λi |
→ es0n ,

so annth order estimates(n) of the leading eigenvalue is given by

1 =
∑

i∈Fix f n

eβAn(xi )e−s(n)n

|Λi |
(20.18)

which generates a “normalized measure.” The difficulty with estimating thisn→
∞ limit is at least twofold:
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1. due to the exponential growth in number of intervals, and the exponential
decrease in attainable accuracy, the maximalnattainable experimentally or numerically
is in practice of order of something between 5 to 20.

2. the pre-asymptotic sequence of finite estimatess(n) is not unique, because
the sumsΓn depend on how we define the escape region, and because in general
the areasMi in the sum (20.2) should be weighted by the density of initial conditions
x0. For example, an overall measuring unit rescalingMi → αMi introduces 1/n
corrections ins(n) defined by the log of the sum (20.8): s(n) → s(n) − lnα/n. This
can be partially fixed by defining a level average

〈
eβA(s)

〉
(n)

:=
∑

i∈Fix f n

eβAn(xi )esn

|Λi |
(20.19)

and requiring that the ratios of successive levels satisfy

1 =

〈
eβA(s(n))

〉
(n+1)〈

eβA(s(n))
〉

(n)

.

This avoids the worst problem with the formula (20.18), the inevitable 1/ncorrections
due to its lack of rescaling invariance. However, even though much published
pondering of “chaos” relies on it, there is no need for such gymnastics: the dyn-
amical zeta functions and spectral determinants are already invariant not only
under linear rescalings, but underall smooth nonlinear conjugaciesx→ h(x), and
require non→ ∞ extrapolations to asymptotic times. Comparing with the cycle
expansions (18.7) we see what the difference is; while in the level sum approach
we keep increasing exponentially the number of terms with noreference to the
fact that most are already known from shorter estimates, in the cycle expansions
short terms dominate, longer ones enter only as exponentially small corrections.

The beauty of the trace formulas is that they are coordinatization independent:

both
∣∣∣∣det

(
1− Mp

)∣∣∣∣ = |det (1 − MTp(x))| andeβAp = eβATp(x) contribution to the
cycle weighttp are independent of the starting periodic point pointx. For the
fundamental matrixMp this follows from the chain rule for derivatives, and for
eβAp from the fact that the integral overeβAt(x) is evaluated along a closed loop. In

addition,
∣∣∣∣det

(
1− Mp

)∣∣∣∣ is invariant under smooth coordinate transformations.

Résum é

We conclude this chapter by a general comment on the relationof the finite trace
sums such as (20.2) to the spectral determinants and dynamical zeta functions.
One might be tempted to believe that given a deterministic rule, a sum like (20.2)
could be evaluated to any desired precision. For short finitetimes this is indeed
true: every regionMi in (20.2) can be accurately delineated, and there is no need
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for fancy theory. However, if the dynamics is unstable, local variations in initial
conditions grow exponentially and in finite time attain the size of the system. The
difficulty with estimating then→ ∞ limit from (20.2) is then at least twofold:

1. due to the exponential growth in number of intervals, and the exponential
decrease in attainable accuracy, the maximalnattainable experimentally or numerically
is in practice of order of something between 5 to 20;

2. the pre-asymptotic sequence of finite estimatesγn is not unique, because
the sumŝΓn depend on how we define the escape region, and because in general
the areas|Mi | in the sum (20.2) should be weighted by the density of initialx0.

In contrast, the dynamical zeta functions and spectral determinants are invariant
underall smooth nonlinear conjugaciesx→ h(x), not only linear rescalings, and
require non→ ∞ extrapolations.

Commentary

Remark 20.1 Nonhyperbolic measures. µi = 1/|Λi | is the natural measure only for
the strictly hyperbolic systems. For non-hyperbolic systems, the measure might develop
cusps. For example, for Ulam type maps (unimodal maps with quadratic critical point
mapped onto the “left” unstable fixed pointx0, discussed in more detail in chapter23),
the measure develops a square-root singularity on the0 cycle:

µ0 =
1

|Λ0|1/2
. (20.20)

The thermodynamics averages are still expected to convergein the “hyperbolic” phase
where the positive entropy of unstable orbits dominates over the marginal orbits, but they
fail in the “non-hyperbolic” phase. The general case remains unclear [19, 2, 3, 5].

Remark 20.2 Trace formula periodic orbit averaging. The cycle averaging formulas
are not the first thing that one would intuitively write down;the approximate trace formulas
are more accessibly heuristically. The trace formula averaging (20.13) seems to have
be discussed for the first time by Hannay and Ozorio de Almeida[8, 11]. Another
novelty of the cycle averaging formulas and one of their mainvirtues, in contrast to the
explicit analytic results such as those of ref. [4], is that their evaluationdoes notrequire
any explicit construction of the (coordinate dependent) eigenfunctions of the Perron-
Frobenius operator (i.e., the natural measureρ0).

Remark 20.3 Role of noise in dynamical systems. In any physical application the
dynamics is always accompanied by additional external noise. The noise can be characterized
by its strengthσ and distribution. Lyapunov exponents, correlation decay and dynamo
rate can be defined in this case the same way as in the deterministic case. You might fear
that noise completely destroys the results derived here. However, one can show that the
deterministic formulas remain valid to accuracy comparable with noise width if the noise
level is small. A small level of noise even helps as it makes the dynamics more ergodic,
with deterministically non-communicating parts of the state space now weakly connected
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due to the noise, making periodic orbit theory applicable tonon-ergodic systems. For
small amplitude noise one can expand

a = a0 + a1σ
2 + a2σ

4 + ... ,

around the deterministic averagesa0. The expansion coefficientsa1, a2, ... can also be
expressed via periodic orbit formulas. The calculation of these coefficients is one of the
challenges facing periodic orbit theory, discussed in refs. [5, 6, 7].

Exercises

20.1. Escape rate of the logistic map.

(a) Calculate the fraction of trajectories remaining
trapped in the interval [0, 1] for the logistic map

f (x) = A(1− (2x− 1)2), (20.21)

and determine theA dependence of the escape rate
γ(A) numerically.

(b) Work out a numerical method for calculating the
lengths of intervals of trajectories remaining stuck
for n iterations of the map.

(c) What is your expectation about theA dependence
near the critical valueAc = 1?

20.2. Four scale map decay. Compute the second largest
eigenvalue of the Perron-Frobenius operator for the four
scale map

f (x) =



a1x if 0 < x < b/a1,
(1− b)((x− b/a1)/(b− b/a1)) + b if b/a1 < x < b,
a2(x− b) if b < x < b+ b/a2,
(1− b)((x− b− b/a2)/(1− b− b/a2)) + b if b+ b/a2 < x < 1.

(20.22)

20.3. Lyapunov exponents for 1-dimensional maps.
Extend your cycle expansion programs so that the
first and the second moments of observables can be
computed. Use it to compute the Lyapunov exponent
for some or all of the following maps:

(a) the piecewise-linear flow conserving map, the
skew tent map

f (x) =

{
ax if 0 ≤ x ≤ a−1,

a
a−1(1− x) if a−1 ≤ x ≤ 1.

(b) the Ulam mapf (x) = 4x(1− x)

(c) the skew Ulam map

f (x) = Λ0x(1−x)(1−bx) , 1/Λ0 = xc(1−xc)(1−bxc) .(20.23)

In our numerical work we fix (arbitrarily, the value
chosen in ref. [3]) b = 0.6, so

f (x) = 0.1218x(1− x)(1− 0.6 x)

with a peak at 0.7.

(d) the repeller off (x) = Ax(1−x), for eitherA = 9/2
or A = 6 (this is a continuation of exercise18.2).

(e) for the 2-branch flow conserving map

f0(x) =
h− p+

√
(h− p)2 + 4hx

2h
,

f1(x) =
h+ p− 1+

√
(h+ p− 1)2 + 4h

2h

This is a nonlinear perturbation of (h = 0)
Bernoulli map (21.6); the first 15 eigenvalues of
the Perron-Frobenius operator are listed in ref. [1]
for p = 0.8, h = 0.1. Use these parameter values
when computing the Lyapunov exponent.

Cases (a) and (b) can be computed analytically; cases
(c), (d) and (e) require numerical computation of cycle
stabilities. Just to see whether the theory is worth the
trouble, also cross check your cycle expansions results
for cases (c) and (d) with Lyapunov exponent computed
by direct numerical averaging along trajectories of
randomly chosen initial points:

(f) trajectory-trajectory separation (15.27) (hint:
rescaleδx every so often, to avoid numerical
overflows),

(g) iterated stability (15.32).

How good is the numerical accuracy compared with the
periodic orbit theory predictions? oo

.
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Chapter 21

Why does it work?

Bloch: “Space is the field of linear operators.”
Heisenberg: “Nonsense, space is blue and birds fly
through it.”

—Felix Bloch, Heisenberg and the early days of
quantum mechanics

(R. Artuso, H.H. Rugh and P. Cvitanović)

A    , the trace formulas and spectral determinants work well,
sometimes very well. The question is: Why? And it still is. The heuristic
manipulations of chapters16 and 6 were naive and reckless, as we are

facing infinite-dimensional vector spaces and singular integral kernels.

We now outline the key ingredients of proofs that put the trace and determinant
formulas on solid footing. This requires taking a closer look at the evolution
operators from a mathematical point of view, since up to now we have talked
about eigenvalues without any reference to what kind of a function space the
corresponding eigenfunctions belong to. We shall restrictour considerations to the
spectral properties of the Perron-Frobenius operator for maps, as proofs for more
general evolution operators follow along the same lines. What we refer to as a “the
set of eigenvalues” acquires meaning only within a precisely specified functional
setting: this sets the stage for a discussion of the analyticity properties of spectral
determinants. In example21.1we compute explicitly the eigenspectrum for the
three analytically tractable piecewise linear examples. In sect.21.3we review the
basic facts of the classical Fredholm theory of integral equations. The program
is sketched in sect.21.4, motivated by an explicit study of eigenspectrum of
the Bernoulli shift map, and in sect.21.5 generalized to piecewise real-analytic
hyperbolic maps acting on appropriate densities. We show ona very simple
example that the spectrum is quite sensitive to the regularity properties of the
functions considered.

For expanding and hyperbolic finite-subshift maps analyticity leads to a very
strong result; not only do the determinants have better analyticity properties than
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the trace formulas, but the spectral determinants are singled out as entire functions
in the complexsplane.

[remark 21.1]

The goal of this chapter is not to provide an exhaustive review of the rigorous
theory of the Perron-Frobenius operators and their spectral determinants, but rather
to give you a feeling for how our heuristic considerations can be put on a firm
basis. The mathematics underpinning the theory is both hardand profound.

If you are primarily interested in applications of the periodic orbit theory, you
should skip this chapter on the first reading.

fast track:

chapter 12, p. 195

21.1 Linear maps: exact spectra

We start gently; in example21.1we work out theexacteigenvalues and eigenfunctions
of the Perron-Frobenius operator for the simplest example of unstable, expanding
dynamics, a linear 1-d map with one unstable fixed point. . Ref. [6] shows that
this can be carried over tod-dimensions. Not only that, but in example21.5we
compute the exact spectrum for the simplest example of a dynamical system with
an infinity of unstable periodic orbits, the Bernoulli shift.

Example 21.1 The simplest eigenspectrum - a single fixed point: In order to get
some feeling for the determinants defined so formally in sect. 17.2, let us work out a
trivial example: a repeller with only one expanding linear branch

f (x) = Λx , |Λ| > 1 ,

and only one fixed point x∗ = 0. The action of the Perron-Frobenius operator (14.10) is

Lφ(y) =
∫

dxδ(y− Λx)φ(x) =
1
|Λ|φ(y/Λ) . (21.1)

From this one immediately gets that the monomials yk are eigenfunctions:

Lyk =
1
|Λ|Λk

yk , k = 0, 1, 2, . . . (21.2)

What are these eigenfunctions? Think of eigenfunctions of the Schrödinger
equation:k labels thekth eigenfunctionxk in the same spirit in which the number
of nodes labels thekth quantum-mechanical eigenfunction. A quantum-mechanical
amplitude with more nodes has more variability, hence a higher kinetic energy.
Analogously, for a Perron-Frobenius operator, a higherk eigenvalue 1/|Λ|Λk is
getting exponentially smaller because densities that varymore rapidly decay more
rapidly under the expanding action of the map.
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Example 21.2 The trace formula for a single fixed point: The eigenvalues Λ−k−1

fall off exponentially with k, so the trace of L is a convergent sum

trL = 1
|Λ|

∞∑

k=0

Λ−k =
1

|Λ|(1− Λ−1)
=

1
| f (0)′ − 1| ,

in agreement with (16.7). A similar result follows for powers of L, yielding the single-
fixed point version of the trace formula for maps (16.10):

∞∑

k=0

zesk

1− zesk
=

∞∑

r=1

zr

|1− Λr | , esk =
1
|Λ|Λk

. (21.3)

The left hand side of (21.3) is a meromorphic function, with the leading zero
at z= |Λ|. So what?

Example 21.3 Meromorphic functions and exponential convergence: As an
illustration of how exponential convergence of a truncated series is related to analytic
properties of functions, consider, as the simplest possible example of a meromorphic
function, the ratio

h(z) =
z− a
z− b

with a, b real and positive and a < b. Within the spectral radius |z| < b the function h
can be represented by the power series

h(z) =
∞∑

k=0

σkz
k ,

where σ0 = a/b, and the higher order coefficients are given by σ j = (a − b)/b j+1.
Consider now the truncation of order N of the power series

hN(z) =
N∑

k=0

σkz
k =

a
b
+

z(a− b)(1− zN/bN)
b2(1− z/b)

.

Let ẑN be the solution of the truncated series hN(ẑN) = 0. To estimate the distance
between a and ẑN it is sufficient to calculate hN(a). It is of order (a/b)N+1, so finite order
estimates converge exponentially to the asymptotic value.

This example shows that: (1) an estimate of the leading pole (the leading
eigenvalue ofL) from a finite truncation of a trace formula converges exponentially,
and (2) the non-leading eigenvalues ofL lie outside of the radius of convergence
of the trace formula and cannot be computed by means of such cycle expansion.
However, as we shall now see, the whole spectrum is reachableat no extra effort,
by computing it from a determinant rather than a trace.

Example 21.4 The spectral determinant for a single fixed point: The spectral
determinant (17.3) follows from the trace formulas of example 21.2:

det (1− zL) =
∞∏

k=0

(
1− z

|Λ|Λk

)
=

∞∑

n=0

(−t)nQn , t =
z
|Λ| , (21.4)
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where the cummulants Qn are given explicitly by the Euler formula
[exercise 21.3]

Qn =
1

1− Λ−1

Λ−1

1− Λ−2
· · · Λ

−n+1

1− Λ−n
. (21.5)

The main lesson to glean from this simple example is that the cummulantsQn

decay asymptoticallyfasterthan exponentially, asΛ−n(n−1)/2. For example, if we
approximate series such as (21.4) by the first 10 terms, the error in the estimate of
the leading zero is≈ 1/Λ50!

So far all is well for a rather boring example, a dynamical system with a single
repelling fixed point. What about chaos? Systems where the number of unstable
cycles increases exponentially with their length? We now turn to the simplest
example of a dynamical system with an infinity of unstable periodic orbits.

Example 21.5 Bernoulli shift: Consider next the Bernoulli shift map

x 7→ 2x (mod 1) , x ∈ [0, 1] . (21.6)

The associated Perron-Frobenius operator (14.9) assambles ρ(y) from its two preimages

Lρ(y) =
1
2
ρ

(y
2

)
+

1
2
ρ

(
y+ 1

2

)
. (21.7)

For this simple example the eigenfunctions can be written down explicitly: they coincide,
up to constant prefactors, with the Bernoulli polynomials Bn(x). These polynomials are
generated by the Taylor expansion of the generating function

G(x, t) =
text

et − 1
=

∞∑

k=0

Bk(x)
tk

k!
, B0(x) = 1 , B1(x) = x− 1

2
, . . .

The Perron-Frobenius operator (21.7) acts on the generating function G as

LG(x, t) =
1
2

(
text/2

et − 1
+

tet/2ext/2

et − 1

)
=

t
2

ext/2

et/2 − 1
=

∞∑

k=1

Bk(x)
(t/2)k

k!
,

hence each Bk(x) is an eigenfunction of L with eigenvalue 1/2k.

The full operator has two components corresponding to the two branches. For
the n times iterated operator we have a full binary shift, and for each of the 2n branches
the above calculations carry over, yielding the same trace (2n − 1)−1 for every cycle on
length n. Without further ado we substitute everything back and obtain the determinant,

det (1− zL) = exp

−
∑

n=1

zn

n
2n

2n − 1

 =
∏

k=0

(
1− z

2k

)
, (21.8)

verifying that the Bernoulli polynomials are eigenfunctions with eigenvalues 1, 1/2, . . .,
1/2n, . . . .
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The Bernoulli map spectrum looks reminiscent of the single fixed-point spectrum
(21.2), with the difference that the leading eigenvalue here is 1, rather than 1/|Λ|.
The difference is significant: the single fixed-point map is a repeller, with escape
rate (1.6) given by theL leading eigenvalueγ = ln |Λ|, while there is no escape
in the case of the Bernoulli map. As already noted in discussion of the relation
(17.23), for bound systems the local expansion rate (here ln|Λ| = ln 2) is balanced

[section 17.4]
by the entropy (here ln 2, the log of the number of preimagesFs), yielding zero
escape rate.

So far we have demonstrated that our periodic orbit formulasare correct for
two piecewise linear maps in 1 dimension, one with a single fixed point, and one
with a full binary shift chaotic dynamics. For a single fixed point, eigenfunctions
are monomials inx. For the chaotic example, they are orthogonal polynomials on
the unit interval. What about higher dimensions? We check our formulas on a 2-d
hyperbolic map next.

Example 21.6 The simplest of 2- d maps - a single hyperbolic fixed point: We
start by considering a very simple linear hyperbolic map with a single hyperbolic fixed
point,

f (x) = ( f1(x1, x2), f2(x1, x2)) = (Λsx1,Λux2) , 0 < |Λs| < 1 , |Λu| > 1 .

The Perron-Frobenius operator (14.10) acts on the 2-d density functions as

Lρ(x1, x2) =
1

|ΛsΛu|
ρ(x1/Λs, x2/Λu) (21.9)

What are good eigenfunctions? Cribbing the 1-d eigenfunctions for the stable, contracting
x1 direction from example 21.1 is not a good idea, as under the iteration of L the
high terms in a Taylor expansion of ρ(x1, x2) in the x1 variable would get multiplied
by exponentially exploding eigenvalues 1/Λk

s. This makes sense, as in the contracting
directions hyperbolic dynamics crunches up initial densities, instead of smoothing them.
So we guess instead that the eigenfunctions are of form

ϕk1k2(x1, x2) = xk2
2 /x

k1+1
1 , k1, k2 = 0, 1, 2, . . . , (21.10)

a mixture of the Laurent series in the contraction x1 direction, and the Taylor series in
the expanding direction, the x2 variable. The action of Perron-Frobenius operator on
this set of basis functions

Lϕk1k2(x1, x2) =
σ

|Λu|
Λ

k1
s

Λ
k2
u

ϕk1k2(x1, x2) , σ = Λs/|Λs|

is smoothing, with the higher k1, k2 eigenvectors decaying exponentially faster, by
Λ

k1
s /Λ

k2+1
u factor in the eigenvalue. One verifies by an explicit calculation (undoing

the geometric series expansions to lead to (17.9)) that the trace of L indeed equals
1/|det (1−M)| = 1/|(1−Λu)(1−Λs)| , from which it follows that all our trace and spectral
determinant formulas apply. The argument applies to any hyperbolic map linearized
around the fixed point of form f (x1...., xd) = (Λ1x1,Λ2x2, . . . ,Λdxd).

So far we have checked the trace and spectral determinant formulas derived
heuristically in chapters16and17, but only for the case of 1- and 2-d linear maps.
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But for infinite-dimensional vector spaces this game is fraught with dangers, and
we have already been mislead by piecewise linear examples into spectral confusions:
contrast the spectra of example14.1and example15.2with the spectrum computed
in example16.1.

We show next that the above results do carry over to a sizable class of piecewise
analytic expanding maps.

21.2 Evolution operator in a matrix representation

The standard, and for numerical purposes sometimes very effective way to look at
operators is through their matrix representations. Evolution operators are moving
density functions defined over some state space, and as in general we can implement
this only numerically, the temptation is to discretize the state space as in sect.14.3.
The problem with such state space discretization approaches that they sometimes
yield plainly wrong spectra (compare example15.2with the result of example16.1),
so we have to think through carefully what is it that wereally measure.

An expanding mapf (x) takes an initial smooth densityφn(x), defined on a
subinterval, stretches it out and overlays it over a larger interval, resulting in a new,
smoother densityφn+1(x). Repetition of this process smoothes the initial density,
so it is natural to represent densitiesφn(x) by their Taylor series. Expanding

φn(y) =
∞∑

k=0

φ
(k)
n (0)

yk

k!
, φn+1(y)k =

∞∑

ℓ=0

φ
(ℓ)
n+1(0)

yℓ

ℓ!
,

φ
(ℓ)
n+1(0) =

∫
dx δ(ℓ)(y− f (x))φn(x)

∣∣∣
y=0 , x = f −1(0) ,

and substitute the two Taylor series into (14.6):

φn+1(y) = (Lφn) (y) =
∫

M
dxδ(y− f (x))φn(x) .

The matrix elements follow by evaluating the integral

L ℓk =
∂ℓ

∂yℓ

∫
dxL(y, x)

xk

k!

∣∣∣∣∣∣
y=0

. (21.11)

we obtain a matrix representation of the evolution operator

∫
dxL(y, x)

xk

k!
=

∑

k′

yk′

k′!
L k′k , k, k′ = 0, 1, 2, . . .
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which maps thexk component of the density of trajectoriesφn(x) into the yk′

component of the densityφn+1(y) one time step later, withy = f (x).

We already have some practice with evaluating derivativesδ(ℓ)(y) = ∂ℓ

∂yℓ
δ(y) from

sect.14.2. This yields a representation of the evolution operator centered on the
fixed point, evaluated recursively in terms of derivatives of the mapf :

(L )ℓk =
∫

dxδ(ℓ)(x − f (x))
xk

k!

∣∣∣∣∣∣
x= f (x)

(21.12)

=
1
| f ′|

(
d
dx

1
f ′(x)

)ℓ xk

k!

∣∣∣∣∣∣∣
x= f (x)

.

The matrix elements vanish forℓ < k, so L is a lower triangular matrix. The
diagonal and the successive off-diagonal matrix elements are easily evaluated
iteratively by computer algebra

L kk =
1

|Λ|Λk
, L k+1,k = −

(k + 2)! f ′′

2k!|Λ|Λk+2
, · · · .

For chaotic systems the map is expanding,|Λ| > 1. Hence the diagonal terms drop
off exponentially, as 1/|Λ|k+1, the terms below the diagonal fall off even faster, and
truncatingL to a finite matrix introduces only exponentially small errors.

The trace formula (21.3) takes now a matrix form

tr
zL

1− zL = tr
L

1− zL
. (21.13)

In order to illustrate how this works, we work out a few examples.

In example21.7we show that these results carry over to any analytic single-
branch 1-d repeller. Further examples motivate the steps that lead to aproof that
spectral determinants for general analytic 1-dimensionalexpanding maps, and -
in sect.21.5, for 2-dimensional hyperbolic mappings - are also entire functions.

Example 21.7 Perron-Frobenius operator in a matrix representation: As in
example 21.1, we start with a map with a single fixed point, but this time with a nonlinear
piecewise analytic map f with a nonlinear inverse F = f −1, sign of the derivative
σ = σ(F′) = F′/|F′| , and the Perron-Frobenius operator acting on densities analytic in
an open domain enclosing the fixed point x = w∗,

Lφ(y) =
∫

dx δ(y− f (x))φ(x) = σ F′(y) φ(F(y)) .

Assume that F is a contraction of the unit disk in the complex plane, i.e.,

|F(z)| < θ < 1 and |F′(z)| < C < ∞ for |z| < 1 , (21.14)
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Figure 21.1: A nonlinear one-branch repeller with a
single fixed pointw∗.
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and expand φ in a polynomial basis with the Cauchy integral formula

φ(z) =
∞∑

n=0

znφn =

∮
dw
2πi

φ(w)
w− z

, φn =

∮
dw
2πi

φ(w)
wn+1

Combining this with (21.22), we see that in this basis Perron-Frobenius operator L is
represented by the matrix

Lφ(w) =
∑

m,n

wmLmnφn , Lmn =

∮
dw
2πi

σ F′(w)(F(w))n

wm+1
. (21.15)

Taking the trace and summing we get:

tr L =
∑

n≥0

Lnn =

∮
dw
2πi

σ F′(w)
w− F(w)

.

This integral has but one simple pole at the unique fixed point w∗ = F(w∗) = f (w∗).
Hence

[exercise 21.6]

tr L = σ F′(w∗)
1− F′(w∗)

=
1

| f ′(w∗) − 1| .

This super-exponential decay of cummulantsQk ensures that for a repeller
consisting of a single repelling point the spectral determinant (21.4) is entire in
the complexzplane.

In retrospect, the matrix representation method for solving the density evolution
problems is eminently sensible — after all, that is the way one solves a close
relative to classical density evolution equations, the Schrödinger equation.When
available, matrix representations forL enable us to compute many more orders
of cumulant expansions of spectral determinants and many more eigenvalues of
evolution operators than the cycle expensions approach.

Now, if the spectral determinant is entire, formulas such as(17.25) imply that
the dynamical zeta function is a meromorphic function. The practical import of
this observation is that it guarantees that finite order estimates of zeroes of dyn-
amical zeta functions and spectral determinants converge exponentially, or - in
cases such as (21.4) - super-exponentially to the exact values, and so the cycle
expansions to be discussed in chapter18represent atrue perturbativeapproach to
chaotic dynamics.
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Before turning to specifics we summarize a few facts about classical theory
of integral equations, something you might prefer to skip onfirst reading. The
purpose of this exercise is to understand that the Fredholm theory, a theory that
works so well for the Hilbert spaces of quantum mechanics does not necessarily
work for deterministic dynamics - the ergodic theory is muchharder.

fast track:

sect. 21.4, p. 357

21.3 Classical Fredholm theory

He who would valiant be ’gainst all disaster
Let him in constancy follow the Master.

—John Bunyan,Pilgrim’s Progress

The Perron-Frobenius operator

Lφ(x) =
∫

dyδ(x− f (y)) φ(y)

has the same appearance as a classical Fredholm integral operator

Kϕ(x) =
∫

M
dyK(x, y)ϕ(y) , (21.16)

and one is tempted to resort too classical Fredholm theory inorder to establish
analyticity properties of spectral determinants. This path to enlightenment is
blocked by the singular nature of the kernel, which is a distribution, whereas the
standard theory of integral equations usually concerns itself with regular kernels
K(x, y) ∈ L2(M2). Here we briefly recall some steps of Fredholm theory, before
working out the example of example21.5.

The general form of Fredholm integral equations of the second kind is

ϕ(x) =
∫

M
dyK(x, y)ϕ(y) + ξ(x) (21.17)

whereξ(x) is a given function inL2(M) and the kernelK(x, y) ∈ L2(M2) (Hilbert-
Schmidt condition). The natural object to study is then the linear integral operator
(21.16), acting on the Hilbert spaceL2(M): the fundamental property that follows
from theL2(Q) nature of the kernel is that such an operator iscompact, that is close
to a finite rank operator.A compact operator has the propertythat for everyδ > 0
only afinite number of linearly independent eigenvectors exist corresponding to
eigenvalues whose absolute value exceedsδ, so we immediately realize (figure21.4)
that much work is needed to bring Perron-Frobenius operators into this picture.
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We rewrite (21.17) in the form

Tϕ = ξ , T = 11− K . (21.18)

The Fredholm alternative is now applied to this situation asfollows: the equation
Tϕ = ξ has a unique solution for everyξ ∈ L2(M) or there exists a non-zero
solution ofTϕ0 = 0, with an eigenvector ofK corresponding to the eigenvalue 1.
The theory remains the same if instead ofT we consider the operatorTλ = 11−λK
with λ , 0. AsK is a compact operator there is at most a denumerable set ofλ for
which the second part of the Fredholm alternative holds: apart from this set the
inverse operator ( 11−λT )−1 exists and is bounded (in the operator sense). Whenλ

is sufficiently small we may look for a perturbative expression for such an inverse,
as a geometric series

( 11− λK)−1 = 11+ λK + λ2K2 + · · · = 11+ λW , (21.19)

whereKn is a compact integral operator with kernel

Kn(x, y) =
∫

Mn−1
dz1 . . .dzn−1K(x, z1) · · · K(zn−1, y) ,

andW is also compact, as it is given by the convergent sum of compact operators.
The problem with (21.19) is that the series has a finite radius of convergence,
while apart from a denumerable set ofλ’s the inverse operator is well defined.
A fundamental result in the theory of integral equations consists in rewriting the
resolving kernelW as a ratio of twoanalytic functions ofλ

W(x, y) =
D(x, y; λ)

D(λ)
.

If we introduce the notation

K
(

x1 . . . xn
y1 . . . yn

)
=

∣∣∣∣∣∣∣∣

K(x1, y1) . . . K(x1, yn)
. . . . . . . . .

K(xn, y1) . . . K(xn, yn)

∣∣∣∣∣∣∣∣

we may write the explicit expressions

D(λ) = 1 +
∞∑

n=1

(−1)n
λn

n!

∫

Mn
dz1 . . . dznK

(
z1 . . . zn
z1 . . . zn

)

= exp

−
∞∑

m=1

λm

m
trKm

 (21.20)

D(x, y; λ) = K
(

x
y

)
+

∞∑

n=1

(−λ)n

n!

∫

Mn
dz1 . . .dznK

(
x z1 . . . zn
y z1 . . . zn

)
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The quantityD(λ) is known as the Fredholm determinant (see (17.24)):it is an
entire analytic function ofλ, andD(λ) = 0 if and only if 1/λ is an eigenvalue of
K .

Worth emphasizing again: the Fredholm theory is based on thecompactness
of the integral operator, i.e., on the functional properties (summability) of its
kernel. As the Perron-Frobenius operator is not compact, there is a bit of wishful
thinking involved here.

21.4 Analyticity of spectral determinants

They savored the strange warm glow of being much more
ignorant than ordinary people, who were only ignorant of
ordinary things.

—Terry Pratchett

Spaces of functions integrableL1, or square-integrableL2 on interval [0, 1]
are mapped into themselves by the Perron-Frobenius operator, and in both cases
the constant functionφ0 ≡ 1 is an eigenfunction with eigenvalue 1. If we focus
our attention onL1 we also have a family ofL1 eigenfunctions,

φθ(y) =
∑

k,0

exp(2πiky)
1
|k|θ (21.21)

with complex eigenvalue 2−θ, parameterized by complexθ with Re θ > 0. By
varying θ one realizes that such eigenvalues fill out the entire unit disk. Such
essential spectrum, the casek = 0 of figure 21.4, hides all fine details of the
spectrum.

What’s going on? SpacesL1 andL2 contain arbitrarily ugly functions, allowing
any singularity as long as it is (square) integrable - and there is no way that
expanding dynamics can smooth a kinky function with a non-differentiable singularity,
let’s say a discontinuous step, and that is why the eigenspectrum is dense rather
than discrete. Mathematicians love to wallow in this kind ofmuck, but there
is no way to prepare a nowhere differentiableL1 initial density in a laboratory.
The only thing we can prepare and measure are piecewise smooth (real-analytic)
density functions.

For a bounded linear operatorA on a Banach spaceΩ, the spectral radius
is the smallest positive numberρspecsuch that the spectrum is inside the disk of
radiusρspec, while the essential spectral radius is the smallest positive number
ρesssuch that outside the disk of radiusρessthe spectrum consists only of isolated
eigenvalues of finite multiplicity (see figure21.4).

[exercise 21.5]

We may shrink the essential spectrum by letting the Perron-Frobenius oper-
ator act on a space of smoother functions, exactly as in the one-branch repeller
case of sect.21.1. We thus consider a smaller space,Ck+α, the space ofk times
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differentiable functions whosek’th derivatives are Hölder continuous with an
exponent 0< α ≤ 1: the expansion property guarantees that such a space is
mapped into itself by the Perron-Frobenius operator. In thestrip 0< Reθ < k+ α
mostφθ will cease to be eigenfunctions in the spaceCk+α; the functionφn survives
only for integer valuedθ = n. In this way we arrive at a finite set ofisolated
eigenvalues 1, 2−1, · · · , 2−k, and an essential spectral radiusρess= 2−(k+α).

We follow a simpler path and restrict the function space evenfurther, namely
to a space of analytic functions, i.e., functions for which the Taylor expansion is
convergent at each point of the interval [0, 1]. With this choice things turn out easy
and elegant. To be more specific, letφ be a holomorphic and bounded function on
the diskD = B(0,R) of radiusR> 0 centered at the origin. Our Perron-Frobenius
operator preserves the space of such functions provided (1+ R)/2 < R so all we
need is to chooseR > 1. If Fs, s ∈ {0, 1}, denotes thes inverse branch of the
Bernoulli shift (21.6), the corresponding action of the Perron-Frobenius operator
is given byLsh(y) = σ F′s(y) h ◦ Fs(y), using the Cauchy integral formula along
the∂D boundary contour:

Lsh(y) = σ
∮

dw
2πi ∂D

h(w)F′s(y)

w− Fs(y)
. (21.22)

For reasons that will be made clear later we have introduced asignσ = ±1 of the
given real branch|F′(y)| = σ F′(y). For both branches of the Bernoulli shifts= 1,
but in general one is not allowed to take absolute values as this could destroy
analyticity. In the above formula one may also replace the domain D by any
domaincontaining [0, 1] such that the inverse branches maps the closure ofD into
the interior ofD. Why? simply because the kernel remains non-singular under
this condition, i.e.,w− F(y) , 0 wheneverw ∈ ∂D andy ∈ Cl D. The problem
is now reduced to the standard theory for Fredholm determinants, sect.21.3. The
integral kernel is no longer singular, traces and determinants are well-defined, and
we can evaluate the trace ofLF by means of the Cauchy contour integral formula:

tr LF =

∮
dw
2πi

σF′(w)
w− F(w)

.

Elementary complex analysis shows that sinceF maps the closure ofD into its
own interior,F has a unique (real-valued) fixed pointx∗ with a multiplier strictly
smaller than one in absolute value. Residue calculus therefore yields

[exercise 21.6]

tr LF =
σF′(x∗)

1− F′(x∗)
=

1
| f ′(x∗) − 1| ,

justifying our previousad hoccalculations of traces using Dirac delta functions.

Example 21.8 Perron-Frobenius operator in a matrix representation: As in
example 21.1, we start with a map with a single fixed point, but this time with a nonlinear
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piecewise analytic map f with a nonlinear inverse F = f −1, sign of the derivative
σ = σ(F′) = F′/|F′|

Lφ(z) =
∫

dx δ(z− f (x))φ(x) = σ F′(z) φ(F(z)) .

Assume that F is a contraction of the unit disk, i.e.,

|F(z)| < θ < 1 and |F′(z)| < C < ∞ for |z| < 1 , (21.23)

and expand φ in a polynomial basis by means of the Cauchy formula

φ(z) =
∑

n≥0

znφn =

∮
dw
2πi

φ(w)
w− z

, φn =

∮
dw
2πi

φ(w)
wn+1

Combining this with (21.22), we see that in this basis L is represented by the matrix

Lφ(w) =
∑

m,n

wmLmnφn , Lmn =

∮
dw
2πi

σ F′(w)(F(w))n

wm+1
. (21.24)

Taking the trace and summing we get:

tr L =
∑

n≥0

Lnn =

∮
dw
2πi

σ F′(w)
w− F(w)

.

This integral has but one simple pole at the unique fixed point w∗ = F(w∗) = f (w∗).
Hence

tr L = σ F′(w∗)
1− F′(w∗)

=
1

| f ′(w∗) − 1| .

We worked out a very specific example, yet our conclusions canbe generalized,
provided a number of restrictive requirements are met by thedynamical system
under investigation:

[exercise 21.6]

1) the evolution operator ismultiplicativealong the flow,
2) the symbolic dynamics is afinite subshift,
3) all cycle eigenvalues arehyperbolic (exponentially bounded in
magnitude away from 1),
4) the map (or the flow) isreal analytic, i.e., it has a piecewise analytic
continuation to a complex extension of the state space.

These assumptions are romantic expectations not satisfied by the dynamical
systems that we actually desire to understand. Still, they are not devoid of physical
interest; for example, nice repellers like our 3-disk game of pinball do satisfy the
above requirements.

Properties 1 and 2 enable us to represent the evolution operator as a finite
matrix in an appropriate basis; properties 3 and 4 enable us to bound the size
of the matrix elements and control the eigenvalues. To see what can go wrong,
consider the following examples:
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Figure 21.2: (a) A (hyperbolic) tent map without
a finite Markov partition. (b) A Markov map with
a marginal fixed point. (a)
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Property 1 is violated for flows in 3 or more dimensions by the following
weighted evolution operator

Lt(y, x) = |Λt(x)|βδ
(
y− f t(x)

)
,

whereΛt(x) is an eigenvalue of the fundamental matrix transverse to the flow.
Semiclassical quantum mechanics suggest operators of thisform withβ = 1/2.The
problem with such operators arises from the fact that when considering the fundamental
matricesJab = JaJb for two successive trajectory segmentsaandb, the corresponding
eigenvalues are in generalnotmultiplicative,Λab , ΛaΛb (unlessa, b are iterates
of the same prime cyclep, soJaJb = Jra+rb

p ). Consequently, this evolution operator
is not multiplicative along the trajectory. The theorems require that the evolution
be represented as a matrix in an appropriate polynomial basis, and thus cannot
be applied to non-multiplicative kernels, i.e., kernels that do not satisfy the semi-
group propertyLt′Lt = Lt′+t.

Property 2 is violated by the 1-d tent map (see figure21.2(a))

f (x) = α(1 − |1− 2x|) , 1/2 < α < 1 .

All cycle eigenvalues are hyperbolic, but in general the critical point xc = 1/2 is
not a pre-periodic point, so there is no finite Markov partition and the symbolic
dynamics does not have a finite grammar (see sect.11.5 for definitions). In
practice, this means that while the leading eigenvalue ofL might be computable,
the rest of the spectrum is very hard to control; as the parameter α is varied, the
non-leading zeros of the spectral determinant move wildly about.

Property 3 is violated by the map (see figure21.2(b))

f (x) =

{
x+ 2x2 , x ∈ I0 = [0, 1

2]
2− 2x , x ∈ I1 = [ 1

2 , 1]
.

Here the interval [0, 1] has a Markov partition into two subintervalsI0 andI1, and
f is monotone on each. However, the fixed point atx = 0 has marginal stability
Λ0 = 1, and violates condition 3. This type of map is called “intermittent” and
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necessitates much extra work. The problem is that the dynamics in the neighborhood
of a marginal fixed point is very slow, with correlations decaying as power laws
rather than exponentially. We will discuss such flows in chapter 23.

Property 4 is required as the heuristic approach of chapter16 faces two major
hurdles:

1. The trace (16.8) is not well defined because the integral kernel is singular.

2. The existence and properties of eigenvalues are by no means clear.

Actually, property 4 is quite restrictive, but we need it in the present approach,
so that the Banach space of analytic functions in a disk is preserved by the Perron-
Frobenius operator.

In attempting to generalize the results, we encounter several problems. First,
in higher dimensions life is not as simple. Multi-dimensional residue calculus is
at our disposal but in general requires that we find poly-domains (direct product
of domains in each coordinate) and this need not be the case. Second, and perhaps
somewhat surprisingly, the ‘counting of periodic orbits’ presents a difficult problem.
For example, instead of the Bernoulli shift consider the doubling map of the circle,
x 7→ 2x mod 1, x ∈ R/Z. Compared to the shift on the interval [0, 1] the only
difference is that the endpoints 0 and 1 are now glued together. Because these
endpoints are fixed points of the map, the number of cycles of lengthn decreases
by 1. The determinant becomes:

det(1− zL) = exp

−
∑

n=1

zn

n
2n − 1
2n − 1

 = 1− z. (21.25)

The valuez = 1 still comes from the constant eigenfunction, but the Bernoulli
polynomials no longer contribute to the spectrum (as they are not periodic). Proofs
of these facts, however, are difficult if one sticks to the space of analytic functions.

Third, our Cauchy formulasa priori work only when considering purely expanding
maps. When stable and unstable directions co-exist we have to resort to stranger
function spaces, as shown in the next section.

21.5 Hyperbolic maps

I can give you a definion of a Banach space, but I do not
know what that means.

—Federico Bonnetto,Banach space

(H.H. Rugh)

Proceeding to hyperbolic systems, one faces the following paradox: If f is an
area-preserving hyperbolic and real-analytic map of, for example, a 2-dimensional
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torus then the Perron-Frobenius operator is unitary on the space ofL2 functions,
and its spectrum is confined to the unit circle. On the other hand, when we
compute determinants we find eigenvalues scattered around inside the unit disk.
Thinking back to the Bernoulli shift example21.5 one would like to imagine
these eigenvalues as popping up from theL2 spectrum by shrinking the function
space. Shrinking the space, however, can only make the spectrum smaller so this
is obviously not what happens. Instead one needs to introduce a ‘mixed’ function
space where in the unstable direction one resorts to analytic functions, as before,
but in the stable direction one instead considers a ‘dual space’ of distributions on
analytic functions. Such a space is neither included in nor includesL2 and we
have thus resolved the paradox. However, it still remains tobe seen how traces
and determinants are calculated.

The linear hyperbolic fixed point example21.6 is somewhat misleading, as
we have made explicit use of a map that acts independently along the stable
and unstable directions. For a more general hyperbolic map,there is no way to
implement such direct product structure, and the whole argument falls apart. Her
comes an idea; use the analyticity of the map to rewrite the Perron-Frobenius oper-
ator acting as follows (whereσ denotes the sign of the derivative in the unstable
direction):

Lh(z1, z2) =
∮ ∮

σ h(w1,w2)
(z1 − f1(w1,w2)( f2(w1,w2) − z2)

dw1

2πi
dw2

2πi
. (21.26)

Here the functionφ should belong to a space of functions analytic respectively
outsidea disk andinside a disk in the first and the second coordinates; with
the additional property that the function decays to zero as the first coordinate
tends to infinity. The contour integrals are along the boundaries of these disks.
It is an exercise in multi-dimensional residue calculus to verify that for the above
linear example this expression reduces to (21.9). Such operators form the building
blocks in the calculation of traces and determinants. One can prove the following:

Theorem: The spectral determinant for 2-d hyperbolic analytic maps is entire.
[remark 21.8]

The proof, apart from the Markov property that is the same as for the purely
expanding case, relies heavily on the analyticity of the mapin the explicit construction
of the function space. The idea is to view the hyperbolicity as a cross product of a
contracting map in forward time and another contracting mapin backward time.
In this case the Markov property introduced above has to be elaborated a bit.
Instead of dividing the state space into intervals, one divides it into rectangles. The
rectangles should be viewed as a direct product of intervals(say horizontal and
vertical), such that the forward map is contracting in, for example, the horizontal
direction, while the inverse map is contracting in the vertical direction. For Axiom
A systems (see remark21.8) one may choose coordinate axes close to the stable/unstable
manifolds of the map. With the state space divided intoN rectangles{M1,M2, . . . ,MN},
Mi = Ih

i × Iv
i one needs a complex extensionDh

i ×Dv
i , with which the hyperbolicity

condition (which simultaneously guarantees the Markov property) can be formulated
as follows:

converg - 15aug2006.tex

CHAPTER 21. WHY DOES IT WORK? 363

Figure 21.3: For an analytic hyperbolic map,
specifying the contracting coordinatewh at the initial
rectangle and the expanding coordinatezv at the image
rectangle defines a unique trajectory between the two
rectangles. In particular,wv and zh (not shown) are
uniquely specified.

Analytic hyperbolic property:Either f (Mi) ∩ Int(M j) = ∅, or for each pair

wh ∈ Cl(Dh
i ), zv ∈ Cl(Dv

j ) there exist unique analytic functions ofwh, zv: wv =

wv(wh, zv) ∈ Int(Dv
i ), zh = zh(wh, zv) ∈ Int(Dh

j ), such thatf (wh,wv) = (zh, zv).

Furthermore, ifwh ∈ Ih
i andzv ∈ Iv

j , thenwv ∈ Iv
i andzh ∈ Ih

j (see figure21.3).

In plain English, this means for the iterated map that one replaces the coordinates
zh, zv at timenby the contracting pairzh,wv, wherewv is the contracting coordinate
at timen+ 1 for the ‘partial’ inverse map.

In two dimensions the operator in (21.26) acts on functions analytic outside
Dh

i in the horizontal direction (and tending to zero at infinity)and insideDv
i in

the vertical direction. The contour integrals are precisely along the boundaries of
these domains.

A map f satisfying the above condition is calledanalytic hyperbolicand the
theorem states that the associated spectral determinant isentire, and that the trace
formula (16.8) is correct.

Examples of analytic hyperbolic maps are provided by small analytic perturbations
of the cat map, the 3-disk repeller, and the 2-d baker’s map.

21.6 The physics of eigenvalues and eigenfunctions

We appreciate by now that any honest attempt to look at the spectral
properties of the Perron-Frobenius operator involves hardmathematics, but the
effort is rewarded by the fact that we are finally able to control the analyticity
properties of dynamical zeta functions and spectral determinants, and thus substantiate
the claim that these objects provide a powerful and well-founded perturbation
theory.

Often (see chapter15) physically important part of the spectrum is just the
leading eigenvalue, which gives us the escape rate from a repeller, or, for a general
evolution operator, formulas for expectation values of observables and their higher
moments. Also the eigenfunction associated to the leading eigenvalue has a physical
interpretation (see chapter14): it is the density of the natural measures, with
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singular measures ruled out by the proper choice of the function space. This
conclusion is in accord with the generalized Perron-Frobenius theorem for evolution
operators. In the finite dimensional setting, such a theoremis formulated as
follows:

[remark 21.7]

• Perron-Frobenius theorem: Let Li j be a nonnegative matrix, such that
somen exists for which (Ln)i j > 0 ∀i, j: then

1. The maximal modulus eigenvalue is non-degenerate real, and positive

2. The corresponding eigenvector (defined up to a constant) has nonnegative
coordinates

We may ask what physical information is contained in eigenvalues beyond the
leading one: suppose that we have a probability conserving system (so that the
dominant eigenvalue is 1), for which the essential spectralradius satisfies 0<
ρess< θ < 1 on some Banach spaceB. Denote byP the projection corresponding
to the part of the spectrum inside a disk of radiusθ. We denote byλ1, λ2 . . . , λM

the eigenvalues outside of this disk, ordered by the size of their absolute value,
with λ1 = 1. Then we have the following decomposition

Lϕ =
M∑

i=1

λiψiLiψ
∗
i ϕ + PLϕ (21.27)

whenLi are (finite) matrices in Jordan canomical form (L0 = 0 is a [1×1] matrix,
asλ0 is simple, due to the Perron-Frobenius theorem), whereasψi is a row vector
whose elements form a basis on the eigenspace correspondingto λi , andψ∗i is
a column vector of elements ofB∗ (the dual space of linear functionals overB)
spanning the eigenspace ofL∗ corresponding toλi . For iterates of the Perron-
Frobenius operator, (21.27) becomes

Lnϕ =

M∑

i=1

λn
i ψiL

n
i ψ
∗
i ϕ + PLnϕ . (21.28)

If we now consider, for example, correlation between initial ϕ evolvedn steps and
final ξ,

〈ξ|Ln|ϕ〉 =
∫

M
dyξ(y)

(Lnϕ
)
(y) =

∫

M
dw(ξ ◦ f n)(w)ϕ(w) , (21.29)

it follows that

〈ξ|Ln|ϕ〉 = λn
1ω1(ξ, ϕ) +

L∑

i=2

λn
i ω

(n)
i (ξ, ϕ) + O(θn) , (21.30)
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where

ω
(n)
i (ξ, ϕ) =

∫

M
dyξ(y)ψi L

n
i ψ
∗
i ϕ .

The eigenvalues beyond the leading one provide two pieces ofinformation:
they rule the convergence of expressions containing high powers of the evolution
operator to leading order (theλ1 contribution). Moreover ifω1(ξ, ϕ) = 0

[exercise 21.7]
then (21.29) defines a correlation function: as each term in (21.30) vanishes
exponentially in then → ∞ limit, the eigenvaluesλ2, . . . , λM determine the
exponential decay of correlations for our dynamical system. The prefactorsω
depend on the choice of functions, whereas the exponential decay rates (given
by logarithms ofλi) do not: the correlation spectrum is thus auniversalproperty
of the dynamics (once we fix the overall functional space on which the Perron-
Frobenius operator acts).

Example 21.9 Bernoulli shift eigenfunctions: Let us revisit the Bernoulli shift
example (21.6) on the space of analytic functions on a disk: apart from the origin
we have only simple eigenvalues λk = 2−k, k = 0, 1, . . .. The eigenvalue λ0 = 1
corresponds to probability conservation: the corresponding eigenfunction B0(x) = 1
indicates that the natural measure has a constant density over the unit interval. If we
now take any analytic function η(x) with zero average (with respect to the Lebesgue
measure), it follows that ω1(η, η) = 0, and from (21.30) the asymptotic decay of the
correlation function is (unless also ω1(η, η) = 0)

Cη,η(n) ∼ exp(−n log2). (21.31)

Thus, − logλ1 gives the exponential decay rate of correlations (with a prefactor that
depends on the choice of the function). Actually the Bernoulli shift case may be
treated exactly, as for analytic functions we can employ the Euler-MacLaurin summation
formula

η(z) =
∫ 1

0
dwη(w) +

∞∑

m=1

η(m−1)(1)− η(m−1)(0)
m!

Bm(z) . (21.32)

As we are considering functions with zero average, we have from (21.29) and the fact
that Bernoulli polynomials are eigenvectors of the Perron-Frobenius operator that

Cη,η(n) =
∞∑

m=1

(2−m)n(η(m)(1)− η(m)(0))
m!

∫ 1

0
dzη(z)Bm(z) .

The decomposition (21.32) is also useful in realizing that the linear functionals ψ∗i are
singular objects: if we write it as

η(z) =
∞∑

m=0

Bm(z)ψ∗m[η] ,

we see that these functionals are of the form

ψ∗i [ε] =
∫ 1

0
dwΨi(w)ε(w) ,
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Figure 21.4: Spectrum of the Perron-Frobenius oper-
ator acting on the space ofCk+α Hölder-continuous
functions: onlyk isolated eigenvalues remain between
the spectral radius, and the essential spectral radius
which bounds the “essential,” continuous spectrum.

essential spectrum

isolated eigenvaluespectral radius

where

Ψi(w) =
(−1)i−1

i!

(
δ(i−1)(w− 1)− δ(i−1)(w)

)
, (21.33)

when i ≥ 1 and Ψ0(w) = 1. This representation is only meaningful when the function ε
is analytic in neighborhoods of w,w− 1.

21.7 Troubles ahead

The above discussion confirms that for a series of examples ofincreasing generality
formal manipulations with traces and determinants are justified: the Perron-Frobenius
operator has isolated eigenvalues, the trace formulas are explicitly verified, and
the spectral determinant is an entire function whose zeroesyield the eigenvalues.
Real life is harder, as we may appreciate through the following considerations:

• Our discussion tacitly assumed something that is physically entirely reasonable:
our evolution operator is acting on the space of analytic functions, i.e., we
are allowed to represent the initial densityρ(x) by its Taylor expansions in
the neighborhoods of periodic points. This is however far from being

[exercise 21.1]
the only possible choice: mathematicians often work with the function
spaceCk+α, i.e., the space ofk times differentiable functions whosek’th
derivatives are Hölder continuous with an exponent 0< α ≤ 1: then every
yη with Reη > k is an eigenfunction of the Perron-Frobenius operator and
we have

Lyη =
1
|Λ|Ληyη , η ∈ C .

This spectrum differs markedly from the analytic case: only a small number
of isolated eigenvalues remain, enclosed between the spectral radius and a
smaller disk of radius 1/|Λ|k+1, see figure21.4. In literature the radius of
this disk is called theessential spectral radius.

In sect.21.4 we discussed this point further, with the aid of a less trivial
1-dimensional example. The physical point of view is complementary to
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the standard setting of ergodic theory, where many chaotic properties of a
dynamical system are encoded by the presence of acontinuousspectrum,
used to prove asymptotic decay of correlations in the space of L2 square-
integrable functions.

[exercise 21.2]

• A deceptively innocent assumption is hidden beneath much that was discussed
so far: that (21.1) maps a given function space into itself. Theexpanding
property of the map guarantees that: iff (x) is smooth in a domainD
then f (x/Λ) is smooth on alarger domain, provided|Λ| > 1. For higher-
dimensional hyperbolic flows this is not the case, and, as we saw in sect.21.5,
extensions of the results obtained for expanding 1-d maps are highly nontrivial.

• It is not at all clear that the above analysis of a simple one-branch, one fixed
point repeller can be extended to dynamical systems with Cantor sets of
periodic points: we showed this in sect.21.4.

Résum é

Examples of analytic eigenfunctions for 1-d maps are seductive, and make the
problem of evaluating ergodic averages appear easy; just integrate over the desired
observable weighted by the natural measure, right? No, generic natural measure
sits on a fractal set and is singular everywhere. The point ofthis book is that you
neverneed to construct the natural measure, cycle expansions will do that job.

A theory of evaluation of dynamical averages by means of trace formulas
and spectral determinants requires a deep understanding oftheir analyticity and
convergence.

We work here through a series of examples:

1. exact spectrum (but for a single fixed point of a linear map)

2. exact spectrum for a locally analytic map, matrix representation

3. rigorous proof of existence of discrete spectrum for 2-d hyperbolic maps

In the case of especially well-behaved “AxiomA” systems, where both the
symbolic dynamics and hyperbolicity are under control, it is possible to treat
traces and determinants in a rigorous fashion, and strong results about the analyticity
properties of dynamical zeta functions and spectral determinants outlined above
follow.

Most systems of interest arenot of the “axiom A” category; they are neither
purely hyperbolic nor (as we have seen in chapters10and11 ) do they have finite
grammar. The importance of symbolic dynamics is generally grossly unappreciated;
the crucial ingredient for nice analyticity properties of zeta functions is the existence
of a finite grammar (coupled with uniform hyperbolicity).
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The dynamical systems which arereally interesting - for example, smooth
bounded Hamiltonian potentials - are presumably never fully chaotic, and the
central question remains: How do we attack this problem in a systematic and
controllable fashion?
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Theorem: Conjecture 3 with technical hypothesis is true
in a lot of cases.

— M. Shub

Commentary

Remark 21.1 Surveys of rigorous theory. We recommend the references listed in
remark1.1for an introduction to the mathematical literature on this subject. For a physicist,
Driebe’s monograph [34] might be the most accessible introduction into mathematics
discussed briefly in this chapter. There are a number of reviews of the mathematical
approach to dynamical zeta functions and spectral determinants, with pointers to the
original references, such as refs. [1, 2]. An alternative approach to spectral properties
of the Perron-Frobenius operator is given in ref. [3].

Ergodic theory, as presented by Sinai [14] and others, tempts one to describe the
densities on which the evolution operator acts in terms of either integrable or square-
integrable functions. For our purposes, as we have already seen, this space is not suitable.
An introduction to ergodic theory is given by Sinai, Kornfeld and Fomin [15]; more
advanced old-fashioned presentations are Walters [12] and Denker, Grillenberger and
Sigmund [16]; and a more formal one is given by Peterson [17].

W. Tucker [28, 29, 30] has proven rigorously via interval arithmetic that the Lorentz
attractor is strange for the original parameters, and has a long stable periodic orbit for the
slightly different parameters.

Remark 21.2 Fredholm theory. Our brief summary of Fredholm theory is based on
the exposition of ref. [4]. A technical introduction of the theory from an operator point of
view is given in ref. [5]. The theory is presented in a more general form in ref. [6].

Remark 21.3 Bernoulli shift. For a more detailed discussion, consult chapter 3 of
ref. [34]. The extension of Fredholm theory to the case or Bernoulli shift on Ck+α (in
which the Perron-Frobenius operator isnotcompact – technically it is onlyquasi-compact.
That is, the essential spectral radius is strictly smaller than the spectral radius) has been
given by Ruelle [7]: a concise and readable statement of the results is contained in ref. [8].

Remark 21.4 Hyperbolic dynamics. When dealing with hyperbolic systems one might
try to reduce to the expanding case by projecting the dynamics along the unstable directions.
As mentioned in the text this can be quite involved technically, as such unstable foliations
are not characterized by strong smoothness properties. Forsuch an approach, see ref. [3].

Remark 21.5 Spectral determinants for smooth flows. The theorem on page362
also applies to hyperbolic analytic maps ind dimensions and smooth hyperbolic analytic
flows in (d+ 1) dimensions, provided that the flow can be reduced to a piecewise analytic
map by a suspension on a Poincaré section, complemented by an analytic “ceiling” function
(3.5) that accounts for a variation in the section return times. For example, if we take as the
ceiling functiong(x) = esT(x), whereT(x) is the next Poincaré section time for a trajectory
staring atx, we reproduce the flow spectral determinant (17.13). Proofs are beyond the
scope of this chapter.
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Remark 21.6 Explicit diagonalization. For 1-d repellers a diagonalization of an explicit
truncatedLmn matrix evaluated in a judiciously chosen basis may yield many more eigenvalues
than a cycle expansion (see refs. [10, 11]). The reasons why one persists in using periodic
orbit theory are partially aesthetic and partially pragmatic. The explicit calculation of
Lmn demands an explicit choice of a basis and is thus non-invariant, in contrast to cycle
expansions which utilize only the invariant information ofthe flow. In addition, we
usually do not know how to constructLmn for a realistic high-dimensional flow, such
as the hyperbolic 3-disk game of pinball flow of sect.1.3, whereas periodic orbit theory
is true in higher dimensions and straightforward to apply.

Remark 21.7 Perron-Frobenius theorem. A proof of the Perron-Frobenius theorem
may be found in ref. [12]. For positive transfer operators, this theorem has been generalized
by Ruelle [13].

Remark 21.8 Axiom A systems. The proofs in sect.21.5follow the thesis work
of H.H. Rugh [9, 18, 19]. For a mathematical introduction to the subject, consult the
excellent review by V. Baladi [1]. It would take us too far afield to give and explain
the definition of Axiom A systems (see refs. [23, 24]). Axiom A implies, however, the
existence of a Markov partition of the state space from whichthe properties 2 and 3
assumed on page350follow.

Remark 21.9 Exponential mixing speed of the Bernoulli shift. We see from (21.31)
that for the Bernoulli shift the exponential decay rate of correlations coincides with the
Lyapunov exponent: while such an identity holds for a numberof systems, it is by no
means a general result, and there exist explicit counterexamples.

Remark 21.10 Left eigenfunctions. We shall never use an explicit form of left eigenfunctions,
corresponding to highly singular kernels like (21.33). Many details have been elaborated
in a number of papers, such as ref. [20], with a daring physical interpretation.

Remark 21.11 Ulam’s idea. The approximation of Perron-Frobenius operator defined
by (14.14) has been shown to reproduce the spectrum for expanding maps, once finer
and finer Markov partitions are used [21]. The subtle point of choosing a state space
partitioning for a “generic case” is discussed in ref. [22].
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Exercises

21.1. What space doesL act on? Show that (21.2)
is a complete basis on the space of analytic functions
on a disk (and thus that we found thecompleteset of
eigenvalues).

21.2. What space doesL act on? What can be said about
the spectrum of (21.1) on L1[0, 1]? Compare the result
with figure21.4.

21.3. Euler formula. Derive the Euler formula (21.5)

∞∏

k=0

(1+ tuk) = 1+
t

1− u
+

t2u
(1− u)(1− u2)

+
t3u3

(1− u)(1− u2)(1− u3)
· · ·

=

∞∑

k=0

tk
u

k(k−1)
2

(1− u) · · · (1− uk)
, |u| < 1. (21.34)

21.4. 2-d product expansion∗∗. We conjecture that the
expansion corresponding to (21.34) is in this case

∞∏

k=0

(1+ tuk)k+1 =

∞∑

k=0

Fk(u)
(1− u)2(1− u2)2 · · · (1− uk)2

tk

= 1+
1

(1− u)2
t +

2u
(1− u)2(1− u2)2

t2

+
u2(1+ 4u+ u2)

(1− u)2(1− u2)2(1− u3)2

Fk(u) is a polynomial inu, and the coefficients fall off
asymptotically asCn ≈ un3/2

. Verify; if you have a
proof to all orders, e-mail it to the authors. (See also
solution21.3).

21.5. Bernoulli shift on L spaces. Check that the family
(21.21) belongs toL1([0, 1]). What can be said about
the essential spectral radius onL2([0, 1])? A useful
reference is [24].

21.6. Cauchy integrals. Rework all complex analysis steps
used in the Bernoulli shift example on analytic functions
on a disk.

21.7. Escape rate. Consider the escape rate from a strange
repeller: find a choice of trial functionsξ andϕ such
that (21.29) gives the fraction on particles surviving after
n iterations, if their initial density distribution isρ0(x).
Discuss the behavior of such an expression in the long
time limit.
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Chapter 22

Thermodynamic formalism

Being Hungarian is not sufficient. You also must be
talented.

— Zsa Zsa Gabor

(G. Vattay)

I    we characterized chaotic systems via global quantities
such as averages. It turned out that these are closely related to very fine
details of the dynamics like stabilities and time periods ofindividual periodic

orbits. In statistical mechanics a similar duality exists.Macroscopic systems are
characterized with thermodynamic quantities (pressure, temperature and chemical
potential) which are averages over fine details of the systemcalled microstates.
One of the greatest achievements of the theory of dynamical systems was when
in the sixties and seventies Bowen, Ruelle and Sinai made theanalogy between
these two subjects explicit. Later this “Thermodynamic Formalism” of dynamical
systems became widely used making it possible to calculate various fractal dimensions.
We sketch the main ideas of this theory and show how periodic orbit theory helps
to carry out calculations.

22.1 Ŕenyi entropies

As we have already seen trajectories in a dynamical system can be characterized
by their symbolic sequences from a generating Markov partition. We can locate
the set of starting pointsMs1s2...sn of trajectories whose symbol sequence starts
with a given set ofn symbolss1s2...sn. We can associate many different quantities
to these sets. There are geometric measures such as the volume V(s1s2...sn), the
areaA(s1s2...sn) or the lengthl(s1s2...sn) of this set. Or in general we can have
some measureµ(Ms1s2...sn) = µ(s1s2...sn) of this set. As we have seen in (20.10)
the most important is the natural measure, which is the probability that an ergodic
trajectory visits the setµ(s1s2...sn) = P(s1s2...sn). The natural measure is additive.
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Summed up for all possible symbol sequences of lengthn it gives the measure of
the whole state space:

∑

s1s2...sn

µ(s1s2...sn) = 1 (22.1)

expresses probability conservation. Also, summing up for the last symbol we get
the measure of a one step shorter sequence

∑

sn

µ(s1s2...sn) = µ(s1s2...sn−1).

As we increase the length (n) of the sequence the measure associated with it
decreases typically with an exponential rate. It is then useful to introduce the
exponents

λ(s1s2...sn) = −
1
n

logµ(s1s2...sn). (22.2)

To get full information on the distribution of the natural measure in the symbolic
space we can study the distribution of exponents. Let the number of symbol
sequences of lengthn with exponents betweenλ andλ + dλ be given byNn(λ)dλ.
For largen the number of such sequences increases exponentially. The rate of this
exponential growth can be characterized byg(λ) such that

Nn(λ) ∼ exp(ng(λ)) .

The knowledge of the distributionNn(λ) or its essential partg(λ) fully characterizes
the microscopic structure of our dynamical system.

As a natural next step we would like to calculate this distribution. However it
is very time consuming to calculate the distribution directly by making statistics
for millions of symbolic sequences. Instead, we introduce auxiliary quantities
which are easier to calculate and to handle. These are calledpartition sums

Zn(β) =
∑

s1s2...sn

µβ(s1s2...sn), (22.3)

as they are obviously motivated by Gibbs type partition sumsof statistical mechanics.
The parameterβ plays the role of inverse temperature 1/kBT andE(s1s2...sn) =
− logµ(s1s2...sn) is the energy associated with the microstate labeled bys1s2...sn

We are tempted also to introduce something analogous with the Free energy. In
dynamical systems this is called the Rényi entropy [4] defined by the growth rate
of the partition sum

Kβ = lim
n→∞

1
n

1
1− β log


∑

s1s2...sn

µβ(s1s2...sn)

 . (22.4)
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In the special caseβ→ 1 we get Kolmogorov entropy

K1 = lim
n→∞

1
n

∑

s1s2...sn

−µ(s1s2...sn) logµ(s1s2...sn),

while for β = 0 we recover the topological entropy

htop = K0 = lim
n→∞

1
n

logN(n),

whereN(n) is the number of existing lengthn sequences. To connect the partition
sums with the distribution of the exponents, we can write them as averages over
the exponents

Zn(β) =
∫

dλNn(λ) exp(−nλβ),

where we used the definition (22.2). For largen we can replaceNn(λ) with its
asymptotic form

Zn(β) ∼
∫

dλexp(ng(λ)) exp(−nλβ).

For largen this integral is dominated by contributions from thoseλ∗ which maximize
the exponent

g(λ) − λβ.

The exponent is maximal when the derivative of the exponent vanishes

g′(λ∗) = β. (22.5)

From this equation we can determineλ∗(β). Finally the partition sum is

Zn(β) ∼ exp(n[g(λ∗(β)) − λ∗(β)β]).

Using the definition (22.4) we can now connect the Rényi entropies andg(λ)

(β − 1)Kβ = λ
∗(β)β − g(λ∗(β)). (22.6)

Equations (22.5) and (22.6) define the Legendre transform ofg(λ). This equation
is analogous with the thermodynamic equation connecting the entropy and the
free energy. As we know from thermodynamics we can invert theLegendre
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transform. In our case we can expressg(λ) from the Rényi entropies via the
Legendre transformation

g(λ) = λβ∗(λ) − (β∗(λ) − 1)Kβ∗(λ), (22.7)

where nowβ∗(λ) can be determined from

d
dβ∗

[(β∗ − 1)Kβ∗ ] = λ. (22.8)

Obviously, if we can determine the Rényi entropies we can recover the distribution
of probabilities from (22.7) and (22.8).

The periodic orbit calculation of the Rényi entropies can be carried out by
approximating the natural measure corresponding to a symbol sequence by the
expression (20.10)

µ(s1, ..., sn) ≈
enγ

|Λs1s2...sn|
. (22.9)

The partition sum (22.3) now reads

Zn(β) ≈
∑

i

enβγ

|Λi |β
, (22.10)

where the summation goes for periodic orbits of lengthn. We can define the
characteristic function

Ω(z, β) = exp

−
∑

n

zn

n
Zn(β)

 . (22.11)

According to (22.4) for largen the partition sum behaves as

Zn(β) ∼ e−n(β−1)Kβ . (22.12)

Substituting this into (22.11) we can see that the leading zero of the characteristic
function is

z0(β) = e(β−1)Kβ .

On the other hand substituting the periodic orbit approximation (22.10) into (22.11)
and introducing prime and repeated periodic orbits as usualwe get

Ω(z, β) = exp

−
∑

p,r

znpreβγnpr

r |Λr
p|β

 .
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Figure 22.1: 0
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We can see that the characteristic function is the same as thezeta function we
introduced for Lyapunov exponents (G.14) except we havezeβγ instead ofz. Then
we can conclude that the Rényi entropies can be expressed with the pressure
function directly as

P(β) = (β − 1)Kβ + βγ, (22.13)

since the leading zero of the zeta function is the pressure. The Rényi entropiesKβ,
hence the distribution of the exponentsg(λ) as well, can be calculated via finding
the leading eigenvalue of the operator (G.4).

From (22.13) we can get all the important quantities of the thermodynamic
formalism. Forβ = 0 we get the topological entropy

P(0) = −K0 = −htop. (22.14)

Forβ = 1 we get the escape rate

P(1) = γ. (22.15)

Taking the derivative of (22.13) in β = 1 we get Pesin’s formula [1] connecting
Kolmogorov entropy and the Lyapunov exponent

P′(1) = λ = K1 + γ. (22.16)

[exercise 22.1]

It is important to note that, as always, these formulas are strictly valid for nice
hyperbolic systems only. At the end of this Chapter we discuss the important
problems we are facing in non-hyperbolic cases.

On figure22.2we show a typical pressure andg(λ) curve computed for the two
scale tent map of Exercise22.4. We have to mention, that all typical hyperbolic
dynamical system produces a similar parabola like curve. Although this is somewhat
boring we can interpret it like a sign of a high level of universality: The exponents
λ have a sharp distribution around the most probable value. The most probable
value isλ = P′(0) andg(λ) = htop is the topological entropy. The average value
in closed systems is whereg(λ) touches the diagonal:λ = g(λ) and 1= g′(λ).

Next, we are looking at the distribution of trajectories in real space.

thermodyn - 13jun2008.tex

CHAPTER 22. THERMODYNAMIC FORMALISM 379

Figure 22.2: g(λ) and P(β) for the map of
exercise22.4 at a = 3 andb = 3/2. See solutionS
for details.
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22.2 Fractal dimensions

By looking at the repeller we can recognize an interesting spatial structure. In the
3-disk case the starting points of trajectories not leavingthe system after the first
bounce form two strips. Then these strips are subdivided into an infinite hierarchy
of substrings as we follow trajectories which do not leave the system after more
and more bounces. The finer strips are similar to strips on a larger scale. Objects
with such self similar properties are calledfractals.

We can characterize fractals via their local scaling properties. The first step is
to draw a uniform grid on the surface of section. We can look atvarious measures
in the square boxes of the grid. The most interesting measureis again the natural
measure located in the box. By decreasing the size of the gridǫ the measure in
a given box will decrease. If the distribution of the measureis smooth then we
expect that the measure of theith box is proportional with the dimension of the
section

µi ∼ ǫd.

If the measure is distributed on a hairy object like the repeller we can observe
unusual scaling behavior of type

µi ∼ ǫαi ,

whereαi is the local “dimension” or Hölder exponent of the the object. Asα is not
necessarily an integer here we are dealing with objects withfractional dimensions.
We can study the distribution of the measure on the surface ofsection by looking
at the distribution of these local exponents. We can define

αi =
logµi

logǫ
,

the local Hölder exponent and then we can count how many of them are between
α andα + dα. This is Nǫ(α)dα. Again, in smooth objects this function scales
simply with the dimension of the system

Nǫ(α) ∼ ǫ−d,
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while for hairy objects we expect anα dependent scaling exponent

Nǫ(α) ∼ ǫ− f (α).

f (α) can be interpreted [6] as the dimension of the points on the surface of section
with scaling exponentα. We can calculatef (α) with the help of partition sums as
we did forg(λ) in the previous section. First, we define

Zǫ(q) =
∑

i

µ
q
i . (22.17)

Then we would like to determine the asymptotic behavior of the partition sum
characterized by theτ(q) exponent

Zǫ(q) ∼ ǫ−τ(q).

The partition sum can be written in terms of the distributionfunction ofα-s

Zǫ(q) =
∫

dαNǫ(α)ǫqα.

Using the asymptotic form of the distribution we get

Zǫ(q) ∼
∫

dαǫqα− f (α) .

As ǫ goes to zero the integral is dominated by the term maximizingthe exponent.
Thisα∗ can be determined from the equation

d
dα∗

(qα∗ − f (α∗)) = 0,

leading to

q = f ′(α∗).

Finally we can read off the scaling exponent of the partition sum

τ(q) = α∗q− f (α∗).

In a uniform fractal characterized by a single dimension both α and f (α)
collapse toα = f (α) = D. The scaling exponent then has the formτ(q) = (q−1)D.
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In case of non uniform fractals we can introduce generalizeddimensions [8] Dq

via the definition

Dq = τ(q)/(q− 1).

Some of these dimensions have special names. Forq = 0 the partition sum (22.17)
counts the number of non empty boxesN̄ǫ . Consequently

D0 = − lim
ǫ→0

log N̄ǫ

logǫ
,

is called the box counting dimension. Forq = 1 the dimension can be determined
as the limit of the formulas forq→ 1 leading to

D1 = lim
ǫ→0

∑

i

µi logµi/ log ǫ.

This is the scaling exponent of the Shannon information entropy [10] of the distribution,
hence its name isinformation dimension.

Using equisize grids is impractical in most of the applications. Instead, we
can rewrite (22.17) into the more convenient form

∑

i

µ
q
i

ǫτ(q)
∼ 1. (22.18)

If we cover theith branch of the fractal with a grid of sizel i instead ofǫ we can
use the relation [5]

∑

i

µ
q
i

l iτ(q)
∼ 1, (22.19)

the non-uniform grid generalization of22.18. Next we show how can we use the
periodic orbit formalism to calculate fractal dimensions.We have already seen
that the width of the strips of the repeller can be approximated with the stabilities
of the periodic orbits placed within them

l i ∼
1
|Λi |

.

Then using this relation and the periodic orbit expression of the natural measure
we can write (22.19) into the form

∑

i

eqγn

|Λi |q−τ(q)
∼ 1, (22.20)
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where the summation goes for periodic orbits of lengthn. The sum for stabilities
can be expressed with the pressure function again

∑

i

1

|Λi |q−τ(q)
∼ e−nP(q−τ(q)),

and (22.20) can be written as

eqγne−nP(q−τ(q)) ∼ 1,

for largen. Finally we get an implicit formula for the dimensions

P(q− (q− 1)Dq) = qγ. (22.21)

Solving this equation directly gives us the partial dimensions of the multifractal
repeller along the stable direction. We can see again that the pressure function
alone contains all the relevant information. Settingq = 0 in (22.21) we can prove
that the zero of the pressure function is the box-counting dimension of the repeller

P(D0) = 0.

Taking the derivative of (22.21) in q = 1 we get

P′(1)(1− D1) = γ.

This way we can express the information dimension with the escape rate and the
Lyapunov exponent

D1 = 1− γ/λ. (22.22)

If the system is bound (γ = 0) the information dimension and all other dimensions
areDq = 1. Also sinceD10 is positive (22.22) proves that the Lyapunov exponent
must be larger than the escape rateλ > γ in general.

[exercise 22.4]

[exercise 22.5]

[exercise 22.6]

Résum é

In this chapter we have shown that thermodynamic quantitiesand various fractal
dimensions can be expressed in terms of the pressure function. The pressure
function is the leading eigenvalue of the operator which generates the Lyapunov
exponent. In the Lyapunov caseβ is just an auxiliary variable. In thermodynamics
it plays an essential role. The good news of the chapter is that the distribution of
locally fluctuating exponents should not be computed via making statistics. We
can use cyclist formulas for determining the pressure. Thenthe pressure can be
found using short cycles+ curvatures. Here the head reaches the tail of the snake.
We just argued that the statistics of long trajectories coded in g(λ) andP(β) can be
calculated from short cycles. To use this intimate relationbetween long and short
trajectories effectively is still a research level problem.
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Commentary

Remark 22.1 Mild phase transition. In non-hyperbolic systems the formulas derived
in this chapter should be modified. As we mentioned in20.1in non-hyperbolic systems
the periodic orbit expression of the measure can be

µ0 = eγn/|Λ0|δ ,

whereδ can differ from 1. Usually it is 1/2. For sufficientlynegativeβ the corresponding
term 1/|Λ0|β can dominate (22.10) while in (22.3) eγn/|Λ0|δβ plays no dominant role. In
this case the pressure as a function ofβ can have a kink at the critical pointβ = βc where
βc log |Λ0| = (βc − 1)Kβc + βcγ. Forβ < βc the pressure and the Rényi entropies differ

P(β) , (β − 1)Kβ + βγ .

This phenomena is called phase transition. This is however not a very deep problem. We
can fix the relation between pressure and the entropies by replacing 1/|Λ0| with 1/|Λ0|δ in
(22.10).

Remark 22.2 Hard phase transition. The really deep trouble of thermodynamics is
caused by intermittency. In that case we have periodic orbits with |Λ0| → 1 asn →
∞. Then forβ > 1 the contribution of these orbits dominate both (22.10) and (22.3).
Consequently the partition sum scales asZn(β)→ 1 and both the pressure and the entropies
are zero. In this case quantities connected withβ ≤ 1 make sense only. These are for
example the topological entropy, Kolmogorov entropy, Lyapunov exponent, escape rate,
D0 andD1. This phase transition cannot be fixed. It is probably fair tosay that quantities
which depend on this phase transition are only of mathematical interest and not very
useful for characterization of realistic dynamical systems.

Exercises

22.1. Thermodynamics in higher dimensions. Define
Lyapunov exponents as the time averages of the eigen-
exponents of the fundamental matrixJ

µ(k) = lim
t→∞

1
t

log |Λt
k(x0)|, (22.23)

as a generalization of (15.32).

Show that ind dimensions Pesin’s formula is

K1 =

d∑

k=1

µ(k) − γ, (22.24)

where the summation goes for the positiveµ(k)-s only.
Hint: Use thed-dimensional generalization of (22.9)

µp = enγ/|
∏

k

Λp,k|,

where the product goes for the expanding eigenvalues of
the fundamental matrix ofp-cycle. (G. Vattay)

22.2. Stadium billiard Kolmogorov entropy.
(Continuation of exercise8.4.) Take a = 1.6 and
d = 1 in the stadium billiard figure8.1, and estimate
the Lyapunov exponent by averaging over a very long
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trajectory. Biham and Kvale [14] estimate the discrete
time Lyapunov toλ ≈ 1.0 ± .1, the continuous time
Lyapunov toλ ≈ 0.43 ± .02, the topological entropy
(for their symbolic dynamics)h ≈ 1.15± .03.

22.3. Entropy of rugged-edge billiards. Take a semi-circle
of diameterε and replace the sides of a unit square by
⌊1/ε⌋ semi-circle arcs.

(a) Is the billiard ergodic asε→ 0?

(b) (hard) Show that the entropy of the billiard map is

K1 → −
2
π

ln ε + const,

asε→ 0. (Hint: do not write return maps.)

(c) (harder) Show that when the semi-circles of the
stadium billiard are far apart, sayL, the entropy
for the flow decays as

K1 →
2 lnL
πL

.

22.4. Two scale map Compute all those quantities -
dimensions, escape rate, entropies, etc. - for the repeller
of the one dimensional map

f (x) =

{
1+ ax if x < 0,
1− bx if x > 0. (22.25)

wherea and b are larger than 2. Compute the fractal
dimension, plot the pressure and compute thef (α)
spectrum of singularities.

22.5. Four scale map Compute the Rényi entropies andg(λ)
for the four scale map

f (x) =



a1x if
(1− b)((x− b/a1)/(b− b/a1)) + b if
a2(x− b) if
(1− b)((x− b− b/a2)/(1− b− b/a2)) + b if

Hint: Calculate the pressure function and use (22.13).

22.6. Transfer matrix Take the unimodal mapf (x) =
sin(πx) of the interval I = [0, 1]. Calculate the
four preimages of the intervalsI0 = [0, 1/2] and
I1 = [1/2, 1]. Extrapolatef (x) with piecewise linear
functions on these intervals. Finda1, a2 and b of
the previous exercise. Calculate the pressure function
of this linear extrapolation. Work out higher level
approximations by linearly extrapolating the map on the
2n-th preimages ofI .
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Chapter 23

Intermittency

Sometimes They Come Back
—Stephen King

(R. Artuso, P. Dahlqvist, G. Tanner and P. Cvitanović)

I    of chaotic dynamics developed so far we assumed that the evolution
operators have discrete spectra{z0, z1, z2, . . .} given by the zeros of

1/ζ(z) = (· · ·)
∏

k

(1− z/zk) .

The assumption was based on the tacit premise that the dynamics is everywhere
exponentially unstable. Real life is nothing like that - state spaces are generically
infinitely interwoven patterns of stable and unstable behaviors. The stable (in

the case of Hamiltonian flows, integrable) orbits do not communicate with the
ergodic components of the phase space, and can be treated by classical methods.
In general, one is able to treat the dynamics near stable orbits as well as chaotic
components of the phase space dynamics well within a periodic orbit approach.
Problems occur at the borderline between chaos and regular dynamics where
marginally stable orbits and manifolds present difficulties and still unresolved
challenges.

We shall use the simplest example of such behavior - intermittency in 1-
dimensional maps - to illustrate effects of marginal stability. The main message
will be that spectra of evolution operators are no longer discrete, dynamical zeta
functions exhibit branch cuts of the form

1/ζ(z) = (· · ·) + (1− z)α(· · ·) ,

and correlations decay no longer exponentially, but as power laws.
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Figure 23.1: Typical phase space for an area-
preserving map with mixed phase space dynamics;
here the standard map fork = 1.2 .

23.1 Intermittency everywhere

In many fluid dynamics experiments one observes transitionsfrom regular behaviors
to behaviors where long time intervals of regular behavior (“laminar phases”) are
interrupted by fast irregular bursts. The closer the parameter is to the onset of
such bursts, the longer are the intervals of regular behavior. The distributions of
laminar phase intervals are well described by power laws.

This phenomenon is calledintermittency, and it is a very general aspect of
dynamics, a shadow cast by non-hyperbolic, marginally stable state space regions.
Complete hyperbolicity assumed in (16.5) is the exception rather than the rule,
and for almost any dynamical system of interest (dynamics insmooth potentials,
billiards with smooth walls, the infinite horizon Lorentz gas, etc.) one encounters
mixed state spaces with islands of stability coexisting with hyperbolic regions,
see figure23.1. Wherever stable islands are interspersed with chaotic regions,
trajectories which come close to the stable islands can stay‘glued’ for arbitrarily
long times. These intervals of regular motion are interrupted by irregular bursts
as the trajectory is re-injected into the chaotic part of thephase space. How the
trajectories are precisely ‘glued’ to the marginally stable region is often hard to
describe. What coarsely looks like a border of an island willunder magnification
dissolve into infinities of island chains of decreasing sizes, broken tori and bifurcating
orbits, as illustrated in figure23.1.

Intermittency is due to the existence of fixed points and cycles of marginal
stability (5.5), or (in studies of the onset of intermittency) to the proximity of a
nearly marginal complex or unstable orbits. In Hamiltoniansystems intermittency
goes hand in hand with the existence of (marginally stable) KAM tori. In more
general settings, the existence of marginal or nearly marginal orbits is due to
incomplete intersections of stable and unstable manifoldsin a Smale horseshoe
type dynamics (see figure13.2). Following the stretching and folding of the
invariant manifolds in time one will inevitably find state space points at which
the stable and unstable manifolds are almost or exactly tangential to each other,
implying non-exponential separation of nearby points in state space or, in other
words, marginal stability. Under small parameter perturbations such neighborhoods
undergo tangent bifurcations - a stable/unstable pair of periodic orbits is destroyed
or created by coalescing into a marginal orbit, so the pruning which we shall
encounter in chapter11, and the intermittency discussed here are two sides of the
same coin.

[section 11.5]
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Figure 23.2: A complete binary repeller with a
marginal fixed point.
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Figure 23.3: (a) A tent map trajectory. (b) A
Farey map trajectory.
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How to deal with the full complexity of a typical Hamiltoniansystem with
mixed phase space is a very difficult, still open problem. Nevertheless, it is
possible to learn quite a bit about intermittency by considering rather simple
examples. Here we shall restrict our considerations to 1-dimensional maps which
in the neighborhood of a single marginally stable fixed pointat x=0 take the form

x 7→ f (x) = x+O(x1+s) , (23.1)

and are expanding everywhere else. Such a map may allow for escape, like the
map shown in figure23.2or the dynamics may be bounded, like the Farey map
(18.31) 163,164c153,154

x 7→ f (x) =

{
x/(1− x) x ∈ [0, 1/2[
(1− x)/x x∈ [1/2, 1]

introduced in sect.18.5.

Figure23.3compares a trajectory of the tent map (10.6) side by side with a
trajectory of the Farey map. In a stark contrast to the uniformly chaotic trajectory
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of the tent map, the Farey map trajectory alternates intermittently between slow
regular motion close to the marginally stable fixed point, and chaotic bursts.

[section 18.5.3]

The presence of marginal stability has striking dynamical consequences: correlation
decay may exhibit long range power law asymptotic behavior and diffusion processes
can assume anomalous character. Escape from a repeller of the form figure23.2
may be algebraic rather than exponential. In long time explorations of the dynamics
intermittency manifests itself by enhancement of natural measure in the proximity
of marginally stable cycles.

The questions we shall address here are: how does marginal stability affect
zeta functions or spectral determinants? And, can we deducepower law decays of
correlations from cycle expansions?

In example21.5we saw that marginal stability violates one of the conditions
which ensure that the spectral determinant is an entire function. Already the
simple fact that the cycle weight 1/|1 − Λr

p| in the trace (16.3) or the spectral
determinant (17.3) diverges for marginal orbits with|Λp| = 1 tells us that we have
to treat these orbits with care.

In the following we will incorporate marginal stability orbits into cycle-expansions
in a systematic manner. To get to know the difficulties lying ahead, we will
start in sect.23.2with a piecewise linear map, with the asymptotics (23.1). We
will construct a dynamical zeta function in the usual way without worrying too
much about its justification and show that it has a branch cut singularity. We
will calculate the rate of escape from our piecewise linear map and find that it
is characterized by decay, rather than exponential decay, apower law. We will
show that dynamical zeta functions in the presence of marginal stability can still
be written in terms of periodic orbits, exactly as in chapters 15 and 20, with
one exception: the marginally stable orbits have to be explicitly excluded. This
innocent looking step has far reaching consequences; it forces us to change the
symbolic dynamics from a finite to an infinite alphabet, and entails a reorganization
of the order of summations in cycle expansions, sect.23.2.4.

Branch cuts are typical also for smooth intermittent maps with isolated marginally
stable fixed points and cycles. In sect.23.3, we discuss the cycle expansions and
curvature combinations for zeta functions of smooth maps tailored to intermittency.
The knowledge of the type of singularity one encounters enables us to develop the
efficient resummation method presented in sect.23.3.1.

Finally, in sect.23.4, we discuss a probabilistic approach to intermittency that
yields approximate dynamical zeta functions and provides valuable information
about more complicated systems, such as billiards.

23.2 Intermittency for pedestrians

Intermittency does not only present us with a large repertoire of interesting dynamics,
it is also at the root of many sorrows such as slow convergenceof cycle expansions.
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Figure 23.4: A piecewise linear intermittent map
of (23.2) type: more specifically, the map piecewise
linear over intervals (23.8) of the toy example studied
below,a = .5, b = .6, s= 1.0. x
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In order to get to know the kind of problems which arise when studying dynamic-
al zeta functions in the presence of marginal stability we will consider an artfully
concocted piecewise linear model first. From there we will move on to the more
general case of smooth intermittant maps, sect.23.3.

23.2.1 A toy map

The Bernoulli shift map (21.6) is an idealized, but highly instructive, example
of a hyperbolic map. To study intermittency we will now construct a likewise
piecewise linear model, an intermittent map stripped down to its bare essentials.

Consider a mapx 7→ f (x) on the unit intervalM = [0, 1] with two monotone
branches

f (x) =

{
f0(x) for x ∈ M0 = [0, a]
f1(x) for x ∈ M1 = [b, 1] . (23.2)

The two branches are assumed complete, that isf0(M0) = f1(M1) =M. The map
allows escape ifa < b and is bounded ifa = b (see figure23.2and figure23.4).
We take the right branch to be expanding and linear:

f1(x) =
1

1− b
(x− b) .

Next, we will construct the left branch in a way, which will allow us to
model the intermittent behavior (23.1) near the origin. We chose a monotonically
decreasing sequence of pointsqn in [0, a] with q1 = a andqn → 0 asn → ∞.
This sequence defines a partition of the left intervalM0 into an infinite number of
connected intervalsMn, n ≥ 2 with

Mn = ]qn, qn−1] and M0 =

∞⋃

n=2

Mn. (23.3)

The mapf0(x) is now specified by the following requirements
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• f0(x) is continuous.

• f0(x) is linear on the intervalsMn for n ≥ 2.

• f0(qn) = qn−1, that isMn = f −n+1
0 ([a, 1]) .

This fixes the map for any given sequence{qn}. The last condition ensures the
existence of a simple Markov partition. The slopes of the various linear segments
are

f ′0(x) = f0(qn−1)− f0(qn)
qn−1−qn

=
|Mn−1|
|Mn| for x ∈ Mn, n ≥ 3

f ′0(x) = f0(q1)− f0(q2)
q1−q2

= 1−a
|M2| for x ∈ M2

f ′0(x) = 1
1−b =

|M|
|M1| for x ∈ M1

(23.4)

with |Mn| = qn−1 − qn for n ≥ 2. Note that we do not require as yet that the map
exhibit intermittent behavior.

We will see that the family of periodic orbits with code 10n plays a key role
for intermittent maps of the form (23.1). An orbit 10n enters the intervalsM1 →
Mn+1 → Mn → . . . → M2 successively and the family approaches the marginal
stable fixed point atx = 0 for n → ∞. The stability of a cycle 10n for n ≥ 1 is
given by the chain rule (4.50),

Λ10n = f ′0(xn+1) f ′0(xn) . . . f ′0(x2) f ′1(x1) =
1

|Mn+1|
1− a
1− b

, (23.5)

with xi ∈ Mi.

The properties of the map (23.2) are completely determined by the sequence
{qn}. By choosingqn = 2−n, for example, we recover the uniformly hyperbolic
Bernoulli shift map (21.6). An intermittent map of the form (23.3) having the
asymptotic behavior (23.1) can be constructed by choosing an algebraically decaying
sequence{qn} behaving asymptotically like

qn ∼
1

n1/s
, (23.6)

wheres is the intermittency exponent in (23.1). Such a partition leads to intervals
whose length decreases asymptotically like a power-law, that is,

|Mn| ∼
1

n1+1/s
. (23.7)

As can be seen from (23.5), the stability eigenvalues of periodic orbit families
approaching the marginal fixed point, such as the 10n family increase in turn only
algebraically with the cycle length.
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It may now seem natural to construct an intermittent toy map in terms of a
partition |Mn| = 1/n1+1/s, that is, a partition which follows (23.7) exactly. Such
a choice leads to a dynamical zeta function which can be written in terms of so-
called Jonquière functions (or polylogarithms) which arise naturally also in the
context of the Farey map (18.31), and the anomalous diffusion of sect.24.3.
We will, however, not go along this route here; instead, we will engage in a bit

[remark 24.8]
of reverse engineering and construct a less obvious partition which will simplify
the algebra considerably later without loosing any of the key features typical for
intermittent systems. We fix the intermittent toy map by specifying the intervals
Mn in terms of Gamma functions according to

|Mn| = C
Γ(n+m− 1/s− 1)

Γ(n+m)
for n ≥ 2, (23.8)

wherem= [1/s] denotes the integer part of 1/sandC is a normalization constant
fixed by the condition

∑∞
n=2 |Mn| = q1 = a, that is,

C = a


∞∑

n=m+1

Γ(n− 1/s)
Γ(n+ 1)


−1

. (23.9)

Using Stirling’s formula for the Gamma function

Γ(z) ∼ e−zzz−1/2
√

2π (1+ 1/12z+ . . .) ,

we verify that the intervals decay asymptotically liken−(1+1/s), as required by the
condition (23.7).

Next, let us write down the dynamical zeta function of the toymap in terms
of its periodic orbits, that is

1/ζ(z) =
∏

p

(
1− znp

|Λp|

)

One may be tempted to expand the dynamical zeta function in terms of the binary
symbolic dynamics of the map; we saw, however, in sect.18.5 that such cycle
expansion converges extremely slowly. The shadowing mechanism between orbits
and pseudo-orbits fails for orbits of the form 10n with stabilities given by (23.5),
due to the marginal stability of the fixed point0. It is therefore advantageous to
choose as the fundamental cycles the family of orbits with code 10n or, equivalently,
switch from the finite (binary) alphabet to an infinite alphabet given by

10n−1 → n.

Due to the piecewise-linear form of the map which maps intervalsMn exactly
ontoMn−1, all periodic orbits entering the left branch at least twiceare canceled
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exactly by pseudo cycles, and the cycle expanded dynamical zeta function depends
only on the fundamental series 1, 10, 100, . . .:

1/ζ(z) =
∏

p,0

(
1− znp

|Λp|

)
= 1−

∞∑

n=1

zn

|Λ10n−1|

= 1− (1− b)z− C1− b
1− a

∞∑

n=2

Γ(n+m− 1/s− 1)
Γ(n+m)

zn . (23.10)

The fundamental term (18.7) consists here of an infinite sum over algebraically
decaying cycle weights. The sum is divergent for|z| ≥ 1. We will see that this
behavior is due to a branch cut of 1/ζ starting atz = 1. We need to find analytic
continuations of sums over algebraically decreasing termsin (23.10). Note also
that we omitted the fixed point0 in the above Euler product; we will discussed
this point as well as a proper derivation of the zeta functionin more detail in
sect.23.2.4.

23.2.2 Branch cuts

Starting from the dynamical zeta function (23.10), we first have to worry about
finding an analytical continuation of the sum for|z| ≥ 1. We do, however, get this
part for free here due to the particular choice of interval lengths made in (23.8).
The sum over ratios of Gamma functions in (23.10) can be evaluated analytically
by using the following identities valid for 1/s = α > 0 (the famed binomial
theorem in disguise),

• α non-integer

(1− z)α =
∞∑

n=0

Γ(n− α)
Γ(−α)Γ(n+ 1)

zn (23.11)

• α integer

(1− z)α log(1− z) =
α∑

n=1

(−1)ncnzn (23.12)

+ (−1)α+1α!
∞∑

n=α+1

(n− α − 1)!
n!

zn

with

cn =

(
α
n

) n−1∑

k=0

1
α − k

.

In order to simplify the notation, we restrict the intermittency parameter to the
range 1≤ 1/s< 2 with [1/s] = m= 1. All what follows can easily be generalized
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to arbitrarys> 0 using equations (23.11) and (23.12). The infinite sum in (23.10)
can now be evaluated with the help of (23.11) or (23.12), that is,

∞∑

n=2

Γ(n− 1/s)
Γ(n+ 1)

zn =

{
Γ(−1

s)
[
(1− z)1/s − 1+ 1

sz
]

for 1 < 1/s< 2;
(1− z) log(1− z) + z for s= 1 .

The normalization constantC in (23.8) can be evaluated explicitly using (23.9)
and the dynamical zeta function can be given in closed form. We obtain for 1<
1/s< 2

1/ζ(z) = 1− (1− b)z− a
1/s− 1

1− b
1− a

(
(1− z)1/s − 1+

1
s
z

)
. (23.13)

and fors= 1,

1/ζ(z) = 1− (1− b)z− a
1− b
1− a

(
(1− z) log(1− z) + z

)
. (23.14)

It now becomes clear why the particular choice of intervalsMn made in the
last section is useful; by summing over the infinite family ofperiodic orbits 0n1
explicitly, we have found the desired analytical continuation for the dynamical
zeta function for|z| ≥ 1. The function has a branch cut starting at the branch
point z = 1 and running along the positive real axis. That means, the dynamical
zeta function takes on different values when approaching the positive real axis for
Re z> 1 from above and below. The dynamical zeta function for general s > 0
takes on the form

1/ζ(z) = 1− (1− b)z− a
gs(1)

1− b
1− a

1

zm−1

(
(1− z)1/s − gs(z)

)
(23.15)

for non-integerswith m= [1/s] and

1/ζ(z) = 1− (1−b)z− a
gm(1)

1− b
1− a

1
zm−1

(
(1− z)m log(1− z) − gm(z)

)
(23.16)

for 1/s = m integer andgs(z) are polynomials of orderm = [1/s] which can
be deduced from (23.11) or (23.12). We thus find algebraic branch cuts for non
integer intermittency exponents 1/s and logarithmic branch cuts for 1/s integer.
We will see in sect.23.3that branch cuts of that form are generic for 1-dimensional
intermittent maps.

Branch cuts are the all important new feature of dynamical zeta functions due
to intermittency. So, how do we calculate averages or escaperates of the dynamics
of the map from a dynamical zeta function with branch cuts? Wetake ‘a learning
by doing’ approach and calculate the escape from our toy map for a < b.
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Figure 23.5: The survival probability Γn

calculated by contour integration; integrating
(23.17) inside the domain of convergence|z| <
1 (shaded area) of 1/ζ(z) in periodic orbit
representation yields (16.26). A deformation of
the contourγ−r (dashed line) to a larger circleγ−R
gives contributions from the poles and zeros (x)
of 1/ζ(z) between the two circles. These are the
only contributions for hyperbolic maps (a), for
intermittent systems additional contributions arise,
given by the contourγcut running along the branch
cut (b). (a)
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-

γ
R
-

γ z = 1
zα

r
Re z

(b)

Im z

- z = 1
zα

γ

γ
R 
-

γcut

r
Re z

23.2.3 Escape rate

Our starting point for the calculation of the fraction of survivors aftern time steps,
is the integral representation (17.19)

Γn =
1

2πi

∮

γ−r

z−n
(

d
dz

logζ−1(z)

)
dz, (23.17)

where the contour encircles the origin in the clockwise direction. If the contour
lies inside the unit circle|z| = 1, we may expand the logarithmic derivative of
ζ−1(z) as a convergent sum over all periodic orbits. Integrals andsums can be
interchanged, the integrals can be solved term by term, and the formula (16.26) is
recovered. For hyperbolic maps, cycle expansion methods orother techniques
may provide an analytic extension of the dynamical zeta function beyond the
leading zero; we may therefore deform the original contour into a larger circle
with radiusR which encircles both poles and zeros ofζ−1(z), see figure23.5(a).
Residue calculus turns this into a sum over the zeroszα and poleszβ of the dyn-
amical zeta function, that is

Γn =

zeros∑

|zα |<R

1
zn
α

−
poles∑

|zβ |<R

1
zn
β

+
1

2πi

∮

γ−R

dz z−n d
dz

logζ−1, (23.18)

where the last term gives a contribution from a large circleγ−R. We thus find
exponential decay ofΓn dominated by the leading zero or pole ofζ−1(z).

Things change considerably in the intermittent case. The point z = 1 is a
branch cut singularity and there exists no Taylor series expansion ofζ−1 around
z= 1. Second, the path deformation that led us to (23.18) requires more care, as it
must not cross the branch cut. When expanding the contour to large|z| values, we
have to deform it along the branch Re (z)≥ 1, Im (z)= 0 encircling the branch cut
in anti-clockwise direction, see figure23.5(b). We will denote the detour around
the cut asγcut. We may write symbolically

∮

γr

=

zeros∑
−

poles∑
+

∮

γR

+

∮

γcut
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where the sums include only the zeros and the poles in the areaenclosed by the
contours. The asymptotics is controlled by the zero, pole orcut closest to the
origin.

Let us now go back to our intermittent toy map. The asymptotics of the
survival probability of the map is here governed by the behavior of the integrand
d
dz logζ−1 in (23.17) at the branch pointz = 1. We restrict ourselves again to the
case 1< 1/s< 2 first and write the dynamical zeta function (23.13) in the form

1/ζ(z) = a0 + a1(1− z) + b0(1− z)1/s ≡ G(1− z)

and

a0 =
b− a
1− a

, b0 =
a

1− 1/s
1− b
1− a

.

Settingu = 1− z, we need to evaluate

1
2πi

∮

γcut

(1− u)−n d
du

logG(u)du (23.19)

whereγcut goes around the cut (i.e., the negativeu axis). Expanding the integrand
d
du logG(u) = G′(u)/G(u) in powers ofu andu1/s at u = 0, one obtains

d
du

logG(u) =
a1

a0
+

1
s

b0

a0
u1/s−1 +O(u) . (23.20)

The integrals along the cut may be evaluated using the general formula

1
2πi

∮

γcut

uα(1− u)−ndu=
Γ(n− α − 1)
Γ(n)Γ(−α)

∼ 1

nα+1
(1+O(1/n)) (23.21)

which can be obtained by deforming the contour back to a loop around the point
u = 1, now in positive (anti-clockwise) direction. The contourintegral then picks
up the (n−1)st term in the Taylor expansion of the functionuα atu = 1, cf. (23.11).
For the continuous time case the corresponding formula is

1
2πi

∮

γcut

zαeztdz=
1
Γ(−α)

1
tα+1

. (23.22)

Plugging (23.20) into (23.19) and using (23.21) we get the asymptotic result

Γn ∼
b0

a0

1
s

1
Γ(1− 1/s)

1

n1/s
=

a
s− 1

1− b
b− a

1
Γ(1− 1/s)

1

n1/s
. (23.23)
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Figure 23.6: The asymptotic escape from an
intermittent repeller is a power law. Normally it is
preceded by an exponential, which can be related to
zeros close to the cut but beyond the branch point
z= 1, as in figure23.5(b). 0 200 400 600 800 1000
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We see that, asymptotically, the escape from an intermittent repeller is described
by power law decay rather than the exponential decay we are familiar with for
hyperbolic maps; a numerical simulation of the power-law escape from an intermittent
repeller is shown in figure23.6.

For general non-integer 1/s> 0, we write

1/ζ(z) = A(u) + (u)1/sB(u) ≡ G(u)

with u = 1 − z andA(u), B(u) are functions analytic in a disc of radius 1 around
u = 0. The leading terms in the Taylor series expansions ofA(u) andB(u) are

a0 =
b− a
1− a

, b0 =
a

gs(1)
1− b
1− a

,

see (23.15). Expanding d
du logG(u) aroundu = 0, one again obtains leading order

contributions according to (23.20) and the general result follows immediately
using (23.21), that is,

Γn ∼
a

sgs(1)
1− b
b− a

1
Γ(1− 1/s)

1

n1/s
. (23.24)

Applying the same arguments for integer intermittency exponents 1/s = m, one
obtains

Γn ∼ (−1)m+1 a
sgm(1)

1− b
b− a

m!
nm . (23.25)

So far, we have considered the survival probability for a repeller, that is we
assumeda < b. The formulas (23.24) and (23.25) do obviously not apply for the
casea = b, that is, for the bounded map. The coefficient a0 = (b − a)/(1 − a)
in the series representation ofG(u) is zero, and the expansion of the logarithmic
derivative ofG(u) (23.20) is no longer valid. We get instead

d
du

logG(u) =


1
u

(
1+O(u1/s−1)

)
s< 1

1
u

(
1
s +O(u1−1/s)

)
s> 1

,
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assuming non-integer 1/sfor convenience. One obtains for the survival probability.

Γn ∼
{

1+O(n1−1/s) s< 1
1/s+O(n1/s−1) s> 1

.

For s > 1, this is what we expect. There is no escape, so the survival probability
is equal to 1, which we get as an asymptotic result here. The result for s > 1 is
somewhat more worrying. It says thatΓn defined as sum over the instabilities of
the periodic orbits as in (20.12) does not tend to unity for largen. However, the
cases> 1 is in many senses anomalous. For instance, the invariant density cannot
be normalized. It is therefore not reasonable to expect thatperiodic orbit theories
will work without complications.

23.2.4 Why does it work (anyway)?

Due to the piecewise linear nature of the map constructed in the previous section,
we had the nice property that interval lengths did exactly coincide with the inverse
of the stability of periodic orbits of the system, that is

|Mn| = 1/|Λ10|n−1.

There is thus no problem in replacing the survival probability Γn given by (1.2),
(20.2), that is the fraction of state spaceM survivingn iterations of the map,

Γn =
1
|M|

(n)∑

i

|Mi | .

by a sum over periodic orbits of the form (16.26). The only orbit to worry about is
the marginal fixed point0 itself which we excluded from the zeta function (23.10).

For smooth intermittent maps, things are less clear and the fact that we had to
prune the marginal fixed point is a warning sign that intervalestimates by periodic
orbit stabilities might go horribly wrong. The derivation of the survival probability
in terms of cycle stabilities in chapter20did indeed rely heavily on a hyperbolicity
assumption which is clearly not fulfilled for intermittent maps. We therefore have
to carefully reconsider this derivation in order to show that periodic orbit formulas
are actually valid for intermittent systems in the first place.

We will for simplicity consider maps, which have a finite number of says
branches defined on intervalsMs and we assume that the map maps each interval
Ms ontoM, that is f (Ms) = M. This ensures the existence of a complete
symbolic dynamics - just to make things easy (see figure23.2).

The generating partition is composed of the domainsMs. The nth level
partition C(n) = {Mi} can be constructed iteratively. Herei’s are wordsi =
s2s2 . . . sn of lengthn, and the intervalsMi are constructed recursively

Ms j = f −1
s (M j) , (23.26)
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wheres j is the concatenation of letters with word j of lengthn j < n.

In what follows we will concentrate on the survival probability Γn, postponing
other quantities of interest, such as averages, to later considerations. In establishing
the equivalence of the survival probability and the periodic orbit formula for the
escape rate for hyperbolic systems we have assumed that the map is expanding,
with a minimal expansion rate| f ′(x)| ≥ Λmin > 1. This enabled us to bound
the size of every survivor stripMi by (20.6), the stabilityΛi of the periodic orbiti
within theMi, and bound the survival probability by the periodic orbit sum (20.7).

The bound (20.6)

C1
1
|Λi |

<
|Mi |
|M| < C2

1
|Λi |

relies on hyperbolicity, and is thus indeed violated for intermittent systems. The
problem is that now there is no lower bound on the expansion rate, the minimal
expansion rate isΛmin = 1. The survivor stripM0n which includes the marginal
fixed point is thus completely overestimated by 1/|Λ0n| = 1 which is constant for
all n.

[exercise 17.7]

However, bounding survival probability strip by strip is not what is required
for establishing the bound (20.7). For intermittent systems a somewhat weaker
bound can be established, saying that the average size of intervalsalong a periodic
orbit can be bounded close to the stability of the periodic orbit for all but the
intervalM0n. The weaker bound applies to averaging over each prime cyclep
separately

C1
1
|Λp|

<
1
np

∑

i∈p

|Mi |
|M| < C2

1
|Λp|

, (23.27)

where the wordi represents a code of the periodic orbitp and all its cyclic
permutations. It can be shown that one can find positive constantsC1,C2 independent
of p. Summing over all periodic orbits leads then again to (20.7).

To study averages of multiplicative weights we follow sect.15.1and introduce
a state space observablea(x) and the integrated quantity

An(x) =
n−1∑

k=0

a( f k(x)).

This leads us to introduce the generating function (15.10)

〈eβ An(x)〉,
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Figure 23.7: Markov graph corresponding to the

alphabet{0k−11;0 , k ≥ 1} 0 0 00 0

0

1

where〈.〉 denote some averaging over the distribution of initial points, which we
choose to be uniform (rather than thea priori unknown invariant density). Again,
all we have to show is, that constantsC1, C2 exist, such that

C1
eβAp

|Λp|
<

1
np

∑

i∈p

1
|M|

∫

MQ

eβAn(x)dx< C2
eβAp

|Λp|
, (23.28)

is valid for all p. After performing the above average one gets

C1Γn(β) <
1
|M|

∫

M
eβA(x,n)dx< C2Γn(β), (23.29)

with

Γn(β) =
n∑

p

eβAp

|Λp|
. (23.30)

and a dynamical zeta function can be derived. In the intermittent case one can
expect that the bound (23.28) holds using an averaging argument similar to the
one discussed in (23.27). This justifies the use of dynamical zeta functions for
intermittent systems.

One lesson we should have learned so far is that the natural alphabet to use
is not {0, 1} but rather the infinite alphabet{0k−11, 0 ; k ≥ 1}. The symbol 0
occurs unaccompanied by any 1’s only in the0 marginal fixed point which is
disconnected from the rest of the Markov graph see figure23.7.

[chapter 11]

What happens if we remove a single prime cycle from a dynamical zeta func-
tion? In the hyperbolic case such a removal introduces a polein the 1/ζ and
slows down the convergence of cycle expansions. The heuristic interpretation
of such a pole is that for a subshift of finite type removal of a single prime
cycle leads to unbalancing of cancellations within the infinity of of shadowing
pairs. Nevertheless, removal of a single prime cycle is an exponentially small
perturbation of the trace sums, and the asymptotics of the associated trace formulas
is unaffected.

[chapter 21]

In the intermittent case, the fixed point0 does not provide any shadowing ,
and a statement such as

Λ1·0k+1 ≈ Λ1·0kΛ0,
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is meaningless. It seems therefore sensible to take out the factor (1− t0) = 1− z
from the product representation of the dynamical zeta function (17.15), that is, to
consider a pruned dynamical zeta function 1/ζinter(z) defined by

1/ζ(z) = (1− z)1/ζinter(z) .

We saw in the last sections, that the zeta function 1/ζinter(z) has all the nice
properties we know from the hyperbolic case, that is, we can find a cycle expansion
with - in the toy model case - vanishing curvature contributions and we can
calculate dynamical properties like escape after having understood, how to handle
the branch cut. But you might still be worried about leaving out the extra factor
1−zall together. It turns out, that this is not only a matter of convenience, omitting
the marginal0 cycle is a dire necessity. The cycle weightΛn

0 = 1 overestimates
the corresponding interval length ofM0n in the partition of the phase spaceM by
an increasing amount thus leading to wrong results when calculating escape. By
leaving out the0 cycle (and thus also theM0n contribution), we are guaranteed to
get at least the right asymptotical behavior.

Note also, that if we are working with the spectral determinant (17.3), given
in product form as

det (1− zL) =
∏

p

∞∏

m=0

(
1− znp

|Λp|Λm
p

)
,

for intermittent maps the marginal stable cycle has to be excluded. It introduces
an (unphysical) essential singularity atz= 1 due the presence of a factor (1− z)∞

stemming from the0 cycle.

23.3 Intermittency for cyclists

Admittedly, the toy map is what is says - a toy model. The piecewise linearity
of the map led to exact cancellations of the curvature contributions leaving only
the fundamental terms. There are still infinitely many orbits included in the
fundamental term, but the cycle weights were chosen in such away that the zeta
function could be written in closed form. For a smooth intermittent map this all
will not be the case in general; still, we will argue that we have already seen
almost all the fundamentally new features due to intermittency. What remains are
technicalities - not necessarily easy to handle, but nothing very surprise any more.

In the following we will sketch, how to make cycle expansion techniques work
for general 1-dimensional maps with a single isolated marginal fixed point. To
keep the notation simple, we will consider two-branch maps with a complete
binary symbolic dynamics as for example the Farey map, figure23.3, or the
repeller depicted in figure23.2. We again assume that the behavior near the fixed
point is given by (23.1). This implies that the stability of a family of periodic
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Table 23.1: Infinite alphabet versus the original binary alphabet for the shortest periodic
orbit families. Repetitions of prime cycles (11= 12, 0101 = 012, . . .) and their cyclic
repeats (110= 101, 1110= 1101, . . .) are accounted for by cancelations and combination
factors in the cycle expansion (23.31).

∞ – alphabet binary alphabet
n= 1 n= 2 n= 3 n= 4 n= 5

1-cycles n 1 10 100 1000 10000
2-cycles mn

1n 11 110 1100 11000 110000
2n 101 0101 10100 101000 1010000
3n 1001 10010 100100 1001000 10010000
4n 10001 100010 1000100 10001000 100010000

3-cycles kmn
11n 111 1110 11100 111000 1110000
12n 1101 11010 110100 1101000 11010000
13n 11001 110010 1100100 11001000 110010000
21n 1011 10110 101100 1011000 10110000
22n 10101 101010 1010100 10101000 101010000
23n 101001 1010010 10100100 101001000 1010010000
31n 10011 100110 1001100 10011000 100110000
32n 100101 1001010 10010100 100101000 1001010000
33n 1001001 10010010 100100100 1001001000 10010010000

orbits approaching the marginally stable orbit, as for example the family 10n, will
increase only algebraically, that is we find again for largen

1
Λ10n

∼ 1

n1+1/s
,

wheresdenotes the intermittency exponent.

When considering zeta functions or trace formulas, we againhave to take
out the marginal orbit0; periodic orbit contributions of the formt0n1 are now
unbalanced and we arrive at a cycle expansion in terms of infinitely many fundamental
terms as for our toy map. This corresponds to moving from our binary symbolic
dynamics to an infinite symbolic dynamics by making the identification

10n−1 → n; 10n−110m−1 → nm; 10n−110m−110k−1 → nmk; . . .

see also table23.3. The topological length of the orbit is thus no longer determined
by the iterations of our two-branch map, but by the number of times the cycle
goes from the right to the left branch. Equivalently, one maydefine a new map,
for which all the iterations on the left branch are done in onestep. Such a map is
called aninduced mapand the topological length of orbits in the infinite alphabet
corresponds to the iterations of this induced map.

[exercise 11.1]

For generic intermittent maps, curvature contributions inthe cycle expanded
zeta function will not vanish exactly. The most natural way to organize the cycle
expansion is to collect orbits and pseudo orbits of the same topological length
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with respect to the infinite alphabet. Denoting cycle weights in the new alphabet
astnm... = t10n−110m−1..., one obtains

ζ−1 =
∏

p,0

(
1− tp

)
= 1−

∞∑

n=1

ce (23.31)

= 1−
∞∑

n=1

tn −
∞∑

m=1

∞∑

n=1

1
2

(tmn− tmtn)

−
∞∑

k=1

∞∑

m=1

∞∑

n=1

(
1
3

tkmn−
1
2

tkmtn +
1
6

tktmtn) −
∞∑

l=1

∞∑

k=1

∞∑

m=1

∞∑

n=1

. . . .

The first sum is the fundamental term, which we have already seen in the toy
model, (23.10). The curvature termscn in the expansion are nowe-fold infinite
sums where the prefactors take care of double counting of prime periodic orbits.

Let us consider the fundamental term first. For generic intermittent maps, we
can not expect to obtain an analytic expression for the infinite sum of the form

f (z) =
∞∑

n=0

hnzn. (23.32)

with algebraically decreasing coefficients

hn ∼
1
nα

with α > 0

To evaluate the sum, we face the same problem as for our toy map: the power
series diverges forz > 1, that is, exactly in the ‘interesting’ region where poles,
zeros or branch cuts of the zeta function are to be expected. By carefully subtracting
the asymptotic behavior with the help of (23.11) or (23.12), one can in general
construct an analytic continuation off (z) aroundz= 1 of the form

f (z) ∼ A(z) + (1− z)α−1B(z) α < N (23.33)

f (z) ∼ A(z) + (1− z)α−1 ln(1− z) α ∈ N ,

whereA(z) andB(z) are functions analytic in a disc aroundz = 1. We thus again
find that the zeta function (23.31) has a branch cut along the real axis Re z≥ 1.
From here on we can switch to auto-pilot and derive algebraicescape, decay of
correlation and all the rest. We find in particular that the asymptotic behavior
derived in (23.24) and (23.25) is a general result, that is, the survival probability
is given asymptotically by

Γn ∼ C
1

n1/s
(23.34)
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for all 1-dimensional maps of the form (23.1). We have to work a bit harder if
we want more detailed information like the prefactorC, exponential precursors
given by zeros or poles of the dynamical zeta function or higher order corrections.
This information is buried in the functionsA(z) andB(z) or more generally in the
analytically continued zeta function. To get this analyticcontinuation, one may
follow either of the two different strategies which we will sketch next.

23.3.1 Resummation

One way to get information about the zeta function near the branch cut is to
derive the leading coefficients in the Taylor series of the functionsA(z) andB(z)
in (23.33) at z = 1. This can be done in principle, if the coefficientshn in sums
like (23.32) are known (as for our toy model). One then considers a resummation
of the form

∞∑

j=0

h jz
j =

∞∑

j=0

a j(1− z) j + (1− z)α−1
∞∑

j=0

b j(1− z) j , (23.35)

and the coefficientsa j andb j are obtained in terms of theh j ’s by expanding (1−z) j

and (1− z) j+α−1 on the right hand side aroundz = 0 using (23.11) and equating
the coefficients.

In practical calculations one often has only a finite number of coefficients
h j , 0 ≤ j ≤ N, which may have been obtained by finding periodic orbits and
their stabilities numerically. One can still design a resummation scheme for the
computation of the coefficientsa j andb j in (23.35). We replace the infinite sums
in (23.35) by finite sums of increasing degreesna andnb, and require that

na∑

i=0

ai(1− z)i + (1− z)α−1
nb∑

i=0

bi(1− z)i =

N∑

i=0

hiz
i +O(zN+1) . (23.36)

One proceeds again by expanding the right hand side aroundz = 0, skipping all
powerszN+1 and higher, and then equating coefficients. It is natural to require that
|nb + α − 1− na| < 1, so that the maximal powers of the two sums in (23.36) are
adjacent. If one choosesna + nb + 2 = N + 1, then, for each cutoff lengthN, the
integersna and nb are uniquely determined from a linear system of equations.
The price we pay is that the so obtained coefficients depend on the cutoff N.
One can now study convergence of the coefficientsa j , and b j , with respect to
increasing values ofN, or various quantities derived froma j andb j . Note that
the leading coefficientsa0 andb0 determine the prefactorC in (23.34), cf. (23.23).
The resummed expression can also be used to compute zeros, inside or outside the
radius of convergence of the cycle expansion

∑
h jzj .

The scheme outlined in this section tacitly assumes that a representation of
form (23.33) holds in a disc of radius 1 aroundz = 1. Convergence is improved
further if additional information about the asymptotics ofsums like (23.32) is used
to improve the ansatz (23.35).

inter - 12sep2003.tex

CHAPTER 23. INTERMITTENCY 405

23.3.2 Analytical continuation by integral transformations

We will now introduce a method which provides an analytic continuation of sums
of the form (23.32) without explicitly relying on an ansatz (23.35). The main
idea is to rewrite the sum (23.32) as a sum over integrals with the help of the
Poisson summation formula and find an analytic continuationof each integral by
contour deformation. In order to do so, we need to know then dependence of
the coefficientshn ≡ h(n) explicitly for all n. If the coefficients are not known
analytically, one may proceed by approximating the largen behavior in the form

h(n) = n−α(C1 +C2n−1 + . . .) , n , 0 ,

and determine the constantsCi numerically from periodic orbit data. By using the
Poisson resummation identity

∞∑

n=−∞
δ(x− n) =

∞∑

m=−∞
exp(2πimx) , (23.37)

we may write the sum as (23.32)

f (z) =
1
2

h(0)+
∞∑

m=−∞

∫ ∞

0
dx e2πimxh(x)zx. (23.38)

The continuous variablex corresponds to the discrete summation indexn and it
is convenient to writez = r exp(iσ) from now on. The integrals are still not
convergent forr > 0, but an analytical continuation can be found by considering
the contour integral, where the contour goes out along the real axis, makes a
quarter circle to either the positive or negative imaginaryaxis and goes back to
zero. By letting the radius of the circle go to infinity, we essentially rotate the
line of integration from the real onto the imaginary axis. For the m = 0 term in
(23.38), we transformx→ ix and the integral takes on the form

∫ ∞

0
dx h(x) rx eixσ = i

∫ ∞

0
dx h(ix) r ixe−xσ.

The integrand is now exponentially decreasing for allr > 0 andσ , 0 or 2π. The
last condition reminds us again of the existence of a branch cut at Re z≥ 1. By
the same technique, we find the analytic continuation for allthe other integrals in
(23.38). The real axis is then rotated according tox → sign(m)ix where sign(m)
refers to the sign ofm.

∫ ∞

0
dx e±2πi|m|xh(x) rxeixσ = ±i

∫ ∞

0
dx h(±ix) r±ixe−x(2π|m|±σ) .
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Changing summation and integration, we can carry out the sumover |m| explicitly
and one finally obtains the compact expression

f (z) =
1
2

h(0)+ i
∫ ∞

0
dx h(ix) r ixe−xσ (23.39)

+ i
∫ ∞

0
dx

e−2πx

1− e−2πx

[
h(ix)r ixe−xσ − h(−ix)r−ixexσ

]
.

The transformation from the original sum to the two integrals in (23.39) is exact
for r ≤ 1, and provides an analytic continuation forr > 0. The expression (23.39)
is especially useful for an efficient numerical calculations of a dynamical zeta
function for |z| > 1, which is essential when searching for its zeros and poles.

23.3.3 Curvature contributions

So far, we have discussed only the fundamental term
∑∞

n=1 tn in (23.31), and
showed how to deal with such power series with algebraicallydecreasing coefficients.
The fundamental term determines the main structure of the zeta function in terms
of the leading order branch cut. Corrections to both the zeros and poles of the
dynamical zeta function as well as the leading and subleading order terms in
expansions like (23.33) are contained in the curvature terms in (23.31). The first
curvature correction is the 2-cycle sum

∞∑

m=1

∞∑

n=1

1
2

(tmn− tmtn) ,

with algebraically decaying coefficients which again diverge for|z| > 1. The
analytically continued curvature terms have as usual branch cuts along the positive
real z axis. Our ability to calculate the higher order curvature terms depends on
how much we know about the cycle weightstmn. The form of the cycle stability
(23.5) suggests thattmn decrease asymptotically as

tmn ∼
1

(nm)1+1/s
(23.40)

for 2-cycles, and in general forn-cycles as

tm1m2...mn ∼
1

(m1m2 . . .mn)1+1/s
.

If we happen to know the cycle weightstm1m2...mn analytically, we may proceed as
in sect.23.3.2, transform the multiple sums into multiple integrals and rotate the
integration contours.

We have reached the edge of what has been accomplished so far in computing
and what is worth the dynamical zeta functions from periodicorbit data. In the
next section, we describe a probabilistic method applicable to intermittent maps
which does not rely on periodic orbits.
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23.4 BER zeta functions

So far we have focused on 1-d models as the simplest setting inwhich
to investigate dynamical implications of marginal fixed points. We now take an
altogether different track and describe how probabilistic methods may be employed
in order to write down approximate dynamical zeta functionsfor intermittent
systems.

We will discuss the method in a very general setting, for a flowin arbitrary
dimension. The key idea is to introduce a surface of sectionP such that all
trajectories traversing this section will have spent some time both near the marginal
stable fixed point andin the chaotic phase. An important quantity in what follows
is (3.5), thefirst return timeτ(x), or the time of flight of a trajectory starting in
x to the next return to the surface of sectionP. The period of a periodic orbitp
intersecting theP sectionnp times is

Tp =

np−1∑

k=0

τ( f k(xp)),

where f (x) is the Poincaré map, andxp ∈ P is a cycle point. The dynamical zeta
function (17.15)

1/ζ(z, s, β) =
∏

p

(
1− znpeβAp−sTp

|Λp|

)
, Ap =

np−1∑

k=0

a( f k(xp)), (23.41)

[chapter 15]

associated with the observablea(x) captures the dynamics of both the flowandthe
Poincaré map. The dynamical zeta function for the flow is obtained as 1/ζ(s, β) =
1/ζ(1, s, β), and the dynamical zeta function for the discrete time Poincaré map is
1/ζ(z, β) = 1/ζ(z, 0, β).

Our basic assumption will beprobabilistic. We assume that the chaotic
interludes render the consecutivereturn (or recurrence) times T(xi ), T(xi+1) and
observablesa(xi), a(xi+1) effectively uncorrelated. Consider the quantityeβA(x0,n)−sT(x0,n)

averaged over the surface of sectionP. With the above probabilistic assumption
the largen behavior is

〈eβA(x0,n)−sT(x0,n)〉P ∼
(∫

P
eβa(x)−sτρ(x)dx

)n

,

whereρ(x) is the invariant density of the Poincaré map. This type of behavior is
equivalent to there being only one zeroz0(s, β) =

∫
eβa(x)−sτ(x)ρ(x)dxof 1/ζ(z, s, β)

in the z-β plane. In the language of Ruelle-Pollicott resonances thismeans that
there is an infinite gap to the first resonance. This in turn implies that 1/ζ(z, s, β)
may be written as

[remark 15.1]
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1/ζ(z, s, β) = z−
∫

P
eβa(x)−sτ(x)ρ(x)dx , (23.42)

where we have neglected a possible analytic and non-zero prefactor. The dynam-
ical zeta function of the flow is now

1/ζ(s, β) = 1/ζ(1, s, β) = 1−
∫

P
eβa(x)ρ(x)e−sτ(x)dx . (23.43)

Normally, the best one can hope for is a finite gap to the leading resonance of
the Poincaré map. with the above dynamical zeta function only approximatively
valid. As it is derived from an approximation due to Baladi, Eckmann, and Ruelle,
we shall refer to it as the BER zeta function 1/ζBER(s, β) in what follows.

A central role is played by the probability distribution of return times

ψ(τ) =
∫

P
δ(τ − τ(x))ρ(x)dx (23.44)

[exercise 24.6]

The BER zeta function atβ = 0 is then given in terms of the Laplace transform of
this distribution

1/ζBER(s) = 1−
∫ ∞

0
ψ(τ)e−sτdτ.

[exercise 23.5]

Example 23.1 Return times for the Bernoulli map. For the Bernoulli shift map
(21.6)

x 7→ f (x) = 2x mod 1,

one easily derives the distribution of return times

ψn =
1
2n

n ≥ 1.

The BER zeta function becomes (by the discrete Laplace transform (16.9))

1/ζBER(z) = 1−
∞∑

n=1

ψnzn = 1−
∞∑

n=1

zn

2n

=
1− z

1− z/2
= ζ−1(z)/(1− z/Λ0) . (23.45)

Thanks to the uniformity of the piecewise linear map measure (15.19) the “approximate”
zeta function is in this case the exact dynamical zeta function, with the cycle point 0
pruned.
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Example 23.2 Return times for the model of sect. 23.2.1. For the toy model of
sect. 23.2.1 one gets ψ1 = |M1|, and ψn = |Mn|(1− b)/(1− a), for n ≥ 2, leading to a
BER zeta function

1/ζBER(z) = 1− z|M1| −
∞∑

n=2

|Mn|zn,

which again coincides with the exact result, (23.10).

It may seem surprising that the BER approximation produces exact results in
the two examples above. The reason for this peculiarity is that both these systems
are piecewise linear and have complete Markov partitions. As long as the map
is piecewise linear and complete, and the probabilistic approximation is exactly
fulfilled, the cycle expansion curvature terms vanish. The BER zeta function and
the fundamental part of a cycle expansion discussed in sect.18.1.1are indeed
intricately related, but not identical in general. In particular, note that the BER zeta
function obeys the flow conservation sum rule (20.11) by construction, whereas
the fundamental part of a cycle expansion as a rule does not.

Résum é

The presence of marginally stable fixed points and cycles changes the analytic
structure of dynamical zeta functions and the rules for constructing cycle expansions.
The marginal orbits have to be omitted, and the cycle expansions now need to
include families of infinitely many longer and longer unstable orbits which accumulate
toward the marginally stable cycles. Correlations for suchnon-hyperbolic systems
may decay algebraically with the decay rates controlled by the branch cuts of
dynamical zeta functions. Compared to pure hyperbolic systems, the physical
consequences are drastic: exponential decays are replacedby slow power-law
decays, and transport properties, such as the diffusion may become anomalous.

Commentary

Remark 23.1 What about the evolution operator formalism? The main virtue of evolution
operators was their semigroup property (15.25). This was natural for hyperbolic systems
where instabilities grow exponentially, and evolution operators capture this behavior due
to their multiplicative nature. Whether the evolution operator formalism is a good way
to capture the slow, power law instabilities of intermittent dynamics is less clear. The
approach taken here leads us to a formulation in terms ofdynamical zeta functionsrather
than spectral determinants, circumventing evolution operators altogether. It is not known
if the spectral determinants formulation would yield any benefits when applied to intermittent
chaos. Some results on spectral determinants and intermittency can be found in [2]. A
useful mathematical technique to deal with isolated marginally stable fixed point is that
of inducing, that is, replacing the intermittent map by a completely hyperbolic map with
infinite alphabet and redefining the discrete time; we have used this method implicitly
by changing from a finite to an infinite alphabet. We refer to refs. [3, 20] for detailed
discussions of this technique, as well as applications to 1-dimensional maps.
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Remark 23.2 Intermittency. Intermittency was discovered by Manneville and Pomeau [1]
in their study of the Lorentz system. They demonstrated thatin neighborhoodof parameter
valuerc = 166.07 the mean duration of the periodic motion scales as (r − rc)1/2. In ref. [5]
they explained this phenomenon in terms of a 1-dimensional map (such as (23.1)) near
tangent bifurcation, and classified possible types of intermittency.

Piecewise linear models like the one considered here have been studied by Gaspard
and Wang [6]. The escape problem has here been treated following ref. [7], resummations
following ref. [8]. The proof of the bound (23.27) can be found in P. Dahlqvist’s notes on
ChaosBook.org/PDahlqvistEscape.ps.gz.

Farey map (18.31) has been studied widely in the context of intermittent dynamics,
for example in refs. [16, 17, 3, 18, 19, 14, 2]. The Fredholm determinant and the dyn-
amical zeta functions for the Farey map (18.31) and the related Gauss shift map (14.46)
have been studied by Mayer [16]. He relates the continued fraction transformation to the
Riemann zeta function, and constructs a Hilbert space on which the evolution operator is
self-adjoint, and its eigenvalues are exponentially spaced, just as for the dynamical zeta
functions [24] for “Axiom A” hyperbolic systems.

Remark 23.3 Tauberian theorems. In this chapter we used Tauberian theorems for
power series and Laplace transforms: Feller’s monograph [9] is a highly recommended
introduction to these methods.

Remark 23.4 Probabilistic methods, BER zeta functions. Probabilistic description
of intermittent chaos was introduced by Geisal and Thomae [10]. The BER approximation
studied here is inspired by Baladi, Eckmann and Ruelle [14], with further developments
in refs. [13, 15].
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Exercises

23.1. Integral representation of Jonquière functions.
Check the integral representation

J(z, α) =
z
Γ(α)

∫ ∞

0
dξ

ξα−1

eξ − z
for α > 0 .(23.46)

Note how the denominator is connected to Bose-
Einstein distribution. ComputeJ(x+ iǫ) − J(x− iǫ) for
a realx > 1.

23.2. Power law correction to a power law. Expand
(23.20) further and derive the leading power law
correction to (23.23).

23.3. Power-law fall off. In cycle expansions the stabilities
of orbits do not always behave in a geometric fashion.
Consider the mapf

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

This map behaves asf → xasx→ 0. Define a symbolic
dynamics for this map by assigning 0 to the points that
land on the interval [0, 1/2) and 1 to the points that land
on (1/2, 1]. Show that the stability of orbits that spend
a long time on the 0 side goes asn2. In particular, show
that

Λ 00···0︸︷︷︸
n

1 ∼ n2

23.4. Power law fall-off of stability eigenvalues in the
stadium billiard ∗∗. From the cycle expansions point
of view, the most important consequence of the shear in
Jn for long sequences of rotation bouncesnk in (8.13)
is that theΛn grows only as a power law in number of
bounces:

Λn ∝ n2
k . (23.47)

Check.

23.5. Probabilistic zeta function for maps. Derive the
probabilistic zeta function for a map with recurrence
distributionψn.

23.6. Accelerated diffusion. Consider a maph, such that
ĥ = f̂ , but now running branches are turner into standing
branches and vice versa, so that 1, 2, 3, 4 are standing
while 0 leads to both positive and negative jumps. Build
the corresponding dynamical zeta function and show
that

σ2(t) ∼



t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)

23.7. Anomalous diffusion (hyperbolic maps).
Anomalous diffusive properties are associated to
deviations from linearity of the variance of the phase
variable we are looking at: this means the the diffusion
constant (15.13) either vanishes or diverges. We briefly
illustrate in this exercise how the local local properties
of a map are crucial to account for anomalous behavior
even for hyperbolic systems.

Consider a class of piecewise linear maps, relevant to
the problem of the onset of diffusion, defined by

fǫ (x) =



Λx for x ∈
[
0, x+1

]

a− Λǫ,γ|x− x+| for x ∈
[
x+1 , x

+
2

]

1− Λ′(x− x+2 ) for x ∈
[
x+2 , x

−
1

]

1− a+ Λǫ,γ|x− x−| for x ∈
[
x−1 , x

−
2

]

1+ Λ(x− 1) for x ∈
[
x−2 , 1

]

whereΛ = (1/3 − ǫ1/γ)−1, Λ′ = (1/3 − 2ǫ1/γ), Λǫ,γ =
ǫ1−1/γ, a = 1+ǫ, x+ = 1/3, x+1 = x+−ǫ1/γ, x+2 = x++ǫ1/γ,
and the usual symmetry properties (24.11) are satisfied.

Thus this class of maps is characterized by two escaping
windows (through which the diffusion process may
take place) of size 2ǫ1/γ: the exponentγ mimicks the
order of the maximum for a continuous map, while
piecewise linearity, besides making curvatures vanish
and leading to finite cycle expansions, prevents the
appearance of stable cycles. The symbolic dynamics
is easily described once we consider a sequence of
parameter values{ǫm}, whereǫm = Λ−(m+1): we then
partition the unit interval though the sequence of points
0, x+1 , x

+, x+2 , x
−
1 , x

−, x−2 , 1 and label the corresponding
sub–intervals 1, sa, sb, 2, db, da, 3: symbolic dynamics is
described by an unrestricted grammar over the following
set of symbols

{1, 2, 3, s# · 1i , d# · 3k} # = a, b i, k = m,m+
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This leads to the following dynamical zeta function:

ζ−1
0 (z, α) = 1− 2z

Λ
− z
Λ′
− 4 cosh(α)ǫ1/γ−1

m
zm+1

Λm

(
1− z
Λ

)−1

from which, by (24.8) we get

D =
2ǫ1/γ−1

m Λ−m(1− 1/Λ)−1

1− 2
Λ
− 1
Λ′ − 4ǫ1/γ−1

m

(
m+1

Λm(1−1/Λ) +
1

Λm+1(1−1/Λ)2

) (23.49)

The main interest in this expression is that it allows
exploring howD vanishes in theǫ 7→ 0 (m 7→ ∞)

limit: as a matter of fact, from (23.49) we get the
asymptotic behaviorD ∼ ǫ1/γ, which shows how the
onset of diffusion is governed by the order of the map at
its maximum.

Remark 23.5 Onset of diffusion for continuous maps.
The zoology of behavior for continuous maps at the
onset of diffusion is described in refs. [12, 13, 25]: our
treatment for piecewise linear maps was introduced in
ref. [26].
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Chapter 24

Deterministic diffusion

This is a bizzare and discordant situation.
—M.V. Berry

(R. Artuso and P. Cvitanović)

T  in the theory of dynamical systems have brought a new life to
Boltzmann’s mechanical formulation of statistical mechanics. Sinai, Ruelle
and Bowen (SRB) have generalized Boltzmann’s notion of ergodicity for a

constant energy surface for a Hamiltonian system in equilibrium to dissipative
systems in nonequilibrium stationary states. In this more general setting the
attractor plays the role of a constant energy surface, and the SRB measure of
sect.14.1is a generalization of the Liouville measure. Such measuresare purely
microscopic and indifferent to whether the system is at equilibrium, close to equilibrium
or far from it. “Far for equilibrium” in this context refers to systems with large
deviations from Maxwell’s equilibrium velocity distribution. Furthermore, the
theory of dynamical systems has yielded new sets of microscopic dynamics formulas
for macroscopic observables such as diffusion constants and the pressure, to which
we turn now.

We shall apply cycle expansions to the analysis oftransport properties of
chaotic systems.

The resulting formulas are exact; no probabilistic assumptions are made, and
the all correlations are taken into account by the inclusionof cycles of all periods.
The infinite extent systems for which the periodic orbit theory yields formulas for
diffusion and other transport coefficients are spatially periodic, the global state
space being tiled with copies of a elementary cell. The motivation are physical
problems such as beam defocusing in particle accelerators or chaotic behavior
of passive tracers in 2-d rotating flows, problems which can be described as
deterministic diffusion in periodic arrays.

In sect.24.1 we derive the formulas for diffusion coefficients in a simple
physical setting, the 2-d periodic Lorentz gas. This system, however, is not
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Figure 24.1: Deterministic diffusion in a finite
horizon periodic Lorentz gas. (T. Schreiber)

the best one to exemplify the theory, due to its complicated symbolic dynamics.
Therefore we apply the theory first to diffusion induced by a 1-d maps in sect.24.2.

24.1 Diffusion in periodic arrays

The 2-d Lorentz gasis an infinite scatterer array in which diffusion of a light
molecule in a gas of heavy scatterers is modeled by the motionof a point particle
in a plane bouncing off an array of reflecting disks. The Lorentz gas is called
“gas” as one can equivalently think of it as consisting of anynumber of pointlike
fast “light molecules” interacting only with the stationary “heavy molecules” and
not among themselves. As the scatterer array is built up fromonly defocusing
concave surfaces, it is a pure hyperbolic system, and one of the simplest nontrivial
dynamical systems that exhibits deterministic diffusion, figure24.1. We shall
now show that theperiodic Lorentz gas is amenable to a purely deterministic
treatment. In this class of open dynamical systems quantities characterizing global
dynamics, such as the Lyapunov exponent, pressure and diffusion constant, can be
computed from the dynamics restricted to the elementary cell. The method applies
to any hyperbolic dynamical system that is a periodic tilingM̂ = ⋃

n̂∈TMn̂ of the
dynamical state spacêM by translatesMn̂ of anelementary cellM, with T the
Abelian group of lattice translations. If the scattering array has further discrete
symmetries, such as reflection symmetry, each elementary cell may be built from
a fundamental domaiñM by the action of a discrete (not necessarily Abelian)
groupG. The symbolM̂ refers here to the full state space, i.e.,, both the spatial
coordinates and the momenta. The spatial component ofM̂ is the complement of
the disks in thewholespace.

We shall now relate the dynamics inM to diffusive properties of the Lorentz
gas inM̂.

These concepts are best illustrated by a specific example, a Lorentz gas based
on the hexagonal lattice Sinai billiard of figure24.2. We distinguish two types
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Figure 24.2: Tiling of M̂, a periodic lattice
of reflecting disks, by the fundamental domain
M̃. Indicated is an example of a global trajectory
x̂(t) together with the corresponding elementary cell
trajectoryx(t) and the fundamental domain trajectory
x̃(t). (Courtesy of J.-P. Eckmann)

of diffusive behavior; theinfinite horizoncase, which allows for infinite length
flights, and thefinite horizoncase, where any free particle trajectory must hit a
disk in finite time. In this chapter we shall restrict our consideration to the finite
horizon case, with disks sufficiently large so that no infinite length free flight is
possible. In this case the diffusion is normal, with ˆx(t)2 growing like t. We shall
return to the anomalous diffusion case in sect.24.3.

As we will work with three kinds of state spaces, good mannersrequire that
we repeat what hats, tildes and nothings atop symbols signify:

˜ fundamental domain, triangle in figure24.2

elementary cell, hexagon in figure24.2

ˆ full state space, lattice in figure24.2 (24.1)

It is convenient to define an evolution operator for each of the 3 cases of figure24.2.
x̂(t) = f̂ t(x̂) denotes the point in the global spacêM reached by the flow in time
t. x(t) = f t(x0) denotes the corresponding flow in the elementary cell; the two
are related by

n̂t(x0) = f̂ t(x0) − f t(x0) ∈ T , (24.2)

the translation of the endpoint of the global path into the elementary cellM. The
quantity x̃(t) = f̃ t(x̃) denotes the flow in the fundamental domaiñM; f̃ t(x̃) is
related tof t(x̃) by a discrete symmetryg ∈ G which maps ˜x(t) ∈ M̃ to x(t) ∈ M .

[chapter 19]

Fix a vectorβ ∈ Rd, whered is the dimension of the state space. We will
compute the diffusive properties of the Lorentz gas from the leading eigenvalue of
the evolution operator (15.11)

s(β) = lim
t→∞

1
t

log〈eβ·(x̂(t)−x)〉M , (24.3)

where the average is over all initial points in the elementary cell, x ∈ M.
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If all odd derivatives vanish by symmetry, there is no drift and the second
derivatives

∂

∂βi

∂

∂β j
s(β)

∣∣∣∣∣∣
β=0

= lim
t→∞

1
t
〈(x̂(t) − x)i(x̂(t) − x) j〉M ,

yield a (generally anisotropic) diffusion matrix. The spatial diffusion constant is
then given by the Einstein relation (15.13)

D =
1
2d

∑

i

∂2

∂β2
i

s(β)

∣∣∣∣∣∣
β=0

= lim
t→∞

1
2dt
〈(q̂(t) − q)2〉M ,

where thei sum is restricted to the spatial componentsqi of the state space vectors
x = (q, p), i.e., if the dynamics is Hamiltonian to the number of the degrees of
freedom.

We now turn to the connection between (24.3) and periodic orbits in the
elementary cell. As the fullM̂ → M̃ reduction is complicated by the nonabelian

[remark 24.6]
nature ofG, we shall introduce the main ideas in the abelianM̂ → M context.

24.1.1 Reduction fromM̂ toM

The key idea follows from inspection of the relation

〈
eβ·(x̂(t)−x)

〉
M =

1
|M|

∫

x∈M
ŷ∈M̂

dxdŷ eβ·(ŷ−x)δ(ŷ− f̂ t(x)) .

|M| =
∫
M dx is the volume of the elementary cellM. As in sect.15.2, we have

used the identity 1=
∫
Mdyδ(y− x̂(t)) to motivate the introduction of the evolution

operatorLt(ŷ, x). There is a unique lattice translation ˆn such that ˆy = y − n̂, with
y ∈ M, and f t(x) given by (24.2). The difference is a translation by a constant,
and the Jacobian for changing integration fromdŷ to dy equals unity. Therefore,
and this is the main point, translation invariance can be used to reduce this average
to the elementary cell:

〈eβ·(x̂(t)−x)〉M =
1
|M|

∫

x,y∈M
dxdy eβ·( f̂ t (x)−x)δ(y− f t(x)) . (24.4)

As this is a translation, the Jacobian isδŷ/δy = 1. In this way the global̂f t(x) flow
averages can be computed by following the flowf t(x0) restricted to the elementary
cellM. The equation (24.4) suggests that we study the evolution operator

Lt(y, x) = eβ·(x̂(t)−x)δ(y− f t(x)) , (24.5)
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wherex̂(t) = f̂ t(x) ∈ M̂, but x, f t(x), y ∈ M. It is straightforward to check that
this operator satisfies the semigroup property (15.25),

∫

M
dzLt2(y, z)Lt1(z, x) = Lt2+t1(y, x) .

For β = 0, the operator (24.5) is the Perron-Frobenius operator (14.10), with the
leading eigenvaluees0 = 1 because there is no escape from this system (this will
lead to the flow conservation sum rule (20.11) later on).

The rest is old hat. The spectrum ofL is evaluated by taking the trace
[section 16.2]

trLt =

∫

M
dx eβ·n̂t(x)δ(x− x(t)) .

Heren̂t(x) is the discrete lattice translation defined in (24.2). Two kinds of orbits
periodic in the elementary cell contribute. A periodic orbit is calledstanding
if it is also periodic orbit of the infinite state space dynamics, f̂ Tp(x) = x, and
it is called running if it corresponds to a lattice translation in the dynamics on
the infinite state space,̂f Tp(x) = x + n̂p. In the theory of area–preserving maps
such orbits are calledaccelerator modes, as the diffusion takes place along the
momentum rather than the position coordinate. The traveleddistance ˆnp = n̂Tp(x0)
is independent of the starting pointx0, as can be easily seen by continuing the path
periodically inM̂.

The final result is the spectral determinant (17.6)

det (s(β) −A) =
∏

p

exp

−
∞∑

r=1

1
r

e(β·n̂p−sTp)r
∣∣∣∣det

(
1− Mr

p

)∣∣∣∣

 , (24.6)

or the corresponding dynamical zeta function (17.15)

1/ζ(β, s) =
∏

p

(
1− e(β·n̂p−sTp)

|Λp|

)
. (24.7)

The dynamical zeta function cycle averaging formula (18.21) for the diffusion
constant (15.13), zero mean drift〈x̂i〉 = 0 , is given by

D =
1
2d

〈
x̂2

〉
ζ

〈T〉ζ
=

1
2d

1
〈T〉ζ

∑′ (−1)k+1(n̂p1 + · · · + n̂pk)
2

|Λp1 · · ·Λpk |
. (24.8)

where the sum is over all distinct non-repeating combination of prime cycles. The
derivation is standard, still the formula is strange. Diffusion is unbounded motion
across an infinite lattice; nevertheless, the reduction to the elementary cell enables
us to compute relevant quantities in the usual way, in terms of periodic orbits.
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Figure 24.3: (a) f̂ (x̂), the full space sawtooth
map (24.9), Λ > 2. (b) f (x), the sawtooth map
restricted to the unit circle (24.12), Λ = 6. (a) (b)

A sleepy reader might protest thatxp = x(Tp) − x(0) is manifestly equal to
zero for a periodic orbit. That is correct; ˆnp in the above formula refers to a
displacement on theinfinite periodic lattice, whilep refers to closed orbit of the
dynamics reduced to the elementary cell, withxp belonging to the closed prime
cycle p.

Even so, this is not an obvious formula. Globally periodic orbits have ˆx2
p = 0,

and contribute only to the time normalization〈T〉ζ . The mean square displacement〈
x̂2

〉
ζ

gets contributions only from the periodic runaway trajectories; they are

closed in the elementary cell, but on the periodic lattice each one grows like
x̂(t)2 = (n̂p/Tp)2 = v2

pt2. So the orbits that contribute to the trace formulas
and spectral determinants exhibit either ballistic transport or no transport at all:
diffusion arises as a balance between the two kinds of motion, weighted by the
1/|Λp| measure. If the system is not hyperbolic such weights may be abnormally
large, with 1/|Λp| ≈ 1/Tp

α rather than 1/|Λp| ≈ e−Tpλ, whereλ is the Lyapunov
exponent, and they may lead to anomalous diffusion - accelerated or slowed down
depending on whether the probabilities of the running or thestanding orbits are
enhanced.

[section 24.3]

We illustrate the main idea, tracking of a globally diffusing orbit by the associated
confined orbit restricted to the elementary cell, with a class of simple 1-d dynamical
systems where all transport coefficients can be evaluated analytically.

24.2 Diffusion induced by chains of 1-d maps

In a typical deterministic diffusive process, trajectories originating from a given
scatterer reach a finite set of neighboring scatterers in onebounce, and then the
process is repeated. As was shown in chapter10, the essential part of this process
is the stretching along the unstable directions of the flow, and in the crudest
approximation the dynamics can be modeled by 1-d expanding maps. This observation
motivates introduction of a class of particularly simple 1-d systems, chains of
piecewise linear maps.
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We start by defining the map̂f on the unit interval as

f̂ (x̂) =

{
Λx̂ x̂ ∈ [0, 1/2)
Λx̂+ 1− Λ x̂ ∈ (1/2, 1] , Λ > 2 , (24.9)

and then extending the dynamics to the entire real line, by imposing the translation
property

f̂ (x̂+ n̂) = f̂ (x̂) + n̂ n̂ ∈ Z . (24.10)

As the map is discontinuous at ˆx = 1/2, f̂ (1/2) is undefined, and thex = 1/2
point has to be excluded from the Markov partition. The map isantisymmetric
under the ˆx-coordinate flip

f̂ (x̂) = − f̂ (−x̂) , (24.11)

so the dynamics will exhibit no mean drift; all odd derivatives of the generating
function (15.11) with respect toβ, evaluated atβ = 0, will vanish.

The map (24.9) is sketched in figure24.3(a). Initial points sufficiently close
to either of the fixed points in the initial unit interval remain in the elementary cell
for one iteration; depending on the slopeΛ, other points jump ˆn cells, either to the
right or to the left. Repetition of this process generates a random walk for almost
every initial condition.

The translational symmetry (24.10) relates the unbounded dynamics on the
real line to dynamics restricted to the elementary cell - in the example at hand, the
unit interval curled up into a circle. Associated tof̂ (x̂) we thus also consider the
circle map

f (x) = f̂ (x̂) −
[
f̂ (x̂)

]
, x = x̂− [ x̂] ∈ [0, 1] (24.12)

figure24.3(b), where [· · ·] stands for the integer part (24.2). As noted above, the
elementary cell cycles correspond to either standing or running orbits for the map
on the full line: we shall refer to ˆnp ∈ Z as thejumping numberof thep cycle, and
take as the cycle weight

tp = znpeβn̂p/|Λp| . (24.13)

For the piecewise linear map of figure24.3 we can evaluate the dynamical zeta
function in closed form. Each branch has the same value of theslope, and the
map can be parameterized by a single parameter, for example its critical value
a = f̂ (1/2), the absolute maximum on the interval [0, 1] related to the slope of the
map bya = Λ/2. The largerΛ is, the stronger is the stretching action of the map.
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The diffusion constant formula (24.8) for 1-d maps is

D =
1
2

〈
n̂2

〉
ζ

〈n〉ζ
(24.14)

where the “mean cycle time” is given by (18.22)

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣∣∣∣∣
z=1
= −

∑′
(−1)k

np1 + · · · + npk

|Λp1 · · ·Λpk |
, (24.15)

and the “mean cycle displacement squared” by (18.25)

〈
n̂2

〉
ζ
=

∂2

∂β2

1
ζ(β, 1)

∣∣∣∣∣∣
β=0

= −
∑′

(−1)k
(n̂p1 + · · · + n̂pk)

2

|Λp1 · · ·Λpk |
, (24.16)

the primed sum indicating all distinct non-repeating combinations of prime cycles.
The evaluation of these formulas in this simple system will require nothing more
than pencil and paper.

24.2.1 Case of unrestricted symbolic dynamics

WheneverΛ is an integer number, the symbolic dynamics is exceedingly simple.
For example, for the caseΛ = 6 illustrated in figure24.3 (b), the elementary
cell map consists of 6 full branches, with uniform stretching factorΛ = 6. The
branches have different jumping numbers: for branches 1 and 2 we have ˆn = 0, for
branch 3 we have ˆn = +1, for branch 4 ˆn = −1, and finally for branches 5 and 6 we
have respectively ˆn = +2 andn̂ = −2. The same structure reappears wheneverΛ is
an even integerΛ = 2a: all branches are mapped onto the whole unit interval and
we have two ˆn = 0 branches, one branch for which ˆn = +1 and one for which ˆn =
−1, and so on, up to the maximal jump|n̂| = a−1. The symbolic dynamics is thus
full, unrestricted shift in 2a symbols{0+, 1+, . . . , (a− 1)+, (a− 1)−, . . . , 1−, 0−},
where the symbol indicates both the length and the directionof the corresponding
jump.

For the piecewise linear maps with uniform stretching the weight associated
with a given symbol sequence is a product of weights for individual steps,tsq =

tstq. For the map of figure24.3there are 6 distinct weights (24.13):

t1 = t2 = z/Λ

t3 = eβz/Λ , t4 = e−βz/Λ , t5 = e2βz/Λ , t6 = e−2βz/Λ .

The piecewise linearity and the simple symbolic dynamics lead to the full cancellation
of all curvature corrections in (18.7). Theexactdynamical zeta function (13.13)
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is given by the fixed point contributions:

1/ζ(β, z) = 1− t0+ − t0− − · · · − t(a−1)+ − t(a−1)−

= 1− z
a

1+
a−1∑

j=1

cosh(β j)

 . (24.17)

The leading (and only) eigenvalue of the evolution operator(24.5) is

s(β) = log


1
a

1+
a−1∑

j=1

cosh(β j)




, Λ = 2a, a integer. (24.18)

The flow conservation (20.11) sum rule is manifestly satisfied, sos(0) = 0. The
first derivatives(0)′ vanishes as well by the left/right symmetry of the dynamics,
implying vanishing mean drift〈x̂〉 = 0. The second derivatives(β)′′ yields the
diffusion constant (24.14):

〈n〉ζ = 2a
1
Λ
= 1 ,

〈
x̂2

〉
ζ
= 2

02

Λ
+ 2

12

Λ
+ 2

22

Λ
+ · · · + 2

(a− 1)2

Λ
(24.19)

Using the identity
∑n

k=1 k2 = n(n+ 1)(2n+ 1)/6 we obtain

D =
1
24

(Λ − 1)(Λ − 2) , Λ even integer. (24.20)

Similar calculation for odd integerΛ = 2k − 1 yields
[exercise 24.1]

D =
1
24

(Λ2 − 1) , Λ odd integer. (24.21)

24.2.2 Higher order transport coefficients

The same approach yields higher order transport coefficients

Bk =
1
k!

dk

dβk
s(β)

∣∣∣∣∣∣
β=0

, B2 = D , (24.22)

known for k > 2 as the Burnett coefficients. The behavior of the higher order
coefficients yields information on the relaxation to the asymptotic distribution
function generated by the diffusive process. Here ˆxt is the relevant dynamical
variable andBk’s are related to moments

〈
x̂k

t

〉
of arbitrary order.

Were the diffusive process purely Gaussian

ets(β) =
1

√
4πDt

∫ +∞

−∞
dx̂ eβx̂e−x̂2/(4Dt) = eβ

2Dt (24.23)
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Figure 24.4: (a) A partition of the unit interval
into six intervals, labeled by the jumping number
n̂(x) I = {0+,1+,2+,2−,1−,0−}. The partition is
Markov, as the critical point is mapped onto the
right border ofM1+ . (b) The Markov graph for this
partition. (c) The Markov graph in the compact
notation of (24.26) (introduced by Vadim Moroz). (a)

0+ 0 -

0+

0 -

1+ 1 -

1+

1 -

2+ 2 -

2+

2 -

(b)

0+
1+

0--1

22+ -

0+ 0-

-11+

(c)

6
7

4
5

2 31

1 3

the onlyBk coefficient different from zero would beB2 = D. Hence, nonvanishing
higher order coefficients signal deviations of deterministic diffusion from a Gaussian
stochastic process.

For the map under consideration the first Burnett coefficient coefficientB4 is
easily evaluated. For example, using (24.18) in the case of even integer slope
Λ = 2a we obtain

[exercise 24.2]

B4 = −
1

4! · 60
(a− 1)(2a − 1)(4a2 − 9a+ 7) . (24.24)

We see that deterministic diffusion is nota Gaussian stochastic process. Higher
order even coefficients may be calculated along the same lines.

24.2.3 Case of finite Markov partitions

For piecewise-linear maps exact results may be obtained whenever the critical
points are mapped in finite numbers of iterations onto partition boundary points,
or onto unstable periodic orbits. We will work out here an example for which this
occurs in two iterations, leaving other cases as exercises.

The key idea is to construct aMarkov partition(10.4), with intervals mapped
onto unions of intervals. As an example we determine a value of theparameter
4 ≤ Λ ≤ 6 for which f ( f (1/2)) = 0. As in the integerΛ case, we partition the unit
interval into six intervals, labeled by the jumping number ˆn(x) ∈ {M0+ ,M1+ ,M2+ ,M2− ,M1− ,M0− },
ordered by their placement along the unit interval, figure24.4(a).

In general the critical valuea = f̂ (1/2) will not correspond to an interval
border, but now we choosea such that the critical point is mapped onto the right
border ofM1+ . Equating f (1/2) with the right border ofM1+ , x = 1/Λ, we
obtain a quadratic equation with the expanding solutionΛ = 2(

√
2 + 1). For

this parameter valuef (M1+ ) = M0+
⋃M1+ , f (M2− ) = M0−

⋃M1− , while the
remaining intervals map onto the whole unit intervalM. The transition matrix
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(10.2) is given by

φ′ = Tφ =



1 1 1 0 1 1
1 1 1 0 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 0 1 1 1





φ0+
φ1+
φ2+
φ2−
φ1−
φ0−



. (24.25)

One could diagonalize (24.25) on a computer, but, as we saw in sect.10.4, the
Markov graph figure24.4(b) corresponding to figure24.4(a) offers more insight
into the dynamics. The graph figure24.4(b) can be redrawn more compactly as
Markov graph figure24.4(c) by replacing parallel lines in a graph by their sum

2

3

2 311
= t1 + t2 + t3 . (24.26)

The dynamics is unrestricted in the alphabet

A = {0+, 1+, 2+0+, 2+1+, 2−1−, 2−0−, 1−, 0−} .

Applying the loop expansion (13.13) of sect.13.3, we are led to the dynamical
zeta function

1/ζ(β, z) = 1− t0+ − t1+ − t2+0+ − t2+1+ − t2−1− − t2−0− − t1− − t0−

= 1− 2z
Λ

(1+ cosh(β)) − 2z2

Λ2
(cosh(2β) + cosh(3β)) . (24.27)

For grammar as simple as this one, the dynamical zeta function is the sum over
fixed points of the unrestricted alphabet. As the first check of this expression for
the dynamical zeta function we verify that

1/ζ(0, 1) = 1− 4
Λ
− 4

Λ2
= 0 ,

as required by the flow conservation (20.11). Conversely, we could have started
by picking the desired Markov partition, writing down the corresponding dyn-
amical zeta function, and then fixingΛ by the 1/ζ(0, 1) = 0 condition. For more
complicated Markov graphs this approach, together with thefactorization (24.35),
is helpful in reducing the order of the polynomial conditionthat fixesΛ.

The diffusion constant follows from (24.14)
[exercise 24.3]

〈n〉ζ = 4
1
Λ
+ 4

2

Λ2
,

〈
n̂2

〉
ζ
= 2

12

Λ
+ 2

22

Λ2
+ 2

32

Λ2

D =
15+ 2

√
2

16+ 8
√

2
. (24.28)
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It is by now clear how to build an infinite hierarchy of finite Markov partitions:
tune the slope in such a way that the critical valuef (1/2) is mapped into the fixed
point at the origin in a finite number of iterationsp fP(1/2) = 0. By taking higher
and higher values ofp one constructs a dense set of Markov parameter values,
organized into a hierarchy that resembles the way in which rationals are densely
embedded in the unit interval. For example, each of the 6 primary intervals
can be subdivided into 6 intervals obtained by the 2-nd iterate of the map, and
for the critical point mapping into any of those in 2 steps thegrammar (and
the corresponding cycle expansion) is finite. So, if we can prove continuity of
D = D(Λ), we can apply the periodic orbit theory to the sawtooth map (24.9) for
a random “generic” value of the parameterΛ, for exampleΛ = 4.5. The idea is to
bracket this value ofΛ by a sequence of nearby Markov values, compute the exact
diffusion constant for each such Markov partition, and study their convergence
toward the value ofD for Λ = 4.5. Judging how difficult such problem is already
for a tent map (see sect.13.6), this is not likely to take only a week of work.

Expressions like (24.20) may lead to an expectation that the diffusion coefficient
(and thus transport properties) are smooth functions of parameters controlling
the chaoticity of the system. For example, one might expect that the diffusion
coefficient increases smoothly and monotonically as the slopeΛ of the map (24.9)
is increased, or, perhaps more physically, that the diffusion coefficient is a smooth
function of the Lyapunov exponentλ. This turns out not to be true:D as a
function ofΛ is a fractal, nowhere differentiable curve illustrated in figure24.5.
The dependence ofD on the map parameterΛ is rather unexpected - even though
for largerΛ more points are mapped outside the unit cell in one iteration, the
diffusion constant does not necessarily grow.

This is a consequence of the lack of structural stability, even of purely hyperbolic
systems such as the Lozi map and the 1-d diffusion map (24.9). The trouble arises
due to non-smooth dependence of the topological entropy on system parameters
- any parameter change, no mater how small, leads to creationand destruction of
infinitely many periodic orbits. As far as diffusion is concerned this means that
even though local expansion rate is a smooth function ofΛ, the number of ways
in which the trajectory can re-enter the the initial cell is an irregular function of
Λ.

The lesson is that lack of structural stability implies lackof spectral stability,
and no global observable is expected to depend smoothly on the system parameters.
If you want to master the material, working through one of thedeterministic
diffusion projects onChaosBook.org/pages is strongly recommended.

24.3 Marginal stability and anomalous diffusion

What effect does the intermittency of chapter23 have on transport properties of
1-d maps? Consider a 1− d map of the real line on itself with the same properties
as in sect.24.2, except for a marginal fixed point atx = 0.

A marginal fixed point affects the balance between running and standing orbits,
thus generating a mechanism that may result in anomalous diffusion. Our model
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Figure 24.5: The dependence ofD on the map
parametera is continuous, but not monotone (from
ref. [8]). Herea stands for the slopeΛ in (24.9).
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example is the map shown in figure24.6(a), with the corresponding circle map
shown in figure24.6 (b). As in sect.23.2.1, a branch with support inMi , i =
1, 2, 3, 4 has constant slopeΛi , while f |M0 is of intermittent form. To keep you
nimble, this time we take a slightly different choice of slopes. The toy example
of sect.23.2.1was cooked up so that the 1/s branch cut in dynamical zeta func-
tion was the whole answer. Here we shall take a slightly different route, and pick
piecewise constant slopes such that the dynamical zeta function for intermittent
system can be expressed in terms of the Jonquière function

[remark 24.8]

J(z, s) =
∞∑

k=1

zk/ks (24.29)

Once the0 fixed point is pruned away, the symbolic dynamics is given by
the infinite alphabet{1, 2, 3, 4, 0i1, 0 j2, 0k3, 0l4}, i, j, k, l = 1, 2, . . . (compare with
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Figure 24.6: (a) A map with marginal fixed point.
(b) The map restricted to the unit circle. (a) (b)

table 23.3). The partitioning of the subintervalM0 is induced byM0k(right) =

φk
(right)(M3

⋃M4) (whereφ(right) denotes the inverse of the right branch off̂ |M0)
and the same reasoning applies to the leftmost branch. Theseare regions over
which the slope off̂ |M0 is constant. Thus we have the following stabilities and
jumping numbers associated to letters:

0k3, 0k4 Λp =
k1+α

q/2 n̂p = 1

0l1, 0l2 Λp =
l1+α

q/2 n̂p = −1

3, 4 Λp = ±Λ n̂p = 1

2, 1 Λp = ±Λ n̂p = −1 , (24.30)

whereα = 1/s is determined by the intermittency exponent (23.1), while q is to
be determined by the flow conservation (20.11) for f̂ : —PCdefineR

4
Λ
+ 2qζ(α + 1) = 1

so thatq = (Λ−4)/2Λζ(α+1). The dynamical zeta function picks up contributions
just by the alphabet’s letters, as we have imposed piecewiselinearity, and can be
expressed in terms of a Jonquiere function (24.29):

1/ζ0(z, β) = 1− 4
Λ

zcoshβ − Λ − 4
Λζ(1+ α)

zcoshβ · J(z, α + 1) . (24.31)

Its first zeroz(β) is determined by

4
Λ

z+
Λ − 4
Λζ(1+ α)

z · J(z, α + 1) =
1

coshβ
.
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By using implicit function derivation we see thatD vanishes (i.e.,z′′(β)|β=1 = 0)
whenα ≤ 1. The physical interpretation is that a typical orbit will stick for long
times near the0 marginal fixed point, and the ‘trapping time’ will be largerfor
higher values of the intermittency parameters (recallα = s−1). Hence, we need to
look more closely at the behavior of traces of high powers of the transfer operator.

The evaluation of transport coefficient requires one more derivative with respect
to expectation values of state space observables (see sect.24.1): if we use the
diffusion dynamical zeta function (24.7), we may write the diffusion coefficient as
an inverse Laplace transform,in such a way that any distinction between maps and
flows has vanished. In the case of 1-d diffusion we thus have

D = lim
t→∞

d2

dβ2

1
2πi

∫ a+i∞

a−i∞
ds estζ

′(β, s)
ζ(β, s)

∣∣∣∣∣∣
β=0

(24.32)

where theζ′ refers to the derivative with respect tos.

The evaluation of inverse Laplace transforms for high values of the argument
is most conveniently performed using Tauberian theorems. We shall take

ω(λ) =
∫ ∞

0
dx e−λxu(x) ,

with u(x) monotone asx → ∞; then, asλ 7→ 0 andx 7→ ∞ respectively (and
ρ ∈ (0,∞),

ω(λ) ∼ 1
λρ

L

(
1
λ

)

if and only if

u(x) ∼ 1
Γ(ρ)

xρ−1L(x) ,

whereL denotes any slowly varying function with limt→∞ L(ty)/L(t) = 1. Now

1/ζ0
′(e−s, β)

1/ζ0(e−s, β)
=

(
4
Λ
+ Λ−4
Λζ(1+α)

(
J(e−s, α + 1)+ J(e−s, α)

))
coshβ

1− 4
Λ

e−s coshβ − Λ−4
Λζ(1+α)e

−s(e−s, α + 1) coshβJ
.

We then take the double derivative with respect toβ and obtain

d2

dβ2

(
1/ζ0

′(e−s, β)/ζ−1(e−s, β)
)
β=0

=

4
Λ
+ Λ−4
Λζ(1+α)

(
J(e−s, α + 1)+ J(e−s, α)

)

(
1− 4

Λ
e−s − Λ−4

Λζ(1+α)e
−sJ(e−s, α + 1)

)2
= gα(s) (24.33)
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The asymptotic behavior of the inverse Laplace transform (24.32) may then be
evaluated via Tauberian theorems, once we use our estimate for the behavior of
Jonquière functions nearz= 1. The deviations from normal behavior correspond
to an explicit dependence ofD on time. Omitting prefactors (which can be calculated
by the same procedure) we have

gα(s) ∼



s−2 for α > 1
s−(α+1) for α ∈ (0, 1)
1/(s2 ln s) for α = 1 .

The anomalous diffusion exponents follow:
[exercise 24.6]

〈(x− x0)2〉t ∼



t for α > 1
tα for α ∈ (0, 1)
t/ ln t for α = 1 .

(24.34)

Résum é

With initial data accuracyδx = |δx(0)| and system sizeL, a trajectory is predictable
only to thefinite Lyapunov time

TLyap ≈ −
1
λ

ln |δx/L| ,

Beyond the Lyapunov time chaos rules. Successes of chaos theory: statistical
mechanics, quantum mechanics, and questions of long term stability in celestial
mechanics.

Tabletop experiment: measuremacroscopic transport– diffusion, conductance,
drag – observe thus determinism onnanoscales.

Chaos: what is it good for? TRANSPORT!Measurable predictions: washboard
mean velocity figure24.7(a), cold atom lattice figure24.7(b), AFM tip drag force
figure24.7(c).

That Smale’s “structural stability” conjecture turned outto be wrong is not
a bane of chaotic dynamics - it is actually a virtue, perhaps the most dramatic
experimentally measurable prediction of chaotic dynamics. As long as microscopic
periodicity is exact, the prediction is counterintuitive for a physicist - transport
coefficients arenot smooth functions of system parameters, rather they are non-
monotonic,nowhere differentiablefunctions.

The classical Boltzmann equation for evolution of 1-particle density is based
on stosszahlansatz, neglect of particle correlations prior to, or after a 2-particle
collision. It is a very good approximate description of dilute gas dynamics, but
a difficult starting point for inclusion of systematic corrections. In the theory
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Figure 24.7: (a) Washboard mean velocity, (b)
cold atom lattice, and (c) AFM tip drag force. (Y.
Lan)

(a)
Θ

(b) ωsin(   t)

(c) velocity

frequency Ω

developed here, no correlations are neglected - they are allincluded in the cycle
averaging formula such as the cycle expansion for the diffusion constant

D =
1
2d

1
〈T〉ζ

∑′
(−1)k+1 (n̂p + · · ·)

|Λp · · · |
(n̂p1 + · · · + n̂pk)

2

|Λp1 · · ·Λpk |
.

Such formulas areexact; the issue in their applications is what are the most
effective schemes of estimating the infinite cycle sums required for their evaluation.
Unlike most statistical mechanics, here there are no phenomenological macroscopic
parameters; quantities such as transport coefficients are calculable to any desired
accuracy from the microscopic dynamics.

Though superficially indistinguishable from the probabilistic random walk
diffusion, deterministic diffusion is quite recognizable, at least in low dimensional
settings, through fractal dependence of the diffusion constant on the system parameters,
and through non-Gaussion relaxation to equilibrium (non-vanishing Burnett coefficients).

For systems of a few degrees of freedom these results are on rigorous footing,
but there are indications that they capture the essential dynamics of systems of
many degrees of freedom as well.

Actual evaluation of transport coefficients is a test of the techniques developed
above in physical settings. In cases of severe pruning the trace formulas and
ergodic sampling of dominant cycles might be more effective strategy than the
cycle expansions of dynamical zeta functions and systematic enumeration of all
cycles.
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Commentary

Remark 24.1 Lorentz gas. The original pinball model proposed by Lorentz [4] consisted
of randomly, rather than regularly placed scatterers.

Remark 24.2 Who’s dun it? Cycle expansions for the diffusion constant of a particle
moving in a periodic array have been introduced independently by R. Artuso [5] (exact
dynamical zeta function for 1-d chains of maps (24.8)), by W.N. Vance [6],and by P.
Cvitanović, J.-P. Eckmann, and P. Gaspard [7] (the dynamical zeta function cycle expansion
(24.8) applied to the Lorentz gas).

Remark 24.3 Lack of structural stability for D. Expressions like (24.20) may lead to
an expectation that the diffusion coefficient (and thus transport properties) are smooth
functions of the chaoticity of the system (parameterized, for example, by the Lyapunov
exponentλ = lnΛ). This turns out not to be true:D as a function ofΛ is a fractal, nowhere
differentiable curve shown in figure24.5. The dependence ofD on the map parameterΛ is
rather unexpected - even though for largerΛmore points are mapped outside the unit cell
in one iteration, the diffusion constant does not necessarily grow. The fractal dependence
of diffusion constant on the map parameter is discussed in refs. [8, 9, 10]. Statistical
mechanicians tend to believe that such complicated behavior is not to be expected in
systems with very many degrees of freedom, as the addition toa large integer dimension
of a number smaller than 1 should be as unnoticeable as a microscopic perturbation of a
macroscopic quantity. No fractal-like behavior of the conductivity for the Lorentz gas has
been detected so far [11].

Remark 24.4 Diffusion induced by 1-d maps. We refer the reader to refs. [12, 13] for
early work on the deterministic diffusion induced by 1-dimenional maps. The sawtooth
map (24.9) was introduced by Grossmann and Fujisaka [14] who derived the integer
slope formulas (24.20) for the diffusion constant. The sawtooth map is also discussed
in refs. [15].

Remark 24.5 Symmetry factorization in one dimension. In theβ = 0 limit the dynamics
(24.11) is symmetric underx→ −x, and the zeta functions factorize into products of zeta
functions for the symmetric and antisymmetric subspaces, as described in sect.19.1.1:

1
ζ(0, z)

=
1

ζs(0, z)
1

ζa(0, z)
,

∂

∂z
1
ζ
=

1
ζs

∂

∂z
1
ζa
+

1
ζa

∂

∂z
1
ζs
. (24.35)

The leading (material flow conserving) eigenvaluez= 1 belongs to the symmetric subspace
1/ζs(0, 1) = 0, so the derivatives (24.15) also depend only on the symmetric subspace:

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣∣∣∣∣
z=1
=

1
ζa(0, z)

z
∂

∂z
1

ζs(0, z)

∣∣∣∣∣
z=1

. (24.36)

Implementing the symmetry factorization is convenient, but not essential, at this level of
computation.
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length # cycles ζ(0,0) λ

1 5 -1.216975 -
2 10 -0.024823 1.745407
3 32 -0.021694 1.719617
4 104 0.000329 1.743494
5 351 0.002527 1.760581
6 1243 0.000034 1.756546

Table 24.1: Fundamental domain, w=0.3 .

Remark 24.6 Lorentz gas in the fundamental domain. The vector valued nature of
the generating function (24.3) in the case under consideration makes it difficult to perform
a calculation of the diffusion constant within the fundamental domain. Yet we point out
that, at least as regards scalar quantities, the full reduction toM̃ leads to better estimates.
A proper symbolic dynamics in the fundamental domain has been introduced in ref. [16].

In order to perform the full reduction for diffusion one should express the dynamical
zeta function (24.7) in terms of the prime cycles of the fundamental domainM̃ of the
lattice (see figure24.2) rather than those of the elementary (Wigner-Seitz) cellM. This
problem is complicated by the breaking of the rotational symmetry by the auxiliary vector
β, or, in other words, the non-commutativity of translationsand rotations: see ref. [7].

Remark 24.7 Anomalous diffusion. Anomalous diffusion for 1-d intermittent maps
was studied in the continuous time random walk approach in refs. [10, 11]. The first
approach within the framework of cycle expansions (based ontruncated dynamical zeta
functions) was proposed in ref. [12]. Our treatment follows methods introduced in ref. [13],
applied there to investigate the behavior of the Lorentz gaswith unbounded horizon.

Remark 24.8 Jonquière functions. In statistical mechanics Jonquière functions

J(z, s) =
∞∑

k=1

zk/ks (24.37)

appear in the theory of free Bose-Einstein gas, see refs. [22, 23].

diffusion - 2sep2002.tex

EXERCISES 433

Exercises

24.1. Diffusion for odd integerΛ. Show that when the
slopeΛ = 2k−1 in (24.9) is an odd integer, the diffusion
constant is given byD = (Λ2 − 1)/24, as stated in
(24.21).

24.2. Fourth-order transport coefficient. Verify (24.24).
You will need the identity

n∑

k=1

k4 =
1
30

n(n+ 1)(2n+ 1)(3n2 + 3n− 1) .

24.3. Finite Markov partitions. Verify (24.28).

24.4. Maps with variable peak shape:
Consider the following piecewise linear map

fδ(x) =



3x
1−δ for x ∈

[
0, 1

3(1− δ)
]

3
2 −

(
2
δ

∣∣∣ 4−δ
12 − x

∣∣∣
)

for x ∈
[

1
3(1− δ), 1

6(2+ δ)
]

1− 3
1−δ

(
x− 1

6(2+ δ)
)

for x ∈
[

1
6(2+ δ), 1

2

] (24.38)

and the map in [1/2, 1] is obtained by antisymmetry with
respect tox = 1/2, y = 1/2. Write the corresponding
dynamical zeta function relevant to diffusion and then
show that

D =
δ(2+ δ)
4(1− δ)

See refs. [18, 19] for further details.

24.5. Two-symbol cycles for the Lorentz gas. Write down
all cycles labeled by two symbols, such as (0 6), (1 7),
(1 5) and (0 5).

ChaosBook.org/pages offers several project-length
deterministic diffusion exercises.

24.6. Accelerated diffusion. Consider a maph, such that
ĥ = f̂ of figure 24.6 (b), but now running branches
are turner into standing branches and vice versa, so that
1, 2, 3, 4 are standing while 0 leads to both positive and
negative jumps. Build the corresponding dynamical zeta
function and show that

σ2(t) ∼



t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)

24.7. Recurrence times for Lorentz gas with infinite
horizon. Consider the Lorentz gas with unbounded
horizon with a square lattice geometry, with disk radius
R and unit lattice spacing. Label disks according to
the (integer) coordinates of their center: the sequence
of recurrence times{t j} is given by the set of collision
times. Consider orbits that leave the disk sitting at
the origin and hit a disk far away after a free flight
(along the horizontal corridor). Initial conditions are
characterized by coordinates (φ, α) (φ determines the
initial position along the disk, whileα gives the angle
of the initial velocity with respect to the outward
normal: the appropriate measure is thendφ cosαdα
(φ ∈ [0, 2π), α ∈ [−π/2, π/2]. Find howψ(T) scales
for large values ofT: this is equivalent to investigating
the scaling of portions of the state space that lead to a
first collision with disk (n, 1), for large values ofn (as
n 7→ ∞ n ≃ T).
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Chapter 25

Turbulence?

I am an old man now, and when I die and go to Heaven
there are two matters on which I hope enlightenment. One
is quantum electro-dynamics and the other is turbulence of
fluids. About the former, I am rather optimistic.

—Sir Horace Lamb

T    honorable cause that would justify sweating through so much
formalism - this is but the sharpening of a pencil in order that we may attack
the Navier-Stokes equation,

ρ

(
∂u
∂t
+ u · ∇u

)
= −∇p+ ν∇2u + f , (25.1)

and solve the problem of turbulence.

Flows described by partial differential equations [PDEs] are said to be ‘infinite
dimensional’ because if one writes them down as a set of ordinary differential
equations [ODEs], one needs infinitely many of them to represent the dynamics
of one partial differential equation. Even though the state space is infinite--
dimensional, the long-time dynamics of many systems of physical interest is finite-
dimensional, contained within aninertial manifold.

Being realistic, we are not so foolhardy to immediately plunge intotheproblem
– there are too many dimensions and indices. Instead, we start small, in one spatial
dimension,u → u, u · ∇u → u∂x, assume constantρ, forget about the pressurep,
and so on. This line of reasoning, as well as many other equally sensible threads of
thought, such as the amplitude equations obtained via weakly nonlinear stability
analysis of steady flows, leads to a small set of frequently studied nonlinear PDEs,
like the one that we turn to now.
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25.1 Fluttering flame front

Romeo: ‘Misshapen chaos of well seeming forms!’
—W. Shakespeare,Romeo and Julliet, Act I, Scene I

The Kuramoto-Sivashinsky [KS] system describes the flame front flutter of
gas burning on your kitchen stove, figure25.1 (a), and many other problems of
greater import, is one of the simplest nonlinear systems that exhibit ‘turbulence’
(in this context often referred to more modestly as ‘spatiotemporally chaotic behavior’).
The time evolution of the ‘flame front velocity’u = u(x, t) on a periodic domain

u(x, t) = u(x+ L, t) is given by

ut +
1
2(u2)x + uxx + uxxxx = 0 , x ∈ [0, L] . (25.2)

In this equationt is the time andx is the spatial coordinate. The subscriptsx andt
denote partial derivatives with respect tox andt: ut = ∂u/d∂, uxxxx stands for the
4th spatial derivative ofu = u(x, t) at positionx and timet. In what follows we
use interchangeably the “dimensionless system size”L̃, or the periodic domain
size L = 2πL̃, as the system parameter. We take note, as in the Navier-Stokes
equation (25.1), of the “inertial” termu∂xu, the “anti-diffusive” term∂2

xu (with a
“wrong” sign), etc..

The term (u2)x makes this anonlinear system. This is one of the simplest
conceivable nonlinear PDE, playing the role in the theory ofspatially extended
systems a bit like the role that thex2 nonlinearity plays in the dynamics of iterated
mappings. The time evolution of a typical solution of the Kuramoto-Sivashinsky

[section 3.3]
system is illustrated by figure25.1(b).

[remark 25.1]

Spatial periodicityu(x, t) = u(x + L, t) makes it convenient to work in the
Fourier space,

u(x, t) =
+∞∑

k=−∞
ak(t)e

ikx/L̃ , (25.3)

with the 1-dimensional PDE (25.2) replaced by an infinite set of ODEs for the
complex Fourier coefficientsak(t):

ȧk = vk(a) = ((k/L̃)2 − (k/L̃)4) ak − i
k

2L̃

+∞∑

m=−∞
amak−m . (25.4)

Sinceu(x, t) is real,ak = a∗−k , and we can replace the sum in (25.10) by a sum
overk > 0.

Due to the hyperviscous dampinguxxxx, long time solutions of Kuramoto-
Sivashinsky equation are smooth,ak drop off fast withk, and truncations of (25.10)
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Figure 25.1: (a) Kuramoto-Sivashinsky dynamics
visualized as the Bunsen burner flame flutter, with
u = u(x, t) the “velocity of the flame front” at
position x and timet. (b) A typical “turbulent”
solution of the Kuramoto-Sivashinsky equation,
system sizeL = 88.86. The color (gray scale)
indicates the value ofu at a given position and
instant in time. Thex coordinate is scaled with
the most unstable wavelength 2π

√
2, which is

approximately also the mean wavelength of the
turbulent flow. The dynamics is typical of a
large system, in this case approximately 10 mean
wavelengths wide. (from ref. [10])
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to N terms, 16≤ N ≤ 128, yield highly accurate solutions for system sizes
considered here. Robustness of the Fourier representationof KS as a function
of the number of modes kept in truncations of (25.10) is, however, a subtle issue.
Adding an extra mode to a truncation of the system introducesa small perturbation.
However, this can (and often will) throw the dynamics into a different asymptotic
state. A chaotic attractor forN = 15 can collapse into an attractive period-3 cycle
for N = 16, and so on. If we compute, for example, the Lyapunov exponent
λ(L̃,N) for a strange attractor of the system (25.10), there is no reason to expect
λ(L̃,N) to smoothly converge to a limit valueλ(L̃,∞) as N → ∞, because of
the lack of structural stability both as a function of truncation N, and the system
sizeL̃. The topology is more robust for̃L windows of transient turbulence, where
the system can be structurally stable, and it makes sense to compute Lyapunov
exponents, escape rates, etc., for the repeller, i.e., the closure of the set of all
unstable periodic orbits.

Spatial representations of PDEs (such as the 3d snapshots of velocity and
vorticity fields in Navier-Stokes) offer little insight into detailed dynamics of low-
Reflows. Much more illuminating are the state space representations.

The objects explored in this paper: equilibria and short periodic orbits, are
robust both under mode truncations and small system parameter L̃ changes.

25.1.1 Scaling and symmetries

The Kuramoto-Sivashinsky equation (25.2) is space translationally invariant, time
translationally invariant, and invariant under reflectionx→ −x, u→ −u.

Comparingut and (u2)x terms we note thatuhas dimensions of [x]/[t], henceu
is the “velocity,” rather than the “height” of the flame front. Indeed, the Kuramoto-
Sivashinsky equation is Galilean invariant: ifu(x, t) is a solution, thenv + u(x +
2vt, t), with v an arbitrary constant velocity, is also a solution. Withoutloss of
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generality, in our calculations we shall work in the mean zero velocity frame

∫
dx u= 0 . (25.5)

In terms of the system sizeL, the only length scale available, the dimensions
of terms in (25.2) are [x] = L, [t] = L2, [u] = L−1, [ν] = L2 . Scaling out the
“viscosity” ν

x→ xν
1
2 , t → tν , u→ uν−

1
2 ,

brings the Kuramoto-Sivashinsky equation (25.2) to a non-dimensional form

ut = (u2)x − uxx − uxxxx , x ∈ [0, Lν−
1
2 ] = [0, 2πL̃] . (25.6)

In this way we trade in the “viscosity”ν and the system sizeL for a single
dimensionless system size parameter

L̃ = L/(2π
√
ν) (25.7)

which plays the role of a “Reynolds number” for the Kuramoto-Sivashinsky system.

In the literature sometimesL is used as the system parameter, withν fixed to 1,
and at other timesν is varied withL fixed to either 1 or 2π. To minimize confusion,
in what follows we shall state results of all calculations inunits of dimensionless
system sizẽL. Note that the time units also have to be rescaled; for example, if
T∗p is a period of a periodic solution of (25.2) with a givenν andL = 2π, then the
corresponding solution of the non-dimensionalized (25.6) has period

Tp = T∗p/ν . (25.8)

25.1.2 Fourier space representation

Spatial periodic boundary conditionu(x, t) = u(x+ 2πL̃, t) makes it convenient to
work in the Fourier space,

u(x, t) =
+∞∑

k=−∞
bk(t)e

ikx/L̃ . (25.9)

with (25.6) replaced by an infinite tower of ODEs for the Fourier coefficients:

ḃk = (k/L̃)2
(
1− (k/L̃)2

)
bk + i(k/L̃)

+∞∑

m=−∞
bmbk−m . (25.10)
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This is the infinite set of ordinary differential equations promised in this chapter’s
introduction.

Sinceu(x, t) is real,bk = b∗−k , so we can replace the sum overm in (25.10) by
a sum overm> 0. As ḃ0 = 0, b0 is a conserved quantity, in our calculations fixed
to b0 = 0 by the vanishing mean〈u〉 condition (25.5) for the front velocity.

Example 25.1 Kuramoto-Sivashinsky antisymmetric subspace: The Fourier
coefficients bk are in general complex numbers. We can isolate the antisymmetric
subspace u(x, t) = −u(−x, t) by considering the case of bk pure imaginary, bk = iak,
where ak = −a−k are real, with the evolution equations

ȧk = (k/L̃)2
(
1− (k/L̃)2

)
ak − (k/L̃)

+∞∑

m=−∞
amak−m . (25.11)

By picking this subspace we eliminate the continuous translational symmetry from our
considerations; that is not an option for an experimentalist, but will do for our purposes.
In the antisymmetric subspace the translational invariance of the full system reduces
to the invariance under discrete translation by half a spatial period L. In the Fourier
representation (25.11) this corresponds to invariance under

a2m→ a2m , a2m+1→ −a2m+1 . (25.12)

The antisymmetric condition amounts to imposing u(0, t) = 0 boundary condition.

25.2 Infinite-dimensional flows: Numerics

The trivial solutionu(x, t) = 0 is an equilibrium point of (25.2), but that is basically
all we know as far as useful analytical solutions are concerned. To develop some
intuition about the dynamics we turn to numerical simulations.

How are solutions such as figure25.1 (b) computed? The salient feature of
such partial differential equations is a theorem saying that for state space contracting
flows, the asymptotic dynamics is describable by afiniteset of “inertial manifold”
ordinary differential equations. How you solve the equation (25.2) numerically is
up to you. Here are some options:

Discrete mesh:You can divide thex interval into a sufficiently fine discrete grid of
N points, replace space derivatives in (25.2) by approximate discrete derivatives,
and integrate a finite set of first order differential equations for the discretized
spatial componentsu j(t) = u( jL/N, t), by any integration routine you trust.

Fourier modes: You can integrate numerically the Fourier modes (25.10), truncating
the ladder of equations to a finite number of modesN, i.e., setak = 0 for k > N. In

[exercise 2.6]
the applied mathematics literature more sophisticated variants of such truncations
are calledGälerkin truncations, or Gälerkin projections. You need to worry about
“stiffness” of the equations and the stability of your integrator.For the parameter
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Figure 25.2: Spatiotemporally periodic solution
u0(x, t), with periodT0 = 30.0118 . The antisymmetric
subspace,u(x, t) = −u(−x, t), so we plotx ∈ [0, L/2].
System sizeL̃ = 2.89109, N = 16 Fourier modes
truncation. (From ref. [4])

Figure 25.3: Projections of a typical 16-
dimensional trajectory onto different 3-
dimensional subspaces, coordinates (a){a1,a2,a3},
(b) {a1,a2,a4}. System sizẽL = 2.89109,N = 16
Fourier modes truncation. (From ref. [4].)
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values explored in this chapter, truncationsN in range 16 to 64 yields sufficient
accuracy.

Pseudo-spectral methods:You can mix the two methods, exploiting the speed
of Fast Fourier Transforms.

Example 25.2 Kuramoto-Sivashinsky simulation, antisymmetric subspac e: To
get started, we set ν = 0.029910, L = 2π in the Kuramoto-Sivashinsky equation (25.2),
or, equivalently, ν = 1, L = 36.33052 in the non-dimensionalized (25.6). Consider
the antisymmetric subspace (25.11), so the non-dimensionalized system size is L̃ =
L/4π = 2.89109. Truncate (25.11) to 0 ≤ k ≤ 16, and integrate an arbitrary initial
condition. Let the transient behavior settle down.

Why this L̃? For this system size L̃ the dynamics appears to be chaotic, as
far as can be determined numerically. Why N = 16? In practice one repeats the
same calculation at different truncation cutoffs N, and makes sure that the inclusion of
additional modes has no effect within the desired accuracy. For this system size N = 16
suffices.

Once a trajectory is computed in Fourier space, we can recover and plot the
corresponding spatiotemporal pattern u(x, t) over the configuration space using (25.9),
as in figure 25.1 (b) and figure 25.2. Such patterns give us a qualitative picture of
the flow, but no detailed dynamical information; for that, tracking the evolution in a
high-dimensional state space, such as the space of Fourier modes, is much more
informative.

25.3 Visualization

The problem with high-dimensional representations, such as truncations of the
infinite tower of equations (25.10), is that the dynamics is difficult to visualize.
The best we can do without much programming is to examine the trajectory’s

[section 25.3]
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Figure 25.4: The attractor of the Kuramoto-
Sivashinsky system (25.10), plotted as the a6

component of thea1 = 0 Poincaré section return
map. Here 10,000 Poincaré section returns of a typical
trajectory are plotted. Also indicated are the periodic
points 0, 1, 01 and 10. System sizeL̃ = 2.89109,
N = 16 Fourier modes truncation. (From ref. [4].)

projections onto any three axesai , a j , ak, as in figure25.3.

The question is: how is one to look at such a flow? It is not clearthat restricting
the dynamics to a Poincaré section necessarily helps - after all, a section reduces
a (d + 1)-dimensional flow to ad-dimensional map, and how much is gained by
replacing a continuous flow in 16 dimensions by a set of pointsin 15 dimensions?
The next example illustrates the utility of visualization of dynamics by means of
Poincaré sections.

Example 25.3 Kuramoto-Sivashinsky Poincar é return maps: Consider the
Kuramoto-Sivashinsky equation in the N Fourier modes representation. We pick (arbitrarily)
the hyperplane a1 = 0 as the Poincaré section, and integrate (25.10) with a1 = 0, and an
arbitrary initial point (a2, . . . , aN). When the flow crosses the a1 = 0 hyperplane in the
same direction as initially, the initial point is mapped into (a′2, . . .a

′
N) = P(a2, . . . , aN).

This defines P, the Poincaré return map (3.1) of the (N − 1)-dimensional a1 = 0
hyperplane into itself.

Figure 25.4 is a typical result. We have picked - again arbitrarily - a subspace
such as a6(n+ 1) vs. a6(n) in order to visualize the dynamics. While the topology of the
attractor is still obscure, one thing is clear: even though the flow state space is infinite
dimensional, the attractor is finite and thin, barely thicker than a line.

The above example illustrates why a Poincaré section givesa more informative
snapshot of the flow than the full flow portrait. While no fine structure is discernible
in the full state space flow portraits of the Kuramoto-Sivashinsky dynamics, figure25.3,
the Poincaré return map figure25.4reveals the fractal structure in the asymptotic
attractor.

In order to find a better representation of the dynamics, we now turn to its
topological invariants.

25.4 Equilibria of equilibria

(Y. Lan and P. Cvitanović)

The set of equilibria and their stable/ unstable manifolds form the coarsest topological
framework for organizing state space orbits.
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The equilibrium conditionut = 0 for the Kuramoto-Sivashinsky equation PDE
(25.6) is the ODE

(u2)x − uxx − uxxxx = 0

which can be analyzed as a dynamical system in its own right. Integrating once
we get

u2 − ux − uxxx = c , (25.13)

wherec is an integration constant whose value strongly influences the nature of
the solutions. Written as a 3−d dynamical system with spatial coordinatex playing
the role of “time,” this is a volume preserving flow

ux = v , vx = w , wx = u2 − v− c , (25.14)

with the “time” reversal symmetry,

x→ −x, u→ −u, v→ v, w→ −w .

From (25.14) we see that

(u+ w)x = u2 − c .

If c < 0, u+ w increases without bound withx→ ∞, and every solution escapes
to infinity. If c = 0, the origin (0, 0, 0) is the only bounded solution.

For c > 0 there is muchc-dependent interesting dynamics, with complicated
fractal sets of bounded solutions. The sets of the solutionsof the equilibrium
condition (25.14) are themselves in turn organized by the equilibria of the equilibrium
condition, and the connections between them. Forc > 0 the equilibrium points of
(25.14) arec+ = (

√
c, 0, 0) andc− = (−√c, 0, 0). Linearization of the flow around

c+ yields stability eigenvalues [2λ ,−λ ± iθ] with

λ =
1
√

3
sinhφ , θ = coshφ ,

andφ fixed by sinh 3φ = 3
√

3c. Hencec+ has a 1−d unstable manifold and a 2−d
stable manifold along which solutions spiral in. By thex → −x “time reversal”
symmetry, the invariant manifolds ofc− have reversed stability properties.

The non–wandering set fo this dynamical system is quite pretty, and surprisingly
hard to analyze. However, we do not need to explore the fractal set of the Kuramoto-
Sivashinsky equilibria for infinite size system here; for a fixed system sizeL
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Figure 25.5: The non–wandering set under study
appears to consist of three patches: the left part
(SL), the center part (SC) and the right part (SR),
each centered around an unstable equilibrium: (a)
centralC1 equilibrium, (b) sideR1 equilibrium on
the interval [0, L]. (a)
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with periodic boundary condition, the only surviving equilibria are those with
periodicity L. They satisfy the equilibrium condition for (25.10)

(k/L̃)2
(
1− (k/L̃)2

)
bk + i(k/L̃)

+∞∑

m=−∞
bmbk−m = 0 . (25.15)

Periods of spatially periodic equilibria are multiples ofL. Every timeL̃ crosses an
integer valueL̃ = n, n-cell states are generated through pitchfork bifurcations. In
the full state space they form an invariant circle due to the translational invariance
of (25.6). In the antisymmetric subspace considered here, they corresponds to two
points, half-period translates of each other of the form

u(x, t) = −2
∑

k

bkn sin(knx) ,

wherebkn ∈ R.

For any fixed periodL the number of spatially periodic solutions is finite
up to a spatial translation. This observation can be heuristically motivated as
follows. Finite dimensionality of the inertial manifold bounds the size of Fourier
components of all solutions. On a finite-dimensional compact manifold, an
analytic function can only have a finite number of zeros. So, the equilibria, i.e.,
the zeros of a smooth velocity field on the inertial manifold,are finitely many.

For a sufficiently smallL the number of equilibria is small, mostly concentrated
on the low wave number end of the Fourier spectrum. These solutions may be
obtained by solving the truncated versions of (25.15).

Example 25.4 Some Kuramoto-Sivashinsky equilibria:

25.5 Why does a flame front flutter?

I understood every word.

—Fritz Haake
[section 16.2]

PDEs - 27apr2007.tex



CHAPTER 25. TURBULENCE? 444

Figure 25.6: Lyapunov exponentsλ1,k versusk for

the least unstable spatio-temporally periodic orbit1
of the Kuramoto-Sivashinsky system, compared with
the Floquet exponents of theu(x, t) = 0 stationary
solution,λk = k2 − νk4. The eigenvalueλ1,k for k ≥ 8
falls below the numerical accuracy of integration and
are not meaningful. The cycle1 was computed using
methods of chapter12. System sizeL̃ = 2.89109,
N = 16 Fourier modes truncation. (From ref. [4])
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We start by considering the case whereaq is an equilibrium point (2.8). Expanding
around the equilibrium pointaq, and using the fact that the matrixA = A(aq) in
(4.2) is constant, we can apply the simple formula (4.30) also to the fundamental
matrix of an equilibrium point of a PDE,

Jt(aq) = eAt A = A(aq) .

Example 25.5 Stability matrix, antisymmetric subspace: The Kuramoto-Sivashinsky
flat flame front u(x, t) = 0 is an equilibrium point of (25.2). The stability matrix (4.3)
follows from (25.10)

Ak j(a) =
∂vk(a)
∂a j

= ((k/L̃)2 − (k/L̃)4)δk j − 2(k/L̃)ak− j . (25.16)

For the u(x, t) = 0 equilibrium solution the stability matrix is diagonal, and – as in (4.16)
– so is the fundamental matrix Jt

k j(0) = δk je((k/L̃)2−(k/L̃)4)t .

For L̃ < 1, u(x, t) = 0 is the globally attractive stable equilibrium. As the
system sizẽL is increased, the “flame front” becomes increasingly unstable and
turbulent, the dynamics goes through a rich sequence of bifurcations on which we
shall not dwell here.

The |k| <?? long wavelength perturbations of the flat-front equilibrium are
linearly unstable, while all|k| >?? short wavelength perturbations are strongly
contractive. The highk eigenvalues, corresponding to rapid variations of the
flame front, decay so fast that the corresponding eigendirections are physically
irrelevant. To illustrate the rapid contraction in the non-leading eigendirections
we plot in figure25.6 the eigenvalues of the equilibrium in the unstable regime,
for relatively small system size, and compare them with the stability eigenvalues
of the least unstable cycle for the same system size. The equilibrium solution is
very unstable, in 5 eigendirections, the least unstable cycle only in one. Note
that for k > 7 the rate of contraction is so strong that higher eigendirections
are numerically meaningless for either solution; even though the flow is infinite-
dimensional, the attracting set must be rather thin.

While in general for̃L sufficiently large one expects many coexisting attractors
in the state space,in numerical studies most random initialconditions settle converge
to the same chaotic attractor.
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From (25.10) we see that the originu(x, t) = 0 has Fourier modes as the linear
stability eigenvectors. When|k| ∈ (0, L̃), the corresponding Fourier modes are
unstable. The most unstable modes has|k| = L̃/

√
2 and defines the scale of basic

building blocks of the spatiotemporal dynamics of the Kuramoto-Sivashinsky equation
in large system size limit, as shown in sect.??.

Consider now the case of initialak sufficiently small that the bilinearamak−m

terms in (25.10) can be neglected. Then we have a set of decoupled linear equations
for ak whose solutions are exponentials, at most a finite number forwhichk2 > νk4

is growing with time, and infinitely many withνk4 > k2 decaying in time. The
growth of the unstable long wavelengths (low|k|) excites the short wavelengths
through theamak−m nonlinear term in (25.10). The excitations thus transferred are
dissipated by the strongly damped short wavelengths, and a “chaotic equilibrium”
can emerge. The very short wavelengths|k| ≫ 1/

√
ν remain small for all times,

but the intermediate wavelengths of order|k| ∼ 1/
√
ν play an important role in

maintaining the dynamical equilibrium. As the damping parameter decreases,
the solutions increasingly take on shock front character poorly represented by the
Fourier basis, and many higher harmonics may need to be kept in truncations of
(25.10).

Hence, while one may truncate the high modes in the expansion(25.10), care
has to be exercised to ensure that no modes essential to the dynamics are chopped
away.

In other words, even though our starting point (25.2) is an infinite-dimensional
dynamical system, the asymptotic dynamics unfolds on a finite-dimensional attracting
manifold, and so we are back on the familiar territory of sect. 2.2: the theory of a
finite number of ODEs applies to this infinite-dimensional PDE as well.

We can now start to understand the remark on page37that for infinite dimensional
systems time reversibility is not an option: evolution forward in time strongly
damps the higher Fourier modes. There is no turning back: if we reverse the time,
the infinity of high modes that contract strongly forward in time now explodes,
instantly rendering evolution backward in time meaningless. As so much you are
told about dynamics, this claim is also wrong, in a subtle way: if the initial u(x, 0)
is in the non–wandering set (2.2), the trajectory is well defined both forward and
backward in time. For practical purposes, this subtlety is not of much use, as any
time-reversed numerical trajectory in a finite-mode truncation will explode very
quickly, unless special precautions are taken.

When is an equilibrium important? There are two kinds of roles equilibria
play:

“Hole” in the natural measure. The more unstable eigendirections it has (for
example, theu = 0 solution), the more unlikely it is that an orbit will recur in its
neighborhood.

unstable manifold of a “least unstable” equilibrium. Asymptotic dynamics
spends a large fraction of time in neighborhoods of a few equilibria with only a
few unstable eigendirections.
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Table 25.1: Important Kuramoto-Sivashinsky equilibria: the first few Floquet exponents

S µ(1) ± i ω(1) µ(2) ± i ω(2) µ(3) ± i ω(3)

C1 0.04422± i 0.26160 -0.255± i 0.431 -0.347± i 0.463
R1 0.01135± i 0.79651 -0.215± i 0.549 -0.358± i 0.262
T 0.25480 -0.07± i 0.645 -0.264

Example 25.6 Stability of Kuramoto-Sivashinsky equilibria:

spiraling out in a plane, all other directions contracting

Stability of “center” equilibrium

linearized Floquet exponents:

(µ(1) ± i ω(1), µ(2) ± i ω(2), · · ·) = (0.044± i 0.262, −0.255± i 0.431, · · ·)

The plane spanned by µ(1) ± i ω(1) eigenvectors rotates with angular period
T ≈ 2π/ω(1) = 24.02.

a trajectory that starts near the C1 equilibrium point spirals away per one rotation
with multiplier Λradial ≈ exp(µ(1)T) = 2.9.

each Poincaré section return, contracted into the stable manifold by factor of
Λ2 ≈ exp(µ(2)T) = 0.002

The local Poincaré return map is in practice 1− dimensional

25.6 Periodic orbits

expanding eigenvalue of the least unstable spatio-temporally periodic orbit 1:
Λ1 = −2.0 . . .

very thin Poincaré section
thickness∝ least contracting eigenvalueΛ2 = 0.007. . .

15-d → 15-d Poincaré return map projection on the [a6 → a6] Fourier
component is not even 1→ 1.

25.7 Intrinsic parametrization

Both in the Rössler flow of example3.4, and in the Kuramoto-Sivashinsky system
of example25.3we have learned that the attractor is very thin, but otherwise the
return maps that we found were disquieting – neither figure3.6 nor figure25.4
appeared to be one-to-one maps. This apparent loss of invertibility is an artifact of
projection of higher-dimensional return maps onto lower-dimensional subspaces.
As the choice of lower-dimensional subspace is arbitrary, the resulting snapshots
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Figure 25.7: The Poincaré return map of the
Kuramoto-Sivashinsky system (25.10) figure 25.4,
from the unstable manifold of the1 fixed point to
the (neighborhood of) the unstable manifold. Also
indicated are the periodic points0 and01.
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of return maps look rather arbitrary, too. Other projections might look even less
suggestive.

Such observations beg a question: Does there exist a “natural,” intrinsically
optimal coordinate system in which we should plot of a returnmap?

As we shall now argue (see also sect.12.1), the answer is yes: The intrinsic
coordinates are given by the stable/unstable manifolds, and a return map should be
plotted as a map from the unstable manifold back onto the immediate neighborhood
of the unstable manifold.

Examination of numerical plots such as figure25.3suggests that a more thoughtful
approach would be to find a coordinate transformationy = h(x) to a “center
manifold,” such that in the new, curvilinear coordinates large-scale dynamics takes
place in (y1, y2) coordinates, with exponentially small dynamics iny3, y4 · · ·. But
- thinking is extra price - we do not know how to actually accomplish this.

Both in the example of the Rössler flow and of the Kuramoto-Sivashinsky
system we sketched the attractors by running a long chaotic trajectory, and noted
that the attractors are very thin, but otherwise the return maps that we plotted were
disquieting – neither figure3.6nor figure25.4appeared to be 1-to-1 maps. In this
section we show how to use such information to approximatelylocate cycles.

25.8 Energy budget

The space average of a functiona = a(x, t) on the intervalL,

〈a〉 = 1
L

∫ L

0
dx a(x, t) , (25.17)

is in general time dependent. Its mean value is given by the time average

a = lim
t→∞

1
t

∫ t

0
dτ 〈a〉 = lim

t→∞
1
tL

∫ t

0

∫ L

0
dτdx a(x, τ) . (25.18)
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The mean valuea, a = a(u) evaluated on an equilibrium or relative equilibrium
u(x, t) = uq(x− ct) is

aq = 〈a〉q . (25.19)

Evaluation of the infinite time average (25.18) on a function of a periodTp periodic
orbit or relative periodic orbitup(x, t) requires only a single traversal of the periodic
solution,

ap =
1
Tp

∫ Tp

0
dτ 〈a〉 . (25.20)

Equation (25.2) can be written as

ut = −Vx , V(x, t) = 1
2u2 + ux + uxxx . (25.21)

u is related to the “flame-front height”h(x, t) by u = hx, soE can be interpreted
as the mean energy density (25.22). So, even though KS is a phenomenological
small-amplitude equation, the time-dependent quantity

E =
1
L

∫ L

0
dx V(x, t) =

1
L

∫ L

0
dx

u2

2
(25.22)

has a physical interpretation [?] as the average “energy” density of the flame front.
This analogy to the corresponding definition of the mean kinetic energy density
for the Navier-Stokes will be useful in what follows.

The energy (25.22) is also the quadratic norm in the Fourier space,

E =
∞∑

k=1

Ek , Ek =
1
2 |ak|2 . (25.23)

Take time derivative of the energy density (25.22), substitute (25.2) and integrate
by parts. Total derivatives vanish by the spatial periodicity on theL domain:

Ė = 〈ut u〉 = −
〈(

u2

2
+ u ux + u uxxx

)

x
u

〉

=

〈
+ux

u2

2
+ (ux)

2 + ux uxxx

〉
. (25.24)

Substitution by (??) verifies that for an equilibriumE is constant:

Ė =

〈(
u2

2
+ ux + uxxx

)
ux

〉
= E 〈ux〉 = 0 .
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Figure 25.8: Power input
〈
(ux)2

〉
vs. dissipation〈

(uxx)2
〉

for L = 22 equilibria and relative
equilibria, for several periodic orbits and relative
periodic orbits, and for a typical “turbulent” state.
Note that(up,x)2 of the (Tp,dp) = (32.8,10.96)
relative periodic orbit, figure??(c), which appears
well embedded within the turbulent state, is close
to the turbulent expectation(ux)2 .
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Figure 25.9: E1 (red), E2 (green), E3 (blue),
connections fromE1 to A(L/4)E1 (green), from
A(L/4)E1 to E1 (yellow-green) and fromE3 to
A(L/4)E1 (blue), along with a generic long-time
“turbulent” evolution (grey) forL = 22. Three
different projections of the (E,
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) representation are shown.
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The first term in (25.24) vanishes by integration by parts,
〈
(u3)x

〉
= 3

〈
ux u2

〉
= 0 ,

and integrating the third term by parts yet again we get that the energy variation

Ė =
〈
(ux)

2
〉
−

〈
(uxx)

2
〉

(25.25)

balances the KS equation (25.2) power pumped in by the anti-diffusionuxx against
energy dissipated by the hypervicosityuxxxx [?].

In figure 25.8 we plot the power input
〈
(ux)2

〉
vs. dissipation

〈
(uxx)2

〉
for

all L = 22 equilibria and relative equilibria , several periodic orbits and relative
periodic orbits, and for a typical “turbulent” evolution. The time averaged energy
densityE computed on a typical orbit goes to a constant, so the expectation values
(25.26) of drive and dissipation exactly balance each out:

Ė = lim
t→∞

1
t

∫ t

0
dτ Ė = (ux)2 − (uxx)2 = 0 . (25.26)

In particular, the equilibria and relative equilibria sit on the diagonal in figure25.8,
and so do time averages computed on periodic orbits and relative periodic orbits:

Ep =
1

Tp

∫ Tp

0
dτE(τ)
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(ux)2
p =

1
Tp

∫ Tp

0
dτ

〈
(ux)

2
〉
= (uxx)2

p . (25.27)

In the Fourier basis (25.23) the conservation of energy on average takes form

0 =
+∞∑

k=1

((k/L̃)2 − (k/L̃)4) Ek , Ek(t) = |ak(t)|2 . (25.28)

The largek convergence of this series is insensitive to the system sizeL; Ek have
to decrease much faster than 1/(k/L̃)4. Deviation of Ek from this bound for
small k determines the active modes. This may be useful to bound the number
of equilibria, with the upper bound given by zeros of a small number of long
wavelength modes.

Résum é

Turbulence is the graveyard of theories
— Hans W. Liepmann

We have learned that an instanton is an analytic solution of Yang-Mills equations
of motion, but shouldn’t a strongly nonlinear field theory dynamics be dominated
by turbulent solutions? How are we to think about systems where every spatiotemporal
solution is unstable?

Here we think of turbulence in spatially extended systems interms of recurrent
spatiotemporal patterns. Pictorially, dynamics drives a given spatially extended
system through a repertoire of unstable patterns; as we watch a turbulent system
evolve, every so often we catch a glimpse of a familiar pattern:

=⇒ other swirls =⇒

For any finite spatial resolution, the system follows approximately for a finite
time a pattern belonging to a finite alphabet of admissible patterns, and the long
term dynamics can be thought of as a walk through the space of such patterns.
Recasting this image into mathematics is the subject of thisbook.

The problem one faces with high-dimensional flows is that their topology
is hard to visualize, and that even with a decent starting guess for a point on
a periodic orbit, methods like the Newton-Raphson method are likely to fail.
Methods that start with initial guesses for a number of points along the cycle, such

[chapter 27]
as the multipoint shooting method of sect.12.3, are more robust. The relaxation
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(or variational) methods take this strategy to its logical extreme, and start by a
guess of not a few points along a periodic orbit, but a guess ofthe entire orbit. As
these methods are intimately related to variational principles and path integrals,
we postpone their introduction to chapter27.

At present the theory is in practice applicable only to systems with a low
intrinsic dimension– the minimum number of coordinates necessary to capture its
essential dynamics. If the system is very turbulent (a description of its long time
dynamics requires a space of very high intrinsic dimension)we are out of luck.

Commentary

Remark 25.1 Model PDE systems. The theorem on finite dimensionality of inertial
manifolds of state space contracting PDE flows is proven in ref. [1]. The Kuramoto-
Sivashinsky equation was introduced in refs. [2, 3]. Holmes, Lumley and Berkooz [5]
offer a delightful discussion of why this system deserves studyas a staging ground for
studying turbulence in full-fledged Navier-Stokes equation. How good a description of a
flame front this equation is not a concern here; suffice it to say that such model amplitude
equations for interfacial instabilities arise in a varietyof contexts - see e.g. ref. [6] -
and this one is perhaps the simplest physically interestingspatially extended nonlinear
system.

For equilibria theL-independent bound onE is given by Michaelson [?]. The best
current bound[?, ?] on the long-time limit ofE as a function of the system sizeL scales
asE ∝ L3/2.

The work described in this chapter was initiated by Putkaradze’s 1996 term project
(seeChaosBook.org/extras), and continued by Christiansen Cvitanović, Davidchack,
Gibson, Halcrow, Lan, and Siminos [4, 7, 8, 16, 15, 10, 11, 9].

Exercises

25.1. Galilean invariance of the Kuramoto-Sivashinsky equation.

(a) Verify that the Kuramoto-Sivashinsky equation is
Galilean invariant: ifu(x, t) is a solution, then
v + u(x + 2vt, t), with v an arbitrary constant
velocity, i s also a solution.

(b) Verify that mean

〈u〉 = 1
L

∫

L
dx u

is conserved by the flow.

(c) Argue that the choice (25.5) of the vanishing mean
velocity, 〈u〉 = 0 leads to no loss of generality in
calculations that follow.

(d) [thinking is extra cost] Inspection
of various “turbulent” solutions of Kuramoto-
Sivashinsky equation reveals subregions of
“traveling waves” with locally nonzero〈u〉. Is
there a way to use Galilean invariance locally,
even though we eliminated it by the〈u〉 = 0
condition?

25.2. Infinite dimensional dynamical systems are not
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smooth. Many of the operations we consider
natural for finite dimensional systems do not have
smooth behavior in infinite dimensional vector spaces.
Consider, as an example, a concentrationφ diffusing on
R according to the diffusion equation

∂tφ =
1
2
∇2φ .

(a) Interpret the partial differential equation as an
infinite dimensional dynamical system. That is,
write it asẋ = F(x) and find the velocity field.

(b) Show by examining the norm

‖φ‖2 =
∫

R

dxφ2(x)

that the vector fieldF is not continuous.

(c) Try the norm

‖φ‖ = sup
x∈R
|φ(x)| .

Is F continuous?

(d) Argue that the semi-flow nature of the problem is
not the cause of our difficulties.

(e) Do you see a way of generalizing these results?
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Chapter 26

Noise

He who establishes his argument by noise and command
shows that his reason is weak.

—M. de Montaigne

(G. Vattay and P. Cvitanović)

T  (which reader can safely skip on the first reading) is about noise,
how it affects classical dynamics, and the ways it mimics quantum dynamics.

Why - in a study of deterministic and quantum chaos - start discussing noise?
First, in physical settings any dynamics takes place against a noisy background,
and whatever prediction we might have, we have to check its robustness to noise.
Second, as we show in this chapter, to the leading order in noise strength the
semiclassical Hamilton-Jacobi formalism carries over to weakly stochastic flows
in toto. As classical noisy dynamics is more intuitive than quantum dynamics, this
exercise helps demystify some of the formal machinery of semiclassical quantization.
Surprisingly, symplectic structure emerges here not as a deep principle of mechanics,
but an artifact of the leading approximation to quantum/noisy dynamics, not respected
by higher order corrections. The same is true of semiclassical quantum dynamics;
higher corrections do not respect canonical invariance. Third, the variational
principle derived here will be refashioned into a powerful tool for determining
periodic orbits in chapter27.

We start by deriving the continuity equation for purely deterministic, noiseless
flow, and then incorporate noise in stages: diffusion equation, Langevin equation,
Fokker-Planck equation, Hamilton-Jacobi formulation, stochastic path integrals.

26.1 Deterministic transport

(E.A. Spiegel and P. Cvitanović)
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Fluid dynamics is about physical flows of media with continuous densities. On
the other hand, the flows in state spaces of dynamical systemsfrequently require
more abstract tools. To sharpen our intuition about those, it is helpful to outline
the more tangible fluid dynamical vision.

Consider first the simplest property of a fluid flow calledmaterial invariant.
A material invariantI (x) is a property attached to each pointx that is preserved
by the flow, I (x) = I ( f t(x)); for example, at this point a green particle (more
formally: a passive scalar) is embedded into the fluid. AsI (x) is invariant, its
total time derivative vanishes,İ (x) = 0. Written in terms of partial derivatives this
is theconservation equationfor the material invariant

∂tI + v · ∂I = 0 . (26.1)

Let thedensityof representative points beρ(x, t). The manner in which the flow
redistributesI (x) is governed by a partial differential equation whose form is
relatively simple because the representative points are neither created nor destroyed.
This conservation property is expressed in the integral statement

∂t

∫

V
dxρI = −

∫

∂V
dσ n̂iviρI ,

whereV is an arbitrary volume in the state spaceM, ∂V is its surface, ˆn is its
outward normal, and repeated indices are summed over throughout. The divergence
theorem turns the surface integral into a volume integral,

∫

V

[
∂t(ρI ) + ∂i(viρI )

]
dx= 0 ,

where∂i is the partial derivative operator with respect toxi . Since the integration
is over an arbitrary volume, we conclude that

∂t(ρI ) + ∂i(ρIvi ) = 0 . (26.2)

The choiceI ≡ 1 yields thecontinuity equationfor the density:

∂tρ + ∂i(ρvi) = 0 . (26.3)

We have used here the language of fluid mechanics to ease the visualization,
but, as we already saw in the discussion of infinitesimal action of the Perron-
Frobenius operator (14.25), continuity equation applies to any deterministic state
space flow.
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26.2 Brownian diffusion

Consider tracer molecules, let us say green molecules, embedded in a denser gas
of transparent molecules. Assume that the density of tracermoleculesρ compared
to the background gas density is low, so we can neglect green-green collisions.
Each green molecule, jostled by frequent collisions with the background gas,
executes its own Brownian motion. The molecules are neithercreated nor destroyed,
so their number within an arbitrary volumeV changes with time only by the
current densityj i flow through its surface∂V (with n̂ its outward normal):

∂t

∫

V
dxρ = −

∫

∂V
dσ n̂i j i . (26.4)

The divergence theorem turns this into the conservation lawfor tracer density:

∂tρ + ∂i j i = 0 . (26.5)

The tracer densityρ is defined as the average density of a “material particle,”
averaged over a subvolume large enough to contain many green(and still many
more background) molecules, but small compared to the macroscopic observational
scales. What isj? If the density is constant, on the average as many molecules
leave the material particle volume as they enter it, so a reasonable phenomenological
assumption is that theaveragecurrent density (not the individual particle current
densityρvi in (26.3)) is driven by the density gradient

j i = −D
∂ρ

∂xi
. (26.6)

This is theFick law, with the diffusion constantD a phenomenological parameter.
For simplicity here we assume thatD is a scalar; in generalD → Di j (x, t) is
a space- and time-dependent tensor. Substituting thisj into (26.5) yields the
diffusion equation

∂

∂t
ρ(x, t) = D

∂2

∂x2
ρ(x, t) . (26.7)

This linear equation has an exact solution in terms of an initial Dirac delta density
distribution,ρ(x, 0) = δ(x− x0),

ρ(x, t) =
1

(4πDt)d/2
e−

(x−x0)2

4Dt =
1

(4πDt)d/2
e−

ẋ2
4Dt . (26.8)

The average distance covered in timet obeys the Einstein diffusion formula

〈
(x− x0)2

〉
t
=

∫
dxρ(x, t)(x− x0)2 = 2dDt . (26.9)
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26.3 Weak noise

The connection between path integration and Brownian
motion is so close that they are nearly indistinguishable.
Unfortunately though, like a body and its mirror image,
the sum over paths for Brownian motion is a theory having
substance, while its path integral image exists mainly in
the eye of the beholder.

—L. S. Schulman

So far we have considered tracer molecule dynamics which is purely Brownian,
with no deterministic “drift.” Consider next a deterministic flow ẋ = v(x) perturbed
by a stochastic termξ(t),

ẋ = v(x) + ξ(t) . (26.10)

Assume thatξ(t)’s fluctuate around [ ˙x− v(x)] with a Gaussian probability density

p(ξ, δt) =
(
δt

4πD

)d/2

e−
ξ2

4D δt , (26.11)

and are uncorrelated in time (white noise)

〈
ξ(t)ξ(t′)

〉
= 2dDδ(t − t′) . (26.12)

The normalization factors in (26.8) and (26.11) differ, asp(ξ, δt) is a probability
density for velocityξ, and ρ(x, t) is a probability density for positionx. The
material particle now drifts along the trajectoryx(t), so the velocity diffusion
follows (26.8) for infinitesimal timeδt only. As D → 0, the distribution tends
to the (noiseless, deterministic) Dirac delta function.

An example is the Langevin equation for a Brownian particle,in which one
replaces the Newton’s equation for force by two counter-balancing forces: random
accelerationsξ(t) which tend to smear out a particle trajectory, and a dampingterm
which drives the velocity to zero.

The phenomenological Fick law current (26.6) is now a sum of two components,
the material particle center-of-mass deterministic driftv(x) and the weak noise
term

j i = ρvi − D
∂ρ

∂xi
, (26.13)

Substituting thisj into (26.5) yields theFokker-Planck equation

∂tρ + ∂i(ρvi) = D ∂2ρ. (26.14)
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The left hand side,dρ/dt = ∂tρ + ∂ · (ρv), is deterministic, with the continuity
equation (26.3) recovered in the weak noise limitD → 0. The right hand side
describes the diffusive transport in or out of the material particle volume. If
the density is lower than in the immediate neighborhood, thelocal curvature is
positive, ∂2ρ > 0, and the density grows. Conversely, for negative curvature
diffusion lowers the local density, thus smoothing the variability of ρ. Where is
the density going globally?

If the system is bound, the probability density vanishes sufficiently fast outside
the central region,ρ(x, t)→ 0 as|x| → ∞, and the total probability is conserved

∫
dxρ(x, t) = 1 .

Any initial density ρ(x, 0) is smoothed by diffusion and with time tends to the
invariant density

ρ0(x) = lim
t→∞

ρ(x, t) , (26.15)

an eigenfunctionρ(x, t) = estρ0(x) of the time-independent Fokker-Planck equation

(
∂ivi − D ∂2 + sα

)
ρα = 0 , (26.16)

with vanishing eigenvalues0 = 0. Provided the noiseless classical flow is hyperbolic,
in the vanishing noise limit the leading eigenfunction of the Fokker-Planck equation
tends to natural measure (14.17) of the corresponding deterministic flow, the
leading eigenvector of the Perron-Frobenius operator.

If the system is open, there is a continuous outflow of probability from the
region under study, the leading eigenvalue is contracting,s0 < 0, and the density
of the system tends to zero. In this case the leading eigenvalue s0 of the time-
independent Fokker-Planck equation (26.16) can be interpreted by saying that a
finite density can be maintained by pumping back probabilityinto the system at
a constant rateγ = −s0. The value ofγ for which any initial probability density
converges to a finite equilibrium density is called theescape rate. In the noiseless
limit this coincides with the deterministic escape rate (15.15).

We have introduced noise phenomenologically, and used the weak noise assumption
in retaining only the first derivative ofρ in formulating the Fick law (26.6) and
including noise additively in (26.13). A full theory of stochastic ODEs is much
subtler, but this will do for our purposes.

26.4 Weak noise approximation

In the spirit of the WKB approximation, we shall now study theevolution of the
probability distribution by rewriting it as

ρ(x, t) = e
1

2D R(x,t) . (26.17)
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The time evolution ofR is given by

∂tR+ v∂R+ (∂R)2 = D∂v+ D∂2R.

Consider now the weak noise limit and drop the terms proportional to D. The
remaining equation

∂tR+ H(x, ∂R) = 0

is the Hamilton-Jacobi equation . The functionRcan be interpreted as the Hamilton’s
principal function, corresponding to the Hamiltonian

H(x, p) = p v(x) + p2/2 ,

with the Hamilton’s equations of motion

ẋ = ∂pH = v+ p

ṗ = −∂xH = −AT p , (26.18)

whereA is the stability matrix (4.3)

Ai j (x) =
∂vi(x)
∂x j

.

The noise Lagrangian is then

L(x, ẋ) = ẋ · p− H =
1
2

[ ẋ− v(x)]2 . (26.19)

We have come the full circle - the Lagrangian is the exponent of our assumed
Gaussian distribution (26.11) for noiseξ2 = [ ẋ − v(x)]2. What is the meaning
of this Hamiltonian, Lagrangian? Consider two pointsx0 and x. Which noisy
path is the most probable path that connects them in timet? The probability of a
given pathP is given by the probability of the noise sequenceξ(t) which generates
the path. This probability is proportional to the product ofthe noise probability
functions (26.11) along the path, and the total probability for reachingx from x0

in time t is given by the sum over all paths, or the stochastic path integral (Wiener
integral)

P(x, x0, t) ∼
∑

P

∏

j

p(ξ(τ j), δτ j ) =
∫ ∏

j

dξ j

(
δτ j

2πD

)d/2

e−
ξ(τ j )

2

2D δτi

→ 1
Z

∑

P
exp

(
− 1

2D

∫ t

0
dτ ξ2(τ)

)
, (26.20)
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whereδτi = τi − τi , and the normalization constant is

1
Z
= lim

∏

i

(
δτi

2πD

)d/2

.

The most probable path is the one maximizing the integral inside the exponential.
If we express the noise (26.10) as

ξ(t) = ẋ(t) − v(x(t)) ,

the probability is maximized by the variational principle

min
∫ t

0
dτ[ ẋ(τ) − v(x(τ))]2 = min

∫ t

0
L(x(τ), ẋ(τ))dτ .

By the standard arguments, for a givenx, x′ andt the the probability is maximized
by a solution of Hamilton’s equations (26.18) that connects the two pointsx0→ x′

in time t.

Résum é

When a deterministic trajectory is smeared out under the influence of Gaussian
noise of strengthD, the deterministic dynamics is recovered in the weak noise
limit D → 0. The effect of the noise can be taken into account by adding noise
corrections to the classical trace formula.

Commentary

Remark 26.1 Literature. The theory of stochastic processes is a vast subject, spanning
over centuries and over disciplines ranging from pure mathematics to impure finance.
We enjoyed reading van Kampen classic [1], especially his railings against those who
blunder carelessly into nonlinear landscapes. Having committed this careless chapter
to print, we shall no doubt be cast to a special place on the long list of van Kampen’s
sinners (and not for the first time, either). A more specialized monograph like Risken’s [2]
will do just as well. The “Langevin equation” introduces noise and damping only into
the acceleration of Newton’s equations; here we are considering more general stochastic
differential equations in the weak noise limit. Onsager-Machlup seminal paper [18] was
the first to introduce a variational method - the “principle of least dissipation” - based on
the Lagrangian of form (26.19). This paper deals only with a finite set of linearly damped
thermodynamic variables. Here the setting is much more general: we study fluctuations
over a state space varying velocity fieldv(x). Schulman’s monograph [11] contains a very
readable summary of Kac’s [12] exposition of Wiener’s integral over stochastic paths.
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Exercises

26.1. Who ordered
√
π ? Derive the Gaussian integral

1
√

2π

∫ ∞

−∞
dx e−

x2

2a =
√

a , a > 0 .

assuming only that you know to integrate the
exponential functione−x. Hint, hint: x2 is a radius-
squared of something. π is related to the area or
circumference of something.

26.2. D-dimensional Gaussian integrals. Show that the
Gaussian integral inD-dimensions is given by

1
(2π)d/2

∫
ddφe−

1
2φ

T ·M−1·φ+φ·J = |detM| 12 e
1
2 JT ·M·J ,(26.21)

whereM is a real positive definite [d × d] matrix, i.e.,
a matrix with strictly positive eigenvalues.x, J areD-
dimensional vectors, andxT is the transpose ofx.

26.3. Convolution of Gaussians. Show that the Fourier
transform of convolution

[ f ∗ g](x) =
∫

ddy f(x− y)g(y)

of two Gaussians

f (x) = e−
1
2 xT · 1

∆1
·x
, g(x) = e−

1
2 xT · 1

∆2
·x

factorizes as

[ f ∗ g](x) =
1

(2π)d

∫
dk F(k)G(k)eik·x , (26.22)

where

F(k) =
1

(2π)d

∫
ddx f(x)e−ik·x = |det∆1|1/2e

1
2

G(k) =
1

(2π)d

∫
ddx g(x)e−ik·x = |det∆2|1/2e

1
2 k

Hence

[ f ∗ g](x) =
1

(2π)d
|det∆1det∆1|1/2

∫
ddp e

1
2 pT

=

∣∣∣∣∣
det∆1det∆2

det (∆1 + ∆2)

∣∣∣∣∣
1/2

e−
1
2 xT ·(∆1+∆2)−1·x
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Chapter 27

Relaxation for cyclists

C, i.e., solutions of the periodic orbit condition (12.1)

f t+T(x) = f t(x) , T > 0 (27.1)

are prerequisite to chapters16 and 17 evaluation of spectra of classical
evolution operators.Chapter12 offered an introductory, hands-on guide to
extraction of periodic orbits by means of the Newton-Raphson method.

Here we take a very different tack, drawing inspiration from variational principles
of classical mechanics, and path integrals of quantum mechanics.

In sect.12.2.1we converted orbits unstable forward in time into orbits stable
backwards in time. Indeed, all methods for finding unstable cycles are based on
the idea of constructing a new dynamical system such that (i) the position of the
cycle is the same for the original system and the transformedone, (ii ) the unstable
cycle in the original system is a stable cycle of the transformed system.

The Newton-Raphson method for determining a fixed pointx∗ for a mapx′ =
f (x) is an example. The method replaces iteration off (x) by iteration of the
Newton-Raphson map (12.5)

x′i = gi(x) = xi −
(

1
M(x) − 1

)

i j
( f (x) − x) j . (27.2)

A fixed point x∗ for a mapf (x) is also a fixed point ofg(x), indeed a superstable
fixed point since∂gi(x∗)/∂x j = 0. This makes the convergence to the fixed point
super-exponential.

We also learned in chapter12 that methods that start with initial guesses
for a number of points along a cycle are considerably more robust and safer
than searches based on direct solution of the fixed-point condition (27.1). The
relaxation (or variational) methods that we shall now describe take this multipoint
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approach to its logical extreme, and start by a guess of not a few points along a
periodic orbit, but a guess of the entire orbit.

The idea is to make an informed rough guess of what the desiredperiodic orbit
looks like globally, and then use variational methods to drive the initial guess
toward the exact solution. Sacrificing computer memory for robustness of the
method, we replace a guess that apoint is on the periodic orbit by a guess of
the entire orbit. And, sacrificing speed for safety, in sect.27.1 we replace the
Newton-Raphsoniteration by a fictitious timeflow that minimizes a cost function
computed as deviation of the approximate flow from the true flow along a loop
approximation to a periodic orbit.

If you have some insight into the topology of the flow and its symbolic dynamics,
or have already found a set of short cycles, you might be able to construct an initial
approximation to a longer cyclep as a sequence ofN points (x̃(0)

1 , x̃(0)
2 , · · · , x̃(0)

N )
with the periodic boundary condition ˜xN+1 = x̃1. Suppose you have an iterative
method for improving your guess; afterk iterations the cost function

F2(x̃(k)) =
N∑

i

(
x̃(k)

i+1 − f (x̃(k)
i )

)2
(27.3)

or some other more cleverly constructed function (for classical mechanics - action)
is a measure of the deviation of thekth approximate cycle from the true cycle. This
observation motivates variational approaches to determining cycles.

We give here three examples of such methods, two for maps, andone for
billiards. In sect.27.1we start out by converting a problem of finding an unstable
fixed point of a map into a problem of constructing a differential flow for which
the desired fixed point is an attracting equilibrium point. Solving differential
equations can be time intensive, so in sect.27.2we replace such flows by discrete
iterations. In sect.27.3we show that for 2D-dimensional billiard flows variation
of D coordinates (whereD is the number of Hamiltonian degrees of freedom)
suffices to determine cycles in the full 2D-dimensional phase space.

27.1 Fictitious time relaxation

(O. Biham, C. Chandre and P. Cvitanović)

The relaxation (or gradient) algorithm for finding cycles isbased on the observation
that a trajectory of a map such as the Hénon map (3.18),

xi+1 = 1− ax2
i + byi

yi+1 = xi , (27.4)

is a stationary solution of the relaxation dynamics defined by the flow
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Figure 27.1: “Potential” Vi(x) (27.7) for a typical
point along an initial guess trajectory. Forσi = +1
the flow is toward the local maximum ofVi(x), and for
σi = −1 toward the local minimum. A large deviation
of xi ’s is needed to destabilize a trajectory passing
through such local extremum ofVi(x), hence the basin
of attraction is expected to be large. −1 0 1 xi

−1

0

1

Vi(x)

dxi

dτ
= vi , i = 1, . . . , n (27.5)

for any vector fieldvi = vi(x) which vanishes on the trajectory. Hereτ is a
“fictitious time” variable, unrelated to the dynamical time(in this example, the
discrete time of map iteration). As the simplest example, takevi to be the deviation
of an approximate trajectory from the exact 2-step recurrence form of the Hénon
map (3.19)

vi = xi+1 − 1+ ax2
i − bxi−1. (27.6)

For fixed xi−1, xi+1 there are two values ofxi satisfyingvi = 0. These solutions
are the two extremal points of a local “potential” function (no sum oni)

vi =
∂

∂xi
Vi(x) , Vi(x) = xi(xi+1 − bxi−1 − 1)+

a
3

x3
i . (27.7)

Assuming that the two extremal points are real, one is a localminimum ofVi(x)
and the other is a local maximum. Now here is the idea; replace(27.5) by

dxi

dτ
= σivi , i = 1, . . . , n, (27.8)

whereσi = ±1.

The modified flow will be in the direction of the extremal pointgiven by the
local maximum ofVi(x) if σi = +1 is chosen, or in the direction of the one
corresponding to the local minimum if we takeσi = −1. This is not quite what
happens in solving (27.8) - all xi andVi(x) change at each integration step - but
this is the observation that motivates the method. The differential equations (27.8)
then drive an approximate initial guess toward the exact trajectory. A sketch of
the landscape in whichxi converges towards the proper fixed point is given in
figure27.1. As the “potential” function (27.7) is not bounded for a large|xi |, the
flow diverges for initial guesses which are too distant from the true trajectory.
However, the basin of attraction of initial guesses that converge to a given cycle is
nevertheless very large, with the spread in acceptable initial guesses for figure27.1
of order 1, in contrast to the exponential precision required of initial guesses by
the Newton-Raphson method.

relax - 29mar2004.tex

CHAPTER 27. RELAXATION FOR CYCLISTS 467

Figure 27.2: The repeller for the Hénon map ata =
1.8, b = 0.3 . −1.5 −0.5 0.5 1.5

−1.5

−0.5

0.5

1.5

Example 27.1 Hénon map cycles. Our aim in this calculation is to find all periodic
orbits of period n for the Hénon map (27.4), in principle at most 2n orbits. We start by
choosing an initial guess trajectory (x1, x2, · · · , xn) and impose the periodic boundary
condition xn+1 = x1. The simplest and a rather crude choice of the initial condition
in the Hénon map example is xi = 0 for all i. In order to find a given orbit one sets
σi = −1 for all iterates i which are local minima of Vi(x), and σi = 1 for iterates which
are local maxima. In practice one runs through a complete list of prime cycles, such
as the table 10.1. The real issue for all searches for periodic orbits, this one included,
is how large is the basin of attraction of the desired periodic orbit? There is no easy
answer to this question, but empirically it turns out that for the Hénon map such initial
guess almost always converges to the desired trajectory as long as the initial |x| is not
too large compared to 1/

√
a. Figure 27.1 gives some indication of a typical basin of

attraction of the method (see also figure 27.3).

The calculation is carried out by solving the set of n ordinary differential equations
(27.8) using a simple Runge-Kutta method with a relatively large step size (h = 0.1) until
|v| becomes smaller than a given value ε (in a typical calculation ε ∼ 10−7). Empirically,
in the case that an orbit corresponding to the desired itinerary does not exist, the initial
guess escapes to infinity since the “potential” Vi(x) grows without bound.

[exercise 27.3]
Applied to the Hénon map at the Hénon’s parameters choice a = 1.4, b = 0.3,

the method has yielded all periodic orbits to periods as long as n = 28, as well as
selected orbits up to period n = 1000. All prime cycles up to period 10 for the Hénon
map, a = 1.4 and b = 0.3, are listed in table 27.1. The number of unstable periodic
orbits for periods n ≤ 28 is given in table 27.1. Comparing this with the list of all
possible 2-symbol alphabet prime cycles, table 10.1, we see that the pruning is quite
extensive, with the number of cycle points of period n growing as e0.4645·n = (1.592)n

rather than as 2n.

As another example we plot all unstable periodic points up to period n = 14 for
a = 1.8, b = 0.3 in figure 27.2. Comparing this repelling set with the strange attractor
for the Hénon’s parameters figure 3.9, we note the existence of gaps in the set, cut out
by the preimages of the escaping regions.

[remark 27.2]
In practice, the relaxation flow (27.8) finds (almost) all periodic orbits which

exist and indicates which ones do not. For the Hénon map the method enables us to
calculate almost all unstable cycles of essentially any desired length and accuracy.

The idea of the relaxation algorithm illustrated by the above Hénon map
example is that instead of searching for an unstable periodic orbit of a map, one
searches for a stable attractor of a vector field. More generally, consider ad-
dimensional mapx′ = f (x) with a hyperbolic fixed pointx∗. Any fixed pointx∗ is
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Table 27.1: All prime cycles up to period 10 for the Hénon map,a = 1.4 andb = 0.3. The
columns list the periodnp, the itinerary (defined in remark27.4), a cycle point (yp, xp), and
the cycle Lyapunov exponentλp = ln |Λp|/np. While most of the cycles haveλp ≈ 0.5,
several significantly do not. The0 cycle point is very unstable, isolated and transient fixed
point, with no other cycles returning close to it. At period 13 one finds a pair of cycles with
exceptionally low Lyapunov exponents. The cycles are closefor most of the trajectory,
differing only in the one symbol corresponding to two cycle points straddle the (partition)
fold of the attractor. As the system is not hyperbolic, thereis no known lower bound on
cycle Lyapunov exponents, and the Hénon’s strange “attractor” might some day turn out
to be nothing but a transient on the way to a periodic attractor of some long period.

n p ( yp , xp ) λp
1 0 (-1.13135447 , -1.13135447) 1.18167262

1 (0.63135447 , 0.63135447) 0.65427061
2 01 (0.97580005 , -0.47580005) 0.55098676
4 0111 (-0.70676677 , 0.63819399) 0.53908457
6 010111 (-0.41515894 , 1.07011813) 0.55610982

011111 (-0.80421990 , 0.44190995) 0.55245341
7 0011101 (-1.04667757 , -0.17877958) 0.40998559

0011111 (-1.08728604 , -0.28539206) 0.46539757
0101111 (-0.34267842 , 1.14123046) 0.41283650
0111111 (-0.88050537 , 0.26827759) 0.51090634

8 00011101 (-1.25487963 , -0.82745422) 0.43876727
00011111 (-1.25872451 , -0.83714168) 0.43942101
00111101 (-1.14931330 , -0.48368863) 0.47834615
00111111 (-1.14078564 , -0.44837319) 0.49353764
01010111 (-0.52309999 , 0.93830866) 0.54805453
01011111 (-0.38817041 , 1.09945313) 0.55972495
01111111 (-0.83680827 , 0.36978609) 0.56236493

9 000111101 (-1.27793296 , -0.90626780) 0.38732115
000111111 (-1.27771933 , -0.90378859) 0.39621864
001111101 (-1.10392601 , -0.34524675) 0.51112950
001111111 (-1.11352304 , -0.36427104) 0.51757012
010111111 (-0.36894919 , 1.11803210) 0.54264571
011111111 (-0.85789748 , 0.32147653) 0.56016658

10 0001111101 (-1.26640530 , -0.86684837) 0.47738235
0001111111 (-1.26782752 , -0.86878943) 0.47745508
0011111101 (-1.12796804 , -0.41787432) 0.52544529
0011111111 (-1.12760083 , -0.40742737) 0.53063973
0101010111 (-0.48815908 , 0.98458725) 0.54989554
0101011111 (-0.53496022 , 0.92336925) 0.54960607
0101110111 (-0.42726915 , 1.05695851) 0.54836764
0101111111 (-0.37947780 , 1.10801373) 0.56915950
0111011111 (-0.69555680 , 0.66088560) 0.54443884
0111111111 (-0.84660200 , 0.34750875) 0.57591048

13 1110011101000 (-1.2085766485 , -0.6729999948) 0.19882434
1110011101001 (-1.0598110494 , -0.2056310390) 0.21072511

Table 27.2: The number of unstable periodic orbits of the Hénon map fora = 1.4,b = 0.3,
of all periodsn ≤ 28. Mn is the number of prime cycles of lengthn, andNn is the total
number of periodic points of periodn (including repeats of shorter prime cycles).

n Mn Nn
11 14 156
12 19 248
13 32 418
14 44 648
15 72 1082
16 102 1696

n Mn Nn
17 166 2824
18 233 4264
19 364 6918
20 535 10808
21 834 17544
22 1225 27108

n Mn Nn
23 1930 44392
24 2902 69952
25 4498 112452
26 6806 177376
27 10518 284042
28 16031 449520
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Figure 27.3: Typical trajectories of the vector
field (27.9) for the stabilization of a hyperbolic fixed
point of the Ikeda map (27.11) located at (x, y) ≈
(0.53275, 0.24689). The circle indicates the position
of the fixed point. Note that the basin of attraction of
this fixed point is large, larger than the entire Ikeda
attractor. 0 1

−2

0

x

y

x
*
 

by construction an equilibrium point of the fictitious time flow

dx
dτ
= f (x) − x. (27.9)

If all eigenvalues of the fundamental matrixJ(x∗) = D f (x∗) have real parts smaller
than unity, thenx∗ is a stable equilibrium point of the flow.

If some of the eigenvalues have real parts larger than unity,then one needs to
modify the vector field so that the corresponding directionsof the flow are turned
into stable directions in a neighborhood of the fixed point. In the spirit of (27.8),
modify the flow by

dx
dτ
= C ( f (x) − x) , (27.10)

whereC is a [d×d] invertible matrix. The aim is to turnx∗ into a stable equilibrium
point of the flow by an appropriate choice ofC. It can be shown that a set
of permutation/ reflection matrices with one and only one non-vanishing entry
±1 per row or column (ford-dimensional systems, there ared!2d such matrices)
suffices to stabilize any fixed point. In practice, one chooses a particular matrix
C, and the flow is integrated. For each choice ofC, one or more hyperbolic fixed
points of the map may turn into stable equilibria of the flow.

Example 27.2 Ikeda map: We illustrate the method with the determination of the
periodic orbits of the Ikeda map:

x′ = 1+ a(xcosw− ysinw)

y′ = a(xsinw+ ycosw) (27.11)

where w = b− c
1+ x2 + y2

,

with a = 0.9, b = 0.4, c = 6. The fixed point x∗ is located at (x, y) ≈ (0.53275, 0.24689),
with eigenvalues of the fundamental matrix (Λ1,Λ2) ≈ (−2.3897,−0.3389), so the flow
is already stabilized with C = 1. Figure 27.3 depicts the flow of the vector field around
the fixed point x∗.

In order to determine x∗, one needs to integrate the vector field (27.9) forward
in time (the convergence is exponential in time), using a fourth order Runge-Kutta or
any other integration routine.
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Figure 27.4: Typical trajectories of the vector
field (27.10) for a hyperbolic fixed point (x, y) ≈
(−0.13529,−0.37559) of f 3, where f is the Ikeda
map (27.11). The circle indicates the position of
the fixed point. For the vector field corresponding
to (a) C = 1, x∗ is a hyperbolic equilibrium point
of the flow, while for (b) C =

(
1
0

0
−1

)
, x∗ is an

attracting equilibrium point. (a) −0.2 −0.1
 

−0.38 

 

 

 

−0.36 

x
*
 

(b) −0.2 −0.1

−0.38 

−0.36 

x
*
 

In contrast, determination of the 3-cycles of the Ikeda map requires nontrivial
C matrices, different from the identity. Consider for example the hyperbolic fixed point
(x, y) ≈ (−0.13529,−0.37559)of the third iterate f 3 of the Ikeda map. The flow of the
vector field for C = 1, Figure 27.4 (a), indicates a hyperbolic equilibrium point, while for
C =

(
1
0

0
−1

)
the flow of the vector field, figure 27.4 (b) indicates that x∗ is an attracting

equilibrium point, reached at exponential speed by integration forward in time.

The generalization from searches for fixed points to searches for cycles is
straightforward. In order to determine a prime cyclex = (x1, x2, . . . , xn) of a
d-dimensional mapx′ = f (x), we modify the multipoint shooting method of
sect.12.3, and consider thend-dimensional vector field

dx
dτ
= C ( f (x) − x) , (27.12)

where f (x) = ( f (xn), f (x1), f (x2), . . . , f (xn−1)), andC is an invertible [nd×nd]
matrix. For the Hénon map, it is sufficient to consider a set of 2n diagonal matrices
with eigenvalues±1. Risking a bit of confusion, we denote byx, f (x) both the
d-dimensional vectors in (27.10), andnd-dimensional vectors in (27.12), as the
structure of the equations is the same.

27.2 Discrete iteration relaxation method

(C. Chandre, F.K. Diakonos and P. Schmelcher)

The problem with the Newton-Raphson iteration (27.2) is that it requires very
precise initial guesses. For example, thenth iterate of a unimodal map has as
many as 2n periodic points crammed into the unit interval, so determination of all
cycles of lengthn requires that the initial guess for each one of them has to be
accurate to roughly 2−n. This is not much of a problem for 1-dimensional maps,
but making a good initial guess for where a cycle might lie in ad-dimensional
state space can be a challenge.

Emboldened by the success of the cyclist relaxation trick (27.8) of manually
turning instability into stability by a sign change, we now (i) abandon the Newton-
Raphson method altogether, (ii ) abandon the continuous fictitious time flow (27.9)
with its time-consuming integration, replacing it by a mapg with a larger basin
of attraction (not restricted to a linear neighborhood of the fixed point). The idea
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is to construct a very simple mapg, a linear transformation of the originalf , for
which the fixed point is stable. We replace the fundamental matrix prefactor in
(27.2) (whose inversion can be time-consuming) by a constant matrix prefactor

x′ = g(x) = x+ ∆τC( f (x) − x), (27.13)

where∆τ is a positive real number, andC is a [d×d] permutation and reflection
matrix with one and only one non-vanishing entry±1 per row or column. A fixed
point of f is also a fixed point ofg. SinceC is invertible, the inverse is also true.

This construction is motivated by the observation that for small ∆τ → dτ the
map (27.13) is the Euler method for integrating the modified flow (27.10), with
the integration step∆τ.

The argument why a suitable choice of matrixC can lead to the stabilization
of an unstable periodic orbit is similar to the one used to motivate the construction
of the modified vector field in sect.27.1. Indeed, the flow (27.8) is the simplest
example of this method, with the infinitesimal fictitious time increment∆τ→ dτ,
the infinitesimal coordinate correction (x − x′) → dxi , and the [n×n] diagonal
matrix C→ σi = ±1.

For a given fixed point off (x) we again chose aC such that the flow in the
expanding directions ofM(x∗) is turned into a contracting flow. The aim is to
stabilizex∗ by a suitable choice ofC. In the case where the map has multiple fixed
points, the set of fixed points is obtained by changing the matrix C (in general
different for each unstable fixed point) and varying initial conditions for the map
g. For example, for 2-dimensional dissipative maps it can be shown that the 3

[remark 27.3]
matrices

C ∈
{(

1
0

0
1

)
,

(
−1
0

0
1

)
,

(
1
0

0
−1

)}

suffice to stabilize all kinds of possible hyperbolic fixed points.

If ∆τ is chosen sufficiently small, the magnitude of the eigenvalues of the
fixed pointx∗ in the transformed system are smaller than one, and one has a stable
fixed point. However,∆τ should not be chosen too small: Since the convergence
is geometrical with a ratio 1− α∆τ (where the value of constantα depends on
the stability of the fixed point in the original system), small ∆τ can slow down
the speed of convergence. The critical value of∆τ, which just suffices to make
the fixed point stable, can be read off from the quadratic equations relating the
stability coefficients of the original system and those of the transformed system. In
practice, one can find the optimal∆τ by iterating the dynamical system stabilized
with a givenC and∆τ. In general, all starting points converge on the attractor
provided∆τ is small enough. If this is not the case, the trajectory either diverges
(if ∆τ is far too large) or it oscillates in a small section of the state space (if∆τ is
close to its stabilizing value).

The search for the fixed points is now straightforward: A starting point chosen
in the global neighborhood of the fixed point iterated with the transformed dynamical
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systemg converges to the fixed point due to its stability. Numerical investigations
show that the domain of attraction of a stabilized fixed pointis a rather extended
connected area, by no means confined to a linear neighborhood. At times the basin
of attraction encompasses the complete state space of the attractor, so one can be
sure to be within the attracting basin of a fixed point regardless of where on the
on the attractor on picks the initial condition.

The step size|g(x)−x| decreases exponentially when the trajectory approaches
the fixed point. To get the coordinates of the fixed points witha high precision,
one therefore needs a large number of iterations for the trajectory which is already
in the linear neighborhood of the fixed point. To speed up the convergence of the
final part of the approach to a fixed point we recommend a combination of the
above approach with the Newton-Raphson method (27.2).

The fixed points of thenth iteratef n are cycle points of a cycle of periodn. If
we consider the map

x′ = g(x) = x+ ∆τC( f n(x) − x) , (27.14)

the iterates ofg converge to a fixed point provided that∆τ is sufficiently small and
C is a [d×d] constant matrix chosen such that it stabilizes the flow. Asn grows,∆τ
has to be chosen smaller and smaller. In the case of the Ikeda map example27.2
the method works well forn ≤ 20. As in (27.12), the multipoint shooting method
is the method of preference for determining longer cycles. Considerx = (x1, x2, . . . , xn)
and thend-dimensional map

x′ = f (x) = ( f (xn), f (x1), . . . , f (xn−1)) .

Determining cycles with periodn for thed-dimensionalf is equivalent to determining
fixed points of the multipointdn-dimensionalf . The idea is to construct a matrix
C such that the fixed point off becomes stable for the map:

x′ = x+ ∆τC( f (x) − x),

whereC is now a [nd×nd] permutation/reflection matrix with only one non-zero
matrix element±1 per row or column. For any given matrixC, a certain fraction
of the cycles becomes stable and can be found by iterating thetransformed map
which is now and dimensional map.

From a practical point of view, the main advantage of this method compared
to the Newton-Raphson method is twofold: (i) the fundamental matrix of the
flow need not be computed, so there is no large matrix to invert, simplifying
considerably the implementation, and (ii ) empirical basins of attractions for individual
C are much larger than for the Newton-Raphson method. The price is a reduction
in the speed of convergence.
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Table 27.3: All prime cycles up to 6 bounces for the 3-disk fundamental domain, center-
to-center separationR = 6, disk radiusa = 1. The columns list the cycle itinerary, its
expanding eigenvalueΛp, and the length of the orbit (if the velocity=1 this is the same as
its period or the action). Note that the two 6 cycles001011 and001101 are degenerate
due to the time reversal symmetry, but are not related by any discrete spatial symmetry.
(Computed by P.E. Rosenqvist.)

p Λp Tp
0 9.898979485566 4.000000000000
1 -1.177145519638×101 4.267949192431
01 -1.240948019921×102 8.316529485168
001 -1.240542557041×103 12.321746616182
011 1.449545074956×103 12.580807741032
0001 -1.229570686196×104 16.322276474382
0011 1.445997591902×104 16.585242906081
0111 -1.707901900894×104 16.849071859224
00001 -1.217338387051×105 20.322330025739
00011 1.432820951544×105 20.585689671758
00101 1.539257907420×105 20.638238386018
00111 -1.704107155425×105 20.853571517227
01011 -1.799019479426×105 20.897369388186
01111 2.010247347433×105 21.116994322373
000001 -1.205062923819×106 24.322335435738
000011 1.418521622814×106 24.585734788507
000101 1.525597448217×106 24.638760250323
000111 -1.688624934257×106 24.854025100071
001011 -1.796354939785×106 24.902167001066
001101 -1.796354939785×106 24.902167001066
001111 2.005733106218×106 25.121488488111
010111 2.119615015369×106 25.165628236279
011111 -2.366378254801×106 25.384945785676
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27.3 Least action method

(P. Dahlqvist)

The methods of sects.27.1 and 27.2 are somewhatad hoc, as for general
flows and iterated maps there is no fundamental principle to guide us in choosing
the cost function, such as (27.3), to vary.

For Hamiltonian dynamics, we are on much firmer ground; Maupertuis least
action principle. You yawn your way through it in every mechanics course–but as
we shall now see, it is a very hands-on numerical method for finding cycles.

Indeed, the simplest and numerically most robust method fordetermining
cycles of planar billiards is given by the principle of leastaction, or equivalently,
by extremizing the length of an approximate orbit that visits a given sequence of
disks. In contrast to the multipoint shooting method of sect. 12.3which requires
variation of 2n phase space points, extremization of a cycle length requires variation
of only n bounce positionssi.

The problem is to find the extremum values of cycle lengthL(s) wheres =
(s1, . . . , sn), that is find the roots of∂iL(s) = 0. Expand to first order

∂iL(s0 + δs) = ∂iL(s0) +
∑

j

∂i∂ jL(s0)δsj + . . .

[exercise 27.1]

and useMi j (s0) = ∂i∂ jL(s0) in the n-dimensional Newton-Raphson iteration
scheme of sect.12.2.2

si 7→ si −
∑

j

(
1

M(s)

)

i j
∂ jL(s) (27.15)

The extremization is achieved by recursive implementationof the above algorithm,
with proviso that if the dynamics is pruned, one also has to check that the final
extremal length orbit does not penetrate a billiard wall.

[exercise 27.2]

[exercise 12.10]
As an example, the short periods and stabilities of 3-disk cycles computed this

way are listed table27.2.

Résum é

Unlike the Newton-Raphson method, variational methods arevery robust. As each
step around a cycle is short, they do not suffer from exponential instabilities, and
with rather coarse initial guesses one can determine cyclesof arbitrary length.
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Commentary

Remark 27.1 Piecewise linear maps. The Lozi map (3.20) is linear, and 100,000’s
of cycles can be easily computed by [2x2] matrix multiplication and inversion.

Remark 27.2 Relaxation method. The relaxation (or gradient) algorithm is one of the
methods for solving extremal problems [13]. The method described above was introduced
by Biham and Wenzel [1], who have also generalized it (in the case of the Hénon map)
to determination ofall 2n cycles of periodn, real or complex [2]. The applicability and
reliability of the method is discussed in detail by Grassberger, Kantz and Moening [5],
who give examples of the ways in which the method fails: (a) itmight reach a limit
cycle rather than a equilibrium saddle point (that can be remedied by the complex Biham-
Wenzel algorithm [2]) (b) different symbol sequences can converge to the same cycle
(i.e., more refined initial conditions might be needed). Furthermore, Hansen (ref. [7]
and chapter 4. of ref. [8]) has pointed out that the method cannot find certain cycles
for specific values of the Hénon map parameters. In practice, the relaxation method for
determining periodic orbits of maps appears to be effective almost always, but not always.
It is much slower than the multipoint shooting method of sect. 12.3, but also much quicker
to program, as it does not require evaluation of stability matrices and their inversion. If the
complete set of cycles is required, the method has to be supplemented by other methods.

Remark 27.3 Hybrid Newton-Raphson/relaxation methods. The method discussed
in sect.27.2was introduced by Schmelcheret al [9]. The method was extended to flows
by means of the Poincaré surface of section technique in ref. [10]. It is also possible to
combine the Newton-Raphson method and (27.13) in the construction of a transformed
map [14]. In this approach, each step of the iteration scheme is a linear superposition of
a step of the stability transformed system and a step of the Newton-Raphson algorithm.
Far from the linear neighborhood the weight is dominantly onthe globally acting stability
transformation algorithm. Close to the fixed point, the steps of the iteration are dominated
by the Newton-Raphson procedure.

Remark 27.4 Relation to the Smale horseshoe symbolic dynamics. For a complete
horseshoe Hénon repeller (a sufficiently large), such as the one given in figure27.2, the
signsσi ∈ {1,−1} are in a 1-to-1 correspondence with the Smale horsheshoe symbolic
dynamicssi ∈ {0, 1}:

si =

{
0 if σi = −1 , xi < 0
1 if σi = +1 , xi > 0 . (27.16)

For arbitrary parameter values with a finite subshift symbolic dynamics or with arbitrarily
complicated pruning, the relation of sign sequences{σ1, σ2, · · · , σn} to the itineraries
{s1, s2, · · · , sn} can be much subtler; this is discussed in ref. [5].

Remark 27.5 Ikeda map. Ikeda map (27.11) was introduced in ref. [12] is a model
which exhibits complex dynamics observed in nonlinear optical ring cavities.

Remark 27.6 Relaxation for continuous time flows. For ad-dimensional flow ˙x =
v(x), the method described above can be extended by consideringa Poincaré surface
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of section. The Poincaré section yields a mapf with dimensiond-1, and the above
discrete iterative maps procedures can be carried out. A method that keeps the trial orbit
continuous throughout the calculation is the Newton descent, a variational method for
finding periodic orbits of continuous time flows, is described in refs. [15, 16].

Remark 27.7 Stability ordering. The parameter∆τ in (27.13) is a key quantity here.
It is related to the stability of the desired cycle in the transformed system: The more
unstable a fixed point is, the smaller∆τ has to be to stabilize it. With increasing cycle
periods, the unstable eigenvalue of the fundamental matrixincreases and therefore∆τ
has to be reduced to achieve stabilization of all fixed points. In many cases the least
unstable cycles of a given periodn are of physically most important [11]. In this context

[section 18.5]
∆τ operates as a stability filter. It allows the selective stabilization of only those cycles
which posses Lyapunov exponents smaller than a cut-off value. If one starts the search for
cycles within a given periodn with a value∆τ ≈ O(10−1), and gradually lowers∆τ one
obtains the sequence of all unstable orbits of ordern sorted with increasing values of their
Lyapunov exponents. For the specific choice ofC the relation between∆τ and the stability
coefficients of the fixed points of the original system is strictly monotonous. Transformed
dynamical systems with otherC’s do not obey such a strict behavior but show a rough
ordering of the sequence of stability eigenvalues of the fixed points stabilized in the course
of decreasing values for∆τ. As explained in sect.18.5, stability ordered cycles are needed
to order cycle expansions of dynamical quantities of chaotic systems for which a symbolic
dynamics is not known. For such systems, an ordering of cycles with respect to their
stability has been proposed [13, 14, 12], and shown to yield good results in practical
applications.

Remark 27.8 Action extremization method. The action extremization (sect.27.3)
as a numerical method for finding cycles has been introduced independently by many
people. We have learned it from G. Russberg, and from M. Sieber’s and F. Steiner’s
hyperbola billiard computations [17, 18]. The convergence rate is really impressive, for
the Sinai billiard some 5000 cycles are computed within CPU seconds with rather bad
initial guesses.

Variational methods are the key ingredient of the Aubry-Mather theory of area-preserving
twist maps (known in the condensed matter literature as the Frenkel-Kontorova models of
1-dimensional crystals), discrete-time Hamiltonian dynamical systems particularly suited
to explorations of the K.A.M. theorem. Proofs of the Aubry-Mather theorem [20] on
existence of quasi-periodic solutions are variational. Itwas quickly realized that the
variational methods can also yield reliable, high precision computations of long periodic
orbits of twist map models in 2 or more dimensions, needed forK.A.M. renormalization
studies [19].

A fictitious time gradient flow similar to the one discussed here in sect.27.1 was
introduced by Anegent [21] for twist maps, and used by Gole [22] in his proof of the
Aubry-Mather theorem. Mathematical bounds on the regions of stability of K.A.M.
tori are notoriously restrictive compared to the numericalindications, and de la Llave,
Falcolini and Tompaidis [23, 24] have found the gradient flow formulation advantageous
both in studies of the analyticity domains of the K.A.M. stability, as well as proving
the Aubry-Mather theorem for extended systems (for a pedagogical introduction, see the
lattice dynamics section of ref. [25]).

All of the twist-maps work is based on extremizing the discrete dynamics version of
the actionS (in this context sometimes called a “generating function”). However, in their
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investigations in the complex plane, Falcolini and de la Llave [23] do find it useful to
minimize insteadSS̄, analogous to our cost function (27.3).
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Exercises

27.1. Evaluation of billiard cycles by minimization ∗.
Given a symbol sequence, you can construct a guess
trajectory by taking a point on the boundary of each
disk in the sequence, and connecting them by straight
lines. If this were a rubber band wrapped through 3
rings, it would shrink into the physical trajectory, which
minimizes the action (in this case, the length) of the
trajectory.

Write a program to find the periodic orbits for your
billiard simulator. Use the least action principle to
extremize the length of the periodic orbit, and reproduce
the periods and stabilities of 3-disk cycles, table27.2.
(One such method is given in sect.27.3.) After that
check the accuracy of the computed orbits by iterating
them forward with your simulator. What is your error
| f Tp(x) − x|?

27.2. Tracking cycles adiabatically∗. Once a cycle has
been found, orbits for different system parameters values

may be obtained by varying slowly (adiabatically) the
parameters, and using the old orbit points as starting
guesses in the Newton method. Try this method out on
the 3-disk system. It works well forR : a sufficiently
large. For smaller values, some orbits change rather
quickly and require very small step sizes. In addition,
for ratios belowR : a = 2.04821419. . . families
of cycles are pruned, i.e. some of the minimal length
trajectories are blocked by intervening disks.

27.3. Cycles of the H́enon map. Apply the method of
sect.27.1to the Hénon map at the Hénon’s parameters
choicea = 1.4, b = 0.3, and compute all prime cycles
for at leastn ≤ 6. Estimate the topological entropy,
either from the definition (13.1), or as the zero of a
truncated topological zeta function (13.21). Do your
cycles agree with the cycles listed in table27.1?
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Chapter 28

Irrationally winding

I don’t care for islands, especially very small ones.

—D.H. Lawrence

(R. Artuso and P. Cvitanović)

T  is concerned with the mode locking problems for circle maps:
besides its physical relevance it nicely illustrates the use of cycle expansions
away from the dynamical setting, in the realm of renormalization theory at

the transition to chaos.

The physical significance of circle maps is connected with their ability to
model the two–frequencies mode–locking route to chaos for dissipative systems.
In the context ofdissipativedynamical systems one of the most common and
experimentally well explored routes to chaos is the two-frequency mode-locking
route. Interaction of pairs of frequencies is of deep theoretical interest due to the
generality of this phenomenon; as the energy input into a dissipative dynamical
system (for example, a Couette flow) is increased, typicallyfirst one and then two
of intrinsic modes of the system are excited. After two Hopf bifurcations (a fixed
point with inward spiralling stability has become unstableand outward spirals to
a limit cycle) a system lives on a two-torus. Such systems tend to mode-lock:
the system adjusts its internal frequencies slightly so that they fall in step and
minimize the internal dissipation. In such case the ratio ofthe two frequencies
is a rational number. An irrational frequency ratio corresponds to a quasiperiodic
motion - a curve that never quite repeats itself. If the mode-locked states overlap,
chaos sets in. The likelihood that a mode-locking occurs depends on the strength
of the coupling of the two frequencies.

Our main concern in this chapter is to illustrate the “global” theory of circle
maps, connected with universality properties of the whole irrational winding set.
We shall see that critical global properties may be expressed via cycle expansions
involving “local” renormalization critical exponents. The renormalization theory
of critical circle maps demands rather tedious numerical computations, and our
intuition is much facilitated by approximating circle mapsby number-theoretic
models. The models that arise in this way are by no means mathematically trivial,
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Figure 28.1: Unperturbed circle map (k = 0 in (28.1))
with golden mean rotation number.
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they turn out to be related to number-theoretic abysses suchas the Riemann
conjecture, already in the context of the “trivial” models.

28.1 Mode locking

The simplest way of modeling a nonlinearly perturbed rotation on a circle is by
1-dimensional circle mapsx→ x′ = f (x), restricted to the one dimensional torus,
such as thesine map

xn+1 = f (xn) = xn + Ω −
k

2π
sin(2πxn) mod 1 . (28.1)

f (x) is assumed to be continuous, have a continuous first derivative, and a continuous
second derivative at the inflection point (where the second derivative vanishes).
For the generic, physically relevant case (the only one considered here) the inflection
is cubic. Herek parametrizes the strength of the nonlinear interaction, and Ω is
thebare frequency.

The state space of this map, the unit interval, can be thoughtof as the elementary
cell of the map

x̂n+1 = f̂ (x̂n) = x̂n + Ω −
k

2π
sin(2πx̂n) . (28.2)

where ˆ is used in the same sense as in chapter24.

The winding number is defined as

W(k,Ω) = lim
n→∞

(x̂n − x̂0)/n. (28.3)

and can be shown to be independent of the initial value ˆx0.

Fork = 0, the map is a simple rotation (theshift map) see figure28.1

xn+1 = xn + Ω mod 1 , (28.4)
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Figure 28.2: The critical circle map (k = 1 in (28.1))
devil’s staircase [3]; the winding numberW as function
of the parameterΩ.

and the rotation number is given by the parameterΩ.

W(k = 0,Ω) = Ω .

For given values ofΩ and k the winding number can be either rational or
irrational. For invertible maps and rational winding numbers W = P/Q the
asymptotic iterates of the map converge to a unique attractor, a stable periodic
orbit of periodQ

f̂ Q(x̂i) = x̂i + P, i = 0, 1, 2, · · · ,Q− 1 .

This is a consequence of the independence of ˆx0 previously mentioned. There is
also an unstable cycle, repelling the trajectory. For any rational winding number,
there is a finite interval of values ofΩ values for which the iterates of the circle
map are attracted to theP/Q cycle. This interval is called theP/Q mode-locked

[exercise 28.1]
(or stability) interval, and its width is given by

∆P/Q = Q−2µP/Q = Ω
right
P/Q −Ω

le f t
P/Q . (28.5)

whereΩright
P/Q (Ωle f t

P/Q) denote the biggest (smallest) value ofΩ for whichW(k,Ω) =
P/Q. Parametrizing mode lockings by the exponentµ rather than the width∆
will be convenient for description of the distribution of the mode-locking widths,
as the exponentsµ turn out to be of bounded variation. The stability of theP/Q
cycle is

ΛP/Q =
∂xQ

∂x0
= f ′(x0) f ′(x1) · · · f ′(xQ−1)

For a stable cycle|ΛP/Q| lies between 0 (the superstable value, the “center” of the
stability interval) and 1 (theΩright

P/Q , Ωle f t
P/Q endpoints of (28.5)). For the shift map

(28.4), the stability intervals are shrunk to points. AsΩ is varied from 0 to 1,
the iterates of a circle map either mode-lock, with the winding number given by
a rational numberP/Q ∈ (0, 1), or do not mode-lock, in which case the winding
number is irrational. A plot of the winding numberW as a function of the shift
parameterΩ is a convenient visualization of the mode-locking structure of circle
maps. It yields a monotonic “devil’s staircase” of figure28.2whose self-similar
structure we are to unravel. Circle maps with zero slope at the inflection pointxc
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Figure 28.3: Critical circle map (k = 1 in (28.1)) with
golden mean bare rotation number.
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(see figure28.3)

f ′(xc) = 0 , f ′′(xc) = 0

(k = 1, xc = 0 in (28.1)) are calledcritical: they delineate the borderline of chaos
in this scenario. As the nonlinearity parameterk increases, the mode-locked
intervals become wider, and for the critical circle maps (k = 1) they fill out the
whole interval. A critical map has a superstableP/Q cycle for any rationalP/Q,
as the stability of any cycle that includes the inflection point equals zero. If the
map is non-invertible (k > 1), it is called supercritical; the bifurcation structure of
this regime is extremely rich and beyond the scope of this exposition.

The physically relevant transition to chaos is connected with the critical case,
however the apparently simple “free” shift map limit is quite instructive: in essence
it involves the problem of ordering rationals embedded in the unit interval on a
hierarchical structure. From a physical point of view, the main problem is to
identify a (number-theoretically) consistent hierarchy susceptible of experimental
verification. We will now describe a few ways of organizing rationals along the
unit interval: each has its own advantages as well as its drawbacks, when analyzed
from both mathematical and physical perspective.

28.1.1 Hierarchical partitions of the rationals

Intuitively, the longer the cycle, the finer the tuning of theparameterΩ required to
attain it; given finite time and resolution, we expect to be able to resolve cycles up
to some maximal lengthQ. This is the physical motivation for partitioning mode
lockings into sets of cycle length up toQ. In number theory such sets of rationals
are calledFarey series. They are denoted byFQ and defined as follows. The
Farey series of orderQ is the monotonically increasing sequence of all irreducible
rationals between 0 and 1 whose denominators do not exceedQ. Thus Pi/Qi

belongs toFQ if 0 < Pi ≤ Qi ≤ Q and (Pi |Qi) = 1. For example

F5 =

{1
5
,

1
4
,

1
3
,

2
5
,

1
2
,

3
5
,

2
3
,

3
4
,

4
5
,

1
1

}
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A Farey series is characterized by the property that ifPi−1/Qi−1 and Pi/Qi are
consecutive terms ofFQ, then

PiQi−1 − Pi−1Qi = 1.

The number of terms in the Farey seriesFQ is given by

Φ(Q) =
Q∑

n=1

φ(Q) =
3Q2

π2
+ O(Q ln Q). (28.6)

Here the Euler functionφ(Q) is the number of integers not exceeding and relatively
prime toQ. For example,φ(1) = 1, φ(2) = 1, φ(3) = 2, . . . , φ(12) = 4, φ(13) =
12, . . .

From a number-theorist’s point of view, thecontinued fraction partitioningof
the unit interval is the most venerable organization of rationals, preferred already
by Gauss. The continued fraction partitioning is obtained by ordering rationals
corresponding to continued fractions of increasing length. If we turn this ordering
into a way of covering the complementary set to mode-lockings in a circle map,
then the first level is obtained by deleting∆[1] , ∆[2] , · · · ,∆[a1] , · · · mode-lockings;
their complement are thecovering intervalsℓ1, ℓ2, . . . , ℓa1, . . . which contain all
windings, rational and irrational, whose continued fraction expansion starts with
[a1, . . .] and is of length at least 2. The second level is obtained by deleting
∆[1,2], ∆[1,3], · · · ,∆[2,2], ∆[2,3], · · · ,∆[n,m] , · · · and so on.

Thenth level continued fraction partitionSn = {a1a2 · · ·an} is defined as the
monotonically increasing sequence of all rationalsPi/Qi between 0 and 1 whose
continued fraction expansion is of length n:

Pi

Qi
= [a1, a2, · · · , an] =

1

a1 +
1

a2 + . . .
1

an

The object of interest, the set of the irrational winding numbers, is in this partitioning
labeled byS∞ = {a1a2a3 · · ·}, ak ∈ Z+, i.e., the set of winding numbers with
infinite continued fraction expansions. The continued fraction labeling is particularly
appealing in the present context because of the close connection of the Gauss shift
to the renormalization transformationR, discussed below. The Gauss map

T(x) =
1
x
−

[
1
x

]
x , 0

0 , x = 0 (28.7)

([· · ·] denotes the integer part) acts as a shift on the continued fraction representation
of numbers on the unit interval

x = [a1, a2, a3, . . .] → T(x) = [a2, a3, . . .] . (28.8)
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into the “mother” intervalℓa2a3....

However natural the continued fractions partitioning might seem to a number
theorist, it is problematic in practice, as it requires measuring infinity of mode-
lockings even at the first step of the partitioning. Thus numerical and experimental
use of continued fraction partitioning requires at least some understanding of the
asymptotics of mode–lockings with large continued fraction entries.

TheFarey tree partitioningis a systematic bisection of rationals: it is based
on the observation that roughly halfways between any two large stability intervals
(such as 1/2 and 1/3) in the devil’s staircase of figure28.2there is the next largest
stability interval (such as 2/5). The winding number of this interval is given by the
Farey mediant (P+P′)/(Q+Q′) of the parent mode-lockingsP/Q andP′/Q′. This
kind of cycle “gluing” is rather general and by no means restricted to circle maps;
it can be attained whenever it is possible to arrange that theQth iterate deviation
caused by shifting a parameter from the correct value for theQ-cycle is exactly
compensated by theQ′th iterate deviation from closing theQ′-cycle; in this way
the two near cycles can be glued together into an exact cycle of lengthQ+Q′. The
Farey tree is obtained by starting with the ends of the unit interval written as 0/1
and 1/1, and then recursively bisecting intervals by means of Farey mediants.

We define thenth Farey tree level Tn as the monotonically increasing sequence
of those continued fractions[a1, a2, . . . , ak] whose entries ai ≥ 1, i = 1, 2, . . . , k−
1, ak ≥ 2, add up to

∑k
i=1 ai = n + 2. For example

T2 =
{
[4], [2, 2], [1, 1, 2], [1, 3]

}
=

(1
4
,
1
5
,
3
5
,
3
4

)
. (28.9)

The number of terms inTn is 2n. Each rational inTn−1 has two “daughters” inTn,
given by

[· · · , a]
[· · · , a− 1, 2] [· · · , a+ 1]

Iteration of this rule places all rationals on a binary tree,labeling each by a unique
binary label, figure28.4.

The smallest and the largest denominator inTn are respectively given by

[n− 2] =
1

n− 2
, [1, 1, . . . , 1, 2] =

Fn+1

Fn+2
∝ ρn , (28.10)

where the Fibonacci numbersFn are defined byFn+1 = Fn+Fn−1; F0 = 0, F1 =

1, andρ is the golden mean ratio

ρ =
1+
√

5
2

= 1.61803. . . (28.11)
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Figure 28.4: Farey tree: alternating binary
ordered labeling of all Farey denominators on the
nth Farey tree level.
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Note the enormous spread in the cycle lengths on the same level of the Farey tree:
n ≤ Q ≤ ρn. The cycles whose length grows only as a power of the Farey tree level
will cause strong non-hyperbolic effects in the evaluation of various averages.

Having defined the partitioning schemes of interest here, wenow briefly summarize
the results of the circle-map renormalization theory.

28.2 Local theory: “Golden mean” renormalization

The way to pinpoint a point on the border of order is to recursively adjust
the parameters so that at the recurrence timest = n1, n2, n3, · · · the trajectory
passes through a region of contraction sufficiently strong to compensate for the
accumulated expansion of the precedingni steps, but not so strong as to force
the trajectory into a stable attracting orbit. Therenormalization operation R
implements this procedure by recursively magnifying the neighborhood of a point
on the border in the dynamical space (by rescaling by a factorα), in the parameter
space (by shifting the parameter origin onto the border and rescaling by a factorδ),
and by replacing the initial mapf by thenth iterate f n restricted to the magnified
neighborhood

fp(x)→ R fp(x) = α f n
p/δ(x/α)

There are by now many examples of such renormalizations in which the new
function, framed in a smaller box, is a rescaling of the original function, i.e., the
fix-point function of the renormalization operatorR. The best known is the period
doubling renormalization, with the recurrence timesni = 2i . The simplest circle
map example is the golden mean renormalization, with recurrence timesni = Fi

given by the Fibonacci numbers (28.10). Intuitively, in this context a metric self-
similarity arises because iterates of critical maps are themselves critical, i.e., they
also have cubic inflection points with vanishing derivatives.

The renormalization operator appropriate to circle maps acts as a generalization
of the Gauss shift (28.38); it maps a circle map (represented as a pair of functions
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(g, f ), of winding number [a, b, c, . . .] into a rescaled map of winding number
[b, c, . . .]:

Ra

(
g
f

)
=

(
αga−1 ◦ f ◦ α−1

αga−1 ◦ f ◦ g ◦ α−1

)
, (28.12)

Acting on a map with winding number [a, a, a, . . .], Ra returns a map with the
same winding number [a, a, . . .], so the fixed point ofRa has a quadratic irrational
winding numberW = [a, a, a, . . .]. This fixed point has a single expanding eigenvalue
δa. Similarly, the renormalization transformationRap . . .Ra2Ra1 ≡ Ra1a2...ap has a
fixed point of winding numberWp = [a1, a2, . . . , anp, a1, a2, . . .], with a single
expanding eigenvalueδp.

For short repeating blocks,δ can be estimated numerically by comparing
successive continued fraction approximants toW. Consider thePr/Qr rational
approximation to a quadratic irrational winding numberWp whose continued
fraction expansion consists ofr repeats of a blockp. Let Ωr be the parameter
for which the map (28.1) has a superstable cycle of rotation numberPr/Qr =

[p, p, . . . , p]. Theδp can then be estimated by extrapolating from

Ωr −Ωr+1 ∝ δ−r
p . (28.13)

What this means is that the “devil’s staircase” of figure28.2is self-similar under
magnification by factorδp around any quadratic irrationalWp.

The fundamental result of the renormalization theory (and the reason why all
this is so interesting) is that the ratios of successivePr/Qr mode-locked intervals
converge touniversallimits. The simplest example of (28.13) is the sequence of
Fibonacci number continued fraction approximants to the golden mean winding
numberW = [1, 1, 1, ...] = (

√
5− 1)/2.

When global problems are considered, it is useful to have at least and idea on
extemal scaling laws for mode–lockings. This is achieved, in a first analysis, by
fixing the cycle lengthQ and describing the range of possible asymptotics.

For a given cycle lengthQ, it is found that thenarrowestinterval shrinks with
a power law

∆1/Q ∝ Q−3 (28.14)

For fixedQ thewidestinterval is bounded byP/Q = Fn−1/Fn, thenth continued
fraction approximant to thegolden mean. The intuitive reason is that the golden
mean winding sits as far as possible from any short cycle mode-locking.

The golden mean interval shrinks with a universal exponent

∆P/Q ∝ Q−2µ1 (28.15)
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whereP = Fn−1, Q = Fn andµ1 is related to the universal Shenker numberδ1

(28.13) and the golden mean (28.11) by

µ1 =
ln |δ1|
2 lnρ

= 1.08218. . . (28.16)

The closeness ofµ1 to 1 indicates that the golden mean approximant mode-lockings
barely feel the fact that the map is critical (in the k=0 limit this exponent isµ = 1).

To summarize: for critical maps the spectrum of exponents arising from the
circle maps renormalization theory is bounded from above bythe harmonic scaling,
and from below by the geometric golden-mean scaling:

3/2 > µm/n ≥ 1.08218· · · . (28.17)

28.3 Global theory: Thermodynamic averaging

Consider the following average over mode-locking intervals (28.5):

Ω(τ) =
∞∑

Q=1

∑

(P|Q)=1

∆−τP/Q. (28.18)

The sum is over all irreducible rationalsP/Q, P < Q, and∆P/Q is the width of the
parameter interval for which the iterates of a critical circle map lock onto a cycle
of lengthQ, with winding numberP/Q.

The qualitative behavior of (28.18) is easy to pin down. For sufficiently
negativeτ, the sum is convergent; in particular, forτ = −1, Ω(−1) = 1, as for
the critical circle maps the mode-lockings fill the entireΩ range [11]. However,
asτ increases, the contributions of the narrow (largeQ) mode-locked intervals
∆P/Q get blown up to 1/∆τP/Q, and at some critical value ofτ the sum diverges.
This occurs forτ < 0, asΩ(0) equals the number of all rationals and is clearly
divergent.

The sum (28.18) is infinite, but in practice the experimental or numerical
mode-locked intervals are available only for small finiteQ. Hence it is necessary
to split up the sum into subsetsSn = {i} of rational winding numbersPi/Qi on
the “level” n, and present the set of mode-lockings hierarchically, withresolution
increasing with the level:

Z̄n(τ) =
∑

i∈Sn

∆−τi . (28.19)

The original sum (28.18) can now be recovered as thez= 1 value of a “generating”
functionΩ(z, τ) =

∑
n znZ̄n(τ). Asz is anyway a formal parameter, andn is a rather
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arbitrary “level” in somead hocpartitioning of rational numbers, we bravely
introduce a still more general,P/Q weighted generating function for (28.18):

Ω(q, τ) =
∞∑

Q=1

∑

(P|Q)=1

e−qνP/QQ2τµP/Q . (28.20)

The sum (28.18) corresponds toq = 0. ExponentsνP/Q will reflect the importance
we assign to theP/Q mode-locking, i.e., themeasureused in the averaging over
all mode-lockings. Three choices of of theνP/Q hierarchy that we consider here
correspond respectively to the Farey series partitioning

Ω(q, τ) =
∞∑

Q=1

Φ(Q)−q
∑

(P|Q)=1

Q2τµP/Q , (28.21)

the continued fraction partitioning

Ω(q, τ) =
∞∑

n=1

e−qn
∑

[a1,...,an]

Q2τµ[a1,...,an] , (28.22)

and the Farey tree partitioning

Ω(q, τ) =
∞∑

k=n

2−qn
2n∑

i=1

Q2τµi
i , Qi/Pi ∈ Tn . (28.23)

We remark that we are investigating a set arising in the analysis of the parameter
space of a dynamical system: there is no “natural measure” dictated by dynamics,
and the choice of weights reflects only the choice of hierarchical presentation.

28.4 Hausdorff dimension of irrational windings

A finite cover of the set irrational windings at the “nth level of resolution” is
obtained by deleting the parameter values corresponding tothe mode-lockings in
the subsetSn; left behind is the set of complementcoveringintervals of widths

ℓi = Ω
min
Pr/Qr

−Ωmax
Pl/Ql

. (28.24)

HereΩmin
Pr/Qr

(Ωmax
Pl/Ql

) are respectively the lower (upper) edges of the mode-locking
intervals∆Pr/Qr (∆Pl/Ql ) bounding ℓi and i is a symbolic dynamics label, for
example the entries of the continued fraction representation P/Q = [a1, a2, ..., an]
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of one of the boundary mode-lockings,i = a1a2 · · ·an. ℓi provide a finite cover for
the irrational winding set, so one may consider the sum

Zn(τ) =
∑

i∈Sn

ℓ−τi (28.25)

The value of−τ for which then → ∞ limit of the sum (28.25) is finite is the
Hausdorff dimension DH of the irrational winding set. Strictly speaking, this is
the Hausdorff dimension only if the choice of covering intervalsℓi is optimal;
otherwise it provides an upper bound toDH. As by construction theℓi intervals
cover the set of irrational winding with no slack, we expect that this limit yields
the Hausdorff dimension. This is supported by all numerical evidence, buta proof
that would satisfy mathematicians is lacking.

The physically relevant statement is that for critical circle mapsDH = 0.870. . .
is a (global) universal number.

[exercise 28.2]

28.4.1 The Hausdorff dimension in terms of cycles

Estimating then → ∞ limit of (28.25) from finite numbers of covering intervals
ℓi is a rather unilluminating chore. Fortunately, there existconsiderably more
elegant ways of extractingDH. We have noted that in the case of the “trivial”
mode-locking problem (28.4), the covering intervals are generated by iterations
of the Farey map (28.37) or the Gauss shift (28.38). Thenth level sum (28.25) can
be approximated byLn

τ, where

Lτ(y, x) = δ(x− f −1(y))| f ′(y)|τ

This amounts to approximating each cover widthℓi by |d fn/dx| evaluated on the
ith interval. We are thus led to the following determinant

det (1− zLτ) = exp

−
∑

p

∞∑

r=1

zrnp

r

|Λr
p|τ

1− 1/Λr
p



=
∏

p

∞∏

k=0

(
1− znp|Λp|τ/Λk

p

)
. (28.26)

The sum (28.25) is dominated by the leading eigenvalue ofLτ; the Hausdorff
dimension conditionZn(−DH) = O(1) means thatτ = −DH should be such that
the leading eigenvalue isz = 1. The leading eigenvalue is determined by the
k = 0 part of (28.26); putting all these pieces together, we obtain a pretty formula
relating the Hausdorff dimension to the prime cycles of the mapf (x):

0 =
∏

p

(
1− 1/|Λp|DH

)
. (28.27)
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Table 28.1: Shenker’sδp for a few periodic continued fractions, from ref. [1].
p δp

[1 1 1 1 ...] -2.833612
[2 2 2 2 ...] -6.7992410
[3 3 3 3 ...] -13.760499
[4 4 4 4 ...] -24.62160
[5 5 5 5 ...] -40.38625
[6 6 6 6 ...] -62.140
[1 2 1 2 ...] 17.66549
[1 3 1 3 ...] 31.62973
[1 4 1 4 ...] 50.80988
[1 5 1 5 ...] 76.01299
[2 3 2 3 ...] 91.29055

For the Gauss shift (28.38) the stabilities of periodic cycles are available analytical-
ly, as roots of quadratic equations: For example, thexa fixed points (quadratic
irrationals withxa = [a, a, a . . .] infinitely repeating continued fraction expansion)
are given by

xa =
−a+

√
a2 + 4

2
, Λa = −


a+
√

a2 + 4
2


2

(28.28)

and thexab = [a, b, a, b, a, b, . . .] 2–cycles are given by

xab =
−ab+

√
(ab)2 + 4ab
2b

(28.29)

Λab = (xabxba)
−2 =

(
ab+ 2+

√
ab(ab+ 4)

2

)2

We happen to know beforehand thatDH = 1 (the irrationals take the full
measure on the unit interval, or, from another point of view,the Gauss map
is not a repeller), so is the infinite product (28.27) merely a very convoluted
way to compute the number 1? Possibly so, but once the meaningof (28.27)
has been grasped, the corresponding formula for thecritical circle maps follows
immediately:

0 =
∏

p

(
1− 1/|δp|DH

)
. (28.30)

The importance of this formula relies on the fact that it expressesDH in terms
of universal quantities, thus providing a nice connection from local universal
exponents to global scaling quantities: actual computations using (28.30) are
rather involved, as they require a heavy computational effort to extract Shenker’s
scalingδp for periodic continued fractions, and moreover dealing with an infinite
alphabet requires control over tail summation if an accurate estimate is to be
sought. In table28.4.1we give a small selection of computed Shenker’s scalings.
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28.5 Thermodynamics of Farey tree: Farey model

We end this chapter by giving an example of a number theoretical model
motivated by the mode-locking phenomenology. We will consider it by means of
the thermodynamic formalism of chapter22, by looking at the free energy.

Consider the Farey tree partition sum (28.23): the narrowest mode-locked
interval (28.15) at thenth level of the Farey tree partition sum (28.23) is the golden
mean interval

∆Fn−1/Fn ∝ |δ1|−n. (28.31)

It shrinks exponentially, and forτ positive and large it dominatesq(τ) and bounds
dq(τ)/dτ:

q′max =
ln |δ1|
ln 2

= 1.502642. . . (28.32)

However, forτ large and negative,q(τ) is dominated by the interval (28.14) which
shrinks only harmonically, andq(τ) approaches 0 as

q(τ)
τ
=

3 lnn
n ln 2

→ 0. (28.33)

So for finite n,qn(τ) crosses theτ axis at−τ = Dn, but in then → ∞ limit, the
q(τ) function exhibits a phase transition;q(τ) = 0 for τ < −DH, but is a non-trivial
function ofτ for −DH ≤ τ. This non-analyticity is rather severe - to get a clearer
picture, we illustrate it by a few number-theoretic models (the critical circle maps
case is qualitatively the same).

An approximation to the “trivial” Farey level thermodynamics is given by the
“Farey model,” in which the intervalsℓP/Q are replaced byQ−2:

Zn(τ) =
2n∑

i=1

Q2τ
i . (28.34)

Here Qi is the denominator of theith Farey rationalPi/Qi . For example (see
figure28.4),

Z2(1/2) = 4 + 5 + 5 + 4.

By the annihilation property (28.38) of the Gauss shift on rationals, thenth Farey
level sumZn(−1) can be written as the integral

Zn(−1) =
∫

dxδ( f n(x)) =
∑

1/| f ′a1...ak
(0)| ,
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τ/2 Zn(τ/2)/Zn−1(τ/2)
0 2
1 3
2 (5+

√
17)/2

3 7
4 (5+

√
17)/2

5 7+ 4
√

6
6 26.20249. . .

Table 28.2: Partition function sum rules for the Farey model.

and in general

Zn(τ) =
∫

dxLn
τ(0, x) ,

with the sum restricted to the Farey levela1 + . . . + ak = n+ 2. It is easily checked
that f ′a1...ak

(0) = (−1)kQ2
[a1,...,ak], so the Farey model sum is a partition generated by

the Gauss map preimages ofx = 0, i.e., by rationals, rather than by the quadratic
irrationals as in (28.26). The sums are generated by the same transfer operator, so
the eigenvalue spectrum should be the same as for the periodic orbit expansion, but
in this variant of the finite level sums we can can evaluateq(τ) exactlyfor τ = k/2,
k a nonnegative integer. First, one observes thatZn(0) = 2n. It is also easy to check
thatZn(1/2) =

∑
i Qi = 2 · 3n. More surprisingly,Zn(3/2) =

∑
i Q3 = 54 · 7n−1.

A few of these “sum rules” are listed in the table28.2, they are consequence of
the fact that the denominators on a given level are Farey sumsof denominators on
preceding levels.

[exercise 28.3]

A bound onDH can be obtained by approximating (28.34) by

Zn(τ) = n2τ + 2nρ2nτ. (28.35)

In this approximation we have replaced allℓP/Q, except the widest intervalℓ1/n,
by the narrowest intervalℓFn−1/Fn (see (28.15)). The crossover from the harmonic
dominated to the golden mean dominated behavior occurs at theτ value for which
the two terms in (28.35) contribute equally:

Dn = D̂ + O

(
ln n
n

)
, D̂ =

ln 2
2 lnρ

= .72. . . (28.36)

For negativeτ the sum (28.35) is the lower bound on the sum (28.25) , soD̂ is
a lower bound onDH.

From a general perspective the analysis of circle maps thermodynamics has
revealed the fact that physically interesting dynamical systems often exhibit mixtures
of hyperbolic and marginal stabilities. In such systems there are orbits that stay
‘glued’ arbitrarily close to stable regions for arbitrarily long times. This is a
generic phenomenon for Hamiltonian systems, where elliptic islands of stability
coexist with hyperbolic homoclinic webs. Thus the considerations of chapter23
are important also in the analysis of renormalization at theonset of chaos.
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Résum é

The mode locking problem, and the quasiperiodic transitionto chaos offer an
opportunity to use cycle expansions on hierarchical structures in parameter space:
this is not just an application of the conventional thermodynamic formalism, but
offers a clue on how to extend universality theory from local scalings to global
quantities.

Commentary

Remark 28.1 The physics of circle maps. Mode–locking phenomenology is reviewed
in ref. [5], a more theoretically oriented discussion is contained inref. [3]. While representative
of dissipative systems we may also consider circle mapsas a crude approximation to
Hamiltonian local dynamics: a typical island of stability in a Hamiltonian 2-d map is an
infinite sequence of concentric KAM tori and chaotic regions. In the crudest approximation,
the radius can here be treated as an external parameterΩ, and the angular motion can
be modelled by a map periodic in the angular variable [8, 9]. By losing all of the
“island-within-island” structure of real systems, circlemap models skirt the problems of
determining the symbolic dynamics for a realistic Hamiltonian system, but they do retain
some of the essential features of such systems, such as the golden mean renormalization [5,
8] and non-hyperbolicity in form of sequences of cycles accumulating toward the borders
of stability. In particular, in such systems there are orbits that stay “glued” arbitrarily close
to stable regions for arbitrarily long times. As this is a generic phenomenon in physically
interesting dynamical systems, such as the Hamiltonian systems with coexisting elliptic
islands of stability and hyperbolic homoclinic webs, development of good computational
techniques is here of utmost practical importance.

Remark 28.2 Critical mode–locking set The fact that mode-lockings completely fill
the unit interval at the critical point has been proposed in refs. [?, 10]. The proof that the
set of irrational windings is of zero Lebesgue measure in given in ref. [11].

Remark 28.3 Counting noise for Farey series. The number of rationals in the Farey
series of orderQ is φ(Q), which is a highly irregular function ofQ: incrementingQ by 1
increasesΦ(Q) by anything from 2 toQ terms. We refer to this fact as the “Euler noise.”

The Euler noise poses a serious obstacle for numerical calculations with the Farey
series partitionings; it blocks smooth extrapolations toQ→ ∞ limits from finite Q data.
While this in practice renders inaccurate most Farey-sequence partitioned averages, the
finite Q Hausdorff dimension estimates exhibit (for reasons that we do not understand)
surprising numerical stability, and the Farey series partitioning actually yields thebest
numerical value of the Hausdorff dimension (28.25) of any methods used so far; for
example the computation in ref. [12] for critical sine map (28.1), based on 240≤ Q ≤ 250
Farey series partitions, yieldsDH = .87012± .00001. The quoted error refers to the
variation ofDH over this range ofQ; as the computation is not asymptotic, such numerical
stability can underestimate the actual error by a large factor.
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Remark 28.4 Farey tree presentation function. The Farey tree rationals can be generated
by backward iterates of 1/2 by the Farey presentation function [13]:

f0(x) = x/(1− x) 0 ≤ x < 1/2
f1(x) = (1− x)/x 1/2 < x ≤ 1 . (28.37)

The Gauss shift (28.7) corresponds to replacing the binary Farey presentation function
branchf0 in (28.37) by an infinity of branches

fa(x) = f1 ◦ f (a−1)
0 (x) =

1
x
− a,

1
a− 1

< x ≤ 1
a
,

fab···c(x) = fc ◦ · ◦ fb ◦ fa(x) . (28.38)

A rationalx = [a1, a2, . . . , ak] is annihilated by thekth iterate of the Gauss shift,fa1a2···ak(x) =
0. The above maps look innocent enough, but note that what is being partitioned is not
the dynamical space, but the parameter space. The flow described by (28.37) and by its
non-trivial circle-map generalizations will turn out to bea renormalization groupflow
in the function space of dynamical systems, not an ordinary flow in the state space of a
particular dynamical system.

The Farey tree has a variety of interesting symmetries (suchas “flipping heads and
tails” relations obtained by reversing the order of the continued-fraction entries) with as
yet unexploited implications for the renormalization theory: some of these are discussed
in ref. [4].

An alternative labeling of Farey denominators has been introduced by Knauf [6] in
context of number-theoretical modeling of ferromagnetic spin chains: it allows for a
number of elegant manipulations in thermodynamic averagesconnected to the Farey tree
hierarchy.

Remark 28.5 Circle map renormalization The idea underlying golden mean renormalization
goes back to Shenker [9]. A renormalization group procedure was formulated in refs. [7,
14], where moreover the uniqueness of the relevant eigenvalueis claimed. This statement
has been confirmed by a computer–assisted proof [15], and in the following we will
always assume it. There are a number of experimental evidences for local universality,
see refs. [16, 17].

On the other side of the scaling tale, the power law scaling for harmonic fractions
(discussed in refs. [2, ?, 4]) is derived by methods akin to those used in describing
intermittency [21]: 1/Q cycles accumulate toward the edge of 0/1 mode-locked interval,
and as the successive mode-locked intervals 1/Q, 1/(Q − 1) lie on a parabola, their
differences are of orderQ−3.

Remark 28.6 Farey series and the Riemann hypothesis The Farey series thermodynamics
is of a number theoretical interest, because the Farey series provide uniform coverings
of the unit interval with rationals, and because they are closely related to the deepest
problems in number theory, such as the Riemann hypothesis [22, 23] . The distribution
of the Farey series rationals across the unit interval is surprisingly uniform - indeed,
so uniform that in the pre-computer days it has motivated a compilation of an entire
handbook of Farey series [24]. A quantitative measure of the non-uniformity of the
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distribution of Farey rationals is given by displacements of Farey rationals forPi/Qi ∈ FQ

from uniform spacing:

δi =
i
Φ(Q)

− Pi

Qi
, i = 1, 2, · · · ,Φ(Q)

The Riemann hypothesis states that the zeros of the Riemann zeta function lie on the
s = 1/2 + iτ line in the complexs plane, and would seem to have nothing to do with
physicists’ real mode-locking widths that we are interested in here. However, there is
a real-line version of the Riemann hypothesis that lies veryclose to the mode-locking
problem. According to the theorem of Franel and Landau [25, 22, 23], the Riemann
hypothesis is equivalent to the statement that

∑

Qi≤Q

|δi | = o(Q
1
2+ǫ)

for all ǫ as Q → ∞. The mode-lockings∆P/Q contain the necessary information for
constructing the partition of the unit interval into theℓi covers, and therefore implicitly
contain theδi information. The implications of this for the circle-map scaling theory have
not been worked out, and is not known whether some conjectureabout the thermodynamics
of irrational windings is equivalent to (or harder than) theRiemann hypothesis, but the
danger lurks.

Remark 28.7 Farey tree partitioning. The Farey tree partitioning was introduced in
refs. [26, 27, 4] and its thermodynamics is discussed in detail in refs. [12, 13]. The Farey
tree hierarchy of rationals is rather new, and, as far as we are aware, not previously studied
by number theorists. It is appealing both from the experimental and from the the golden-
mean renormalization point of view, but it has a serious drawback of lumping together
mode-locking intervals of wildly different sizes on the same level of the Farey tree.

Remark 28.8 Local and global universality. Numerical evidences for global universal
behavior have been presented in ref. [3]. The question was reexamined in ref. [12], where
it was pointed out how a high-precision numerical estimate is in practice very hard to
obtain. It is not at all clear whether this is the optimal global quantity to test but at least
the Hausdorff dimension has the virtue of being independent of how one partitions mode-
lockings and should thus be the same for the variety of thermodynamic averages in the
literature.

The formula (28.30), linking local to global behavior, was proposed in ref. [1].

The derivation of (28.30) relies only on the following aspects of the “hyperbolicity
conjecture” of refs. [4, 18, 19, 20]:

1. limits for Shenkerδ’s existand are universal. This should follow from the renormalization
theory developed in refs. [7, 14, 15], though a general proof is still lacking.

2. δp growexponentiallywith np, the length of the continued fraction blockp.

3. δp for p = a1a2 . . .n with a large continued fraction entryn grows as apower
of n. According to (28.14), limn→∞ δp ∝ n3. In the calculation of ref. [1] the
explicit values of the asymptotic exponents and prefactorswere not used, only the
assumption that the growth ofδp with n is not slower than a power ofn.
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Remark 28.9 Farey model. The Farey model (28.33) has been proposed in ref. [12];
though it might seem to have been pulled out of a hat, the Fareymodel is as sensible
description of the distribution of rationals as the periodic orbit expansion (28.26).

Remark 28.10 Symbolic dynamics for Hamiltonian rotational orbits. The rotational
codes of ref. [6] are closely related to those for maps with a natural angle variable, for
example for circle maps [34, 36] and cat maps [37]. Ref. [6] also offers a systematic rule
for obtaining the symbolic codes of “islands around islands” rotational orbits [39]. These
correspond, for example, to orbits that rotate around orbits that rotate around the elliptic
fixed point; thus they are defined by a sequence of rotation numbers.

A different method for constructing symbolic codes for “islands around islands” was
given in refs. [42, 40]; however in these cases the entire set of orbits in an islandwas
assigned the same sequence and the motivation was to study the transport implications for
chaotic orbits outside the islands [39, 41].

Exercises

28.1. Mode-locked intervals. Check that whenk , 0 the
interval∆P/Q have a non-zero width (look for instance
at simple fractions, and considerk small). Show that for
smallk the width of∆0/1 is an increasing function ofk.

28.2. Bounds on Hausdorff dimension. By making use of
the bounds (28.17) show that the Hausdorff dimension
for critical mode lockings may be bounded by

2/3 ≤ DH ≤ .9240. . .

28.3. Farey model sum rules. Verify the sum rules reported
in table28.2. An elegant way to get a number of sum
rules for the Farey model is by taking into account an
lexical ordering introduced by Contucci and Knauf, see
ref. [28].

28.4. Metric entropy of the Gauss shift. Check
that the Lyapunov exponent of the Gauss map (28.7) is
given byπ2/6 ln 2. This result has been claimed to be
relevant in the discussion of “mixmaster” cosmologies,
see ref. [30].

28.5. Refined expansions. Show that the above estimates
can be refined as follows:

F(z, 2) ∼ ζ(2)+ (1− z) log(1− z) − (1− z)

and

F(z, s) ∼ ζ(s) + Γ(1− s)(1− z)s−1 − S(s)(1− z)

for s ∈ (1, 2) (S(s) being expressed by a converging
sum). You may use either more detailed estimate

for ζ(s, a) (via Euler summation formula) or keep on
subtracting leading contributions [31].

28.6. Hitting condition. Prove (S.39). Hint: together
with the real trajectory consider the line passing through
the starting point, with polar angleθm,n: then draw the
perpendiculars to the actual trajectory, passing through
the center of the (0, 0) and (m, n) disks.

28.7. jn and αcr. Look at the integration region and how it
scales by plotting it for increasing values ofn.

28.8. Estimates of the Riemann zeta function. Try to
approximate numerically the Riemann zeta function for
s= 2, 4, 6 using different acceleration algorithms: check
your results with refs. [32, 33].

28.9. Farey tree and continued fractions I. Consider the
Farey tree presentation functionf : [0, 1] 7→ [0, 1], such
that if I = [0, 1/2) andJ = [1/2, 1], f |I = x/(1− x) and
f |J = (1 − x)/x. Show that the corresponding induced
map is the Gauss mapg(x) = 1/x− [1/x].

28.10. Farey tree and continued fraction II. (Lethal weapon
II). Build the simplest piecewise linear approximation
to the Farey tree presentation function (hint: substitute
first the righmost, hyperbolic branch with a linear one):
consider then the spectral determinant of the induced
map ĝ, and calculate the first two eigenvalues besides
the probability conservation one. Compare the results
with the rigorous bound deduced in ref. [17].
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