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Chapter 1

Overture

If I have seen less far than other men it is because | have
stood behind giants.

—Edoardo Specchio

holes large enough to steam a Eurostar train through theme Welearn

about harmonic oscillators and Keplerian ellipses - butrelieethe chapter
on chaotic oscillators, the tumbling Hyperion? We have gugtintized hydrogen,
where is the chapter on the classical 3-body problem andrigidgations for
quantization of helium? We have learned that an instantensislution of field-
theoretic equations of motion, but shouldn'’t a stronglylim@ar field theory have
turbulent solutions? How are we to think about systems wtiengs fall apart;
the center cannot hold; every trajectory is unstable?

REREADING classic theoretical physics textbooks leaves a sensehiba are

This chapter fiers a quick survey of the main topics covered in the book.
Throughout the book

indicates that the section is on a pedestrian level - you gpeated to
know/learn this material

- indicates that the section is on a cyclist, somewhat adchlevel

)
J indicates that the section requires a hearty stomach antbiziply best
skipped on first reading

W fast track points you where to skip to

” tells you where to go for more depth on a particular topic

E 4 indicates an exercise that might clarify a point in the text

indicates that a figure is still missing—you are urged totfétc

1



CHAPTER 1. OVERTURE 2

We start out by making promises—we will right wrongs, no lenghall you stfer
the slings and arrows of outrageous Science of Perplexigralégate a historical
overview of the development of chaotic dynamics to appeAdiand head straight
to the starting line: A pinball game is used to motivate ahditate most of the
concepts to be developed in ChaosBook.

This is a textbook, not a research monograph, and you shewtle to follow
the thread of the argument without constant excursionsuices. Hence there are
no literature references in the text proper, all learnedarkmand bibliographical
pointers are relegated to the “Commentary” section at tideoeach chapter.

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation with
science, we acquire a firmer hold over the vicissitudes of
life and meet them with greater calm, but in reality we
have done no more than to find a way to escape from our
SOITOWS.

—Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton’s first frustrafamgl unsuccessful)
crack at the 3-body problem, lunar dynamics. Nature is micéystems governed
by simple deterministic laws whose asymptotic dynamicscamplex beyond
belief, systems which are locally unstable (almost) evésng but globally recurrent.
How do we describe their long term dynamics?

The answer turns out to be that we have to evaluate a detartnitake a
logarithm. It would hardly merit a learned treatise, wenaait for the fact that this
determinant that we are to compute is fashioned out of iefininany infinitely
small pieces. The feel is of statistical mechanics, and ithAbw the problem
was solved; in the 1960’s the pieces were counted, and in9f@é'd they were
weighted and assembled in a fashion that in beauty and it dapks along with
thermodynamics, partition functions and path integralsmagst the crown jewels
of theoretical physics.

This book isnota book about periodic orbits. The red thread throughout the
text is the duality between the local, topological, shartet dynamically invariant
compact sets (equilibria, periodic orbits, partially hsipgic invariant tori) and
the global long-time evolution of densities of trajectsrieChaotic dynamics is
generated by the interplay of locally unstable motions, tredinterweaving of
their global stable and unstable manifolds. These feaaireeobust and accessible
in systems as noisy as slices of rat brains. Poincare, gtédiunderstand deterministic
chaos, already said as much (modulo rat brains). Once figdgy is understood,

a powerful theory yields the observable consequences afichdynamics, such
as atomic spectra, transport id@ents, gas pressures.

That is what we will focus on in ChaosBook. The book is a selftained
graduate textbook on classical and quantum chaos. Youegsof does not know
this material, so you are on your own. We will teach you how Vealeate a
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determinant, take a logarithm—stiike that. Ideally, this should take 100 pages
or so. Well, we fail-so far we have not found a way to travetge material in
less than a semester, or 200-300 page subset of this textingdbd be done.

1.2 Chaos ahead

Things fall apart; the centre cannot hold.
—W.B. Yeats:The Second Coming

The study of chaotic dynamics is no recent fashion. It did statt with the
widespread use of the personal computer. Chaotic systevesbeen studied for
over 200 years. During this time many have contributed, hadield followed no
single line of development; rather one sees many interwstramds of progress.

In retrospect many triumphs of both classical and quantugsiph were a
stroke of luck: a few integrable problems, such as the haitnaoscillator and
the Kepler problem, though ‘non-generic, have gotten uy Var. The success
has lulled us into a habit of expecting simple solutions topé equations—an
expectation tempered by our recently acquired ability tmerically scan the state
space of non-integrable dynamical systems. The initiar@gsgion might be that
all of our analytic tools have failed us, and that the chasygtems are amenable
only to numerical and statistical investigations. Nevelels, a beautiful theory
of deterministic chaos, of predictive quality comparaldehat of the traditional
perturbation expansions for nearly integrable systemsady exists.

In the traditional approach the integrable motions are wsederoth-order
approximations to physical systems, and weak nonlineardie then accounted
for perturbatively. For strongly nonlinear, non-integeadystems such expansions
fail completely; at asymptotic times the dynamics exhibitgazingly rich structure
which is not at all apparent in the integrable approximatiorlowever, hidden
in this apparent chaos is a rigid skeleton, a self-similae tof cycles(periodic
orbits) of increasing lengths. The insight of the modernadyital systems theory
is that the zeroth-order approximations to the harshly thatynamics should
be very diferent from those for the nearly integrable systems: a goadirsg
approximation here is the stretching and folding of bakéoagh, rather than the
periodic motion of a harmonic oscillator.

So, whatis chaos, and what is to be done about it? To get satiregéor how
and why unstable cycles come about, we start by playing a gdupi@ball. The
reminder of the chapter is a quick tour through the matedetred in ChaosBook.
Do not worry if you do not understand every detail at the fiesiding—the intention
is to give you a feeling for the main themes of the book. Dstaill be filled out
later. If you want to get a particular point clarified righwmo@ on the margin [
points at the appropriate section.
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Figure 1.1: A physicist's bare bones game of pinbal

1.3 The future as in a mirror

All you need to know about chaos is contained in the
introduction of [ChaosBook]. However, in order to
understand the introduction you will first have to read the
rest of the book.

—Gary Morriss

That deterministic dynamics leads to chaos is no surpris@yone who has tried
pool, billiards or snooker—the game is about beating ctemse start our story
about what chaos is, and what to do about it, with a ganp@ndfall. This might
seem a trifle, but the game of pinball is to chaotic dynamicatwhpendulum is
to integrable systems: thinking clearly about what ‘chdnsd game of pinball
is will help us tackle more diicult problems, such as computing thefdsion
constant of a deterministic gas, the dragfioeent of a turbulent boundary layer,
or the helium spectrum.

We all have an intuitive feeling for what a ball does as it bmesamong the
pinball machine’s disks, and only high-school level Euetid geometry is needed
to describe its trajectory. A physicist’s pinball game is ttame of pinball strip-
ped to its bare essentials: three equidistantly placedcteftedisks in a plane,
figurel.1 A physicist’s pinball is free, frictionless, point-likepin-less, perfectly
elastic, and noiseless. Point-like pinballs are shot adittles from random starting
positions and angles; they spend some time bouncing bettheeatisks and then
escape.

At the beginning of the 18th century Baron Gottfried Wilhelraibniz was
confident that given the initial conditions one knew eveingha deterministic
system would do far into the future. He wrotd,[anticipating by a century and
a half the oft-quoted Laplace’s “Given for one instant aeliigence which could
comprehend all the forces by which nature is animated...”:

That everything is brought forth through an establishedinle$s just
as certain as that three times three is nine. [...] If, fomeple, one sphere
meets another sphere in free space and if their sizes andptsis and
directions before collision are known, we can then foredeltl calculate
how they will rebound and what course they will take afterithpact. Very
simple laws are followed which also apply, no matter how msplgeres
are taken or whether objects are taken other than spheres this one
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Figure 1.2: Sensitivity to initial conditions: two
pinballs that start out very close to each other separate
exponentially with time. 2313

3x(Y)

ox(0
Figure 1.3: Unstable trajectories separate with time. x(0) X(t)

sees then that everything proceeds mathematically—thiafadlibly—in the
whole wide world, so that if someone could have #isient insight into
the inner parts of things, and in addition had remembranderaslligence
enough to consider all the circumstances and to take themagtount, he
would be a prophet and would see the future in the presentaminror.

Leibniz chose to illustrate his faith in determinism pregyswith the type of
physical system that we shall use here as a paradigm of ‘¢ch&tis claim is
wrong in a deep and subtle way: a state of a physical systemesasibe specified
to infinite precision, and by this we do not mean that evehtuhke Heisenberg
uncertainty principle kicks in. In the classical, deteristic dynamics there is no
way to take all the circumstances into account, and a simgjectory cannot be
tracked, only a ball of nearby initial points makes physgmtse.

1.3.1 Whatis ‘chaos’?

| accept chaos. | am not sure that it accepts me.
—Bob Dylan,Bringing It All Back Home

A deterministic system is a system whose present staigiinciple fully determined
by its initial conditions, in contrast to a stochastic syste

For a stochastic system the initial conditions determieduture only partially,
due to noise, or other external circumstances beyond ouraiorthe present
state reflects the past initial conditions plus the paricutalization of the noise
encountered along the way.

A deterministic system with gliciently complicated dynamics can fool us
into regarding it as a stochastic one; disentangling therdenistic from the
stochastic is the main challenge in many real-life settirfgem stock markets
to palpitations of chicken hearts. So, what is ‘chaos’?
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In a game of pinball, any two trajectories that start out velose to each
other separate exponentially with time, and in a finite (amgbriactice, a very
small) number of bounces their separatiixt) attains the magnitude df, the
characteristic linear extent of the whole system, figur2 This property of
sensitivity to initial conditiongan be quantified as

lox(t)| ~ evox(0)|

where 1, the mean rate of separation of trajectories of the systeroalied the
Lyapunov exponent For any finite accuracyx = [6x(0)| of the initial data, the[

S : ) - tion 15.3
dynamics is predictable only up to a finitgapunov time secton 193]

1
Tiyap ) Injox/Ll, (1.12)

despite the deterministic and, for Baron Leibniz, infadlilsimple laws that rule
the pinball motion.

A positive Lyapunov exponent does not in itself lead to ch&ase could try
to play 1- or 2-disk pinball game, but it would not be much obang; trajectories
would only separate, never to meet again. What is also neisdadking the
coming together again and again of trajectories. Whilellptiae nearby trajectories
separate, the interesting dynamics is confined to a glofiaitg region of the state
space and thus the separated trajectories are necessédiyl back and can re-
approach each other arbitrarily closely, infinitely mamyes. For the case at hand
there are 2topologically distinctn bounce trajectories that originate from a given
disk. More generally, the number of distinct trajectorieithw bounces can be

quantified as [section 13.1]

N(n) ~ €M

whereh, the growth rate of the number of topologically distincterdories, is
called the'topological entropy” (h = In 2 in the case at hand).

The appellation ‘chaos’ is a confusing misnomer, as in deitgstic dynamics
there is no chaos in the everyday sense of the word; evegypioteeds mathematically—
that is, as Baron Leibniz would have it, infallibly. When aypltist says that a
certain system exhibits ‘chaos, he means that the systeysateterministic laws
of evolution, but that the outcome is highly sensitive to Bmiacertainties in the
specification of the initial state. The word ‘chaos’ has iis ttontext taken on a
narrow technical meaning. If a deterministic system isllgaanstable (positive
Lyapunov exponent) and globally mixing (positive entregigure 1.4-it is said
to bechaotic

While mathematically correct, the definition of chaos assifiee Lyapunov
+ positive entropy’ is useless in practice, as a measurenfehese quantities is
intrinsically asymptotic and beyond reach for systems nfeskin nature. More
powerful is Poincaré’s vision of chaos as the interplayoofl instability (unstable
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Figure 1.4: Dynamics of achaotic dynamical \ )
system is (a) everywhere locally unstable (positive ﬂ /
Lyapunov exponent) and (b) globally mixing 4 /" .

) " (b

(positive entropy). (A. Johansen) (a

periodic orbits) and global mixing (intertwining of thetable and unstable manifolds).
In a chaotic system any open ball of initial conditions, ndterahow small, will

in finite time overlap with any other finite region and in thesxse spread over the
extent of the entire asymptotically accessible state sp&see this is grasped,

the focus of theory shifts from attempting to predict indival trajectories (which

is impossible) to a description of the geometry of the spdg®ssible outcomes,

and evaluation of averages over this space. How this is guiésined is what
ChaosBook is about.

A definition of ‘turbulence’ is even harder to come by. Initéty, the word
refers to irregular behavior of an infinite-dimensional dyrical system described
by deterministic equations of motion—say, a bucket of staslvater described by
the Navier-Stokes equations. But in practice the word tilehce’ tends to refer
to messy dynamics which we understand poorly. As soon as ropkenon is
understood better, it is reclaimed and renamed: ‘a routbdo%, ‘spatiotemporal
chaos’, and so on.

In ChaosBook we shall develop a theory of chaotic dynamicef@dimensional
attractors visualized as a succession of nearly periodiaibstable motions. In
the same spirit, we shall think of turbulence in spatialljeexied systems in terms
of recurrent spatiotemporal patterns. Pictorially, dyi@ndrives a given spatially
extended system (clouds, say) through a repertoire of blestmtterns; as we
watch a turbulent system evolve, every so often we catchnapgk of a familiar
pattern:

9@}5

)

= other swirls =

For any finite spatial resolution, a deterministic flow falfapproximately for a
finite time an unstable pattern belonging to a finite alphabatimissible patterns,
and the long term dynamics can be thought of as a walk thrdugkpace of such
patterns. In ChaosBook we recast this image into mathesnatic
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1.3.2 When does ‘chaos’ matter?

In dismissing Pollock’s fractals because of their limited
magnification range, Jones-Smith and Mathur would also
dismiss half the published investigations of physical
fractals.

— Richard P. Taylof4, 5]

When should we be mindful of chaos? The solar system is ‘@iaget
we have no trouble keeping track of the annual motions ofgitan The rule
of thumb is this; if the Lyapunov timel(1)-the time by which a state space
region initially comparable in size to the observationatiaacy extends across
the entire accessible state space—is significantly shtirger the observational
time, you need to master the theory that will be developeé.heiThat is why
the main successes of the theory are in statistical mechanieantum mechanics,
and questions of long term stability in celestial mechanics

In science popularizations too much has been made of thecingpachaos
theory,” so a number of caveats are already needed at this poi

At present the theory that will be developed here is in pcaciipplicable only
to systems of a low intrinsidimension— the minimum number of coordinates
necessary to capture its essential dynamics. If the systerary turbulent (a
description of its long time dynamics requires a space df mginsic dimension)
we are out of luck. Hence insights that the theoffigrs in elucidating problems of
fully developed turbulence, quantum field theory of stromigiiactions and early
cosmology have been modest at best. Even that is a caveatjudtifications.
There are applications—such as spatially extended (noifilggqum) systems, plumber’s
turbulent pipes, etc.,—where the few important degreeseefiom can be isolated
and studied profitably by methods to be described here.

Thus far the theory has had limited practical success wheliegito the very
noisy systems so important in the life sciences and in ec@®oniven though
we are often interested in phenomena taking place on timesscauch longer
than the intrinsic time scale (neuronal inter-burst iréésy cardiac pulses, etc.),
disentangling ‘chaotic’ motions from the environmentaisechas been very hard.

In 1980's something happened that might be without pardhé is an area of
science where the advent of cheap computation had actuddtyasted from our
collective understanding. The computer pictures and nizaleplots of fractal
science of the 1980’s have overshadowed the deep insightseaf970's, and
these pictures have since migrated into textbooks. By eeftidple oversight,
ChaosBook has none, so ‘Untitled 5’ of figuré&will have to do as the illustration
of the power of fractal analysis. Fractal science posit$ testain quantities
(Lyapunov exponents, generalized dimensions, .. .) castive@ed on a computer.
While some of the numbers so obtained are indeed matheithasieasible characterizations
of fractals, they are in no sense observable and measurahiteedength-scales
and time-scales dominated by chaotic dynamics.

Even though the experimental evidence for the fractal gégnad nature
is circumstantial 7], in studies of probabilistically assembled fractal aggtes
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Figure 1.5: Katherine Jones-SmithUntitled 5, the
drawing used by K. Jones-Smith and R.P. Taylor to te=]
the fractal analysis of Pollock’s drip paintings [

we know of nothing better than contemplating such quastitie deterministic
systems we can douchbetter.

1.4 A game of pinball

Formulas hamper the understanding.
—S. Smale

We are now going to get down to the brass tacks. Time to fasten seat
belts and turn fi all electronic devices. But first, a disclaimer: If you urgtand
the rest of this chapter on the first reading, you either doneed this book, or
you are delusional. If you do not understand it, it is not liseathe people who
wrote it are smarter than you: the most you can hope for atsthige is to get a
flavor of what lies ahead. If a statement in this chapter rfigsintrigues, fast
forward to a section indicated byzs= on the margin, read only the parts that you
feel you need. Of course, we think that you need to learn ALIt, afr otherwise
we would not have included it in ChaosBook in the first place.

Confronted with a potentially chaotic dynamical systenr,analysis proceeds
in three stages; I. diagnose, Il. count, lll. measure. Fing determine the
intrinsic dimensiorof the system—the minimum number of coordinates necessary
to capture its essential dynamics. If the system is veryuterti we are, at present,
out of luck. We know only how to deal with the transitional ireg between
regular motions and chaotic dynamics in a few dimensionst iBstill something;
even an infinite-dimensional system such as a burning flaom éan turn out to
have a very few chaotic degrees of freedom. In this regimehietic dynamics
is restricted to a space of low dimension, the number of egleparameters
is small, and we can proceed to step Il; weuntand classify all possible )

. .. . . . . . [chapter 10]

topologically distinct trajectories of the system into ararchy whose successw%chapm_ 13]
layers require increased precision and patience on theop#re observer. This
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Figure 1.6: Binary labeling of the 3-disk pinball o . .
trajectories; a bounce in which the trajectory returns

to the preceding disk is labeled 0, and a bounce which
results in continuation to the third disk is labeled 1.

we shall do in sectl.4.2 If successful, we can proceed with step Il investigate
theweightsof the diferent pieces of the system.

We commence our analysis of the pinball game with steps klilgnose,

count. We shall return to step Illl-measure—in sg¢ci.
[chapter 18]

1.4.1 Symbolic dynamics

With the game of pinball we are in luck—it is a low dimensiosgktem, free

motion in a plane. The motion of a point particle is such tHetraa collision

with one disk it either continues to another disk or it essapl we label the

three disks by 1, 2 and 3, we can associate every trajectdbyamiitinerary, a

sequence of labels indicating the order in which the disks/mited; for example,

the two trajectories in figuré.2 have itineraries2313, 23132321 respectively.
Such labeling goes by the nansgmbolic dynamics As the particle cannot

collide two times in succession with the same disk, any twtseoutive symbols[smOm 21]

must difer. This is an example g@iruning a rule that forbids certain subsequences

of symbols. Deriving pruning rules is in general #idult problem, but with the

game of pinball we are lucky—for well-separated disks tlaeeano further pruning

rules.

[exercise 1.1]

[chapter 11]

The choice of symbols is in no sense unique. For example, escatbounce
we can either proceed to the next disk or return to the previbsk, the above
3-letter alphabet can be replaced by a bin@i} alphabet, figurel.6. A clever
choice of an alphabet will incorporate important featurethe dynamics, such as
its symmetries.

[section 10.5]

Suppose you wanted to play a good game of pinball, that isthgepinball
to bounce as many times as you possibly can—-what would berangistrategy?
The simplest thing would be to try to aim the pinball so it boesy many times
between a pair of disks—if you managed to shoot it so it startsn the periodic
orbit bouncing along the line connecting two disk centersyauld stay there
forever. Your game would be just as good if you managed to tg&t keep
bouncing between the three disks forever, or place it on anipgic orbit. The
only rub is that any such orbit isnstable so you have to aim very accurately in
order to stay close to it for a while. So it is pretty clear tii@ne is interested in
playing well, unstable periodic orbits are important—ttiesm the skeleton onto
which all trajectories trapped for long times cling.
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121212313

Figure 1.8: (a) A trajectory starting out from disk
1 can either hit another disk or escape. (b) Hitti
two disks in a sequence requires a much sharper
with initial conditions that hit further consecutive disk
nested within each other, as in Fig9.

1.4.2 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting positi and momentum. We
shall refer to the set of periodic points that belong to amiperiodic orbit as a
cycle

Short periodic orbits are easily drawn and enumerated—ampbe is drawn
in figure 1.7-but it is rather hard to perceive the systematics of orbimftheir
configuration space shapes. In mechanics a trajectorylysafiadi uniquely specified
by its position and momentum at a given instant, and no twiindisstate space
trajectories can intersect. Their projections onto aabjtrsubspaces, however,
can and do intersect, in rather unilluminating ways. In thall example the
problem is that we are looking at the projections of a 4-disi@mal state space
trajectories onto a 2-dimensional subspace, the configarapace. A clearer
picture of the dynamics is obtained by constructing a setaiésspace Poincaré
sections.

Suppose that the pinball has just bouncédiisk 1. Depending on its position
and outgoing angle, it could proceed to either disk 2 or 3. oth happens in
between the bounces—the ball just travels at constantitieldong a straight line—
so we can reduce the 4-dimensional flow to a 2-dimensional Prthpt takes the
coordinates of the pinball from one disk edge to another éigle. The trajectory
just after the moment of impact is defined by, the arc-length position of the
nth bounce along the billiard wall, angh = psing, the momentum component
parallel to the billiard wall at the point of impact, see figir9. Such section of a
flow is called aPoincaré section In terms of Poincaré sections, the dynamics[(ii(w)IP 22]
reduced to the set of smaps Rs : (Sn, Pn) = (Shet, Prea), With s € {1,2,3}, o
from the boundary of the diskto the boundary of the next digk

[section 8]

Next, we mark in the Poincaré section those initial cond#i which do not
escape in one bounce. There are two strips of survivorsedsdjectories originating
from one disk can hit either of the other two disks, or escaijpleout further ado.
We label the two stripg\12, Mi3. Embedded within them there are four strips
Maz1, Mazs, Mazi, Masz of initial conditions that survive for two bounces, and
so forth, see figure$.8and1.9. Provided that the disks areffigiently separated,
after n bounces the survivors are divided int® @stinct strips: theM;th strip
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Figure 1.9: The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk 1
with Xo = (S, po) - (@) Strips of initial points

Ma,, Mys which reach disks 2, 3 in one bounce,

23 \31

sind
)

respectively. (b) Strips of initial point&1;1, Miz1
M3 and M,z which reach disks 1, 2, 3 in two
bounces, respectively. The Poincaré sections for
trajectories originating on the other two disks are
obtained by the appropriate relabeling of the strips.
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Disk radius : center separation ratio aR1:2.5.
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consists of all points with itinerary = $15S3... %, S = {1,2,3}. The unstable

cycles as a skeleton of chaos are almost visible here: eathpich contains
a periodic pointS;$;Ss- .. 5, with the basic block infinitely repeated. Periodic
points are skeletal in the sense that as we look further atiukify the strips shrink

but the periodic points stay put forever.

We see now why it pays to utilize a symbolic dynamics; it pdes a navigation

chart through chaotic state space. There exists a uniqjectoey for every

admissible infinite length itinerary, and a unique itingréabels every trapped
trajectory. For example, the only trajectory labeledli2yis the 2-cycle bouncing

along the line connecting the centers of disks 1 and 2; arer ¢thjectory starting
out as 12.. either eventually escapes or hits the 3rd disk.

1.4.3 Escape rate

What is a good physical quantity to compute for the game obali? Such
a system, for which almost any trajectory eventually leawdmite region (the
pinball table) never to return, is said to be open, ageller. The repelleescape
rate is an eminently measurable quantity. An example of such asurement
would be an unstable molecular or nuclear state which candeapproximated
by a classical potential with the possibility of escape irtaia directions. In an
experiment many projectiles are injected into a macroscbfack box’ enclosing

a microscopic non-confining short-range potential, and thean escape rate is
measured, as in figurel The numerical experiment might consist of injecting

the pinball between the disks in some random direction akthg$how many

times the pinball bounces on the average before it escapesdion between the

disks.

For a theorist, a good game of pinball consists in prediciiogurately the
asymptotic lifetime (or the escape rate) of the pinball. \&& show how periodic
orbit theory accomplishes this for us. Each step will be sep that you can
follow even at the cursory pace of this overview, and st# tbsult is surprisingly
elegant.

Consider figurel.9 again. In each bounce the initial conditions get thinned
out, yielding twice as many thin strips as at the previousnioeu The total area
that remains at a given time is the sum of the areas of thessipthat the fraction
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of survivors aftem bounces, or theurvival probabilityis given by

- Mol = IMy] - Mool . IMiol | Mol | IMual

I'n = —/—+—, I; = + + + s

LSO T M 2T TTIME T TIM T TIM

i 1o

I, = — : 1.2
"= M|Z|M.|, 1.2

wherei is a label of theith strip, |M| is the initial area, andiM;| is the area of
theith strip of survivors.i = 01,10,11 ... is a label, not a binary number. Since
at each bounce one routinely loses about the same fractitrajettories, one

expects the suml(2) to fall off exponentially withn and tend to the limit [chapter 20]

Th/fn=e" e, (1.3)

The quantityy is called theescape ratérom the repeller.

1.5 Chaos for cyclists

Etant données des équations ... et une solution paéieuli
guelconque de ces équations, on peut toujours trouver une
solution périodique (dont la période peut, il est vraigé
trés longue), telle que lafiierence entre les deux solutions
soit aussi petite qu’on le veut, pendant un temps aussi long
qgu’on le veut. Dailleurs, ce qui nous rend ces solutions
périodiques si précieuses, c'est qu’elles sont, pour ans
dire, la seule bréche par ou nous puissions esseyer de
pénétrer dans une place jusqu’ici réputée inabordable

—H. Poincaré, Les méthodes nouvelles de la
méchanique céleste

We shall now show that the escape ratan be extracted from a highly convergent
exactexpansion by reformulating the sun.®) in terms of unstable periodic
orbits.

If, when asked what the 3-disk escape rate is for a disk otigadlj center-
center separation 6, velocity 1, you answer that the cootisiime escape rate

is roughlyy = 0.4103384077693464893384613078192 you do not need this
book. If you have no clue, hang on.

1.5.1 How big is my neighborhood?

Not only do the periodic points keep track of topological exdg of the strips,
but, as we shall now show, they also determine their size.
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X(t) 0 0X(t) = 3 '5(0)

Figure 1.10: The fundamental matrix' maps an X(O)
infinitesimal displacemersix at X, into a displacement
I (x0)ox finite timet later. x(0

As atrajectory evolves, it carries along and distorts ifimitesimal neighborhood.
Let

X(t) = f'(x0)

denote the trajectory of an initial poine = x(0). Expandingf!(xo + d%o) to
linear order, the evolution of the distance to a neighbotiagectoryx;(t) + 6x;(t)
is given by the fundamental matrik

d a%(t)
ax(t) = >, J'(X0)ij6%oj » Jxo)ij = ——=.
; ] ] ] 6X0J

A trajectory of a pinball moving on a flat surface is specifigdtivo position
coordinates and the direction of motion, so in this cdse 3. Evaluation of a
cycle fundamental matrix is a long exercise - here we jusestee result. The
fundamental matrix describes the deformation of an infémitel neighborhood
of x(t) along the flow; its eigenvectors and eigenvalues give tiections and the
corresponding rates of expansion or contraction, figut€ The trajectories that
start out in an infinitesimal neighborhood separate aloegutistable directions
(those whose eigenvalues are greater than unity in mag)ijtapproach each
other along the stable directions (those whose eigenvaluedess than unity
in magnitude), and maintain their distance along the matgiirections (those
whose eigenvalues equal unity in magnitude).

[section 8.2]

In our game of pinball the beam of neighboring trajectorsedafocused along
the unstable eigendirection of the fundamental matix

As the heights of the strips in figure.9 are dfectively constant, we can
concentrate on their thickness. If the heightik, then the area of thigh strip is
i ~ Ll; for a strip of widthl;.

Each stripi in figure 1.9 contains a periodic point. The finer the intervals,
the smaller the variation in flow across them, so the cortiohufrom the strip

of width I; is well-approximated by the contraction around the pedqabint x;
within the interval,

li = a/IAil, (1.4)
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whereA; is the unstable eigenvalue of the fundamental maliix;) evaluated at
the ith periodic point fort = Ty, the full period (due to the low dimensionality,
the Jacobian can have at most one unstable eigenvalue). ti@nipagnitude of
this eigenvalue matters, we can disregard its sign. Thegt@ka reflect the
overall size of the system and the particular distributibstarting values ok. As
the asymptotic trajectories are strongly mixed by bouncimgpotically around the
repeller, we expect their distribution to be insensitivestaooth variations in the
distribution of initial points.

[section 14.4]
To proceed with the derivation we need thyperbolicityassumption: for large
n the prefactors; ~ O(1) are overwhelmed by the exponential growthAgf so
we neglect them. If the hyperbolicity assumption is justifieve can replace[Semlom 16.1.1]

M| = Llj in (1.2) by 1/|Ai| and consider the sum

(n)

T =) /Al

where the sum goes over all periodic points of periotlVe now define a generating
function for sums over all periodic orbits of all lengths:

'@ = i . (1.5)
n=1

Recall that for largan the nth level sum {.2) tends to the limif’,, — e, so the
escape rate is determined by the smallest= € for which (1.5) diverges:

zev
1-ze7’

I@ ~ i (ze")" = (1.6)
n=1

This is the property of (2) that motivated its definition. Next, we devise a formula
for (1.5) expressing the escape rate in terms of periodic orbits:

'@

Nk
Ny

™
=

LI z + z + z + z
Aol IA1l  [Acodl Aol [Azol Al
+i+i+i+i+... (1.7)

[Agool  [Aocodl  |Aoid  [Azodl

For suticiently smallz this sum is convergent. The escape rate now given by section 16.3]
the leading pole ofX(.6), rather than by a numerical extrapolation of a sequence )
of yn extracted from 1.3). As any finite truncatiom < ngync of (1.7) is a

polynomial inz, convergent for any, finding this pole requires that we know

something about, for anyn, and that might be a tall order.
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We could now proceed to estimate the location of the leadingutarity
of I'(2) from finite truncations of 1.7) by methods such as Padé approximants.
However, as we shall now show, it pays to first perform a sime&immation
that converts this divergence intearoof a related function.

1.5.2 Dynamical zeta function

If a trajectory retraces prime cycler times, its expanding eigenvalue/r%. A
prime cyclep is a single traversal of the orbit; its label is a non-repeagymbol
string ofn, symbols. There is only one prime cycle for each cyclic peation
class. For examplgp = 0011 = 1001= 1100= 0110 is prime, bud101= 01
is not. By the chain rule for derivatives the stability of ecleyis the same
everywhere along the orbit, so each prime cycle of lemgtbontributesn, terms
to the sum {.7). Hence {.7) can be rewritten as

S F LAY Nptp %
' = Z Np Z (|A_p|) = l—_tp s tp= |A_p| (1.8)
P r=1 P

[exercise 13.5]
[section 4.5]

where the indexp runs through all distincprime cycles. Note that we have
resummed the contribution of the cyglao all times, so truncating the summation
up to givenp is not a finite timen < np approximation, but an asymptoticfinite
time estimate based by approximating stabilities of alleyby a finite number of
the shortest cycles and their repeats. T factors in (L.8) suggest rewriting
the sum as a derivative

@ = —zd%zp: In(1-ty).

Hencel (2) is a logarithmic derivative of the infinite product

@ =la-1. =i (L9)
p

This function is called thelynamical zeta functignin analogy to the Riemann
zeta function, which motivates the ‘zeta’ in its definitios H#¢(2). This is the
prototype formula of periodic orbit theory. The zero ¢% () is a pole of['(2),
and the problem of estimating the asymptotic escape ratesfiniten sums such
as (L.2) is now reduced to a study of the zeros of the dynamical zetatifon
(1.9). The escape rate is related lyf) to a divergence df(z), andI'(2) diverges [

section 20.1
whenever 1£(2) has a zero. .

[section 17.4]
Easy, you say: “Zeros ofl(9) can be read b the formula, a zero
Zp = A
for each term in the product. What's the problem?” Dead wrong
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1.5.3 Cycle expansions

How are formulas such ad.9) used? We start by computing the lengths and
eigenvalues of the shortest cycles. This usually requioesesnumerical work,
such as the Newton method searches for periodic solutioashall assume that
the numerics are under control, and taitshort cycles up to given length have
been found. In our pinball example this can be done by elesmgigeometrical
optics. It is very important not to miss any short cycles,hesdalculation is as
accurate as the shortest cycle dropped-including cyclegetothan the shortest
omitted does not improve the accuracy (unless expongntiadiny more cycles
are included). The result of such numerics is a table of tloetsst cycles, their
periods and their stabilities.

[chapter 12]

[section 27.3]

Now expand the infinite product (9), grouping together the terms of the same
total symbol string length

1z

(1 -1t0)(1 — t2)(1 — ta0)(1 — taog) - -

= 1-to—1t1—[tio — tato] — [(ta00 — tacto) + (tro1 — taots)]

~[(t1000 - tot100) + (t1110— tata10)

+(tr001 — tatoor — troato + taotots)] — . .. (1.10)

The virtue of the expansion is that the sum of all terms of #eestotal length
n (grouped in brackets above) is a number that is expongnsatialler than a
typical term in the sum, for geometrical reasons we explaithé next section.

[chapter 18]

[section 18.1]

The calculation is now straightforward. We substitute adiset of the eigenvalues
and lengths of the shortest prime cycles into the cycle esipar{L.10), and obtain
a polynomial approximation to/Z. We then varyz in (1.9) and determine the
escape ratg by finding the smallest = €” for which (1.10) vanishes.

1.5.4 Shadowing

When you actually start computing this escape rate, you fimdl out that the
convergence is very impressive: only three input numbeéist(o fixed points,
1 and the 2-cycld0) already yield the pinball escape rate to 3-4 significagits
We have omitted an infinity of unstable cycles; so why does@pmating the

) . . section 18.2.2
dynamics by a finite number of the shortest cycle eigenvakek so well? secton :

The convergence of cycle expansions of dynamical zetaifurgis a consequence
of the smoothness and analyticity of the underlying flow. uititely, one can
understand the convergence in terms of the geometricairpisketched in figure.11;
the key observation is that the long orbits atedowedy sequences of shorter
orbits.

Atypical termin (L.10) is a diference of along cyclgb} minus its shadowing
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Figure 1.11:  Approximation to (a) a smooth
dynamics by (b) the skeleton of periodic points
together with their linearized neighborhoods
Indicated are segments of two 1-cycles and a 2-cyt
that alternates between the neighborhoods of the t
1-cycles, shadowing first one of the two 1-cycles, ar
then the other.

approximation by shorter cyclé¢a} and{b}

A,
tab — tath = tap(1 — talp/tap) = tab(l - ‘ﬁ‘) , (1.11)
al\b

wherea andb are symbol sequences of the two shorter cycles. If all ogigs
weighted equallyt, = Z%), such combinations cancel exactly; if orbits of similar
symbolic dynamics have similar weights, the weights in starhbinations almost
cancel.

This can be understood in the context of the pinball gamellsv® Consider
orbits0, 1 and01. The first corresponds to bouncing between any two diskig wh
the second corresponds to bouncing successively aroutitred, tracing out an
equilateral triangle. The cyciel starts at one disk, say disk 2. It then bounces
from disk 3 back to disk 2 then bounces from disk 1 back to dish@so on, so its
itinerary is2321. In terms of the bounce types shown in figli@ the trajectory is
alternating between 0 and 1. The incoming and outgoing anglen it executes
these bounces are very close to the corresponding anglésafut 1 cycles. Also
the distances traversed between bounces are similar sthéh2icycle expanding
eigenvalueAp; is close in magnitude to the product of the 1-cycle eigereslu
AoA1.

To understand this on a more general level, try to visualieepartition of
a chaotic dynamical system’s state space in terms of cydtghberhoods as a
tessellation (a tiling) of the dynamical system, with snioibdw approximated by
its periodic orbit skeleton, each ‘tile’ centered on a paiggpoint, and the scale
of the ‘tile’ determined by the linearization of the flow aralithe periodic point,
figure1.11

The orbits that follow the same symbolic dynamics, suctabsand a ‘pseudo
orbit’ {a}{b}, lie close to each other in state space; long shadowing pairs to
start out exponentially close to beat the exponential dgnowtseparation with
time. If the weights associated with the orbits are multigive along the flow
(for example, by the chain rule for products of derivatives)l the flow is smooth,
the term in parenthesis il (L1) falls off exponentially with the cycle length, and
therefore the curvature expansions are expected to beylighlergent.
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1.6 Evolution

The above derivation of the dynamical zeta function fornfatathe escape rate
has one shortcoming; it estimates the fraction of surviaws function of the
number of pinball bounces, but the physically interestingrity is the escape
rate measured in units of continuous time. For continuaus flows, the escape
rate (L.2) is generalized as follows. Define a finite state space regibsuch
that a trajectory that exitd1 never reenters. For example, any pinball that falls
of the edge of a pinball table in figufielis gone forever. Start with a uniform
distribution of initial points. The fraction of initiak whose trajectories remain
within M at timet is expected to decay exponentially

r < Y= )
Jwdx

The integral oveix starts a trajectory at every € M. The integral ovey tests
whether this trajectory is still itM at timet. The kernel of this integral

Ly, %) = s(y- 11(9) (1.12)

is the Dirac delta function, as for a deterministic flow th&@hpoint x maps into a
unique pointy at timet. For discrete timef"(x) is thenth iterate of the mag. For
continuous flowsf!(x) is the trajectory of the initial poink, and it is appropriate
to express the finite time kerngl in terms of a generator of infinitesimal time
translations

L'=e",

[section 14.6]

very much in the way the quantum evolution is generated byddmailtonianH,
the generator of infinitesimal time quantum transformation

As the kernelL is the key to everything that follows, we shall give it a name,
and refer to it and its generalizations as évelution operatofor ad-dimensional
map or ad-dimensional flow.

The number of periodic points increases exponentially Withcycle length
(in the case at hand, a8)2As we have already seen, this exponential proliferation
of cycles is not as dangerous as it might seem; as a mattestpéfeour computations
will be carried out in then — oo limit. Though a quick look at long-time density
of trajectories might reveal it to be complex beyond beltéfs distribution is
still generated by a simple deterministic law, and with sduek and insight, our
labeling of possible motions will reflect this simplicityf the rule that gets us
from one level of the classification hierarchy to the nextsoet depend strongly
on the level, the resulting hierarchy is approximately-sétfilar. We now turn
such approximate self-similarity to our advantage, byingtit into an operation,
the action of the evolution operator, whose iteration eesdtie self-similarity.
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Figure 1.12: The trace of an evolution operator is ""13&”5}2*““5 i.,
concentrated in tubes around prime cycles, of leng f -
T, and thickness AA[" for the rth repetition of the =220
prime cyclep. prives Tepsk Y

1.6.1 Trace formula

In physics, when we do not understand something, we give
ita name.

—Matthias Neubert

Recasting dynamics in terms of evolution operators chaegesything. So
far our formulation has been heuristic, but in the evolutoperator formalism
the escape rate and any other dynamical average are giveraby fermulas,
extracted from the spectra of evolution operators. The &elgtaretrace formulas
andspectral determinants

The trace of an operator is given by the sum of its eigenvalliég explicit
expression .12 for £1(x,y) enables us to evaluate the trace. Idengifwith x
and integratex over the whole state space. The result is an expression fras

a sum over neighborhoods of prime cycfeand their repetitions [section 16.2]

. & St —rTp)
tret= Zsz‘deu Mr)" (1.13)

This formula has a simple geometrical interpretation skeddn figurel.12 After
the rth return to a Poincaré section, the initial tubé, has been stretched out
along the expanding eigendirections, with the overlap lith initial volume
given by ¥ |det(l - M{)) — 1/|Apl, the same weight we obtained heuristically in
sect.1.5.1

The ‘spiky’ sum (.13 is disquieting in the way reminiscent of the Poisson
resummation formulas of Fourier analysis; the left-hade & the smooth eigenvalue
sum tre™ = ¥ e>t, while the right-hand side equals zero everywhere except fo
the set = rTp,. A Laplace transform smooths the sum over Dirac delta fonsti
in cycle periods and yields theace formulafor the eigenspectrums, s, - - - of
the classical evolution operator:

[chapter 16]
o 1
dteStr £ = tr =
0, £ s—-A
0 1 O, @ BA-sTy)
DI YLD v e (119
Ls-s |det1 M5)
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The beauty of trace formulas lies in the fact that everyttongthe right-hand-
side—prime cycles, their periodsT,, and the stability eigenvalues &,—is an
invariant property of the flow, independent of any coordénetioice.

1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zerdeeoBppropriate
determinant. One way to evaluate determinants is to expaa in terms of
traces, using the identities

[exercise 4.1]
d d 1
—Indet(s—A) =tr —In(s-A) =tr —, 1.15
as E-A) =g ns-A)=tro—— (1.15)
and integrating oves. In this way thespectral determinandf an evolution oper-
ator becomes related to the traces that we have just computed )
[chapter 17]
>1 e STpr
det(s— A) = exp ZZ— . (1.16)
" |det(1 - mp)
The Yr factor is due to theintegration, leading to the replacemdipt— Tp/rTp
in the periodic orbit expansiori (14).
[section 17.5]

The motivation for recasting the eigenvalue problem in tbisn is sketched
in figure 1.13 exponentiation improves analyticity and trades in a djeece
of the trace sum for a zero of the spectral determinant. We haw retraced
the heuristic derivation of the divergent sufn@) and the dynamical zeta func-
tion (1.9), but this time with no approximations: formuld.(6) is exact The
computation of the zeros of det{ A) proceeds very much like the computations
of sect.1.5.3

1.7 From chaos to statistical mechanics

Under heaven, all is chaos.
— Chairman Mao Zedong, a letter to Jiang Qing

The replacement of dynamics of individual trajectories ogletion operators
which propagate densities feels like a bit of mathematicaddoo. Actually,
something very radical has taken place. Consider a chaotic 8uch as the
stirring of red and white paint by some deterministic maehlhwe were able to
track individual trajectories, the fluid would forever rema striated combination
of pure white and pure red; there would be no pink. What is mbwee reversed
the stirring, we would return to the perfect whiitd separation. However, that
cannot be—in a very few turns of the stirring stick the thieks of the layers goes
from centimeters to Angstroms, and the result is irrewtyspink.
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Figure 1.13: Spectral determinant is preferable to th B ‘( T :
trace as it vanishes smoothly at the leading eigenvalt - e kL
while the trace formula diverges. A

Understanding the distinction between evolution of indiial trajectories and
the evolution of the densities of trajectories is key to ustinding statistical
mechanics—this is the conceptual basis of the second lareofibdynamics, and
the origin of irreversibility of the arrow of time for detemistic systems with
time-reversible equations of motion: reversibility isadtgble for distributions
whose measure in the space of density functions goes exjmlheto zero with
time.

By going to a description in terms of the asymptotic time atioh oper-
ators we give up tracking individual trajectories for lonignés, by trading it in
for a very dfective description of the asymptotic trajectory densitighis will
enable us, for example, to give exact formulas for transpoeficients such as
the difusion constants withowtny probabilistic assumptions (in contrast to the
stosszahlansataf Boltzmann). !

A century ago it seemed reasonable to assume that stdtiachanics applies
only to systems with very many degrees of freedom. More rtasehe realization
that much of statistical mechanics follows from chaotic ayics, and already at
the level of a few degrees of freedom the evolution of desits irreversible.
Furthermore, the theory that we shall develop here gezegatiotions of ‘measure’
and ‘averaging’ to systems far from equilibrium, and traép us into regions
hitherto inaccessible with the tools of equilibrium stétal mechanics.

The concepts of equilibrium statistical mechanics do help however, to
understand the ways in which the simple-minded periodidt dnbory falters. A
non-hyperbolicity of the dynamics manifests itself in powav correlations and
even ‘phase transitions.’ [

1.8 Whatis notin ChaosBook

This book dfers a breach into a domain hitherto reputed unreachablemaido
traditionally traversed only by mathematical physicistd enathematicians. What
distinguishes it from mathematics is the insistence on egaiplity and numerical
convergence of methodgfered. A rigorous proof, the end of the story as far
as a mathematician is concerned, might state that in a gatting for times in
excess of 1% years, turbulent dynamics settles onto an attractor of diioa less
than 600. Such a theorem is of a little use to an honest, harling plumber,
especially if her hands-on experience is that within thensplaeven the most
careful simulation the dynamics seems to have settled armms(ent?) attractor
of dimension less than 3. If rigor, magic, fractals or bramgour thing, read
remarkl.4and beyond.
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So, no proofs! but lot of hands-on plumbing ahead.

Résum é

This text is an exposition of the best of all possible theoofdeterministic chaos,
and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, naterahow small,
will spread over the entire accessible state space. Hercthéory focuses on
describing the geometry of the space of possible outcomes\aluating averages
over this space, rather than attempting the impossibleigg@rediction of individual
trajectories. The dynamics of densities of trajectorieddscribed in terms of
evolution operators. In the evolution operator formali$ra dynamical averages
are given by exact formulas, extracted from the spectra oluéen operators.
The key tools ar¢race formulasandspectral determinants

The theory of evaluation of the spectra of evolution opespoesented here is
based on the observation that the motion in dynamical syst#rfew degrees of
freedom is often organized around a feimdamentatycles. These short cycles
capture the skeletal topology of the motion on a strangeatyrepeller in the
sense that any long orbit can approximately be pieced tegétbm the nearby
periodic orbits of finite length. This notion is made preciseapproximating
orbits by prime cycles, and evaluating the associated twies A curvature
measures the deviation of a longer cycle from its approxondty shorter cycles;
smoothness and the local instability of the flow implies exgial (or faster)
fall-off for (almost) all curvatures. Cycle expansiorfieoan dficient method for
evaluating classical and quantum observables.

The critical step in the derivation of the dynamical zetaction was the
hyperbolicity assumption, i.e., the assumption of exptiakishrinkage of all
strips of the pinball repeller. By dropping tt& prefactors in {.4), we have
given up on any possibility of recovering the precise distiion of startingx
(which should anyhow be impossible due to the exponent@i/tir of errors), but
in exchange we gain arffective description of the asymptotic behavior of the
system. The pleasant surprise of cycle expansi@r® {s that the infinite time
behavior of an unstable system is as easy to determine akdheime behavior.

To keep the exposition simple we have here illustrated tifig/udf cycles and
their curvatures by a pinball game, but topics covered inoSBaok — unstable
flows, Poincaré sections, Smale horseshoes, symbolioyigeapruning, discrete
symmetries, periodic orbits, averaging over chaotic sstslution operators, dyn-
amical zeta functions, spectral determinants, cycle esipas, quantum trace
formulas, zeta functions, and so on to the semiclassicahttpagion of helium
— should give the reader some confidence in the broad swayedh#ory. The
formalism should work for any average over any chaotic seéthvhatisfies two
conditions:

1. the weight associated with the observable under coraidaris multiplicative
along the trajectory,
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2. the set is organized in such a way that the nearby pointseirsymbolic
dynamics have nearby weights.

The theory is applicable to evaluation of a broad class ohtities characterizing
chaotic systems, such as the escape rates, Lyapunov expan@nsport caécients
and quantum eigenvalues. A big surprise is that the serssicial quantum mechanics
of systems classically chaotic is very much like the clagsitechanics of chaotic
systems; both are described by zeta functions and cyclensiques of the same
form, with the same dependence on the topology of the cllsov.
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But the power of instruction is seldom of mucfiieacy,
except in those happy dispositions where it is almost
superfluous.

—Gibbon

Commentary

Remark 1.1 Nonlinear dynamics texts. ~ This text aims to bridge the gap between
the physics and mathematics dynamical systems literatliree intended audience is
Henri Roux, the perfect physics graduate student with aréieal bent who does not
believe anything he is told. As a complementary presentati® recommend Gaspard’s
monograph§] which covers much of the same ground in a highly readablesahdlarly
manner.

As far as the prerequisites are concerned—ChaosBook isiimttraduction to nonlinear
dynamics. Nonlinear science requires a one semester lmasga(advanced undergraduate
or first year graduate). A good start is the textbook by Stofja], an introduction to the
applied mathematician’s visualization of flows, fixed psjmhanifolds, bifurcations. It is
the most accessible introduction to nonlinear dynamic®eklon diterential equations
in nonlinear disguise, and its broadly chosen examples aayrexercises make it a
favorite with students. It is not strong on chaos. There éx¢bbok of Alligood, Sauer
and Yorke [L1] is preferable: an elegant introduction to maps, chaosp@eatoubling,
symbolic dynamics, fractals, dimensions—a good compani@haosBook. Introductions
more comfortable to physicists is the textbook by Off][ with the baker's map used
to illustrate many key techniques in analysis of chaotidesys. Ott is perhaps harder
than the above two as first books on nonlinear dynamics. Sprdtand Jacksonl5]
textbooks are very useful compendia of the '70s and onwdrads’ literature which we,
in the spirit of promises made in settl, tend to pass over in silence.

An introductory course should give students skills in cfagilre and numerical analysis
of dynamical systems for short times (trajectories, fixeid{so bifurcations) and familiarize
them with Cantor sets and symbolic dynamics for chaoticesyst A good introduction
to numerical experimentation with physically realistics®ms is Tufillaro, Abbott, and
Reilly [16]. Korsch and JodlI17] and Nusse and Yorkel[] also emphasize hands-on
approach to dynamics. With this, and a graduate level-axeds statistical mechanics,
partial diferential equations and quantum mechanics, the stage isrsaty of the one-
semester advanced courses based on ChaosBook.

Remark 1.2 ChaosBook based courses.  The courses taught so far (for a listing,
consultChaosBook.orgourse} start out with the introductory chapters on qualitative
dynamics, symbolic dynamics and flows, and then continuéfierént directions:

Deterministic chaos.Chaotic averaging, evolution operators, trace formuleis, inctions,
cycle expansions, Lyapunov exponents, billiards, trartspueficients, thermodynamic
formalism, period doubling, renormalization operators.

A graduate level introduction to statistical mechanicsrifriie dynamical point view
is given by Dorfman §3]; the Gaspard monograph][covers the same ground in more
depth. Driebe monograph{] offers a nice introduction to the problem of irreversibility
in dynamics. The role of ‘chaos’ in statistical mechaniagitically dissected by Bricmont
in his highly readable esséd$cience of Chaos or Chaos in Sciencg?5).
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Spatiotemporal dynamical systemsPartial diterential equations for dissipative systems,
weak amplitude expansions, normal forms, symmetries auddaitions, pseudospectral
methods, spatiotemporal chaos, turbulence. Holmes, Lwiahel Berkooz §¢] offer

a delightful discussion of why the Kuramoto-Sivashinskya&ipn deserves study as a
staging ground for a dynamical approach to study of turteden full-fledged Navier-
Stokes boundary shear flows.

Quantum chaos.Semiclassical propagators, density of states, trace flasnsemiclassical
spectral determinants, billiards, semiclassical helidfiffraction, creeping, tunneling,
higher-order: corrections. For further reading on this topic, consultghantum chaos
part ofChaosBook.org

Remark 1.3 Periodic orbit theory.  This book puts more emphasis on periodic orbit
theory than any other current nonlinear dynamics textbdble. role of unstable periodic
orbits was already fully appreciated by Poincaté, [2(], who noted that hidden in the
apparent chaos is a rigid skeleton, a treeyfles(periodic orbits) of increasing lengths
and self-similar structure, and suggested that the cydiesld be the key to chaotic
dynamics. Periodic orbits have been at core of much of thdemaatical work on the
theory of the classical and quantum dynamical systems @veg.sWe refer the reader to
the reprint selection[1] for an overview of some of that literature.

Remark 1.4 If you seek rigor? If you find ChaosBook not rigorous enough, you
should turn to the mathematics literature. The most extensference is the treatise by

Katok and Hasselblatt’p], an impressive compendium of modern dynamical systems

theory. The fundamental papers in this field, all still valigareading, are Smale§,
Bowen 4] and Sinai P€]. Sinai’s paper is prescient andfers a vision and a program
that ties together dynamical systems and statistical nméchalt is written for readers
versed in statistical mechanics. For a dynamical systemasiton, consult Anosov and
Sinai [25]. Markov partitions were introduced by Sinai in ref.7]. The classical text
(though certainly not an easy read) on the subject of dyreméta functions is Ruelle’s
Statistical Mechanics, Thermodynamic Formaligifi. In Ruelle’s monograph transfer
operator technique (or the ‘Perron-Frobenius theory’) &nthle’s theory of hyperbolic
flows are applied to zeta functions and correlation functidrhe status of the theory from
Ruelle’s point of view is compactly summarized in his 1995aPlectures{9. Further
excellent mathematical references on thermodynamic fismare Parry and Pollicott’s
monograph $0] with emphasis on the symbolic dynamics aspects of the ftismaand
Baladi’s clear and compact reviews of the theory of dynahzieta functions§1, 37].

Remark 1.5 If you seek magic? ChaosBook resolutely skirts number-theoretical magic

such as spaces of constant negative curvature, Poinliags tmodular domains, Selberg
Zeta functions, Riemann hypothesis,Why? While this beautiful mathematics has been
very inspirational, especially in studies of quantum chatmost no powerful method in
its repertoire survives a transplant to a physical systexnytbu are likely to care about.

Remark 1.6 Sorry, no shmactals! ChaosBook skirts mathematics and empirical practice

of fractal analysis, such as Hausffaand fractal dimensions. Addison’s introduction to
fractal dimensionsd7/] offers a well-motivated entry into this field. While in studiefs o
probabilistically assembled fractals such affiion Limited Aggregates (DLA) better
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measures of ‘complexity’ are lacking, for deterministis®ms there are much better,
physically motivated and experimentally measurable dtiest(escape rates, felision
codficients, spectrum of helium, ...) that we focus on here.

Remark 1.7 Ratbrains? If you were wondering while reading this introduction
‘what’s up with rat brains?’, the answer is yes indeed, tigadine of research in neuronal
dynamics that focuses on possible unstable periodic stdesribed for example in
ref. [39, 40, 41, 42).
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A guide to exercises

God can #ord to make mistakes. So can Dada!
—Dadaist Manifesto

The essence of this subject is incommunicable in print; tilg way to develop

intuition about chaotic dynamics is by computing, and tredes is urged to try
to work through the essential exercises. As not to fragntfentext, the exercises
are indicated by text margin boxes such as the one on thisimaagd collected
at the end of each chapter. By the end of a (two-semesterseguu should
have completed at least three small projects: (a) compudeytiing for a 1-
dimensional repeller, (b) compute escape rate for a 3-diskegof pinball, (c)
compute a part of the quantum 3-disk game of pinball, or thietnespectrum, or
if you are interested in statistical rather than the quantoechanics, compute a
transport cofficient. The essential steps are:

[exercise 18.2]

e Dynamics

1. count prime cycles, exercidel, exercised.2, exercisel0.1
. pinball simulator, exercisé. 1, exercisel2.4

. pinball stability, exercis8.3, exercisel2.4

. pinball periodic orbits, exercisk?.5 exercisel2.6

. helium integrator, exercis2 10, exercisel2.8

o U A WDN

. helium periodic orbits, exercise?.9
e Averaging, numerical

1. pinball escape rate, exercisg.3
e Averaging, periodic orbits

. cycle expansions, exerci&8.1, exercisel8.2

. pinball escape rate, exercis@.4, exercisel8.5

. cycle expansions for averages, exerdi8el, exercise20.3
. cycle expansions for filusion, exercis@4.1

. pruning, Markov graphs, exerci8.7

. desymmetrization exercid®.1

. intermittency, phase transitions, exerci§e6

~N o g b~ W NP

The exercises that you should do hawvelerlined titles . The rest§maller type )
are optional. Dfficult problems are marked by any number of *** stars. If you
solve one of those, it is probably worthpablication Solutions to some of the
problems are available ofhaosBook . org. A clean solution, a pretty figure, or a
nice exercise that you contribute to ChaosBook will be duilieacknowledged.
Often going through a solution is more instructive than iegdhe chapter that
problem is supposed to illustrate.
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Exercises
1.1. 3-disk symbolic dynamics. As periodic trajectories pinball trajectories start out parallel, but separate

will turn out to be our main tool to breach deep into the 1 Angstrom, and the disks are of radias= 1 cn
realm of chaos, it pays to start familiarizing oneself with and center-to-center separatiéh = 6 cm. Try t
them now by sketching and counting the few shortest  estimate in how many bounces the separation will

prime cycles (we return to this in sedt3.4. Show that to the size of system (assuming that the trajec
the 3-disk pinball has 2" ! itineraries of lengtm. List have been picked so they remain trapped for at
periodic orbits of lengths 2, 3, 4, 5,-. Verify that the that long). Estimate the WhoRinball Wizards typica
shortest 3-disk prime cycles are 12, 13, 23, 123, 132,  score (number of bounces) in a game without che:
1213,1232,1323,12123,-. Try to sketch them. by hook or crook (by the end of chapte8 you shoul
1.2. Sensitivity to initial conditions.  Assume that two be in position to make very accurate estimates).
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Chapter 2

Go with the flow

Knowing the equations and knowing the solution are two
different things. Far, far away.

—T.D. Lee

(R. Mainieri, P. Cvitanovic and E.A. Spiegel)

aim is narrow; we keep the exposition focused on preregsidid the

applications to be developed in this text. We assume thatehder
is familiar with dynamics on the level of the introductoryxt® mentioned in
remark1.1, and concentrate here on developing intuition about whanamtical
system can do. It will be a coarse brush sketch—a full desenipf all possible
behaviors of dynamical systems is beyond human ken. Anyfeag, novice there
is no shortcut through this lengthy detour; a sophisticataxeler might prefer to
skip this well-trodden territory and embark upon the joyraechapterl4.

fast track:
W chapter 14, p. 235

WE sTART oUT With a recapitulation of the basic notions of dynamics. Our

2.1 Dynamical systems

In a dynamical system we observe the world as a function &.tie express ou
observations as numbers and record how they change withdimen sdficiently
detailed information and understanding of the underlyiagiral laws, we see the
future in the present as in a mirror. The motion of the plaagtsnst the celestial
firmament provides an example. Against the daily motion efdtars from East
to West, the planets distinguish themselves by moving antbedixed stars.
Ancients discovered that by knowing a sequence of planeistipns—latitudes
and longitudes—its future position could be predicted.

For the solar system, tracking the latitude and longitudeercelestial sphere
suffices to completely specify the planet's apparent motionpédisible values for
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%)

Figure 2.1: A trajectory traced out by the evolution
rule f'. Starting from the state space poigtafter a  x
timet, the point is atf'(x).

positions and velocities of the planets form itease spacef the system. More
generally, a state of a physical system, at a given instaimhi& can be represented
by a single point in an abstract space calitate spacer phase spacé. As the
system changes, so does tepresentative poinin state space. We refer to the
evolution of such points adynamics and the functionf' which specifies where
the representative point is at tihas theevolution rule

If there is a definite rulef that tells us how this representative point moves
in M, the system is said to be deterministic. = For a determintdgicamical
system, the evolution rule takes one point of the state spademaps it into
exactly one point. However, this is not always possible.dxample, knowing the
temperature today is not enough to predict the temperatumerrow; knowing
the value of a stock today will not determine its value torostr The state
space can be enlarged, in the hope that in ficsently large state space it is
possible to determine an evolution rule, so we imagine tiatng the state
of the atmosphere, measured over many points over the gfinet should be
suficient to determine the temperature tomorrow. Even thattigjoite true, and
we are less hopeful when it comes to stocks.

For a deterministic system almost every point has a unicuedso trajectories
cannot intersect. We say ‘almost’ because there might exgst of measure zero
(tips of wedges, cusps, etc.) for which a trajectory is ndingel. We may think
such sets a nuisance, but it is quite the contrary—they wibée us to partition
state space, so that the dynamics can be better understood.

Locally, the state spackt looks likeRY, meaning thatl numbers are sficient
to determine what will happen next. Globally, it may be a meooenplicated
manifold formed by patching together several piece®&fforming a torus, a
cylinder, or some other geometric object. When we needégsthat the dimension
d of M is greater than one, we may refer to the pamte M as x where
i =1,2,3,...,d. The evolution rulef' : M — M tells us where a poink is
in M after a time intervat.

The pair (M, f) constitute adynamical system

The dynamical systems we will be studying are smooth. Thexfgessed
mathematically by saying that the evolution rifecan be dfferentiated as many
times as needed. Its action on a points sometimes indicated by(x,t) to
remind us thaf is really a function of two variables: the time and a pointtate
space. Note that time is relative rather than absolute, §otba time interval
is necessary. This follows from the fact that a point in stgace completely
determines all future evolution, and it is not necessaryntmkanything else. The
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Figure 2.2: The evolution rulef'can be used to map (Mi)
a regionM; of the state space into the regidi{{M;).

time parameter can be a real varialile R), in which case the evolution is called
aflow, or an integert(e Z), in which case the evolution advances in discrete steps
in time, given byiteration of amap Actually, the evolution parameter need not be
the physical time; for example, a time-stationary solutibra partial diferential
equation is parameterized by spatial variables. In suctatsiins one talks of a
‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systemsy franifest themselves
through their trajectories: given an initial poixg, the evolution rule traces out a
sequence of point(t) = f'(xo), thetrajectory through the poinky = x(0).
trajectory is parameterized by the tinand thus belongs tof{(xo), t) € M x R.
By extension, we can also talk of the evolution of a regidnof the state space:
just apply f! to every point inM; to obtain a new regiori'(M;), as in figure2.2

[exercise 2.1]

Becausef! is a single-valued function, any point of the trajectory dzn
used to label the trajectory. If we mark the trajectory byirigial point X, we
are describing it in thd.agrangian coordinates We can regard the transport
of the material point at = 0 to its current poinx(t) = f!(xo) as a coordinate
transformation from the Lagrangian coordinates toEherian coordinates

The subset of points\ly, c M that belong to the infinite-time trajectory
of a given pointxg is called theorbit of Xo; we shall talk about forward orbits,
backward orbits, periodic orbits, etc.. For a flow, an orbiaismooth continuous
curve; for a map, it is a sequence of points. An orbit idyaamically invariant
notion. While “trajectory” refers to a stat€t) at time instant, “orbit” refers to
the totality of states that can be reached frgnwith state spacé foliated into
a union of such orbits (eachy, labeled by a single point belonging to the set,
Xo = X(0) for example).

2.1.1 Aclassification of possible motions?

What are the possible trajectories? This is a grand quesiiwh there are many
answers, chapters to followffering some. Here is the first attempt to classify all
possible trajectories:

stationary: f!(x) = x forall t
periodic:  f'(x) = f*Te(x) for a given minimum period,

aperiodic: fi(x) # f'(x)  forallt#t .

A periodic orbit (or acyclg pis the set of points\, ¢ M swept out by a
trajectory that returns to the initial point in a finite timPeriodic orbits form a
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very small subset of the state space, in the same sensetthalaumbers are a

set of zero measure on the unit interval.
[chapter 5]

Periodic orbits and equilibrium points are the simplestneples of ‘non-
wandering’ invariant sets preserved by dynamics. Dynarcégs also preserve
higher-dimensional smooth compact invariant manifoldsshcommonly encountered
are theM-dimensional tori of Hamiltonian dynamics, with notion oérpdic
motion generalized to quasiperiodic (superpositioMahcommesurate frequencies)
motion on a smooth torus, and families of solutions relagea tontinuous symmetry.

The ancients tried to make sense of all dynamics in termsrafgtie motions;
epicycles, integrable systems. The embarassing truthti$dha generic dynamical
systems almost all motions are aperiodic. So we refine tissiéilzation by dividing
aperiodic motions into two subtypes: those that wandgramd those that keep
coming back.

Apointx € Mis called avandering pointif there exists an open neighborhood
Mo of xto which the trajectory never returns

i) e Mo  forall t>tyin- (2.1)

In physics literature, the dynamics of such state is oftéerred to agransient

Wandering points do not take part in the long-time dynangosjour first task
is to prune them fromM as well as you can. What remains envelops the set of the
long-time trajectories, or theon-wandering set

For times much longer than a typical ‘turnover’ time, it maleznse to relax
the notion of exact periodicity, and replace it by the notibnecurrence A point
is recurrentor non-wanderingf for any open neighborhood, of x and any time
tmin there exists a later timig such that

f{(x) € Mo. (2.2)

In other words, the trajectory of a non-wandering point teemthe neighborhood
M infinitely often. We shall denote b the non—wandering setf f, i.e., the
union of all the non-wandering points #fl. The set, the non—wandering set of
f, is the key to understanding the long-time behavior of a dyinal system; all
calculations undertaken here will be carried out on non-deeng sets.

So much about individual trajectories. What about cloudsitiil points? If
there exists a connected state space volume that mapssdatbunder forward
evolution (and you can prove that by the method of Lyapunactionals, or
several other methods available in the literature), the ftoglobally contracting
onto a subset oM which we shall refer to as thattractor. The attractor may
be unique, or there can coexist any number of distinct dibgsets, each with
its own basin of attraction the set of all points that fall into the attractor under
foward evolution. The attractor can be a fixed point, a péciadbit, aperiodic,
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or any combination of the above. The most interesting cattetof an aperiodic
recurrent attractor, to which we shall refer loosely asrange attractor We say
‘loosely’, as will soon become apparent that diagnosing @oging existence of[
a genuine, card-carrying strange attractor is a highlymaalt undertaking.

example 2.3]

Conversely, if we can enclose the non-wanderingsby a connected state
space volumeMp and then show that almost all points withivip, but not in
Q, eventually exitMo, we refer to the non—-wandering d@tas arepeller. An
example of a repeller is not hard to come by-the pinball gafreect. 1.3 is a
simple chaotic repeller.

It would seem, having said that the periodic points are segtanal that
almost all non-wandering points are aperiodic, that we Igaven up the ancients’
fixation on periodic motions. Nothing could be further fromth. As longer and
longer cycles approximate more and more accurately fingmsats of aperiodic
trajectories, we shall establish control over non—-wamdesiets by defining them
as the closure of the union of all periodic points.

Before we can work out an example of a non—wandering set ana lpetter
grip on what chaotic motion might look like, we need to ponfilews in a little
more depth.

2.2 Flows o o
!‘
There is no beauty without some strangeness.
—William Blake

A flowis a continuous-time dynamical system. The evolution fiils a family
of mappings ofM — M parameterized by € R. Becausd represents a time
interval, any family of mappings that forms an evolutiorerahust satisfy:

[exercise 2.2]
(@) f°(x) = x (in O time there is no motion)
(b) fY(fY(x) = f*'(x) (the evolution law is the same at all times)
(c) the mappingX,t) — fi(x) from M x R into M is continuous.
We shall often find it convenient to represent functional position by © :’ !
[appendix H.1]

55 = flo £S = f(f9). (2.3)

The family of mappingsf!(x) thus forms a continuous (forward semi-) group.
Why ‘semi-"group? It may fail to form a group if the dynamicsniot reversible,
and the rulef'(x) cannot be used to rerun the dynamics backwards in time, with
negativet; with no reversibility, we cannot define the inverge'(f{(x)) = fO(x) =

X, in which case the family of mapping$(x) does not form a group. In exceedingly

flows - 1apr2008.tex

CHAPTER 2. GO WITH THE FLOW 37

many situations of interest—for times beyond the Lyapumme t for asymptotic
attractors, for dissipative partialftiérential equations, for systems with noise, for
non-invertible maps—the dynamics cannot be run backwardisnie, hence, the
circumspect emphasis @@mgroups. On the other hand, there are many settings

of physical interest, where dynamics is reversible (sudmés-dimensional Hamiltonian
flows), and where the family of evolution mapsdoes form a group.

For infinitesimal times, flows can be defined byfeliential equations. We
write a trajectory as

X(t+1) = f7(x0) = f(f(x0,1).7) (2.4)
and express the time derivative of a trajectory at pa{tjt [exercise 2.3
dx .
| = (0.0, Dleg = X (25)
T |7=0

as the time derivative of the evolution rule, a vector evi@dat the same point.
By considering all possible trajectories, we obtain thetmeg(t) at any point
x € M. Thisvector fieldis a (generalized) velocity field:

v(X) = X(1). (2.6)

Newton’s laws, Lagrange’s method, or Hamilton’s methodediramiliar procedures
for obtaining a set of dierential equations for the vector fielx) that describes
the evolution of a mechanical system. Equations of mechamay appear élierent

in form from (2.6), as they are often involve higher time derivatives, butguretion
that is second or higher order in time can always be rewrétea set of first order
equations.

We are concerned here with a much larger world of general floveshanical
or not, all defined by a time-independent vector figlds(. At each point of the
state space a vector indicates the local direction in wHhiehtrtajectory evolves.
The length of the vectdw(X)| is proportional to the speed at the poigtand the
direction and length of(x) changes from point to point. When the state space is a
complicated manifold embeddedid, one can no longer think of the vector field
as being embedded in the state space. Instead, we have toéntlagt each point
x of state space has afidirent tangent plan€ My attached to it. The vector field
lives in the union of all these tangent planes, a space ctilethngent bundle
M.

Example 2.1 A 2-dimensional vector field — Vv(X): A simple example of a flow is
afforded by the unforced Duffing system

Xt =y
y(t) —0.15y(t) + x(t) — x(t)° (2.7)

plotted in figure 2.3. The velocity vectors are drawn superimposed over the configuration
coordinates (X(t), y(t)) of state space M, but they belong to a different space, the
tangent bundle T M.
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Figure 2.3: (a) The 2-dimensional vector field
for the Dufing system 2.7), together with a short
trajectory segment. (b) The flow lines. Each
‘comet’ represents the same time interval of a
trajectory, starting at the tail and ending at the

38

i e e "
head. The longer the comet, the faster the flow | & & x " v o v o oo A
in that region. () RS (b)
50
40
30
N
20
10
Figure 2.4: Lorenz “butterfly” strange attractor. (J. _020 ~10 0 0 20
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Xq is anequilibrium point(also referred to asstationary fixed critical, invariant,
rest stagnationpoint, zero of the vector fieldv, or steady state our usage is
‘equilibrium’ for a flow, ‘fixed point’ for a map), and the tragtory remains
forever stuck atx;. Otherwise the trajectory passing throughat timet = O
can be obtained by integrating the equatidh$)(

t
X(t) = 11(x0) = %o + fo drvx@),  X0)=%. 2.9)

We shall consider here onutonomouslows, i.e., flows for which the velocity
field v; is stationary not explicitly dependent on time. A non-autonomous system

Yy o), (2.10)
2

can always be converted into a system where time does noaiapgglicitly.
To do so, extend (‘suspend’) state space tode ()-dimensional by defining
x = {y, 7}, with a stationary vector field

[exercise 2.4]
[exercise 2.5]

v(X) = [ W({’ 7 ] . (2.11)

The new flowx = v(x) is autonomous, and the trajectorft) can be read o x(t)
by ignoring the last component &f
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Figure 2.5: A trajectory of the Rossler flow at time
t=250. (G. Simon)

Example 2.2 Lorenz strange attractor: Edward Lorenz arrived at the equation
X oly-x
X=v(X)=| VY |=| px-y-xz (2.12)
z Xy — bz

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed o = 10, b = 8/3,
and varied the “Rayleigh number” p. For 0 < p < 1 the equilibrium EQ, = (0, 0, 0) at the
origin is attractive. Atp = 1 it undergoes a pitchfork bifurcation into a pair of equilibria

at
[remark 2.2]

XEQL2 = (i \/b(p - 1), + \/b(p - 1),p - 1) s (213)

We shall not explore the Lorenz flow dependence on the p parameter in what follows,
but here is a brief synopsis: the EQq, 1d unstable manifold closes into a homoclinic orbit
atp = 1356.... Beyond that, an infinity of associated periodic orbits are generated,
untilp = 24.74. .., where EQ, , undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice
o =10,b = 8/3,p = 28. For these parameter values the long-time dynamics is confined
to the strange attractor depicted in figure 2.4. (Continued in example 3.5.)

Example 2.3 The Rdssler flow-A flow with a strange attractor: The Duffing
flow of figure 2.3 is bit of a bore—every trajectory ends up in one of the two attractive
equilibrium points. Let’s construct a flow that does not die out, but exhibits a recurrent
dynamics. Start with a harmonic oscillator

X=-y, y=X. (2.14)

The solutions are re', re, and the whole x-y plane rotates with constant angular
velocity 8 = 1, period T = 2. Now make the system unstable by adding

X=-y, y=X+ay, a>0, (2.15)

or, in radial coordinates, t = arsir? 6, 0 = 1+ (a/2) sin . The plane is still rotating with
the same average angular velocity, but trajectories are now spiraling out. Any flow in
the plane either escapes, falls into an attracting equilibrium point, or converges to a limit
cycle. Richer dynamics requires at least one more dimension. In order to prevent the
trajectory from escaping to oo, kick it into 3rd dimension when X reaches some value ¢
by adding

z=b+2x-0), c>0. (2.16)
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As X crosses ¢, z shoots upwards exponentially, z ~ ¥ In order to bring it back,
start decreasing x by modifying its equation to

X=-y-z.

Large z drives the trajectory toward x = 0; there the exponential contraction by et
kicks in, and the trajectory drops back toward the X-y plane. This frequently studied
example of an autonomous flow is called the Rossler!flow (for definitiveness, we fix the
parameters a, b, ¢ in what follows):

= -y-z
X+ ay
b+zx-c), a=b=02, c=57. (2.17)

z

The system is as simple as they get—it would be linear, were it not for the sole bj éngflcrise 28]
term zx Even for so ‘simple’ a system the nature of long-time solutions is far from™ ="

obvious.
There are two repelling equilibrium points (2.8):

c+ V2 - 4ab
+ T(& -1,1)
(x.,y_.z) = (0.007Q -0.0351, 0.0351)
(Xe¥erz) = (5.6929 —28464 28464) (2.18)

Oneis close to the origin by construction—the other, some distance away, exists because
the equilibrium condition has a 2nd-order nonlinearity.

To see what other solutions look like we need to resort to numerical integration.
A typical numerically integrated long-time trajectory is sketched in figure 2.5.  As we
shall show in sect. 4.1, for this flow any finite volume of initial conditions shrinks with
time, so the flow is contracting.  Trajectories that start out sulfficiently close to the origin
seem to converge to a strange attractor. We say ‘seem’ as there exists no procff that
such an attractor is asymptotically aperiodic—it might well be that what we see is Bt a>° 39
long transient on a way to an attractive periodic orbit. For now, accept that figure 2.5
and similar figures in what follows are examples of ‘strange attractors.’” (continued in
exercise 2.8 and example 3.4) (R. Paskauskas)

W fast track:
chapter 3, p. 46

2.3 Computing trajectories

N

On two occasions | have been asked [by members o
Parliament], 'Pray, Mr. Babbage, if you put into the
machine wrong figures, will the right answers come out?’
| am not able rightly to apprehend the kind of confusion
of ideas that could provoke such a question.

— Charles Babbage

You have not learned dynamics unless you know how to integnamerically
whatever dynamical equations you face. Sooner or laternged to implement
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some finite time-step prescription for integration of theagpns of motionZ.6).
The simplest is the Euler integrator which advances thedtajy bysr x velocity
at each time step:

X — X + Vi(X)oT. (2.19)

This might siffice to get you started, but as soon as you need higher numerical
accuracy, you will need something better. There are marsilext reference texts
and computer programs that can help you learn how to soffereintial equations
numerically using sophisticated numerical tools, suchsasigo-spectral methods

or implicit methods.  If a ‘sophisticated’ integration ring takes days an
gobbles up terabits of memory, you are using brain-damaggdlével software.
Try writing a few lines of your own Runge-Kutta code in somendane everyday
language. While you absolutely need to master the requisiteerical methods
this is neither the time nor the place to expound upon themw;yau learn them
is your business. And if you have developed some nice rautioe solving
problems in this text or can point another student to soneisi&now.

exercise 2.6]

'[exercise 2.7]

[exercise 2.9]
[exercise 2.10]

Résumé

Chaotic dynamics with a low-dimensional attractor can Bealized as a succession
of nearly periodic but unstable motions. In the same spirfhulence in spatially
extended systems can be described in terms of recurremtspaporal patterns.
Pictorially, dynamics drives a given spatially extendestssn through a repertoire
of unstable patterns; as we watch a turbulent system evebary so often we
catch a glimpse of a familiar pattern. For any finite spatalotution and finite
time the system follows approximately a pattern belonging finite repertoire of
possible patterns, and the long-term dynamics can be thofigk a walk through
the space of such patterns. Recasting this image into matienis the subject

of this book.

Commentary

Remark 2.1 Réssler and Duffing flows. The Dufing systemZ2.7) arises in the study
of electronic circuits}]. The Rossler flowZ.17) is the simplest flow which exhibits many
of the key aspects of chaotic dynamics. We shall us the BOasid the 3-pinball (see
chapter8) systems throughout ChaosBook to motivate the notions ofdacé sections,
return maps, symbolic dynamics, cyce expansions, etc., €fbe Rossler flow was
introduced in ref. §] as a set of equations describing no particular physicaesysbut
capturing the essence of chaos in a simplest imaginabletbrfloa. Otto Rdssler, a man
of classical education, was inspired in this quest by thayaited grandfather of chaos,
Anaxagoras (456 B.C.). This, and references to earlier warkbe found in refs.5 8,
11]. We recommend in particular the inimitable Abraham andvsitlastrated classic]
for its beautiful sketches of the Rossler and many otherdlolimothy Jonesi9] has a
number of interesting simulations on a Drexel website.
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Rossler flow is integrated in exercig¢, its equilibria are determined in exercids,
its Poincaré sections constructed in exer@ise and the corresponding return Poincaré
map computed in exercige?2. Its volume contraction rate is computed in exeréis its
topology investigated in exercige4, and its Lyapunov exponents evaluated in exertisé
The shortest Rossler flow cycles are computed and tabulatdrcisel2.7.

Remark 2.2 Lorenz equation.  The Lorenz equation2(12 is the most celebrated
early illustration of “deterministic chaos’Lf] (but not the first - the honor goes to Dame
Cartwright [27]). Lorenz’s paper, which can be found in reprint collectasfs. [L4, 15],

is a pleasure to read, and is still one of the best introdostto the physics motivating
such models. For a geophysics derivation, see Rothmaneaotss []. The equations,
a set of ODEs ifR3, exhibit strange attractor§§, 29, 30]. Frgyland [L€] has a nice brief
discussion of Lorenz flow. Frgyland and Alfsen/] plot many periodic and heteroclinic
orbits of the Lorenz flow; some of the symmetric ones are ihetlin ref. [L6]. Guckenheimer-
Williams [18] and Afraimovich-Bykov-Shilnikov [ 9] offer in-depth discussion of the
Lorenz equation. The most detailed study of the Lorenz éguatas undertaken by
Sparrow P1]. For a physical interpretation gf as “Rayleigh number.” see Jacksan]
and Seydel]5]. Lorenz truncation to 3 modes is so drastic that the modaidreo relation
to the physical hydrodynamics problem that motivated it. &detailed pictures of Lorenz
invariant manifolds consult Vol Il of Jacksofi4]. Lorenz attractor is a very thin fractal —
as we saw, stable manifold thinckness is of order10but its fractal structure has been
accurately resolved by D. Viswanatf [L0)]. (Continued in remark.1)

Remark 2.3 Diagnosing chaos. In sect.1.3.1we have stated that a deterministic
system exhibits ‘chaos’ if its dynamics is locally unstafpesitive Lyapunov exponent)
and globally mixing (positive entropy). In sed6.3we shall define Lyapunov exponents,
and discuss their evaluation, but already at this point ildkde handy to have a few
quick numerical methods to diagnose chaotic dynamics. drsskequency analysis
method [L5] is useful for extracting quasi-periodic and weakly chaoggions of state
space in Hamiltonian dynamics with many degrees of freed&or. pointers to other
numerical methods, see ref.].

Remark 2.4 Dynamical systems software: J.D. Meiss [.3] has maintained for many
yearsSci.nonlinear FAQvhich is now in part superseded by the SIAM Dynamical Systems
websitewww. dynamicalsystems.org. The website glossary contains most of Meiss’s
FAQ plus new ones, and a up-to-date software lisi,[ with links to DSTool, xpp,
AUTO, etc.. Springer on-linEncyclopaedia of Mathematiesaintains links to dynamical
systems software packages enm.springer.d®/d130210.htm
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The exercises that you should do hawvelerlined titles . The rest§maller type )
are optional. Dificult problems are marked by any number of *** stars.

Exercises

2.1. Trajectories do not intersect. A trajectory in the
state spaceéM is the set of points one gets by evolving
x € M forwards and backwards in time:

Cx={yeM: f(x)=y forteR}.

2.6.
Show that if two trajectories intersect, then they are the
same curve.

2.2. Evolution as a group.  The trajectory evolutiorf! is
a one-parameter semigroup, whe2e3(

ft+s - fl o fS.

Show that it is a commutative semigroup.

In this case, the commutative character of the
(semi-)group of evolution functions comes from the
commutative character of the time parameter under
addition. Can you think of any other (semi-)group

replacing time? 2.7.

2.3. Almost ODE's.

(a) Consider the poink on R evolving according

x = €*. Is this an ordinary dferential equation? 2 8.

(b) Isx = x(x(t)) an ordinary diferential equation?
(c) What abouk = x(t + 1) ?
2.4. All equilibrium points are fixed points. Show that

a point of a vector field where the velocity is zero is a
fixed point of the dynamicé'.

2.5. Gradient systems.  Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an
auxiliary function, the ‘potentiakp

X=-V¢(X)

wherex € RY, andg is a function from that space to the

realsR. 2.9.

(a) Show that the velocity of the particle is in the
direction of most rapid decrease of the function

¢.
(b) Show that all extrema af are fixed points of the
flow.
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(c) Show that it takes an infinite amount of time
the system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gra
systems.

6. Runge-Kutta integration. Implement the fourt

order Runge-Kutta integration formula (see,
example, ref.12]) for X = v(x):
ki k
Xns1 = xn+€1+§2+%+%+0(675)
ki = 6tv(Xn), ko=6TV(X0+ke/2)
ks = 67V(Xn + ka/2)
Ky 6T V(%0 + k) .

If you already know your Runge-Kutta, program v
you believe to be a better numerical integration rot
and explain what is better about it.

Rossler flow.  Use the result of exercis26 or som
other integration routine to integrate numerically
Rossler flow 2.17). Does the result look like a ‘strar
attractor'?

Equilibria of the R 0ssler flow.

(a) Find all equilibrium points X;,Yq, Z;) of the
Rossler systen2(17). How many are there?

(b) Assume thath = a. As we shall see, sol
surprisingly large, and surprisingly small num!|
arise in this system. In order to understand
size, introduce parameters

e=ajc, D=1-4¢, p* = (1+ VD)/2.

Express all the equilibria in terms o, €, D, p*)
Expand equilibria to the first order in Note the
it makes sense because fo= b= 0.2,c= 5.7 ir
(2.17), e = 0.03. (continued as exerciSel)

(Rytis Paskausk:

Can you integrate me? Integrating equatio
numerically is not for the faint of heart. It is not alw
possible to establish that a set of nonlinear ord
differential equations has a solution for all times
there are many cases were the solution only exis
a limited time interval, as, for example, for the equz
x=x2, x(0)=1.


http://www.dynamicalsystems.org
http://eom.springer.de/D/d130210.htm
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(a) For what times do solutions of
X = X(X(1)

exist? Do you need a numerical routine to answer
this question?

(b

-

Let’s test the integrator you wrote in exercisé.
The equatiorx = —xwith initial conditionsx(0) =

2 andx = 0 has as solutiox(t) = e (1 + €!).
Can your integrator reproduce this solution for
the intervalt € [0,10]? Check you solution by
plotting the error as compared to the exact result.

(c

-

Now we will try something a little harder. The
equation is going to be third order

X +0.6X+x—|x+1=0,

which can be checked—numerically—to be chaotic.
As initial conditions we will always use(0) =
X(0) = x(0) = 0. Can you reproduce the result
x(12) = 0.8462071873 (all digits are significant)?
Even though the equation being integrated is
chaotic, the time intervals are not long enough
for the exponential separation of trajectories to
be noticeable (the exponential growth factor is
~ 2.4).

Determine the time interval for which the solution
of x = X2, x(0) = 1 exists.

(d

=

2.10. Classical collinear helium dynamics.  In order to
apply periodic orbit theory to quantization of helium
we shall need to compute classical periodic orbits of
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the helium system. In this exercise we commence their

evaluation for the collinear helium atom.6)

1 1 zZ Z 1
H=Zpl+Zp-=-Z= .
2p1+2p2 ry I'2+I'1+I’2

The nuclear charge for heliums= 2. Colinear helium
has only 3 degrees of freedom and the dynamics can be
visualized as a motion in thes(ry), ri > 0 quadrant. In

(r1, r2)-coordinates the potential is singular figr— 0

nucleus-electron collisions. These 2-body collisions
can be regularized by rescaling the coordinates, with
details given in sec6.3. In the transformed coordinates
(X1, X2, P1, P2) the Hamiltonian equations of motion take

the form
Pr = 2Q [2 -3~ Q1+ _R“)}

P2

PZ QZ
2Q2[27 31 - QL+ ﬁ} ]
& = P &= P& (220)

whereR = (Q3 + Q3)Y/2.

(a) Integrate the equations of motion by the

fourth order Runge-Kutta computer routine of
exercise2.6 (or whatever integration routine you
like). A convenient way to visualize the @&-
state space orbit is by projecting it onto the 2-
dimensional K4(t), ro(t)) plane. (continued as
exercises.4)

(Gregor Tanner, Per Rosengvist)
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Figure 3.1: A x(t) trajectory that intersects a Poincaré
section P at timesty, tp, t3,t4, and closes a cycle
(X1, X2, X3, Xa), X = X(t) € P of topological length 4
with respect to this section. Note that the intersection
are not normal to the section, and that the crosging

Chapter 3 does not count, as it in the wrong direction.

The gradient otJ(x) evaluated ak € ¥ serves a two-fold function. First, the
flow should pierce the hypersurfa@ rather than being tangent to it. A nearby

D|Screte t| me dyn am|CS point x + 6x is in the hypersurfac if U(x + ¢x) = 0. A nearby point on the

trajectory is given bysx = vét, so a traversal is ensured by ttransversality

condition
d d
Do it again! (V-3U) = Y V09U #0, GUM = -U(), xeP.  (33)
—lsabelle, age 3 =1 ]
(R. Mainieri and P. Cvitanovic) Second, the gradiedU defines the orientation of the hypersurfaeeThe flow

is oriented as well, and a periodic orbit can pieftéwice, traversing it in either
direction, as in figur&.1 Hence the definition of Poincaré return nfx) needs

. . ; . . . . to be supplemented with the orientation condition
either continuous or discrete. Discrete time dynamicaksys arise naturally PP

THE TIME PARAMETER N the sect2.1 definition of a dynamical system can be
from flows; one can observe the flow at fixed time intervals ¢(bytsng it),

or one can record the coordinates of the flow when a speciat éappens (the X1 = P(%n) , U(n1) =U(%) =0, neZ’

Poincaré section method). This triggering event can bemagles as vanishing d

of one of the coordinates, or as complicated as the flow guttirough a curved Z Vj(Xn)d;U(xa) > 0. (3-4)
hypersurface. =1

In this way the continuous timtdlow f'(x) is reduced to a discrete tinmesequence
Xn of successiverientedtrajectory traversals o.

3.1 Poincai sections ° [chapter 15]
& With a suficiently clever choice of a Poincaré section or a set of spsti
Successive trajectory intersections witRaincaré sectiona (d — 1)-dimensional any orbit of interest intersects a section. Depending ofipication, one might
hypersurface or a set of hypersurfadembedded in the-dimensional state need to convert the discrete tinmeback to the continuous flow time. This is
spaceM, define thePoincaré return map £), a (d - 1)-dimensional map of form accomplished by adding up the first return function timg), with the accumulated

flight time given by

X=PX)=f®x, X,xep. (3.1) tit =t +70%),  t0=0, Xae?P. (3.5)

Here thefirst return functionr(x)—sometimes referred to as tbeiling functior-is
the time of flight to the next section for a trajectory stagtatx. The choice of the
section hypersurfacg is altogether arbitrary. Itis rarely possible to define gkn
section that cuts across all trajectories of interest. hciice one often needs A few examples may help visualize this.
only alocal section—a finite hypersurface of codimensionlime intersected by
a ray of trajectories near to the trajectory of interest. Tipersurface can be
specified implicitly through a functiokl (x) that is zero whenever a poirtis on
the Poincaré section,

Other quantities integrated along the trajectory can baeeéfin a similar manner,
and will need to be evaluated in the process of evaluatinguahjcal averages.

Example 3.1 Hyperplane P: The simplest choice of a Poincaré section is a plane
P specified by a point (located at the tip of the vector ro) and a direction vector a
perpendicular to the plane. A point X is in this plane if it satisfies the condition

xe® iff U(X) =0. 3.2) U(X) = (x—rg)-a=0. (3.6)
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Figure 3.6: Return maps for theR, — Ry 4 \ 4
radial distance Poincaré sections of figargé (R.

Figure 3.5: (Right:) a sequence of Poincaré
sections of the Rossler strange attractor, defined
by planes through the axis, oriented at angles
(a) -6 (b) @, (c) 60, (d) 120, in the x-
yplane. (Left:) side and-y plane view of a typical _
trajectory with Poincaré sections superimposed.
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(R. Paskauskas)

is the symmetry quotiented version of chapter 9 which replaces the above 6 maﬁﬁal?}(w 9l

areturn map pair Pg, P1. [chapter 8]

Embedded within P12, P13 are four strips P121, P123, P131, P132 of initial conditions
that survive two bounces, and so forth. Provided that the disks are sufficiently separated,
after n bounces the survivors are labeled by 2" distinct itineraries c102073. .. 0.

Billiard dynamics is exceptionally simple - free flight segmts, followed by
specular reflections at boundaries, thus billiard bouedaaie the obvious choice
as Poincaré sections. What about smooth, continuous tows, flvith no obvious
surfaces that would fix the choice of Poincaré sections?

Example 3.3 Pendulum:  The phase space of a simple pendulum is 2-dimensional:
momentum on the vertical axis and position on the horizontal axis. We choose the
Poincaré section to be the positive horizontal axis. Now imagine what happens as a
point traces a trajectory through this phase space. As long as the motion is oscillatory,
in the pendulum all orbits are loops, so any trajectory will periodically intersect the line,
that is the Poincaré section, at one point.

Consider next a pendulum with friction, such as the unforced Duffing system
plotted in figure 2.3. Now every trajectory is an inward spiral, and the trajectory will
intersect the Poincaré section'y = 0 at a series of points that get closer and closer to
either of the equilibrium points; the Duffing oscillator at rest.

Motion of a pendulum is so simple that you can sketch it ydfisea piece
of paper. The next exampléfers a better illustration of the utility of visualization
of dynamics by means of Poincaré sections.

Example 3.4 Réssler flow: Consider figure 2.5, a typical trajectory of the 3-
dimensional Réssler flow (2.17). It wraps around the z axis, so a good choice for a
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Poincaré section is a plane passing through the z axis. A sequence of such Poincaré
sections placed radially at increasing angles with respect to the x axis, figure 3.5,
illustrates the “stretch & fold” action of the Réssler flow. To orient yourself, compare
this with figure 2.5, and note the different z-axis scales. Figure 3.5 assembles these
sections into a series of snapshots of the flow. A line segment [A, B], traversing the
width of the attractor, starts out close to the X-y plane, and after the stretching (a) —
(b) followed by the folding (c) — (d), the folded segment returns close to the x-y plane
strongly compressed. In one Poincaré return the [A, B] interval is stretched, folded and
mapped onto itself, so the flow is expanding. It is also mixing, as in one Poincaré return
the point C from the interior of the attractor is mapped into the outer edge, while the
edge point B lands in the interior.

Once a particular Poincaré section is picked, we can also exhibit the return
map (3.1), as in figure 3.6. Cases (a) and (d) are examples of nice 1-to-1 return maps.
However, (b) and (c) appear multimodal and non-invertible, artifacts of projection of
a 2-d return map (Rn,z,) — (Rn+1,2Z011) ONnto a 1-dimensional subspace R, — Rqi1.

(Continued in example 4.1)

fast track:
W sect. 3.3, p. 54
The above examples illustrate why a Poincaré section givesre informative
snapshot of the flow than the full flow portrait. For exampléijlesthe full flow

portrait of the Rossler flow figurg.5 gives us no sense of the thickness of the
attractor, we see clearly in the figuBes Poincaré sections that even though the
return map is A — 2-d, the flow contraction is so strong that for all practical

purposes it renders the return map 1-dimensional.

3.1.1 What's the best Poincag section?

In practice, picking sections is a dark and painful art, esply for high-dimensional

flows where the human visual cortex falls short. It helps tdasstand why we
need them in the first place.

Whenever a system has a continuous symm@trgny two solutions related
by the symmetry are equivalent, so it would be stupid to keepmputing them
over and over. We would rather replace the whole continuamsly of solutions
by one.

A smart way to do woul~d be to replace dynamigd,(f) by dynamics on the
quotient state spaceM/G, f). We will discuss this in chapted, but in general
constructing explicit quotient state space fléwappears either flicult, or not
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[chapter 9]



CHAPTER 3. DISCRETE TIME D' 2

Figure 3.7: (a) Lorenz flow figure2.4 cut by

y = x Poincaré section plan® through thez
axis and bottEQ, , equilibria. Points where flow
pierces into section are marked by dots. To aid
visualization of the flow near theQ, equilibrium,
the flow is cut by the second Poincaré section,
#’, throughy = —x and thez axis. (b) Poincaré
sectionsP and#”’ laid side-by-side. The singular
nature of these sections close EXQ, will be
elucidated in exampld.6 and figure10.7 (b). (E.
Siminos) (a (b)

appreciated enough to generate much readable literatupgrioaps impossible.
So one resorts to method of sections.

Time evolution itself is a 1-parameter abelian Lie groupedla highly nontrivial
one (otherwise this book would not be much of a doorstop). iferiants of the
flow are its infinite-time orbits; particularly useful invants are compact orbits
Mp € M, such as equilibrium points, periodic orbits and tori. Foy arbit it
sufices to pick a single state space poirg Mp, the rest of the orbit is generated
by the flow and its symmetries.

Choice of this one point is utterly arbitrary; in dynamicgstlis called a
“Poincaré section,” and in theoretical physics this goethkb exceptionally uninformative
name of “gauge fixing.” The price is that one generates “ghjbst, in dynamics,
increases the dimensionality of the state space by addittamstraints (see sedt2.4).

It is a commonly deployed but inelegant procedure where sgtmynis broken for
computational convenience, and restored only at the erfakoddlculation, when
all broken pieces are reassembled.

This said, there are a few rules of thumb to follow: (a) You pak as many
sections as convenient. (b) For ease of computation, pielati sections3(6) if
you can. (c) If equilibria play important role in organizimagflow, pick sections
that go through them (see exam@e). (c) If you have a global discrete o&hamm, 9
continuous symmetry, pick sections left invariant by theeyetry (see exampk2). )
(d) If you are solving a local problem, like finding a perioditbit, you do not
need a global section. Pick a section or a set of (multi-shgpsections on the
fly, requiring only that they are locally orthogonal to thewflo(e) If you have
another rule of thumb dear to you, let us know.

Example 3.5 Sections of Lorenz flow: (Continued from example 2.2.) The plane
P fixed by the x =y diagonal and the z-axis depicted in figure 3.7 is a natural choice
of a Poincaré section of the Lorenz flow of figure 2.4, as it contains all three equilibria,
xeqo = (0,0,0) and the (2.13) pair EQ,,. A section has to be supplemented with the
orientation condition (3.4): here points where flow pierces into the section are marked
by dots.

EQ,, are centers of out-spirals, and close to them the section is transverse
to the flow. However, close to EQ, trajectories pass the z-axis either by crossing the
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section P or staying on the viewer’s side. We are free to deploy as many sections as
we wish: in order to capture the whole flow in this neighborhood we add the second
Poincaré section, ', through the y = —x diagonal and the z-axis. Together the two
sections, figure 3.7 (b), capture the whole flow near EQq. In contrast to Réssler sections
of figure 3.5, these appear very singular. We explain this singularity in example 4.6, and
postpone construction of a Poincaré return map to example 9.2.

(E. Siminos and J. Halcrow)

3.2 Constructing a Poincagé section

O

For almost any flow of physical interest a Poincaré sect®nat available in
analytic form. We describe now a numerical method for deiteimg a Poincaré

section. [remark 3.1]

Consider the systen2 (6) of ordinary diferential equations in the vector variable
X = (X1, X2, ..., Xd)

d /.
d—f =Vi(x 1), (3.10)

where the flow velocity is a vector function of the position in state spacand

the timet. In generaly cannot be integrated analytically, so we will have to resort
to numerical integration to determine the trajectorieshef $ystem. Our task is
to determine the points at which the numerically integrategectory traverses

a given hypersurface. The hypersurface will be specifiediaitlp through a
function U(X) that is zero whenever a pointis on the Poincaré section, such as
the hyperplane3.6).

If we use a tiny step size in our numerical integrator, we daseove the value
of U as we integrate; its sign will change as the trajectory e®#se hypersurface.
The problem with this method is that we have to use a very smtelyration time
step. In order to land exactly on the Poincaré section otenofterpolates the
intersection point from the two trajectory points on eithiele of the hypersurface.
However, there is a better way.

Let ty be the time just beforé) changes sign, ant} the time just after it
changes sign. The method for landing exactly on the Painsaction will be to
convert one of the space coordinates into an integratiaahlerfor the part of the
trajectory betweety andty,. Using

dxcdx;  dxc _
d_xlﬁ = d_lel(X’t) = W(xt) (311

we can rewrite the equations of motidgh 10 as

dt 1 dxd_ﬁ

= o, S =L 12
’ dX1 V1 (3 )

Xm B Vl’
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Now we usex; as the ‘time’ in the integration routine and integrate itfirgy (t) to
the value ofx; on the hypersurface, determined by the hypersurface ettos
condition @3.6). This is the end point of the integration, with no need foy an
interpolation or backtracking to the surface of sectione Xi-axis need not be
perpendicular to the Poincaré section; afycan be chosen as the integration
variable, provided theg-axis is not parallel to the Poincaré section at the trajgct
intersection point. If the section crossing is transveBs8)(v; cannot vanish in
the short segment bracketed by the integration step pregéak section, and the
point on the Poincaré section.

Example 3.6 Computation of R dssler flow Poincar é sections.  Poincaré sections
of figure 3.5 are defined by the fixing angle U(X) = 6 -6y = 0. Convert Rdssler equation
(2.17) to cylindrical coordinates:

i = u =-zcosd+arsinto
0 = uH:1+§sinH+gsinZH
zZ = v;=b+2Zrcosd-c). (3.13)

In principle one should use the equilibrium X, from (2.18) as the origin, and its eigenvectors

as the coordinate frame, but here original coordinates suffice, as for parameter values
(2.17), and (X0, Yo, 20) sufficiently far away from the inner equilibrium, 6 increases monotonically
with time. Integrate

dr dt dz
@ZUr/UH, @Zl/Uﬁ, @ZUz/Uﬁ (3.14)
from (rn, 6n, 1) to the next Poincaré section at 6.1, and switch the integration back to
(X,Y, 2) coordinates. (Radford Mitchell, Jr.)
3.3 Maps

’ °
Though we have motivated discrete time dynamics by corisglesections of a Q

continuous flow, there are many settings in which dynamiagghisrently discrete,
and naturally described by repeated iterations of the saape m

fiM-M,
or sequences of consecutive applications of a finite set pbma
{fa fB,... T2} M= M, (3.15)

for example maps relating fiierent sections among a set of Poincaré sections. The
discrete ‘time’ is then an integer, the number of applicagiof a map. As writing

out formulas involving repeated applications of a set of snepplicitly can be
awkward, we streamline the notation by denoting a map coitipody ‘o’

fz(-- fB(fa(X)))--) = fzo -~ fe o fa(x), (3.16)
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Figure 3.8: A flow x(t) of figure 3.1 represented by
a Poincaré return map that maps points in the Poincaré
section® asx,1 = f(X,). In this example the orbit of
X1 consists of the four cycle points( Xo, X3, X4)

and thenth iterate of mapf by

f70) = fo f™ () = F(F"1(x), 909 =x.

[section 2.1]
Thetrajectory of x is now the discrete set of points

X 109, 7209, "9}

and theorbit of xis the subset of all points o¥1 that can be reached by iterations
of f. For example, the orbit of; in figure 3.8is the 4-cycle Xi, X2, X3, X4) -

The functional form of such Poincaré return mapss figure3.6 can be
approximated by tabulating the results of integration & flow from x to the
first Poincaré section return for mamye %, and constructing a function that
interpolates through these points.  If we find a good appration to P(x),
we can get rid of numerical integration altogether, by reiplg the continuous
time trajectoryf!(x) by iteration of the Poincaré return m&¢x). Constructing
accurateP(x) for a given flow can be tricky, but we can already learn muomifr
approximate Poincaré return maps. Multinomial approxiomes

d d
Pk(x):ak+Zbij,~+chijxjxj+m, XeEP (3.17)
=1 (=1

to Poincaré return maps

X1,n+1 P1(Xn)

Xenet | _ | P2(x) ’ Yo Xu1 € P
Xd,n+1 Pd(xn)

motivate the study of model mappings of the plane, such allémen map.

Example 3.7 Hénon map:  The map

X1 = 1-ax +by,

Yner = Xn (3.18)
is a nonlinear 2-dimensional map most frequently employed in testing various hunches
about chaotic dynamics. The Hénon map is sometimes written as a 2-step recurrence
relation

Xne1 = 1—aX + bXy 1. (3.19)
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oo

\

-1.5 0.0 1.5
Figure 3.9: The strange attractor and an unstable Xi-1

period 7 cycle of the Henon map.(9 with a = 1.4,
b = 0.3. The periodic points in the cycle are connected
to guide the eye. (K.T. Hansef]}

An n-step recurrence relation is the discrete-time analogue of an nth order differential
equation, and it can always be replaced by a set of n 1-step recurrence relations.

The Hénon map is the simplest map that captures the “stretch & fold” dynamics
of return maps such as Réssler’s, figure 3.5. It can be obtained by a truncation of a
polynomial approximation (3.17) to a Poincaré return map (3.17) to second order.

A quick sketch of the long-time dynamics of such a mapping (an example is
depicted in figure 3.9), is obtained by picking an arbitrary starting point and iterating
(3.18) on a computer. We plot here the dynamics in the (X, Xn+1) plane, rather than in
the (X, Yn) plane, because we think of the Hénon map as a model return map X, —
Xnr1. AS we shall soon see, periodic orbits will be key to understanding the Ioni—time

exercise 3.5]

dynamics, so we also plot a typical periodic orbit of such a system, in this casé an
unstable period 7 cycle. Numerical determination of such cycles will be explained in
sect. 27.1, and the cycle point labels 01110101110100- - - in sect. 11.3.

Example 3.8 Lozi map: Another example frequently employed is the Lozi map, a
linear, ‘tent map’ version of the Hénon map (3.18) given by

Xn+1 1-alxq| + byn
Yol = Xn. (3.20)

Though not realistic as an approximation to a smooth flow, the Lozi map is a very helpful
tool for developing intuition about the topology of a large class of maps of the “stretch
& fold” type.

What we get by iterating such maps is—at least qualitatirey unlike what
we get from Poincaré section of flows such as the Rossler fitpuwe 3.6. For
an arbitrary initial point this process might converge tdabke limit cycle, to a
strange attractor, to a false attractor (due to rotiheimors), or diverge. In other
words, mindless iteration is essentially uncontrollakled we will need to resort
to more thoughtful explorations. As we shall explain in doerse, strategies for

. : ; o . ise 3.5
systematic exploration rely on stahlastable manifolds, periodic points, saddlée—xerCIse !

straddle methods and so on.

Example 3.9 Parabola: For sufficiently large value of the stretching paramater a,
one iteration of the Hénon map (3.18) stretches and folds a region of the (x,y) plane
centered around the origin. The parameter a controls the amount of stretching, while
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the parameter b controls the thickness of the folded image through the ‘1-step memory’
termbx,-1 in (3.19). In figure 3.9 the parameterb is rather large, b = 0.3, so the attractor
is rather thick, with the transverse fractal structure clearly visible. For vanishingly small
b the Hénon map reduces to the 1-dimensional quadratic map

Xni1=1-ax. (3.21)

[exercise 3.7]

By setting b = 0 we lose determinism, as on reals the inverse of map (3.21) has two

preimages {x_,, X, ,} for most x,. If Bourbaki is your native dialect: the Hénon map

is injective or one-to-one, but the quadratic map is surjective or many-to-one. Still, this
1-dimensional approximation is very instructive.

As we shall see in secL0.2.] an understanding of 1-dimensional dynamics is
indeed the essential prerequisite to unraveling the ikt dynamics of many
higher-dimensional dynamical systems. For this reasoryme&positions of the
theory of dynamical systems commence with a study of 1-dgiosial maps. We
prefer to stick to flows, as that is where the physics is.

Résumé

In recurrent dynamics a trajectory exits a region in stasesmnd then reenters
it infinitely often, with a finite mean return time. If the othis periodic, it
returns after a full period. So, on average, nothing muchyréappens along
the trajectory—what is important is behavior of neighbgrirajectories transverse
to the flow. This observation motivates a replacement of dmiguous time flow
by iterative mapping, the Poincaré return map.

The visualization of strange attractors is greatly feaiétd by a felicitous
choice of Poincaré sections, and the reduction of flows iodaoé return maps.
This observation motivates in turn the study of discrateetidynamical systems
generated by iterations of maps.

A particularly natural application of the Poincaré seetioethod is the reduction
of a billiard flow to a boundary-to-boundary return map, diesd in chapteB.
As we shall show in chaptes, further simplification of a Poincaré return marﬁ
or any nonlinear map, can be attained through rectifyingehmaps locally by[
means of smooth conjugacies.

Commentary

Remark 3.1 Determining a Poincaré section. The idea of changing the integration
variable from time to one of the coordinates, although sanpivoids the alternative
of having to interpolate the numerical solution to deterniine intersection. The trick
described in secB.2is due to Hénond, 6, 7].
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Remark 3.2 Hénon, Lozi maps. The Hénon map is of no particular physical importin
and of itself-its significance lies in the fact that it is a imal normal form for modeling
flows near a saddle-node bifurcation, and that it is a prp®tyf the stretching and
folding dynamics that leads to deterministic chaos. It isggee in the sense that it can
exhibit arbitrarily complicated symbolic dynamics and tabes of hyperbolic and non—
hyperbolic behaviors. Its construction was motivated gytibst known early example of
‘deterministic chaos’, the Lorenz equatiaf,[see ref. [] and remark2.2.

Y. Pomeau’s studies of the Lorenz attractor on an analog atenpand his insights
into its stretching and folding dynamics motivated Hénéhtp introduce the Hénon
map in 1976. Hénon’s and Lorenz’s original papers can beddn reprint collections
refs. 3, 4]. They are a pleasure to read, and are still the best inttaduto the physics
motivating such models. A detailed description of the dyitanof the Hénon map is
given by Mira and coworkers3], as well as very many other authors.

The Lozi map [0 is particularly convenient in investigating the symbalignamics
of 2-d mappings. Both the Lorenz and Lozi systems are uniformlyatmeystems with
singularities. The continuity of measure for the Lozi magweoven by M. Misiurewicz1],

and the existence of the SRB measure was established byvoug. [section 14.1]

Remark 3.3 Grasshoppers vs. butterflies.  The 'sensitivity to initial conditions’ was
discussed by Maxwell, 30 years later by Poincaré. In wegthediction, the Lorentz’
‘Butterfly Effect’ started its journey in 1898, as a ‘Grasshopped’ in a book review by
W. S. Franklin [l]. In 1963 Lorenz ascribed a ‘seaguffect’ to an unnamed meteorologist,
and in 1972 he repackaged it as the ‘Butterffjeet’.
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Exercises

3.1

3.2.

3.3.

Poincaré sections of the Rssler flow. 3.4. Classical collinear helium dynamics.

(continuation of exercis€.8) Calculate numerically a (continuation of exercis2.10 Make a Poincaré surf
Poincaré section (or several Poincaré sections) of the  of section by plottingi(;, p;) whenever, = 0: Note thz
Rossler flow. As the Rossler flow state spacels the forry = 0, p is already determined by (€). Compat

flow maps onto a R Poincaré section. Do you see that your results with figuré.3 (b).

in your numerical results? How good an approximation (Gregor Tanner, Per Rosenqv
would a replacement of the return map for this section

by a 1-dimensional map be? More precisely, estimatd.5. Hénon map fixed points. ~ Show that the two fixe
the thickness of the strange attractor. (continued as  POINts (o, %), (X1, x1) of the Hénon map3.1§ ar

exercisel.4) given by

R. Paskausk

(R- PaSkauskas) -(1-b)- JA-bP+4a
A return Poincaré map for the Rossler flow. X = 2a ’
(continuation of exercis.1) That Poincar return maps —(1-b)+ JI-b2+4a
of figure 3.6 appear multimodal and non-invertible is X1 > .
an artifact of projections of a 2-dimensional return map a
(Rn,z0) — (Rns1, Z0+1) ONto a 1-dimensional subspace
R = Roa 3.6. How strange is the Henon attractor?
Construct a genuine,,; = f(s,) return map by - )
parametrazing points on a Poincaré section of the (a) Iterate numerically some 100,000 times or s
attractor figure3.5 by a Euclidean lengtls computed Heénon map
curvilinearly along the attractor section. X1 [1-ak+y
This is best done (using methods to be developed in y | 7| bx

what follows) by a continuation of the unstable manifold
of the 1-cycle embedded in the strange attractor,
figure12.1(b). (P. Cvitanovit)

fora = 1.4,b = 0.3 . Would you describe t
result as a 'strange attractor’? Why?

Now check how robust the Hénon attractor i

iterating a slightly diferent Hénon map, with =

1.39945219b = 0.3. Keep at it until the 'strang

attractor vanishes like the smile of the Chesire

(a) Start by modifying your integrator so that you What replaces it? Would you describe the resi|
can change the coordinates once you get near the a 'strange attractor'? Do you still have confide
Poincaré section. You can do this easily by writing in your own claim for the part (a) of this exerci
the equations as

(b

-

Arbitrary Poincar & sections. We will generalize the
construction of Poincaré sections so that they can have
any shape, as specified by the equatilqw) = 0.

3.7. Fixed points of maps. A continuous functiorF i
=X = iy, (3.22) a contraction of the unit interval if it maps the inte
d inside itself.

with dt/ds = «, and choosing to be 1 or ¥f;.

This allows one to switch betwedérmndx; as the (@) Use the continuity ofF to show that a

integration 'time.” dimensional contractioR of the interval [Q1] ha

(® at least one fixed point.

-

Introduce an extra dimensiom,.; into your
system and set (b) In a uniform (hyperbolic) contraction the sl
of F is always smaller than ondF’| < 1

Xo = U(Y). (3.23) " o

Is the composition of uniform contraction:
How can this be used to find a Poincaré section? contraction? Is it uniform?
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Chapter 4

Local stability

(R. Mainieri and P. Cvitanovic)

point. Our next task is to define and determine the sizerdighborhood

of x(t). We shall do this by assuming that the flow is locally smoaitn]
describe the local geometry of the neighborhood by studihieglow linearized
aroundx(t). Nearby points aligned along the stable (contractingalions remain
in the neighborhood of the trajectort) = f!(xo); the ones to keep an eye on are
the points which leave the neighborhood along the unstatgetins. As we shall
demonstrate in chaptés, in hyperbolic systems what matters are the expanding
directions. The repercussion are far-reaching: As longn@asiuimber of unstable
directions is finite, the same theory applies to finite-digienal ODES, state
space volume preserving Hamiltonian flows, and dissipatisgkime contracting
infinite-dimensional PDEs.

S rAR We have concentrated on description of the trajectory ofiglsiinitial

4.1 Flows transport neighborhoods

R
As a swarm of representative points moves along, it carfi@sgaand distorts Q
neighborhoods. The deformation of an infinitesimal neighbod is best understood
by considering a trajectory originating neay = x(0) with an initial infinitesimal
displacemenéx(0), and letting the flow transport the displaceméx(t) along the
trajectoryx(xo, t) = (o).

4.1.1 Instantaneous shear

The system of lineagquations of variationfor the displacement of the infinitesimally
close neighbox + ¢x follows from the flow equations2(6) by Taylor expanding
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5t

Figure 4.1: A swarm of neighboring points of(t) is
instantaneously sheared by the action of the stabili
matrix A - a bit hard to draw.

to linear order

i + 6% = Vi(X+ 6X) zvi(x)+z %Mj.
i ]

The infinitesimal displacemeni is thus transported along the trajecto(o, t),
with time variation given by

5Xj(%0, 1) . 4.1)

d v,
—0Xi(Xo, 1) = ) ——(X)
dt zj: 0Xj Xex(0.0)

As both the displacement and the trajectory depend on ttialipoint Xo and the
timet, we shall often abbreviate the notationX(, t) — x(t) — X, 6xi(Xo,t) —
6%i(t) — oxin what follows. Taken together, the set of equations

=i, 0% = ) Aj(9ex; 4.2
i

governs the dynamics in the tangent bundlex) € T M obtained by adjoining
the d-dimensional tangent spadx € TyM to every pointx € M in the d-
dimensional state spagel c RY. Thestability matrix(velocity gradients matrix)

vi(X)
an

Aij(X) = (4.3)

describes the instantaneous rate of shearing of the irdimg neighborhood of
X(t) by the flow, figure4.1

Example 4.1 Réssler and Lorenz flows, linearized: For the Réssler (2.17) and

Lorenz (2.12) flows the stability matrices are, respectively

0o -1 -1 - o 0
ARoss:[l a 0 ], ALor:[P*Z -1 X ]
z 0 x-c y X -b
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X(t) 0 0X(t) = 3 '5(0)

Figure 4.2: The fundamental matrixJ' maps an
infinitesimal displacement at, into a displacement X(O)
rotated and sheared by the linearized flow fundamental
matrix J'(xo) finite timet later. 0

4.1.2 Linearized flow

Major combat operations in Iraq have ended.
— President G. W. Bush, May 1, 2003

Taylor expanding &inite timeflow to linear order,

7}

fl
'(XO)(SXJ- o, (4.5)
Xoj

f'(x0 + %) = f(x0) + z}: 5

one finds that the linearized neighborhood is transported by

ax(0) = %o, Ij(x0) = 210

(9Xj (4-6)

X=Xo

This Jacobian matrix has inherited the naomedamental solution matrier simply
fundamental matrirom the theory of linear ODEs. It is often denot&f,
but for our needs (we shall have to sort through a plethoraelated Jacobian
matrices) matrix notatiod is more economicalJ describes the deformation of
an infinitesimal neighborhood at finite tinhén the co-moving frame ox(t).

As this is a deformation in the linear approximation, one ttank of it as
a linear deformation of an infinitesimal sphere envelopiggnto an ellipsoid
aroundx(t), described by the eigenvectors and eigenvalues of theafoedtal
matrix of the linearized flow, figurd.2. Nearby trajectories separate along the
unstable directionsapproach each other along thible directionsand change
their distance along thenarginal directionsat a rate slower than exponential,
corresponding to the eigenvalues of the fundamental mattikmagnitude larger
than, smaller than, or equal 1. In the literature adjecthasralor indiferentare
often used instead of ‘marginal,’ (attracting) stable cli@ns are sometimes called
‘asymptotically stable,” and so on.

One of the preferred directions is what one might expectditextion of the
flow itself. To see that, consider two initial points alongrajectory separated
by infinitesimal flight timest: 6xo = f{(xg) — Xo = V(Xo)ét. By the semigroup
property of the flow,fi*t = fot where

£ (%) = f t+;jr V(X(7)) = stv(x(t)) + F(xo).
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Figure 4.3: For a periodic orbitp, any two points e
along the cycle are mapped into themselves after one

cycle periodT, henceasx = v(Xo)dt is mapped into itself

by the cycle fundamental matrik,.

Expanding both sides dff(f%(xg)) = f°(f(xo)), keeping the leading term it,
and using the definition of the fundamental matrxgj, we observe thaf'(xo)
transports the velocity vector & to the velocity vector ax(t) at timet:

v(X() = J'(x0) V(%) - (4.7)

In nomenclature of pagé3, the fundamental matrix maps the initial, Lagrangian
coordinate frame into the current, Eulerian coordinatenéa

The velocity at pointx(t) in general does not point in the same direction
as the velocity at poinky, so this is not an eigenvalue condition fdf, the
fundamental matrix computed for an arbitrary segment ofraitrary trajectory
has no invariant meaning.

As the eigenvalues of finite tim@ have invariant meaning only for periodic
orbits, we postpone their interpretation to chagierHowever, already at this
stage we see that if the orbit is periodi€T ;) = x(0), at any point along cyclp
the velocityv is an eigenvector of the fundamental matdx = J' with a unit
eigenvalue,

Jp()V(X) = V(X), XEP. (4.8)
Two successive points along the cycle separatediXpyhave the same separation

after a completed periadk(Tp) = 6o, see figuret.3, hence eigenvalue 1.

As we started by assuming that we know the equations of mdtiom (4.3)
we also know stability matri, the instantaneous rate of shear of an infinitesimal
neighborhoodyx;(t) of the trajectoryx(t). What we do not know is the finite time
deformation ¢.6).

Our next task is to relate the stability matrxto fundamental matrixi!. On
the level of diferential equations the relation follows by taking the tineeizative
of (4.6) and replacingx by (4.2

ox(t) = J'6xp = Asx(t) = A Sxo.
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Hence thel® matrix elements of fundamental matrix satisfy the linezdiequation
(4.9

d — -
d—tJ'(x) = A() JY(x), initial condition J°(x) = 1. (4.9)

Given a numerical routine for integrating the equations aftion, evaluation
of the fundamental matrix requires minimal additional pesgming éfort; one
simply extends the-dimensional integration routine and integrates conaiiye
with f{(x) thed? elements of){(x).

The qualifier ‘simply’ is perhaps too glib. Integration walbrk for short finite
times, but for exponentially unstable flows one quickly rimte numerical over-
andor underflow problems, so further thought will have to go imglementation
this calculation.

So now we know how to compute fundamental matgiven the stability
matrix A, at least when the? extra equations are not too expensive to compute.
Mission accomplished.

fast track:
W chapter 7, p. 108
And yet... there are mopping up operations left to do. Weigestil we

derive the integral formulad(43 for the fundamental matrix, an analogue of the
finite-time “Green function” or “path integral” solutiong other linear problems.

We are interested in smooth fiirentiable flows. If a flow is smooth, in a
sufficiently small neighborhood it is essentially linear. Hetige next section,
which might seem an embarrassment (what is a sectiolinear flows doing
in a book onnonlinear dynamics?), féers a firm stepping stone on the way to
understanding nonlinear flows. If you know your eigenvalaed eigenvectors,
you may prefer to fast forward here.

fast track:
W sect. 4.3, p. 71
4.2 Linear flows

Diagonalizing the matrix: that's the key to the whole thing.
— Governor Arnold Schwarzenegger

Linear fields are the simplest vector fields, described lgalimiterential equations
which can be solved explicitly, with solutions that are gémdall times. The state

space for linear dierential equations i = RY, and the equations of motion
(2.6) are written in terms of a vectorand a constant stability matri as

X =V(X) = AX. (4.10)
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Solving this equation means finding the state space trajecto
X(®) = (xa(), %2(t). - - -, Xa(t))

passing through the poing. If x(t) is a solution withx(0) = xp andy(t) another
solution withy(0) = yp, then the linear combinaticax(t) + by(t) with a,b € R is

also a solution, but now starting at the pang + byp. At any instant in time, the
space of solutions isd@dimensional vector space, which means that one can find
a basis ofd linearly independent solutions.

How do we solve the linear fierential equation4.10)? If instead of a matrix
equation we have a scalar ones Ax, the solution is

x(t) = €. (4.11)
In order to solve the-dimensional matrix case, it is helpful to rederive the Solu
(4.11) by studying what happens for a short time stp If at timet = 0 the

position isx(0), then

x(6t) — x(0)

s = X0), (4.12)

which we iteratemtimes to obtain Euler’s formula for compounding interest
t m
X(t) ~ (1 + a/l) X(0). (4.13)

The term in parentheses acts on the initial conditi(®) and evolves it to(t) by
takingmsmall time stepst = t/m. Asm — oo, the term in parentheses converges
to €. Consider now the matrix version of equatiaghi(?):

M - AX0). (4.14)

A representative poink is now a vector irRY acted on by the matri®, as in
(4.10. Denoting byl the identity matrix, and repeating the stepsl@) and @.13
we obtain Euler’s formula for the exponential of a matrix:

X0 = Ix0),  I=e*= lim (1 + %A)m . (4.15)

We will find this definition the exponential of a matrix helpfo the general case,
where the matriXA = A(x(t)) varies along a trajectory.

How do we compute the exponentidl.{5?

fast track:
W sect. 4.3, p. 71
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Example 4.2 Fundamental matrix eigenvalues, diagonalizable case: Should we
be so lucky that A = Ap happens to be a diagonal matrix with eigenvalues (A0, 2@, ..., @),
the exponential is simply
g 0
J=g = . (4.16)
0 ... g

Next, suppose that A is diagonalizable and that U is a nonsingular matrix that brings it
to a diagonal form Ap = U~AU. Then J can also be brought to a diagonal form (insert

factors 1 = UU™! between the terms of the product (4.15)): )
[exercise 4.2]

Jt=¢gA=Uudtoyt, (4.17)

The action of both A and J is very simple; the axes of orthogonal coordinate system
where A is diagonal are also the eigen-directions of both A and J!, and under the
flow the neighborhood is deformed by a multiplication by an eigenvalue factor for each
coordinate axis.

In generalJt is neither diagonal, nor diagonalizable, nor constant gite
trajectory. As any matrixJ' can also be expressed in the singular value decomposition
form

J=uDV'

whereD is diagonal, andJ, V are orthogonal matrices. The diagonal elements
o1, 072, ..., 04 0f D are called theingular valuef J, namely the square root of
the eigenvalues ad’J, which is a Hermitian, positive semi-definite matrix (and
thus admits only real, non-negative eigenvalues). Fromoangéric point of view,
when all singular values are non-zetbmaps the unit sphere into an ellipsoid:
the singular values are then the lengths of the semiaxessoéltipsoid.
[section 5.1.2]
We recapitulate the basic facts of linear algebra in appeBdA 2-d example
serves well to highlight the most important types of lineaw8:

Example 4.3 Linear stability of 2 —d flows: ~ For a 2-d flow the eigenvalues A9, 1@ of
Aare either real, leading to a linear motion along their eigenvectors, x(t) = x;(0) exp¢A),
or a form a complex conjugate pair A9 = u + iw, 1@ = y - iw, leading to a circular or
spiral motion in the [Xq, X2] plane.

These two possibilities are refined further into sub-cases depending on the
signs of the real part. In the case AV > 0, 1® < 0, x; grows exponentially with time,
and Xy contracts exponentially. This behavior, called a saddle, is sketched in figure 4.4,
as are the remaining possibilities: in/out nodes, inward/outward spirals, and the center.
The magnitude of out-spiral |x(t)| diverges exponentially when i > 0, and contracts into
(0,0) when the u < 0, whereas the phase velocity w controls its oscillations.

If eigenvalues A1) = 1@ = 1 are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector. We distinguish two cases: (a)
A can be brought to diagonal form. (b) A can be brought to Jordan form, which (in
dimension 2 or higher) has zeros everywhere except for the repeating eigenvalues on
the diagonal, and some 1’s directly above it. For every such Jordan [d,xd,] block there
is only one eigenvector per block.

We sketch the full set of possibilities in figures 4.4 and 4.5, and work out in
detail the most important cases in appendix B, example B.2.
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Figure 4.5: Qualitatively distinct types of
exponents of a [22] fundamental matrix.

CHAPTER 4. LOCAL STABILITY 68

Figure 4.4:  Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node
(attracting), center (elliptic), in spiral.

saddle outnode innode

center outspiral in spiral

X X

X X

4.2.1 Eigenvalues, multipliers - a notational interlude

Throughout this text the symbalyx will always denote thekth eigenvalue(in
literature sometimes referred to as tmaltiplier or Floquet'multiplie) of the
finite time fundamental matrid!. SymbolA® will be reserved for théth Floquet
or characteristicexponent, orcharacteristic valugwith real partu® and phase
w®

Ay = g1 = gUie) (4.18)

JY(xg) depends on the initial poing and the elapsed tinte For notational brevity
we tend to omit this dependence, but in general

A = Ax = A(xo, 1), 1= 290x0,1), w = w®(x0,1),- - etc.,

depend on both the trajectory traversed and the choice ofitades.

However, as we shall see in se&L, if the stability matrixA or the fundamental
matrix J is computed on a flow-invariant s@tlp, such as an equilibriumy or a
periodic orbitp of period Ty,

Ag= AKXy,  Jp()=J"(x), xeMp, (4.19)
(xis any point on the cycle) its eigenvalues

A = A9(x), Apk = AKX Tp)
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are flow-invariant, independent of the choice of coordisated the initial point
in the cyclep, so we label them by theg or p label.

We number eigenvaluesy in order of decreasing magnitude
A1l > A2l > ... > |Adl. (4.20)
SincelAj| = & this is the same as labeling by
w2 @ > O (4.21)

In dynamics the expanding directiong| > 1, have to be taken care of first,
while the contracting directiong\¢| < 1 tend to take care of themselves, hence
the ordering by decreasing magnitude is the natural one.

4.2.2 Yes, but how do you really do it?

Economical description of neighborhoods of equilibria padodic orbits is #orded
by projection operators

M - a1
Rzgjﬁﬁfﬁﬂ’ (4.22)

where matrixM is typically either equilibrium stability matri, or periodic orbit
fundamental matrix restricted to a Poincaré section, as4r66). While usually

not phrased in language of projection operators, the ritguisear algebra is
standard, and relegated here to appeifdix

Once the distinct non-zero eigenvalyg®} are computed, projection operators

are polynomials itM which need no further diagonalizations or orthogonalarati
For each distinct eigenvalu¥) of M, the columgows of P;

M -a01)P; =M - aW1) = 0, (4.23)

are the righteft eigenvectore®, ey of M which (providedM is not of Jordan
type) span the corresponding linearized subspace, and @mavanient starting
seed for tracing out the global unstaktable manifolds.

MatricesP; areorthogonalandcomplete

r
PiPj = 6;jPj, (nosum onj), Z Pi=1. (4.24)
i1
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with the dimension of théth subspace given by = tr P; . Completeness relation
substituted intdM = M 1 yields

M = ADPy + AOP, 4 ...+ AOP, . (4.25)

As any matrix functionf(M) takes the scalar valu&(4®) on theP; subspace,
fM)P; = f(AD)P; , it is easily evaluated through ispectral decomposition

f(M) = > faO)P. (4.26)

As M has only real entries, it will in general have either realeaigglues
(over-damped oscillator, for example), or complex conjagairs of eigenvalues
(under-damped oscillator, for example). That is not seipg, but also the corresponding
eigenvectors can be either real or complex. All coordinated in defining the
flow are real numbers, so what is the meaning obmplexeigenvector?

If two eigenvalues form a complex conjugate p&ifd, A& Dy = (u + iw, u —
iw}, they are in a sense degenerate: while a R#al characterizes a motion
along a line, a complex® characterizes a spiralling motion in a plane. We
determine this plane by replacing the corresponding coxgateenvectors by their
real and imaginary partge®, e1} — {Ree®, Im e}, or, in terms of projection
operators:

1 . .
Pk = Q(R*’IQ)s Pk+l:Pk,

whereR = Py + Py, 1 is the subspace decomposed by ktfecomplex eigenvalue
pair, andQ = (Px — Px+1)/i, both matrices with real elements. Substitution

(o) =201 S)(Q):

brings thet® P +1*&+Dp, . ; complex eigenvalue pair in the spectral decomposition
(4.25) into the real form,

s OE)-w ot YE).

where we have dropped the superscfipfor notational brevity.

To summarize, spectrally decomposed mabix(4.25 acts along lines on
subspaces corresponding to real eigenvalues, and aRprfftation in a plane on
subspaces corresponding to complex eigenvalue pairs.

Now that we have some feeling for the qualitative behavioeigenvectors
and eigenvalues of linear flows, we are ready to return to timéimear case.
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4.3 Stability of flows
R
How do you determine the eigenvalues of the finite time loegbdnation Jt

for a general nonlinear smooth flow? The fundamental masrizomputed by
integrating the equations of variation& %)

X(t) = f'(x0),  x(x0.1) = J'(X0)5X(x0, 0). (4.28)

The equations are linear, so we should be able to integrate-thut in order to
make sense of the answer, we derive it step by step.

4.3.1 Stability of equilibria

For a start, consider the case wheres an equilibrium pointZ.8). Expanding
around the equilibrium pointg, using the fact that the stability matr= A(Xq)
in (4.2) is constant, and integrating,

1) = xq + M(x—xg) + -+, (4.29)

we verify that the simple formulad(15) applies also to the fundamental matrix of
an equilibrium point,

J(xg) = €, Aq = A(Xg) . (4.30)

Example 4.4 In-out spirals. Consider a 2-d equilibrium whose stability eigenvalues
(AW, 2@y = {u +iw, u — iw) form a complex conjugate pair. The corresponding complex
eigenvectors can be replaced by their real and imaginary parts, {eV), e} — {Ree®, Im e®)}.
The 2-d real representation (4.27),

(6 W)=ulo Deli )

consists of the identity and the generator of S Q(2) rotations. Trajectories x(t) = J'x(0),
where

leeﬁqtzem(ct_)swt —smwt)’ 4.31)
sinwt  coswt

spiral infout around (x,y) = (0,0), see figure 4.4, with the rotation period T, and

contraction/expansion radially by the multiplier Aagia, and by the multiplier A;j along
the €\)) eigendirection per a turn of the spiral:

T=2r/w, Aradial = €', Aj= 0 (4.32)
We learn that the typical turnover time scale in the neighborhood of the equilibrium

(%.y) = (0,0) is of order ~ T (and not, let us say, 1000T, or 10°2T). A multipliers give
us estimates of strange-set thickness.
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CHAPTER 4. LOCAL STABILITY 74

In the EQ, neighborhood the unstable manifold trajectories slowly spiral out,
with very small radial per-turn expansion multiplier A ~ 1.06, and very strong contraction
multiplier A® =~ 10~* onto the unstable manifold, figure 4.7 (a). This contraction
confines, for all practical purposes, the Lorenz attractor to a 2-dimensional surface
evident in the section figure 3.7.

In the xeqo = (0,0,0) equilibrium neighborhood the extremely strong A® =~
—23 contraction along the €2 direction confines the hyperbolic dynamics near EQ, to
the plane spanned by the unstable eigenvector €V, with AV ~ 12, and the slowest
contraction rate eigenvector €2 along the z-axis, with A? ~ —3. In this plane the strong
expansion along e overwhelms the slow A®) ~ —3 contraction down the z-axis, making
it extremely unlikely for a random trajectory to approach EQ, figure 4.7 (b). Thus
linearization suffices to describe analytically the singular dip in the Poincaré sections
of figure 3.7, and the empirical scarcity of trajectories close to EQy. (Continued in
example 4.7.)

(E. Siminos and J. Halcrow)

Example 4.7 Lorenz flow: Global portrait (Continued from example 4.6.) As the
EQ, unstable manifold spirals out, the strip that starts out in the section above EQ, in
figure 3.7 cuts across the z-axis invariant subspace. This strip necessarily contains a
heteroclinic orbit that hits the z-axis head on, and in infinite time (but exponentially fast)
descends all the way to EQy.

How? As in the neighborhood of the EQ, equilibrium the dynamics is linear
(see figure 4.7 (a)), there is no need to integrate numerically the final segment of the
heteroclinic connection - it is sufficient to bring a trajectory a small distance away from
EQu, continue analytically to a small distance beyond EQ,, then resume the numerical
integration.

What happens next? Trajectories to the left of z-axis shoot off along the e
direction, and those to the right along —e). As along the e direction xy > 0, the
nonlinear term in the z equation (2.12) bends both branches of the EQ, unstable
manifold W!(EQy) upwards. Then ... - never mind. Best to postpone the completion of
this narrative to example 9.2, where the discrete symmetry of Lorenz flow will help us
streamline the analysis. As we shall show, what we already know about the 3 equilibria
and their stable/unstable manifolds suffices to completely pin down the topology of
Lorenz flow. (Continued in example 9.2.)

(E. Siminos and J. Halcrow)

4.3.2 Stability of trajectories

Next, consider the case of a general, non-stationary toajex(t). The exponential
of a constant matrix can be defined either by its Taylor sezigmnsion, or in
terms of the Euler limit4.15):

© 1k
e = Z%Ak (4.40)
k=0
. t \m
- M@(“EA) . (4.42)

Taylor expanding is fine ifA is a constant matrix. However, only the second,
tax-accountant’s discrete step definition of an exponkistiappropriate for the
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task at hand, as for a dynamical system the local rate of heijood distortion
A(X) depends on where we are along the trajectory. The linehneghborhood is
multiplicatively deformed along the flow, and thediscrete time step approximation
to JUis therefore given by a generalization of the Euler proddetl):

1 1
t o _ f T t A(Xn)
o= lim r];L (1+5tA(y)) = lim Qé (4.42)

= lim A tAm-1) .. PLAGR) ftA() ,
m-oo

whereédt = (t—tg)/m, andx, = X(tp + ndt). Slightly perverse indexing of the
products indicates that in our convention the successfimtesimal deformation

are applied by multiplying from the left. The two formulas ft§ agree to leading

order inét, and them — co limit of this procedure is the integral

% 0) = [Teb de(x(TDLJ_ : (4.43)

whereT stands for time-ordered integratiafefinedas the continuum limit of the
successive left multiplicationst(42).  This integral formula fod is the main

. ise 4.5
conceptual result of this chapter. fexercise 4.5]

It makes evident important properties of fundamental roes;i such as that
they are multiplicative along the flow,

() = ' (X)I(x),  wherex = fi(x), (4.44)

an immediate consequence of time-ordered product steuofu.42). However,
in practiced is evaluated by integrating!(9) along with the ODEs that define a
particular flow.

in depth:
” sect. 15.3, p. 263
4.4 Neighborhood volume

Consider a small state space volué = ddx centered around the poing at

timet = 0. The volumeAV’ = AV(t) around the poink’ = x(t) timet later is I 2

[remark 15.3]

, AV X .
AV = = AV = ‘detaX’AV = |det J(xo)'| AV, (4.45)

so theldetJ| is the ratio of the initial and the final volumes. The deteranin
detJ(xo) = ﬂf':l Ai(xo, 1) is the product of the multipliers. We shall refer to this
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determinant as thé&acobianof the flow. This Jacobian is easily evaluated. Ta[(e ) hand side of4.46) can be either positive or negative. But the right hand Sdmi
. L . . exercise 4.1] . . .

the time derivative and use the matrix identity In det tr In J: exponential of a real number, and that can only be positiveatgives? As we

shall see much later on in this text, in discussion of topiefigndices arising in

d d d 1. semiclassical quantization, this is not at all a dumb qoasti
—INAV(t) = d—tlndet.] = traln.] = ter =trA=9V;.

dt
(Here, as elsewhere in this book, a repeated index impliesration.) As the 4.5 Stability of maps o o
divergenced;v; is a scalar quantity, the integral in the exponent nesalsime N
ordering Integrate both sides to obtain the time evolution of an itgf&imal ) o ) )
volume The transformation of an infinitesimal neighborhood of gettory under the

iteration of a map follows from Taylor expanding the itechteapping atliscrete
time n to linear order, as in4.5). The linearized neighborhood is transported by

t t
detd'(xo) = exp[ f drtr A(x(7)) | = exp f dn?ivi(x(r))] . (4.46) the fundamental matrix evaluated at a discrete set of timed4, 2, ...,
0 0
. . ()
All we need to do is evaluate the time average Mi} (x0) = I . (4.48)
i x=xo
_ 1t &
ovi = lim —f dr Z A (X(1)) We shall refer to this Jacobian matrix also as mhenodromymatrix, in case of
= to i=1 periodic orbitsf"(x) = x. Derivative notationM!(xp) — Df'(xo) is frequently
1 d d employed in the literature. As in the continuous case, wetehy Ay the kth
= ¢ l_[ Ai(Xo,1)| = Z 19(x0, 1) (4.47) eigenvalueor multiplier of the finite time fundamental matr"(xo), andu® the
i=1 i=1

real part ofkth eigen-exponent

along the trajectory. If the flow is not singular (for examptlee trajectory does

. . ; " . Ay = @B A =@
not run head-on into the Coulombrlsingularity), the stability matrix elements
are bounded everywheri;j| < M, and so is the tracg; Aj. The time integral
in (4.46) grows at most linearly with, henceg;v; is bounded for all times, and For complex eigenvalue pairs the phaselescribes the rotation velocity in the
numerical estimates of the— oo limit in (4.47) are not marred by any blowups. plane defined by the corresponding pair of eigenvectors, avie period of rotation
iven b

Even if we were to insist on extractingyv; from (4.42) by first multiplying ’ Y
fundamental matrices along the flow, and then taking therithga, we can avoid
exponential blowups idt by using the multiplicative structurd.@4), detJ" *t(xo) = T=2r/w. (4.49)
detJ' (x) detJd'(xo) to restart withJ°(x’) = 1 whenever the eigenvalues #{xo)
start getting out of hand.  In numerical evaluations of Lyapuexponents, }

- - section 15.3] o . . .

A = limise 1@ (%0, 1), the sum rule 4.47) can serve as a helpful check on tHe Example 4.8 Stability of a 1-dimensional map: Consider a 1-d map f(x). The
accuracy of the computation. chain rule yields the stability of the nth iterate

The divergencé;v; is an important characterization of the flow - it describes d ., = m
the behavior of a state space volume in the infinitesimal himighood of the Alo,n) = 3 F00) = nl:l)f O, = T7(x0) (4.50)

trajectory. Ifgjvi < 0, the flow islocally contracting and the trajectory might
be falling into an attractor.  18;vi(x) < 0, for all x € M, the flow isglobally

contracting, and the dimension of the attractor is necégssmaller than the The 1-step product formula for the stability of thié iterate of al-dimensional

dimension of state spackl. If div; = 0, the flow preserves state space volume map
and detJ! = 1. A flow with this property is calledhcompressible An important
class of such flows are the Hamiltonian flows considered ih e M%) = M(Xn-1)--- M(X))M(Xo),
4]
But before we can get to that, Henri Roux, the perfect studisveys on alert, M) = 7% (¥, Xm= f"(x0) (4.51)

pipes up. He does not like our definition of the fundamentatiman terms of the
time-ordered exponentia#(43. Depending on the signs of multipliers, the left
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follows from the chain rule for matrix derivatives
a 49 P
—fi(f(x) = —f ‘ — fk(X).
e 110D = 0, 50 5 W9

If you prefer to think of a discrete time dynamics as a seqe@f®oincaré section
returns, then4.51) follows from (4.44): fundamental matrices are multiplicative
along the flow.

Example 4.9 Hénon map fundamental matrix: For the Hénon map (3.18) the
fundamental matrix for the nth iterate of the map is

1
woo=[[( 75 §). x= o). (4.52)

The determinant of the Hénon one time step fundamental matrix (4.52) is constant,
detM = A1A, = -b (453)

so in this case only one eigenvalue A1 = —b/A, needs to be determined. This is not
an accident; a constant Jacobian was one of desiderata that led Hénon to construct a
map of this particular form.

fast track:
W chapter 7, p. 108
4.5.1 Stability of Poincaé return maps

(R. Paskauskas and P. Cvitanovic)

We now relate the linear stability of the Poincaré returrprRa £ — P defined
in sect.3.1to the stability of the continuous time flow in the full stafease.

The hypersurfacé can be specified implicitly through a functidi(x) that
is zero whenever a pointis on the Poincaré section. A nearby paint 6x is in
the hypersurfac@ if U(x+6x) = 0, and the same is true for variations around the
first return pointX’ = x(r), so expandindJ(X') to linear order insx leads to the
condition

d+1 BU(X’) d_)<

o% dx

=0. (4.54)
vl

In what followsU; is the gradient ofJ defined in 8.3), unprimed quantities refer
to the starting poink = Xg € P, v = V(Xp), and the primed quantities to the first
return: X' = X(r), V. = v(X'), U’ = U(X). For brevity we shall also denote the
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U(x)=0 .
Figure 4.8: If x(t) intersects the Poincaré sectih

at timer, the nearbyx(t) + 6x(t) trajectory intersects Jxéx
it time 7 + ot later. As U’ - Vét) = —(U’ - J6X), y‘
the diference in arrival times is given byt =

—(U - 38X)/(U7 V). X(1)+3x(t)

full state space fundamental matrix at the first returnlby J*(Xp). Both the first
return X’ and the time of flight to the next Poincaré sectiq) depend on the
starting pointx, so the fundamental matrix

U

Iy = d—)q‘ (4.55)

de P

with both initial and the final variation constrained to th@riearé section hypersurface
P is related to the continuous flow fundamental matrix by

dx
&

ox  dx
0K ddr o de
P (9Xj dr de de

The return time variatiordr/dx, figure 4.8, is eliminated by substituting this
expression into the constraint.b4),

0=(9iU'Jij +(\/'8U’)%,
]

yielding the projection of the full spacel ¢ 1)-dimensional fundamental matrix
to the Poincaré mag-dimensional fundamental matrix:

(4.56)

R vV oU’
Jij:(éik— ! ) ki -

v -au7)

Substituting 4.7) we verify that the initial velocity(x) is a zero-eigenvector of

Jv=o0, (4.57)

so the Poincaré section eliminates variations parallel amdJ is a rankd matrix,
i.e., one less than the dimension of the continuous time flow.

Résum é

A neighborhood of a trajectory deforms as it is transportgdalflow. In the
linear approximation, the stability matri describes the shearie@mpressiofs
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expansion of an infinitesimal neighborhood in an infinitedirtime step. The
deformation after a finite timeis described by the fundamental matrix

o) = Teh drAX@) i

whereT stands for the time-ordered integration, defined multgiiely along the
trajectory. For discrete time maps this is multiplicatigntime step fundamental
matrix M along then pointsxg, X1, X2, . . ., Xn—1 On the trajectory oko,

M"(x0) = M(Xn-1)M(Xn-2) - - - M(x))M (X0) ,

with M(x) the single discrete time step fundamental matrix. In thiskbAg
denotes théth eigenvalueof the finite time fundamental matriX(xo), andu®
the real part okth eigen-exponent

Al =™, A, = o)

For complex eigenvalue pairs the phasdescribes rotational motion in the plane
defined by the corresponding pair of eigenvectors.

The eigenvalues and eigen-directions of the fundamentabndescribe the
deformation of an initial infinitesimal sphere of neighlritrajectories into an
ellipsoid a finite timet later. Nearby trajectories separate exponentially along
unstable directions, approach each other along stabletiding, and change slowly
(algebraically) their distance along marginal directio&e fundamental matrix
JUis in general neither symmetric, nor diagonalizable by ation, nor do its
(left or right) eigenvectors define an orthonormal coortéirfeame. Furthermore,
although the fundamental matrices are multiplicative gl flow, in dimensions
higher than one their eigenvalues in general are not. Tbisdamultiplicativity
has important repercussions for both classical and quadjuramics.

Commentary

Remark 4.1 Linear flows. The subject of linear algebra generates innumerable tomes
of its own; in sect4.2 we only sketch, and in appendik recapitulate a few facts that
our narrative relies on. They are presented at length in niextpooks. The standard
references that exhaustively enumerate and explain aliilescases are Hirsch and
Smale [l], and Arnold [1]. For ChaosBook purposes, we enjoyed the discussion in
chapter 2 MeissZ], chapter 1 of Perkod] and chapters 3 and 5 of Glendinning most.

The construction of projection operators given here isridkem refs. [, 7]. Who
wrote this down first we do not know, lineage certainly goéthal way back to Lagrange
polynomials [L0], but projection operators tend to get drowned in sea oftalgje details.
Halmos [] is a good early reference - but we like Harter’'s expositioyef 17] best, for
its multitude of specific examples and physical illustrasio
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The nomenclature tends to be a bit confusing. In referrinfydefined in ¢.3) as the
“stability matrix” we follow Tabor [L3]. Sometimed, which describes the instantaneous
shear of the trajectory poin{(xo, t) is referred to as the ‘Jacobian matrix, a particularly
unfortunate usage when one considers linearized stabfliy equilibrium point4.30.
What Jacobi had in mind in his 1841 fundamental papé} fn the determinants today
known as ‘jacobians’ were transformations betwedfedént coordinate frames. These
are dimensionless quantities, while the dimensioApfl/[time]. More unfortunate still
is referring toJ! = & as an ‘evolution operator,” which here (see séé&t?) refers to
something altogether ierent. In this book fundamental matik always refers to4.6),
the linearized deformation after a finite tinheeither for a continuous time flow, or a
discrete time mapping.

Exercises
4.1. Trace-log of a matrix. Prove that (a) Show that equatiojdet (A — 11)| = O for Rossle
flow in the notation of exercis2.8 can be writte
detM = gf "™ as

3,2 + 2 _ _
for an arbitrary nonsingular finite dimensional matvx B+22c(p -e)+A(p*/e+1-Cep”)Fc VD -
detM # 0. (b) Solve @.59 for eigenvalues A* for eac

4.2. Stability, diagonal case. Verify the relation ¢.17) equilibrium as an expansion in powers e

Derive
J=g?=ultd®u, Ap=UAU. A = —C+ €c/(P + 1) + 0(e)
] 2, = €C/[2(¢ + 1)] + 0o(€?)
4.3. State space volume contraction. 0; = 1+ ¢/[2(c2 + 1)] + oe)

A = ce(1-6) +0(€) (4.59

A5 = —€¢%/2 + 0(€®)

05 = V1+1/e(1+0(e))
Compare with exact eigenvalues. What
dynamical implications of the extravagant valu
A7? (continued as exercide.?)

(a) Compute the Rossler flow volume contraction rate
at the equilibria.

(b) Study numerically the instantaneodjs; along a
typical trajectory on the Rossler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) 8fv;. If you see regions

of local expansion, explain them. (R. Paskauska
(c) Compute numerically the average contraction rate, 5. Time-ordered exponentials. Given a time depend
(4.47) along a typical trajectory on the Rossler matrix V(t) check that the time-ordered exponential
attractor. .
(d) (optional) color-code the points on the trajectory u) = Teb VO
by the sign (and perhaps the magnitudeyiof — may be written as
AVi.
(e) Argue on basis of your results that this attractor is ) = i ft o fli ... ftm dV(t) -
of dimension smaller than the state spdce 3. 0o 0 0

(f) (optional) Start some trajectories on the escape  gng verify, by using this representation, thak(t
side of the outer equilibrium, color-code the points satisfies the equation

on the trajectory. Is the flow volume contracting? )
. - UM = VEOU),
4.4. Topology of the Rossler flow. (continuation of

exercises.1) with the initial conditionZ/(0) = 1.
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4.6. A contracting baker's map.  Consider a contracting Xne1 | _ [ Xa/3+1/2
T . 5 = 2 1 Yn>1/2.
(or ‘dissipative’) baker’s map, acting on a unit square Yne1 Yn =
[0,1]% = [0, 1] x [0, 1], defined by
This map shrinks strips by a factor of3Lin the x-
direction, and then stretches (and folds) them by a factor
of 2 in they-direction.

Xn/3 By how much does the state space volume contract for

Xn+
( Yn+i ) = ( 2¥n ) Yn<1/2 one iteration of the map? Chapter 5
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show, is the fact that cycle eigenvalues aretricinvariants: they determine the
relative sizes of neighborhoods in a non—-wandering set.

To prove this, we start by noting that due to the multiplicatstructure 4.44)
of fundamental matrices, the fundamental matrix for therepeat of a prime
cycle p of periodT, is
r

ITe(x) = JTe(FCDTe(x)) - ITe(FTP(x))ITP(x) = (Ip(%)) (5.1)

whereJp(x) = JTr(x) is the fundamental matrix for a single traversal of the jgrim
cyclep, x € pis any point on the cycle, aniT»(x) = x as f{(x) returns tox every
multiple of the periodT. Hence, it sffices to restrict our considerations to the
stability of prime cycles.

fast track:
W sect. 5.2, p. 87
5.1.1 Nomenclature, again

When dealing with periodic orbits, some of the quantitiésotiuced above inherit
terminology from the theory of dierential equations with periodic cfieients.
For instance, if we consider the equation of variatioh<)(evaluated on a
periodic orbitp,
5% = A(t)SX, At) = A(X(1) = At + Tp), (5.2)

the T, periodicity of the stability matrix implies that ix(t) is a solution of .2)
then alsasx(t + Tp) satisfies the same equation: moreover the two solutions are
related by (see4(6))

OX(t + Tp) = Jp(X)0xX(t). (5.3)

Even though the fundamental matidy(x) depends upox (the “starting” point
of the periodic orbit), its eigenvalues do not, so we mayenidt its eigenvectors

ol
Jo(9ED(x) = Ap jei(x) = ol +i8)eli) (x)

Where,u(pj) andw(r)j) are independent of, and expand

axt) = uyed.

J
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Figure 5.1: For a prime cyclep, fundamental matrix
Jp returns an infinitesimal spherical neighborhood of
Xo € p stretched into an ellipsoid, with overlap ratio 7
along the expanding eigdirecti@? of J,(x) given by X+8
the the expanding eigenvalug|A;|. These ratios are
invariant under smooth nonlinear reparametrizations of
state space coordinates, and are intrinsic property of
cyclep.

If we take 6.3) into account, we get

oX(t+Tp) = Z uj(t+ Tp)e = Z Uj(t)eTp(l—l%)-ng))e(j)

i ]
which shows that the cdiécientsu;(t) may be written as

)i ()
uj(t) = &4 Ry, (1)

wherev;(t) is periodic with period T,. Thus each solution of the equation of
variations may be expressed as

ax(t) = > v D) vt + Ty) = vi(t), (5.4)

J

the form predicted by Floquet theorem fofffdirential equations with periodic
codficients.

The continuous timeappearing in%.4) does not imply that eigenvalues of the
fundamental matrix enjoy any multiplicative propergg) andw(pj) refer to a full
evolution over the complete periodic orbihpj is called the Floquet multiplier,

andu! +iwY the Floquet or characteristic exponent, whag = el +iofl)

5.1.2 Fundamental matrix eigenvalues and exponents

We sort theFloquet multipliersAp1, Apo, ..., Apg Of the [dxd] fundamental
matrix Jp evaluated on th@-cycle into setge, m, ¢}

expanding:  {Ale = {Apj:|Apj>1)

marginal:  {Alm = {Apj:|Apj|=1) (5.5)
contracting:  {Ale = {Apj:|Apj| <1}
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and denote by\, (no jth eigenvalue index) the product ekpandingFlogquet Example 5.1 Stability of 1- d map cycles:  The simplest example of cycle stability is
multipliers afforded by 1-dimensional maps. The stability of a prime cycle p follows from the chain
rule (4.50) for stability of the nyth iterate of the map
Ap = l_[ Ap.e- (56) d np-1
e
Ap=—"f" = f’ = f™(xo) . 5.10
p= g ["00) "[l Om) X = 17(%0) (5.10)

As Jp is a real matrix, complex eigenvalues always come in comptjugate
pairs,Apjs1 = A7, so the product of expanding eigenvalugsis always real. Ap is a property of the cycle, not the initial point, as taking any periodic point in the p
cycle as the initial point yields the same result.

pi’
The stretchinggontraction rates per unit time are are given by the reabmdrt

A critical point x. is a value of x for which the mapping f(X) has vanishing
Flogquet exponents

derivative, f’(x;) = 0. For future reference we note that a periodic orbit of a 1-
dimensional map is stable if

0_ L .
o' = I ®-1 g = |10 0y )+ O] < 1,

The factorTi in the definition of the Floguet exponents is motivated bicitn for and superstable 'If tl_16 orbjt mcludgs a critical point, so that t_he abovne product vanishes.
X R For a stable periodic orbit of period n the slope of the nth iterate f"(X) evaluated on a

the I'ne'ar dynamlcal. systems, for examplel(), as well as the fact that exponents periodic point X (fixed point of the nth iterate) lies between —1 and 1. If |Ap| > 1, p-cycle

so defined can be interpreted as Lyapunov expondri89 evaluated on the is unstable.

prime cyclep. As in the three cases db.6), we sort the Floquet exponents=

=+ iw into three sets

[section 15.3]
. ) ) Example 5.2 Stability of cycles for maps: No matter what method we use to
expanding:  {lle = {1y 1 up >0} determine the unstable cycles, the theory to be developed here requires that their
marginal: Um = { /l(,i) : ,U(;i) =0 Floquet multipl'ier's be evaluated as well. Forl maps a fundgmental matrix is ea;ily
) ) evaluated by picking any cycle point as a starting point, running once around a prime
contracting: {Ae = {/I(F;) : ,u%) <0}. (5.8) cycle, and multiplying the individual cycle point fundamental matrices according to

(4.51). For example, the fundamental matrix My, for a Hénon map (3.18) prime cycle p
of length ny is given by (4.52),
A periodic orbitp of a d-dimensional flow or a map istableif real parts of
all of its Floquet exponents (other than the vanishing lardinal exponent, to be : —2ax b
: : : ) . Mp(XO):[_I 1 0] X € P,
explained in sect5.2.1) are strictly negativey,’, < 0. The region of system
parameter values for which a periodic orlptis stable is called thetability

k=np

window of p. The setM, of initial points that are asymptotically attracted to and the fundamental matrix My, for a 2-dimensional billiard prime cycle p of length n,,
p ast — +oo (for a fixed set of system parameter values) is calledbthen of
attractionof p. 11
_ n Tk 1 0
T wo-co[1(5 7 (o )
If all Floguet exponents (other than the vanishing longitudinabaent) of k=np

all periodic orhits of a flow are strictly bounded away from zeéu)| > ymin > 0,
the flow is said to béayperbolic Otherwise the flow is said to beonhyperbolic
In particular, if allx® = 0, the orbit is said to belliptic. Such orbits proliferate
in Hamiltonian flows.

follows from (8.11) of chapter 8. We shall compute Floquet multipliers of Hénon map
cycles once we learn how to find their periodic orbits, see exercise 12.10.

[section 7.3]
We often do care abowtg) = Apj/IApjl, the sign of thejth eigenvalue, and, o . )
if Ap;is complex, its phase 5.2 Cycle Floquet multipliers are cycle invariants o o
N
DTy () il iyT QQ
Apj=0p ev e = 9p elo =)o, (5.9) The 1-dimensional map cycle Floquet multipligy, is a product of derivatives
_ _ o _ [section 7.2] over all points around the cycle, and is therefore indepeindewhich periodic
Keeping track of this by case-by-case enumeration is ana@ssery nuisance, point is chosen as the initial one. In higher dimensionsdhe of the fundamental
followed in much of the literature. To avoid this, almost@fllour formulas will matrix Jp(Xo) in (5.1) does depend on the choice of coordinates and the initial
be stated in terms of the Floquet multipliets rather than in the terms of the point g € p. Nevertheless, as we shall now show, the cytjuet multipliers
overall signs, Floguet exponent§) and phases(!). are intrinsic property of a cycle also for multi-dimensibflaws. Consider the
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ith eigenvalue, eigenvector paik g, ) computed fromJ, evaluated at a cycle
point,

1,9V (x) = Apie?(x), xep. (5.11)

Consider another point on the cycle at titrlater, X' = f'(x) whose fundamental
matrix is Jp(X'). By the group property4(44), JTett = J%To and the fundamental
matrix atx’ can be written either as

I (x) = ITe(X)3'(x) = Jp(¥)I'(¥),  or  Ip(X)I(X) = I'(X)Ip(X) -

Multiplying (5.11) by J'(x), we find that the fundamental matrix evaluatedkat
has the same eigenvalue,

()N () = Apie(x), eD(x) = (e (%), (5.12)

but with the eigenvectoel) transported along the flow — x to e)(x) =
J(0e(x). Hence,J, evaluated anywhere along the cycle has the same set
of Floquet multipliers{Ap1, Ap2,---Apd-1,1}. As quantities such as Jp(x),
detJ,(x) depend only on the eigenvalues B(x) and not on the starting poing

in expressions such as tﬂ&t— J{,(x)) we may omit reference te:

det(1- Jp) = det(1- Jy(x)) foranyxe p. (5.13)

We postpone the proof that the cycle Floquet multipliers ssam®oth conjugacy
invariants of the flow to sec6.6.

5.2.1 Marginal eigenvalues

The presence of marginal eigenvalues signals either aneamits symmetry of the
flow (which one should immediately exploit to simplify theoptem), or a non-
hyperbolicity of a flow (a source of much pain, hard to avold)that case (typical
of parameter values for which bifurcations occur) one hagadeyond linear
stability, deal with Jordan type subspaces (see exarhf)eand sub-exponential

growth rates, such d8. [chapter 23]

For flow-invariant solutions such as periodic orbits, tiegtievolution is itself [exercise 5.1]

a continuous symmetry, hence a periodic orbit of a flow alwegs amarginal
eigenvalue

As JY(x) transports the velocity field(x) by (4.7), after a complete period
Jp(v(X) = V(x), (5.14)
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so a periodic orbit of dlow always has an eigenvectet)(x) = v(x) parallel to
the local velocity field with the unit eigenvalue

Apa=1, AP-=o0. (5.15)
[exercise 6.2]

The continuous invariance that gives rise to this margiiggre/alue is the invariance
of a cycle under a translation of its points along the cyal& points on the cycle
(see figuret.3) initially distancesx apart,x’(0)—x(0) = 6x(0), are separated by the
exactly samex after a full periodT,. As we shall see in sed5.3, this marginal
stability direction can be eliminated by cutting the cycjedPoincaré section and
eliminating the continuous flow fundamental matrix in faeérthe fundamental
matrix of the Poincaré return map.

If the flow is governed by a time-independent Hamiltoniarg #nergy is
conserved, and that leads to an additional marginal eijgav@emember, by
symplectic invariance7(19 real eigenvalues come in pairs).

5.3 Stability of Poincaré map cycles

¢

(R. PaSkauskas and P. Cvitanovic)

If a continuous flow periodic orbip pierces the Poincaré sectighonce, the
section point is a fixed point of the Poincaré return rRapith stability (4.56)

A viU
Jij = (6ik - (Vl—k) Jj» (5.16)

with all primes dropped, as the initial and the final pointscide, X' = fTp(x) =
x. If the periodic orbitp pierces the Poincaré sectintimes, the same observation
applies to thenth iterate ofP.

We have already established ih%7) thaE the velocity(x) is a zero-eigenvector
of the Poincaré section fundamental mattx,= 0. Consider nextAp.,. el), the

full state spaceth (eigenvalue, eigenvector) pafr.( 1), evaluated at a cycle point
on a Poincaré section,

JXED(X) = A€ (x), xeP. (5.17)

Multiplying (5.16) by € and inserting §.17), we find that the full state space
fundamental matrix and the Poincaré section fundamengaiixnj has the same
eigenvalue

JXEI () = AN, xeP, (5.18)
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where & is a projection of the full state space eigenvector onto thimdarée
section:

(CRIE (5ik - %)(e‘d))k- (5.19)

Hence,jp evaluated on any Poincaré section point along the gytlas the same
set of Floquet multipliergA 1, Ap2, - - - Apg) as the full state space fundamental
matrix Jp.

As established in4.57), due to the continuous symmetry (time invariané@)
is a rankd — 1 matrix. We shall refer to any such full rankd[¢ N)x (d — N)]
submatrix withN continuous symmetries quotiented out asrttwodromy matrix
M, (from Greekmono-= alone, single, andromo= run, racecourse, meaning a
single run around the stadium).

5.4 There goes the neighborhood

In what follows, our task will be to determine the size afeighborhoodf x(t),
and that is why we care about the Floquet multipliers, aneé@afly the unstable
(expanding) ones. Nearby points aligned along the stabletr@cting) directions
remain in the neighborhood of the trajectory) = f'(xo); the ones to keep an eye
on are the points which leave the neighborhood along thehlestirections. The
sub-volumelMi| = []7 Ax of the set of points which get no further away from
f!(xo) thanL, the typical size of the system, is fixed by the condition thai\; =
O(L) in each expanding direction Hence the neighborhood size scalesxas
1/IApl whereA, is the product of expanding eigenvaluésgj only; contracting
ones play a secondary role. So secondary that even infimtalyy of them will
not matter.

So the physically important information is carried by thpaxding sub-volume,
not the total volume computed so easily ©147). That is also the reason why
the dissipative and the Hamiltonian chaotic flows are muchenadike than one
would have naively expected for ‘compressibles. ‘incompressible’ flows. In
hyperbolic systems what matters are the expanding directid/hether the contracting
eigenvalues are inverses of the expanding ones or not izofdary importance.

As long as the number of unstable directions is finite, theesthmory applies both
to the finite-dimensional ODEs and infinite-dimensional BDE

Résumé

Periodic orbits play a central role in any invariant chaggezation of the dynamics,
because (a) their existence and inter-relations twpalogical coordinate-independent
property of the dynamics, and (b) their Floquet multiplitzsn an infinite set of
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metric invariants The Floquet multipliers of a periodic orbit remain invanta
under any smooth nonlinear change of coordindtes ho f o h™® .

We shall show in chapteirO that extending their local stability eigendirections
into stable and unstable manifolds yields important glabfrmation about the
topological organization of state space.

In hyperbolic systems what matters are the expanding directThe physically
important information is carried by the unstable manifeldd the expanding sub-
volume characterized by the product of expanding eigeegatif J,. As long as
the number of unstable directions is finite, the theory caafyied to flows of
arbitrarily high dimension.

Commentary

Remark 5.1 Floquettheory.  Floquet theory is a classical subject in the theory of
differential equations’]. In physics literature Floquet exponents often assurffereint
names according to the context where the theory is appley: dre called Bloch phases
in the discussion of Schrodinger equation with a periodieptial [3], or quasimomenta
in the quantum theory of time-periodic Hamiltonians.

Exercises

5.1. A limit cycle with analytic Floquet exponent. Ermentrout
There are only two examples of nonlinear flows

for which the stability eigenvalues can be evaluatecb.2. The other example of a limit cycle with analyti
What is the other example ¢
flow nonlinear flow for which the stability eigenvalues ca

evaluated analytically? Hint: email G.B. Ermentrou

analytically. Both are cheats. One example is the 2- Floguet exponent.

4 = p+ql-d*-pd)

p = —g+pl-?-pd). 5.3. Yet another example of a limit cycle with analyti
Floquet exponent.
Determine all periodic solutions of this flow, and by solving a third example (or more) of a nonlir
determine analytically their Floquet exponents. Hint: go flow for which the stability eigenvalues can be evalu
to polar coordinategy( p) = (r cosd,r sind).  G. Bard analytically.
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Chapter 6

Get straight

We owe it to a book to withhold judgment until we reach
page 100.

—Henrietta McNutt, George Johnson’s seventh-
grade English teacher

coordinates to an action-angle coordinate frame where liasepspace

dynamics is described by motion on circles, one circle fahedegree
of freedom. In the same spirit, a natural description of aehnplic, unstable
flow would be attained if one found a change of coordinates @nframe where
the stabl@unstable manifolds are straight lines, and the flow is aloygehbolas.
Achieving this globally for anything but a handful of conetl examples is too
much to hope for. Still, as we shall now show, we can make sosaelliay on

straightening out the flow locally. &@

Even though such nonlinear coordinate transformationsvang important,
especially in celestial mechanics, we shall not necegsase them much in
what follows, so you can safely skip this chapter on the fiestding. Except,
perhaps, you might want to convince yourself that cycle iktiels are indeed
metric invariants of flows (sec.6), and you might like transformations that turn
a Keplerian ellipse into a harmonic oscillator (exampl&) and regularize the
2-body Coulomb collisions (sed.3) in classical helium.

fast track:
W chapter 14, p. 235

A Hawmrronian system is said to be ‘integrable’ if one can find a change of

6.1 Changing coordinates

Problems are handed down to us in many shapes and forms, eynduth not
always expressed in the most convenient way. In order tolgjnamiven problem,
one may stretch, rotate, bend and mix the coordinates, llging so, the vector
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field will also change. The vector field lives in a (hyper)@atangent to state
space and changing the coordinates of state sp@eetsithe coordinates of the
tangent space as well, in a way that we will now describe.

Denote byh theconjugation functiowhich maps the coordinates of the initial
state spaceV into the reparameterized state spae® = h(M), with a point
x € M related to a poiny € M’ by

Yy =h(x) = (y1(x). y2(3). - ... ya(x)) -

The change of coordinates must be one-to-one and spanMbatid M’, so given
any pointy we can go back tx = h~1(y). For smooth flows the reparameterized
dynamics should support the same number of derivativeseasitial one. Ifhis

a (piecewise) analytic function, we referi@s asmooth conjugacy

The evolution ruleg'(yo) on M’ can be computed from the evolution rule
f!(xo) on M by taking the initial pointyy € M’, going back toM, evolving, and
then mapping the final poingt) back toM’:

y(t) = d'(yo) = ho f' o h™(yo). (6.1)

Here @’ stands for functional compositioh o f(x) = h(f(x)), so 6.1) is a
shorthand for/(t) = h(f{(h2(yo))).

The vector fieldk'= v(x) in M, locally tangent to the flow?, is related to the
flow by differentiation .5) along the trajectory. The vector figyd= w(y) in M’,

t H .
locally tangent ta' follows by the chain rule: [exercise 6.1]

wy) = Zo) = glhertonte)|
-0 =
WO U) = MOV ©2)

In order to rewrite the right-hand side as a functiog,afote that théy differentiation
of h(h(y)) = y implies

ont
ay

oh

ohy ont
X

1
S (y)} , 6.3)

oh
=1 - a—)((X):[

so the equations of motion in the transformed coordinatéh,the indices reinstated,
are

-1
i) (6.4)
ij

_1
§i = wi(y) = [%(y)

Imagine that the state space is a rubber sheet with the fl@s inawn on it.
A coordinate changé corresponds to pulling and tugging on the rubber sheet
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smoothly, without cutting, gluing, or self-intersection$ the distorted rubber
sheet. Trajectories that are closed loopsphwill remain closed loops in the
new manifold M’, but their shapes will change. Globallydeforms the rubber
sheet in a highly nonlinear manner, but locally it simplycaes and shears the
tangent field by the Jacobian matixh;, hence the simple transformation law
(6.2) for the velocity fields.

The time itself is a parametrization of points along flow §ine@nd it can
also be reparameterized,= (t), with the attendant modification o64). An
example is the 2-body collision regularization of the helitlamiltonian 7.6), to
be undertaken in sedi.3below.

6.2 Rectification of flows

A profitable way to exploit invariance of dynamics under sthomonjugacies is
to use it to pick out the simplest possible representativenoéquivalence class.
In general and globally these are just words, as we have eohdw to pick such
‘canonical’ representative, but for smooth flows we can gvdo it locally and
for sufficiently short time, by appealing to tiectification theorema fundamental
theorem of ordinary dierential equations. The theorem assures us that there
exists a solution (at least for a short time interval) and tha solution looks
like. The rectification theorem holds in the neighborhoogaihts of the vector
field v(x) that are not singular, that is, everywhere except for thaliegum
points @.8), and points at whiclv is infinite. According to the theorem, in a
small neighborhood of a non-singular point there existsangk of coordinates
y = h(X) such thatx'= v(x) in the new,canonicalcoordinates takes form

Vi =Vo=---=Vq4.1 =0
b ©9

with unit velocity flow alongyy, and no flow along any of the remaining directions.
This is an example of a one-parameter Lie group of transfooms, with finite
time 7 action

y = y. i=12..d-1
Yy = Ya+T.
[exercise 9.7]
Example 6.1 Harmonic oscillator, rectified: As a simple example of global
rectification of a flow consider the harmonic oscillator
q=p. p=-q. (6.6)

The trajectories X(t) = (q(t), p(t)) circle around the origin, so a fair guess is that the
system would have a simpler representation in polar coordinates 'y = (r, 6):

h’lz{ q
p
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Figure 6.1: Coordinates for the helium three body ++
problem in the plane. He
The Jacobian matrix of the transformation is
cosf  sinf
h=| sino cosy (6.8)
r r
resulting in (6.4) of rectified form
; cosd  sinf :
r_ i a\_( O
(1) 5 8)()-(3)
r r

In the new coordinates the radial coordinate r is constant, and the angular coordinate
6 wraps around a cylinder with constant angular velocity. There is a subtle point in
this change of coordinates: the domain of the map h™* is not the plane R?, but rather
the plane minus the origin. We had mapped a plane into a cylinder, and coordinate
transformations should not change the topology of the space in which the dynamics
takes place; the coordinate transformation is not defined on the equilibrium point X =

[exercise 5.1]

(0,0), orr =0.

6.3 Classical dynamics of collinear helium

(G. Tanner)

So far much has been said about 1-dimensional maps, gamelfiipand other
curious but rather idealized dynamical systems. If you le@me impatient and
started wondering what good are the methods learned so falhiing real life

physical problems, good news are here. We will apply hereeats of nonlinear
dynamics to nothing less than the helium, a dreaded thrdg-Boulomb problem.

Can we really jump from three static disks directly to threarged particles
moving under the influence of their mutually attracting opelting forces? It
turns out, we can, but we have to do it with care. The full peablis indeed
not accessible in all its detail, but we are able to analyzeraesvhat simpler
subsystem—collinear helium. This system plays an importda in the classical
and quantum dynamics of the full three-body problem.

The classical helium system consists of two electrons osmmasnd charge
—emoving about a positively charged nucleus of magsand charger2e.

conjug - 3nov2007.tex

CHAPTER 6. GET STRAIGHT 97

Figure 6.2: Collinear helium, with the two electrons
on opposite sides of the nucleus. 1

The helium electron-nucleus mass ratige/me = 1836 is so large that we
may work in the infinite nucleus mass approximatig = oo, fixing the nucleus
at the origin. Finite nucleus masfexrts can be taken into account without any
substantial dficulty. We are now left with two electrons moving in three sglat
dimensions around the origin. The total angular momenturthefcombined
electron system is still conserved. In the special case gfilan momentum
L = 0, the electrons move in a fixed plane containing the nucl€hs.three body
problem can then be written in terms of three independentdocates only, the
electron-nucleus distancesandr; and the inter-electron angl see figures. 1

This looks like something we can lay our hands on; the prolttes been
reduced to three degrees of freedom, six phase space caieglim all, and the
total energy is conserved. But let us go one step furtherléwtrons are attracted
by the nucleus but repelled by each other. They will tenddg as far away from
each other as possible, preferably on opposite sides ofitieus. It is thus worth
having a closer look at the situation where the three pagiate all on a line with
the nucleus being somewhere between the two electrons,, Ihaedition, let the
electrons have momenta pointing towards the nucleus asurefig2, then there
is no force acting on the electrons perpendicular to the comimterparticle axis.
That s, if we start the classical system on the dynamicadjsabe® = r, d%@ =0,
the three particles will remain in thiollinear configuratiorfor all times.

6.3.1 Scaling

In what follows we will restrict the dynamics to this collmesubspace. It is a
system of two degrees of freedom with the Hamiltonian

Sl g 288 288 @
M (PR T

E. (6.10)

whereE is the total energy. As the dynamics is restricted to the fewatgy shell,
the four phase space coordinates are not independent;etgyeshell dependence
can be made explicit by writing{, r2, p1, p2) = (r1(E), r2(E), p1(E), p2(E)) .

We will first consider the dependence of the dynamics on theeggrE. A
simple analysis of potential versus kinetic energy tellshat if the energy is
positive both electrons can escaperito— o, i = 1,2. More interestingly, a
single electron can still escape evelkifs negative, carrying away an unlimited
amount of kinetic energy, as the total energy of the remgiiminer electron has no
lower bound. Not only that, but one electraill escape eventually for almost all
starting conditions. The overall dynamics thus dependially on whethelE >
0 or E < 0. But how does the dynamics change otherwise with varyireygs?
Fortunately, not at all. Helium dynamics remains invariantler a change of
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energy up to a simple scaling transformation; a solutiome&quations of motion
at a fixed energyg = —1 can be transformed into a solution at an arbitrary energy
E < 0 by scaling the coordinates as

ri(E>:(_ez—E)n, p(E) = V-ME p, =12,

together with a time transformatiofE) = e?my/*(-E)~3/2t. We include the
electron mass and charge in the scaling transformationderdo obtain a non—
dimensionalized Hamiltonian of the form

2 2
H-P, P 2 2, 1
2 2 rh 1rI2 ri+rp

-1. (6.11)

The case of negative energies chosen here is the most tirigrese for us. It
exhibits chaos, unstable periodic orbits and is respomsislthe bound states and
resonances of the quantum problem.

6.3.2 Regularization of two—body collisions

Next, we have a closer look at the singularities in the Hamién 6.11). Whenever
two bodies come close to each other, accelerations becogee faumerical routines
require lots of small steps, and numerical precisioffiess. No numerical routine
will get us through the singularity itself, and in collindalium electrons have no
option but to collide with the nucleus. Henceegularizationof the diferential
equations of motions is a necessary prerequisite to any mcethgork on such
problems, both in celestial mechanics (where a spacesbiuess close approaches
both at the start and its destination) and in quantum meckdmihere much of
semiclassical physics is dominated by returning classichits that probe the
quantum wave function at the nucleus).

There is a fundamental fierence between two—body collisions= 0 orrp =
0, and the triple collisiom; = r, = 0. Two-body collisions can be regularized,
with the singularities in equations of motion removed by #afile coordinate
transformation together with a time transformation preiser the Hamiltonian
structure of the equations. Such regularization is notiplesfor the triple collision,
and solutions of the élierential equations can not be continued through the sirigula
at the origin. As we shall see, the chaos in collinear helivigirtates from this
singularity of triple collisions.

A regularization of the two—body collisions is achieved bgans of the Kust-
aanheimo-Stiefel (KS) transformation, which consists obardinate dependent
time transformation which stretches the time scale neawtiilgen, and a canonical
transformation of the phase space coordinates. In ordeotivate the method,
we apply it first to the 1-dimensional Kepler problem

H=-p° -

1, 2
Z_E. 12
5 ” (6.12)
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Example 6.2 Keplerian ellipse, rectified: To warm up, consider the E = 0O case,
starting at x = 0 att = 0. Even though the equations of motion are singular at the initial
point, we can immediately integrate

1, 2
5%—;_0
by means of separation of variables
Vxdx= V2dt,  x= (303, (6.13)

and observe that the solution is not singular. The aim of regularization is to compensate
for the infinite acceleration at the origin by introducing a fictitious time, in terms of which
the passage through the origin is smooth.

A time transformation dt = f(q, p)dr for a system described by a Hamiltonian
H(q, p) = E leaves the Hamiltonian structure of the equations of motion unaltered, if
the Hamiltonian itself is transformed into H(q, p) = (9, p)(H(q, p) — E). For the 1—
dimensional Coulomb problem with (6.12) we choose the time transformation dt = xdr
which lifts the |x| — O singularity in (6.12) and leads to a new Hamiltonian

1
W:ixﬁ—Z—Ex:Q (6.14)
The solution (6.13) is now parameterized by the fictitous time dr through a pair of
equations
1
x=12, t= §‘r3

The equations of motion are, however, still singular as x — 0:

d®x 1 dx P XE

dr2 ~ 2xdr ’
Appearance of the square root in (6.13) now suggests a canonical transformation of
form

P
2
= =— 1
x=Q%. p 20 (6.15)

which maps the Kepler problem into that of a harmonic oscillator with Hamiltonian
1.
HQP) =gP*-EQ =2, (6.16)

with all singularities completely removed.

We now apply this method to collinear helium. The basic idehat one seeks
a higher-dimensional generalization of the ‘square rootal’ trick (6.15), by
introducing a new vecto® with propertyr = |QJ?. In this simple 1-dimensional
example the KS transformation can be implemented by

Py P>

=—, = — 6.17
pP1 20, P2 20, (6.17)

2 2
= Qla r2:Q25
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Figure 6.3: (a) A typical trajectory in therf,r]
plane; the trajectory enters here along thexis
and escapes to infinity along the axis; (b)
Poincaré mapr{=0) for collinear helium. Strong
chaos prevails for smali near the nucleus.

100

a) b)

and reparameterization of time loly = dt/rir,.  The singular behavior in the
original momenta at; or r, = 0 is again compensated by stretching the time
scale at these points. The Hamiltonian structure of thetemsaof motions with
respect to the new timeis conserved, if we consider the Hamiltonian

Heo = (0397 + Q2P ~ 2R, + QRQH(-E + /R = 0 619

with Ryz = (Q2 + Q2)Y/2, and we will takeE = -1 in what follows. The equations

of motion now have the form
. P2
Py =2Q, [27 EZ - Q§(1+

_ P2
P2:2Q2[2— El —Q§(1+

2
9 aba
2

2
%]] ; Q= ;llszf

12

Individual electron-nucleus collisions &t = Q3 = 0 orr, = Q3 = 0 no
longer pose a problem to a numerical integration routinee &guations.19
are singular only at the triple collisioR;> = 0, i.e., when both electrons hit the

nucleus at the same time.

The new coordinates and the Hamiltoni&nl@ are very useful when calculating
trajectories for collinear helium; they are, however, lessitive as a visualization
of the three-body dynamics. We will therefore refer to the @bordinates, ra
when discussing the dynamics and the periodic orbits.

To summarize, we have brought a 3-body problem into a formrevhiee
2-body collisions have been transformed away, and the phzesee trajectories
computable numerically. To appreciate the full beauty oétas been attained,
you have to fast-forward to quantum chaos part @faosBook.org; we are
already ‘almost’ ready to quantize helium by semiclassicathods.
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6.4 Rectification of maps

¢

In sect.6.2we had argued that nonlinear coordinate transformatiomgegrofitably
employed to simplify the representation of a flow. We shalrapply the same
idea to nonlinear maps, and determine a smooth nonlineagehaf coordinates
that flattens out the vicinity of a fixed point and makes the riagar in an
open neighborhood. In its simplest form the idea can be imetged only for
an isolated nondegenerate fixed point (otherwise are ndéadéé normal form
expansion around the point), and only in a finite neighbodhaba point, as the
conjugating function in general has a finite radius of cogeace. In sec6.5we
will extend the method to periodic orbits.

6.4.1 Rectification of a fixed point in one dimension

[exercise 6.2]

Consider a 1-dimensional map.1 = f(X,) with a fixed point atx = 0, with
stability A = f/(0). If |A| # 1, one can determine term-by-term the power series
for a smooth conjugatioh(x) centered at the fixed point(0) = 0, that flattens
out the neighborhood of the fixed point

f(x) = h"1(Ah(X) (6.20)

and replaces the nonlinear mé&fx) by alinear mapyn.1 = Ayn.

To compute the conjugatioh we use the functional equatidm(Ax) =
f(h~1(x)) and the expansions

F() = Ax+Xfo+xCf3+...
hix) = x+xhp+x°hs+... . (6.21)

Equating the caiéicients of x¢ on both sides of the functional equation yields
hy order by order as a function dp, fs,.... If h(x) is a conjugation, so is any
scalingh(bx) of the function for a real numbdy. Hence the value df’(0) is not
determined by the functional equatioh Z0); it is convenient to seft’(0) = 1.

The algebra is not particularly illuminating and best lefcomputers. In any
case, for the time being we will not use much beyond the firgar term in these
expansions.

Here we have assumetl # 1. If the fixed point has firsk—1 derivatives
vanishing, the conjugacy is to th& normal form

In several dimensions\ is replaced by the Jacobian matrix, and one has to
check that the eigenvaluéd are non-resonant, that is, there is no integer linear
relation between the Floquet exponerisyy.
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6.5 Rectification of a 1-dimensional periodic orbit

O

In sect.6.4.1we have constructed the conjugation function for a fixed ppdilere
we turn to the problem of constructing it for periodic orbiEach point around the
cycle has a dierently distorted neighborhood, withfi#iring second and higher
order derivatives, so we need to compute fedent conjugation functioh, at
each cycle point,. We expand the maj around each cycle point along the
cycle,

Ya(®) = fa(¢) — Xas1 = ¢fa1 + ¢2 fa2+... (6.22)

wherex, is a point on the cyclefa(¢p) = f(xa + ¢) is centered on the periodic
orbit, and the indexk in fax refers to thekth order in the expansiors(21).

For a periodic orbit the conjugation formulé.20) generalizes to

fa(@) = L (FO0ha(¢)),  a=12---,n,

point by point. The conjugationg functiorg, are obtained in the same way as
before, by equating cdiécients of the expansior6(21), and assuming that the
cycle Floguet multiplierA = Hg;é f’(xa) is not marginal|A| # 1. The explicit
expressions foh, in terms of f are obtained by iterating around the whole cycle,

(X + ¢) = N3 (Aha(¢)) + Xa. (6.23)

evaluated at each cycle poiat Again we have the freedom to dg{0) = 1 for

remark 6.2
alla [ :

6.5.1 Repeats of cycles

We have traded in our initial nonlinear mégor a (locally) linear map\y and an
equally complicated conjugation functitm What is gained by rewriting the map
f in terms of the conjugacy function? Once the neighborhood of a fixed point
is linearized, the repeats of it are trivialized; from thajegation formula §.21)
one can compute the derivatives of a function composed teigf i times:

(%) = " }{(A"h(x)).

One can already discern the form of the expansion for arpitepeats; the answer
will depend on the conjugacy functidi{x) computed for asinglerepeat, and all
the dependence on the repeat number will be carried by fagilynomial in
A", a considerable simplification. The beauty of the idea fisadilt to gauge at
this stage—an appreciation only sets in when one starts wiimgpperturbative
corrections, be it in celestial mechanics (where the methasl born), be it the
guantum or stochastic corrections to ‘semiclassical’ axipnations.
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6.6 Cycle Floguet multipliers are metric invariants

In sect.5.2we have established that for a given flow the cycle Floquetiptiglrs
are intrinsic to a given cycle, independent of the startingpalong the cycle.
Now we can prove a much stronger statement; cycle Floqueiptiers aresmooth
conjugacyor metric invariantsof the flow, the same iany representation of the
dynamical system.

That the cycle Floguet multipliers are an invariant propefthe given dynamical
system follows from elementary considerations of sgdt. If the same dynamics
is given by a mayf in x coordinates, and a mayin they = h(x) coordinates, then
f andg (or any other good representation) are relatedshd) (a reparameterization
and a coordinate transformatign= ho f o ™. As both f andg are arbitrary
representations of the dynamical system, the explicit fofthe conjugacy is of
no interest, only the properties invariant under any tramsétionh are of general
import. Furthermore, a good representation should notlatetthe datah must
be asmooth conjugacyhich maps nearby cycle points définto nearby cycle
points ofg. This smoothness guarantees that the cycles are not ordiotppal
invariants, but that their linearized neighborhoods ase ahetrically invariant.
For a fixed pointf (x) = x of a 1-dimensional map this follows from the chain rule
for derivatives,

g = h’(foh*(y))f'(h*l(y))Wlx)
- h’(x)f’(x)Wlx):f’(x). (6.24)

In d dimensions the relationship between the mapstiiedint coordinate representations
is againgo h = ho f . We now make the matrix structure of relaticdhd) explicit:

oh » oht
Fik(X) = — and L) = — .
ik(X) i ik () W Iy

i.e., T'ik(X) is the matrix inverse ol“&l(x). The chain rule now relatddl’, the the
fundamental matrix of the magpto the fundamental matrix of mafa

M/, (h(3)) = Tie(f ()M (T (¥ . (6.25)

If xis a fixed point then@.25 is asimilarity transformation and thus preserves
eigenvalues: itis easy to verify that in the case of pengdycle againM’P(h(x))
andMP(x) are related by a similarity transformation (note that thisot true for
M'(x) with r # np). As stability of a flow can always be reduced to stability of a
Poincaré section return map, a Floquet multiplier of argleyfor a flow or a map
in arbitrary dimension, is a metric invariant of the dynaahisystem.

in depth:
” appendix B.3, p. 658
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Résumé

Dynamics M, f) is invariant under the group of all smooth conjugacies
M, f) - (M,g) = (h(M),ho foh™).

This invariance can be used to (i) find a simplified represimtdor the flow and
(ii) identify a set of invariants, numbers computed withipaaticular choice of
(M, f), but invariant under alM — h(M) smooth conjugacies.

The D-dimensional phase space of an integrable Hamiltoniaresysif D
degrees of freedom is fully foliated Hy-tori. In the same spirit, for a uniformly
hyperbolic, chaotic dynamical system one would like to ¢jeaimto a coordinate
frame where the stabjlenstable manifolds form a set of transversally intersgctin
hyper-planes, with the flow everywhere locally hyperbolibat cannot be achieved
in general: Fully globally integrable and fully globally abtic flows are a very
small subset of all possible flows, a ‘set of measure zerohé world of all
dynamical systems.

What wereally care about is developping invariant notions of what a given
dynamical system is. The totality of smooth one-to-one inealr coordinate
transformation$ which map all trajectories of a given dynamical systewt, (')
onto all trajectories of dynamical system(,g") gives us a huge equivalence
class, much larger than the equivalence classes famitiar fhe theory of linear
transformations, such as the rotation gradfd) or the Galilean group of all
rotations and translations Y. In the theory of Lie groups, the full invariant
specification of an object is given by a finite set of Casimianients. What a good
full set of invariants for a group of general nonlinear snhomtnjugacies might be
is not known, but the set of all periodic orbits and their 8igbeigenvalues will
turn out to be a good start.

Commentary

Remark 6.1 Rectification of flows. See Section 2.2.5 of reflf] for a pedagogical
introduction to smooth coordinate reparameterizatiompligit examples of transformations
into canonical coordinates for a group of scalings and aoduotations are worked out.

Remark 6.2 Rectification of maps. The methods outlined above are standard in the
analysis of fixed points and construction of normal formdiiéurcations, see for example
ref. [22, 2,4, 5,6, 7, 8,9, 9]. The geometry underlying such methods is pretty, and we
enjoyed reading, for example, Percival and Richard$, [chaps. 2 and 4 of Ozorio de
Almeida’s monograph1[1], and, as always, Arnol'd1].

Recursive formulas for evaluation of derivatives needeeltduate §.21) are given,

for example, in Appendix A of ref.q]. Section 10.6 of Ref.13] describes in detail the
smooth conjugacy that relates the Ulam map to the tent map.
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Remark 6.3 A resonance condition. In the hyperbolic case there is a resonance
condition that must be satisfied: none of the Floquet expsmaay be related by ratios
of integers. Thatis, i1, Ap2, ..., Apg are the Floquet multipliers of the fundamental
matrix, then they are in resonance if there exist integers ., ng such that

(Ap,l)n](/\p,z)n2 o (Ap,d)n'j =1.

If there is resonance, then one may get corrections to the basjugation formulas in
the form of monomials in the variables of the map. (R. Maitier
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[6.10] I. Percival and D. Richard$ntroduction to DynamicgCambridge Univ.

Exercises

6.1. Coordinate transformations.  Changing coordinates
is conceptually simple, but can become confusing when
carried outin detail. The diculty arises from confusing
functional relationships, such agt) = h™(y(t)) with
numerical relationships, such agy) = h(X)v(x).
Working through an example will clear this up.

(a) The diferential equation in theévl space isx' =
{2x1, X2} and the change of coordinates frovito
M ish(Xa, X2) = {2X1+ X2, X1 — X2}. Solve forx(t).
Findh™.

(b) Show that in the transformed spacel’, the g3
differential equation is

dfyi |_ 1| Syi+2y
dt| Y2 3| ity
Solve this system. Does it match the solution in

the M space?

6.2. Linearization for maps. Letf : C — C be a map
from the complex numbers into themselves, with a fixed
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There are conditions on the derivative foéit the origin
to assure that the conjugation is always possible. Can
you formulate these conditions by examining the series?
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. Ulam and tent maps. Show that the smooth

conjugacy 6.1)

9Yo) = hofoh™(y)
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N NI
Figure 7.1: Phase plane of the unforced, undampe_, \/\/

Duffing oscillator. The trajectories lie on level sets o
the Hamiltonian 7.4). B B

Chapter 7

The energy, or the value of the Hamiltonian function at tlaesspace point =

H am | |t0 n | an dyn a.m |CS (g, p) is constant along the trajectort),

d OH . OH .

—H@®).p) = —ag@)+—pit
GHEO-PO) = Foa®+ Top0

Truth is rarely pure, and never simple. = @ﬁ - ﬁﬁ = (7.3)
—Oscar Wilde oq dpi - dpi 0
) so the trajectories lie on surfaces of constant enerdgyvet setof the Hamiltonian
ou miGHT THINK that the strangeness of contracting flows, flows such as the {(9. p) : H(g, p) = E}. For 1-dof Hamiltonian systems this is basically the whole
Rossler flow of figure2.5is of concern only to chemists; real physicists story.

do Hamiltonian dynamics, right? Now, that’s full of chaosot While
it is easier to visualize aperiodic dynamics when a flow ist@mting onto a ] _ )
lower-dimensional attracting set, there are plenty exaspf chaotic flows that Example 7.1 Unforced undamped Duffing oscillator: When the damping term
do preserve the full symplectic invariance of Hamiltoniamamics. The whole is removed from the Duffing oscillator (2.7), the system can be written in Hamiltonian
story started in fact with Poincaré’s restricted 3-bodghpem, a realization that form with the Hamiltonian

chaos rules also in general (non-Hamiltonian) flows camehnhater. P ¢ q
Hap=5-T+T. (7.4)
Here we briefly review parts of classical dynamics that wd néled later
on; symplectic invariance, canonical transformations, stability of Hamiltonian This is a 1-dof Hamiltonian system, with a 2-dimensional state space, the plane (g, p).
flows. We discuss billiard dynamics in some detail in chapter The Hamilton’s equations (7.1) are
a=p, p=9-q. (7.5)
7.1 Hamiltonian flows For 1-dof systems, the ‘surfaces’ of constant energy (7.3) are simply curves in the

phase plane (g, p), and the dynamics is very simple: the curves of constant energy are
. . the trajectories, as shown in figure 7.1.
(P. Cvitanovi¢ and L.V. Vela-Arevalo)

An important class of flows are Hamiltonian flows, given by antitonian [appendix B] Thus all 1-dof systems aiategrable in the sense that the entire phase plane
H(q, p) together with the Hamilton’s equations of motion ope is foliated by curves of constant energy, either periodis-sathe case for the
harmonic oscillator (a ‘bound state’)—or open (a ‘scatigtrajectory’). Add one

ample 6.1
oH . oH 1) more degree of freedom, and chaos breaks loose. [example 8.1]
o P e '
. . . X X . Example 7.2 Collinear helium: In the quantum chaos part of ChaosBook.org
with the D phase space Coordlnabespllt_ into the conﬂgura_uon space coordinates we shall apply the periodic orbit theory to the quantization of helium. In particular, we
and the conjugate momenta of a Hamiltonian system Dithegrees of freedom will study collinear helium, a doubly charged nucleus with two electrons arranged on a
(dof): line, an electron on each side of the nucleus. The Hamiltonian for this system is
1, 1, 2 2 1
x=(,p), d=(d.G-.--), P=(PLP2.--»PD)- (7.2) =g+ sk oo s (7-6)
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Figure 7.2: A typical collinear helium trajectory in )
the [r1, 5] plane; the trajectory enters along theaxis

and then, like almost every other trajectory, afterafew o
bounces escapes to infinity, in this case alongrthe

axis. n

Collinear helium has 2 dof, and thus a 4-dimensional phase space M, which energy
conservation reduces to 3 dimensions. The dynamics can be projected onto the 2-
dimensional configuration plane, the (r1,r2), r; > 0 quadrant, figure 7.2. It looks messy,
and, indeed, it will turn out to be no less chaotic than a pinball bouncing between three
disks. As always, a Poincaré section will be more informative than this rather arbitrary

projection of the flow.

Note an important property of Hamiltonian flows: if the Hatimil equations
(7.1) are rewritten in the R phase space form = vi(X), the divergence of the

velocity field v vanishes, namely the flow is incompressible. The symplectic

invariance requirements are actually more stringent thst the phase space
volume conservation, as we shall see in the next section.

7.2 Stability of Hamiltonian flows

Hamiltonian flows @er an illustration of the ways in which an invariance of

equations of motion canffect the dynamics. In the case at hand, siimplectic
invariancewill reduce the number of independent stability eigenvaliog a factor
of 2 or 4.

7.2.1 Canonical transformations

The equations of motion for a time-independdidof Hamiltonian 7.1) can be
written

% = wyHi(), w:(_ol Io) H,-(x):ainH(x), @.7)

wherex = (g, p) € M is a phase space poirtilx = dxH is the column vector of
partial derivatives oH, | is the [DxD] unit matrix, andw the [2Dx2D] symplectic
form

W =-w, w?=-1. (7.8)
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The evolution ofJ! (4.6) is again determined by the stability matéx (4.9):

SH=A0TX. AR = ncHgR, 9

where the matrix of second derivativelg, = dxdnH is called theHessian matrix
From the symmetry ofiy, it follows that

Alw+wA=0. (7.10)

This is the defining property for infinitesimal generatorsyrfhplectiqor canonical)
transformations, transformations which leave the syntjgléerm w invariant.

Symplectic matrices are by definition linear transformadidhat leave the
(antisymmetric) quadratic formwijy;j invariant. This immediately implies that
any symplectic matrix satisfies

Q'wQ = w, (7.11)

and — whenQ is close to the identityQ = 1 + 6tA — it follows that thatA must
satisfy (7.10).

Consider now a smooth nonlinear change of variables of fgrmh;(x), and
define a new functioK(x) = H(h(x)). Under which conditions dods generate

a Hamiltonian flow? In what follows we will use the notatién = /dy;: by
employing the chain rule we have that

~ o
wjdiK = wijﬁ|Ha—X: (7.12)

(Here, as elsewhere in this book, a repeated index impli@srgtion.) By virtue
of (7.1) | H = —wimym, SO that, again by employing the chain rule, we obtain

oh ohg,
wijdiK = —wjj a_x,-“’"“a_x:’(” (7.13)

The right hand side simplifies tq (yielding Hamiltonian structure) only if

a0 . Wmoo— = Gin (7.14)
j

oh;

X

or, in compact notation, by definingif); = 5*

—w@h)TwEh) = 1 (7.15)
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complex saddle saddle-center

L3 2]
degenerate saddle real saddle
Figure 7.3: Stability exponents of a Hamiltonian “
equilibrium point, 2-dof. generic center degenerate center

which is equivalent to the requirement thit is symplectic. h is then called
a canonical transformation We care about canonical transformations for two
reasons. First (and this is a dark art), if the canonicalsfamationh is very
cleverly chosen, the flow in new coordinates might be comalulg simpler than
the original flow. Second, Hamiltonian flows themselves apeirme example of
canonical transformations.

[example 6.1]

Example 7.3 Hamiltonian flows are canonical: For Hamiltonian flows it follows
from (7.10) that & (JTmJ = 0, and since at the initial time J°(xo) = 1, fundamental
matrixis a symplectic transformation (7.11). This equality is valid for all times, so a
Hamiltonian flow f'(X) is a canonical transformation, with the linearization dxf'(x) a
symplectic transformation (7.11): For notational brevity here we have suppressed the
dependence on time and the initial point, J = J'(xo). By elementary properties of
determinants it follows from (7.11) that Hamiltonian flows are phase space volume
preserving:

|detd| = 1. (7.16)

Actually it turns out that for symplectic matrices (on any field) one always has detJ =
+1.

7.2.2 Stability of equilibria of Hamiltonian flows

For an equilibrium pointx, the stability matrixA is constant. Its eigenvalues
describe the linear stability of the equilibrium poirk.is the matrix .10 with
real matrix elements, so its eigenvalues (the Floquet exmsrof ¢.30)) are either
real or come in complex pairs. In the case of Hamiltonian flaw®Illows from
(7.10 that the characteristic polynomial &ffor an equilibriumxy satisfies

detA—11) = det@ (A-11)w) = det(wAw — A1)
det AT + A1) = det(A+ 11). (7.17)

That is, the symplectic invariance implies in addition that is an eigenvalue,
then—4, 1* and—2* are also eigenvalues. Distinct symmetry classes of thau€log
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Figure 7.4: Stability of a symplectic map iR*. generic center degenerate center

exponents of an equilibrium point in a 2-dof system are digptl in figurer.3. It
is worth noting that while the linear stability of equiliarin a Hamiltonian system
always respects this symmetry, the nonlinear stabilitylmoompletely dterent.

[section 4.3.1]
[exercise 7.4]
[exercise 7.5]

7.3 Symplectic maps

A stability eigenvalueA = A(Xo,t) associated to a trajectory is an eigenvalue of
the fundamental matrid. As Jis symplectic, {.11) implies that

Jt=—wlw, (7.18)
so the characteristic polynomial is reflexive, namely its$its
det@-Al) = det@" —Al) = det(wd w-Al)

det@! - Al) = det@ ) det(l — AJ)
AP det(@- A1), (7.19)

Hence ifA is an eigenvalue o, so are 1A, A* and JA*. Real eigenvalues
always come paired &g, 1/A. The Liouville conservation of phase space volumes
(7.16) is an immediate consequence of this pairing up of eigeegallihe complex
eigenvalues come in pairs, A*, |A| = 1, or in loxodromic quartetd,, 1/A, A*
and J/A*. These possibilities are illustrated in figufel.

Example 7.4 Hamiltonian H énon map, reversibility: By (4.53) the Hénon map
(3.18) for b = -1 value is the simplest 2-d orientation preserving area-preserving map,
often studied to better understand topology and symmetries of Poincaré sections of
2 dof Hamiltonian flows. We find it convenient to multiply (3.19) by a and absorb the a
factor into x in order to bring the Hénon map for the b = —1 parameter value into the
form

Xs1+ X1 =a-x, i=1..,np, (7.20)
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CHAPTER 7. HAMILTONIAN DYNAMICS 116

using (7.16) we derive theLiouville theorem

_ _ af'(x)
V() = j;‘(c)dxffcdet S| dX
f det @)dx = f dx = V(0), (7.32)
C C

Hamiltonian flows preserve phase space volumes.

The symplectic structure of Hamilton’s equations buys ustmonore than
the ‘incompressibility, or the phase space volume coret@m. Consider the
symplectic product of two infinitesimal vectors

(6%.6%) = ox wok = 6pio6 — 66 P

D
Z {oriented area in theg(, p;) plang . (7.33)
i-1

Timet later we have
(6%, 6%) = X" ITwIsk = X" woK.

This has the following geometrical meaning. We imagine éhisra reference
phase space point. We then define two other points infinidhinslose so that
the vectorssx andsX describe their displacements relative to the referencetpoi
Under the dynamics, the three points are mapped to three omtspvhich are
still infinitesimally close to one another. The meaning @& &bove expression is
that the area of the parallelopiped spanned by the threegioiats is the same as
that spanned by the initial points. The integral (Stokestém) version of this
infinitesimal area invariance states that for Hamiltoniaw8 theD oriented areas
V; bounded byD loopsQV;, one per eachy, p;) plane, are separately conserved:

f dpAadg= 95 p-dg = invariant. (7.34)
v Qv

Morally a Hamiltonian flow is reallyD-dimensional, even though its phase space
is 2D-dimensional. Hence for Hamiltonian flows one emphas2zethe number
of the degrees of freedom.

in depth:
” appendix B.3, p. 658

Commentary

Remark 7.1 Hamiltonian dynamics literature. If you are reading this book, in theory
you already know everything that is in this chapter. In gracyou do not. Try this:

newton - 14may2008.tex
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Put your right hand on your heart and say: “I understand whyregrefers symplectic
geometry.” Honest? Out there there are about 2 centuriesafnaulated literature
on Hamilton, Lagrange, Jacobi etc. formulation of mechgngome of it excellent.
In context of what we will need here, we make a very subjea@@mmmendation—we
enjoyed reading Percival and Richards][and Ozorio de Almeidal[1].

Remark 7.2 Symplectic. The term symplectic —Greek for twining or plaiting together
was introduced into mathematics by Hermann Weyl. ‘Candnlzeeage is church-
doctrinal: Greek ‘kanon,” referring to a reed used for measient, came to mean in
Latin a rule or a standard.

Remark 7.3 The sign convention of w. The overall sign ofv, the symplectic invariant

in (7.7), is set by the convention that the Hamilton’s principaldtion (for energy conserving
flows) is given byR(q, ¢, t) = jlf pidg — Et. With this sign convention the action along
a classical path is minimal, and the kinetic energy of a fiigle is positive.

Remark 7.4 Symmetries of the symbol square.  For a more detailed discussion of
symmetry lines see refs5[8, 46, 13]. Itis an open question (see rematR.3 as to
how time reversal symmetry can be exploited for reductioneyole expansions. For
example, the fundamental domain symbolic dynamics forcgfle symmetric systems
is discussed in some detail in set®.5 but how does one recode from time-reversal
symmetric symbol sequences to desymmetriz&dsfate space symbols?

Remark 7.5 Standard map. Standard maps model free rotators under the influence
of short periodic pulses, as can be physically implemerfeednstance, by pulsed optical
lattices in cold atoms physics. On the theoretical sideydsted maps exhibit a number
of important features: smak values provide an example 6fAM perturbative regime
(see ref. §]), while for largerk chaotic deterministic transport is observed [(]; the
transition to global chaos also presents remarkable waligy features 11, 12, 13].

Also the quantum counterpart of this model has been widelgstigated, being the first
example where phenomena like quantum dynamical locadiz&iave been observet].

For some hands-on experience of the standard map, downleis Bimulation code].

Exercises

7.1. Complex nonlinear  Schibdinger  equation.
Consider the complex nonlinear Schrodinger equation
in one spatial dimensionl:

dp 0% 2
5 *0e +Belpl“=0, B#0.

(a) Show that the functiop : R — C defining the

exerNewton - 13jun2008.tex

traveling wave solutionp(x,t) = w(x — ct) fol
¢ > 0 satisfies a second-order compleffetientic
equation equivalent to a Hamiltonian systel
R* relative to the noncanonical symplectic f
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whose matrix is given by

0O 0 1 O

w 0O 0 0 1
¢~ -1 0 0 -c
0 -1 c O

(b) Analyze the equilibria of the resulting Ha-
miltonian system irk* and determine their linear
stability properties.

(c) Lety(s) = €°%/2a(s) for a real functiona(s) and
determine a second order equationd@s). Show
that the resulting equation is Hamiltonian and has
heteroclinic orbits fog < 0. Find them.

(d) Find ‘soliton’ solutions for the complex nonlinear
Schrodinger equation.

(Luz V. Vela-Arevalo)

7.2. Symplectic groupalgebra
Show that if a matribC satisfies 7.10, then exp$C) is
a symplectic matrix.

7.3. When is a linear transformation canonical?

(a) LetA be af x 1 invertible matrix. Show that
the map¢ : R™ — R? given by @.p) ~
(Ad, (A"Y)Tp) is a canonical transformation.

(b) If Ris arotation ink3, show that the mam( p) —
(Rg,Rp) is a canonical transformation.

(Luz V. Vela-Arevalo)

7.4. Determinant of symplectic matrices. Show that
the determinant of a symplectic matrix-4., by going
through the following steps:

(a) use 7.19 to prove that for eigenvalue pairs each
member has the same multiplicity (the same holds
for quartet members),
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(b) prove that thgoint multiplicity of 1 = +1 is even,

(c) show that the multiplicities of = 1 and1 = -1
cannot be both odd. (Hint: write

P() = (A= 1™+ 17'Q(1)
and show tha@Q(1) = 0).

7.5. Cherry’'sexample. What follows refs. P, 3] is mostly

a reading exercise, about a Hamiltonian system that is
linearly stablebut nonlinearly unstable Consider the
Hamiltonian system oft“ given by

1 1
H= E(Cﬁ +pl) - (G5 + p3) + EPZ(P% - ) — ChGep1.

(a) Show that this system has an equilibrium at the
origin, which is linearly stable. (The linearized
system consists of two uncoupled oscillators with
frequencies in ratios 2:1).

(b) Convince yourself that the following is a family of

solutions parameterize by a constant

-

qlz_ﬁcost—r)’ :cosz(—r)’
t—7 t-7
int — in2¢ -
p1=\/ésm( 1)’ 2=sm@ T).
t-7 t—-7

These solutions clearly blow up in finite time;
however they start at= 0 at a distance/3/r from
the origin, so by choosing large, we can find
solutions starting arbitrarily close to the origin, yet
going to infinity in a finite time, so the origin is
nonlinearly unstable

(Luz V. Vela-Arevalo)
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Chapter 8

Billiards

grapple with both numerically and conceptually, is the dyits of billiards.
For billiards, discrete time is altogether natural; a pétimoving through
a billiard sufers a sequence of instantaneous kicks, and executes simfitnm
in between, so there is no need to contrive a Poincaré secile have already
used this system in sect.3 as the intuitively most accessible example of chaos.
Here we define billiard dynamics more precisely, anticipathe applications to
come.

THE pynamics that we have the best intuitive grasp on, and find easiest to

8.1 Billiard dynamics

A billiard is defined by a connected regi@ c RP, with boundarydQ c RP-*
separatingQ from its complemen®RP \ Q. The regionQ can consist of one
compact, finite volume component (in which case the billiplthse space is
bounded, as for the stadium billiard figugel), or can be infinite in extent, with
its complementRP \ Q consisting of one or several finite or infinite volume
components (in which case the phase space is open, as fodtbk ginball game
figure 1.1). In what follows we shall most often restrict our attentionplanar
billiards.

A point particle of massnand momentunp, = my, moves freely within the
billiard, along a straight line, until it encounters the hdary. There it reflects
specularly $§pecular= mirrorlike), with no change in the tangential component
of momentum, and instantaneous reversal of the momenturpaeent normal to
the boundary,

P =p-2(p- AN, (8.1)

with f the unit vector normal to the bounda®( at the collision point. The angle
of incidence equals the angle of reflection, as illustratefibure8.2. A billiard is

120
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Figure 8.1: The stadium billiard is a 2-
dimensional domain bounded by two semi-circles
of radiusd = 1 connected by two straight walls
of length 2. At the points where the straight
walls meet the semi-circles, the curvature of the
border changes discontinuously; these are the only
singular points of the flow. The lengéhs the only
parameter.

Figure 8.2: (a) A planar billiard trajectory is fixed
by specifying the perimeter length parametrized
by s and the outgoing trajectory anglg both
measured counterclockwise with respect to th
outward normah’ (b) The Birkhdf phase space
coordinate pairg p) fully specifies the trajectory,
wherep = |p|sing is the momentum component
tangential to the boundary As the pinball kinetic
energy is conserved in elastic scattering, the
pinball mass and the magnitude of the pinball
momentum are customarily setro= |p| = 1. (a)

" )

a Hamiltonian system with al2dimensional phase spage= (g, p) and potential
V(q) =0forge Q,V(q) = o for g € dQ.

A billiard flow has a natural Poincaré section defined by Bafk coordinates
Sy, the arc length position of theth bounce measured along the billiard boundary,
and p, = |plsing,, the momentum component parallel to the boundary, where
¢n is the angle between the outgoing trajectory and the norontile boundary.
We measure both the arc lengihand the parallel momentumcounterclockwise
relative to the outward normal (see figuBe2 as well as figure3.3). InD = 2,
the Poincaré section is a cylinder (topologically an ansylfigure8.3, where the
parallel momentunp ranges for—|p| to |pl, and thes coordinate is cyclic along
each connected componeni®. The volume in the full phase space is preserved
by the Liouville theorem{.32. The Birkhdt coordinatesx = (s, p) € P, are
the natural choice, because with them the the Poincarénretap preserves the
phase space volume in thg p) parameterize Poincaré section (a perfectly good

coordinate setg ¢) does not do that). [exercise 8.6]

Without loss of generality we set = V| = |p| = 1. Poincaré section condition®*" 2!

eliminates one dimension, and the energy conservipioa 1 eliminates another,
so the Poincaré section return mRjs (2D — 2)-dimensional.

The dynamics is given by the Poincaré return map

P2 (Sn, Pn) = (Sne1, Posa) (8.2)
from thenth collision to the § + 1)st collision. The discrete time dynamics map

billiards - 24apr2005.tex
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1
Figure 8.3: In D = 2 the billiard Poincaré section
is a cylinder, with the parallel momentumranging pg
over p € {-1,1}, and with thes coordinate is cyclic

along each connected componend@. The rectangle

figure 8.2 (b) is such cylinder unfolded, with periodic ~
boundary conditions glueing together the left and the
right edge of the rectangle. —

1 s/

-1

P is equivalent to the Hamiltonian flows () in the sense that both describe the
same full trajectory. Let, denote the instant afth collision. Then the position
of the pinballe Q at timet, + 7 < ty;1 is given by D - 2 Poincaré section
coordinates $,, pn) € P together withr, the distance reached by the pinball along
thenth section of its trajectory.

Example 8.1 3-disk game of pinball: In case of bounces off a circular disk, the
position coordinate s = r is given by angle 6 € [0,2x]. For example, for the 3-disk
game of pinball of figure 1.6 and figure 3.3 we have two types of collisions:
= —¢ + 2arcsi
Po : ¢ o+ aa _csmp back-reflection (8.3)
p =-p+ gsing’
' = ¢ —2arcsinp + 2r/3
p, ;| ¥ =0~ 2arcsinp+2n/ reflect to 3rd disk. (8.4)
P =p-gsing’

Here a = radius of a disk, and R = center-to-center separation. Actually, as in this
example we are computing intersections of circles and straight lines, nothing more
than high-school geometry is required. There is no need to compute arcsinis either -
one only needs to compute a square root per each reflection, and the simulations can
be very fast.

Trajectory of the pinball in the 3-disk billiard is generated by a series of Py’s and
P1's. At each step on has to check whether the trajectory intersects the desired disk
(and no disk inbetween). With minor modifications, the above formulas are valid for any
smooth billiard as long as we replace a by the local curvature of the boundary at the

[exercise 8.1]

[exercise 8.2]

point of collision.

8.2 Stability of billiards

We turn next to the question of local stability of discretaei billiard systems.
Infinitesimal equations of variationst.¢) do not apply, but the multiplicative
structure ¢.44) of the finite-time fundamental matrices does. As they areemo
physical than most maps studied by dynamicists, let us watktlee billiard
stability in some detail.

On the face of it, a plane billiard phase space is 4-dimeasidtiowever, one
dimension can be eliminated by energy conservation, anotties by the fact that
the magnitude of the velocity is constant. We shall now show foing to a local
frame of motion leads to a {2] fundamental matrix.

billiards - 24apr2005.tex
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Consider a 2-dimensional billiard with phase space coatdsx = (q1, 02, P1, P2)-
Let tx be the instant of th&th collision of the pinball with the billiard boundary,
andty = tx = ¢, € positive and infinitesimal. With the mass and the velocityatq
to 1, the momentum direction can be specified by afgle= (qi, g, Sind, cosb).
Now parametrize the 8-neighborhood of a trajectory segmentdy = (6z 66),
where

6z = 601 cosh — 6gz sind , (8.5)

66is the variation in the direction of the pinball motion. Doeshergy conservation,
there is no need to keep track &, variation along the flow, as that remains
constant. §g;, 6cp) is the coordinate variation transverse to ktiesegment of the
flow. From the Hamilton’s equations of motion for a free paejdg/dt = p,
dp/dt = 0, we obtain the equations of motiof {) for the linearized neighborhood

d d
G300 =0. Gez=00. (8.6)

Let 66k = 66(t)) andéz = 5z(t;) be the local coordinates immediately after the
kth collision, andsg, = 66(t,), 6z, = dz(t,) immediately before. Integrating the
free flight fromt,_, to t, we obtain

0z, = 0Zc1+ TkObk-1, Tk =t —ta
56, 561, (8.7)

and the fundamental matri¥ @3 for thekth free flight segment is

M (%) :( 5 ) 8.8)

At incidence anglepy (the angle between the outgoing particle and the outgoing
normal to the billiard edge), the incoming transverse anmesz, projects onto an
arc on the billiard boundary of lengtiz, / cos¢x. The corresponding incidence
angle variations¢x = §7 /pk CoS¢, px = local radius of curvature, increases the
angular spread to

8% = —0Z
2
6 = -0 - —o7, 8.9
« K picosgx % 9
so the fundamental matrix associated with the reflection is

Lo ) . 2 (8.10)

MR(xk)=—( R

billiards - 24apr2005.tex
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Figure 8.4: Defocusing of a beam of nearby
trajectories at a billiard collision. (A. Wirzba)

The full fundamental matrix fon, consecutive bounces describes a beam of
trajectories defocused it along the free flight (thex terms below) and defocuseefocused

at reflections byMg (thery terms below) [exercise 8.4]

Mp = (-1)" ﬁ( 5w )( rlk 2) (8.11)

k=np

wherery is the flight time of thekth free-flight segment of the orbity, = 2/ cosgx
is the defocusing due to theh reflection, ancpy is the radius of curvature of
the billiard boundary at th&th scattering point (for our 3-disk game of pinball,
p = 1). As the billiard dynamics is phase space volume presgndetM = 1,
and the eigenvalues are given byZ2).

This is still another example of the fundamental matrix nhaile @.51) for
discrete time systems, rather similar to the Henon maglisgalat.52). Stability of
every flight segment or reflection taken alone is a shear withunit eigenvalues,

_ 1 7 _ 10
detMt = det( 0 1 ) , detMg = det( ne 1 ) R (8.12)

but acting in concert in the intervowen sequer&é {) they can lead to a hyperbolic

deformation of the infinitesimal neighborhood of a billidréjectory. )
[exercise 9.3]

As a concrete application, consider the 3-disk pinball esysbf sect.1.3.
Analytic expressions for the lengths and eigenvalues, @fand10 cycles follow
from elementary geometrical considerations.  Longer syabgjuire numerical

) - . ise 9.4
evaluation by methods such as those described in chapter [exercise 9.4]

[exercise 8.3]
[chapter 12]

Résumé

A particulary natural application of the Poincaré sectioethod is the reduction
of a billiard flow to a boundary-to-boundary return map.
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Commentary

Remark 8.1 Billiards.  The 3-disk game of pinball is to chaotic dynamics what a

pendulum s to integrable systems; the simplest physicahgte that captures the essence

of chaos. Another contender for the title of the ‘harmoniciketor of chaos’ is the baker’s

map which is used as the red thread through Ott’s introdnd¢tiachaotic dynamicsifj.

The baker’'s map is the simplest reversible dynamical systémsh is hyperbolic and

has positive entropy. We will not have much use for the bakesxap here, as due to its

piecewise linearity itis so nongeneric that it misses athefsubtleties of cycle expansions

curvature corrections that will be central to this treatise ,

[chapter 18]

That the 3-disk game of pinball is a quintessential exampléeterministic chaos

appears to have been first noted by B. Eckhatilt [The model was studied in depth

classically, semiclassically and quantum mechanicallPb§aspard and S.A. Ricé][

and used by P. Cvitanovic and B. Eckhard} fo demonstrate applicability of cycle

expansions to quantum mechanical problems. It has beentais¢ddy the higher order

h corrections to the Gutzwiller quantization by P. Gaspard BnAlonso Ramirezf],

construct semiclassical evolution operators and entietspl determinants by P. Cvitanovit

and G. Vattay §], and incorporate the firaction dfects into the periodic orbit theory by

G. Vattay, A. Wirzba and P.E. Rosenqvisf.] Gaspard’s monograpi], which we

warmly recommend, utilizes the 3-disk system in much mopghdthan will be attained

here. For further links checkhaosBook. org.

A pinball game does miss a number of important aspects oftictdymamics: generic
bifurcations in smooth flows, the interplay between regiohstability and regions of
chaos, intermittency phenomena, and the renormalizatiory of the ‘border of order’
between these regions. To study these we shall have to facenupch harder challenge,
dynamics of smooth flows.

Nevertheless, pinball scattering is relevant to smootbm@ils. The game of pinball
may be thought of as the infinite potential wall limit of a srtfopotential, and pinball
symbolic dynamics can serve as@eringsymbolic dynamics in smooth potentials. One
may start with the infinite wall limit and adiabatically r&lan unstable cycle onto the
corresponding one for the potential under investigationf things go well, the cycle
will remain unstable and isolated, no new orbits (unaccedifdr by the pinball symbolic
dynamics) will be born, and the lost orbits will be accourf@tby a set of pruning rules.
The validity of this adiabatic approach has to be checkeeffally in each application, as
things can easily go wrong; for example, near a bifurcati@nsame naive symbol string
assignments can refer to a whole island of distinct periodiéts.

[section 27.1]

Remark 8.2 Stability analysis. The chapter 1 of Gaspard monograghi recommended
reading if you are interested in Hamiltonian flows, and ailiis in particular. A. Wirzba
has generalized the stability analysis of s&c®.to scattering & 3-dimensional spheres
(follow the links in ChaosBook.org/extras). A clear discussion of linear stability for
the generatl-dimensional case is given in Gaspa#{l fect. 1.4.
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8.1

8.2.

8.3.

8.4.

. A pinball simulator.

Implement the disk— disk
maps to compute a trajectory of a pinball for a
given starting point, and a giveRa = (center-to-
center distance):(disk radius) ratio for a 3-disk system.
As this requires only computation of intersections of
lines and circles together with specular reflections,
implementation should be within reach of a high-school
student. Please start working on this program now;
it will be continually expanded in chapters to come,
incorporating the Jacobian calculations, Newton root—
finding, and so on.

Fast code will use elementary geometry (only one
/-~ per iteration, rest are multiplications) and eschew
trigonometric functions. Provide a graphic display of
the trajectories and of the Poincaré section iterates. To
be able to compare with the numerical results of coming
chapters, work witliR:a = 6 andor 2.5 values. Draw the
correct versions of figurg.9or figure10.4for Ra= 2.5
andor 6.

Trapped orbits.  Shoot 100,000 trajectories from one
of the disks, and trace out the strips of figur® for
various R:ia by color coding the initial points in the
Poincaré section by the number of bounces preceding
their escape. Try als&a = 6:1, though that might
be too thin and require some magnification. The initial
conditions can be randomly chosen, but need not -
actually a clearer picture is obtained by systematic scan
through regions of interest.

Pinball stability.
simulator a routine that computes the the22Jacobian
matrix. To be able to compare with the numerical
results of coming chapters, work wifRa = 6 andor
2.5 values.

Stadium billiard.
stadium[9, 1] defined in figure8.1 The fundamental

References

Add to your exercise3.1 pinball 8.5,

Consider theBunimovich  8.6.
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matrix associated with the reflection is given y10.
Here we takey = —1 for the semicircle sections of the
boundary, and cag remains constant for all bounces
in a rotation sequence. The time of flight between two
semicircle bounces isx = 2cospk. The fundamental
matrix of one semicircle reflection folowed by the flight
to the next bounce is

1 2cosp 1 0
(‘1)( o 1" )( —2/ cossx 1)

-3 2 cosp
(‘1)( 2cosh 1 )

J

A shift must always be followed bk = 1,2,3,---
bounces along a semicircle, hence the natural
symbolic dynamics for this problem isary, with the
corresponding fundamental matrix given by shear (
the eigenvalues remain equal to 1 throughout the whole
rotation), and bounces inside a circle lead to

—2k-1 2kcosp ) (8.13)

= (‘1)k( oK/ cosp k-1

The fundamental matrix of a cycfeof lengthn, is given
by

LA 1
K T
Jp=(—1)2n H( 0 f )( Nl

9 ) (8.14)
k=1

Adopt your pinball simulator to the stadium billiard.

A test of your pinball simulator. Test your
exercise3.3pinball simulator by computing numerically
cycle stabilities by tracking distances to nearby orbits.
Compare your result with the exact analytic formulas of
exercised.3and9.4.

Birkho ff coordinates. Prove that the Birkh®
coordinates are phase space volume preserving.
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Chapter 9

World in a mirror

A detour of a thousand pages starts with a single misstep.
—Chairman Miaw

the reflection symmetries of various potentials. As we sstadlwv here and

in chapterl9, symmetries simplify the dynamics in a rather beautiful way
If dynamics is invariant under a set of discrete symmeBethe state spacA
is tiled by a set of symmetry-related tiles, and the dynamics can dhecesl to
dynamics within one such tile, tHandamental domaim/G. If the symmetry
is continuous the dynamics is reduced to a lower-dimensideaymmetrized
systemM/G, with “ignorable” coordinates eliminated (but not forgot). In
either case families of symmetry-related full state spaades are replaced by
fewer and often much shorter “relative” cycles. In preseota symmetry the
notion of a prime periodic orbit has to be reexamined: it [aeed by the notion
of arelative periodic orbit the shortest segment of the full state space cycle which
tiles the cycle under the action of the group. Furthermdre,group operations
that relate distinct tiles do double duty as letters of arhaliigt which assigns
symbolic itineraries to trajectories.

DYNAM[CAL systems often come equipped with discrete symmetries, such as

Familiarity with basic group-theoretic notions is assupweith details relegated
to appendixH.1. The erudite reader might prefer to skip the lengthy group-
theoretic overture and go directly @ = D; example9.1and examplé®.2, and
C3, = D3 example9.3, backtrack as needed.

Our hymn to symmetry is a symphony in two movements: In thigptér
we look at individual orbits, and the ways they are inteteelaby symmetries.
This sets the stage for a discussion of how symmetrigectaglobal densities
of trajectories, and the factorization of spectral deteamts to be undertaken in
chapterl9.
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9.1 Discrete symmetries 5
XX
We show that a symmetry equates multiplets of equivalentsorb

We start by defining a finite (discrete) group, its state spapeesentations,

and what we mean by symmetry(invariance or equivariancg of a dynamical
system.

Definition: A finite group consists of a set of elements
G={eg....gq (9.1)
and a group multiplication rulg; o g; (often abbreviated agg;), satisfying

. Closure: Ifg;, gj € G, thengj o g; € G
. Associativity:gx o (gj © gi) = (Gk © gj) © Gi
. Identitye: goe=eog=gforallge G

AW N P

. Inverseg*l: For everyg € G, there exists a unique element
h=gleGsuchthahog=goh=e.

|Gl, the number of elements, is called theler of the group.

Definition: Coordinate transformations. An activelinear coordinate transformation
X — Tx corresponds to a non-singulad  d] matrix T that shifts the vector

X € M into another vectofx € M. The correspondingassivecoordinate
transformationf(x) — T~1f(x) changes the coordinate system with respect to
which the vectorf(x) € M is measured. Together, a passive and active coordinate
transformations yield the map in the transformed cooréiiat

f(x) = TH(Tx). 9.2)

Linear action of a discrete group elementg on statesx € M is given by a
finite non-singular dx d] matrix g, the linearrepresentatiorof elementg € G.
In what follows we shall indicate by bold faggthe matrix representation of the
action of group elemerg € G on the state space vectots M.

If the coordinate transformatiagnbelongs to a linear non-singular representation
of a discrete (finite) grouf®, for any elemeng € G, there exists a numben < |G|
such that

g"=gogo...og=€e — |detg =1. (9.3)

mtimes
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As the modulus of its determinant is unity, dgs anmth root of 1.

A group is asymmetryof a dynamics if for every solutiorf(x) € M and
ge G,y =gf(x) is also a solution:

Definition: Symmetry of a dynamical system. A dynamical system A/, f)

is invariant (or G-equivarian} under a symmetry grou if the “equations of
motion” f : M — M (a discrete time map, or the continuous flow") from the
d-dimensional manifold\ into itself commute with all actions @3,

f(9x) = gf(x). (9-4)

Another way to state this is that the “law of motion” is invant, i.e., retains its
form in any symmetry-group related coordinate frafa)

f(9 =g*f(g9, (9.5)

for any statex € M andanyfinite non-singular i xd] matrix representationy of
elementg € G.

Why “equivariant”? A functionh(x) is said to beG-invariantif h(x) = h(gx)
for all g € G. The mapf : M — M maps vector into a vector, hence a slightly
different invariance conditioh(x) = g~ f(gx). It is obvious from the context, but
for verbal emphasis some like to distinguish the two casds/guivariant. The
key result of the representation theory of invariant fuosiis:

Hilbert-Weyl theorem. For a compact grou there exist a finité-invariant
homogenous polynomial basgis, Uy, . . ., um} such that ang-invariant polynomial
can be written as a multinomial

h(x) = p(u(X). Uz(X). - ... im(x)) - (9-6)

In practice, explicit construction of such basis does netrseasy, and we will not
take this path except for a few simple low-dimensional ca®és prefer to apply
the symmetry to the system as given, rather than undertakees ©f nonlinear
coordinate transformations that the theorem suggests.

For a generic ergodic orbit!(x) the trajectory and any of its images under
action ofg € G are distinct with probability onef'(x) n gft'(x) = 0 for all t, t'.
For compact invariant sets, such as fixed points and per@dits, especially the
short ones, the situation is veryfidirent.
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9.1.1 Isotropy subgroups

The subset of pointsly, ¢ M that belong to the infinite-time trajectory of a
given pointxg is called theorbit (or asolutior) of Xo. An orbit is adynamically
invariant notion: it refers to the totality of states that can be reddhem xo, with
the full state spacé foliated into a union of such orbits. We label a generic orbit
My, by any point belonging to ity = x(0) for example. A generic orbit might be
ergodic, unstable and essentially uncontrollable. Thaetesly of this monograph
is to populate the state space by a hierarchgashpact invariant set&quilibria,
periodic orbits, invariant tori,..), each computable in a finite time. Orbits which
are compact invariant sets we label by whatever alphabetngectinvenient in
a particular applicationEQ = xgq = Mgq for an equilibrium,p = M, for a
periodic orbit, etc..

The set of pointgx generated by all actiorgse G of the groupG is called the
group orbitof x e M. If G is a symmetry, intrinsic properties of an equilibrium
(such as Floquet exponents) or a cygldperiod, Floquet multipliers) and its
image under a symmetry transformatigne G are equal. A symmetry thus
reduces the number of dynamically distinct solutiokf, of the system. So
we also need to determine the symmetry cfadution as opposed ta9(5), the
symmetry of thesystem

Definition: Isotropy subgroup. Let p= M, c M be an orbit of the system. A
set of group actions which maps an orbit into itself,

Gp={g<cG:gMp= My}, (9.7)

is called anisotropy subgroug{or stabilizer subgroupof the solutionM,. We
shall denote by, the maximaisotropysubgroup ofM,. For a discrete subgroup

Gp:{e,bz,bg,.“,bh}gG, (9.8)

of orderh = |Gy, group elements (isotropies) map orbit points into orbinfso
reached at dierent times. For continuous symmetries the isotropy sulp@,
can be any continuous or discrete subgrouof

LetH = {e by, bs,...,by} C G be a subgroup of orddr = |H|. The set of
h elementdc, chy, chs, ..., chy}, c € G but not inH, is called leftcoset cH For
a given subgroupd the group elements are partitioned ifloandm — 1 cosets,
wherem = |G|/[H|. The cosets cannot be subgroups, since they do not inclede th
identity element.

9.1.2 Conjugate elements, classes and orbit multiplicity

If Gy is the isotropy subgroup of orbit1,, elements of the coset spage G/G,
generate then— 1 distinct copies ofM,, so for discrete groups the muiltiplicity of
an equilibrium or a cycle is m, = |G|/|Gp|.
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An elementb € G is conjugateto a if b = cac? wherec is some other
group element. Ib andc are both conjugate @, they are conjugate to each other.
Application of all conjugations separates the set of grdements into mutually
not-conjugate subsets callethisses The identitye is always in the clasge} of its
own. This is the only class which is a subgroup, all othersgadack the identity
element. Physical importance of classes is clear frBrf),(the way coordinate
transformations act on mappings: action of elements ofssdkay reflections, or
discrete rotations) is equivalent up to a redefinition of¢berdinate frame. We
saw above that splitting of a group into an isotropy subgrou®, andm - 1
cosetscGy, relates a solutionM, to m— 1 other distinct solutionsMp. Clearly
all of them have equivalent isotropies: the precise stat¢nsethat the isotropy
subgroup of orbit pis conjugate to the isotropy subgroupGep = ¢ Gpc L.

The next step is the key step; if a set of solutions is equindly symmetry
(a circle, let’s say), we would like to represent it by a sengblution (shrink the
circle to a point).

Definition: Invariant subgroup. A subgroupH C G is aninvariant subgroup
or normal divisor if it consists of complete classes. Class is complete if no
conjugation takes an element of the class out of

H dividesG into H andm — 1 cosets, each of ord@|. Think of action of
H within each subset as identifying itld| elements as equivalent. This leads to
the notion ofG/H as thefactor groupor quotient group GH of G, with respect
to thenormal divisor(or invariant subgroupi. Its order ism = |G|/|H|, and its
multiplication table can be worked out from t&multiplication table class by
class, with the subgroud playing the role of identityG/H is homeomorphito
G, with |H| elements in a class & represented by a single elemenGpH.

So far we have discussed the structure of a group as an ahesttetg. Now
we switch gears to what we really need this for: describe thieraof the group
on the state space of a dynamical system of interest.

Definition: Fixed-point subspace. The fixed-point subspace of a given subgroup
H € G, G a symmetry of dynamics, is the set state space pointptefit-wise
invariant under any subgroup action

Fix(H) = {xe M:hx=xforalheH}. (9.9)
A typical point in FixH) moves with time, but remains withifi(Fix(H)) <
Fix(H) for all times. This suggests a systematic approach to sget@mpact

invariant solutions. The larger the symmetry subgroupstheller FixH), easing
the numerical searches, so start with the largest subgtddjst.

Definition: Invariant subspace. M, c M is aninvariant subspace if

{M, :gxe M, forallge Gandxe M,}. (9.10)
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{0} and M are always invariant subspaces. So is anyHx{hich is point-wise
invariant under action d&. We can often decompose the state space into smaller
invariant subspaces, with group acting within each “chusggarately:

Definition: Irreducible subspace. A spaceM, whose only invariant subspaces
are{0} and M, is calledirreducible

As a first, coarse attempt at classification of orbits by tegimmetries, we
take note three types of equilibria or cycles: asymmetrisymmetric equilibria
or cycless built by repeats of relative cycles &nd boundary equilibria.

Asymmetric cycles: An equilibrium or periodic orbit is not symmetric fika} N
{gxa} = 0, where{x,} is the set of periodic points belonging to the cyaleThus

g € G generatdG]| distinct orbits with the same number of points and the same
stability properties.

Symmetric cycles: A cycle s is symmetric(or self-dua) if it has a non-trivial
isotropy subgroup, i.e., operating withe G, c G on the set of cycle points
reproduces the sey € Gp acts a shift in time, mapping the cycle poit Mp
into fTv/[Cel(x)

Boundary solutions: An equilibrium x4 or a larger compact invariant solution in
a fixed-point subspace F@&], gx; = Xq for all g € G lies on the boundary of
domains related by action of the symmetry group. A soluthaat ts point-wise
invariant under all group operations has multiplicity 1.

A string of unmotivated definitions (or an unmotivated deiim of strings)
has a way of making trite mysterious, so let's switch geaesetbp a feeling for
why they are needed by first working out the simplest, éxample with a single
reflection symmetry.

Example 9.1 Group D; - a reflection symmetric  1d map: Consider a 1d map f
with reflection symmetry f(-x) = —f(X). An example is the bimodal “sawtooth” map
of figure 9.1, piecewise-linear on the state space M = [-1,1] split into three regions
M = {My, Mc, Mg} which we label with a 3-letter alphabet L (eft), C(enter), and R(ight).
The symbolic dynamics is complete ternary dynamics, with any sequence of letters
A = {L, C, R} corresponding to an admissible trajectory. Denote the reflection operation
by Rx= —X. The 2-element group {e, R} goes by many names - here we shall refer to it
as Cy, the group of rotations in the plane by angle n, or D1, dihedral group with a single
reflection. The symmetry invariance of the map implies that if {X,} is a trajectory, than
also {Rx,} is a trajectory because Rx..1 = Rf(xn) = f(RX,) .

Asymmetric cycles:R generates a reflection of the orbit with the same number of points
and the same stability properties, see figure 9.1 (c).

Symmetric cycles:A cycle s is symmetric (or self-dual) if operating with R on the set of
cycle points reproduces the set. The period of a symmetric cycle is even (ns = 2ng), and
the mirror image of the Xs cycle point is reached by traversing the irreducible segment
§ (relative periodic orbit) of length ng, f™(xs) = RX, see figure 9.1 (b).

Boundary cycles: In the example at hand there is only one cycle which is neither
symmetric nor antisymmetric, but lies on the boundary Fix(G): the fixed point C at the
origin.
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Figure 9.3: The symmetries of three disks on
an equilateral triangle. The fundamental domain
indicated by the shaded wedge.

in depth:
” appendix H, p. 697
9.2 Relative periodic orbits

We show that a symmetry reduces computation of periodidtbirepeats of
shorter, “relative periodic orbit” segments.

Invariance of a flow under a symmetry means that the symmeteage of a
cycle is again a cycle, with the same period and stabilitye fiéw orbit may be
topologically distinct (in which case it contributes to tmeiltiplicity of the cycle)
or it may be the same cycle.

A cycle is symmetricunder symmetry operatiog if g acts on it as a shift
in time, advancing the starting point to the starting poiha symmetry related
segment. A symmetric cycl@ can thus be subdivided intm, repeats of a
irreducible segmentprime” in the sense that the full state space cycle is aaepe
of it. Thus in presence of a symmetry the notion of a periodhitas replaced
by the notion of the shortest segment of the full state spgcke evhich tiles the
cycle under the action of the group. In what follows we retethis segment as a
relative periodic orbit

Relative periodic orbits (oequvariant periodic orbitsare orbitsx(t) in state
spaceM which exactly recur

X(t) =gx(t+T) (9.17)

for a fixedrelative period Tand a fixed group actiog € G. This group action is
referred to as a “phase,” or a “shift.” For a discrete grougth$) g" = efor some
finite m, so the corresponding full state space orbit is periodit wériodmT.

The period of the full orbit is given by the, x (period of the relative periodic
orbit), and theth Floquet multiplierAp; is given byAT,ip of the relative periodic
orbit. The elements of the quotient spdce G/G, generate the copidsp, so the
multiplicity of the full state space cyclgis m, = |G|/|Gp|.
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Figure 9.4: The 3-disk pinball cycles: (al2,

13, 23, 123. Cycle132 turns clockwise. (b)
Cycle1232; the symmetry relatetP13 andl323

not drawn. (c)12323; 12123, 12132, 12313,
13131 andl3232 not drawn. (d) The fundamental @
domain, i.e., the /Bth wedge indicated in (a),
consisting of a section of a disk, two segments
of symmetry axes acting as straight mirror walls,
and the escape gap to the left. The above 14 full-
space cycles restricted to the fundamental domain
reduced to the two fixed poin®, 1, 2-cycle10,
and 5-cycled0111 (not drawn).

We now illustrate these ideas with the example of se&. symmetries of a

3-disk game of pinball.

Example 9.3 Cs, = D3 invariance - 3-disk game of pinball: As the three disks
in figure 9.3 are equidistantly spaced, our game of pinball has a sixfold symmetry. The
symmetry group of relabeling the 3 disks is the permutation group Ss; however, it is
more instructive to think of this group geometrically, as Cs, (dihedral group Ds), the
group of order |G| = 6 consisting of the identity element e, three reflections across
axes {012, 0723, 013}, and two rotations by 2r/3 and 4r/3 denoted {C, C?}. Applying an
element (identity, rotation by +2x/3, or one of the three possible reflections) of this
symmetry group to a trajectory yields another trajectory. For instance, o1z, the flip
across the symmetry axis going through disk 1 interchanges the symbols 2 and 3; it
maps the cycle 12123into 13132 figure 9.5 (a). Cycles 12, 23, and 13 in figure 9.4 (a)
are related to each other by rotation by +2r/3, or, equivalently, by a relabeling of the
disks.

[exercise 9.6]

The subgroups of D3 are D1 = {e, o}, consisting of the identity and any one of
the reflections, of order 2, and C3 = {e, C, C?}, of order 3, so possible cycle multiplicities
are |G|/|Gp| = 2, 3 or6.

The C3 subgroup Gy = {e,C, C?} invariance is exemplified by 2 cycles 123and
132 which are invariant under rotations by 2r/3 and 43, but are mapped into each
other by any reflection, figure 9.5 (b), and the multiplicity is |G|/|Gp| = 2.

The C, type of a subgroup is exemplified by the invariances of p = 1213 This
cycle is invariant under reflection 053{1213 = 1312= 1213 so the invariant subgroup
is Gp = {€, a3}, with multiplicity is mp = |GI/|Gp| = 3; the cycles in this class, 1213 1232
and 1323 are related by 27/3 rotations, figure 9.5 (c).

A cycle of no symmetry, such as 12123 has Gy, = {€} and contributes in all six
copies (the remaining cycles in the class are 12132 12313 12323 13132and 13232,
figure 9.5 (a).

Besides the above discrete symmetries, for Hamiltonian systems cycles may
be related by time reversal symmetry. An example are the cycles 121212313and
121212323= 313212121which have the same periods and stabilities, but are related
by no space symmetry, see figure 9.5 (d). Continued in example 9.5.
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Figure 9.6: The bimodal Ulam sawtooth map of f(x)
figure 9.1 with the D; symmetry f(—x) = —f(x)
restricted to the fundamental domainf(x) is
121212313 121313132 121231313 indicated by the thin line, and fundamental domain

Figure 9.5: Cycle 121212313 has multiplicity
6; shown here is121313132= 0,3121212313.

map f_(i) by the thick line. (a) Boundary fixed
pointC is the fixed poinD. The asymmetric fixed

However,121231313 which has the same stabilit point pair {L,R} is reduced to the fixed poir, 6
and period is related tdl21313132 by time and the full state space symmetric 2-cytR is e
reversal, but not by an§s, symmetry. reduced to the fixed poirZ. (b) The asymmetric LR
2-cycle pairfLC,CR is reduced to 2-cycl®2. (c)
. ) All fundamental domain fixed points and 2-cycles.
9.3 Domain for fundamentalists (Yueheng Lan) @)

Example 9.4 Group D; and reduction to the fundamental domain. Consider
again the reflection-symmetric bimodal Ulam sawtooth map f(—x) = —f(X) of example 9.1,
with symmetry group D1 = {e, R}. The state space M = [~1,1] can be tiled by half-line
M =[0,1], and RM = [-1,0], its image under a reflection across x = 0 point. The
dynamics can then be restricted to the fundamental domain % € M = [0, 1], every time

a trajectory leaves this interval, it is mapped back using R.

So far we have used symmetry tfiext a reduction in the number of independeff
cycles in cycle expansions. The next step achieves much: more

1. Discrete symmetries can be used to restrict all compuisito gundamental

domain the M/G quotiented subspace of the full state spAde .

In figure 9.6 the fundamental domain map f(X) is obtained by reflecting x < 0

segments of the global map f(x) into the upper right quadrant. f is also bimodal and

piecewise-linear, with M = [0, 1] split into three regions M = { Mo, M1, My} which we

label with a 3-letter alphabet A=1{0,1,2}. The symbolic dynamics is again complete
ternary dynamics, with any sequence of letters {0, 1, 2} admissible.

2. Discrete symmetry tessellates the state space intosopi fundamental
domain, and thus induces a natural partition of state speee state space
is completely tiled by a fundamental domain and its symroétniages.

3. Cycle multiplicities induced by the symmetry are remobgdesymmetrizatiogn
reduction of the full dynamics to the dynamics ofuadamental domain
Each symmetry-related set of global cyclesorresponds to precisely one
fundamental domain (or relative) cycfe Tonversely, each fundamental

However, the interpretation of the “desymmetrized” dynamics is quite different -
the multiplicity of every periodic orbit is now 1, and relative periodic orbits of the full state
space dynamics are all periodic orbits in the fundamental domain. Consider figure 9.6

In (a) the boundary fixed point C is also the fixed point 0. In this case the set

domain cyclep“traces out a segment of the global cyglewith the end
point of the cyclepmapped into the irreducible segmentmivith the group
elemenths. The relative periodic orbits in the full space, folded bauto
the fundamental domain, are periodic orbits.

4. The group elemen@ = {e, @z, ..., g/} Which map the fundamental domain

Minto its copieggM, serve also as letters of a symbolic dynamics alphabet.

If the dynamics is invariant under a discrete symmetry, theesspace\ can
be completely tiled by the fundamental doma and its imagesMa = aM,
Mp = bM, ... under the action of the symmetry groGp= {e a,b,...},

M=MUMaUMp---U Mg = MUaMUbM--- . (9.18)

Now we can use the invariance conditich4) to move the starting point
into the fundamental domair = a%, and then use the relatiar’b = h™* to
also relate the endpointto its image in the fundamental domain. While the
global trajectory runs over the full spagd, the restricted trajectory is brought
back into the fundamental domaivil any time it exits into an adjoining tile; the
two trajectories are related by the symmetry operatiamhich maps the global
endpoint into its fundamental domain image.

discrete - 20apr2008.tex

of points invariant under group action of D1, M N RM, is just this fixed point x = O, the
reflection symmetry point.

The asymmetric fixed point pair {L,R} is reduced to the fixed point 2, and the
full state space symmetric 2-cycle LR is reduced to the fixed point 1. The asymmetric
2-cycle pair {LC,CR) is reduced to the 2-cycle 0L Finally, the symmetric 4-cycle LCRC
is reduced to the 2-cycle 02. This completes the conversion from the full state space
for all fundamental domain fixed points and 2-cycles, figure 9.6 (c).

Example 9.5 3-disk game of pinball in the fundamental domain

If the dynamics is symmetric under interchanges of disks, the absolute disk
labels ¢ = 1,2,---,N can be replaced by the symmetry-invariant relative disk—disk
increments @i, where ¢ is the discrete group element that maps disk i—1 into disk i.
For 3-disk system g is either reflection o back to initial disk (symbol ‘0’) or rotation
by C to the next disk (symbol ‘1’). An immediate gain arising from symmetry invariant
relabeling is that N-disk symbolic dynamics becomes (N—1)-nary, with no restrictions
on the admissible sequences.

An irreducible segment corresponds to a periodic orbit in the fundamental domain,
a one-sixth slice of the full 3-disk system, with the symmetry axes acting as reflecting
mirrors (see figure 9.4(d)). A set of orbits related in the full space by discrete symmetries
maps onto a single fundamental domain orbit. The reduction to the fundamental domain

desymmetrizes the dynamics and removes all global discrete symmetry-induced degeneracies:

rotationally symmetric global orbits (such as the 3-cycles 123and 132) have multiplicity
2, reflection symmetric ones (such as the 2-cycles 12, 13 and 23) have multiplicity 3,
and global orbits with no symmetry are 6-fold degenerate. Table 11.1 lists some of
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Figure 9.7: (a) The pair of full-space 9-cycles, the
counter-clockwisel21232313 and the clockwise
131323212 correspond to (b) one fundamental
domain 3-cycled01. (b)

140

the shortest binary symbols strings, together with the corresponding full 3-disk symbol
sequences and orbit symmetries. Some examples of such orbits are shown in figures 9.5

and 9.7. Continued in example 11.3.

9.4 Continuous symmetries

[...] which is an expression of consecration of “angulg

momentum.”
— Mason A. Porter’s student

What if the “law of motion” retains its formQ.5) in a family of coordinate frames
f(x) = g1f(gx) related by a group ofontinuoussymmetries? The notion of
“fundamental domain” is of no use here. Instead, as we skall sontinuous
symmetries reduce dynamics to a desymmetrized system ef kdwensionality,

by elimination of “ignorable” coordinates.

Definition: A Lie group is a topological grou® such that (1)G has the

structure of a smooth fierential manifold. (2) The composition mé&x G —

G: (g.h) — gh™t is smooth.

By “smooth” in this text we always meagf* differentiable. If you are mystified

by the above definition, don'’t be. Just think “aha, like thtion groupS (3)?”
If action of every elemeng of a groupG commutes with the flonk = v(x),

X = (%),
) =g,  gf'(x) = f'(g%).
the dynamics is said to hevariant or equivariantunderG.
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Let G be a groupM a set, angM — M a group action. For any € M,
theorbit My of x is the set of all group actions

My ={gx|geG}c M.

For a given state space poithe group ofN continuous transformations together
with the time translation sweeps out a smodth+{)-dimensional manifold of
equivalent orbits. The time evolution itself is a noncontpagarameter Lie
group; however, for solutionp for which theN-dimensional group manifold is
periodic in timeTy, the orbit of x, is a compactinvariant manifoldMp. The
simplest example is th&l = 0 case, where the invariant manifold, is the
1d-torus traced out by the periodic trajectory. Thus the timeligion and the
Lie group continuous symmetries can be considered on the $aating, and
the closure of the set of compact unstable invariant matsfai, is the non—
wandering sef of dynamics in presence of a continuous global symmetry (see
sect.2.1.]).

The desymmetrized state space is the quotient sp&t®. The reduction to
M/G amounts to a change of coordinates where the “ignorablesHgl6s, - - -, On}
parametrizeN+1 time and group translations can be separated out. A simple
example is the “rectification” of the harmonic oscillator bychange to polar
coordinates, examplg 1

9.4.1 Lie groups for pedestrians

All the group theory that you shall need here is in principtettained in the
Peter-Weyl theoremand its corollaries: A compact Lie group is completely
reducible, its representations are fully reducible, evagnpact Lie group is a
closed subgroup df)(n) for somen, and every continuous, unitary, irreducible
representation of a compact Lie group is finite dimensional.

Instead of writing yet another tome on group theory, in wb#bfvs we serve
group theoretic nuggets on need-to-know basis, followingel-trod pedestrian
route through a series of examples of familiar bits of grdugoty and Fourier
analysis (but take a modicum of high, cyclist road in the prper).

Consider infinitesimal transformations of fogn= 1 +iD, |Dj| < 1, i.e., the
transformations connected to the identity (in general, i8e aeed to combine
this with fects of invariance under discrete coordinate transfoonstialready
discussed above)nitary transformations exjf; T;) are generated by sequences
of infinitesimal transformations of form

g° = &2 +is6 (T2 9eRN, T hermitian.
whereT;, the generatorsof infinitesimal transformations, are a set of linearly
independentdx d] hermitian matrices. In terms of the generat@is a tensor
hémﬂmC is invariant if T; “annihilate” it, i.e., T - h = 0:

(TS + (T hy & = (TS hy, © + ... = 0. (9.20)
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Example 9.6 Lie algebra. As one does not want the symmetry rules to change at
every step, the generators Ti, i = 1,2, ..., N, are themselves invariant tensors:

(T2 = Pa O g (Ti) (9.21)

where gj; = [e‘"’kck]” is the adjoint [N x N] matrix representation of g € G. The [dxd]
matrices T; are in general non-commuting, and from (9.20) it follows that they close
N-element Lie algebra

TiT;—T;Ti = iCij Tk i,j,k=212.,N,

where the fully antisymmetric adjoint representation generators [Cy];j = Cijx are known
as the structure constants.

exercisel4.10

Example 9.7 Group SQ2). S Q) is the group of rotations in a plane, smoothly
connected to the unit element (i.e. the inversion (x,y) — (=X, —y) is excluded). A group
element can be parameterized by angle 6, and its action on smooth periodic functions
is generated by

d

— doT = j—

ge)=¢€"", T=-i W

9(0) rotates a periodic function u(@ + 2rr) = u(6) by 6 mod 2x:
g(O)u(@) = u(® +6)

The multiplication law is g(6)g(¢’) = g(6 + ). If the group G actions consists of N such
rotations which commute, for example a N-dimensional box with periodic boundary
conditions, the group G is an Abelian group that acts on a torus TV,

9.4.2 Relative periodic orbits

Consider a flow invariant under a global continuous symmtigy group)G. A
relative periodic orbitp is an orbit in state spac&! which exactly recurs

Xp(t) = GpXp(t + Tp), Xp(t) € Mp (9.22)

for a fixedrelative period T, and a fixed group actiog, € G that “rotates” the
endpointxp(Tp) back into the initial poinix,(0). The group actiowy, is referred
to as a “phase,” or a “shift.”

Example 9.8 Continuous symmetries of the plane Couette flow. The Navier-
Stokes plane Couette flow defined as a flow between two countermoving planes, in a
box periodic in streamwise and spanwise directions, a relative periodic solution is a
solution that recurs at time T, with exactly the same disposition of velocity fields over
the entire box, but shifted by a 2-dimensional (streamwise,spanwise) translation gp.
The SQ2) x S Q(2) continuous symmetry acts on a 2-torus T2.
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For dynamical systems with continuous symmetries parasigté,, - - -, O}
are real numbers, ratiag6; are almost never rational, and relative periodic orbits
are almost never eventually periodic. As almost any suci@xplores ergodically
the manifold swept by action @xt, they are sometimes referred to as “quasiperiodic.”
However, a relative periodic orbit can be pre-periodic ifsiinvariant under a
discrete symmetry: 1§™ = 1 is of finite ordem, then the corresponding orbit is
periodic with periodmTp. If g is not of a finite order, the orbit is periodic only
after the action ofj, as in 0.22).

In either discrete or continuous symmetry case, we refeingatbits M, in
M satisfying 0.22) asrelative periodic orbits Morally, as it will be shown in
chapterl9, they are the true “prime” orbits, i.e., the shortest segsdrat under
action ofG tile the entire invariant submanifold$t,,.

9.5 Stabilit
y A
A infinitesimal symmetry group transformation maps a trajgcin a nearby
equivalent trajectory, so we expect the initial point pesadions along to group
manifold to be marginal, with unit eigenvalue. The argumisrdkin to @.7),
the proof of marginality of perturbations along a periodibib In presence of
an N-dimensional Lie symmetry grou@, further N eigenvalues equal unity.
Consider two nearby initial points separated byNudimensional infinitesimal
group transformationd: 5xg = g(66)xo — Xo = 166 - T Xo. By the commutativity of
the group with the flong(s6) f'(xo) = f1(9(50)%0). Expanding both sides, keeping
the leading term ¢, and using the definition of the fundamental mateixg],
we observe thai'(xo) transports théN-dimensional tangent vector framextto
the rotated tangent vector framext) at timet:

ox() = 9(6)3'(x0) %o - (9.23)

For relative periodic orbitgpx(Tp) = x(0), at any point along cycle the
group tangent vector x(t) is an eigenvector of the fundamental mati(x) =
gpJd"?(X) with an eigenvalue of unit magnitude,

IJP(X) %0 =g@O)TX),  xep. (9.24)

Two successive points along the cycle separateéipyhave the same separation
after a completed periogk(Tp) = gpdxo, hence eigenvalue of magnitude 1.

9.5.1 Boundary orbits /

Peculiar &ects arise for orbits that run on a symmetry lines that baadendamental
domain. The state space transformatios e leaves invariant sets dfoundary
points; for example, under reflectian across a symmetry axis, the axis itself
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remains invariant. Some care need to be exercised in toethirinvariant “boundary
setM = M Man My--- N Mg. The properties of boundary periodic orbits
that belong to such pointwise invariant sets will requirétabthinking.

In our 3-disk example, no such orbits are possible, but thést én other
systems, such as in the bounded region of the Henon-Haites il (remarlo.3)
and in d maps of exampl®.1 For the symmetrical 4-disk billiard, there are in
principle two kinds of such orbits, one kind bouncing backl dorth between
two diagonally opposed disks and the other kind moving albegother axis of
reflection symmetry; the latter exists for bounded systenig dNhile for low-
dimensional state spaces there are typically relativelyjeundary orbits, they
tend to be among the shortest orbits, and they play a keymalgriamics.

While such boundary orbits are invariant under some synyragerations,
their neighborhoods are not. Thiffects the fundamental matri, of the orbit
and its Floquet multipliers.

Here we have used a particularly simple direct product giracof a global
symmetry that commutes with the flow to reduce the dynamica symmetry
reduced §—1 —N)-dimensional state spadel/G.

Résumé

In sect.2.1.1we made a lame attempt to classify “all possible motions:) (1
equilibria, (2) periodic orbits, (3) everything else. Noweocan discern in the
fog of dynamics outline of a more serious classification -gldime dynamics
takes place on the closure of a set of all invariant compatst geeserved by
the dynamics, and those are: (1) O-dimensional equilidig (2) 1-dimensional
periodic orbitsM,, (3) global symmetry inducel-dimensional relative equilibria
Muw, (4) (N+1)-dimensional relative periodic orbifslp, (5) terra incognita. We
have some inklings of the “terra incognita:” for examplemgjectic symmetry
induces existence of KAM-tori, and in general dynamicdiisgs we are encountering
more and more examples pértially hyperbolic invariant torj isolated tori that
are consequences of dynamics, not of a global symmetry, &nchveannot be
represented by a single relative periodic orbit, but rei@inumerical computation
of full (N+1)-dimensional compact invariant sets and their infiniteehsional
linearized fundamental matrices, marginal M+1) dimensions, and hyperbolic
in the rest.

The main result of this chapter can be stated as follows: yierhical system
(M, f) has a symmetr, the symmetry should be deployed to “quotient” the state
spaceM/G, i.e., identify allx e M related by the symmetry.

(1) In presence of a discrete symme@y associated with each full state space
cycle p is a maximal isotropy subgrou@, < G of order 1< |G| < |G|, whose
elements leave invariant. The isotropy subgrou, acts onp as time shift, tiling

it with |Gp| copies of its shortest invariant segment, the relativeogiariorbit p.
The elements of the cosete G/G,, generaten,, = |G|/|Gy| distinct copies of.
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This reduction to the fundamental domaW = M/G simplifies symbolic
dynamics and eliminates symmetry-induced degenerac@shé& short orbits the
labor saving is dramatic. For example, for the 3-disk gampiwiall there are
256 periodic points of length 8, but reduction to the fundatakdomain non-
degenerate prime cycles reduces the number of the distintescof length 8 to
30.

Amusingly, in this extension of “periodic orbit” theory frounstable 1-dimensional
closed orbits to unstableN(+ 1)-dimensional compact manifold${,, invariant
under continuous symmetries, there are either no or priopaity few periodic
orbits. Likelihood of finding a periodic orbit igera One expects some only
if in addition to a continuous symmetry one has a discretensgtry, or the
particular invariant compact manifolt;, is invariant under a discrete subgroup
of the continuous symmetry. Relative periodic orbits areaat never eventually
periodic, i.e., they almost never lie on periodic trajeig®riin the full state space,
unless forced to do so by a discrete symmetry, so looking doiogdic orbits in
systems with continuous symmetries is a fool’s errand.

Atypical as they are (no chaotic solution will be confined ede discrete
subspaces) they are important for periodic orbit theorthae the shortest orbits
dominate.

We feel your pain, but trust us: once you grasp the relatidwden the full
state spaceM and the desymmetrize@-quotientedM/G, you will find the life
as a fundamentalist so much simpler that you will never retaryour full state
space confused ways of yesteryear.

Commentary

Remark 9.1 Symmetries of the Lorenz equation: (Continued from remark.2) After
having studied exampl@.2 you will appreciate whyChaosBook.org starts out with

the symmetry-less Rossler flo&.(7), instead of the better known Lorenz flo®.{2)
(indeed, getting rid of symmetry was one of Rossler’s naitons). He threw the baby
out with the water; for Lorenz flow dimensionalities of s&lbhstable manifolds make
possible a robust heteroclinic connection absent fronsRo8ow, with unstable manifolds

of an equilibrium flowing into the stable manifold of anotleguilibria. How such connections
are forced upon us is best grasped by perusing the chaptetdtroclinic tangles” of

the inimitable Abraham and Shaw illustrated classi6][ Their beautiful hand-drawn
sketches elucidate the origin of heteroclinic connectiornibe Lorenz flow (and its high-
dimensional Navier-Stokes relatives) better than any edersimulation. Miranda and
Stone P& were first to quotient th®; symmetry and explicitly construct the desymmetrized,
“proto-Lorenz system,” by a nonlinear coordinate transfation into the Hilbert-Weyl
polynomial basis invariant under the action of the symmengup [33]. For in-depth
discussion of symmetry-reduced (“images”) and symmetitgreded (“covers”) topology,
symbolic dynamics, periodic orbits, invariant polynontialses etc., of Lorenz, Rossler
and many other low-dimensional systems there is no bettererece than the Gilmore
and Letellier monograpt?p, 31]. They interpret the proto-Lorenz and its “double cover”
Lorenz as “intensities” being the squares of “amplitudasd call quotiented flows such

as (Lorenz)D; “images.” Our “doubled-polar angle” visualization figut8.7is a proto-
Lorenz in disguise, with the flerence: we integrate the flow and construct Poincaré
sections and return maps in the Loreraf 7] coordinates, without any nonlinear coordinate
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transformations. The Poincaré return map figlie8is reminiscent in shape both of
the one given by Lorenz in his original paper, and the onegudoin a radial coordinate
by Gilmore and Letellier. Nevertheless, it is profoundlyfelient: our return maps are
from unstable manifole> itself [4], and thus intrinsic and coordinate independent. This
is necessary in high-dimensional flows to avoid problemé sigcdouble-valuedness of
return map projections on arbitrarydlcoordinates encountered already in the Rdssler
example. More importantly, as we know the embedding of tretabie manifold into the
full state space, a cycle point of our return map regardless of the length of the cycle -
the cycle point in the full state space, so no additional Neveearches are needed.

Remark 9.2 Examples of systems with discrete symmetries. One has &; symmetry
in the Lorenz system (rematk2), the Ising model, and in the-® anisotropic Kepler
potential f, 18, 19, a D3 = C3, symmetry in Heénon-Heiles type potentials [, 7, 3],
aDy = Cy4y Symmetry in quartic oscillators![ 5], in the purex?y? potential f, 7] and in
hydrogen in a magnetic fiel@], and aD, = C,, = V4 = C,xC, symmetry in the stadium
billiard [9]. A very nice application of desymmetrization is carried muref. [10].

Remark 9.3 Hénon-Heiles potential. An example of a system with; = C3, Symmetry
is provided by the motion of a particle in the Henon-Heilesemtial [5]

V(r,0) = %rz + %r3sin(39) .

Our 3-disk coding is indficient for this system because of the existence of elliplanigs
and because the three orbits that run along the symmetrycarisot be labeled in our
code. As these orbits run along the boundary of the fundaahdamain, they require the
special treatmeng] discussed in secf.5.1

Remark 9.4 Cycles and symmetries. We conclude this section with a few comments
about the role of symmetries in actual extraction of cycleshe N-disk billiard example,

a fundamental domain is a sliver of thNedisk configuration space delineated by a pair of
adjoining symmetry axes. The flow may further be reduced &iwn map on a Poincaré
surface of section. While in principle any Poincaré swefat section will do, a natural
choice in the present context are crossings of symmetry, aresexamplé.6.

In actual numerical integrations only the last crossing siymmetry line needs to
be determined. The cycle is run in global coordinates andgjtbep elements associated
with the crossings of symmetry lines are recorded; intégmas terminated when the orbit
closes in the fundamental domain. Periodic orbits with tranal symmetry subgroups
are particularly easy to find since their points lie on cnegsiof symmetry lines, see
example7.6.
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Exercises

9.1.

9.2.

9.3.

9.4.

3-disk fundamental domain symbolic dynamics.

The 10-cycle is drawn in figurel1.2 The unstab
eigenvalue\ g follows from (7.22).

domain, and interpretthe symb¢® 1) by relatingthem 9.5, A test of your pinball simulator: 10-cycle.  Tes

to topologically distinct types of collisions. Compare
with table 11.1 Then try to sketch the location of
periodic points in the Poincaré section of the billiard
flow. The point of this exercise is that while in the

configuration space longer cycles look like a hopelesg'G'

jumble, in the Poincaré section they are clearly and
logically ordered. The Poincaré section is always to be
preferred to projections of a flow onto the configuration
space coordinates, or any other subset of state space
coordinates which does not respect the topological
organization of the flow.

Reduction of 3-disk symbolic dynamics to binary.
(a) Verify that the 3-disk cycles

{12,13,23},{123,132, {1213+ 2 perms},
{121232313+ 5 perms}, {121323 2 perms},

correspond to the fundamental domain cy€les,
01,001,011, - - respectively.

(b) Check the reduction for short cycles in tafite 1
by drawing them both in the full 3-disk system and
in the fundamental domain, as in figude”.

(c) Optional: Can you see how the group elements
listed in tablel1.1relate irreducible segments to
the fundamental domain periodic orbits?

Fundamental domain fixed points. Use the formula
(8.11) for billiard fundamental matrix to compute the
periodsT, and the expanding eigenvalugs, of the
fundamental domai® (the 2-cycle of the complete 3-
disk space) and (the 3-cycle of the complete 3-disk
space) fixed points:

‘ TP AP
0| R-2 R-1+RVI-2/R (g 25)
1 2R 2R
I |R-V3 -Z+1-21-V3R

We have set the disk radiusao= 1.

Fundamental domain 2-cycle. Verify that for the10-
cycle the cycle length and the trace of the fundament:
matrix are given by

2R - 3R+ 1-2,

Lo =
trdio = Ao+ 1/A1w (9.26)
2
= 2Uypr2s s laollor 2
2 \3R/2-1
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your exerciseB.3 pinball simulator stability evaluati
by checking numerically the exact analyti®-cycl
stability formula ©.26).

The group Ca,. We will compute a few of tt
properties of the grougs,, the group of symmetri
of an equilateral triangle

2 3

(a) For this exercise, get yourself a good texth
a book like Hamermeshl] or Tinkham [L1]
and read up on classes and characters.
discrete groups are isomorphic to a permut
group or one of its subgroups, and eler
of the permutation group can be expresse
cycles. Express the elements of the gr@isp a
cycles. For example, one of the rotations is (
meaning that vertex 1 mapsto 2 and 2 to 3 ¢
to 1.

(b) Find the subgroups of the gro@a,.

(c) Findthe classes @3, and the number of eleme
in them.

(d) There are three irreducible representations f
group. Two are one dimensional and the othe
of multiplicity 2 is formed by [2<2] matrices
the form

cosd  sind
—sing cosd |-
Find the matrices for all six group elements.

(e) Use your representation to find the character
for the group.

-7 Lorenz system in polar coordinates: group theory.

Use 6.7), (6.8) to rewrite the Lorenz equation

X a(y-X)
X:v(x):[y = px—y—sz
z xy — bz

in polar coordinates r(6,2), where ) =
(r cos#, r sind).



EXERCISES

9.8.

1. Show that in the polar coordinates Lorentz flow
takes form

Po= %(—o-—l+((r+p—z)sin29

+(1- o) cos D)

0 = %(—(r+p—z+((r—l)sin29
+(o+p —2) cos D)

z = —bz+;sin29. (9.27)

2. Argue that the transformation to polar coordinates
is invertible almost everywhere. Where does the
inverse not exist? What is group-theoretically

special about the subspace on which the inverse 3.

not exist?

3. Showthatthisis the (Lorerny4); quotient map for
the Lorenz flow, i.e., that it identifies points related
by ther rotation in the &, y) plane.

4. Show that a periodic orbit of the Lorenz flow in
polar representation is either a periodic orbit or a
relative periodic orbit.17) of the Lorenz flow in
the (x,y, 2) representation.

5. Argue that if the dynamics is invariant under a
rational rotationRymv(X) = V(RymX) = V(X),
a discrete subgrou@n, of SQ2) in the & y)-
plane, the only non-zero Fourier components of
equations of motion argj, # 0, j = 1,2,---. The
Fourier representation is then the quotient map of
the dynamicsM/Cn,.

By going to polar coordinates we have quotiented out the
r-rotation k. y, 2) — (—x, Y, z2) symmetry of the Lorenz
equations, and constructed an explicit representation of
the desymmetrized Lorenz flow.

Lorenz system in polar coordinates: dynamics.
(Continuation of exercis@.7.)

1. Show that9.27) has two equilibria:

(ro.20) = (0.,0), 6 undefined
(r,61,21) = (v2b(p - 1), 7/4,p £98)
2. Verify numerically that the eigenvalues and 4

eigenvectors of the two equilibria are:

EQ, = (0,12 27) equilibrium: (and itsR-
rotation relatedEQ, partner) has one stable real
eigenvaluel™ = -13.854578, and the unstable

complex conjugate pain®® = 4@ + iw@ = °
0.093956+ 110.194505. The unstable eigenplane

is defined by eigenvectors

Ree® = (-0.4955 —0.201Q -0.8450) Im @ =

(0.5325 -0.84640)

with periodT = 27/w® = 0.6163306,

radial expansion multipliek, = exp(2iu®/w®) = 6.

1.059617,
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and the contracting multiplier A¢ =

exp(2iu®/w®) ~ 1.95686<10* along the stable
eigenvector oEQ,,

€9 = (0.8557, -0.3298 —0.3988).

EQ = (0,0,0) equilibrium: The stable
eigenvectoe® = (0,0, 1) of EQ,, has contraction
rate A® = —b = -2.666.... The other stable
eigenvector is

6 = (~0.244001-0.9697750),
contracting eigenvalug® = -228277.
unstable eigenvector

e® = (-0.6530490.7573160) has eigenvalue
Q) =118277.

Plot the Lorenz strange attractor both in the
original form figure2.4 and in the doubled-polar
coordinates (expand the anglec [0, 7] to 26 €

[0, 2x]) for the Lorenz parameter values = 10,

b = 8/3,p = 28. Topologically, does it resemble
the Lorenz butterfly, the Rossler attractor, or
neither? The Poincaré section of the Lorenz
flow fixed by thez-axis and the equilibrium in
the doubled polar angle representation, and the
corresponding Poincaré return map, &, + 1) are
plotted in figurel0.7.

with
The

=20

20

Figure: The Poincare return mas,, s,.1) for the
EQo, lower Poincare section of figut.7(b). (J.
Halcrow)

return map
(sn, Sn+1), Wheres is arc-length measured along
the unstable manifold oEQ,. Elucidate its
relation to the Poincaré return map of figur@.8

. Show that if a periodic orbit of the polar

representation Lorenz is also periodic orbit of the
Lorenz flow, their stability eigenvalues are the
same. How do the stability eigenvalues of relative
periodic orbits of the representations relate to each
other?

What does the volume contraction formula9)
look like now? Interpret.
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9.9. Proto-Lorenz system. Here we quotient
out the D1 symmetry by constructing an explicit
“intensity” representation of the desymmetrized Lorenz
flow, following Miranda and Stone’f].
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Figure: ~ The Lorenz attractor in proto-Lorenz
representation $.14. The points related by by
rotation about the z-axis are identified. (J. Halcrow)
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Chapter 10

Qualitative dynamics, for
pedestrians

The classification of the constituents of a chaos, nothing
less is here essayed.

—Herman Melville,Moby Dick chapter 32

order topartition the state space in a topologically invariant way, aathe

topologically distinct orbits. This will enable us — in chap13 — to count
the distinct orbits, and in the process touch upon all thertre@mes of this book,
going the whole distance from diagnosing chaotic dynanocsomputing zeta
functions.

I N THIS CHAPTER We begin to learn how to use qualitative properties of a flow in

We start by a simple physical example, symbolic dynamics ${désk game
of pinball, and then show that also for smooth flows the qat@li¢ dynamics
of stretching and folding flows enables us to partition ttetesspace and assign
symbolic dynamics itineraries to trajectories. Here westitate the method on
a 1- d approximation to Rossler flow. In chapt&B we turn this topological
dynamics into a multiplicative operation on the state spzengitions by means
of transition matricearkov graphs, the simplest examples of evolution oper-
ators. Deceptively simple, this subject can get veffidlilt very quickly, so in
this chapter we do the first pass, at a pedestrian level, guisip the discussion
of higher-dimensional, cyclist level issues to chafter

Even though by inclination you might only care about themesistdf, like

Rydberg atoms or mesoscopic devices, and resent wastiegotirthings formal,
this chapter and chaptéB are good for you. Read them.

10.1 Qualitative dynamics

(R. Mainieri and P. Cvitanovic)
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SN

Figure 10.1: A trajectory with itinerary 021012.

What can a flow do to the state space points? This is a veligudt question
to answer because we have assumed very little about thetievofunction ft;
continuity, and dierentiability a sfficient number of times. Trying to make sense
of this question is one of the basic concerns in the study oadycal systems.
One of the first answers was inspired by the motion of the péartieey appear to
repeat their motion through the firmament. Motivated by tfiservation, the first
attempts to describe dynamical systems were to think of tieperiodic.

However, periodicity is almost never quite exact. What @rels to observe
is recurrence A recurrence of a poinky of a dynamical system is a return of
that point to a neighborhood of where it started. How close ghint X must
return is up to us: we can choose a volume of any size and shagesall it the
neighborhoodMy, as long as it encloseg. For chaotic dynamical systems, the
evolution might bring the point back to the starting neigttomd infinitely often.
That is, the set

yeMo: y=1f(x). t>to (10.1)

will in general have an infinity of recurrent episodes.

To observe arecurrence we must look at neighborhoods ofpdihis suggests
another way of describing how points move in state spaceghwiirns out to be
the important first step on the way to a theory of dynamicalesys: qualitative,
topological dynamics, or, as it is usually callegimbolic dynamicsAs the subject
can get quite technical, a summary of the basic notions afiititns of symbolic
dynamics is relegated to sedt0.5 check that section whenever you run into
obscure symbolic dynamics jargon.

We start by cutting up the state space up into regibfys Mg, ..., Mz. This
can be done in many ways, not all equally clever. Any suctsitivi of the state
space into topologically distinct regions ipartition, and we associate with each
region (sometimes referred to astte a symbols from an N-letter alphabet
or state setA = {A,B,C,---,Z}. As the dynamics moves the point through the
state space, fferent regions will be visited. The visitation sequence thiwith
referred to as théinerary - can be represented by the letters of the alphahet
If, as in the example sketched in figut8.1, the state space is divided into three
regionsMo, M, and My, the “letters” are the intege(®, 1, 2}, and the itinerary
for the trajectory sketched in the figure is92+— 10 1 2> -
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23132321

Figure 10.2: Two pinballs that start out very close

to each other exhibit the same qualitative dynamics
2313 for the first three bounces, but due to the
exponentially growing separation of trajectories with
time, follow different itineraries thereafter: one

escapes after2313, the other one escapes after
_23132321. 2313

If there is no way to reach partitioM; from partition M;, and conversely,

partition M; from partitionM;, the state space consists of at least two disconnected

pieces, and we can analyze it piece by piece. An interestnttipn should be
dynamically connected, i.e., one should be able to go frognragion M; to

any other regionM; in a finite number of steps. A dynamical system with such

partition is said to benetrically indecomposahle

In general one also encounters transient regions - regiomkith the dynamics
does not return to once they are exited. Hence we have taglissh between (for

us uninteresting) wandering trajectories that never netuthe initial neighborhood,

and the non—wandering sét p) of therecurrenttrajectories.

The allowed transitions between the regions of a partitienesacoded in the
[NxN]-dimensionaltransition matrixwhose elements take values

 _ | 1 ifatransitionM; — M,; is possible
Ty = {0 otherwise (10.2)

The transition matrix encodes the topological dynamicsrageariant law of
motion, with the allowed transitions at any instant indejesm of the trajectory
history, requiring no memory.

Example 10.1 Complete N-ary dynamics: All transition matrix entries equal unity

(one can reach any region from any other region in one step):

11 ... 1
11 ... 1
Te=|. . ..
11 ... 1

Further examples of transition matrices, such as the 3-disk transition matrix (10.5) and

the 1-step memory sparse matrix (10.13), are peppered throughout the text.

However, knowing that a point fro!M(; reachesM; in one step is not quite
good enough. We would be happier if we knew taay point in M; reachesM;;
otherwise we have to subpartitiowl; into the points which land irM;, and those
which do not, and often we will find ourselves partitioniad infinitum

knead - 20apr2008.tex

(10.3)

CHAPTER 10. QUALITATIVE DYNAMICS, FOR PEDESTRIANS 155

| R\

Figure 10.3: The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk 1 23| \131

sin@
>
sin@
3

with X, = (arclength, parallel momentumy
(S0, po) , disk radius : center separation ratio 121\ 132

a:R=1:2.5. (a) Strips of initial points\1;,, M3
which reach disks 2, 3 in one bounce, respectively.
(b) Strips of initial pointsMiz;, Mis; Mis, and

M3 which reach disks 1, 2, 3 in two bounces, 1

-25 2t -
respectively. (Y. Lan) (@ * :

(b)

nwo

Such considerations motivate the notion dflarkov partition a partition for
which no memory of preceding steps is required to fix the ttians allowed in
the next step. Dynamicallfinite Markov partitionscan be generated fexpanding
d-dimensional iterated mappings: M — M, if M can be divided inta\
regions{ Mo, M, ..., Mn-1} such that in one step points from an initial region
M,; either fully cover a regionM;, or miss it altogether,

either Mjnf(Mj)=0 or Mjc f(M). (10.4)
Let us illustrate what this means by our favorite example,game of pinball.

Example 10.2 3-disk symbolic dynamics: Consider the motion of a free point
particle in a plane with 3 elastically reflecting convex disks. After a collision with a disk
a particle either continues to another disk or escapes, and any trajectory can be labeled
by the disk sequence. For example, if we label the three disks by 1, 2 and 3, the two
trajectories in figure 10.2 have itineraries 2313, 23132321 respectively. The 3-disk

: . L o . [exercise 1.1]
prime cycles given in figures 9.4 and 11.2 are further examples of such itineraries.

At each bounce a cone of initially nearby trajectories defocuses (see figure 1.8),
and in order to attain a desired longer and longer itinerary of bounces the initial point
Xo = (S0, Po) has to be specified with a larger and larger precision, and lie within
initial state space strips drawn in figure 10.3.  Similarly, it is intuitively clear that
as we go backward in time (in this case, simply reverse the velocity vector), we also
need increasingly precise specification of xo = (So, Po) in order to follow a given past
itinerary. Another way to look at the survivors after two bounces is to plot M, s,, the
intersection of M s, with the strips Ms,. obtained by time reversal (the velocity changes
signsing — —sing). Ms,s,, figure 10.4, is a “rectangle” of nearby trajectories which
have arrived from the disk s, and are heading for the disk .

The itinerary is finite for a scattering trajectory, comimgfiom infinity and
escaping after a finite number of collisions, infinite for apped trajectory, and
infinitely repeating for a periodic orbit. A finite length jeatory is not uniquely
specified by its finite itinerary, but an isolated unstableleys: its itinerary is
an infinitely repeating block of symbols. More generallyy fyperbolic flows
the intersection of the future and past itineraries, thiafiiite itineraryS™.S* =
-+ 825 19.S19S3 - - - specifies a unique trajectory. This is intuitively cleardor
3-disk game of pinball, and is stated more formally in therdfin (10.4) of a
Markov partition. The definition requires that the dynantiesexpanding forward
in time in order to ensure that the cone of trajectories witbiven itinerary
becomes sharper and sharper as the number of specified syimbalreased.
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Figure 10.4: The Poincaré section of the state space
for the binary labeled pinball. For definitiveness, this
set is generated by starting from disk 1, preceded lgl o
disk 2. Indicated are the fixed poin€s 1 and the
2-cycle periodic point1, 10, together with strips
which survive 1, 2, ...bounces. Iteration corresponds
to the decimal point shift; for example, all points in the
rectangle [0101] map into the rectangle [011 in one ‘{2 s
iteration. See also figurel.2(b). ’

wo

Example 10.3 Pruning rules for a 3-disk alphabet: As the disks are convex, there
can be no two consecutive reflections off the same disk, hence the covering symbolic
dynamics consists of all sequences which include no symbol repetitions 11, 22, 33.
This is a finite set of finite length pruning rules, hence, the dynamics is a subshift of
finite type (see (10.22) for definition), with the transition matrix (10.2) given by

011
T = (1 0 1]. (10.5)
110

For convex disks the separation between nearby trajectories increases at every reflection,
implying that the fundamental matrix has an expanding eigenvalue. By the Liouville
phase space volume conservation (7.32), the other transverse eigenvalue is contracting.
This example demonstrates that finite Markov partitions can be constructed for hyperbolic
dynamical systems which are expanding in some directions, contracting in others.
Further examples are the 1-dimensional expanding mapping sketched in figure 10.6,
and more examples are worked out in sect. 24.2.

Determining whether the symbolic dynamics is complete ¢abé case for
sufficiently separated disks), pruned (for example, for tougton overlapping
disks), or only a first coarse graining of the topology (asgfample, for smooth
potentials with islands of stability) requires case-bgecavestigation, a discussion
we postpone to secll0.3and chapterll For the time being we assume that
the disks are diiciently separated that there is no additional pruning beybe
prohibition of self-bounces.

If there are no restrictions on symbols, the symbolic dymans complete,
and all binary sequences are admissible itineraries. As this typsymbolic
dynamics pops up frequently, we list the shortest binanyertycles in tablé0.1

[exercise 10.2]

Inspecting the figurd 0.3 we see that the relative ordering of regions with
differing finite itineraries is a qualitative, topological pesty of the flow, so it
makes sense to define a simple “canonical” representatiitéigra which in a
simple manner exhibits spatial ordering common to an ealégs of topologically
similar nonlinear flows.

in depth:
” chapter 19, p. 320
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Table 10.1: Prime cycles for the binary symbolic dynamics up to length 9.

Np p Np p Np p Np P Np p
1 0| 7 0001001 8 00001111] 9 000001101 9 001001111
1 0000111 00010111 000010011 001010111
2 01 0001011 00011011 000010101 001011011
3 001 0001101 00011101 000011001 001011101
011 0010011 00100111 000100011 001100111
4 0001 0010101 00101011 000100101 001101011
0011 0001111 00101101 000101001 001101101
0111 0010111 00110101 000001111 001110101
5 00001 0011011 00011111 000010111 010101011
00011 0011101 00101111 000011011 000111111
00101 0101011 00110111 000011101 001011111
00111 0011111 00111011 000100111 001101111
01011 0101111 00111101 000101011 001110111
01111 0110111 01010111 000101101 001111011
6 000001 0111111 01011011 000110011 001111101
000011 8 00000001 00111111 000110101 010101111
000101 00000011 01011111 000111001 010110111
000111 00000101 01101111 001001011 010111011
001011 00001001 01111111 001001101 001111111
001101 00000111 9 000000001 001010011 010111111
001111 00001011 000000011 001010101 011011111
010111 00001101 000000101 000011111 011101111
011111 00010011 000001001 000101111 011111111
7 0000001 00010101 000010001 000110111
0000011 00011001 000000111 000111011
0000101 00100101 000001011 000111101

10.2 Stretch and fold

Symbolic dynamics foN-disk game of pinball is so straightforward that one may
altogether fail to see the connection between the topoléyymerbolic flows and
their symbolic dynamics. This is brought out more clearlytty 1-dimensional
visualization of “stretch & fold” flows to which we turn now.

Suppose concentrations of certain chemical reactantywour, or the variations
in the Chicago temperature, humidity, pressure and witiégsyour mood. All
such properties vary within some fixed range, and so do thésrof change.
Even if we are studying an open system such as the 3-disklpgdrae, we tend
to be interested in a finite region around the disks and igtieescapees. So a
typical dynamical system that we care aboubdsinded If the price for keeping
going is high - for example, we try to stir up some tar, and olesé come to
a dead stop the moment we cease our labors - the dynamicsttesdttle into
a simple limiting state. However, as the resistance to ohategreases - the tar
is heated up and we are more vigorous in our stirring - the mycs becomes
unstable.

If a flow is locally unstable but globally bounded, any opefi bé& initial
points will be stretched out and then folded back.

At this juncture we show how this works on the simplest examphimodal
mappings of the interval. The erudite reader should skirautin this chapter
and then take a more demanding path, via the Smale horseshokapter1l.
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Figure 10.6: (a) The complete tent map together
with intervals that follow the indicated itinerary
for n steps. (b) A unimodal repeller with the
remaining intervals after 1, 2 and 3 iterations.
Intervals marked s, - - - s, are unions of all points
that do not escape in iterations, and follow the
itinerary ST = s;5---s,. Note that the spatial
ordering does not respect the binary ordering; for
examplexgpo < Xo1 < X1 < Xg0. Also indicated:
the fixed pointsx, X;, the 2—cycleﬁ, and the 3-

159

on

011 110 101

Figure 10.5: (a) A recurrent flow that stretches f a f(C)

and folds. (b) The “stretch & fold” return map on

(b)

the Poincaré section. (a) a

Unimodal maps are easier, but physically less motivated Simale horseshoes
are the high road, more complicated, but the right tool toegalize what we

learned from the 3-disk dynamics, and begin analysis ofrgédgnamical systems.
Itis up to you - unimodal maps fiice to get quickly to the heart of this treatise.

10.2.1 Temporal ordering: itineraries

In this section we learn how teame(and, in chaptef.3, how tocoun) periodic
orbits for the simplest, and nevertheless very instruatase, for 1-dimensional
maps of an interval.

Suppose that the compression of the folded interval in figor&is so fierce
that we can neglect the thickness of the attractor. For elartige Rossler flow
(2.17) is volume contracting, and an interval transverse to ttiacbor is stretched,
folded and pressed back into a nearly 1-dimensional integyzcally compressed
transversally by a factor of 10* in one Poincaré section return. In such cases
it makes sense to approximate the return map of a “stretchld ftow by a
1-dimensional map.

The simplest mapping of this typeusimodal;interval is stretched and folded
only once, with at most two points mapping into a point in tefolded interval.
A unimodal mapf (x) is a 1-dimensional functio® — R defined on an interval
M € R with a monotonically increasing (or decreasing) branddrjtecal point (or
interval) xc for which f(x) attains the maximum (minimum) value, followed by
a monotonically decreasing (increasing) brantii-modal means that the map
is a 1-humped map with one critical point within intervel. A multi-modal map
has several critical points within intervat.

Example 10.4 Complete tent map, quadratic map: The simplest examples of
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cycle011. (a) (b) ——
unimodal maps are the complete tent map, figure 10.6 (a),
fy)=1-2y-1/2, (10.6)
and the quadratic map (sometimes also called the logistic map)
Xeo1 = 1—ax, (10.7)

with the one critical point at X; = 0. Further examples are the repelling unimodal map
of figure 10.6 (b) and the piecewise linear tent map (10.6).

Such dynamical systems are irreversible (the inverse of f is double-valued),
but, as we shall show in sect. 11.3, they may nevertheless serve as effective descriptions
of invertible 2-dimensional hyperbolic flows.

For the unimodal maps of figure 10.6 a Markov partition of the unit interval
M is given by the two intervals {Mo, M1}. We refer to (10.6) as the “complete” tent
map because its symbolic dynamics is complete binary: as both f(Mo) and f (M)
fully cover My and M, the corresponding transition matrix is a [2x2] matrix with all
entries equal to 1, as in (10.3). As binary symbolic dynamics pops up frequently in
applications, we list the shortest binary prime cycles in table 10.1.

Example 10.5 Lorenz flow: a 1 -d return map We now deploy the symmetry
of Lorenz flow to streamline and complete analysis of the Lorenz strange attractor
commenced in example 9.2.

The dihedral Dy = {e, R} symmetry identifies the two equilibria EQ, and EQ,,
and the traditional “two-eared” Lorenz flow figure 2.4 is replaced by the “single-eared”
flow of figure 9.2 (a). Furthermore, symmetry identifies two sides of any plane through
the z axis, replacing a full-space Poincaré section plane by a half-plane, and the two
directions of a full-space eigenvector of EQ, by a one-sided eigenvector, see figure 9.2 (a).

Example 4.7 explained the genesis of the Xeq1 equilibrium unstable manifold, its
orientation and thickness, its collision with the z-axis, and its heteroclinic connection to
the Xeqo = (0, O, 0) equilibrium. All that remains is to describe how the EQy neighborhood
connects back to the EQ, unstable manifold. Figure 9.2 now shows clearly how the
Lorenz dynamics is pieced together from the 2 equilibria and their unstable manifolds:

Having completed the descent to EQy, the infinitesimal neighborhood of the
heteroclinic EQ, — EQy trajectory is ejected along the unstable manifold of EQ, and is
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Figure 10.7:(a) A Poincaré section of the Lol
flow in the doubled-polar angle represent:
figure 10.7, given by the ¥, Z] plane that conta
thez-axis and the equilibriunEQ,. X’ axis poir
toward the viewer. (b) The Poincaré section (
Lorenz flow by the section plane (a); compare
figure 3.7. Crossingsnto the section are mar
red (solid) and crossingsut of the section i
marked blue (dotted). Outermost points of
in- and out-sections are given by tB€), unstak
manifoldW!(EQ,) intersections. (E. Siminos)
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WEQ)

EQo

WEQ)

EQ1

WIEQ)
20| -

Figure 10.8: The Poincaré return mag,1 = P(s,)
parameterized by Euclidean arclengthmeasured 15
along the EQ, unstable manifold, fromxeq to ,F
WH(EQ,) section point, uppermost right point of the 10
blue segment in figur20.7 (b). The critical point (the
“crease”) of the map is given by the section of thi 5
heteroclinic orbitW*(EQ) that descends all the way

to EQy, in infinite time and with infinite slope. (E. 0

= 0 5 10_ 15 20 25
Siminos) S,

re-injected into the unstable manifold of EQ,. Both sides of the narrow strip enclosing
the EQy unstable manifold lie above it, and they get folded onto each other with a knife-
edge crease (contracted exponentially for infinite time at the EQ, heteroclinic point),
with the heteroclinic out-trajectory defining the outer edge of the strange attractor. This
leads to the folding of the outer branch of the Lorenz strange attractor, illustrated in the
figure 10.7 (b), with the outermost edge following the unstable manifold of EQ,.

Now the stage is set for construction of Poincaré sections and associated
Poincaré return maps. There are two natural choices; the section at EQy, lower part
of figure 10.7 (b), and the section (blue) above EQ,. The first section, together with
the blowup of the EQy neighborhood, figure 4.7 (b), illustrates clearly the scarcity of
trajectories (vanishing natural measure) in the neighborhood of EQy. The flat section
above EQ, (which is, believe it or not, a smooth conjugacy by the flow of the knife-
sharp section at EQy) is more convenient for our purposes. lIts return map is given by
figure 10.8.

The rest is straight sailing: to accuracy 107* the return map is unimodal, its
“critical” point’s forward trajectory yields the kneading sequence, and the admissible
binary sequences, so any number of cycle points can be accurately determined from
this 1-dimensional return map, and the 3-d cycles then verified by integrating the Lorenz
differential equations (2.12). The map is everywhere expanding on the strange attractor,
so it is no wonder mathematicians can here make the ergodicity rigorous.

Finally, the relation between the full state space periodic orbits, and the fundamental
domain (9.16) reduced orbits: Full state space cycle pairs p, Rpmap into a single cycles
p in the fundamental domain, and any self-dual cycle p = Rp = PRp is a repeat of a
relative periodic orbit p.
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But there is trouble in paradise. By a fluke, the Lorenz attractor, the first flow
to popularize strange attractors, turns to be topologically one of the simplest strange
attractors. But it is not “uniformly hyperbolic.” The flow near EQ; is barely unstable,
while the flow near EQy is arbitrarily unstable. So binary enumeration of cycles mixes
cycles of vastly different stabilities, and is not very useful - presumably the practical
way to compute averages is by stability ordering.

(E. Siminos and J. Halcrow)

Thecritical valuedenotes either the maximum or the minimum valud ©{)
on the defining interval; we assume here that it is a maximiig) > f(x) for all
x € M. The critical valuef (x;) belongs neither to the left nor to the right partition
M, and is denoted by its own symb®k C. As we shall see, its preimages serve
as partition boundary points.

The trajectoryxs, Xo, X3, ... of the initial point xg is given by the iteration
Xne1 = F(Xn) . lterating f and checking whether the point lands to the left or to the
right of x. generates &emporallyordered topological itineraryl (.15 for a given
trajectory,

[1
S=10

We shall refer td5*(xp) = .515S3 - - - as thefuture itinerary. Our next task is to
answer the reverse problem: given an itinerary, what is tneespondingspatial
ordering of points that belong to a given trajectory?

if Xp > Xc

if Xp < X (10.8)

10.2.2 Spatial ordering, 1d maps

Tired of being harassed by your professors? Finish, get a
job, do combinatorics your own way, while you still know
everything.

—Professor Gatto Nero

Suppose you have succeeded in constructing a covering igndlgnamics, such

as for a well-separated 3-disk system. Now start moving thlesdoward each
other. At some critical separation a disk will start bloakfiamilies of trajectories
traversing the other two disks. The order in which trajeesdisappear is determined
by their relative ordering in space; the ones closest toriteniening disk will

be pruned first. Determining inadmissible itineraries reggputhat we relate the

spatial ordering of trajectories to their time orderedetaries. )
[exercise 11.8]

The easiest point of departure is to start out by working bist telation for
the symbolic dynamics of 1-dimensional mappings. As it appempossible
to present this material without getting bogged down in aafe@’s, 1's and
subscripted subscripts, we announce the main result befaterking upon its

rivation:
derivatio [section 10.3]

The admissibility criterion eliminatesll itineraries
that cannot occur for a given unimodal map.
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Figure 10.9: Alternating binary tree relates the o L
itinerary labeling of the unimodal map figur0.6

intervals to their spatial ordering. Dotted line stand!
for 0, full line for 1; the binary sub-tree whose root is g, Zm o

010 110 111 10

ijl; L

The tent map0.6) consists of two straight segments joineckat 1/2. The
symbols, defined in (L0.8) equals 0 if the function increases, and 1 if the function
decreases. The piecewise linearity of the map makes ithjests analytically
determine an initial point given its itinerary, a propertyat we now use to define
a topological coordinatization common to all unimodal maps

full line (symbol 1) reverses the orientation, due to th
orientation reversing fold in figurekd.5and10.6

Here we have to face the fundamental problem of pedagogybicatorics
cannot be taught. The best one can do is to state the answiehemhope that
you will figure it out by yourself. Once you figure it out, feeb€ to complain that
the way the rule is stated here is incomprehensible, andshevihow you did it
better.

The tent map poing(S*) with future itineraryS* is given by converting the
sequence o$,’s into a binary number by the following algorithm:

_ Wh if si41=0 B
Whet = {1—Wn if Sy1=1 " Wi =$1
¥S*Y) = Owwows...= an/zn. (10.9)

This follows by inspection from the binary tree of figuré.9

Example 10.6 Converting y to S*:  y whose itinerary is S* = 0110000 - - is given
by the binary number y = .010000 --. Conversely, the itinerary of y = .0lis s, = 0,
f)=1-5=1f(y=f(1)=1-s5=1etc.

We shall refer toy(S*) as the(future) topological coordinate w;'s are the
digits in the binary expansion of the starting pojnfor the complete tent map
(10.6). In the left half-interval the ma(x) acts by multiplication by 2, while in
the right half-interval the map acts as a flip as well as miidggion by 2, reversing
the ordering, and generating in the process the sequenggsdfom the binary
digits wp.

The mapping  Xp — S*(X0) — Y0 = ¥(S*) is atopological conjugacy
which maps the trajectory of an initial poirg under iteration of a given unimodal
map to that initial pointy for which the trajectory of the “canonical” unimodal
map (L0.6) has the same itinerary. The virtue of this conjugacy isithateserves
the ordering for any unimodal map in the sense thakif x, theny > .
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Figure 10.10: The “dike” map obtained by slicing
of a top portion of the tent map figur20.6 (a).
Any orbit that visits the primary pruning interval
(k,1] is inadmissible. The admissible orbits form
the Cantor set obtained by removing from the unit
interval the primary pruning interval and all its
iterates. Any admissible orbit has the same topological
coordinate and itinerary as the corresponding tent map
figure10.6(a) orbit.

10.3 Kneading theory

(K.T. Hansen and P. Cvitanovic)

The main motivation for being mindful of spatial orderingtefmporal itineraries
is that this spatial ordering provides us with criteria teaparate inadmissible
orbits from those realizable by the dynamics. For 1-dinmmei mappings the
kneading theoryrovides such criterion of admissibility.

If the parameter in the quadratic maf0(7) is a > 2, then the iterates of the
critical pointx. diverge forn — c. As long asa > 2, any sequencg* composed
of letterss = {0, 1} is admissible, and any value ofQy < 1 corresponds to an
admissible orbit in the non—wandering set of the map. Theesponding repeller
is a complete binary labeled Cantor set, thes oo limit of the nth level covering
intervals sketched in figurg0.6

Fora < 2 only a subset of the points in the intergale [0, 1] corresponds
to admissible orbits. The forbidden symbolic values aremfeined by observing
that the largesk, value in an orbitx; — X, — X3 — ... has to be smaller than or
equal to the image of the critical poirthe critical value f(x;). Let K = S*(xc)
be the itinerary of the critical point;, denoted thé&neading sequencs the map.
The corresponding topological coordinate is calledkheading value

Kk =y(K) = ¥(S* (X)) (10.10)

A map with the same kneading sequelcasf (x), such as the dike map figut®.1Q
is obtained by slicing @ all y (S*(xo)) > «,

fo(y) = 2y y €lo=[0,k/2)
fy) =4 ()=« yele=[x/2,1-«/2] . (10.11)
fiy) =2(1-y) yehi=[1-«/21]

The dike map is the complete tent map figife6 (a) with the top sliced f. It is
convenient for coding the symbolic dynamics, as thps@lues that survive the
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pruning are the same as for the complete tent map fifj0r@(a), and are easily
converted into admissible itineraries B0(9).

If ¥(S*) > y(K), the pointx whose itinerary isS* would exceed the critical
value,x > f(xc), and hence cannot be an admissible orbit. Let

¥sh) = sntipy(rf’“(s*)) (10.12)

be themaximal value the highest topological coordinate reached by the orbit
X1 — X2 = X3 — .... We shall call the intervak{ 1] theprimary pruned interval
The orbit S* is inadmissible ify of any shifted sequence & falls into this
interval.

Criterion of admissibility: Letx be the kneading value of the critical point,
andy(S*) be the maximal value of the orbit'SThen the orbit S is admissible
if and only ify(S*) < «.

While a unimodal map may depend on many arbitrarily chosearpeters, its
dynamics determines the unique kneading valué/e shall calk thetopological
parameterof the map. Unlike the parameters of the original dynamigatesm,
the topological parameter has no reason to be either smoatbntinuous. The
jumps ink as a function of the map parameter suctaas (10.7) correspond to
inadmissible values of the topological parameter. Eactpjimx corresponds to
a stability window associated with a stable cycle of a smawiimodal map. For
the quadratic maplQ.7) x increases monotonically with the paramedgbut for
a general unimodal map such monotonicity need not hold.

For further details of unimodal dynamics, the reader isreteto appendi©. 1.
As we shall see in sect.1.5 for higher dimensional maps and flows there is no
single parameter that orders dynamics monotonically; asiteemof fact, there
is an infinity of parameters that need adjustment for a giyenbslic dynamics.
This difficult subject is beyond our current ambition horizon.

10.4 Markov graphs

10.4.1 Finite memory

In the completeN-ary symbolic dynamics case (see exampl@ ) the choice of
the next symbol requires no memory of the previous ones. Mexvany further
refinement of the partition requires finite memory.

For example, for the binary labeled repeller with completeaty symbolic
dynamics, we might chose to partition the state space intorémions Moo, Mo1, Mio, Mi1},
a 1-step refinement of the initial partitidiMo, M;y}. Such partitions are drawn
in figure 10.4, as well as figurel.9. Topologically f acts as a left shifti(1.10),
and its action on the rectangl@1] is to move the decimal point to the right, to
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Figure 10.11: (a) The self-similarity of the
complete binary symbolic dynamics represented
by a binary tree (b) identification of nod@&s= A,

C = Aleads to the finite 1-node, 2-links Markov
graph. All admissible itineraries are generated as
walks on this finite Markov graph. (a)

Figure 10.12: (a) The 2-step memory Markov
graph, links version obtained by identifying nodes
A=D=E=F =Ginfigure10.11(a). Links of
this graph correspond to the matrix entries in the
transition matrix {0.13. (b) the 2-step memory
Markov graph, node version.
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[0.1], forget the past,.1], and land in either of the two rectanglgs10], [.11]}.
Filling in the matrix elements for the other three initizht&ts we obtain the 1-step
memory transition matrix acting on the 4-state vector

@

[exercise 10.7]

Toooo O  Toozo O $00

, Toroo O  Toro O $o1
=T¢ = -

¢ ¢ 0  Tiocon O Tiou || ¢10

0 Tuioa 0 Tiu/‘ém

(10.13)

By the same token, fdvi-step memory the only nonvanishing matrix elements are
of the formTg;s, . sy.1.50s...su» SM+1 € {0,1}. This is a sparse matrix, as the only
non vanishing entries in th@ = s ... sv column of Ty, are in the rows =
Si...sv0andd = s;...sul. If weincrease the number of steps remembered, the .

L . . . . . [exercise 13.1]
transition matrix grows big quickly, as tié-ary dynamics withM-step memory
requires anifiM+1x NM+1] matrix. Since the matrix is very sparse, it pays to find a
compact representation for. Such representation isfarded by Markov graphs,
which are not only compact, but also give us an intuitivepieof the topological
dynamics.

Construction of a good Markov graph is, like combinatorigsexplainable.
The only way to learn is by some diagrammatic gymnastics, saark our way

through a sequence of exercises in lieu of plethora fifibg definitions. [exercise 13.4]

To start with, what do finite graphs have to do with infiniteing trajectories? ©X€¢s¢ 1311

To understand the main idea, let us construct a graph thatenates all possible
itineraries for the case of complete binary symbolic dyreami

Mark a dot “” on a piece of paper. Draw two short lines out of the dot, end

each with a dot. The full line will signify that the first symhia an itinerary is
“1”, and the dotted line will signifying “0”. Repeat the predure for each of the
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10.5 Symbolic dynamics, basic notions

¢

In this section we collect the basic notions and definitiohsymbolic dynamics.
Y The reader might prefer to skim through this material on fgsding, return to it
later as the need arises.

Figure 10.13: (a) The self-similarity of the00_
pruned binary tree: trees originating from nodes
C and E are the same as the entire tree. (b)
Identification of nodesA = C = E leads to the
finite 2-node, 3-links Markov graph; as 0 is always
followed by 1, the walks on this graph generate

Shifts. We associate with every initial pointg € M the future itinerary, a
sequence of symboB*(xp) = $15S3- - - which indicates the order in which the
regions are visited. If the trajectory, x», X3, . .. of the initial pointxg is generated
by

010} O--.,
Lok

only the admissible itineraries. (a) (b)
Xo1 = f00), (10.14)
two new dots, and then for the four dots, and so on. The restiitel binary tree - o
of figure 10.11(a). Starting at the top node, the tree enumerates exhelyssill then the itinerary is given by the symbol sequence
distinct finite itineraries
SH=S if Xn € MsF . (10.15)
{0, 1},
{00,01 10, 11}, Similarly, thepast itinerary S(xp) = - - - S.25-15 describes the history of, the
order in which the regions were visited before arriving te gointxy,. To each
{000,001, 01Q -}, . ) . A : S
point Xo in the dynamical space we thus associate a bi-infinite giryer
The M = 4 nodes in figurel0.11(a) correspond to the 16 distinct binary strings .
of length 4, and so on. By habit we have drawn the tree as tamating binary S00) = (Sdkez = S'.S7 =+ S281%.919% - (10.16)
tree of figurel0.9 but that has no significance as far as enumeration of itiiesra
is concerned - an ordinary binary tree would serve just ak wel The itinerary will be finite for a scattering trajectory, erihg and then escaping
M after a finite time, infinite for a trapped trajectory, andritBly repeating for
The trouble with an infinite tree is that it does not fit on a pied paper. a periodic trajectory.
On the other hand, we are not doing much - at each node we aiadgwither
left or right. Hence all nodes are equivalent, and can betifitssh To say it in The set of all bi-infinite itineraries that can be formed frtme letters of the
other words, the tree is self-similar; the trees origirgtin nodesB andC are alphabet is called thefull shift
themselves copies of the entire tree. The result of idengfd = A,C = Ais a
single node, 2-link Markov graph of figufe.11(b): any itinerary generated by 7 _ .
the binary tree figur&0.11(a), no matter how long, corresponds to a walk on this A= Sz e Aforall k ez (10.17)
raph.
g The jargon is not thrilling, but this is how professional dymicists talk to each
This is the most compact encoding of the complete binary sjimtynamics. other. We will stick to plain English to the extent possible.
Any number of more complicated Markov graphs can do the jolwel§ and
might be sometimes preferable. For example, identifyiregttaes originating in We refer to this set of all conceivable itineraries as toeering symbolic
D, E, F andG with the entire tree leads to the 2-step memory Markov grdph o dynamics. The namshiftis descriptive of the way the dynamics acts on these
figure 10.12a. The corresponding transition matrix is given b9 (3. sequences. As is clear from the definitiotD(19, a forward iterationx —

X = f(x) shifts the entire itinerary to the left through the “declrpaint.” This
operation, denoted by the shift operatgr

in depth: fast track:
” chapter 11, p. 174 W chapter 13, p. 212

(828199193 7) = - S 25195193, (10.18)

demoting the current partition labe} from the futureS* to the “has been”
itinerary S™. The inverse shift-—! shifts the entire itinerary one step to the right.
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Afinite sequenc® = $S1 - - - Skan,-1 Of Symbols fromA is called ablockof
lengthn,. A state space trajectory jeriodicif it returns to its initial point after a
finite time; in the shift space the trajectory is periodidsfitinerary is an infinitely
repeating blockp™. We shall refer to the set of periodic points that belong to a
given periodic orbit as aycle

P=S515%"" S, = (Xsissp0 Xssipsis " X sisnp 1} - (10.19)

By its definition, a cycle is invariant under cyclic permigats of the symbols
in the repeating block. A bar over a finite block of symbolsates a periodic
itinerary with infinitely repeating basic block; we shall ttthhe bar whenever it is
clear from the context that the trajectory is periodic. Eagtie points labeled by
the firstn,, steps of its future itinerary. For example, the 2nd cyclepisi labeled
by

Xspsnps1 = XG5, 555,51 -

A primecycle p of lengthn, is a single traversal of the orbit; its label is a block of
np symbols that cannot be written as a repeat of a shorter biodkerature such
cycle is sometimes callgatimitive; we shall refer to it as “prime” throughout this
text).

Partitions. A partition is calledgenerating if every infinite symbol sequence
corresponds to a distinct point in the state space. Finitekapartition (L0.4)
is an example. Constructing a generating partition for emgisystem is a élicult
problem. In examples to follow we shall concentrate on caggsh allow finite
partitions, but in practice almost any generating partitibinterest is infinite.

A mapping f : M — M together with a partitionA inducestopological
dynamics(Z, o), where thesubshift

T = {(Sdkezt » (10.20)

is the set of altdmissiblanfinite itineraries, and- : £ — X is the shift operator
(10.18. The designation “subshift” comes form the fact tiatc A” is the
subset of the full shift10.17). One of our principal tasks in developing symbolic
dynamics of dynamical systems that occur in nature will bdeterminex, the
set of all bi-infinite itinerariesS that are actually realized by the given dynamical
system.

A partition too coarse, coarser than, for example, a Markaniton, would
assign the same symbol sequence to distinct dynamicattmaes. To avoid that,
we often find it convenient to work with partitions finer thatmictly necessary.
Ideally the dynamics in the refined partition assigns a umitpdinite itinerary
-+ 825 19.919S3 - - - to each distinct trajectory, but there might exist full shif
symbol sequenced (.17 which are not realized as trajectories; such sequences
are callednadmissible and we say that the symbolic dynamicprisned The
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word is suggested by “pruning” of branches correspondirigrtuidden sequences
for symbolic dynamics organized hierarchically into a tseicture, as explained
in sect.10.4

Pruning.  If the dynamics is pruned, the alphabet must be supplemeyted
agrammar a set of pruning rules. After the inadmissible sequences baen
pruned, it is often convenient to parse the symbolic stringswords of variable
length - this is callectoding Suppose that the grammar can be stated as a finite
number of pruning rules, each forbidding a block of finitegém

G ={by, by, by}, (10.21)

where apruning block bis a sequence of symbols = 15, 5y, s € A, of
finite lengthny.  In this case we can always construct a finite Markov partitio
(10.4) by replacing finite length words of the original partition letters of a new
alphabet. In particular, if the longest forbidden block fidemgth M + 1, we say
that the symbolic dynamics is a shift of finite type with-step memory. In that
case we carecodethe symbolic dynamics in terms of a new alphabet, with each
new letter given by an admissible block of at most lengithin the new alphabet
the grammar rules are implemented by setfing = 0 in (10.3 for forbidden
transitions.

A topological dynamical systenk(o) for which all admissible itineraries are
generated by a finite transition matrix

E={(Skez : Tgse =1 forallk} (10.22)

is called a subshift dinite type Such systems are particularly easy to handle; the
topology can be converted into symbolic dynamics by reprtasg the transition
matrix by a finite directedlarkov graph a convenient visualization of topological
dynamics.

Markov graphs. A Markov graph describes compactly the ways in which the
state space regions map into each other, accounts for firgtaany efects in
dynamics, and generates the totality of admissible trajixst as the set of all
possible walks along its links.

A Markov graph consists of a set nbdegor vertices or state3, one for each
state in the alphabe#i = {A,B,C,---,Z}, connected by a set of directdéidks
(edges arcs). Nodei is connected by a directed link to nodlevhenever the
transition matrix elementl(.2) takes valueTj; = 1. There might be a set of links
connecting two nodes, or links that originate and termirmate¢he same node.
Two graphs are isomorphic if one can be obtained from therdipeelabeling
links and nodes; for us they are one and the same graph. Asenetarested in
recurrent dynamics, we restrict our attentiorirteducible or strongly connected
graphs, i.e., graphs for which there is a path from any nodayoother node.

Example 10.7 “Golden mean” pruning Consider a simple subshift on two-state
partition A = {0, 1}, with the simplest grammar G possible: a single pruning block b =
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) » ) ) b Remark 10.2 Counting prime cycles. Duval has an ficient algorithm for generating
Figure 10.14:(a) The transition matrix for binary —_— . . L
alphabetAA = (0,1}, b = 11 pruned. (b) The 11 a ‘0 o Lyndon words (non-periodic necklaces, i.e., prime cydfeeiaries).
corresponding Markov graph. = (1 0) (b) c

_11_ (consecutive repeat of symbol 1 is inadmissible): the state Mo maps both onto My
and M, but the state My maps only onto My. The transition matrix for this grammar
is given in figure 10.14 (a). The corresponding finite 2-node, 3-links Markov graph, with
nodes coding the symbols, is given in figure 10.14 (b). All admissible itineraries are
generated as walks on this finite Markov graph.

in depth:
8 chapter 11, p. 174

Remark 10.3 Inflating Markov graphs.

In the above examples the symbolic dynamics

has been encoded by labeling links in the Markov graph. Adtévely one can encode the
dynamics by labeling the nodes, as in figafe12 where the 4 nodes refer to 4 Markov
partition regiong Moo, Mo1, Mo, M11}, and the 8 links to the 8 non-zero entries in the
2-step memory transition matri.13.

W fast track:
chapter 13, p. 212

Résumé
In chaptersl6 and17 we will establish that spectra of evolution operators can be Exercises
extracted from periodic orbit sums:
10.1. Binary symbolic dynamics.  Verify that the shortest (a) (easy) Plot 10.23, and the first 4-8 (whate

Z (spectral eigenvaluesy Z (periodic orbits).

In order to implement this theory we need to know what pedaulbits can exist,
and the symbolic dynamics developed above and in chdgdtés an invaluable
tool toward this end.

Commentary

Remark 10.1 Symbolic dynamics, history and good taste. For a brief history of
symbolic dynamics, from J. Hadamard in 1898 onward, seesNotehapter 1 of Kitchens
monograph]], a very clear and enjoyable mathematical introductiorofmds discussed
here. Diacu and Holmeg] provide an excellent survey of symbolic dynamics applied
to of celestial mechanics. Finite Markov graphs or finiteoauata are discussed in
refs. [3, 4, 5, 6]. They belong to the category of regular languages. A goauis@n
introduction to symbolic dynamics is given in ref.].

10.2.

10.3.

prime binary cycles of the unimodal repeller of
figure 10.6 are 0, 1, 01, 001, 011, ---. Compare
with table 10.1 Try to sketch them in the graph of
the unimodal functionf(x); compare ordering of the
periodic points with figurel0.9 The point is that
while overlayed on each other the longer cycles look
like a hopeless jumble, the cycle points are clearly and
logically ordered by the alternating binary tree.

Generating prime cycles. Write a program that
generates all binary prime cycles up to given finite
length.

A contracting baker's map.  Consider a contracting
(or “dissipative”) baker’s defined in exercigdes.

The symbolic dynamics encoding of trajectories is
realized via symbols Oy(< 1/2) and 1 ¢ > 1/2).
Consider the observab#x, y) = x. Verify that for any
periodic orbitp (e1 . . . &,), & € {0, 1}

looks better) iterates of the critical poixt = 1/2

(b) (hard) Draw corresponding intervals of

partition of the unit interval as levels of a Cal
set, as in the symbolic dynamics partitior
figure 10.6 (b). Note, however, that some of
intervals of figurel0.6 (b) do not appear in tt
case - they arpruned

(c) (medium) Produce ChaosBook.org qu

figure10.6(a).

(d) (easy) Check numerically th#& = S*(x), th

itinerary or the “kneading sequence” of the cri
pointis

K =101101111011011110101111011

The tent map poing(S*) with future itineraryS*
is given by converting the sequencesk into «
binary number by the algorithni(.9,

Np Wne1 = { Wn If Sw1=0
The binary labeling of the once-folding map periodic poimés introduced by Myrberd [ A, = % Z Sia- 1-wn ifsa=1
for 1-dimensional mgps, apd its utility _to_ 2-dimensionalpndas been emphgsaed in =1 WSH) = Owawaws... = an/zn.
refs. [8, 17]. For 1-dimensional maps it is now customary to use fhke notation of e

Metropolis, Stein and Stein.{, 15], indicating that the poink, lies either to the left or
to the right of the critical point in figur&0.6 The symbolic dynamics of such mappings
has been extensively studied by means of the Smale horsesieedor example refLf].
Using letters rather than numerals in symbol dynamics &lptsaprobably reflects good
taste. We prefer numerals for their computational convergée as they speed up the
implementation of conversions into the topological copatés §, y) introduced in sectl1.4.1

The alternating binary ordering of figuli€.9is related to the Gray codes of computer
science [7].
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10.4.

10.5.

Unimodal map symbolic dynamics.  Show that the
tent map pointy(S*) with future itineraryS* is given
by converting the sequence §fs into a binary number
by the algorithm {0.9. This follows by inspection from
the binary tree of figur&0.9

Unimodal map kneading value.  Consider the Id
quadratic map

f()=Ax1-%, A=38. (10.23)

exerKnead - 4jun2003.tex

(e) (medium) List the the corresponding knea

(f

=

value (L0.10 sequencex = y(K) to the sam
number of digits aK.

(hard) Plot the missing dike map, figut©.1qQ ir
ChaosBook.org quality, with the same knea
sequenc& as f(x). The dike map is obtained
slicing of all y (S*(xo)) > «, from the comple
tent map figurel0.6(a), see {0.17).



REFERENCES 172

(b) Show that no orbit of this map can visit the region
x > (1+ V5)/4 more than once. Verify that once
an orbit exceeds > (V5-1)/4, it does not reenter
the regionx < (V5 - 1)/4.

(c) Ifan orbitis in the interval §/5 - 1)/4 < x < 1/2,
where will it be on the next iteration?

How this kneading sequence is converted into a series of
pruning rules is a dark art, relegated to sé&éta

10.6. “Golden mean” pruned map. Consider a
symmetrical tent map on the unit interval such that its
highest point belongs to a 3-cycle:

I

(d) If the symbolic dynamics is such that fer< 1/2
08 A we use the symbol 0 and for> 1/2 we use the
symbol 1, show that no periodic orbit will have the
06 substring.00_ in it.
(e) On the second thought, is there a periodic orbit
0.4 that violates the abov@®0._ pruning rule?
0.2 For continuation, see exercid8.6 and exercisel7.2
See also exercisk3.7and exercisé 3.8
0 02 04 06 08 1 10.7. Binary 3-step transition matrix. Construct [&8]

binary 3-step transition matrix analogous to the 2-step
transition matrix {0.13. Convince yourself that the
number of terms of contributing to T" is independent
of the memory length, and that thisT2™ trace is well
defined in the infinite memory limin — co.

(a) Find the absolute valug for the slope (the two
different slopes:A just differ by a sign) where the
maximum at 12 is part of a period three orbit, as
in the figure.
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Chapter 11

Qualitative dynamics, for cyclists

1.1 Introduction to conjugacy problems for
diffeomorphisms. This is a survey article on the area
of global analysis defined by ftierentiable dynamical
systems or equivalently the action ff@rentiable) of a
Lie groupG on a manifoldM. Here Dif(M) is the group
of all diffeomorphisms oM and a difeomorphism is a
differentiable map with a ferentiable inverse.. (.) Our
problem is to study the global structure, i.e., all of the
orbits of M.

—Stephen Smaldifferentiable Dynamical Systems

in any way you please. In chaptémwe established that stability eigenvalues
of periodic orbits are invariants of a given flow. The invada of stabilities
of a periodic orbit is a local property of the flow.

I N sects. 14.1anp 10.1we introduced the concept of partitioning the state space,

For the Rossler flow of exampke4, we have learned that the attractor is very
thin, but otherwise the return maps that we found were diting — figure3.6
did not appear to be a one-to-one map. This apparent losvettitsility is an
artifact of projection of higher-dimensional return mapgolower-dimensional
subspaces. As the choice of lower-dimensional subspackiisay, the resulting
snapshots of return maps look rather arbitrary, too. Othgeptions might look
even less suggestive.

Such observations beg a question: Does there exist a “hatatansically
optimal coordinate system in which we should plot of a retuap?

As we shall now argue (see also s€l.1), the answer is yes: The intrinsic
coordinates are given by the stagbiestable manifolds, and a return map should be
plotted as a map from the unstable manifold back onto the idietezneighborhood
of the unstable manifold.

In this chapter we show that every equilibrium point and g\a&riodic orbit

carries with it stable and unstable manifolds which pro@depologically invariant
global foliation of the state space. This qualitative dynamics toétehing and
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symmetric 3-disk pinball; a bounce in which the
trajectory returns to the preceding disk is labeled 0, and
abounce which results in continuation to the third disk
is labeled 1.

Figure 11.1: Binary labeling of trajectories of the .
0

mixing enables us to partition the state space and assigbdimdynamics itineraries
to trajectories.

Given an itinerary, the topology of stretching and foldinge the relative
spatial ordering of trajectories, and separates the aibigsand inadmissible
itineraries. The level is distinctly cyclist, in distinoti to the pedestrian tempo
of the preceding chapter. Skip this chapter unless yowreakd to get into nitty-
gritty details of symbolic dynamics.

fast track:
W chapter 13, p. 212
11.1 Recoding, symmetries, tilings

In chapterd we made a claim that if there is a symmetry of dynamics, we nmest
it. So let’s take the old pinball game and “quotient the sta@ce by the symmetry
or “desymmetrize.”

Though a useful tool, Markov partitioning is not without @tzacks. One glaring
shortcoming is that Markov partitions are not unique: anyany diferent

partitions might do the job. The 3-disk systerffevs a simple illustration of
different Markov partitioning strategies for the same dynahsigstem.

TheA = {1, 2, 3} symbolic dynamics for 3-disk system is neither unique, nor
necessarily the smartest one - before proceeding it paygptoiethe symmetries
of the pinball in order to obtain a mor@ieient description. In chapté9we shall
be handsomely rewarded for our labors.

As the three disks are equidistantly spaced, our game ofpihas a sixfold
symmetry. For instance, the cyclég, 23, and13 are related to each other by
rotation by+2r/3 or, equivalently, by a relabeling of the disks. The diskelab
are arbitrary; what is important is how a trajectory evolesst hits subsequent
disks, not what label the starting disk had. We exploit thimsetry byrecoding
in this case replacing the absolute disk labels by relativeb®ls, indicating the
type of the collision. For the 3-disk game of pinball there awo topologically

distinct kinds of collisions, figuré1.1: )
[exercise 10.1]

[exercise 9.1]

(11.1)

._J 0 : pinball returns to the disk it came from
S=11 pinball continues to the third disk

This binary symbolic dynamics has two immediate advantages over tharer
one; the prohibition of self-bounces is automatic, and tbdirg utilizes the
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Figure 11.2: The 3-disk game of pinball with the
disk radius : center separation ratio aR1:2.5.

(a) 2-cyclesl2, 13,23, and 3-cycled23 and132

(notdrawn). (b) The fundamental domain, i.e., the
small ¥6th wedge indicated in (a), consisting of a
section of a disk, two segments of symmetry axes
acting as straight mirror walls, and an escape gap.
The above five cycles restricted to the fundamental
domain are the two fixed poin6s 1. See figur®.4

for cycle 10 and further examples. (@)

(b)

symmetry of the 3-disk pinball game in elegant manner. Ilils&s are sfiiciently
far apart there are no further restrictions on symbols, yimebslic dynamics is
complete, an@ll binary sequences (see talile.1) are admissible itineraries.

[exercise 10.2]

Example 11.1 Recoding ternary symbolic dynamics in binary: Given a ternary
sequence and labels of 2 preceding disks, rule (11.1) fixes the subsequent binary
symbols. Here we list an arbitrary ternary itinerary, and the corresponding binary
sequence:

ternary © 3121312321231323
binary : -10101101011010 (11.2)

The first 2 disks initialize the trajectory and its direction; 3 — 1 +— 2 + ---. Due to
the 3-disk symmetry the six distinct 3-disk sequences initialized by 12, 13, 21, 23, 31,
32 respectively have the same weights, the same size partitions, and are coded by a
single binary sequence. For periodic orbits, the equivalent ternary cycles reduce to
binary cycles of 1/3, 1/2 or the same length. How this works is best understood by
inspection of table 11.1, figure 11.2 and figure 9.5.

The 3-disk game of pinball is tiled by six copies of fuamdamental domaijn
a one-sixth slice of the full 3-disk system, with the symmedxes acting as
reflecting mirrors, see figurel.2(b). Every global 3-disk trajectory has a corresponding
fundamental domain mirror trajectory obtained by replgaévery crossing of a
symmetry axis by a reflection. Depending on the symmetry efftll state
space trajectory, a repeating binary symbols block coomdp either to the full
periodic orbit or to a relative periodic orbit (examples ah@wn in figurell.2
and table11.1). An irreducible segment corresponds to a periodic orbithia
fundamental domain. TablEl.1lists some of the shortest binary periodic orbits,
together with the corresponding full 3-disk symbol seqesrand orbit symmetries.
For a number of deep reasons that will be elucidated in chdgtdife is much
simpler in the fundamental domain than in the full systemwkenever possible
our computations will be carried out in the fundamental dioma

Example 11.2 C, recoded: As the simplest example of implementing the ?g(%\r/gse 02]
scheme consider the C, symmetry of example 9.4. For our purposes, all that we Reed>e ¥
to know here is that each orbit or configuration is uniquely labeled by an infinite string

{s}, s = +,— and that the dynamics is invariant under the + < — interchange, i.e.,

it is C, symmetric. The C, symmetry cycles separate into two classes, the self-dual
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Table 11.1: Cg, correspondence between the binary labeled fundamentaidgmme
cyclespand the full 3-disk ternary labeled cyclpstogether with theCs, transformation
that maps the end point of thecycle into the irreducible segment of tigecycle, see
sect.9.3 Breaks in the above ternary sequences mark repeats of¢dedible segment.
The multiplicity of p cycle ismy = 6nz/n,. The shortest pair of the fundamental domain
cycles related by time reversal (but no spatial symmetrg)tae 6-cycle01011 and
001101.

p p 9% p p 9

0 12 o1 000001 121212131313 023

1 123 C 000011  121212313131232323 C?

01 1213 o3 000101 121213 e

001 121232313 C 000111 121213212123 012

011 121323 o3 001011 121232131323 023

0001 12121313 o3 001101 121231323213 013

0011 121231312323 C? 001111  121231232312313123 C

0111 12132123 o1, 010111  121312313231232123 C?

00001 121212323231313C 011111 121321323123 013

00011 1212132323 o013 0000001 121212123232323131318

00101 1212321213 o2 0000011 12121213232323 013

00111 12123 e 0000101 12121232121213 012

01011 121312321231323C 0000111 1212123 e

01111 1213213123 023 e e e
configurations +—, + + ——, + ++— ——, + — — + — + +—, - - -, with multiplicity m, = 1, and
the asymmetric pairs +, —, + + —, — — +, - -+, with multiplicity m, = 2. For example, as

there is no absolute distinction between the “up” and the “down” spins, or the “left” or
the “right” lobe, A = A_, A++- = A.__, and so on. [exercise 19.4]
The symmetry reduced labeling pi € {0,1} is related to the standard s € {+, -}

Ising spin labeling by

If s = s.1 then pi=1

If s # s-1 then pi=0 (11.3)
Forexample,i:~--++++~--map_sinto---lll---:i(andsodoes:),j:
coo—+—+4---mapsinto---000--- =0, —++— =+ ——++ — — + +--- maps into

..-0101--- = 01, and so forth. A list of such reductions is given in table 11.2.

Example 11.3 Cg, recoded - 3-disk game of pinball:

The Cgy recoding can be worked out by a glance at figure 11.2 (a) (continuation
of example 9.5). For the symmetric 3-disk game of pinball the fundamental domain is
bounded by a disk segment and the two adjacent sections of the symmetry axes that
act as mirrors (see figure 11.2 (b)). The three symmetry axes divide the space into
six copies of the fundamental domain. Any trajectory on the full space can be pieced
together from bounces in the fundamental domain, with symmetry axes replaced by flat
mirror reflections. The binary {0, 1} reduction of the ternary three disk {1, 2, 3} labels has
a simple geometric interpretation: a collision of type O reflects the projectile to the disk
it comes from (back—scatter), whereas after a collision of type 1 projectile continues to
the third disk. For example, 23 = - -- 232323 -- maps into - - - 000- - - = 0 (and so do 12
and13), 123=---12312-- maps into - --111- - - = 1 (and so does 132), and so forth. A
list of such reductions for short cycles is given in table 11.1, figure 11.2 and figure 9.5.
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Table 11.2: Correspondence between g symmetry reduced cyclgsahd the standard
Ising model periodic configuratiorns together with their multiplicitiesn,. Also listed
are the two shortest cycles (length 6) related by time redeost distinct unde€,.

p p M
1 + 2
0 —+ 1
01 —— ++ 1
001 -+ 4+ 2
011 ——— 4+ ++ 1
0001 —t == =+ 1
0011 —+++ 2
0111 ———— ++++ 1
00001 —+-+- 2
00011 —+-—— +—+++ 1
00101 —++-— +——++ 1
00111 —+-—-— +—+++ 1
01011 —-—-+++ 2
01111 - ---- +++++ 1
001011 —-++-—-—-+-—+++ 1
001101 —-+++--+-—-—-++ 1

11.2 Going global: Stablgunstable manifolds

In the linear approximation, the fundamental matkitt describes the shearing
of an infinitesimal neighborhood in after a finite tine Its eigenvalues and
eigendirections describe deformation of an initial insitnal sphere of neighboring
trajectories into an ellipsoid tintdater. Nearby trajectories separate exponentially
along the unstable directions, approach each other alenstalble directions, and
maintain their distance along the marginal directions.

The fixed or periodic poink* fundamental matridp(x*) eigenvectors¥.12
form a rectilinear coordinate frame in which the flow intof of) or encircling the
fixed point is linear in the sense of se¢t2. These eigendirections are numerically
continued into global curvilinear invariant manifolds a#idws.

The global continuations of the local stable, unstablerglgections are called
the stable respectivelyunstable manifolds They consist of all points which
march into the fixed point forward, respectively backwartirime

we [xe M: f'(9 - X" - D ast - |
W = {xe M) -x" > 0ast — oo] ) (11.4)

The stablgunstable manifolds of a flow are rather hard to visualize,ssloiag as
we are not worried about a global property such as the nunflienes they wind
around a periodic trajectory before completing a par-aause might just as well
look at their Poincaré section return maps. Stable, ulestalnifolds for maps
are defined by

wW* {xeP: f(x) - x* — 0ash — oo}
WY = {(xeP:f(x)-x —0asn— o} . (11.5)
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Eigenvectors (real or complex pairs) of fundamental matp(x*) play a special
role - on them the action of the dynamics is the linear mudtitlon by A; (for
a real eigenvector) alongd invariant curve\N‘i"S or spiral ifout action in a 2B
surface (for a complex pair). Far— o afinite segment oW(Se), respectivelwv(‘é)
converges to the linearized map eigenvee®y, respectivelye®. In this sense
each eigenvector defines a (curvilinear) axis of the stabkpectively unstable
manifold.

Conversely, we can use an arbitrarily small segment of a fimatt eigenvector
to construct a finite segment of the associated manifold.cig&econstruction
depends on the type of the eigenvalue(s).

Expanding real and positive eigendirection Consideiith expanding eigenvalue,
eigenvector pairA;, &) computed fromJ evaluated at a cycle point,

Je(®) =Ae(), xep, A>1. (11.6)

Take an infinitesimal eigenvectere(x), e < 1, and its imagelp(X)e g(x) =
Aijee(x) . Sprinkle the intervalAj—1|e with a large number of pointsy,, equidistantly
spaced on logarithmic scale|lk; —1|+In . The successive images of these points
f(xj), f2(x,-), -+, fM(x;) trace out the curvilinear unstable manifold in direction
6. Repeat for-€ g(X).

Contracting real, positive eigendirection Reverse the action of the map
backwards in time. This turns a contracting direction intoexpanding one,
tracing out the curvilinear stable manifold in continuatiof € e;.

Expanding/contracting real negative eigendirection As above, but every
even iteratef2(x;), f4(x;), f8(x;) continues in the directios, every odd one in
the direction-g.

Complex eigenvalue pair Construct an orthonormal pair of eigenvectors
spanning the plang e;, e €j,1}. Iteration of the annulus between an infinitesimal
circle and its image byl spans the spirallingircle unstable manifold of the
complex eigenvalue paji\j, Aj;1 = Af}.

11.3 Horseshoes

If a flow is locally unstable but globally bounded, any opefi béinitial points
will be stretched out and then folded back. An example is ar8dsional invertible
flow sketched in figuré0.5which returns an area of a Poincaré section of the flow
stretched and folded into a “horseshoe,” such that thealrdtiea is intersected at
most twice (see exercidd .4 the first Figure). Run backwards, the flow generates
the backward horseshoe which intersects the forward Huwsest most 4 times,
and so forth.  Such flows exist, and are easily constructeéxample is the
Rossler flow, discussed in exam(del.
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Now we shall construct an example of a locally unstable bbajly bounded
mapping which returns an initial area stretched and foldesla “horseshoe,” such
that the initial area is intersected at most twice. We stedéirrto such mappings
with at most 2 transverse self-intersections at tiik iteration as thence-folding
maps.

As an example isféorded by the 2-dimension&lénon map

Xna1 1-ax + by,
Yol = Xa- 11.7)

The Hénon map models qualitatively the Poincaré secéturm map of figurd 0.5
For b = 0 the Hénon map reduces to the parabdl@.?), and, as shown in
sects.3.3and27.1, for b # 0 it is kind of a fattened parabola; by construction, it
takes a rectangular initial area and returns it bent as &blocg.

For definitiveness, fix the parameter valuesate: 6, b = —1. The map is
quadratic, so it has 2 fixed points = f(xo), X1 = f(x1) indicated in figurel1.3(a).
For the parameter values at hand, they are both unstable. oulftart with a
small ball of initial points centered around, and iterate the map, the ball will be
stretched and squashed along the ¢ Similarly, a small ball of initial points
centered around the other fixed poigtiterated backward in time,

X-1 = Yn

Vo1 = —%(1 —a - X)), (11.8)

traces out the Iintwg. Wg is the stable manifold of, fixed point, andwyj' is the
unstable manifold ok; fixed point, defined in sec.1.2  Their intersections
enclose the crosshatched regibf . Any point outsideW;' border of M escapes
to infinity forward in time, while any point outsidé/; border escapes to infinity
backwards in time. In this way the unstable - stable marsfdigfine topologically,
invariant and optimaM_ initial region; all orbits that stay confined for all times
are confined tovV1 .

Iterated one step forward, the regidn is stretched and folded intosanale
horseshoe drawn in figurel.3(b). The horseshoe fattened parabola shape is the
consequence of the quadratic fowhin (11.7). Parametea controls the amount
of stretching, while the parametercontrols the amount of compression of the
folded horseshoe. The cage- 6,b = 0.9 considered here corresponds to strong
stretching and weak compression. Label the two forwardsetgionsf (M )NM.
by Ms,, with s € {0, 1}, figure 11.3(b). The horseshoe consists of the two strips
Mo, My, and the bent segment that lies entirely outsideWeline. As all
points in this segment escape to infinity under forward ftena this region can
safely be cut out and thrown away.

Iterated one step backwards, the regiehis again stretched and folded into
a horseshoe, figurél.3(c). As stability and instability are interchanged under
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Figure 11.3: The Hénon map fom = 6, b =
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Their intersection bounds the regiol which
contains the non-wandering s€t. (b) The
intersection of the forward imagé*(M) with
the backward backward-*(M) is a four-region
cover of Q. (c) The intersection of the twice-
folded forward horsesho&?(M) with backward 0.0
horseshoef=}(M). (d) The intersection of
f2(M) with f2(M) is a 16-region cover of
Q. Iteration yields the complete Smale horseshoe
non-wandering se®, i.e., the union of all non-
wandering points off, with every forward fold

-1.0l -1
intersecting every backward fold. (Y. Matsuoka)(C) -1.0 0.0 0 (d) -0

time reversal, this horseshoe is transverse to the forwaed Again the points in
the horseshoe bend wondef o infinity asn — —oo, and we are left with the
two (backward) strips\io, M1 . lterating two steps forward we obtain the four
strips Mi1, Mo1, Moo, Mio, and iterating backwards we obtain the four strips
Mo, M o1, M 11, M 10 transverse to the forward ones just as for 3-disk pinball
game figurel0.3 Iterating three steps forward we get an 8 strips, and sacon
infinitum

What is the significance of the subscrigt which labels theM o171 backward
strip? The two strips\ o, M 1 partition the state space into two regions labeled
by the two-letter alphabe#i = {0,1}. S* = .011 is thefuture itinerary for all
X € Mo11. Likewise, for the forward strips ak € Ms . ..s,s. have thepast
itinerary S” = s. -+ s.1% . Which partition we use to present pictorially the
regions that do not escape imiterations is a matter of taste, as the backward
strips are the preimages of the forward ones

Mo, = F(My), My = f(Ma).

Q, the non-wandering se.@) of M, is the union of all points whose forward
and backward trajectories remain trapped for all time. g the intersections
of all images and preimages &l

Q- {x pxe lim_1mm) () f‘“(M‘)} . (11.9)

Two important properties of the Smale horseshoe are thatsitacomplete
binary symbolic dynamicand that it isstructurally stable
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For acompleteSmale horseshoe every forward fdl{ M) intersects transversally
every backward foldf "™(M), so a unique bi-infinite binary sequence can be
associated to every element of the non—wandering set. A @ is labeled by
the intersection of its past and future itinerai®g) = - -- s 25 1%.51% - - -, Where

ss=s if f(x)e Ms , se{0,1} andn € Z. For suficiently separated disks,
the 3-disk game of pinball figur20.3 is another example of a complete Smale
horseshoe; in this case the “folding” region of the horsesisocut out of the
picture by allowing the pinballs that fly between the disk&ilboff the table and
escape.

The system is said to kstructurally stableif all intersections of forward and
backward iterates off remain transverse for ficiently small perturbation$ —
f + ¢ of the flow, for example, for slight displacements of the dijghr suficiently
small variations of the Hénon map parametard while structural stability is
exceedingly desirable, it is also exceedingly rare. Abbist imore later.

11.4 Spatial ordering

Consider a system for which you have succeeded in constguattovering symbolic
dynamics, such as a well-separated 3-disk system. Nowrstaring the disks
toward each other. At some critical separation a disk wdktdblocking families

of trajectories traversing the other two disks. The ordewhich trajectories
disappear is determined by their relative ordering in sptieeones closest to the
intervening disk will be pruned first. Determining inadniliés itineraries requires

that we relate the spatial ordering of trajectories to thieie ordered itineraries. )
[exercise 11.8]

So far we have rules that, given a state space partition ratenatemporally
ordered itinerary for a given trajectory. Our next task ie teverse: given a
set of itineraries, what is thepatial ordering of corresponding points along the
trajectories? In answering this question we will be aide®ale’s visualization
of the relation between the topology of a flow and its symbdyicamics by means
of “horseshoes.”

11.4.1 Symbol square

For a better visualization of 2-dimensional non-wandesiets, fatten the intersection
regions until they completely cover a unit square, as in &égur4 We shall refer

to such a “map” of the topology of a given “stretch & fold” dyn&al system as
the symbol squareThe symbol square is a topologically accurate repregentat

of the non—-wandering set and serves as a street map fomglilipieces. Finite
memory ofm steps and finite foresight ofsteps partitions the symbol square into
rectangleds m1--- S0-S1S2 - - - Sv)- In the binary dynamics symbol square the size
of such rectangle is2' x 27"; it corresponds to a region of the dynamical state
space which contains all points that share commduture andm past symbols.
This region maps in a nontrivial way in the state space, btiiénsymbol square
its dynamics is exceedingly simple; all of its points are pegby the decimal
point shift (10.19

[exercise 11.2]
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Figure 11.4: Kneading Danish pastry: symbol 00 il
square representation of an orientation reversin Q0o !
once-folding map obtained by fattening the Smal o0
horseshoe intersections of figuté.3into a unit © -
square. In the symbol square the dynamics may - »
rectangles into rectangles by a decimal point shift FIG. 4. Tterative construction of the symbol plane.
(525155198 7) = - S2515051- %S5 » (11.10)

For example, the square [@1L] gets mapped into the rectangtf91.01] = [010.1],
see exercisé1.4 the first Figure (b).

As the horseshoe mapping is a simple repetitive operatierexpect a simple
relation between the symbolic dynamics labeling of the ésfise strips, and
their relative placement. The symbol square poir(8*) with future itinerary
S* are constructed by converting the sequencea,isfinto a binary number by
the algorithm {0.9. This follows by inspection from figuré1.4 In order to
understand this relation between the topology of horseshae their symbolic
dynamics, it might be helpful to backtrace to seéd.2.2and work through and
understand first the symbolic dynamics of 1-dimensionainacial mappings.

Under backward iteration the roles of 0 and 1 symbols aredhasnged;/\/(al

[exercise 11.3]

[exercise 11.4]

has the same orientation A4, while/\/q1 has the opposite orientation. We assi%mxercise 115)

to anorientation preservingonce-folding map thepast topological coordinate
¢ = §(S7) by the algorithm:

W, if =0
Wn1 = { " -f: 1 Wo=%o

5(S7) (11.11)

1
o
s
Z
g
e
I

M
=
B
N

Such formulas are best derived by quiet contemplation oftten of a folding
map, in the same way we derived the future topological coatdi (0.9).

The coordinate pairé(y) maps a pointX,y) in the state space Cantor set
of figure 11.3into a point in the symbol square of figufiel.4, preserving the
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topological ordering;{ y) serves as a topologically faithful representation of the
non-wandering set of any once-folding map, and aids us ititipaing the set
and ordering the partitions for any flow of this type.

11.5 Pruning

The complexity of this figure will be striking, and | shall
not even try to draw it.

— H. Poincaré, on his discovery of homoclinic
tanglesLes méthodes nouvelles de la méchanique céleste

In general, not all possible itineraries are realized assigly trajectories.
Trying to get from “here” to “there” we might find that a shosth is excluded by
some obstacle, such as a disk that blocks the path, or a @abtédge. To count
correctly, we need tprunethe inadmissible trajectories, i.e., specify the grammar
of the admissible itineraries.

While the complete Smale horseshoe dynamics discussedisodther straightforward,
we had to get through it in order to be able to approach a situgthat resembles
more the real life: adjust the parameters of a once-foldiag so that the intersection
of the backward and forward folds is still transverse, butomger complete, as in
figure13.2(a). The utility of the symbol square lies in the fact that $keviving,
admissible itineraries still maintain the same relativatig ordering as for the
complete case.

In the example of figur&3.2(a) the rectangles [10], [11.1] have been pruned,
and consequentlgny trajectory containing blockls; = 101,b, = 111 is pruned.
We refer to the border of this primary pruned region aspthaing front another
example of a pruning front is drawn in figus.2 (d). We call it a “front”
as it can be visualized as a border between admissible addissible; any
trajectory whose periodic point would fall to the right o&tfront in figure13.2
is inadmissible, i.e., pruned. The pruning front is a corgplescription of the
symbolic dynamics of once-folding maps.For now we needdhig as a concrete
illustration of how pruning rules arise.

In the example at hand there are total of two forbidden bldéks 111, so the
symbol dynamics is a subshift of finite typ&0(22. For now we concentrate on
this kind of pruning because it is particularly clean andggen Unfortunately, for
a generic dynamical system a subshift of finite type is thesption rather than
the rule. Only some repelling sets (like our game of pinbati)l a few purely
mathematical constructs (called Anosov flows) are strafifustable - for most
systems of interest an infinitesimal perturbation of the fli@stroys anbr creates
an infinity of trajectories, and specification of the grammeguires determination
of pruning blocks of arbitrary length. The repercussiorsttamatic and counterintuitive;
for example, due to the lack of structural stability the sfaort codficients such
as the deterministic tfusion constant of seck4.2are emphaticallynot smooth
functions of the system parameters. This generic lack ofcsiral stability is
what makes nonlinear dynamics so hard.
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The conceptually simpler finite subshift Smale horseshafis to motivate
most of the key concepts that we shall need for time being.

11.5.1 Converting pruning blocks into Markov graphs

The complete binary symbolic dynamics is too simple to bamilhating, so
we turn next to the simplest example of pruned symbolic dyosnthe finite
subshift obtained by prohibition of repeats of one of the lsgts, let us say00..
This situation arises, for example, in studies of the cirolgps, where this kind
of symbolic dynamics describes “golden mean” rotations.wNioe admissible
itineraries are enumerated by the pruned binary tree ofdigQr13(a), or the
corresponding Markov graph figufé.13(b). We recognize this as the Markov
graph example of figur&0.14

[exercise 13.7]
[exercise 13.8]

So we can already see the main ingredients of a general thigor{1) Markov
graph encodes self-similarities of the tree of all itinersyr and (2) if we have a
pruning block of lengthM, we need to descenifl levels before we can start
identifying the self-similar sub-trees.

Suppose now that, by hook or crook, you have been so luckyngsfar
pruning rules that you now know the gramma0(2J) in terms of a finite set
of pruning blockgg = {b1, by, - - - by}, of lengthsny,, < M. Our task is to generate
all admissible itineraries. What to do?

A Markov graph algorithm.

1. Starting with the root of the tree, delineate all brandhes correspond to
all pruning blocks; implement the pruning by removing trst lzode in each
pruning block.

2. Label all nodes internal to pruning blocks by the itingraonnecting the
root point to the internal node. Why? So far we have prunebidoen
branches by lookingy, steps into future for all pruning blocks. into future
for pruning blockb = 10010. However, the blocks with a right combination
of past and future [0110], [10110], [10110] and [10110] are also pruned.
In other words, any node whose near past coincides with thmbieg of
a pruning block is potentially dangerous - a branch furthewr the tree
might get pruned.

3. Add to each internal node all remaining branches allowethé alphabet,
and label them. Why? Each one of them is the beginning poian affinite
tree, atree that should be similar to another one origigatioser to the root
of the whole tree.

4. Pick one of the free external nodes closest to the root efetitire tree,
forget the most distant symbol in its past. Does the truncdiserary
correspond to an internal node? If yes, identify the two sodfenot, forget
the next symbol in the past, repeat. If no such truncatedgoatsponds to
any internal node, identify with the root of the tree.
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This is a little bit abstract, so let’s say the free exterr@dein question is The itinerary describes the time evolution of an orbit, wh{fior 2-d hyperbolic
[101Q]. Three time steps back the past is [J1T hat is not dangerous, as maps) the symbol square describes the spatial orderingintfspalong the orbit.
no pruning block in this example starts with 0. Now forget thied step in The rule that everything to one side of the pruning front ibidden might (in
the past: [10 is dangerous, as that is the start of the pruning blockI[10). hindsight) seem obvious, but if you have ever tried to worksymbolic dynamics
Hence the free external node [10L6hould be identified with the internal of some “generic” dynamical system, you should be struck tbysimplicity:

node [10]. instead of pruning a Cantor set embedded within some largetdC set, the

5. Repeat until all free nodes have been tied back into tleeriat nodes. pruning front cleanly c‘u‘ts out eompactregion in the symbol square and that
is all - there are no additional pruning rules.
6. Clean up: check whether every node can be reached from etrer node.

Remove the transient nodes, i.e., the nodes to which dysamsicr returns. The symbol square is a useful tool in transforming topolalgjruning into
pruning rules for inadmissible sequences; those are ingiéad by constructing
transition matrices aridr Markov graphs. These matrices are the simplest examples
of evolution operators prerequisite to developing a thebgveraging over chaotic
flows.

7. The result is a Markov diagram. There is no guarantee thsti$ the
smartest, most compact Markov diagram possible for givemipg (if
you have a better algorithm, teach us), but walks around getwrate all
admissible itineraries, and nothing else.

Importance of symbolic dynamics is often grossly unappited; as we shall
see in chapter&1 and 18, coupled with uniform hyperbolicity, the existence of a
finite grammar is the crucial prerequisite for constructidrzeta functions with
nice analyticity properties.

Heavy pruning.

We complete this training by examples by implementing themg of figurel3.2(d).
The pruning blocks are

[100.10], [10.1], [010.01], [011.01], [11.1], [101.10]. (11.12)

Blocks 01101, 10110 contain the forbidden block 101, so #reyredundant as
pruning rules. Draw th@runing treeas a section of a binary tree with 0 and 1
branches and label each internal node by the sequence afdEsaconnecting it

to the root of the tree (figur&3.3(a). These nodes are the potentially dangerous
nodes - beginnings of blocks that might end up pruned. Addsitle branches

to those nodes (figurg3.3(b). As we continue down such branches we have to
check whether the pruning imposes constraints on the segseso generated:
we do this by knocking f the leading bits and checking whether the shortened
strings coincide with any of the internal pruning tree nod¥#— 0; 110— 10;

011 — 11; 0101— 101 (pruned); 1006» 00 — 00 — 0; 10011— 0011 —
011— 11; 01000 O.

As in the previous two examples, the trees originating imiified nodes
are identical, so the tree is “self-similar.” Now conneat 8ide branches to the
corresponding nodes, figuf3.3 (d). Nodes “” and 1 are transient nodes; no
sequence returns to them, and as you are interested heria arfipitely recurrent
sequences, delete them. The result is the finite Markov goéfigure 13.3(d);
the admissible bi-infinite symbol sequences are generatedl possible walks
along this graph.

Résum é

Given a partitionA of the state spacét, a dynamical systemA(, f) induces
topological dynamics, o) on the spac& of all admissible bi—infinite itineraries.
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Commentary

Remark 11.1 Stable/unstable manifolds.  For pretty pictures of invariant manifolds
other than Lorenz, see Abraham and Sha@.[

Remark 11.2 Smale horseshoe. S.Smale understood clearly that the crucial ingredient
in the description of a chaotic flow is the topology of its nandering set, and he
provided us with the simplest visualization of such setates $ections of Smale horseshoes.
In retrospect, much of the material covered here can alreadiyund in Smale’s fundamental
paper P3|, buta physicist who has run into a chaotic time series ifldtisratory might

not know that he is investigating the actionf{drentiable) of a Lie groufs on a manifold

M, and that the Lefschetz trace formula is the way to go. If yod fiourself mystified by
Smale’s article abstract about “the actionfglientiable) of a Lie grou® on a manifold

M,” quoted on pagel79 rereading chaptet4 might help; for example, the Liouville
operators form a Lie group (of symplectic, or canonical $farmations) acting on the
manifold (p, ).

Remark 11.3 Kneading theory. ~ The admissible itineraries are studied in refs?, [
14,16, 17], as well as many others. We follow here the Milnor-Thurstaposition [L3].
They study the topological zeta function for piecewise ntone maps of the interval, and
show that for the finite subshift case it can be expressediinstef a finite dimensional
kneading determinantAs the kneading determinant is essentially the topoldgieta
function that we introduce inl@.4), we shall not discuss it here. Baladi and Ruelle have
reworked this theory in a series of papers,[L6, 1 7] and in ref. [Lg] replaced it by a power
series manipulation. The kneading theory is covered hePelahlqvist's appendii. 1.

Remark 11.4 Pruning fronts. The notion of a pruning frontwas introduced in refd],

and developed by K.T. Hansen for a number of dynamical systerhis Ph.D. thesis3]

and a series of paper&(-[30]. Detailed studies of pruning fronts are carried out in
refs. [20, 22, 21]; ref. [5] is the most detailed study carried out so far. The rigorous
theory of pruning fronts has been developed by Y. Ishij P4] for the Lozi map, and A.

de Carvalho?9] in a very general setting.

Remark 11.5 The unbearable growth of Markov graphs. A construction of finite
Markov partitions is described in refs.(, 11], as well as in the innumerably many other
references.

If two regions in a Markov partition are not disjoint but searboundary, the boundary
trajectories require special treatment in order to avoieroounting, see sect9.3.1 If
the image of a trial partition region cuts across only a pamrwther trial region and
thus violates the Markov partition conditiohq.4), a further refinement of the partition is
needed to distinguish distinct trajectories - figliBe2is an example of such refinements.

The finite Markov graph construction sketched above is noessarily the minimal
one; for example, the Markov graph of figur@.3does not generate only the “fundamental”
cycles (see chapter8), but shadowed cycles as well, suchtasi in (13.17. For
methods of reduction to a minimal graph, consult refs5[l, 7]. Furthermore, when one
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implements the time reversed dynamics by the same algqritheusually gets a graph of
very different topology even though both graphs generate the sanmissidlensequences,
and have the same determinant. The algorithm describededtes some sense fordl-
dynamics, but is unnatural for @ maps whose dynamics it treats as 1-dimensional. In
practice, generic pruning grows longer and longer, and rplenetiful pruning rules. For
generic flows the refinements might never stop, and almostyslwe might have to deal
with infinite Markov partitions, such as those that will bedissed in sect.3.6 Not only
do the Markov graphs get more and more unwieldy, they haverthieasant property that
every time we add a new rule, the graph has to be construaieddcratch, and it might
look very diferent form the previous one, even though it leads to a minoifination

of the topological entropy. The most determinékbe to construct such graphs may be
the one of ref. P(]. Still, this seems to be the best technology availablegsmthe reader
alerts us to something superior.

smale - 5jun2005.tex



EXERCISES

190

Exercises

11.1. A Smale horseshoe. The Hénon map

11.2.

11.3.

11.4.

X | [ 1-a+y
[y]‘[bx * (11.13)

maps the X,y) plane into itself - it was constructed
by Hénon P] in order to mimic the Poincaré section
of once-folding map induced by a flow like the one
sketched in figurel0.5 For definitiveness fix the

parametersta=6,b = -1.

a) Draw a rectangle in thex(y) plane such that
its nth iterate by the Hénon map intersects the
rectangle 2times.

b) Construct the inverse of th@1.13.

c) lterate the rectangle back in the time; how many
intersections are there between thforward and
mbackward iterates of the rectangle?

d) Use the above information about the inters,ectiorisl 5

to guess thex,y) coordinates for the two fixed
points, a 2-cycle point, and points on the two
distinct 3-cycles from tabl@0.1 The exact cycle
points are computed in exerci$g.1Q

Kneading Danish pastry. Write down the K y) —
(x,y) mapping that implements the baker's map of
figure 11.4 together with the inverse mapping. Sketch
a few rectangles in symbol square and their forward and
backward images. (Hint: the mapping is very much like
the tent map10.9).

Kneading Danish without flipping. The baker’s
map of figurell.4includes a flip - a map of this type is
called an orientation reversing once-folding map. Write
down the & y) — (xy) mapping that implements an
orientation preserving baker's map (no flip; Jacobian
determinant 1). Sketch and label the first few folds
of the symbol square.

Fix this manuscript. Check whether the layers of the
baker’'s map of figurel1.4 are indeed ordered as the
branches of the alternating binary tree of figui@9
(They might not be - we have not rechecked them).
Draw the correct binary trees that order both the future
and past itineraries.

For once-folding maps there are four topologically
distinct ways of laying out the stretched and folded
image of the starting region,

(a) orientation preserving: stretch, fold upward, as in
figure??.

exerSmale - 20sep2003.tex

11.6.

(b) orientation preserving: stretch, fold downward, as
in figure13.2

(c) orientation reversing: stretch, fold upward, flip, as
in figure ??.

(d) orientation reversing: stretch, fold downward, flip,
asin figurell.4

with the corresponding four distinct binary-labeled
symbol squares. Fon-fold “stretch & fold” flows

the labeling would benary. The intersectionM, for

the orientation preserving Smale horseshoe, the first
Figure (a) above. is oriented the same way\@swhile

My is oriented opposite tal. Brief contemplation of
figure11.4indicates that the forward iteration strips are
ordered relative to each other as the branches of the
alternating binary tree in figurg0.9

Check the labeling for all four cases.

Orientation reversing once-folding map. By adding
areflection around the vertical axis to the horseshoe map
g we get the orientation reversing mgsfiown in the
second Figure abové&), and®; are oriented ag and

Qu, so the definition of the future topological coordinate
v is identical to they for the orientation preserving
horseshoe. The inverse intersectiddg and Q;* are
oriented so thaQ;* is opposite toQ, while Q;* has the
same orientation a®. Check that the past topological
coordinates is given by

_ 1-w, ifs,=0 _
Wh-1 = {Wn ifs=1" Wo = S

609 = Owow.aw...= Y win/2"(11.14)

n=1

Infinite symbolic dynamics. Let o be a function
that returns zero or one for every infinite binary string:
o {0, — {0,1}). Its value is represented by
(e, €,...) where theg are either 0 or 1. We will
now define an operatdr that acts on observables on the
space of binary strings. A functiamis an observable if

it has bounded variation, that is, if

llall = supla(ey. €z, . . .)| < o

(e}

For these functions

Tale, e,...) = a0,e,e,..)00,¢€,e,...)

+a(l, e, €,.. )01, e, €,...).
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(a) (easy) Consider a finite versidp of the operator
T
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(Kai T. Hanser

11.9. Alphabet {0,1}, prune _100Q, -0010Q, _-0110Q

Tha(es, €,...,€1n) =
a0, e €,....a-1)0(0, €1, €2, ..., 6n-1) +
al e e,....e-1)o(L e ... 6n-1).

Show thatT, is a 2' x 2" matrix. Show that its
trace is bounded by a number independent of
(b) (medium) With the operator norm induced by the
function norm, show thaf” is a bounded operator.
(c) (hard) Show thaf is not trace class.

Time reversibility. Hamiltonian flows are time
reversible. Does that mean that their Markov graphs
are symmetric in all node — node links, their
transition matrices are adjacency matrices, symmetric
and diagonalizable, and that they have only real
eigenvalues?

This example is motivated by the pruning fi
description of the symbolic dynamics for the Heér
type maps.

step 1. .100Q prunes all cycles with a.000
subsequence with the exception of the fixed pd
hence we factor out (% tp) explicitly, and prune00Q
from the rest. This means thag is an isolated fixe
point - no cycle stays in its vicinity for more tha
iterations. In the notation of sect1.5.1 the alphab
is {1, 2, 3; 0}, and the remaining pruning rules hav
be rewritten in terms of symbols=20, 3=100:

step 2. alphabet(1, 2, 3; 6], prune_33., 213,313
This means that the 3-cycR = 100 is pruned and
long cycles stay close enough to it for a singlé®0
repeat. As in example 1?!, prohibition aB3_ i
implemented by dropping the symbol “3” and exten

11.8. 3-disk pruning (Not easy) Show that for 3-disk
game of pinball the pruning of orbits startsRit a =
2.04821419. ..

References

the alphabet by the allowed blocks 13, 23:

step 3.alphabet1, 2, 13 23 0}, prune_213, 2313
_1313,, where 13= 13, 23= 23 are now used as sin
letters. Pruning of the repetitiond313_ (the 4-cycl
13 = 1100 is pruned) yields the

result: alphabet{1, 2, 23 113 0}, unrestricted 4-a
dynamics. The other remaining possible block$3
_2313_ are forbidden by the rules of step 3. (contir
as exerciséd3.20Q
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Chapter 12

Fixed points, and how to get them

piece of numerics in this subject; search for the solution3), x € RY,

I I AVING seT UP the dynamical context, now we turn to the key and unavoidable
T € R of the periodic orbit condition

T = f{(x), T>0 12.1)

for a given flow or mapping.

We know from chaptet 6that cycles are the necessary ingredient for evaluation
of spectra of evolution operators. In chapt€rwe have developed a qualitative
theory of how these cycles are laid out topologically.

This chapter is intended as a hands-on guide to extractiperddic orbits,
and should be skipped on first reading - you can return to ineter the need for
finding actual cycles arises. Sadly, searching for periodbits will never become
as popular as a week on Coéte d’Azur, or publishing yet amdtsgzlog plot in
Phys. Rev. LettersA serious cyclist will want to also learn about the variaib
methods to find cycles, chaptéir. They are particularly useful when little iéCh
understood about the topology of a flow, such as in high-dgieeral periodic
orbit searches.

apter 27]

fast track:
@ chapter 13, p. 212

A prime cycle p of period T is a single traversal of the periodic orbit, so
our task will be to find a cycle point € p and the shortest tim&, for which
(12.1) has a solution. A cycle point of a floff which crosses a Poincaré section
n times is a fixed point of the" iterate ofP, the return map3.1), hence we shall
refer to all cycles as “fixed points” in this chapter. By cygdlivariance, stability
eigenvalues and the period of the cycle are independeneaftbice of the initial
point, so it will sufice to solve {2.1) at a single cycle point.

[section 5.2]
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If the cycle is an attracting limit cycle with a sizable basfrattraction, it can
be found by integrating the flow for fiiciently long time. If the cycle is unstable,
simple integration forward in time will not reveal it, and theds to be described
here need to be deployed. In essence, any method for findingeiis based on
devising a new dynamical system which possesses the saree loytfor which
this cycle is attractive. Beyond that, there is a great foeeth constructing such
systems, and manyftierent methods are used in practice.

Due to the exponential divergence of nearby trajectoriehaotic dynamical
systems, fixed point searches based on direct solution difepoint condition
(12.1) as an initial value problem can be numerically very ungtablMethods
that start with initial guesses for a number of points alohg tycle, such as
the multipoint shooting method described here in sé2t3 and the variational
methods of chaptet7, are considerably more robust and safer.

[chapter 27]

A prerequisite for any exhaustive cycle search is a good nstafeding of the
topology of the flow: a preliminary step to any serious pedamtbit calculation
is preparation of a list of all distinct admissible primeipdic symbol sequences,
such as the list given in table0.1. The relations between the temporal symbol
sequences and the spatial layout of the topologicallyrdistiegions of the state
space discussed in chaptéfsand11 should enable us to guess location of a series
of periodic points along a cycle. Armed with such informeesggiwe proceed to
improve it by methods such as the Newton-Raphson iterati@show how this
works by applying the Newton method to 1- agkdlimensional maps. But first,
where are the cycles?

12.1 Where are the cycles?

Q: What if you choose a really bad initial condition and it
doesn’t converge? A: Well then you only have yourself to
blame.

—T.D. Lee

The simplest and conceptually easiest setting for guessgirgge the cycles are is
the case of planar billiards. The Maupertuis principle akeaction here dictates
that the physical trajectories extremize the length of aor@pmate orbit that
visits a desired sequence of boundary bounces.

Example 12.1 Periodic orbits of billiards. Consider how this works for 3-disk
pinball game of sect. 11.1. . Label the three disks by 1, 2 and 3, and associfzte to

3 . P . . S| c}(lom 11.1]
every trajectory an itinerary, a sequence of labels indicating the order in which the disks
are visited, as in figure 3.2. Given the itinerary, you can construct a guess trajectbiy by !
taking a point on the boundary of each disk in the sequence, and connecting them by
straight lines. Imagine that this is a rubber band wrapped through 3 rings, and shake

the band until it shrinks into the physical trajectory, the rubber band of shortest length.

Extremization of a cycle length requires variation of n bounce positions .
The computational problem is to find the extremum values of cycle length L(s) where

s=(s,...,S), a task that we postpone to sect. 27.3. As an example, the[gggglse 27.2]

[exercise 12.10]
cycles - 13jun2008.tex
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periods and stabilities of 3-disk cycles computed this way are listed table 27.2, and
some examples are plotted in figure 3.2. It's a no brainer, and millions of such cycles
have been computed.

If we were only so lucky. Real life finds us staring at someghiike Yang-
Mills or Navier-Stokes equations, utterly clueless. Wioad®?

One, there is always mindless computation. In practice oigbtrbe satisfied
with any rampaging robot that finds “the most important” egclErgodic exploration
of recurrences that we turn to next sometimes perform adigixaell.

12.1.1 Cycles from long time series

Two wrongs don’t make a right, but three lefts do.
—Appliance guru

(L. Rondoni and P. Cvitanovic)

The equilibria and periodic orbits (with the exception afls and stable limit [remark 12.1]

cycles) are never seen in simulations and experiments bechay are unstable. )

Nevertheless, one does observe close passes to the letileresjuilibria and

periodic orbits. Ergodic exploration by long-time trajeiés (or long-lived transients,

in case of strange repellers) can uncover state space segfdow velocity, or

finite time recurrences. In addition, such trajectoriefgentially sample the
L . [section 14.1]

natural measure of the ‘turbulent’ flow, and by initiatingsghes within the state

space concentrations of natural measure bias the searehdtdle dynamically

important invariant solutions.

The search consists of following a long trajectory in sta@ce, and looking
for close returns of the trajectory to itself. Whenever tlagectory almost closes in
a loop (within a given tolerance), another point of this naéss of a cycle can be
taken as an initial condition. Supplemented by a Newtornimewdescribed below,
a sequence of improved initial conditions may indeed rgpielad to closing a
cycle. The method preferentially finds the least unstabdbsyrwhile missing the
more unstable ones that contribute little to the cycle egjuens.

This blind search is seriously flawed: in contrast to theska@ixamplel2.1,
it is not systematic, it gives no insight into organizatidnttte ergodic sets, and
can easily miss very important cycles. Foundations to sesyatic exploration
of ergodic state space are laid in chaptéfsand 11, but are a bit of work to
implement.

12.1.2 Cycles found by thinking

Thinking is extra price.
—Argentine saying

cycles - 13jun2008.tex
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A systematic charting out of state space starts out by a louetjuilibrium points. )
If the equations of motion are a finite set of ODEs, settingvlecity field v(x) :

in (2.6) to zero reduces search for equilibria to a search for zefas set of - /
algebraic equations. We shquld be able, in principle, toresrate and determine Figure 12.1: (a)y — Pa(y,2) return map for
all real and complex zeros in such cases, e.g. the Lorenzpgah? and the x =0,y > 0 Poincaré section of the Rossler flow .
Rossler examplé.3. If the equations of motion and the boundary conditions are figure 2.5 (b) The1-cycle found by taking the P b
invariant under some symmetry, some equilibria can be ched by symmetry f'ﬁg pointyicn s t"ge‘he(” "‘t’"hh‘he f)'xe‘j P?{_’“I a) (b)
. . - . . . . . . L (o) ez — zreturn map (not shown) an Initiai
considerations: if a function is e.g. antisymmetric, it tnanish at origin, e.g. guess (0y®, 29)) for the Newton-Raphson search.
the LorenzEQq = (0,0, 0) equilibrium. (0) Yies = P3(Yi 2, the third iterate of Poincaré
return map 8.1) together with the corresponding
As to other equilibria: if you have no better idea, createagesspace grid, plot for z..3 = P3(yk. ), is used to pick starting
about 50x, acrossM in each dimension, and compute the velocity figle= v(xc) guesses for the Newton-Raphson searches for the | A -
t each grid point; a few milliow values are easily stored. PIgt for which two S-cycles: (d) thedO1 cycle, and (€) the11 B S e e 8
a grid point; k y : cycle. (G. Simon) (T @)

Vkl? < €, € << |Vmad? but suficiently large that a few thousang are plotted.
If the velocity field varies smoothly across the state sptueregiongv/? < e _ ) ) )
isolate the (candidate) equilibria. Start a Newton iterativith the smallesiv? take the unimodal map symbolic dynamics, sect. 10.2.1, as our guess for the covering

point within each region. Barring exceptionally fast védas inv(x) this should dynamics. Strictly speaking, the attractor is “fractal,” but for all practical purposes the
yield all equilibrium points return map is 1-dimensional; your printer will need a resolution better than 10'* dots

per inch to start resolving its structure.

For ODEs equilibria are fixed points of algebraic sets of &iqna, but steady _ Periodic points of a prime cycle p of cycle lengthn, for the x = 0, y > 0 Poincaré
states of PDEs such as the Navier-Stokes flow are themsaligioas of ODES section of the Réssler flow figure 2.5 are fixed points (y, z) = P"(y, 2) of the nth Poincaré

. return map.
or PDEs, and much harder to determine. p
Using the fixed point yx.1 = Yk in figure 12.1 (a) together with the simultaneous

Equilibria—by definition—do not move, so they cannot be Btent” What fixed point of the z — Py(y, 2) return map (not shown) as a starting guess (0, 2) for
makes them dynamically important are their stabistable manifolds. A chaotic the Newton-Raphson search for the cycle p with symbolic dynamics label 1, we find the

. o I . cycle figure 12.1 (b) with the Poincaré section point (0,Yp, z,), period Ty, expanding,
trajectory can be though of as a sequence of near visitadicetguilibria. Typically marginal, contracting stability eigenvalues (Ape, Apm Apc), and Lyapunov exponents

such neighborhoods have many stable, contracting direcémd a handful of (oo Apme Ap): .
unstable directions. Our strategy will be to generalizebiliard Poincaré section R [exercise 12.7]
mapsPs, ., s, of example3.2to maps from a section of the unstable manifold of T-cycle: (xy.2 = (0,6.0917683212997319)

equilibrium s, to the section of unstable manifold of equilibriusp.1, and thus T, = 588108845586

reduce the continuous time flow to a sequence of maps. TheseaP® section (Are:Aim A1e) = (-2.403953531+ 1071 -1.29% 10714

maps do double duty, providing us both with an exact reptasen of dynamics (/l)l,e /hm /h'C) — (0149141556104 _5 ’44) (122)

in terms of maps, and with a covering symbolic dynamics.
invariant The Newton-Raphson method that we used is described in sect. 12.4.
As an example of a search for longer cycles, we use Y3 = Pf(yk, z), the

We showed in the Lorenz flow examplé.5how to reduce the 3-dimensional third iterate of Poincaré return map (3.1) plotted in figure 12.1 (c), together with a
Lorenz flow to a 4d return map corresponding plot for z¢,3 = £3(yk, z), to pick starting guesses for the Newton-Raphson
searches for the two 3-cycles plotted in figure 12.1 (d), (e). For a listing of the short

In the Rossler flow exampl2.3 we sketched the attractor by running a long cycles of the Rossler flow, consult exercise 12.7.

chaotic trajectory, and noted that the attractor is veny, thiit otherwise the return The numerical evidence suggests (but a proof is lacking) that all cycles that
maps that we plotted were disquieting — figdé did not appear to be a 1-to-1 comprise the strange attractor of the Rossler flow are hyperbolic, each with an expanding

. X . eigenvalue |A¢|l > 1, a contracting eigenvalue |A¢| < 1, and a marginal eigenvalue
map. In the next example vye show h?"" to use such |!’1f0rmat|appJOOX|mately |Aml = 1 corresponding to displacements along the direction of the flow.
locate cycles. In the remainder of this chapter and in chaptave shall learn

how to turn such guesses into highly accurate cycles. For the Réssler flow the contracting eigenvalues turn out to be insanely contracting,

a factor of €32 per one par-course of the attractor, so their numerical determination is
quite difficult. Fortunately, they are irrelevant; for all practical purposes the strange
attractor of the Réssler flow is 1-dimensional, a very good realization of a horseshoe

Example 12.2 Rdssler attractor (G. Simon and P. Cvitanovic) template

Run a long simulation of the Réssler flow !, plot a Poincaré section, as in figure 3.5,
and extract the corresponding Poincaré return map P, as in figure 3.6. Luck is with
us; the figure 12.1 (a) return map y — Pi(y,2) looks much like a parabola, so we
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Figure 12.2: The inverse time path to th@&.-cycle of

the logistic mapf (X) = 4x(1 — x) from an initial guess 02 N
of x = 0.2. At each inverse iteration we chose the 0, o L L L
respectively 1 branch. 0 02 04 06 08 1
Figure 12.3: Convergence of Newton method)( 0 T
. . . . N 5+ R 4
vs. inverse iteration«). The error aftemn iterations o T,
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searching for th@1-cycle of the logistic mag(x) =
4x(1 — x) with an initial starting guess of; =
02,x, = 0.8. y-axis is log, of the error. The
difference between the exponential convergence of
the inverse iteration method and the super-exponential -

. ! a5l v
convergence of Newton method is dramatic. 0 2 4 6 8 1012 14 16 18 20
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12.2 One-dimensional mappings

(F. Christiansen)

12.2.1 Inverse iteration

Let us first consider a very simple method to find unstablessyof a 1-dimensional
map such as the logistic map. Unstable cycles dfrbhaps are attracting cycles
of the inverse map. The inverse map is not single valued, saet backward
iteration we have a choice of branch to make. By choosingdiraccording to
the symbolic dynamics of the cycle we are trying to find, wed ailtomatically

converge to the desired cycle. The rate of convergence éndiy the stability of
the cycle, i.e., the convergence is exponentially fastuigi§2.2shows such path
to theO1-cycle of the logistic map.

The method of inverse iteration is fine for finding cycles fed maps and
some 2¢ systems such as the repeller of exerdig€elQ It is not particularly fast,
especially if the inverse map is not known analytically. Hwoer, it completely
fails for higher dimensional systems where we have bothlestabd unstable
directions. Inverse iteration will exchange these, but vitestill be left with both
stable and unstable directions. The best strategy is totljirattack the problem
of finding solutions off T(x) = x.

12.2.2 Newton method

Newton method for determining a zexd of a functionF(x) of one variable is
based on a linearization around a starting gugss

F(X) ~ F(x0) + F'(X0)(X = Xo)- (12.3)
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An approximate solutiorx; of F(x) = 0 is
X1 = Xo — F(%0)/F’(%o). (12.4)

The approximate solution can then be used as a new startess gu an iterative
process. A fixed point of a map is a solution toF(x) = x - f(x) = 0. We
determinex by iterating

Xm = 9(Xm-1) = Xm-1— F(Xm-1)/F’ (Xm-1)

Xm-1 1- f(Xm-1))- (12.5)

1
T ) ™

Provided that the fixed point is not marginally stabigx) # 1 at the fixed point

X, a fixed point off is a super-stable fixed point of the Newton-Raphson map
g'(x) = 0, and with a sfficiently good initial guess, the Newton-Raphson iteration
will converge super-exponentially fast.

To illustrate the &iciency of the Newton method we compare it to the inverse
iteration method in figuré2.3 Newton method wins hands down: the number of
significant digits of the accuracy afestimate doubles with each iteration.

In order to avoid jumping too far from the desired (see figurel2.4), one
often initiates the search by tidlamped Newton method

F(Xm)
F’(Xm)

AXm = Xmi1 — Xm = — At, O0<AT<1,

takes smallAr steps at the beginning, reinstating to the f\l = 1 jumps only
when stfficiently close to the desirext.

12.3 Multipoint shooting method

(F. Christiansen)

Periodic orbits of lengtim are fixed points off" so in principle we could use
the simple Newton method described above to find them. Howthie is not an
optimal strategy. f" will be a highly oscillating function with perhaps as many
as 2 or more closely spaced fixed points, and finding a specifiog&ripoint,
for example one with a given symbolic sequence, requiresrgpgood starting
guess. For binary symbolic dynamics we must expect to imgtiog accuracy of
our initial guesses by at least a factor &ft® find orbits of lengthn. A better
alternative is themultipoint shooting method While it might very hard to give
a precise initial point guess for a long periodic orbit, if guesses are informed
by a good state space partition, a rough guess for each doimg ¢he desired
trajectory might sffice, as for the individual short trajectory segments thererro
have no time to explode exponentially.
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F(x)

Figure 12.4: Newton method: bad initial
guessx? leads to the Newton estimaté®? far
away from the desired zero of(x). Sequence
S, XM XM L starting with a good  guess
converges super-exponentially td. The method
diverges if it iterates into the basin of attraction of 3
local minimumx®.

(1) XE

A cycle of lengthn is a zero of thex-dimensional vector functioR:

X1 X1 — f(%n)
F = F| 2 |=| %~ f(x1)
n X = f(Xn-1)

The relations between the temporal symbol sequences argpétial layout of
the topologically distinct regions of the state space dised in chaptet0enable
us to guess location of a series of periodic points along Ecyamed with such
informed initial guesses we can initiate a Newton-Raphteation. The iteration
in the Newton method now takes the form of

d / —
&F(X)(x =X =-F(X), (12.6)

where%F(x) is an jp x n] matrix:

1 =" (%)
-f'(x) 1
L1 . @27
1
(1) 1

JFX) =

This matrix can easily be inverted numerically by first eliating the elements
below the diagonal. This creates non-zero elements innthecolumn. We
eliminate these and are done.

Example 12.3 Newton inversion for a 3-cycle. Let us illustrate how this works step
by step for a 3-cycle. The initial setup for a Newton step is:

1 0 —/(x3) Axq Fi
[ *f’(Xl) 1 0 ]( AXo ] = —[ F2 ],
0 —'(%2) 1 AX3 Fs

where Ax; = X — X Is the correction to our initial guess X, and F; = x; — f(xi_1) is the
error atith cycle point. Eliminate the sub-diagonal elements by adding f’(x,) times the
first row to the second row, then adding f’(x2) times the second row to the third row:

10 -'(x) Ax
[ 01 =17 (x1) ' (xs) }[ AXp J:
0 0 1- f'(Xz)f'(Xl)f'(X:g) AX3
F

1
_[ Fo+ f'/(x0)F1 ) .
Fa+ /(x)F2 + 1/ (x2) " (x0)F1
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The next step is to invert the last element in the diagonal, i.e., divide the third row
by 1 — f/(x2) f'(x1) f’(xs). If this element is zero at the periodic orbit this step cannot
work. As f'(x2) f'(x1) f'(x3) is the stability of the cycle (when the Newton iteration has
converged), this is not a good method to find marginally stable cycles. We now have

10 —f/(Xs) Axq
[ 0 1 —f(x)f"(xs) ]( AXp J:
0 0 1 AX3

F

1
— Fo+ f/(Xl)Fl
Fat " (xp)Fa+1"(xo) ' (x1)F1
1-T0) " () f" (%)

Finally we add f’(xs) times the third row to the first row and f’(x1) f’(x3) times the third
row to the second row. The left hand side matrix is now the unit matrix, the right hand
side is an explicit formula for the corrections to our initial guess. We have gone through
one Newton iteration.

When one sets up the Newton iteration on the computer it imaoéssary
to write the left hand side as a matrix. All one needs is a vembotaining the
f/(x)'s, a vector containing the'th column, i.e., the cumulative product of the
f’(x)’s, and a vector containing the right hand side. After tkeaition the vector
containing the right hand side should be the correctionéaritiial guess.

12.3.1 d-dimensional mappings /
Armed with clever, symbolic dynamics informed initial gses we can easily
extend the Newton-Raphson iteration method-fimensional mappings. In this
casef’(x) is a [d x d] matrix, andd%F(x) is an jhd x nd] matrix. In each of the
steps that we went through above we are then manipuldtiogs of the left hand
side matrix. (Remember that matrices do not commute - alwaysply from the
left.) In the inversion of thaith element of the diagonal we are invertingdaqd]
matrix (1- [T /(%)) which can be done if none of the eigenvalues pff’(x)
equals 1, i.e., if the cycle has no marginally stable eigegetions.

Example 12.4 Newton method for time delay maps. Some d-dimensional mappings
(such as the Hénon map (3.18)) can be written as 1-dimensional time delay mappings
of the form

f(x) = f(Xi-1. X2, - ., Xi=d)- (12.8)

In this case d%F(x) is an [n x n] matrix as in the case of usual 1-dimensional maps
but with non-zero matrix elements on d off-diagonals. In the elimination of these off-
diagonal elements the last d columns of the matrix will become non-zero and in the final
cleaning of the diagonal we will need to invert a [d x d] matrix. In this respect, nothing
is gained numerically by looking at such maps as 1-dimensional time delay maps.
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12.4 Flows

(F. Christiansen)

Further complications arise for flows due to the fact that doperiodic orbit
the stability eigenvalue corresponding to the flow direttad necessity equals
unity; the separation of any two points along a cycle remamshanged after a
completion of the cycle. More unit eigenvalues can arisdéf flow satisfies
conservation laws, such as the energy invariance for Haniélh systems. We
now show how such problems are solved by increasing the nuoiflfiked point
conditions.

12.4.1 Newton method for flows

A flow is equivalent to a mapping in the sense that one can eetheflow to a
mapping on the Poincaré surface of section. An autonomows(.6) is given as

X = V(X), (12.9)

The corresponding fundamental matiik (4.43 is obtained by integrating the
linearized equatior¥(9)

along the trajectory. The flow and the corresponding funddatematrix are
integrated simultaneously, by the same numerical routingegrating an initial
condition on the Poincaré surface until a later crossinth@same and linearizing
around the flow we can write

f(X) ~ f(x) + M(X = X). (12.10)

Notice here, that, even though all ®f, x and f(x) are on the Poincaré surface,
f(x') is usually not. The reason for this is thkt corresponds to a specific
integration time and has no explicit relation to the arbjtrehoice of Poincaré
section. This will become important in the extended Newtathod described
below.

To find a fixed point of the flow near a starting guess/e must solve the
linearized equation

(L= M)(X = %) = —(x = F(X) = —F(x) (12.11)
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wheref (X) corresponds to integrating from one intersection of the¢¥é surface
to another andM is integrated accordingly. Here we run into problems with th
direction along the flow, since - as shown in sé&c2.1- this corresponds to a unit
eigenvector oM. The matrix (- M) does therefore not have full rank. A related
problem is that the solutior’ of (12.11) is not guaranteed to be in the Poincaré
surface of section. The two problems are solved simultssigdny adding a small
vector along the flow plus an extra equation demandingxtieg in the Poincaré
surface. Let us for the sake of simplicity assume that thed2oé surface is a
(hyper)-plane, i.e., it is given by the linear equation

(X=%)-a=0, (12.12)

wherea is a vector normal to the Poincaré section agds any point in the
Poincaré section.1@.11) then becomes

( 1;M v((;() )( x’(ﬁ_x ) :( —FO(X) ) . (12.13)

The last row in this equation ensures tlxawill be in the surface of section, and
the addition ofv(x)6T, a small vector along the direction of the flow, ensures that
such arx can be found at least ¥is suticiently close to a solution, i.e., to a fixed
point of f.

To illustrate this little trick let us take a particularlyngple example; consider
a 3-d flow with the &y, 0)-plane as Poincaré section. Let all trajectories cross
the Poincaré section perpendicularly, i.e., with (0, 0, v;), which means that the
marginally stable direction is also perpendicular to thim@aré section. Furthermore,
let the unstable direction be parallel to tlkeaxis and the stable direction be
parallel to they-axis. In this case the Newton setup looks as follows

1-A 0 0 0)\(d “Fy
0 1-As0 0l & | | -F
0 o ovwl| 6|7 -F (12.14)
0 o 1 olsr 0

If you consider only the upper-left [8 3] matrix (which is what we would have
without the extra constraints that we have introduced) thenmatrix is clearly

not invertible and the equation does not have a unique soluliowever, the full

[4x4] matrix is invertible, as det) = v.det (1- M_), whereM, is the monodromy
matrix for a surface of section transverse to the orbit, see’s.3.

For periodic orbits 12.13 generalizes in the same way d2(7), but withn
additional equations — one for each point on the Poincarfacei The Newton
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setup looks like this

1 =Jn 5 -F
1 1
-1 Vi 62 -F2

o1 : '

1 Vi )

I 1 s 1= -k,

a oty 0

a o sty 0

Solving this equation resembles the corresponding tashkégms. However, in the
process we will need to invert ard[¢ 1)n x (d + 1)n] matrix rather than ad x d]
matrix. The task changes with the length of the cycle.

This method can be extended to take care of the same kind bfepns if
other eigenvalues of the fundamental matrix equal 1. Thigéas if the flow has
an invariant of motion, the most obvious example being gneanservation in
Hamiltonian systems. In this case we add an extra equatiox fo be on the
energy shell plus and extra variable corresponding to gdalismall vector along
the gradient of the Hamiltonian. We then have to solve

1-M V(¥ VH(X)) XX ~x- 1)
(1M [ (o) (1215)
simultaneously with
H(X) - H(x) = 0. (12.16)

The last equation is nonlinear. It is often best to treatekjsation separately and
solve it in each Newton step. This might mean putting in antesiéil Newton
routine to solve the single step df4.15 and (12.16 together. One might be
tempted to linearizel.16 and put it into (2.15 to do the two diferent Newton
routines simultaneously, but this will not guarantee atsmuon the energy shell.
In fact, it may not even be possible to find any solution of thebined linearized
equations, if the initial guess is not very good.

12.4.2 How good is my orbit?

Provided we understand the topology of the flow, multi-shmapimethods and
their variational cousins of chapt@7 enable us to compute periodic orbits of
arbitrary length. A notion that errors somehow grow expdiadéin with the cycle
length at Lyapunov exponent rate cannot be right. So how dohaeacterize the
accuracy of an orbit of arbitrary length?

The numerical round{® errors along a trajectory are uncorrelated and act
as noise, so the errors({ + At) — f2{(x(t))? are expected to accumulate as the
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sum of squares of uncorrelated steps, linearly with timendéehe accumulated
numerical noise along an orbit sliced Y intermediate sections separated by
Aty = tes1 -tk ~ Tp/N can be characterized by affective difusion constant

N
.1 A £y ))2
Do = 57 l)k;mk(m A% ()2 (12.17)

For hyperbolic flows errors are exponentially amplified glonstable and contracted
along stable eigen-directions, dg+ 1 stands for the number of unstable directions
of the flow together with the single marginal direction aldhg flow. An honest
calculation requires an honest error estimate. If you anepeaing a large set of
periodic orbitsp, list D along withT,, and other properties of cycles.

Résumé

There is no general computational algorithm that is guasthto find all solutions
(up to a given period'may) to the periodic orbit condition

¥ T = f'(x), T>0

for a general flow or mapping. Due to the exponential divecgeaf nearby
trajectories in chaotic dynamical systems, direct sofutid the periodic orbit
condition can be numerically very unstable.

A prerequisite for a systematic and complete cycle searalgsod (but hard
to come by) understanding of the topology of the flow. Usualhe starts by
- possibly analytic - determination of the equilibria of thew. Their locations,
stabilities, stability eigenvectors and invariant mattigooffer skeletal information
about the topology of the flow. Next step is numerical lomgetievolution of
“typical” trajectories of the dynamical system under irtigegtion. Such numerical
experiments build up the “natural measure,” and reveabregmost frequently
visited. The periodic orbit searches can then be initidlibg taking nearly
recurring orbit segments and deforming them into a closbiisoiWith a sificiently
good initial guess the Newton-Raphson formula

)

yields improved estimate = x+6x, T’ = T +6T. Iteration then yields the period
T and the location of a periodic poim}, in the Poincaré surface{ — xo) -a =0,
wherea is a vector normal to the Poincaré sectiorxat

[section 14.4.1]

The problem one faces with high-dimensional flows is thatr tt@pology
is hard to visualize, and that even with a decent startingsgdier a point on
a periodic orbit, methods like the Newton-Raphson methadligely to fail.

cycles - 13jun2008.tex



CHAPTER 12. FIXED POINTS, AND HOW TO GET THEM 208

Methods that start with initial guesses for a number of Eoaong the cycle, sucrllCIHmOI 27]

as the multipoint shooting method of set®.3 are more robust. The relaxatio
(or variational) methods take this strategy to its logiceteme, and start by a
guess of not a few points along a periodic orbit, but a gue#iseoéntire orbit. As
these methods are intimately related to variational pplesi and path integrals,
we postpone their introduction to chapgt.

Commentary

Remark 12.1 Close recurrence searches. For low-dimensional maps of flows (for
high-dimensional flows, forget about it) picking initial ggses for periodic orbits from
close recurrences of a long ergodic trajectory seems likebaious idea. Nevertheless,
ref. [1] is frequently cited. Such methods have been deployed byynsmong them
G. Tanner, L. Rondoni, G. Morris, C.P. Dettmann, and R.L. iBelvack P, 13, 14, 10]
(see also secl.8.5. Sometimes one can determine most of the admissibledtiiesrand
their weights without working too hard, but method comeswaio guarantee.

Remark 12.2 Piecewise linear maps. The Lozi map 8.20 is linear, and 100,000’s
of cycles can be easily computed byq2] matrix multiplication and inversion.

Remark 12.3 Newton gone wild. Skowronek and Gor&[l] offer an interesting discussion

of Newton iterations gone wild while searching for roots afymomials as simple as
X +1=0.
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Exercises

12.1. Cycles of the Ulam map. Test your cycle-searching 12.7. Rossler flow cycles.  (continuation of exercisé.4

routines by computing a bunch of short cycles and their
stabilities for the Ulam map

f(x) =4x(1-x). (12.18)

12.2. Cycles stabilities for the Ulam map, exact. In
exercise 12.1 you should have observed that the
numerical results for the cycle stability eigenvalues
(4.50 are exceptionally simple: the stability eigenvalue
of thexo = O fixed pointis 4, while the eigenvalue of any
othern-cycle is+2". Prove this. (Hint: the Ulam map
can be conjugated to the tent md®(§. This problem
is perhaps too hard, but give it a try - the answer is in
many introductory books on nonlinear dynamics.)

12.3. Stability of billiard cycles. Compute stabilities of few
simple cycles.

(@) A simple scattering billiard is the two-disk
billiard. It consists of a disk of radius one centered
at the origin and another disk of unit radius located
atL+2. Find all periodic orbits for this system and
compute their stabilities. (You might have done
this already in exercise.2 at least now you will
be able to see where you went wrong when you

knew nothing about cycles and their extraction.) 12 8.

(b) Find all periodic orbits and stabilities for a billiard
ball bouncing between the diagoryat x and one
of the hyperbola branchgs= -1/x. 129

12.10.

12.4. Cycle stability. Add to the pinball simulator of
exercise8.1 a routine that evaluates the expanding
eigenvalue for a given cycle.

12.5. Pinball cycles.  Determine the stability and Iengtr}
of all fundamental domain prime cycles of the binary
symbol string lengths up to ®( longen forR: a= 6
3-disk pinball.

12.6. Newton-Raphson method. Implement the Newton-
Raphson method in @-and apply it to determination of
pinball cycles.
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2.11.

Determine all cycles up to 5 Poincaré sections re
for the Rossler flowZ.17), as well as their stabilities.

(Hint: implement (2.13, the multipoint shootir
methods for flows; you can cross-check your sh
cycles against the ones listed in the table.)

Table: The Rossler flow217): The itinerary p,
periodic point = (0,yp.2) and the expandil
eigenvalue\, for all cycles up to the topological len
7. (J. Mathiesen G. Simon A. Basy

n_E p yE/ z5 Ae
2 01 3.915804 3.692833 -3.5120
3 001 2.278281 7.416481 -2.3419

011 2.932877 5.670806 5.3449
4 0111 3.466759 4.506218 -16.696
5 01011 4.162799 3.303903 -23.199

01111 3.278914 4.890452 36.886
6 001011 2.122094 7.886173 -6.857¢€

010111  4.059211 3.462266 61.649

011111  3.361494 4.718206 -92.082
7 0101011 3.842769 3.815494 77.761

0110111 3.025957 5.451444 -95.183

0101111 4.102256 3.395644 -142.23

0111111 3.327986 4.787463 218.02

Cycle stability, helium. Add to the helium integrat
of exercise2.10a routine that evaluates the expan
eigenvalue for a given cycle.

Colinear helium cycles. Determine the stabill
and length of all fundamental domain prime cycles |
symbol sequence length 5 or longer for collinear he
of figure7.2.

Uniqueness of unstable cycles'. Prove that the
exists only one 3-disk prime cycle for a given fi
admissible prime cycle symbol string. Hints: look a
Poincaré section mappings; can you show that th
exponential contraction to a unique periodic point
a given itinerary? Exercisg7.1might be helpful in th
effort.

Inverse iteration method for a Hamiltonian repeller

Table: All periodic orbits up to 6 bounces for |
Hamiltonian Henon mappindl@.19 with a = 6. Liste
are the cycle itinerary, its expanding eigenvalug an
its “center of mass” The “center of mass” is lisi
because it turns out the “center of mass” is ofte
simple rational or a quadratic irrational.


http://ChaosBook.org/projects/joachim.ps.gz
http://ChaosBook.org/extras/simon/Roessler.html
http://ChaosBook.org/projects/index.shtml#Basu
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p Ap 2. Xpi (“Hamiltonian”) parameter valueds = -1. The
g 8;;2%2;1@ gg%ggg coordinates of a periodic orbit of lengtiy satisfy the
10 -0.98989810"  0.333333 equation
100 -0.13190%10° -0.206011 )
110 0.558978107  0.539345 Xpist + Xpi1 = 1=, i=1,...np, (12.19)
1000 -0.10443010" -0.816497
1100 0.57799810° 0.000000 with the periodic boundary conditiog,o = Xpn,. Verify
1110 -0.10368810° 0.816497 that the itineraries and the stabilities of the short peciod
10000  -0.76065810° -1.426032 orbits for the Henon repelleip.19 ata = 6 are as listed
11000  0.44455210° -0.606654 above.
10100 0.77020210°  0.151375 . . . .
11100 -0.71068810° 0248463 Hint: you can use any cycle-searching routine you wish,
11010 -0.58949910° 0.870695 but for the complete repeller case (all binary sequences
11110 0.39099410° 1.095485 are realized), the cycles can be evaluated simply by
100000 -0.54574610° -2.034134 inverse iteration, using the inverse G2(19
110000 0.32222410° -1.215250
101000  0.51376210° -0.450662 T-x _—x
111000 -0.47846410" -0.366025 X/ =Sy Pt TRl g

pi Pl s 5 +ees Mp

110100 -0.63940010* 0.333333 a
101100 -0.63940010* 0.333333
111100 0.39019410° 0.548583 HereS; are the signs of the corresponding cycle point
111010 0.10949410* 1.151463 coordinatesSy; = Xpi/|Xpil. (G. Vattay)
111110 -0.10433810* 1.366025

12.12.

Consider the Hénon map3.(§ for area-preserving
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Chapter 13

Counting

That which is crooked cannot be made straight: and that
which is wanting cannot be numbered.

—Ecclestiastes 1.15

the easiest problem in theory of chaotic systems: cycletomyinThis is

the simplest illustration of the raison d’etre of periodibibtheory; we
shall develop a duality transformation that reldtesal information - in this case
the next admissible symbol in a symbol sequencegidbal averages, in this case
the mean rate of growth of the number of admissible itinesaviith increasing
itinerary length. We shall transform the topological dynesrof chapterlO into
a multiplicative operation by means of transition matritéeskov graphs, and
show that thenth power of a transition matrix counts all itineraries ofdémn.
The asymptotic growth rate of the number of admissible iitiries is therefore
given by the leading eigenvalue of the transition matri; ldading eigenvalue is
in turn given by the leading zero of the characteristic deteant of the transition
matrix, which is - in this context - called thepological zeta functianFor flows
with finite Markov graphs this determinant is a finite polyriahwhich can be
read df the Markov graph.

WE ARE Now in a position to apply the periodic orbit theory to the firstian

The method goes well beyond the problem at hand, and formsotfeeof the
entire treatise, making tangible a rather abstract notfdspectral determinants”
yet to come.

13.1 How many ways to get there from here?

In the 3-disk system the number of admissible trajectoriesbtes with every
iterate: there ar&, = 3- 2" distinct itineraries of lengt. If disks are too
close and some part of trajectories is pruned, this is only@wer bound and
explicit formulas might be hard to discover, but we still imidpe able to establish
a lower exponential bound of the foriy, > Ce™. Bounded exponentially by
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3¢"2 > K, > CéM the number of trajectories must grow exponentially as a
function of the itinerary length, with rate given by ttepological entropy

1
h= lim ZInK, . (13.1)

We shall now relate this quantity to the spectrum of the ftenmsmatrix, with
the growth rate of the number of topologically distinct é@tpries given by the
leading eigenvalue of the transition matrix.

The transition matrix element;; € {0,1} in (10.2 indicates whether the
transition from the starting partitiof into partitioni in one step is allowed or

not, and thei( j) element of the transition matrix iteratedimes )
[exercise 13.1]

M= D, TiaThke: T
k.ko,....kn-1

receives a contribution 1 from every admissible sequendeansitions, soT");;
is the number of admissiblesymbol itineraries starting withand ending with.

Example 13.1 3-disk itinerary counting.
The (T?)13 = 1 element of T2 for the 3-disk transition matrix (10.5)

01 12 (211
(101]:[121]. (13.2)
110 11 2

corresponds to 3 — 2 — 1, the only 2-step path from 3 to 1, while (T?)s3 = 2 counts
the two itineraries 313 and 323.

The total number of admissible itinerariesro$ymbols is

Kn= (T =(11,...,1) T"| /. (13.3)
ij

We can also count the number of prime cycles and pruned perpmints,
but in order not to break up the flow of the main argument, wegate these
pretty results to sectd3.5.2and13.7. Recommended reading if you ever have to
compute lots of cycles.

The matrix T has non-negative integer entries. A mathkis said to be
Perron-Frobeniusif some powerk of M has strictly positive entriesM¥);s > 0.
In the case of the transition matrix this means that every partition eventually
reaches all of the partitions, i.e., the partition is dyneatly transitive orindecomposable,
as assumed in2(2). The notion oftransitivity is crucial in ergodic theory: a
mapping is transitive if it has a dense orbit. This notionrikerited by the
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shift operation once we introduce a symbolic dynamics. at ik not the case,
state space decomposes into disconnected pieces, eaclicbfagh be analyzed
separately by a separate indecomposable Markov graph. eHemcffices to
restrict our considerations to transition matrices of &eiffrobenius type.

Afinite [NxN] matrix T has eigenvalueByp, = 1,¢, and (right) eigenvectors
{p0, 91, -+, pm-1}. Expressing the initial vector in18.3 in this basis (which
might be incompleteM < N),

1
N 1 N N-1 N-1 N
T = T Z oo = Z bn/i(ﬁpa B
i a=0 a=0

and contracting witff1,1,...,1), we obtain

N-1
Kn= > Cad].
a=0
[exercise 13.2]

The constants, depend on the choice of initial and final partitions: In this
example we are sandwichifid' between the vectdrl, 1,...,1)and its transpose,
but any other pair of vectors would do, as long as they are ribbgonal to the
leading eigenvectapy. In a experiment the vect¢d. 1, ..., 1)would be replaced
by a description of the initial state,and the right vectouldalescribe the measure
time n later.

Perron theorem states that a Perron-Frobenius matrix hamdegenerate
positive real eigenvalugy > 1 (with a positive eigenvector) which exceeds the
moduli of all other eigenvalues. Thereforeragcreases, the sum is dominated
by the leading eigenvalue of the transition matiix,> |Red,|, @ = 1,2,---,N-1,
and the topological entropy.8.1) is given by

n
Co \do
- 1 "
InAp + lim [ﬂ+—&(ﬂ) +]
n-oo| N nco \Ag
InAg. (13.4)

=y
Il

1 N
I £ incol

What have we learned? The transition maffiis a one-steghort timeoperator,
advancing the trajectory from a partition to the next adibiespartition. Its
eigenvalues describe the rate of growth of the total numbeajectories at the
asymptotic timesinstead of painstakingly countirt§;, K2, Ks, ... and estimating
(13.1) from a slope of a log-linear plot, we have tegacttopological entropy
if we can compute the leading eigenvalue of the transitiotrima . This is
reminiscent of the way the free energy is computed from feanmatrix for 1-
dimensional lattice models with finite range interactiodsstorically, it is analogy
with statistical mechanics that led to introduction of enmn operator methods
into the theory of chaotic systems.
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13.2 Topological trace formula

There are two standard ways of getting at eigenvalues of Exmdty evaluating
the trace tT" = 3, 2], or by evaluating the determinant det{%T). We start by
evaluating the trace of transition matrices.

Consider arM-step memory transition matrix, like the 1-step memory epiam
(10.13. The trace of the transition matrix counts the number dfifpams that map
into themselves. In the binary case the trace picks up ontydwntributions on
the diagonalTo..00.-0 + T1..1.1.-1, NO Matter how much memory we assume. We
can even take infinite memoiy — oo, in which case the contributing partitions
are shrunk to the fixed points,Tr= Ts5+ T11- )

d > [exercise 10.7]

More generally, each closed walk througboncatenated entries dfcontributes
to tr T a product of the matrix entries along the walk. Each step ah suwalk
shifts the symbolic string by one symbol; the trace ensurasthe walk closes
on a periodic stringc. Definet. to be thelocal trace the product of matrix
elements along a cycle each term being multiplied by a book keeping variable
z Ztr T" is then the sum of; for all cycles of lengthn. For example, for an )

. . . . ... [exercise 10.7]
[8x8] transition matrixTs;s,s, 5,55, Version of (L0.13, or any refined partition
[2"x 2" transition matrix,n arbitrarily large, the periodic poift00 contributes
t100 = 2 T1oq010 T o001 oot 100 10 2t T3 This product is manifestly cyclically
symmetric,tioo = to10 = too1, @and so a prime cycl@ of lengthny, contributes
np times, once for each periodic point along its orbit.  For theaty labeled
non—-wandering set the first few traces are given by (consble$10.1and13.2)

zZtrT = to+ty,
2rT? = G+ + 2
2rTé = tg + t? + 3t100 + 3t101,
ZtrT4 = té + t‘l1 + 2@0 + 4t1000 + 4t1001 + Al1011- (13.5)

For complete binary symbolic dynamits= 2" for every binary prime cycle;

if there is pruningtp, = Z if p is admissible cycle ang, = 0 otherwise. Hence
tr T counts the number @fdmissible periodic pointsf periodn. In general, the
nth order trace13.5 picks up contributions from all repeats of prime cycleshwi
each cycle contributing,, periodic points, so the total number of periodic points
of periodn is given by

2Ny =2 T" = Z nptg/np = Z np Z Snnprth - (13.6)
P r=1

npin

Heremjn means tham s a divisor ofn, and (takingz = 1) t, = 1 if the cycle is
admissible, and, = 0 otherwise.

In order to get rid of the awkward divisibility constraint= npr in the above
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Table 13.1: The total numbers of periodic points, of periodn for binary symbolic
dynamics. The numbers of prime cycles contributing illatgs the preponderance of
long prime cycles of length over the repeats of shorter cycles of lengthsn = rnp,.
Further listings of binary prime cycles are given in tatlésland13.5.2 (L. Rondoni)

n Ny # of prime cycles of length,
1 2 3 45 6 7 8 9 10
1 2 2
2 4 2 1
3 8 2 2
4 6 2 1 3
5 32 2 6
6 64 2 1 2 9
7 128 2 18
8 256 2 1 3 30
9 512 2 2 56
10 1024 2 1 6 99

sum, we introduce the generating function for numbers abgér points

= zT
2Ny = t 4 13.7
HZ{ =TT (13.7)

Substituting {3.6) into the left hand side, and replacing the right hand sidéhby
eigenvalue sum " = ¥ A7, we obtain our first example of a trace formula, the
topological trace formula

Zly Nptp
= . 13.8
1-2, Z 1-tp (138)
a=0 P

A trace formula relates the spectrum of eigenvalues of aretge- in this case the
transition matrix - to the spectrum of periodic orbits of thh@amical system. The
Z" sum in (L3.7) is a discrete version of the Laplace transform (see chdier
and the resolvent on the left hand side is the antecedeneahtre sophisticated
trace formulas 16.10 and (L6.23.We shall now use this result to compute the
spectral determinant of the transition matrix.

13.3 Determinant of a graph

Our next task is to determine the zeros of gpectral determinandf an [M x M]
transition matrix

M-1

det(1-zT) = [ [ (1-21) . (13.9)

a=0
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We could now proceed to diagonaliZeon a computer, and get this over with. It
pays, however, to dissect det{AT) with some care; understanding this computation
in detail will be the key to understanding the cycle expamsiomputations of
chapterl18 for arbitrary dynamical averages. Fbra finite matrix, (3.9 is just
the characteristic equation fér However, we shall be able to compute this object
even when the dimension df and other such operators goescto and for that
reason we prefer to refer ta§.9 loosely as the “spectral determinant.”

There are various definitions of the determinant of a matifrey mostly
reduce to the statement that the determinant is a certainosemall possible
permutation cycles composed of the trac€E*trin the spirit of the determinant—
trace relation 1.15):

[exercise 4.1]

det(1-2zT)

exp(tr In(1-zT) = exp[— %trT"]
n=1

1-ztr T - ;((tr TZ-tr(T?)-... (13.10)

This is sometimes called a cumulant expansion. Formallyrigtht hand is an
infinite sum over powers af'. If T is an [MxM] finite matrix, then the characteristic
polynomial is at most of ordel¥. In that case the cdiécients ofz", n > M must
vanishexactly

We now proceed to relate the determinant 113.(.0 to the corresponding
Markov graph of chaptetO: to this end we start by the usual algebra textbook
expression for a determinant as the sum of products of athpetions

det(1-2T) = > (-1f' (1= ZNam( - ZNom, - (1= 2Dy (13.12)

{m)

whereT is a [M x M] matrix, {x} denotes the set of permutationsMfsymbols,
7k is whatk is permuted into by the permutatian and 1)" = +1 is the parity
of permutationr. The right hand side of13.17) yields a polynomial of ordeM

in z a contribution of orden in z picks upM — n unit factors along the diagonal,
the remaining matrix elements yielding

D" Ty, - T, (13.12)

wherer is the permutation of the subsetroflistinct symbols;; . .. n, indexingT
matrix elements. Asinl@.5, we refer to any combinatioy = T, Tyons - - - Tons

for a given itineraryc = mny - - -, 7, as thelocal trace associated with a closed
loop ¢ on the Markov graph. Each term of fori8(12 may be factored in terms

of local traces, tc, - - - tg,, that is loops on the Markov graph. These loops are non-
intersecting, as each node may only be reachedngfink, and they are indeed
loops, as if a node is reached by a link, it has to be the stapaint of another
singlelink, as eachy; must appear exactlgnceas a row and column index.
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So the general structure is clear, a little more thinkingrily sequired to get
the sign of a generic contribution. We consider only the addeops of length
1 and 2, and leave to the reader the task of generalizing tugt gy induction.
Consider first a term in which only loops of unit length appeai(13.19, that is,
only the diagonal elements @f are picked up. We have= nloops and an even
permutationz™so the sign is given by—(1)%, k being the number of loops. Now
take the case in which we havesingle loops and loops of lengthn = 2j + i.
The parity of the permutation gives—1)! and the first factor in13.19 gives
(-1)" = (-1)3*. So once again these terms combine int)f, wherek = i + |
is the number of loops. We may summarize our findings as feliow

The characteristic polynomial of a transition matrix/Markov graph
is given by the sum of all possible partitions 7 of the graph into
products of non-intersecting loops, with each loop trace tp carrying
a minus sign:

f
det(1-2T) = > >V (-1t -1, (13.13)
k=0 =«

Any self-intersecting loop ishadoweddy a product of two loops that share the
intersection point. As both the long lodg and its shadowsty, in the case at hand
carry the same weight™=*™, the cancellation is exact, and the loop expansion
(13.13 is finite, with f the maximal number of non-intersecting loops.

We refer to the set of all non-self-intersecting lodps. tp,. - - tp,} as the
fundamental cycles This is not a very good definition, as the Markov graphs
are not unique — the most we know is that for a given finite-gnamlanguage,
there exist Markov graph(s) with the minimal number of laoRegardless of how
cleverly a Markov graph is constructed, it is always trug¢ fbaany finite Markov
graph the number of fundamental cycless finite. If you know a better way to
define the “fundamental cycles,” let us know.

fast track:
@ sect. 13.4, p. 220
13.3.1 Topological polynomials: learning by examples

The above definition of the determinant in terms of tracesdstreasily grasped by
working through a few examples. The complete binary dynarvlarkov graph
of figure 10.11(b) is a little bit too simple, but let us start humbly.

Example 13.2 Topological polynomial for complete binary dynamics: There are
only two non-intersecting loops, yielding
det(1-zT)=1-to-t; =1-2z. (13.14)

The leading (and only) zero of this characteristic polynomial yields the topological
entropy & = 2. As we know that there are K, = 2" binary strings of length N, we
are not surprised by this result.
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[exercise 13.3]

Figure 13.2:(a) An incomplete Smale horseshoe:
the inner forward fold does not intersect the twc
rightmost backward folds. (b) The primary pruned
region in the symbol square and the correspondin
forbidden binary blocks. (c) An incomplete Smale
horseshoe whichiillustrates (d) the monotonicity o
the pruning front: the thick line which delineates =
the left border of the primary pruned region is =
monotone on each half of the symbol square. Th
backward folding in figures (a) and (c) is only
schematic - in invertible mappings there are furthe
missing intersections, all obtained by the forwarc
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Figure 13.1: The golden mean pruning rule Markov °

graph, see also figurk.13

M. —ioeio

— 0

]

i — 10110

and backward iterations of the primary prunec

region.

Similarly, for complete symbolic dynamics &f symbols the Markov graph has
one node andl links, yielding

det(1-2zT)=1- Nz, (13.15)

whence the topological entrofy= In N.

Example 13.3 Golden mean pruning: A more interesting example is the “golden
mean” pruning of figure 13.1. There is only one grammar rule, that a repeat of symbol
0 is forbidden. The non-intersecting loops are of length 1 and 2, so the topolfg(ical

R ercise 13.4]
polynomial is given by

det(1-zT)=1-ti —tyy = 1-2- 7. (13.16)

The leading root of this polynomial is the golden mean, so the entropy (13.4) is the

logarithm of the golden mean, h = In 1+T\/§

Example 13.4 Nontrivial pruning: The non-self-intersecting loops of the Markov
graph of figure 13.3 (d) are indicated in figure 13.3 (e). The determinant can be written
down by inspection, as the sum of all possible partitions of the graph into products of
non-intersecting loops, with each loop carrying a minus sign:

det(1-2zT) = 1-to—too11— tooor— tooo11
+totoo11 + too11tooo1- (13.17)
With t, = Z%, where ny, is the length of the p-cycle, the smallest root of
0=1-z-22+7 (13.18)

yields the topological entropy h = —Inz, z = 0.658779.. ., h =0.417367.. ., significantly
smaller than the entropy of the covering symbolic dynamics, the complete binary shift

h=In2 = 0.693... [exercise 13.9]
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) :{. : “'ﬁo ,/ 0“\
\.\ : ’ looo»“/!\' ';\

100! 0I00 &

(a} )

Figure 13.3: Conversion of the pruning front
of figure 13.2 (d) into a finite Markov graph.

(a) Starting with the start node “.", delineate all
pruning blocks on the binary tree. A solid line
stands for “1” and a dashed line for “0”. Ends

of forbidden strings are marked witk. Label -

all internal nodes by reading the bits connecting 1

4
“”, the base of the tree, to the node. (b) Indicate e B | | ] v, -
¢

all admissible starting blocks by arrows. (c) ,*‘)c "y
Drop recursively the leading bits in the admissible .~ ﬁ"‘?“\r\o o~ “) I
blocks; if the truncated string corresponds to ar _,
internal node in (a), connect them. (d) Delete".‘ -
the transient, non-circulating nodes; all admissibli %, . ¥ -
sequences are generated as walks on this fini - ... __3 - anoIl

Markov graph. (e) Identify all distinct loops and o )
construct the determinant§.17.

13.4 Topological zeta function

What happens if there is no finite-memory transition matfithe Markov graph
is infinite? If we are never sure that looking further intoufiet will reveal no
further forbidden blocks? There is still a way to define theedwinant, and this
idea is central to the whole treatise: the determinant is tledined by itcumulant
expansion13.10

[exercise 4.1]

det(1-zT)=1- Z &2, (13.19)
n=1

For finite dimensional matrices the expansion is a finite pafyial, and {3.19
is an identity; however, for infinite dimensional operattivs cumulant expansion
codficientsc, definethe determinant.

Let us now evaluate the determinant in terms of traces foritrary transition
matrix. In order to obtain an expression for the spectraémeinant (3.9 in
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terms of cycles, substitutd 8.6 into (13.19 and sum over the repeats of prime
cycles using In(t x) = 3, X'/r,

det(1-zT) = exp[— Z i %] = ﬂ (1-tp), (13.20)
p r=1 P

where for the topological entropy the weight assigned taragrcyclep of length
np ist, = 2 if the cycle is admissible, dy, = 0 if it is pruned. This determinant
is called thetopologicalor theArtin-Mazur zeta function, conventionally denoted
by

Yaop=[ [@-2")=1-> &7 (13.21)
p n=1

Counting cycles amounts to giving each admissible priméegyeveightt, = z%
and expanding the Euler producdt3(2]) as a power series in As the precise
expression for cdécientscy in terms of local traces, is more general than the
current application to counting, we shall postpone its\dion to chapted.8.

The topological entropy can now be determined from the leading zere
e of the topological zeta function. For a finité[x M] transition matrix, the
number of terms in the characteristic equatid®. (3 is finite, and we refer to this
expansion as thepological polynomiabf order< M. The power of defining a

determinant by the cumulant expansion is that it works evieenithe partition is
infinite, M — oo; an example is given in sect3.6 and many more later on.

fast track:
@ sect. 13.6, p. 226
13.4.1 Topological zeta function for flows

X
J We now apply the method that we shall use in derivifi§.23 to the
problem of deriving the topological zeta functions for flovilhe time-weighted
density of prime cycles of periods

(M) =) Y Tpdlt—rTp). (13.22)
p r=1

As in (16.22), a Laplace transform smooths the sum over Dirac delta spike
and yields theopological trace formula

Z Z Tp jo“” dteSts(t — Tp) = Z Tp i e sTer (13.23)
por=1 * p r=1
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and thetopological zeta functioffor flows:

Yaop® = [ [(1-€=7). (13.24)
p

related to the trace formula by

Z To Z e STl = _62 In1/Ztop(9) -
p r=1 S

This is the continuous time version of the discrete time logical zeta function
(13.27) for maps; its leading zers= —hyields the topological entropy for a flow.

13.5 Counting cycles

In what follows we shall occasionally need to compute alleyeip to topological
lengthn, so it is handy to know their exact number.

13.5.1 Counting periodic points

Npn, the number of periodic points of periadcan be computed froni8.19 and
(13.7) as a logarithmic derivative of the topological zeta fuoiti

>N
n=1

d d
tr (—zd—zln(l - zT)) = —zd—zln det(1-2zT)

d
~z5;1/dtop
= — 13.25
1/¢top ( )

We see that the trace formula3 ) diverges az — e ™, as the denominator has
a simple zero there.

Example 13.5 Complete N-ary dynamics: As a check of formula (13.19) in the
finite grammar context, consider the complete N-ary dynamics (10.3) for which the
number of periodic points of period n is simply tr T = N". Substituting

)

n=1

n=1

into (13.19) we verify (13.15). The logarithmic derivative formula (13.25) in this case
does not buy us much either, we recover

Nz
Z NnZ' = 1-Nz’
n=1
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Example 13.6 Nontrivial pruned dynamics: Consider the pruning of figure 13.3 (e).
Substituting (13.18) we obtain

z+87 - 82
2N = (13.26)

Now the topological zeta function is not merely a tool for extracting the asymptotic
growth of Ny, it actually yields the exact and not entirely trivial recursion relation for the
numbers of periodic points: Ny = N = N3 = 1, N, = 2n+ 1 forn = 4,5,6,7,8, and
Nn = Np-1 4+ 2Np—4 — Nj_g forn > 8.

13.5.2 Counting prime cycles

Having calculated the number of periodic points, our nejédive is to evaluate
the number oprimecyclesM,, for a dynamical system whose symbolic dynamics
is built from N symbols. The problem of findiniyl, is classical in combinatorics
(counting necklaces made out wbeads out oN different kinds) and is easily
solved. There ar&l" possible distinct strings of lengthcomposed of letters.
TheseN" strings include alMq4 prime d-cycles whose period equals or divides
n. A prime cycle is a non-repeating symbol string: for example 011=101=
110 = ...011011.. is prime, but0101 = 010101.. = 01 is not. A primed-
cycle contributed strings to the sum of all possible strings, one for each cycli
permutation. The total number of possible periodic symbeglgnces of length

is therefore related to the number of prime cycles by

Ny = Z dMg, (13.27)
din

whereN, equals tiT". The number of prime cycles can be computed recursively

1 d<n
Mn = H[NH—Z de],

din

r by theMobius inversion formul
or by theMdbius inversion formula [exercise 13.10]

My = nt ) Ng. 13.28
n=n dzmju(d) a (13.28)

where the Mobius functiop(1) = 1, u(n) = 0 if n has a squared factor, and
wu(p1p2... px) = (-1)Kif all prime factors are dferent.

We list the number of prime cycles up to length 10 for 2-, 3- drétter
complete symbolic dynamics in takl®.5.2 The number oprimecycles follows

by Mobius inversion 13.29. [exercise 13.11]
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Table 13.2: Number of prime cycles for various alphabets and grammats igngth 10.
The first column gives the cycle length, the second the foan{8.29 for the number

of prime cycles for complet&l-symbol dynamics, columns three through five give the
numbers folN = 2,3 and 4.

Table 13.3: List of the 3-disk prime cycles up to length 10. Herés the cycle length,
M, the number of prime cycled\, the number of periodic points arfsh the number
of distinct prime cycles under th€s, symmetry (see chaptet9 for further details).
Column 3 also indicates the splitting bif, into contributions from orbits of lengths that
divide n. The prefactors in the fifth column indicate the degeneragyf the cycle; for
example, 3.2 stands for the three prime cyci®&®, 13 and23 related by 2/3 rotations.
Among symmetry related cycles, a representaivehich is lexically lowest was chosen.
The cycles of length 9 grouped by parenthesis are relateingyreversal symmetry, but
not by any othes, transformation.

n Mn(N) Mn(2) Mn(3)  Mn(4)
1 N 2 3 1
2 N(N - 1)/2 1 3 6
3 N(N2 - 1)/3 2 8 20
4 N2(N2 - 1)/4 3 18 60
5 (N5 - N)/5 6 48 204
6 (NS—N3—N2+N)/6 9 116 670
7 (N7 = N)/7 18 312 2340
8 N4(N4 - 1)/8 30 810 8160
9 N3(NS — 1)/9 56 2184 29120
10 (N10— N5 — N2+ N)/10 99 5880 104754

3

Example 13.7 Counting N-disk periodic points: & A simple example of
pruning is the exclusion of “self-bounces” in the N-disk game of pinball. The number of
points that are mapped back onto themselves after n iterations is given by N, = tr T".
The pruning of self-bounces eliminates the diagonal entries, Tn-disk = Tc — 1, so the
number of the N-disk periodic points is

Np = tr T gige = (N = 1) + (=1)%(N = 1) (13.29)

(here T, is the complete symbolic dynamics transition matrix (10.3)). For the N-disk
pruned case (13.29) Mébius inversion (13.28) yields

MN-dsk %dzln: ﬂ(g) (N-1)°+ NT_l dzm: ﬂ(g) (-1

= MY for n>2. (13.30)

There are no fixed points, MY~ = 0. The number of periodic points of period 2 is
N2 — N, hence there are MY~9isk = N(N — 1)/2 prime cycles of length 2; for lengths
n > 2, the number of prime cycles is the same as for the complete (N — 1)-ary dynamics
of table 13.5.2.

\
Example 13.8 Pruning individual cycles: J Consider the 3-disk game
of pinball. The prohibition of repeating a symbol affects counting only for the fixed
points and the 2-cycles. Everything else is the same as counting for a complete binary
dynamics (eq (13.30)). To obtain the topological zeta function, just divide out the binary
1- and 2-cycles (1 - z)(1 - zty)(1 - Z’to1) and multiply with the correct 3-disk 2-cycles
(1- Zt12)(1 - 2t13)(1 - Zoa):

[exercise 13.14]
1-2)32 [exercise 13.15]

1/a-disk = (1-220——F—"——<
/(3 disk ( Z) (1 —_ Z)Z(l _ 22)
= (1-29(1+2%*=1-32-27. (13.31)
The factorization reflects the underlying 3-disk symmetry; we shall rederive it in (19.25).

As we shall see in chapter 19, symmetries lead to factorizations of topological polynomials
and topological zeta functions.
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n M, N, Sn mp-p

1 0 O 0

2 3 632 1 312

3 2 623 1 2123

4 3 1832+34 1 31213

5 6 3065 1 612123

6 9 66=32+2:3+9-6 2 6121213+ 3121323

7 18 126:187 3 61212123+ 6:1212313+ 6:1213123

8 30 25832+34+308 6 612121213+ 312121313+ 6:12121323
+6-12123123+ 6-:12123213+ 312132123

9 56 516-2-3+569 10 6121212123+ 6-(121212313+ 121212323)
+6-(121213123r 121213213) 6-121231323
+6-(121231213+ 121232123} 2-:121232313
+6-121321323

10 99 1022 18

Table 13.4: List of the 4-disk prime cycles up to length 8. The meaninghef symbols

is the same as in table3.5.2 Orbits related by time reversal symmetry (but no other
symmetry) already appear at cycle length 5. List of the yofdength 7 and 8 has been
omitted.

n M, N, Sn mp-p

1 0 0 0

2 6 1262 2 412+213

3 8 2483 1 8123

4 18 846-2+184 4 81213+ 41214+ 2:1234+ 4-1243

5 48 24G:485 6 8(12123+ 12124)+ 812313
+8:(12134+ 12143)+ 812413

6 116 7326-2+83+1166 17 8121213+ 8121214+ 8121234
+ 8121243+ 8121313+ 8:121314
+4-121323+ 8:(121324+ 121423)
+4-121343+ 8121424+ 4-121434
+ 8123124+ 8123134+ 4-123143
+ 4124213+ 8124243

7 312 2184 39

8 810 6564 108
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Example 13.9 Alphabet {a,cb’; b}: (continuation of exercise 13.16) In the S)(/cle_
counting case, the dynamics in terms of a — z, cb¢ — £

15 Is a complete lgmary
dynamics with the explicit fixed point factor (1 - tp) = (1 - 2):

1/§rop:(1fz)(1+ 1%2):1732#_

[exercise 13.19]

13.6 Topological zeta function for an infinite partition

(K.T. Hansen and P. Cvitanovic)

X
J Now consider an example of a dynamical system which (as faveas
know - there is no proof) has an infinite partition, or an infindf longer and
longer pruning rules. Take thedlguadratic map

f(X) = AX(1-X)

with A = 3.8. It is easy to check numerically that the itinerary or the¢&ding
sequence” of the critical point=1/2 is

K =1011011110110111101011110111110

where the symbolic dynamics is defined by the partition ofrBdiD.6 How this
kneading sequence is converted into a series of pruning isle dark art.For
the moment it sffices to state the result, to give you a feeling for what a “igic
infinite partition topological zeta function looks like. ppximating the dynamics
by a Markov graph corresponding to a repeller of the perioct@ctive cycle
close to theA = 3.8 strange attractor yields a Markov graph with 29 nodes and
the characteristic polynomial

l/{t(gg) = 1-2-2+2-2-2+P-7+82-2-°
T S R el R e T AR T R
R i B AR B Ak T AT (13.32)

The smallest real root of this approximate topological fetetion is
z=0.62616120.. (13.33)

Constructing finite Markov graphs of increasing length esponding t&A — 3.8
we find polynomials with better and better estimates for dpmlogical entropy.
For the closest stable period 90 orbit we obtain our bestasti of the topological
entropy of the repeller:
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[exercise 13.21]
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Figure 13.4: The logarithm of the dference _30 F © o,
between the leading zero of the finite polynomie °°‘%°
approximations to topological zeta function and oo~ ~*°[ X
best estimate, as a function of the length for th 0 20 40 60 80

length

quadratic mapA = 3.8.

1.5 T T
o
1 R E
_osE }g %%% 1
g0 $
P f ]
-1 030%3900“ E
Figure 13.5: The 90 zeroes of the characteristic o
polynomial for the quadratc mapA = 38 s T s
approximated by symbolic strings up to length 9C : "Re(z) ’
(from ref. [2])
h=-1In0.62616130424685 . = 0.46814726655867. . . (13.34)

Figure 13.4 illustrates the convergence of the truncation approxiomatito the
topological zeta function as a plot of the logarithm of thBetence between the
zero of a polynomial and our best estimals.34, plotted as a function of the
length of the stable periodic orbit. The error of the esteBn@s.33 is expected
to be of order2’ ~ e* because going from length 28 to a longer truncation
yields typically combinations of loops with 29 and more redering terms+z2°
and of higher order in the polynomial. Hence the convergesaxponential,
with exponent of-0.47 = —h, the topological entropy itself. In figurg3.5
we plot the zeroes of the polynomial approximation to thetogical zeta func-
tion obtained by accounting for all forbidden strings ofdémn 90 or less. The
leading zero giving the topological entropy is the pointselst to the origin.
Most of the other zeroes are close to the unit circle; we eatecthat for infinite
Markov partitions the topological zeta function has a unitle as the radius of
convergence. The convergence is controlled by the ratihefléading to the
next-to-leading eigenvalues, which is in this case indagd, = 1/€" = e™.

13.7 Shadowing

The topological zeta function is a pretty function, but thnite product {3.20
should make you pause. For finite transfer matrices thedeftlIside is a determinant
of a finite matrix, therefore a finite polynomial; so why is tlight hand side an
infinite product over the infinitely many prime periodic debof all periods?

The way in which this infinite product rearranges itself iatiinite polynomial

is instructive, and crucial for all that follows. You caneddy take a peek at the
full cycle expansion 18.7) of chapter18; all cycles beyond the fundamentg|
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andt; appear in the shadowing combinations such as

tsisys — oo slsmorsy -

For subshifts of finite type such shadowing combinationscebexactly if we

are counting cycles as we do here, or if the dynamics is piseelinear, as in
exercisel7.3 As we have already argued in sett5.4 for nice hyperbolic flows
whose symbolic dynamics is a subshift of finite type, the shéig combinations
almostcancel, and the spectral determinant is dominated by thdafuaental
cycles from (3.13, with longer cycles contributing only small “curvaturedrcections.

These exact or nearly exact cancelations depend on the flmg Benooth
and the symbolic dynamics being a subshift of finite type. h# tynamics
requires infinite Markov partition with pruning rules fomiger and longer blocks,
most of the shadowing combinations still cancel, but thedewesponding to the
forbidden blocks do not, leading to a finite radius of coneexe for the spectral
determinant as in figuré3.5

One striking aspect of the pruned cycle expansib® 32 compared to the
trace formulas such a43.7) is that codicients are not growing exponentially -
indeed they all remain of order 1, so instead having a radicssrvergence™, in
the example at hand the topological zeta function has thtecirnle as the radius
of convergence. In other words, exponentiating the spgatodlem from a trace
formula to a spectral determinant as r8(19 increases thanalyticity domain
the pole in the tracel@.8 atz = e " is promoted to a smooth zero of the spectral
determinant with a larger radius of convergence.

The very sensitive dependence of spectral determinanthether the symbolic
dynamics is or is not a subshift of finite type is the bad nevet the should
announce already now. If the system is generic and not stallyt stable (see
sect.11.3, a smooth parameter variation is in no sense a smooth izariat
topological dynamics - infinities of periodic orbits areated or destroyed, Markov
graphs go from being finite to infinite and back. That will imphat the global
averages that we intend to compute are generically nowlhgesehtiable functions
of the system parameters, and averaging over families adirdical systems can
be a highly nontrivial enterprise; a simple illustratiorthe parameter dependence
of the diffusion constant computed in a remark in chagter

You might well ask: What is wrong with computing the entropgrh (13.1)?
Does all this theory buy us anything? An answer: If we cdGnlevel by level, we
ignore the self-similarity of the pruned tree - examine faraple figurel0.13 or
the cycle expansion ofl3.26 - and the finite estimates bf, = In K,/n converge
nonuniformly toh, and on top of that with a slow rate of convergenbe; hy| ~
O(1/n) as in (L3.4). The determinantl(3.9) is much smarter, as by construction it
encodes the self-similarity of the dynamics, and yieldsasgmptotic value oh
with no need for any finite extrapolations.

So, the main lesson of learning how to count well, a lesson it be
affirmed over and over, is that while the trace formulas are aemnally essential
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step in deriving and understanding periodic orbit thedmg $pectral determin-
ant is the right object to use in actual computations. Imstaresumming all
of the exponentially many periodic points required by tréoenulas at each
level of truncation, spectral determinants incorporatly tire small incremental
corrections to what is already known - and that makes thene manvergent and
economical to use.

Résum é

What have we accomplished? We have related the number dbtppally distinct
paths from “this region” to “that region” in a chaotic systémthe leading eigenvalue
of the transition matrixT. The eigenspectrum df is given by a certain sum over
traces tiT", and in this way the periodic orbit theory has entered thearalready

at the level of the topological dynamics, the crudest dpson of dynamics.

The main result of this chapter is the cycle expansithZJ) of the topologi-
cal zeta function (i.e., the spectral determinant of thediteon matrix):

Ydop(@) = 1- ) &
k=1

For subshifts of finite type, the transition matrix is finigad the topological zeta
function is a finite polynomial evaluated by the loop expangL3.13 of det (1-
zT). For infinite grammars the topological zeta function is wedi by its cycle
expansion. The topological entropyis given by the smallest zem= e™. This
expression for the entropy éxact in contrast to the definitionl3.1), non — oo
extrapolations of IiK,/n are required.

Historically, these topological zeta functions were trepiration for applying
the transfer matrix methods of statistical mechanics tptbblem of computation
of dynamical averages for chaotic flows. The key result wasdynamical zeta
function to be derived in chapté6, a weighted generalization of the topological
zeta function.

Contrary to claims one sometimes encounters in the litexatiexponential
proliferation of trajectories” is not the problem; what limthe convergence of
cycle expansions is the proliferation of the grammar ruéesthe “algorithmic
complexity,” as illustrated by sect3.6 and figurel3.5in particular.

Commentary

Remark 13.1 “Entropy.” The ease with which the topological entropy can be motivated
obscures the fact that our construction does not lead tovaniamt characterization of the
dynamics, as the choice of symbolic dynamics is largelyteatyi: the same caveat applies
to other entropies.In order to obtain proper invariants meeds to evaluate a supremum
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over all possible partitions. The key mathematical poiat #liminates the need of such
search is the existence géneratorsi.e., partitions that under dynamics are able to probe
the whole state space on arbitrarily small scales: moreigglgca generator is a finite
partitionQ = w1 ...wn, With the following property: takeM the subalgebra of the
state space generated@Qyand consider the partition built upon all possible intetiems

of sets¢X(8), where¢ is dynamical evolutiong; is an element of\ andk takes all
possible integer values (positive as well as negativel the closure of such a partition
coincides with the algebra of all measurable sets. For atigir (and readable) discussion
of generators and how they allow a computation of the Kolrmogentropy, see refl].

Remark 13.2 Perron-Frobenius matrices.  For a proof of Perron theorem on the
leading eigenvalue see ref27]. Sect. A4.1 of ref. ] offers a clear discussion of the
spectrum of the transition matrix.

Remark 13.3 Determinant of a graph. Many textbooks fer derivations of the loop
expansions of characteristic polynomials for transiticatnses and their Markov graphs,
see for example refs3[4, 5].

Remark 13.4 T is not trace class. Note to the erudite reader: the transition maffix
(in the infinite partition limit (.3.19) is nottrace class.Still the trace is well defined in the
n — oo limit.

Remark 13.5 Artin-Mazur zeta functions. Motivated by A. Weil's zeta function for
the Frobenius map?], Artin and Mazur [L7] introduced the zeta functiorl8.2]) that
counts periodic points for ieomorphisms (see also ref] for their evaluation for maps
of the interval). Smalel[0] conjectured rationality of the zeta functions for Axiom A
diffeomorphisms, later proved by Guckenheini€l pnd Manning L 7]. See remarl7.4
on page296for more zeta function history.

Remark 13.6 Ordering periodic orbit expansions. In sect.18.5we will introduce an
alternative way of hierarchically organizing cumulant arpions, in which the order is
dictated by stability rather than cycle length: such a pdoce may be better suited to
perform computations when the symbolic dynamics is not wedlerstood.

Exercises

13.1. A transition matrix for 3-disk pinball. disk ternary symbolic dynamics, and write down
the corresponding transition matrix corresponding
to the graph. Show that iteration of the transition

a) Draw the Markov graph corresponding to the 3-
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13.2. Sum of A is like a trace.
eigenvaluedy. Show that

matrix results in two coupled linear fékrence
equations, - one for the diagonal and one for
the df diagonal elements. (Hint: relateTtf to
trT™ 4.

Solve the above fference equation and obtain the
number of periodic orbits of length. Compare
with table13.5.2

Find the eigenvalues of the transition mafFifor
the 3-disk system with ternary symbolic dynamics
and calculate the topological entropy. Compare
this to the topological entropy obtained from the
binary symbolic dynamicg0, 1}.

b

=

C

N3

Let A be a matrix with

13.6.

o= D IAT; = Doy
ij k

(a) Use this to show that |tr A"| and In|[| have the

same asymptotic behavior as— o, i.e., their
ratio converges to one.

(b) Do eigenvaluedy need to be distinctly # A for

k#1?

13.7.

13.3. Loop expansions. Prove by induction the sign rule in

13.4.

the determinant expansioh3.13:

det(1-21) =" > (-Dpty, o

k=0 pr+-+pc

Transition matrix and cycle counting. Suppose you

are given the Markov graph

b

SSONRO

C

This diagram can be encoded by a maffixwhere the
entry Tj; means that there is a link connecting node
nodej. The value of the entry is the weight of the link.

a) Walks on the graph are given the weight that is the
product of the weights of all links crossed by the
walk. Convince yourself that the transition matrix
for this graph is:

a b ]

T=l¢co

b) Enumerate all the walks of length three on the
Markov graph. Now comput&® and look at the
entries. Is there any relation between the terms in
T2 and all the walks?

c) Show thafT}} is the number of walks from point
i to point j in n steps. (Hint: one might use the
method of induction.)
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d) Try to estimate the numbai(n) of walks of lengt
n for this simple Markov graph.

e) The topological entropj measures the rate
exponential growth of the total number of w:
N(n) as a function ofh. What is the topologic
entropy for this Markov graph?

. 3-disk prime cycle counting. A prime cycle
of lengthn, is a single traversal of the orbit; its la
is a non-repeating symbol string af, symbols. F
example 12 is prime, bu2121 is not, since it i¥1 =
12 repeated.

Verify that a 3-disk pinball has 3, 2, 3, 6, 9, prime
cycles of length 2, 3,4, 5, 6; -.

“Golden mean” pruned map. Continuation ¢
exercisel0.6 Show that the total number of peric
orbits of lengthn for the “golden mean” tent map is

1+ VB +(1- VB
2n .

For continuation, see exercisé7.2
exercisel3.8

Alphabet {0,1}, prune _00. . The Markov diagra
figure 10.13 (b) implements this pruning rule. T
pruning rule implies that “0” must always be brack
by “1"s; in terms of a new symbol 2= 10, th
dynamics becomes unrestricted symbolic dynamic:
with binary alphabetl,2}. The cycle expansiori@.13
becomes

See al

/¢ = (1-t)(1-t2)(1—ta2)(1— t112)(13.35
1-t1—tp— (tiz - tat)

=(t112 = taot) — (tiz2 — tr2t) . ..

In the original binary alphabet this corresponds to:
17 = 1-t;—tyo— (t110— tatio)
—(t1110~— ta1ots) — (t11010— t110ti6)-3-36

This symbolic dynamics describes, for example,
maps with the golden mean winding number.
unimodal maps this symbolic dynamics is realize
the tent map of exercisk3.6

A unimodal map example. Consider a unimoc

map, this Figure (a):

fix)

025 05

0o

0025 05 075 10 1
X
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13.9.

13.10.

13.11.

13.12.

Figure: (a) A unimodal map for which the critical point
maps into the right hand fixed point in three iterations,
and (b) the corresponding Markov graph (K.T. Hansen).
for which the critical point maps into the right hand

fixed point in three iterationsS* = 100L. Show that
the admissible itineraries are generated by the Markov
graph of the Figure (b).

(Kai T. Hansen)

Glitches in shadowing:*  Note that the combination
tooor1 Minus the “shadowtptpe11 in (13.17 cancels
exactly, and does not contribute to the topological zeta
function (13.19. Are you able to construct a smaller
Markov graph than figur&3.3(e)?

Whence Mobius function?  To understand where the
Mobius function comes from consider the function

f(n =>"g(d)

dn

(13.37)

whered|n stands for sum over all divisotsof n. Invert
recursively this infinite tower of equations and derive the
Mbbius inversion formula

g(n) = " u(n/d)f(d)

din

13.13.

(13.38)

Counting prime binary cycles.
comfortable with Mdbius inversion reproduce the results
of the second column of tabli3.5.2

Write a program that determines the number of prime
cycles of lengtm. You might want to have this program
later on to be sure that you have missed no 3-pinball
prime cycles.

Counting subsets of cycles. The techniques
developed above can be generalized to counting subsets
of cycles. Consider the simplest example of a dynamical

system with a complete binary tree, arepeller mi&p§ 13.15.

with two straight branches, which we label 0 and 1.
Every cycle weight for such map factorizes, with a factor
to for each 0, and factdg for each 1 in its symbol string.
Prove that the transition matrix traceis3(5 collapse to
tr(TK) = (to + ), and ¥¢ is simply

[Ja-t)=1-to-t (13.39)
p
Substituting £3.39 into the identity
1-tp?
l_[(l+tp) = 1—[ 1-t,
P P
we obtain 13.16.

1-2-2
1-to—-t

l_[ (1+tp)

p
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2toty

= 1l+to+th+ ——m—
0T T -t

= l+t0+11

N n=2\ 0k
) z(k_l)totl.

n=2 k=1

n-1

Hence forn > 2 the number of terms in the cumulant
expansion withk 0's andn — k 1's in their symbol
sequencesis(273).

In order to count the number of prime cycles in each
such subset we denote wiM,x (n = 1,2,...;k =
{0,1} forn=1; k=1,...,n-1 for n > 2) the number
of prime n-cycles whose labels contaknzeros. Show
that

Mo = Mgy =1, n>2,k=1,...,n-1

20

m|

NMnk

n
k

where the sum is over ath which divide bothn andk.
(Continued as exercisis.7.)

Logarithmic periodicity of In Ny*. Plot InN,, — nh
for a system with a nontrivial finite Markov graph. Do
you see any periodicity? If yes, why?

4-disk pinball topological zeta function.  Show that
the 4-disk pinball topological zeta function (the pruning
affects only the fixed points and the 2-cycles) is given by

dsk _ gy (=2
Uﬁ%p - (l 32) (l _ 2)3(1 _ 22)3
= (1-39)(1+2°
= 1-62-82-37. (13.40)
N-disk pinball topological zeta function. Show

that for anN-disk pinball, the topological zeta function
is given by

1/4}“(‘;';“5k (1-(N-1)2 x
(1 _ ZZ)N(Nfl)/Z
(1-2N-1(1- ZZ)(N—l)(N—Z)/Z

A-(N-1)2 @1+ .(13.41)

The topological zeta function has a raot = N - 1,
as we already know it should fromi§.29 or (13.19.
We shall see in secl9.4that the other roots reflect the
symmetry factorizations of zeta functions.

Alphabet {a, b,c}, prune _ab_ . The pruning rule
implies that any string of “b”s must be preceeded by a
“c"; so one possible alphabet {a, cb¥; b}, k=0,1,2. ..

As the rule does not prune the fixed point it is
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explicitly included in the list.
(13.13 becomes

1Y = (1-ta)1-tp)(1-t)x

(l - tch)(l - tac)(l - tcbh) s
1—ta— 1ty — tc + taly — (ten — tetp)
_(tac - tatc) - (tcbb - tcbtb) cee

The cycle expansion Note that this says that 1, 23, 2, 2113 are

fundamental cycles; not all cycles up to length 7
needed, only 2113.

(b) Show that the topological zeta function is

1dtop=(1-2(A-z2-Z -2 + 2 - 7') (13.4E

and check that it yields the exact value of the en

The dfect of the_ab_ pruning is essentially to unbalance h=0522737642...
the 2 cycle curvaturp—tatp; the remainder of the cycle13.20. Topological zeta function for alphabet{0,1}, prune
expansion retains the curvature form. -100Q, -0010Q, -0110Q. (continuation

13.17. Alphabet {0,1}, prune nrepeats of “0" _000. .00 exercisel1.9 Show that topological zeta function is

This is equivalent to then symbol alphabetl, 2,
.., N} unrestricted symbolic dynamics, with symbols
corresponding to the possible .1®M0 block lengths:

(Zli?icl)éfelc%()n’qé-s" n=100..00. The cycle expansmrla.zl. Alphabet {0,1}, prune only the fixed point0.  Thi

is equivalent to thanfinite alphabet{1, 2, 3, 4,...

1/¢ = 1-ti—tp . . ~ty—(tro—titp) . . .—(tin—taty) . .. .(13.42)unrestricted symbolic dynamics. The prime cy

are labeled by all non-repeating sequences of int

ordered lexically:t,,n > 0; tmp, tymn -..,N > m > 0

tmn T >N>m> 0,...(see sec3.3. Now the numb
of fundamental cycles is infinite as well:

1/¢ = (1-to) (1~ t1 — t2 — to3 — t113)
for unrestricted 4-letter alphabft, 2, 23 113.

(13.46

13.18. Alphabet {0,1}, prune -100Q, -0010Q, -0110Q.
Show that the topological zeta function is given by

1i=(1-to)(1-ti—to—tozg—tung  (13.43)

X ) 1/( = 1- Ztn - Z (tmn*tntm)
with the unrestricted 4-letter alphabft, 2, 23 113. o om0
Here 2, 3, refer to 10, 100 respectively, as in _ _
exercisel3.17 Z (tmnn = Gntr)
n>m>0
13.19. Alphabet {0,1}, prune _100Q, -0010Q, _0110Q, — Z (tmnn — tmntn) (13.47
_10011. The first three pruning rules were NS0
incorporated in the preceeding exercise. _ Z (T ———
(a) Show that the last pruning rul#0011 leads (in a r>n>ms0
way similar to exercisé3.19 to the alphabe21¥, 23, —tmrtn — tmtar + tmtaty) -+ (13.48

21¥113 1,0}, and the cycle expansion . . )
As shown in tabl€3.3 this grammar plays an import

1/¢ = (1-to)(1 -ty —to —trz+tatoz —t2113)(13.44) role in description of fixed points of marginal stabili
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Chapter 14

Transporting densities

Paulina: I'll draw the curtain:
My lord’s almost so far transported that
He’'ll think anon it lives.

—W. Shakespearé&he Winter's Tale

(P. Cvitanovi¢, R. Artuso, L. Rondoni, and E.A. Spiegel)

saw that such a trajectory can be very complicated. In chdptee studied

a small neighborhood of a trajectory and learned that suaghberhood
can grow exponentially with time, making the concept of kiag an individual
trajectory for long times a purely mathematical ideali@ati

I N CHAPTERS 2, 3, 7 and8 we learned how to track an individual trajectory, and

While the trajectory of an individual representative poigy be highly convoluted,

as we shall see, the density of these points might evolve iraaner that is
relatively smooth. The evolution of the density of repreéative points is for
this reason (and other that will emerge in due course) oftgréerest. So are
the behaviors of other properties carried by the evolvingrawof representative
points.

We shall now show that the global evolution of the densityegfresentative
points is conveniently formulated in terms of linear actafrevolution operators.
We shall also show that the important, long-time “naturaiariant densities
are unspeakably unfriendly and essentially uncomputabéey@here singular
functions with support on fractal sets. Hence, in chafitewe rethink what is
it that the theory needs to predict (“expectation values“oiiservables”), relate
these to the eigenvalues of evolution operators, and intetes to 18 show how
to compute these without ever having to compute a naturediriant densitiego.
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Gl

Figure 14.1: (a) First level of partitioning: A

coarse partition ofM into regions Mo, M,

and M,. (b) n = 2 level of partitioning: A

refinement of the above partition, with each region

M, subdivided intoMio, M1, and M. (@ (b)

14.1 Measures

Do | then measure, O my God, and know not what |
measure?

—St. AugustineThe confessions of Saint Augustine

A fundamental concept in the description of dynamics of atihasystem is that
of measurewhich we denote bylu(x) = p(X)dx. An intuitive way to define and
construct a physically meaningful measure is by a procesafse-graining
Consider a sequence 1, 2, n,.,.. of increasingly refined partitions of state space,
figure 14.1, into regionsM; defined by the characteristic function

a1 ifxeM,
xil) = { 0 otherwise (14.1)

A coarse-grained measure is obtained by assigning the Shwashe fraction of
trajectories contained in thigh regionM; c M at thenth level of partitioning of
the state space:

A = fM (i () = fM () = fM o). (14.2)

The functionp(X) = p(x,t) denotes thalensityof representative points in state
space attimé This density can be (and in chaotic dynamics, often is) hitrarily
ugly function, and it may display remarkable singularities instance, there may
exist directions along which the measure is singular wigipeet to the Lebesgue
measure. We shall assume that the measure is normalized

®
Z Aui=1, (14.3)
i

where the sum is over subregidret thenth level of partitioning. The infinitesimal
measurey(x) dx can be thought of as an infinitely refined partition limitAf; =
IMilp(%), % € M;, with normalization

f dxp(x) = 1. (14.4)
M
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Figure 14.2: The evolution rulef'can be used to map
a regionM; of the state space into the regidi{{M;).

Here|M;| is the volume of regionM;, and all|Mi| — 0 asn — oo.

So far, any arbitrary sequence of partitions will do. Whatiatelligent ways
of partitioning state space? We already know the answer &loapterl0, but let
us anyway develope some intuition about how the dynamicsparts densities.

[chapter 10]

14.2 Perron-Frobenius operator

Given a density, the question arises as to what it might evoito with time.
Consider a swarm of representative points making up the umeasntained in a
region M; at timet = 0. As the flow evolves, this region is carried inti{M;),
as in figurel4.2 No trajectory is created or destroyed, so the conservaifon
representative points requires that

f dxp(x.1) = f A% (%, 0).
(M) M

Transform the integration variable in the expression onléftehand side to the
initial points xo = f~Y(x),

f Aol F1(x0), )| detd'(xg)| = f d% (%, 0).
M Mi

The density changes with time as the inverse of the JacoBidf) (

£(X,0)

et (o)) x = fi(xo)., (14.5)

p(x1) =

which makes sense: the density varies inversely with thaiteimal volume
occupied by the trajectories of the flow.

The relation (4.9 is linear inp, so the manner in which a flow transports

densities may be recast into the language of operators, itipgvr [exercise 14.1]

— (st - _ft . .
o) = (£00)09 = [ drod(x 1100)o00.0) (14.6)
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1
0.8
0.6 fo
N
04
0.2
Figure 14.3: A piecewise-linear skew “Ulam tent”
map (14.10) (Ao = 4/3, A1 = —4). 02 04 06 08 1

Let us check this formula. As long as the zero is not smack erbtrder oo M,
integrating Dirac delta functions is easﬁ}\;1 dxé(x) = 1if 0 € M, zero otherwise.
The integral over a 1-dimensional Dirac delta function piak the Jacobian of its
argument evaluated at all of its zeros:

f dxs(h(x) = Z ﬁ (14.7)
{x

h(x)=0}

and ind dimensions the denominator is replaced by

(x=x)h'(x)

h(x)

X (14.8)

1
Zj:fMded(h(x)) = Z —_

{x:h(x)=0} |det %|

f dxs(h(x)

Now you can check thafl@.6) is just a rewrite of {4.5): [exercise 14.2]

t g _ p(%0) 1-di ional
(12 P) (%) B TGO (1-dimensional)
= % (d-dimensional) (14.9)

Xo=f71(x)

For a deterministic, invertible flowx has only one preimaggo; allowing for
multiple preimages also takes account of noninvertiblepirays such as the “stretch
& fold” maps of the interval, to be discussed briefly in the nexample, and in
more detail in sectl0.2.1

We shall refer to the kernel ofL¢.6) as thePerron-Frobenius operator [exercise 14.3]

[example 21.7]
Lxy) = 5(x= ') - (14.10)
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If you do not like the word “kernel” you might prefer to think oC'(x,y) as a
matrix with indicesx, y, and index summation in matrix multiplication replaced by
an integral ovey, (L' op)(X) = fdyL‘(x, y)o(y). The Perron-Frobenius oper-
ator assembles the densjigx, t) at timet by going back in time to the densit)}'ema'k e
p(Xo0,0) at timet = 0.

Example 14.1 Perron-Frobenius operator for a piecewise-linear map: Assume

the expanding 1-d map f(X) of figure 14.3, a piecewise-linear 2-branch map with slopes

Ao>land A1 =—-Ag/(Ao-1)<-1: [exercise 14.7]
_ fg(X) = AoX, Xe My= [0, l/Ao)

fo9 = { 10 = A(1-%).  xe My =(1/Ao.1]. (14.11)

Both f(Mo) and f(M,) map onto the entire unit interval M = [0, 1]. We shall refer to
any unimodal map whose critical point maps onto the “left” unstable fixed point Xy as
the “Ulam” map. Assume a piecewise constant density

_J po ifxe Mo
p(X) = { o1 ifxe My (14.12)
As can be easily checked using (14.9), the Perron-Frobenius operator acts on this

piecewise constant function as a [2x2] Markov matrix L with matrix elements )
[exercise 14.1]

[exercise 14.5]

(Po) R Lp:( Al R )(PO), (14.13)

p1 A A /\P1

stretching both po and p1 over the whole unit interval A. In this example the density is
constant after one iteration, so L has only a unit eigenvalue €® = 1/|Ag| + 1/|A4] = 1,
with constant density eigenvector pg = p1. The quantities 1/|Ao|, 1/|A1| are, respectively,
the fractions of state space taken up by the |Mol, | M| intervals. This simple explicit
matrix representation of the Perron-Frobenius operator is a consequence of the piecewise
linearity of f, and the restriction of the densities p to the space of piecewise constant
functions. The example gives a flavor of the enterprize upon which we are about to
embark in this book, but the full story is much subtler: in general, there will exist no
such finite-dimensional representation for the Perron-Frobenius operator. (Continued
in example 15.2.)

14.3 Why not just leave it to a computer?

(R. Artuso and P. Cvitanovit)

To a student with a practical bent the above Exanigld suggests a strategy fo,
constructing evolution operators for smooth maps, asdiwiitpartitions of state
space into regiond;, with a piecewise-linear approximatiorfisto the dynamics
in each region, but that would be too naive; much of the plajlsianteresting
spectrum would be missed. As we shall see, the choice ofitmspace fop is
crucial, and the physically motivated choice is a space @fatmfunctions, rather
than the space of piecewise constant functions.

[chapter 21]
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All of the insight gained in this chapter and in what is to éellis nothing but
an elegant way of thinking of the evolution operat6r,as a matrix (this point of
view will be further elaborated in chaptét). There are many textbook methods
of approximating an operatof by sequences of finite matrix approximatiafis
but in what follows the great achievement will be that we sinabid constructing
any matrix approximation ta altogether. Why a new method? Why not just
run it on a computer, as many do with such relish in diagomagizjuantum
Hamiltonians?

The simplest possible way of introducing a state spaceetigation, figurel4.4
is to partition the state spadel with a non-overlapping collection of setd;, i =
1,...,N, and to consider piecewise constant densitlesd, constant on each
Mii

N
i(%)
) = Rl
g le IMil

whereyi(X) is the characteristic functiori{.1) of the setM;. The density; at a
given instant is related to the densities at the previoysistéme by the action of
the Perron-Frobenius operator, asid.©):

# = [ o) = [ dxay oy 100
B - : [IMil
In this way
3 -1 .
_ Mo ML (14.14)

v T

is a matrix approximation to the Perron-Frobenius operatod its leading left
eigenvector is a piecewise constant approximation to therignt measure. It is
an old idea of Ulam that such an approximation for the PeFmbenius operator

is a meaningful one. [remark 14.3]

The problem with such state space discretization appreaichthat they are
blind, the grid knows not what parts of the state space are moless important.
This observation motivated the development of the invanntitions of chaotic
systems undertaken in chapfil, we exploited the intrinsic topology of a flow to
give us both an invariant partition of the state space andasute of the partition
volumes, in the spirit of figuré.11

Furthermore, a piecewise constarttelongs to an unphysical function space,

and with such approximations one is plagued by numericiéhets such as spurious
eigenvalues. In chapt@rl we shall employ a more refined approach to extracting
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BRUTO INSERSITIVO METHoD :

cigenlite ]_,.Lj = AP

eignvelue  det (4-zL)=0

el
= et

o
2375 AN

i
N oo
Figure 14.4: State space discretization approach t o~
computing averages. exact spechum Doy Ryl By o =

spectra, by expanding the initial and final densijieg’ in some basisyo, ¢1,
@2, - - - (orthogonal polynomials, let us say), and replacif(y, x) by its ¢, basis
representatiot. .5 = (.| Llgp). The art is then the subtle art of finding a “good”

basis for which finite truncations &f,; give accurate estimates of the eigenvalues
of L.

[chapter 21]

Regardless of how sophisticated the choice of basis mighlbeéasic problem
cannot be avoided - as illustrated by the natural measuteddiénon map3.18
sketched in figurd 4.5 eigenfunctions ofL are complicated, singular functions
concentrated on fractal sets, and in general cannot besespiezl by a nice basis
set of smooth functions. We shall resort to matrix represt@nrts of£ and thep,
basis approach only insofar this helps us prove that therspecthat we compute
is indeed the correct one, and that finite periodic orbit¢ations do converge.

in depth:
8 chapter 1, p. 1
14.4 Invariant measures

A stationaryor invariant densityis a density left unchanged by the flow

P =p(x0) =p(¥). (14.15)

Conversely, if such a density exists, the transformafig) is said to beneasure-
preserving As we are given deterministic dynamics and our goal is tinepzdgation
of asymptotic averages of observables, our task is to iiyeinteresting invariant
measures for a giveff(x). Invariant measures remain dfected by dynamics, so
they are fixed points (in the infinite-dimensional functigrase ofp densities) of

the Perron-Frobenius operatd®(10, with the unit eigenvalue: [exercise 14.3]

Lp(x) = f dys(x— f'¢))ey) = p(¥). (14.16)
M
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In general, depending on the choiceféfx) and the function space fp(x), there
may be no, one, or many solutions of the eigenfunction camditl4.16. For
instance, a singular measuig(x) = 6(x — xg)dx concentrated on an equilibrium
point x4 = f!(xg), or any linear combination of such measures, each coratedtr
on a diferent equilibrium point, is stationary. There are thus itélg many
stationary measures that can be constructed. Almost alievhtare unnatural
in the sense that the slightest perturbation will destreyrth

From a physical point of view, there is no way to prepare ahitlensities
which are singular, so we shall focus on measures whichraitslof transformations
experienced by an initial smooth distributip(x) under the action of,

po9 = Jim [ ayitx—tioNp.0). [ aypr0) =1 (a17)

Intuitively, the “natural” measure should be the measuat iththe least sensitive
to the (in practice unavoidable) external noise, no matber Wweak.

14.4.1 Natural measure

Huang: Chen-Ning, do you think ergodic theory gives us
useful insight into the foundation of statistical mechafic
Yang: | don't think so.

—Kerson HuangC.N. Yang interview

In computer experiments, as the Henon example of figur& the long time
evolution of many “typical” initial conditions leads to tsame asymptotic distribution.
Hence thenatural (also called equilibrium measure, SRB measure, Sinai-Bewe
Ruelle measure, physical measure, invariant densityradatansity, or even “natural

invariant”) is defined as the limit v
[exercise 14.8]

[exercise 14.9]
iMoo 2 dr oy - £7(x0)) flows
Py = (14.18)
liMne £ 2025 8(y = F4(x0)) maps

where xg is a generic initial point.  Generated by the actionfofthe natural
measure satisfies the stationarity conditib4.(§ and is thus invariant by construction.
Staring at an average over infinitely many Dirac deltas isanptospect we

cherish. From a computational point of view, the natural snea s the visitation
frequency defined by coarse-graining, integratii. {8 over theM; region

Api = Jim tt—' (14.19)

wheret; is the accumulated time that a trajectory of total duratispends in the
M; region, with the initial pointxg picked from some smooth densjyx).
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Figure 14.5: Natural measurel@.19 for the Hénon 1
map @.18 strange attractor at parameter values
(a,b) = (1.4,03). See figure3.9 for a sketch

of the attractor without the natural measure binning.
(Courtesy of J.-P. Eckmann) 15%.a4

Let a = a(x) be anyobservable In the mathematical literatura(x) is a
function belonging to some function space, for instancesthece of integrable
functions L1, that associates to each point in state space a number orcd set
numbers. In physical applications the observedile) is necessarily a smooth
function. The observable reports on some property of theahjcal system.
Several examples will be given in setb.1

Thespace averagef the observable with respect to a measugds given by
thed-dimensional integral over the state spade

1
@, = o | deotgatg

loml = fMpr(x) = mass inM. (14.20)

For now we assume that the state spaAdehas a finite dimension and a finite
volume. By definition{a), is a function(al) ofp. Forp = po natural measure we
shall drop the subscript in the definition of the space awer@)y, = (a).

Inserting the right-hand-side 014.18 into (14.20, we see that the natural
measure corresponds tdime averageof the observabla along a trajectory of
the initial pointxo,

t
o= im 1 [ dralr"Ga). (14.21)

Analysis of the above asymptotic time limit is the centrallgem of ergodic
theory.  TheBirkhgf ergodic theorenmasserts that if a natural measyrexists,
the limit a(xo) for the time averagel@.27) exists for all initialxp. As we shall
not rely on this result in what follows we forgo a proof hereiwrthermore, if the
dynamical system isrgodic the time average tends to the space average

[remark 14.1]
[appendix A]

t
lim % fo dra(f(x)) = (@ (14.22)

tooo

for “almost all” initial xo. By “almost all” we mean that the time average is
independent of the initial point apart from a sejefneasure zero.

For future reference, we note a further property that iswgfeo than ergodicity:
if the space average of a product of any two variables ddetesewith time,

lim (a(qb(f'(x)) = (@ by , (14.23)
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[section 20.4]
the dynamical system is said to bexing

Example 14.2 The Hénon attractor natural measure: A numerical calculation of
the natural measure (14.19) for the Hénon attractor (3.18) is given by the histogram
in figure 14.5. The state space is partitioned into many equal-size areas M;, and the
coarse grained measure (14.19) is computed by a long-time iteration of the Hénon map,
and represented by the height of the column over area M;. What we see is a typical
invariant measure - a complicated, singular function concentrated on a fractal set.

If an invariant measure is quite singular (for instance aBdr concentrated
on a fixed point or a cycle), its existence is most likely of rygical import;
no smooth initial density will converge to this measure # iteighborhood is
repelling. In practice the average4(19 is problematic and often hard to control,
as generic dynamical systems are neither uniformly hypierloor structurally
stable: it is not known whether even the simplest model ofange attractor, the
Heénon attractor of figurd4.5 is “strange,” or merely a transient to a very long

tabl le.
stable cycle [exercise 15.1]

14.4.2 Determinism vs. stochasticity

While dynamics can lead to very singulais, in any physical setting we cannot
do better than to measupeaveraged over some regidvi;; the coarse-graining is
not an approximation but a physical necessity. One is frabitd of a measure
as a probability density, as long as one keeps in mind thendistn between
deterministic and stochastic flows. In deterministic etiolu the evolution
kernels are not probabilistic; the density of trajectoisasansportedieterministically
What this distinction means will became apparent later:digterministic flows
our trace and determinant formulas will &eact while for quantum and stochasti
flows they will only be the leading saddle point (stationanage, steepest descent)
approximations.

échapter 17]

Clearly, while deceptively easy to define, measures spmibte. The good
news is that if you hang on, you witlever need to compute theat least not
in this book. How so? The evolution operators to which we riewxt, and the
trace and determinant formulas to which they will lead udl, agsign the correct
weights to desired averages without recourse to any ekplicnputation of the
coarse-grained measut@;.

14.5 Density evolution for infinitesimal times

Consider the evolution of a smooth densix) = p(x,0) under an infinitesimal
stepst, by expanding the action of’” to linear order inyr:

0T — d _fdr
£%() fM xa(y - 1709 p(%)
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f dxs(y — x = 67v(X)) p(X)
M
py=otvy)  _ p) = srvi()dip(y)
|det(1+ 5720 1+6r L 0M0)
p(x,67) = p(x0)-0dr. (14.24)

Here we have used the infinitesimal form of the floi6], the Dirac delta )
Jacobian 14.9, and the In det= tr In relation. By the Einstein summatioﬁeXerCIse 1]
convention, repeated indices imply summatiuity)o; = Zidzlvi(y)ai. Moving
p(y,0) to the left hand side and dividing ki, we discover that the rate of the
deformation ofo under the infinitesimal action of the Perron-Frobenius afwer
is nothing but thecontinuity equatiorfor the density:

Op+0-(pv) = 0. (14.25)

The family of Perron-Frobenius operators opera{dﬁ‘s}te& forms a semigroup
parameterize by time

(@ £° =1
(b) £1£8=" >0 (semigroup property) .

From (14.24), time evolution by an infinitesimal step forward in time is generated
by

Ap(¥) = + lim 6% (£7=1)p(9 = ~3i(p(x). (14.26)

We shall refer to
d
A=-0-v+ Z Vi(X)0; (24.27)
i

as the time evolutiogenerator If the flow is finite-dimensional and invertibleq
is a generator of a full-fledged group. The left hand side.4fZf is the definition
of time derivative, so the evolution equation fe) is

(% - y{) () = 0. (14.28)

The finite time Perron-Frobenius operat@d (10 can be formally expressed
by exponentiating the time evolution generafias

L= (14.29)
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The generatotA is reminiscent of the generator of translations. Indeed afo
constant velocity field dynamical evolution is nothing birizaslation by (timex velocity):

[exercise 14.10]

e Vira(x) = a(x - tv). (14.30)

14.5.1 Resolvent off

Here we limit ourselves to a brief remark about the notiorhef‘tspectrum” of a
linear operator.

The Perron-Frobenius operatfiacts multiplicatively in time, so it is reasonable
to suppose that there exist constaMs> 0, 8 > 0 such that|£Y|| < Mée¥
for allt > 0. What does that mean? The operator norm is defined in the same
spirit in which one defines matrix norms:We are assumingribaialue of£{o(x)
grows faster than exponentially for any choice of funciigr), so that the fastest
possible growth can be bounded &Y, a reasonable expectation in the light of
the simplest example studied so far, the exact escapel@ate). |If that is so,
multiplying £t by &% we construct a new operater? £! = &("-#) which decays
exponentially for large, ||€*A)|| < M. We say thae ¥ £! is an element of a
boundedsemigroup with generatafl — Bl. Given this bound, it follows by the
Laplace transform

o 1
fo dte’St.[j‘:ﬁ, Res> g, (14.31)

that theresolventoperator § — A)~! is bounded (‘resolvent= able to cause
separation into constituents)

o] [ aremmer =
s—-A o s—p

If one is interested in the spectrum 6f as we will be, the resolvent operator is
a natural object to study; it has no time dependence, anddusded. The main
lesson of this brief aside is that for continuous time flols, ltaplace transform is
the tool that brings down the generator it (29 into the resolvent form14.37)
and enables us to study its spectrum.

14.6 Liouville operator

§
J A case of special interest is the Hamiltonian or symplectifilefined by
Hamilton's equations of motiorv(1). A reader versed in quantum mechanics will
have observed by now that with replacemeht> —;H , whereH is the quantum
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Hamiltonian operator,14.28 looks rather like the time dependent Schrodinger
equation, so this is probably the right moment to figure ouavell this means in
the case of Hamiltonian flows.

The Hamilton’s evolution equationg.(l) for any time-independent quantity
Q = Q(q, p) are given by

dQ _4dQdg  4Qdp _9HIQ dQIH
dt ~ aqg dt * op dt ~ apdg Api dg (14.32)

As equations with this structure arise frequently for syeopt flows, it is convenient
to introduce a notation for them, tiReisson bracket
[remark 14.4]
0A 0B 0A 0B

Bl=——+ - ——. 14.33
A api dgi  aq; ap; ( )

In terms of Poisson brackets the time evolution equatlgn3?) takes the compact
form

dQ
5= {H,Q}. (14.34)

The full state space flow velocity is = v = (g, p), where the dot signifies
time derivative.

The discussion of sect4.5applies to any deterministic flow. If the density
itself is a material invariant, combining

ol +v-9l =0.

and (14.25 we conclude thad;v; = 0 and detl'(x) = 1. An example of such
incompressible flow is the Hamiltonian flow of se€t2. For incompressible flows
the continuity equationl@4.25 becomes a statement of conservation of the state
space volume (see sett2), or theLiouville theorem

O + Vidip = 0. (14.35)

Hamilton’s equations?.1) imply that the flow is incompressiblé;v; = 0, so

for Hamiltonian flows the equation ferreduces to theontinuity equatiorfor the
phase space density:

o +di(pw) =0, i=12....D. (14.36)

Consider the evolution of the phase space depsifyan ensemble of noninteracting
particles; the particles are conserved, so

0 0

d Ja . .
ap(q, p.t) = (E +qi¢')_qi + pia_pi p(g, p,t) = 0.
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Inserting Hamilton's equations/ (1) we obtain theLiouville equation a special
case of (4.29:

3
ap(q, p,t) = =Ap(a, p,t) = {H, p(a, p, 1)}, (14.37)

where{, }is the Poisson bracket4.33. The generator of the flonl¢.27) is in
this case a generator of infinitesimal symplectic transé&iioms,

Aog gl MO oMo
'oq ' op dpidg  Agi dp;

(14.38)

For example, for separable Hamiltonians of fadm= p?/2m+V(q), the equations
of motion are

. _ P )
g = m’ pi = oq (14.39)

and the action of the generator

B9 sl
A=-tag aV(9) e (14.40)

can be interpreted as a translatidt 30 in configuration space, followed by
acceleration by forcéV(q) in the momentum space.

The time evolution generatot4.27) for the case of symplectic flows is called
the Liouville operator  You might have encountered it in statistical mechanics,
while discussing what ergodicity means ford@ard balls. Here its action will
be very tangible; we shall apply the Liouville operator tsteyns as small as 1 or
2 hard balls and to our surprise learn that thiises to already get a bit of a grip
on foundations of the nonequilibrium statistical mechanic

Résumé

In physically realistic settings the initial state of a gystcan be specified only
to a finite precision. If the dynamics is chaotic, it is not gibfe to calculate
accurately the long time trajectory of a given initial poinDepending on the
desired precision, and given a deterministic law of evohytithe state of the
system can then be tracked for a finite time.

The study of long-time dynamics thus requires trading indéhelution of a
single state space point for the evolution efeasurgor thedensityof representative
points in state space, acted upon byeanlution operatar Essentially this means
trading innonlineardynamical equations on a finite dimensional spaee(xs, X2 - - - Xg)
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for alinear equation on an infinite dimensional vector space of denaitgtions
p(x). For finite times and for maps such densities are evolvedchbyPérron-
Frobenius operatar

p(x.1) = (L 0p) (9.
and in a diferential formulation they satisfy the tieentinuity equation
op+9-(pv) = 0.

The most physical of stationary measures is the naturalumeas measure robust
under perturbations by weak noise.

Reformulated this way, classical dynamics takes on a diyfirguantum-
mechanical flavor. If the Lyapunov timé..(Q), the time after which the notion
of an individual deterministic trajectory loses meanirgmuch shorter than the
observation time, the “sharp” observables are those duaht® the eigenvalues
of evolution operators. This is very much the same situadenin quantum
mechanics; as atomic time scales are so short, what is neebisuthe energy, the
guantum-mechanical observable dual to the time. For langdithe dynamics
is described in terms of stationary measures, i.e., fixedtpaif the appropriate
evolution operators. Both in classical and quantum mecisamie has a choice of
implementing dynamical evolution on densities (“Schnayir picture,” sectl4.5
or on observables (“Heisenberg picture,” séét.2and chaptef 6).

In what follows we shall find the second formulation more @ment, but the
alternative is worth keeping in mind when posing and sohimgriant density
problems. However, as classical evolution operators drenitary, their eigenstates
can be quite singular andficult to work with. In what follows we shall learn how
to avoid dealing with these eigenstates altogether. As tenwftfact, what follows
will be a labor of radical deconstruction; after having adso strenuously here
that only smooth measures are “natural,” we shall merrilycped to erect the
whole edifice of our theory on periodic orbits, i.e., objetttat ares-functions
in state space. The trick is that each comes with an inteitgaheighborhood —
cycle points only serve to pin these intervals, just as thémdter marks on a
measuring rod partition continuum into intervals.

Commentary

Remark 14.1 Ergodic theory: An overview of ergodic theory is outside the scope of
this book: the interested reader may find it useful to consilt[1]. The existence of
time averagel4.21) is the basic result of ergodic theory, known as the Bifkklreorem,
see for example refsl1[ 27], or the statement of theorem 7.3.1 in réef].[ The natural
measure 14.19 of sect.14.4.1is often referred to as the SRB or Sinai-Ruelle-Bowen
measuref6, 24, 28].
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Remark 14.2 Time evolution as a Lie group: Time evolution of sectl4.5is an example
of a 1-parameter Lie group. Consult, for example, chapteo®ref. [9] for a clear
and pedagogical introduction to Lie groups of transforovei For a discussion of the
bounded semigroups of pagé6see, for example, Marsden and Hugh@s [

Remark 14.3 Discretization of the Perron-Frobenius operator operator It is an old
idea of Ulam [.7] that such an approximation for the Perron-Frobenius dpeta a
meaningful one. The piecewise-linear approximation of Pleeron-Frobenius operator
(14.19 has been shown to reproduce the spectrum for expanding, maps finer and
finer Markov partitions are used§, 17, 14]. The subtle point of choosing a state space
partitioning for a “generic case” is discussed in réf;,[22].

Remark 14.4 The sign convention of the Poisson bracket:  The Poisson bracket is
antisymmetric in its arguments and there is a freedom to eéfinith either sign convention.
When such freedom exists, it is certain that both convestame in use and this is no
exception. In some text§[3] you will see the right hand side 014.33 defined agB, A}

so that (4.39) is ‘fj—? = {Q, H}. Other equally reputable textsq] employ the convention
used here. Landau and LifshitZ] [denote a Poisson bracket b, [B], notation that we
reserve here for the quantum-mechanical commutator. Asdsrone is consistent, there
should be no problem.

Remark 14.5 “Anon itlives™? “Anonitlives” refers to a statue of King Leontes’s wife,
Hermione, who died in a fit of grief after he unjustly accused of infidelity. Twenty
years later, the servant Paulina shows Leontes this statdermione. When he repents,
the statue comes to life. Or perhaps Hermione actually lased Paulina has kept her
hidden all these years. The text of the play seems delibgi@tgbiguous. It is probably
a parable for the resurrection of Christ. (John F. Gibson)

Exercises

14.1. Integrating over Dirac delta functions. Let us verify
a few of the properties of the delta function and check
(14.9, as well as the formulasl¢.?) and (4.9 to be
used later.

sequence of Gaussians

fdxé(x)f(x):ymofdx

(@) If f : RY — RY, show that

1
fkddx(s(f(X))= > [detd, f

xef-1(0)

expression

L dxs(x?)

ki .
(b) The delta function can be approximated by a makes sense
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f(x).

Use this approximation to see whether the formal

EXERCISES

14.2. Derivatives of Dirac delta functions. Consider

69(x) = L8(x).
Using integration by parts, determine the value of

fR dx')

1O
Jooror = 5 st -dsp

wherey = f(x) — x (14.41)

{xy(x)=0}
10 by
[ axeet) - —,{ -
(x:y(zx)l:m Iy v)°

2y
w (3 0 (y/)3)}(14'4334-6-

These formulas are useful for computirfteets of weak
noise on deterministic dynamics][

14.3. L' generates a semigroup. Check that the Perron- 14.7.
Frobenius operator has the semigroup property,

251

(d) For this map there is an infinite numbel
invariant measures, but only one of them
be found when one carries out a nume
simulation. Determine that measure, and ex
why your choice is the natural measure for
map.

(e) In the second map the maximum occursrat
(8- V5)/2 and the slopes arg( V5 + 1)/2. Fin
the natural measure for this map. Show that
piecewise linear and that the ratio of its two va
is (V5 +1)/2.

(medium dificulty

Escape rate for a flow conserving map. AdjustAg
A1 in (15.17 so that the gap between the intervalt
M vanishes. Show that the escape rate equals z
this situation.

Eigenvalues of the Perron-Frobenius operator for th
skew Ulam tent map.  Show that for the skew Ule

tent map
f dzL%(y,2) L4z ¥) = L2y, %),  t1,tr > 0.(14.44) 1
M
As the flows in which we tend to be interested are 0.8
invertible, the L's that we will use often do form a
- No
group, withty, t; € R. 0.6
14.4. Escape rate of the tent map. A
0.4
(a) Calculate by numerical experimentation the log of
the fraction of trajectories remaining trapped in 0.2
the interval [Q1] for the tent map
f(x) =a(l-2x-0.5])

for several values dd.

(b) Determine analytically th@ dependence of the
escape rate(a).

(c) Compare your results for (a) and (b).

14.5. Invariant measure.  We will compute the invariant 14.8.

measure for two dierent piecewise linear maps.

a 1
14.9.
(a) Verify the matrix£ representationl(5.19.

(b) The maximum value of the first map is 1.
Compute an invariant measure for this map.

(c) Compute the leading eigenvalueffor this map.
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fo()() = AoX, Xe Mo = [0,
f(x = { 100 = 2%(1-%, xeMi=(1

the eigenvalues are available analytically, comput
first few.

“Kissing disks”*  (continuation of exercise8.1 an
8.2). Close df the escape by settirfg = 2, and look i
real time at the density of the Poincaré section ite
for a trajectory with a randomly chosen initial condit
Does it look uniform? Should it be uniform? (F
- phase space volumes are preserved for Hamilt
flows by the Liouville theorem). Do you notice

trajectories that loiter near special regions of phase
forlong times? These exemplify “intermittency,” a bi
unpleasantness to which we shall return in chapger

Invariant measure for the Gauss map. Conside
the Gauss map:
1 1
fo={ -3 x=#o0 14.4¢
® { 0 x=0 (

where [ ] denotes the integer part.
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(a) Verify that the density (14.30 is the generator of translations,
.t 1 evia(x) = a(x + tv) .
PO = log21+x

14.11. Incompressible flows. Show that 4.9 implies that

is an invariant measure for the map. ; ; . -
po(X) = 1is an eigenfunction of a volume-preserving

(b) Isitthe natural measure? flow with eigenvaluesy = 0. In particular, this implies
that the natural measure of hyperbolic and mixing
14.10. A as a generator of translations.  Verify that for Hamiltonian flows is uniform. Compare this results with
a constant velocity field the evolution generatérin the numerical experiment of exercié.8
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Chapter 15

Averaging

For it, the mystic evolution;
Not the right only justified
—what we call evil also justified.
—Walt Whitman,
Leaves of Grass: Song of the Universal

chaotic dynamics, and then cast the formulas for averagesintiplicative
form that motivates the introduction of evolution operatand further
formal developments to come. The main result is that dyiyamicalaverage
measurable in a chaotic system can be extracted from thesmeaf an appropriately
constructed evolution operator. In order to keep our toeseclto the ground,
in sect.15.3we try out the formalism on the first quantitative diagnosiatta
system’s got chaos, Lyapunov exponents.

WE piscuss FIRsT the necessity of studying the averages of observables in

15.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible, @g fnitely specified
initial condition, no matter how precise, will fill out the e accessible state
space. Hence for chaotic dynamics one cannot follow indaifidrajectories for a
long time; what is attainable is a description of the geoynefthe set of possible
outcomes, and evaluation of long time averages. Examplsaalf averages are
transport cofficients for chaotic dynamical flows, such as escape rate, drian
and difusion rate; power spectra; and a host of mathematical emtstsuch
as generalized dimensions, entropies and Lyapunov exponklere we outline
how such averages are evaluated within the evolution apefi@mework. The
key idea is to replace the expectation values of observdiyete expectation
values of generating functionals. This associates an gonlwperator with a
given observable, and relates the expectation value oftbereable to the leading
eigenvalue of the evolution operator.

254
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15.1.1 Time averages

Leta = a(x) be anyobservable a function that associates to each point in state
space a number, a vector, or a tensor. The observable repodsproperty of
the dynamical system. It is a device, such as a thermometkser Doppler
velocitometer. The device itself does not change duringnteasurement. The
velocity field aj(x) = vi(x) is an example of a vector observable; the length of
this vector, or perhaps a temperature measured in an exg@rah instant are
examples of scalar observables. We defineititegrated observable ‘4as the
time integral of the observabkeevaluated along the trajectory of the initial point
X0,

t
AL(x0) = fo dra(f7(xp) (15.1)

If the dynamics is given by an iterated mapping and the tindissretet — n,
the integrated observable is given by

n-1

A(x0) = ) a(f(x0)) (15.2)

k=0

(we suppress possible vectorial indices for the time being)

Example 15.1 Integrated observables. If the observable is the velocity, a(x) =
Vi(x), its time integral Al(Xo) is the trajectory Al(Xo) = Xi(t).

For Hamiltonian flows the action associated with a trajectory x(t) = [q(t), p(t)]
passing through a phase space point Xy = [q(0), p(0)] is:

t
A(xo) = fo dra() - p(r). (15.3)

Thetime averagef the observable along a trajectory is defined by
— 1
a(xo) = lim ;A(Xo). (15.4)

If a does not behave too wildly as a function of time — for examiple,(x) is the
Chicago temperature, bounded betwe®@F and+130°F for all imes —A'(xo)
is expected to grow not faster thgnand the limit ((5.4) exists. For an example
of a time average - the Lyapunov exponent - see 4éc8

The time average depends on the trajectory, but not on ttial ipoint on that
trajectory: if we start at a later state space pdihfx,) we get a couple of extra
finite contributions that vanish in the— co limit:

1 t+T
A(TT6a) = fim [ dra(f o)

T t+T
a6 - im ([ aratroan - [ arati*o))
_ 9.
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of the dynamical system:

Figure 15.1: (a) A typical chaotic trajectory 1 t

explores the phase space with the long time @ = mf dx a(f'(x))

visitation frequency building up the natural M

measurepg(x). (b) time average evaluated along M = f dx = volume of M. (15.7)
an atypical trajectory such as a periodic orbit M

fails to explore the entire accessible state space.
(A. Johansen) (@) M

The integrated observabié(xo) and the time averagixo) take a particularly
simple form when evaluated on a periodic orbit. Define

T
flows: Ap = aprzf pdra(fT(xo)), X € P
0
-l
maps: = anp= Z a(f'(x)) . (15.5)

i=0

where p is a prime cycle,T;, is its period, and, is its discrete time period in
the case of iterated map dynamias; is a loop integral of the observable along
a single traversal of a prime cyclg so it is an intrinsic property of the cycle,
independent of the starting poirg € p. (If the observable is not a scalar but a
vector or matrix we might have to be more careful in definingaa@rage which
is independent of the starting point on the cycle). If th¢etriory retraces itself
r times, we just obtairA, repeated times. Evaluation of the asymptotic time
average 15.4) requires therefore only a single traversal of the cycle:

ap = Ap/Tp. (15.6)
However,a(Xp) is in general a wild function okg; for a hyperbolic system

ergodic with respect to a smooth measure, it takes the saluwe (e for almost
allinitial xo, but a diterent value 15.6) on any periodic orbit, i.e., on a dense set of

points (figurel5.1(b)). For example, for an open system such as the Sinai gas of

sect.24.1 (an infinite 2-dimensional periodic array of scatteringd)sthe phase
space is dense with initial points that correspond to péinthaway trajectories.
The mean distance squared traversed by any such trajeatons @sx(t)? ~

t2, and its contribution to the flusion rateD ~ x(t)?/t, (15.4) evaluated with
a(x) = x(t)?, diverges. Seemingly there is a paradox; even though imtuitays
the typical motion should be filusive, we have an infinity of ballistic trajectories.

For chaotic dynamical systems, this paradox is resolvedbyst averaging,

i.e., averaging also over the initiad, and worrying about the measure of the
“pathological” trajectories.

15.1.2 Space averages

The space averagef a quantitya that may depend on the poirtof state space
M and on the timé is given by thed-dimensional integral over thecoordinates
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[exercise 4.6]

[chapter 24]

The spaceM is assumed to have finite dimension and volume (open systkens |
the 3-disk game of pinball are discussed in s&bt1.3.

What is it wereally do in experiments? We cannot measure the time average

(15.4), as there is no way to prepare a single initial conditiorhwifinite precision.

The best we can do is to prepare some initial densi®) perhaps concentrated
on some small (but always finite) neighborhgok) = p(x,0), so one should

abandon the uniform space averagB.{), and consider instead

@,0 = 77 | dxowarico). (15.8)

1
IM]
We do not bother to lug the initigh(x) around, as for the ergodic and mixing
systems that we shall consider heney smooth initial density will tend to the
asymptotic natural measute- oo limit p(x,t) — po(X), SO we can just as well
take the initialo(x) = const. The worst we can do is to start out wiftx) = const.,
as in (L5.7); so let us take this case and define #xpectation valuga) of an
observable to be the asymptotic time and space average over the state Spa

1 1t
<a>:JLr2MLdXTL dra(f7(x). (15.9)

We use the samg- -) notation as for the space averadé (), and distinguish the
two by the presence of the time variable in the argument: efghantity(a)(t)
being averaged depends on time, then it is a space averdtggods not, it is the
expectation valuéa).

The expectation value is a space average of time averagibseveryx € M
used as a starting point of a time average. The advantagesfgixig over space is
that it smears over the starting points which were problenfat the time average
(like the periodic points). While easy to define, the expgmtavalue(a)y turns
out not to be particularly tractable in practice. Here cormesmple idea that
is the basis of all that follows: Such averages are more coenty studied by
investigating instead gf) the space averages of form

Ay 1 A
(Cs )7|M|fdeef>‘ : (15.10)

In the present contegtis an auxiliary variable of no particular physical significa.
In most applicationg is a scalar, but if the observable iglalimensional vector
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a(x) € RY, theng is a conjugate vectgs € RY; if the observable is d x d tensor,
Bis also a rank-2 tensor, and so on. Here we will mostly limét ¢onsiderations
to scalar values gs.

If the limit a(xo) for the time averagel6.4) exists for “almost all” initialxo
and the system is ergodic and mixing (in the sense of 4e8tl), we expect
the time average along almost all trajectories to tend tesémee valug, and the
integrated observabW¥ to tend tat@. The space averageq.10 is an integral over
exponentials, and such integral also grows exponentially time. So ag —
we would expect the space average(exp(s - A")) itself to grow exponentially
with time

(&) ),
and its rate of growth to go to a limit
o) = im = In (&) (15.11)
toeo t ! .

Now we understand one reason for why it is smarter to comfaxe(3 - A'))
rather thana): the expectation value of the observaklé.g) and the moments of
the integrated observabl&q.1) can be computed by evaluating the derivatives of

s(8)

g_;,@:o - I'LTQ % <At> =@,
%@S Jm %((AIAI> - (AY(AY) (15.12)
Ip-0 %
= Jm % (A -t@)?)

and so forth. We have written out the formulas for a scalaenfable; the vector
case is worked out in the exerci&g.2 If we can compute the functios(3), we
have the desired expectation value without having to estiraay infinite time
limits from finite time data.

[exercise 15.2]

Suppose we could evaluasgs) and its derivatives. What are such formulas
good for? Atypical application is to the problem of desaripa particle scattering
elastically df a 2-dimensional triangular array of disks. If the disks afécently
large to block any infinite length free flights, the particlél i ffuse chaotically,
and the transport cdigcient of interest is the @iusion constant given b§»<(t)2> ~
4Dt. In contrast toD estimated numerically from trajectoriest) for finite but
larget, the above formulas yield the asymptobcwithout any extrapolations to
thet — oo limit. For example, fora; = v; and zero mean driffv;) = 0, ind
dimensions the diiusion constant is given by the curvatures(®) at3 = 0,

(15.13)

d 2

1 1 0°s

D= lim — x(t)2 = — — s
t—oo 2dt < > 2d ; (9’3|2 ls-0
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[section 24.1]
so if we can evaluate derivatives s3), we can compute transport dieients
that characterize deterministicflision. As we shall see in chapt24, periodic
orbit theory yields an explicit closed form expression for

fast track:
W sect. 15.2, p. 261
15.1.3 Averaging in open systems

§
J If the M is a compact region or set of regions to which the dynamics
is confined for all times,1(5.9) is a sensible definition of the expectation value.
However, if the trajectories can exMl without ever returning,

f dysy- o) =0 fort>teq,  Yoe M.
M

we might be in trouble. In particular, for a repeller the eécpry f'(xo) will
eventually leave the regioM, unless the initial poinkg is on the repeller, so
the identity

f dyés(y - fi(xo)) =1, t>0, iff Xop € non—-wandering set (15.14)
M

might apply only to a fractal subset of initial points a setefo Lebesgue measure.
Clearly, for open systems we need to modify the definitiomefaxpectation value
to restrict it to the dynamics on the non—wandering set,¢hefdrajectories which
are confined for all times.

Note by M a state space region that encloses all interesting iniialtg, say
the 3-disk Poincaré section constructed from the disk taries and all possible
incidence angles, and denote || the volume ofM. The volume of the state
space containing all trajectories which start out withia #tate space regiom
and recur within that region at the tinhe

IM(t) = fM dxdyé(y—f‘(x)) ~ Mg (15.15)

is expected to decrease exponentially, with the escape rat€he integral over
x takes care of all possible initial points; the integral oyehecks whether their
trajectories are still within\ by the timet. For example, any trajectory that fall?Sectio
off the pinball table in figuré..1is gone for good.

[section 1.4.3]

n 20.1]

The non—-wandering set can be veryfidult object to describe; but for any
finite time we can construct a normalized measure from theefiitne covering
volume (5.15, by redefining the space averad® (10 as
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) 0.5

Figure 15.2: A piecewise-linear repelledf.17): All
trajectories that land in the gap between thand f; |
branches escapag = 4, A, = -2). .

A‘ A‘(x) A‘(x)+yt
e6 de|M(t)| Ile dx & (15.16)

in order to compensate for the exponential decrease of tirbeuof surviving
trajectories in an open system with the exponentially gngwfactore”. What
does this mean? Once we have compuytede can replenish the density lost to
escaping trajectories, by pumpingét in such a way that the overall measure is
correctly normalized at all timegl) = 1

Example 15.2 A piecewise-linear repeller: (continuation of example 14.1) What is
gained by reformulating the dynamics in terms of “operators?” We start by considering
a simple example in which the operator is a [2x 2] matrix. Assume the expanding 1-d
map f(X) of figure 15.2, a piecewise-linear 2—branch repeller with slopes Ag > 1 and
A <-1:

fo = Aox if xe Mo=1[0,1/A]
f(x) = (15.17)

f1:A1(X—l) if Xxe M1: [l+l/A1,l]

Both f(Mo) and f(My) map onto the entire unit interval M = [0,1]. Assume a
piecewise constant density

_f po ifxe Mo
p(X) _{ o1 ifxe My (15.18)

There is no need to define p(x) in the gap between My and M, as any point that lands
in the gap escapes.

The physical motivation for studying this kind of mapping is the pinball game: f
is the simplest model for the pinball escape, figure 1.8, with fo and f; modelling its two
strips of survivors.

As can be easily checked using (14.9), the Perron-Frobenius operator acts on

this piecewise constant function as a [2x2] “transfer” matrix with matrix elements )
[exercise 14.1]

11 [exercise 14.5]
(p°) - Lp= ( Y )(m), (15.19)

P1 A Al /\P1

stretching both po and p1 over the whole unit interval A, and decreasing the density
at every iteration. In this example the density is constant after one iteration, so L has
only one non-zero eigenvalue €® = 1/|Ag| + 1/|A1|, with constant density eigenvector
po = p1. The quantities 1/|Aol, 1/|A1| are, respectively, the sizes of the |Mol, IMil
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Figure 15.3: Space averaging pieces together thg
time average computed along the»> o trajectory
of figure 15.1 by a space average over infinitely '
many shortt trajectory segments starting at all
initial points at once. (A. Johansen)

intervals, so the exact escape rate (1.3) — the log of the fraction of survivors at each
iteration for this linear repeller — is given by the sole eigenvalue of L:

¥ =-%=—In(1/|Aol + 1/IA1]). (15.20)

Voila! Here is the rationale for introducing operators — in one time step we have solved
the problem of evaluating escape rates at infinite time. This simple explicit matrix
representation of the Perron-Frobenius operator is a consequence of the piecewise
linearity of f, and the restriction of the densities p to the space of piecewise constant
functions. The example gives a flavor of the enterprise upon which we are about to
embark in this book, but the full story is much subtler: in general, there will exist no
such finite-dimensional representation for the Perron-Frobenius operator.

We now turn to the problem of evaluatirfg?).

15.2 Evolution operators

The above simple shift of focus, from studyite to studying(exp(s - A')) is the
key to all that follows. Make the dependence on the flow ekig rewriting this
quantity as

(M%) = ﬁ fM dx fM dys(y - £1(x)) A% (15.21)

Heres(y — f'(x)) is the Dirac delta function: for a deterministic flow an ialti
point x maps into a unique pointat timet. Formally, all we have done above is
to insert the identity

= f dyo(y- f'(¥) . (15.22)
M

into (15.10 to make explicit the fact that we are averaging only ovetithiectories

that remain inM for all times. However, having made this substitution weehav
replaced the study of individual trajectorié§x) by the study of the evolution of
density ofthe totality of initial conditions. Instead of trying to extract a temabr
average from an arbitrarily long trajectory which explattess phase space ergodically,
we can now probe the entire state space with short (and diabie) finite time
pieces of trajectories originating from every pointif.
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As a matter of fact (and that is why we went to the trouble ofrdefj the
generator14.27 of infinitesimal transformations of densitiésjinitesimallyshort
time evolution can sfice to determine the spectrum and eigenvalues!of

We shall refer to the kernel of the operatidb(21) as.Li(y, X).
Li(y.x) = oy () 40, (15.23)

The evolution operator acts on scalar functia(s) as
0= [ dealy- 113) A9, (15.24)
M

In terms of the evolution operator, the space average of ¢éhergting function
(15.29) is given by

@)=0.

and, if the spectrum of the linear operat6t can be described, byl.11) this
limit

-1 t
@) = fim ¢ In{L)
yields the leading eigenvalue &(8), and, through it, all desired expectation

values (5.12.

The evolution operator is fierent for diferent observables, as its definition
depends on the choice of the integrated observAbla the exponential. Its job
is deliver to us the expectation valueafbut before showing that it accomplishes
that, we need to verify the semigroup property of evolutiperators.

By its definition, the integral over the observahlis additive along the trajectory

X(t1+t2) Vas x(t1+t2)
><(o)~=,t4/ﬂ> O, W

ty t1+tz
Atz (x0) dr + dr

= Moo+ A0,

[exercise 14.3]

If Al(X) is additive along the trajectory, the evolution operatemerates a semigroup

[section 14.5]

Li(y, %) = f dzL2(y, 2Lz ), (15.25)
M
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3%

Figure 15.4: A long-time numerical calculation
of the leading Lyapunov exponent requires rescaling
the distance in order to keep the nearby trajectory
separation within the linearized flow range.

as is easily checked by substitution
LoLa(y) = f dxaly - F) M (Lha)x) = L72a().
M

This semigroup property is the main reason why.R1J) is preferable to15.9 as
a starting point for evaluation of dynamical averages: dasts averaging in form
of operators multiplicative along the flow.

15.3 Lyapunov exponents

(J. Mathiesen and P. Cvitanovic)
Let us apply the newly acquired tools to the fundamentalrtiatics in this subject:
Is a given system “chaotic™? And if so, how chaotic? If allptsiin a neighborhoog

of a trajectory converge toward the same trajectory, thacttr is a fixed point or
a limit cycle. However, if the attractor is strange, any twajectories

x(t) = fi(xo) and x(t)+ox(t) = f'(Xo + 6%0) (15.26)

that start out very close to each other separate exporlgntidh time, and in
a finite time their separation attains the size of the acblesstate space. This
sensitivity to initial conditiongan be quantified as

lox()l ~ e"6xo| (15.27)

where 1, the mean rate of separation of trajectories of the systemalled the
Lyapunov exponent

15.3.1 Lyapunov exponent as a time average

We can start out with a smailk and try to estimata from (15.27), but now that we
have quantified the notion of linear stability in chaptemd defined the dynamical
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Figure 15.5: The symmetric matri>(J‘)TJ‘ maps a /] x(t)+I5x
swarm of initial points in an infinitesimal spherical {
neighborhood ok, into a cigar-shaped neighborhoo%_,_
finite time t later, with semiaxes determined by the
local stretchingshrinking |A4|, but local individual
trajectory rotations by the complex phaselbignored.

time averages in sect5.1.1 we can do better. The problem with measuring the
growth rate of the distance between two points is that as th@pseparate, the
measurement is less and less a local measurement. In stedpaimental time
series this might be the only option, but if we have the eguatiof motion, a
better way is to measure the growth rate of vectors trans\vera given orbit.

The mean growth rate of the distariég(t)|/|6Xo| between neighboring trajectories

(15.27) is given by theLyapunov exponent
1
A= [Ilm n In [5x(t)]/16%ol (15.28)

(For notational brevity we shall often suppress the depecelef quantities such
asd = A(Xp), 6X(t) = X(xo,t) on the initial pointxy and the timet). One
can take {5.28 as is, take a small initial separatiémy, track distance between
two nearby trajectories untigx(t1)| gets significantly bigger, then recotd; =
In(|6x(t1)l/16%0l), rescalesx(ty) by factor|dxol/|oX(t1)|, and continue add infinitum,
with the leading Lyapunov exponent given by

1
A= Jim Zti/li ) (15.29)

However, we can do better. Given the equations of motion anihdp numerical
problems (such as evaluating the fundamental madri&3 for high-dimensional
flows), for infinitesimalsx we know thesx;(t)/6x;(0) ratio exactly, as this is by
definition the fundamental matri} (43

im %O _ %O _
ox-0 6Xj(0)  9x;(0)

‘]ilj (%) »

so the leading Lyapunov exponent can be computed from tearlspproximation

(4.29

-1 [3(x0)0 1y A
A=1lm Zin M = lim =1In InT(Jt)TJ‘n
t—oo t |6Xol t—oo 2t

. (15.30)

In this formula the scale of the initial separation drops, autly its orientation
given by the initial orientation unit vectar = §x/|6x| matters. The eigenvalues
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Figure 15.6: A numerical estimate of the leading
Lyapunov exponent for the Rossler flo&.{7) from

the dominant expanding eigenvalue formul®.G0.
The leading Lyapunov exponent~ 0.09 is positive,

so numerics supports the hypothesis that the Rossle
attractor is strange. (J. Mathiesen) :

of J are either real or come in complex conjugate pairs. JAS in general
not symmetric and not diagonalizable, it is more convententvork with the
symmetric and diagonalizable matix= (J‘)TJ‘, with real positive eigenvalues
{IA1%2 > ... > |Agl?}, and a complete orthonormal set of eigenvectolsiof . . , ug}.
Expanding the initial orientation = Y (A-u;)u; in theJu; = u; eigenbasis, we have

d
ATIA = > (A u)AAI = (A g (1+ O(e 22))) | (15.31)
i=1

wheretd; = In|Aj(xo, t)l, with exponents ordered by, > 1, > A3---. For long
times the largest Lyapunov exponent dominates exponkn(ith.30, provided
the orientationn”of the initial separation was not chosen perpendicular & th
dominant expanding eigendirection. The Lyapunov exponent is the time average

o) = lim %{In\ﬁ-u1|+ln|A1(xo,t)\+O(e‘2(‘1"{2)‘)]

1
= lllm YIn|A1(xo,t)|, (15.32)

whereA1(Xo, ) is the leading eigenvalue df(xo). By choosing the initial displacement
such thain’is normal to the firsti¢1) eigendirections we can define not only the
leading, but all Lyapunov exponents as well:

Ai(x) = I'L”;% InAi(xo, ), i=12--.d. (15.33)

The leading Lyapunov exponent now follows from the fundatalematrix by
numerical integration of4.9).

The equations can be integrated accurately for a finite firaece the infinite
time limit of (15.30 can be only estimated from plots éln |ATJA| as function of
time, such as the figurs.6for the Rossler flowZ.17).

As the local expansion and contraction rates vary along the the temporal
dependence exhibits small and large humps. The sudderofallldw level is
caused by a close passage to a folding point of the attractoliustration of why
numerical evaluation of the Lyapunov exponents, and prptlie very existence
of a strange attractor is a veryfiiicult problem. The approximately monotone
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part of the curve can be used (at your own peril) to estimagéethding Lyapunov
exponent by a straight line fit.

As we can already see, we are courtin@idilties if we try to calculate the
Lyapunov exponent by using the definitioh5(32 directly. First of all, the state
space is dense with atypical trajectories; for exampleg iiappened to lie on a
periodic orbitp, 1 would be simply INA|/Tp, a local property of cyclep, not
a global property of the dynamical system. Furthermorenéie, happens to
be a “generic” state space point, it is still not obvious ting\ (xo, t)|/t should
be converging to anything in particular. In a Hamiltoniasteyn with coexisting
elliptic islands and chaotic regions, a chaotic trajectygis every so often captured
in the neighborhood of an elliptic island and can stay thereafbitrarily long
time; as there the orbit is nearly stable, during such egisiop\(Xo, t)|/t can dip
arbitrarily close to 0. For state space volume non-preserving flows the trajectory
can traverse locally contracting regions, andAlfxo,t)|/t can occasionally go
negative; even worse, one never knows whether the asympttctor is periodic

or “strange,” so any finite estimate @fmight be dead wrong. [exercise 15.1]

15.3.2 Evolution operator evaluation of Lyapunov exponerg

A cure to these problems wasfered in sect15.2 We shall now replace time
averaging along a single trajectory by action of a multgtiiee evolution operator
on the entire state space, and extract the Lyapunov expdramtits leading
eigenvalue. If the chaotic motion fills the whole state spaesare indeed computing
the asymptotic Lyapunov exponent. If the chaotic motionramsient, leading
eventually to some long attractive cycle, our Lyapunov e, computed on
non-wandering set, will characterize the chaotic trartsithis is actually what
any experiment would measure, as even very small amount tefre® noise
will suffice to destabilize a long stable cycle with a minute immedbatsin of
attraction.

Due to the chain rule4(5J) for the derivative of an iterated map, the stability
of a 1d mapping is multiplicative along the flow, so the integrab(l) of the
observablea(x) = In|f’(x)|, the local trajectory divergence rate, evaluated along
the trajectory ofxg is additive:

n-1
A'(x0) = In| 1 (x0)| = > In| (%] - (15.34)
k=0

The Lyapunov exponent is then the expectation valifed given by a spatial
integral (L5.8) weighted by the natural measure

A={In|f' (X)) = f dxpo(X) In [ (X)I. (15.35)
M
The associated (discrete time) evolution operatér3 is

Ly, %) = s(y— f(x) M, (15.36)
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Here we have restricted our considerations-td inaps, as for higher-dimensional
flows only the fundamental matrices are multiplicative, thetindividual eigenvalues.
Construction of the evolution operator for evaluation o thyapunov spectra

in the general case requires more cleverness than warrahtéd stage in the
narrative: an extension of the evolution equations to a flothé tangent space.

All that remains is to determine the value of the Lyapunovosent

r=amireon = 52| =5 (15.37)

from (15.12), the derivative of the leading eigenvalsgp) of the evolution oper-

ator (15.36. [example 18.1]

The only question is: how?

Résum é

The expectation valuéa)y of an observabl@(x) measuredA'(x) = fol dra(x(r))
and averaged along the flow— f'(x) is given by the derivative

aJs

(@) = % o

of the leading eigenvalugs® of the corresponding evolution operatgt.

Instead of using the Perron-Frobenius operatdrlQ whose leading eigenfunction,
the natural measure, once computed, yields expectatioe @i.20 of any observable
a(x), we construct a specific, hand-tailored evolution operaidor each and
every observable. However, by time we arrive to chag&rthe sc&olding
will be removed, bothL's and their eigenfunctions will be gone, and only tﬁ
explicit and exact periodic orbit formulas for expectatizalues of observables
will remain.

chapter 18]
e

The next question is: how do we evaluate the eigenvalue§?ofWe saw
in examplel5.2, in the case of piecewise-linear dynamical systems, tregeth
operators reduce to finite matrices, but for generic smoottsfl they are infinite-
dimensional linear operators, and finding smart ways of ading their eigenvalues
requires some thought. In chaptefwe undertook the first step, and replaced the
ad hocpartitioning (L4.14 by the intrinsic, topologically invariant partitioning.
In chapterl3 we applied this information to our first application of theoktion
operator formalism, evaluation of the topological entrapye growth rate of the
number of topologically distinct orbits. This small vicgowill be refashioned
in chapters16 and 17 into a systematic method for computing eigenvalues of
evolution operators in terms of periodic orbits.
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EXERCISES 268
Commentary

Remark 15.1 “Pressure.” The quantitexp(s - A")) is called a “partition function” by
Ruelle [1]. Mathematicians decorate it with considerably more Graed Gothic letters
than is the case in this treatise. Ruellpdnd Bowen P] had given name “pressur@(a)

to s(B) (wherea is the observable introduced here in séd&.1.9), defined by the “large
system” limit (15.1]). As we shall apply the theory also to computation of the pals
gas pressure exerted on the walls of a container by a boupaitigle, we prefer to refer
to s(B) as simply the leading eigenvalue of the evolution operiatooduced in sectl4.5
The “convexity” properties such @a) < P(|al) will be pretty obvious consequence of
the definition (5.11). In the case thaf is the Perron-Frobenius operatd#(10, the
eigenvalue$sy(B), s1(B), - - -} are called thd&kuelle-Pollicott resonancds, 4, 5], with the
leading ones(B) = (B) being the one of main physical interest. In order to aid
the reader in digesting the mathematics literature, wd slyab point out the notational
correspondences whenever appropriate. The rigorous fisrmia replete with lims, sups,
infs, Q-sets which are not really essential to understanding otttéery, and are avoided
in this presentation.

Remark 15.2 Microcanonical ensemble. In statistical mechanics the space average
(15.7) performed over the Hamiltonian system constant energgseiinvariant measure

p(X)dx = dqdps(H(q, p) - E) of volumew(E) = fqud ps(H(g, p) - E)

1
(@) = — 5 [ dadpaH(ap) - Biata. p.) (15.38)
W(E) Im
is called themicrocanonical ensemble average

Remark 15.3 Lyapunov exponents. The Multiplicative Ergodic Theorem of Oseledét [
states that the limitsl6.36-15.33 exist for almost all pointg, and all tangent vectors ~
There are at most distinct values oft as we letn'range over the tangent space. These
are the Lyapunov exponentd [1i(Xo).

There is much literature on numerical computation of theplyev exponents, see
for example refs.]4, 15, 16].

Remark 15.4 State space discretization. Ref. [17] discusses numerical discretizatons
of state space, and construction of Perron-Frobenius tqpsras stochastic matrices, or
directed weighted graphs, as coarse-grained models ofdhalglynamics, with transport
rates between state space partitions computed using thiswiransition probabilities;

a rigorous discussion of some of the former features is dedun Ref. [.€].
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15.1. How unstable is the Henon attractor?

(a) Evaluate numerically the Lyapunov expongbty

269

(d) compute the fourth derivative assuming tha

mean in (5.39 vanishes(a;) = 0. The 4-th ord
moment formula

iterating the Henon map <x4(t)>
) K(t) = - (15.41
X |_[1-ad+y oew)?
y bx

fora=14,b=03.

(b) Now check how robust is the Lyapunov exponent
for the Hénon attractor? Evaluate numerically the
Lyapunov exponent by iterating the Henon map

for a = 1.39945219,b = 0.3. How much do

you trust now your result for the part (a) of this

exercise?

15.2. Expectation value of a vector observable.

that you have derived is known dgirtosis i
measures a deviation from what the 4-th c
moment would be were the distribution a f
Gaussian (see2.29 for a concrete exampl
If the observable is a vector, the kurtosigt) i
given by

5 [(Aaa) < 2((Am) () -
(Zi (AA)Y

15.3. Pinball escape rate from numerical simulatiori.
Estimate the escape rate fer: a = 6 3-disk pinba

Check and extend the expectation value formulas

(15.19 by evaluating the derivatives a&{g) up to 4-th
order for the space averagexp(s - A')) with & a vector

by shooting 100,000 randomly initiated pinballs intc
3-disk system and plotting the logarithm of the nur
of trapped orbits as function of time. For compari
a numerical simulation of ref.3] yieldsy = .410....

Rossler attractor Lyapunov exponents.

(a) Evaluate numerically the expanding Lyapt

exponentle of the Rossler attractoR(17).

(b) Plotyour own version of figur&5.6 Do not worr

quantity:
“ 15.4.
9s 1
3_,BiL:D = lim 2 (A) = (@), (1539)
(b)
s 1
iy, ~ M) - (A)A)) o

tim (A - @) - t{agno)

Note that the formalism is smart: it automatically

yields thevariance from the mean, rather than

simply the 2nd momer(ta2>.
(c) compute the third derivative &{g3).

References

(d

=

if it looks different, as long as you understand
your plot looks the way it does. (Remember
nonuniform contractiofexpansion of figurd.3)

Give your best estimate dt. The literature giv
surprisingly inaccurate estimates - see wh
you can do better.

Estimate the contracting Lyapunov expongg
Even though it is much smaller thalg, a glanc
at the stability matrix 4.4) suggests that you c
probably get it by integrating the infinitesir
volume along a long-time trajectory, as .47).
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Chapter 16

Trace formulas

The trace formula is not a formula, it is an idea.
—Martin Gutzwiller

global information. How can we use a local description of a/fto learn

something about the global behavior? We have given a quitkislof this
program in sectsl.5 and 1.6, now we redo the same material in greater depth.
In chapterl5 we have related global averages to the eigenvalues of ajigep
evolution operators. Here we show that the traces of ewsiutperators can be
evaluated as integrals over Dirac delta functions, andiglay the spectra of
evolution operators become related to periodic orbitshdfé is one idea that one
should learn about chaotic dynamics, it happens in thistehagnd it is this: there
is a fundamental locab global duality which says that

D YNAMICS TS POSED in terms of local equations, but the ergodic averages requir

the spectrum of eigenvalues is dual to the spectrum of periodic orbits

For dynamics on the circle, this is called Fourier analyfsisdynamics on
well-tiled manifolds, Selberg traces and zetas; and foegemonlinear
dynamical systems the duality is embodied in the trace ftamthat we

will now derive. These objects are to dynamics what partifionctions are to
statistical mechanics.

16.1 A trace formula for maps

Our extraction of the spectrum df commences with the evaluation of the trace.
As the case of discrete time mappings is somewhat simplefijrstederive the
trace formula for maps, and then, in séd.2, for flows. The final formulal6.23
covers both cases.

To compute an expectation value usirigp 21 we have to integrate over all
the values of the kernef"(x,y). If £" were a matrix we would be computing a
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weighted sum of its eigenvalues which is dominated by theitepeigenvalue as
n — oo. As the trace of£" is also dominated by the leading eigenvalu¢ as oo,
we might just as well look at the trace

trL = f dxL"(x, x) = f dxs(x— (X)) A9 (16.1)

By definition, the trace is the sum over eigenvalues,
L= e (16.2)
a=0

We find it convenient to write the eigenvalues as exponehtsather than as
multipliers ., and we assume that spectrumis discrete sy, s1, S, - - -, ordered
so that Re §> Re $,41.

For the time being we choose not to worry about convergensaicf sums,
ignore the question of what function space the eigenfunstibelong to, and
compute the eigenvalue spectrum without constructing apljoit eigenfunctions.
We shall revisit these issues in more depth in chapteand discuss how lack of
hyperbolicity leads to continuous spectra in chagter

16.1.1 Hyperbolicity assumption

We have learned in sect4.2how to evaluate the delta-function integrab(J).

According to (4.9 the trace {6.1) picks up a contribution whenever—
f'(x) = 0, i.e., whenevex belongs to a periodic orbit. For reasons which we

will explain in sect.16.2, it is wisest to start by focusing on discrete time systems.

The contribution of an isolated prime cycfeof periodn, for a mapf can be
evaluated by restricting the integration to an infinitedioggen neighborhood\,
around the cycle,

trpL™ = f dxs(x — f™(x))
Mo

d

S L |
 Joet(2-my)| npgu—/\ml (16:3)

For the time being we set here and (9 the observable®*» = 1. Periodic
orbit fundamental matrixM; is also known as thenonodromy matrixand its
eigenvalues\p 1, Ap2, ..., Apg as the Floguet multipliers.

We sort the eigenvalue$p 1, Ap2, . .., Apg of the p-cycle [dxd] fundamental
matrix M, into expanding, marginal and contracting sggsm,c}, as in 6.5).
As the integral {6.3 can be evaluated only iM, has no eigenvalue of
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unit magnitude, we assume that no eigenvalue is marginalsfvedi show in
sect.16.2that the longitudinal 4,1 = 1 eigenvalue for flows can be eliminated
by restricting the consideration to the transverse fundaatenatrix M), and
factorize the tracel(.3 into a product over the expanding and the contracting
eigenvalues

11 1 1
[det(1- M)~ = gl EI 1-1/Ape U T-Ape (16.4)

where Ap = [JeApe is the product of expanding eigenvalues. Both. and
1/Ape are smaller than 1 in absolute value, and as they are eithkoreome in
complex conjugate pairs we are allowed to drop the absohltes\brackets- - - |

in the above products.

Thehyperbolicity assumptiorequires that the stabilities of all cycles included
in the trace sums be exponentially bounded away from unity:

Apel > eTo any p, any expandingApel > 1
Apel < eTe  anyp, any contractingApl < 1, (16.5)

wheree, Ac > 0 are strictly positive bounds on the expanding, contrgatiycle
Lyapunov exponents. If a dynamical system satisfies therbygfieity assumption
(for example, the well separated 3-disk system clearly idee £' spectrum
will be relatively easy to control. If the expansjoontraction is slower than
exponential, let us sap\pj| ~ sz, the system may exhibit “phase transitions,”
and the analysis is much harder - we shall discuss this intehap

Elliptic stability, with a pair of purely imaginary exponents,, = e is
excluded by the hyperbolicity assumption. While the cdmttion of a single
repeat of a cycle

1 1
(1-€9(1-e?) ~ 2(1- cost)

(16.6)

does not makel@.9 diverge, ifAm = €2°P/" is rth root of unity, ¥/ det(l - ML)‘
diverges. For a generitrepeats cosg) behave badly and by ergodicity-tos¢6)

is arbitrarily small, 1- cos¢6) < e, infinitely often. This goes by the name of
“small divisor problem,” and requires a separate treatment

It follows from (16.4) that for long timest = rT, — oo, only the product of
expanding eigenvalues matte t(l - ML)| — |Apl". We shall use this fact to
motivate the construction of dynamical zeta functions itt.sk7.3 However, for
evaluation of the full spectrum the exact cycle weidt.Q) has to be kept.

16.1.2 A classical trace formula for maps

If the evolution is given by a discrete time mapping, and eliqdic points have
stability eigenvalue$Ap;| # 1 strictly bounded away from unity, the trag® is
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given by the sum over afieriodic points iof periodn:

n _ n — eBA
trL —fdx.lj (%, X)_M;(fnildet(l—w(m))l' (16.7)

Here Fix f" = {x : f'(x) = X} is the set of all periodic points of periag and

A is the observablel6.5 evaluated oven discrete time steps along the cycle to
which the periodic point; belongs. The weight follows from the properties of
the Dirac delta function1(4.8) by taking the determinant @fi(x; — f"(x);). If a
trajectory retraces itself times, its fundamental matrix 81}, whereM, is the
[dxd] fundamental matrix4.6) evaluated along a single traversal of the prime
cycle p. As we saw in {5.5), the integrated observabi is additive along the
cycle: If a prime cyclep trajectory retraces itsefftimes,n = rn,, we obtainA,
repeated times,A; = A"(x) = rAp, X € p.

A prime cycle is a single traversal of the orbit, and its label non-repeating
symbol string. There is only one prime cycle for each cycterputation class.
For example, the four cycle poin@011 = 1001 = 1100 = 0110 belong to the
same prime cycle = 0011 of length 4. As both the stability of a cycle and tl
weight A are the same everywhere along the orbit, each prime cycengtting
contributesn, terms to the sum, one for each cycle point. Herid&4) can be
rewritten as a sum over all prime cycles and their repeats

oo aBAy

trL= Z npz |det

l Mr)|5n,npr s (16.8)

with the Kronecker deltd@nn,r projecting out the periodic contributions of total
period n. This constraint is awkward, and will be more awkward st the
continuous time flows, where it would yield a series of Diratta spikes. In both
cases a Laplace transform rids us of the time periodicitytramt.

In the sum over all cycle periods,

N 2L S A Lt
;ftw” == Zp: pz |d6t v | (16.9)

the constraindnn, is replaced by weight'. Such discrete time Laplace transform
of tr LM is usually referred to as a “generating function.” Why théntsform? We
are actually not interested in evaluating the suir.® for any particular fixed
period n; what we are interested in is the long time— oo behavior. The
transform trades in the large tinmebehavior for the smalt behavior. Expressing
the trace as in1(6.2), in terms of the sum of the eigenvalues £fwe obtain the
trace formula for maps

> anildznpréﬂAp : (16.10)

=1 et(1 M')l
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This is our second example of the duality between the spactiueigenvalues
and the spectrum of periodic orbits, announced in the inzbdn to this chapter.

(The first example was the topological trace formula.g).)

fast track:
W sect. 16.2, p. 275

Example 16.1 A trace formula for transfer operators: For a piecewise-linear map
(15.17), we can explicitly evaluate the trace formula. By the piecewise linearity and the
chain rule Ap = AS”AT, where the cycle p contains ng symbols 0 and ny symbols 1, the

trace (16.7) reduces to

n 00 n
n_ 1 1 1
trL":E( _ :}][ . ]
S4\m)IL— AGAT™ IO [AIIAK

k=0

with eigenvalues

o 1 1
=——+ .
IAGAE " [ALIAK

(16.11)

(16.12)

As the simplest example of spectrum for such dynamical system, consider the symmetric
piecewise-linear 2-branch repeller (15.17) for which A = A1 = —Ao. In this case all odd

eigenvalues vanish, and the even eigenvalues are given by €% = 2/A¥1, k even.

Asymptotically the spectrum (16.12) is dominated by the lesser of the two fixed
point slopes A = Ag (if |Ag| < |A1], otherwise A = A;), and the eigenvalues € fall off

exponentially as 1/AX, dominated by the single less unstable fixed-point.

[example 21.1]

Fork = O this is in agreement with the explicit transfer matrix (15.19) eigenvalues
(15.20). The alert reader should experience anxiety at this point. Is it not true that we
have already written down explicitly the transfer operator in (15.19), and that it is clear
by inspection that it has only one eigenvalue €% = 1/|Ao|+1/|A1|? The example at hand
is one of the simplest illustrations of necessity of defining the space that the operator
acts on in order to define the spectrum. The transfer operator (15.19) is the correct
operator on the space of functions piecewise constant on the state space partition
{ Mo, Ma}; on this space the operator indeed has only the eigenvalue €*. As we shall
see in example 21.1, the full spectrum (16.12) corresponds to the action of the transfer

operator on the space of real analytic functions.

The Perron-Frobenius operator trace formula for the piecewise-linear map (15.17)

follows from (16.9)

L 7l
l—Z£ 1- Z(

1
R * weT)

verifying the trace formula (16.10).

16.2 A trace formula for flows

Amazing! | did not understand a single word.
—Fritz Haake
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(R. Artuso and P. Cvitanovit)

Our extraction of the spectrum g commences with the evaluation of the trace
trLt=tre™ = f dxL1(x, %) = f dx(x— Fi(x)) A0 (16.14)

We are not interested in any particular tirhebut into the long-time behavior
ast — oo, so we need to transform the trace from the “time domain” th®
“frequency domain.” A generic flow is a semi-flow defined fordian time, so
the appropriate transform is a Laplace rather than Fourier.

For a continuous time flow, the Laplace transform of an eu@iubperator
yields the resolventl{4.31). This is a delicate step, since the evolution operator
becomes the identity in the— 0* limit. In order to make sense of the trace we
regularize the Laplace transform by a lower ¢bitcsmaller than the period of any
periodic orbit, and write

00 —(s-A)e X o (s=s)e
Csten ot € €
= = 16.1
fé dteStr L =tr S E , (16.15)

- a=0 S™ %

whereA is the generator of the semigroup of dynamical evolutios,sezt14.5
Our task is to evaluate #£' from its explicit State space representation.

16.2.1 Integration along the flow

As any pair of nearby points on a cycle returns to itself dyaat each cycle
period, the eigenvalue of the fundamental matrix corredpanto the eigenvector
along the flow necessarily equals unity for all periodic twbi Hence for flows
the trace integral tr! requires a separate treatment for the longitudinal divacti
To evaluate the contribution of an isolated prime cyglef periodTp, restrict the
integration to an infinitesimally thin tub&{, enveloping the cycle (see figutel?),
and consider a local coordinate system with a longitudisalrdinatedx; along
the direction of the flow, and—1 transverse coordinates ,

trpLt= fM dx dx8(x. = f1(x)8(x — F'(x) - (16.16)

(we sets = 0 in the expg - A) weight for the time being). Pick a point on the
prime cycle p, and let

d 1/2
v(x) = (Z vi(x)z] (16.17)
i=1
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be the magnitude of the tangential velocity at any pairt (x,0,---,0) on the
cycle p. The velocityv(x) must be strictly positive, as otherwise the orbit would
stagnate for infinite time at(x) = 0 points, and that would get us nowhere.

As 0 < 7 < Tp, the trajectoryx(r) = f7(x,) sweeps out the entire cycle, and
for larger timesy; is a cyclic variable of periodicityl,

XH(T) = XH(T + er) r=212--- (16.18)

We parametrize both the longitudinal coordinaigr) and the velocityv(r) =
V(¥ (1)) by the flight timer, and rewrite the integral along the periodic orbit as

¢ dxol - 1) =  ervmax (@ - x(r +0). (16.19)
p P

By the periodicity condition 16.18 the Diracé function picks up contributions
fort =Ty, so the Laplace transform can be split as

md st _ _ N ST |,
[ ate et - xcr+v) D
Ir = fsdte’5‘5(>q|(r) —X(r+1Tp +t)).

Taylor expanding and applying the periodicity conditidi.(1§, we havex(r +
Mp+1t) =X () + (D)t + ..,

I = j: dte’s‘é(x“(r) - xy(r + er+t)) = Tl‘r)

so the remaining integrall$.19 overr is simply the cycle perioqﬁp dr = Tp.
The contribution of the longitudinal integral to the Lapacansform is thus

f " dtest 56 dxg o(x - 109)) = Tp Y. ™" (16.20)
0 p r=1

This integration is a prototype of what needs to be done fch ezarginal direction,
whenever existence of a conserved quantity (energy in Hamin flows, angular
momentum, translational invariance, etc.) implies exis¢éeof a smooth manifold
of equivalent (equivariant) solutions of dynamical eqoasi

16.2.2 Stability in the transverse directions

Think of ther = 0 point in above integrals along the cygbeas a choice of a
particular Poincaré section. As we have shown in €e8fthe transverse stability

trace - 280ct2007.tex



CHAPTER 16. TRACE FORMULAS 278

eigenvalues do not depend on the choice of a Poincaré sgstoignoring the
dependence ow(r) in evaluating the transverse integral t6(19 is justified.
For the transverse integration variables the fundamengdfixnis defined in a
reduced Poincaré surface of sectiBrof fixed x. Linearization of the periodic
flow transverse to the orbit yields

dx.s(xe = FTP(0) = —= | 16.21
fq» xd(x 09) |det(1 - mp) (162

where M, is the p-cycle [d-1xd-1] transversefundamental matrix. As in
(16.5 we have to assume hyperbolicity, i.e., that the magnitaded transverse
eigenvalues are bounded away from unity.

Substitution {6.20, (16.21) in (16.16 leads to an expression for £ as a
sum over all prime cyclep and their repetitions

)

fdteSttrLt ZTledetl M')|.

Thee — 0 limit of the two expressions for the resolverit6(15 and (16.22), now
yields theclassical trace formula for flows

(16.22)

X, g BA-sTy)

1 |det(1- M’)
[exercise 16.1]

(If you are worried about the convergence of the resolvemt, &eep the regularization.)

(16.23)

Mz

Q
i
o

This formula is still another example of the duality betwéles (local) cycles
and (global) eigenvalues. T, takes only integer values, we can replacé— z
throughout, so the trace formula for mag$ (10 is a special case of the trace
formula for flows. The relation between the continuous arstréte time cases
can be summarized as follows:

Tp & np

e S

e o L (16.24)

© Z

We could now proceed to estimate the location of the leadimgutarity of
tr (s— A)~* by extrapolating finite cycle length truncations ®6(23 by methods
such as Padé approximants. However, it pays to first perfsimple resummation
which converts this divergence of a trace intesoof a spectral determinant. We
shall do this in sectl7.2, but first a brief refresher of how all this relates to the
formula for escape ratel(7) offered in the introduction might help digest the
material.

fast track:
@ sect. 17, p. 283
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16.3 An asymptotic trace formula

§
J In order to illuminate the manipulations of set6.1and relate them to
something we already possess intuition about, we now rezlére heuristic sum
of sect.1.5.1from the exact trace formuld 6.10. The Laplace transform4§.10

or (16.23 are designed to capture the timeco asymptotic behavior of the trace
sums. By the hyperbolicity assumptioh6(5), for t = T,r large the cycle weight
approaches

|det(1 - M[))I S IA (16.25)

whereA is the product of the expanding eigenvalued/gf Denote the corresponding
approximation to theth trace (6.7) by

r=>y = (16.26)

and denote the approximate trace formula obtained by rieglalce cycle weights
|det(1 - ML)' by |Apl"in (16.10 byI'(2). Equivalently, think of this as a replacement
of the evolution operatorl6.23 by a transfer operator (as in example.1). For
concreteness consider a dynamical system whose symbaoi@dys is complete
binary, for example the 3-disk system figukes. In this case distinct periodic
points that contribute to thath periodic points sum16.8) are labeled by all
admissible itineraries composed of sequences of lesters0, 1}:

I'2

Z 2T Z » Z SA)

n=1  xeFixfn IAl
fho BA eBho  PAun BAo  gBA
—+ + + + +
{ Aol |A4] } { [Aol? Aol |A10l - |A1P }
eBho Aol gBhuo  gBAlo
—t + + +
{ Aol |Acodl  |Aotd  A10dl }

(16.27)

Both the cycle averages and the stabilities\; are the same for all points € p
in a cyclep. Summing over repeats of all prime cycles we obtain

Nplp

r@=2, 77
p

tp = 20 f|Ap|. (16.28)

This is precisely our initial heuristic estimate ). Note that we could not perform
r

such sum over in the exact trace formuld 6.10 as’det(l - M[))' # |det(1 - Mp)| ;

the correct way to resum the exact trace formulas is to firsaed the factors

1/|1 - Apjl, as we shall do in(7.9). ecton 1721
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Figure 16.1:  Approximation to (a) a smooth
dynamics by (b) the skeleton of periodic points
together with their linearized neighborhoods
Indicated are segments of two 1-cycles and a 2-cyt
that alternates between the neighborhoods of the t
1-cycles, shadowing first one of the two 1-cycles, ar
then the other.

If the weightse?A"™® are multiplicative along the flow, and the flow is hyperbolic,
for giveng the magnitude of eacle?”"®)/A;| term is bounded by some constant
M". The total number of cycles grows as(@r ase™, h= topological entropy, in
general), and the sum is convergent Zauficiently small,|Z4 < 1/2M. For large
n thenth level sum 16.7) tends to the leading" eigenvalueg™®. Summing this
asymptotic estimate level by level

Z€e0
1-2zed

@~ i (ze0)" = (16.29)
n=1

we see that we should be able to determgnéy determining the smallest value
of z= e % for which the cycle expansiori6.29 diverges.

If one is interested only in the leading eigenvalue/pft suffices to consider
the approximate tracE(z). We will use this fact in sectl7.3to motivate the
introduction of dynamical zeta function&q.14, and in sectl7.5we shall give
the exact relation between the exact and the approximate foamulas.

Résum é

The description of a chaotic dynamical system in terms ofesycan be visualized

as atessellation of the dynamical system, fidifid, with a smooth flow approximated
by its periodic orbit skeletopeach regionM; centered on a periodic poirtof the
topological lengtm, and the size of the region determined by the linearizatfon o
the flow around the periodic point. The integral over suclotogically partitioned
state space yields th#assical trace formula

1 0 er(ﬂAp—sTp)

sfst,:ZT

- T4 det(1- mp)|

Now that we have a trace formula, we might ask for what is ittfoés it stands, it
is little more than a scary divergent formula which relatesunspeakable infinity
of global eigenvalues to the unthinkable infinity of locastable cycles. However,
it is a good stepping stone on the way to construction of spledeterminants (to
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which we turn next), and a first hint that when the going is galoe theory might
turn out to be convergent beyond our wildest dreams (ch&fer In order to
implement such formulas, we will have to determine “all’'me cycles. The first
step is topological: enumeration of all admissible cycledartaken in chapteirl.
The more onerous enterprize of actually computing the sywle first approach
traditionally, as a numerical task in chapie, and then more boldly as a part and
parcel of variational foundations of classical and quantiymamics in chapte27.

Commentary

Remark 16.1 Who's dunne it? Continuous time flow traces weighted by cycle periods
were introduced by Boweri] who treated them as Poincaré section suspensions weighte
by the “time ceiling” function 8.5). They were used by Parry and Pollicat}.[

Remark 16.2 Flat and sharp traces. In the above formal derivation of trace formulas
we cared very little whether our sums were well posed. In tleelfolm theory traces like
(16.19 require compact operators with continuous function kistrihis is not the case
for our Dirac delta evolution operators: neverthelessiethe a large class of dynamical
systems for which our results may be shown to be perfectlgllen the mathematical
literature expressions like 6.7 are calledlat traces (see the review][and chapte21).
Other names for traces appear as well: for instance, in théegbof 1d mappings,
sharptraces refer to generalizations df§(7) where contributions of periodic points are
weighted by the Lefschetz sigel, reflecting whether the periodic point sits on a branch
of nth iterate of the map which crosses the diagonal starting fselow or starting from
above [L1]. Such traces are connected to the theory of kneading aviarisee ref.q]
and references therein). Traces weightedtiysign of the derivative of the fixed point
have been used to study the period doubling repeller, lgadihigh precision estimates
of the Feigenbaum constadtrefs. |5, 6, 6].

Exercises
16.1. t — 0, regularization of eigenvalue sums. In  16.2. General weights. (easy) Letf! be a flow and/! the
taking the Laplace transforni§.23 we have ignored operator
thet — 0, divergence, as we do not know how
to regularize the delta function kernel in this limit. Lig(x) = fdyﬁ(x_ Ly, Y)g(y)
In the quantum (or heat kernel) case this limit gives

rise to the Weyl or Thomas-Fermi mean eigenvalue
spacing.Regularize the divergent sum 623 and
assign to such volume term some interesting role in
the theory of classical resonance spectra. E-mail the
solution to the authors.

wherew is a weight function. In this problem we v
try and determine some of the propertiemust satisf

(a) Compute£sL'g(X) to show that
w(s, F{())w(t, X) = w(t + s, X) .
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(b) Restrictt ands to be integers and show that the for someg that can be multiplied. Could be a
most general form ofv is function fromR™ — R™? (n; € N.)

w(n.x) = g()g(f ()g(F3(x) - g(F" ().
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Chapter 17

Spectral determinants

“It seems very pretty,” she said when she had finished it,
“but it's rather hard to understand!” (You see she didn't
like to confess, even to herself, that she couldn’t make it
out at all.) “Somehow it seems to fill my head with ideas
— only | don’t exactly know what they are!”

—Lewis Carroll, Through the Looking Glass

THE proBLEM With the trace formulasl.10, (16.23 and (L6.29 is that they

diverge atz = e %, respectivelys = s, i.e., precisely where one would
like to use them. While this does not prevent numerical esfon of
some “thermodynamic” averages for iterated mappings, éncise of the Gutz-
willer trace formula this leads to a perplexing observatioat crude estimates
of the radius of convergence seem to put the entire physmdtaim out of
reach. We shall now cure this problem by thinking, at no egtimputational
cost; while traces and determinants are formally equivaigterminants are the
tool of choice when it comes to computing spectra.  The ideiflustrated )

. . .. . [chapter 21]
by figure 1.13 Determinants tend to have larger analyticity domains bsea
iftr £L/(1-2L) = —dizln det(1- z£) diverges at a particular value af then
det (1- z£) might have an isolated zero there, and a zero of a functieasgr to
determine numerically than its poles.

17.1 Spectral determinants for maps

The eigenvalueg, of a linear operator are given by the zeros of the determinant

det(1-zL) = I_I(l -2/7). (17.1)
k

For finite matrices this is the characteristic determinémt,operators this is the
Hadamard representation of thpectral determinant(sparing the reader from
pondering possible regularization factors). Considet firs case of maps, for
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which the evolution operator advances the densities bgéntsteps in time. In
this case we can use the formal matrix identity

Indet(1- M) = tr In(1L - M) = —Z %tr Mm", (17.2)

to relate the spectral determinant of an evolution operfatoa map to its traces
(16.9), and hence to periodic orbits:

det(1-z£) = exp(— Z ?tr L"]

n

exp[_; 2 % 2B A

|det(1- m)| (473)

Going the other way, the trace formula6(10Q can be recovered from the
spectral determinant by taking a derivative

2L d
tr H = —Zd—zln det (1— Z.C) . (174)

W fast track:
sect. 17.2, p. 285
Example 17.1 Spectral determinants of transfer operators:

J For a piecewise-linear map (15.17) with a finite Markov partition, an explicit
formula for the spectral determinant follows by substituting the trace formula (16.11)
into (17.3):

to
det(1-z£) = [1— — - —) , (17.5)
[l Ak Ak

where ts = z/|Agl. The eigenvalues are necessarily the same as in (16.12), which we
already determined from the trace formula (16.10).

The exponential spacing of eigenvalues guarantees that the spectral determin-
ant (17.5) is an entire function. It is this property that generalizes to piecewise smooth
flows with finite Markov partitions, and singles out spectral determinants rather than
the trace formulas or dynamical zeta functions as the tool of choice for evaluation of
spectra.
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17.2 Spectral determinant for flows

..an analogue of the [Artin-Mazur] zeta function for
diffeomorphisms seems quite remote for flows. However
we will mention a wild idea in this direction. {-] define
1(y) to be the minimal period of [- - -] then define formally
(another zeta functionZ(s) to be the infinite product

29 =[] ] (- leswlon ™).

yel' k=0

—Stephen Smal®ifferentiable Dynamical Systems

We write the formula for the spectral determinant for flowsdnalogy to

17.3

1 er(BAp sTp)
det(s—A) = - - s 17.6
et (s - A) exp[ Ep:;rldet - M')] (17.6)

and then check that the trace formuls (23 is the logarithmic derivative of the
spectral determinant

tr

1 d
A Eslndet(s—:ﬂ). (17.7)
With zset toz = e S as in (L6.24), the spectral determinarnt7.6) has the same
form for both maps and flows. We refer tb7(.6) asspectral determinantas the
spectrum of the operatofi is given by the zeros of

det(s— A) =0. (17.8)

We now note that the sum in (L7.6) is close in form to the expansion of a
logarithm. This observation enables us to recast the sgjatgterminant into an
infinite product over periodic orbits as follows:

Let M, be thep-cycle [dxd] transverse fundamental matrix, with eigenvalues
Ap1, Ap2, ..., Apd. Expanding the expanding eigenvalue factoflt 1/Ape)
and the contracting eigenvalue factorg1l- Apc) in (16.4) as geometric series,
substituting back intol(7.6), and resumming the logarithms, we find that the spec-
tral determinant is formally given by the infinite product

1
det(s—-A) =
k=0 1g=0 Ja-e
| | |
Al Al Al
Ydgr, = | ]|1- -2t B2 (17.9)
p Ap,lAp.Z'”AP,E‘
1
t = tp(zs,ﬁ):meg'AD’STPz”P. (17.10)
p
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In such formulastp is a weight associated with the cycle (lettert refers to
the “local trace” evaluated along thecycle trajectory), and the indeg runs
through all distinct prime cycles. Why the factdir? It is associated with
the trace formula6.10 for maps, whereas the facters™ is specific to the
continuous time trace formuld§.23; according to {6.24 we should use either
one or the other. But we have learned in s&ct.that flows can be represented
either by their continuous-time trajectories, or by thejdlogical time Poincaré
section return maps. In cases when we have good control lee¢opology of the
flow, it is often convenient to insert th&r factor into cycle weights, as a formal
parameter which keeps track of the topological cycle lengtfihese factors will
assist us in expanding zeta functions and determinantsitiealyy we shall set
z = 1. The subscriptg, ¢ indicate that there are expanding eigenvalues, and
¢ contracting eigenvalues. The observable whose averageistetavcompute
contributes through tha!(x) term in thep cycle multiplicative weighe®». By
its definition (L5.1), the weight for maps is a product along the cycle points

[chapter 18]

np-1 v
e = [ oo,

j=0

and the weight for flows is an exponential of the integi&l.f) along the cycle

P = exp( fo " a(x(‘r))d‘r).

This formula is correct for scalar weighting functions; mgeneral matrix valued
weights require a time-ordering prescription as in the &mdntal matrix of sectl. 1.

\
Example 17.2 Expanding 1- d map: & For expanding 1-d mappings the spec-
tral determinant (17.9) takes the form

© e
det-z0) = [ [[[(1-to/AY).  to= mz"n . (17.11)

p k=0 P
Example 17.3 Two-degree of freedom Hamiltonian flows: For a 2-degree of

freedom Hamiltonian flows the energy conservation eliminates on phase space variable,
and restriction to a Poincaré section eliminates the marginal longitudinal eigenvalue
A =1, so a periodic orbit of 2-degree of freedom hyperbolic Hamiltonian flow has one
expanding transverse eigenvalue A, |A| > 1, and one contracting transverse eigenvalue
1/A. The weight in (16.4) is expanded as follows:

1 1 1ik+l

B AT L AR 17.12
[aet(1— mp)| ~ IAF=T/AD2 AT £ A% (17.12)

k=0

The spectral determinant exponent can be resummed,

01 elBASTo)r l ( e@ApfsTp]
N2 o Nk+1)logl1-—— |,
;‘ r |det(1—rv|;,)' kZ::;( +1)leg [ApIAK
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and the spectral determinant for a 2-dimensional hyperbolic Hamiltonian flow rewritten
as an infinite product over prime cycles

B

det- ) = [ [[](2-to/ak)" . (17.13)
P

k=0

[exercise 21.4]

Now we are finally poised to deal with the problem posed at #ggriming of
chapterl6; how do we actually evaluate the averages introduced insed? The
eigenvalues of the dynamical averaging evolution ope@@given by the values
of s for which the spectral determinant4.6) of the evolution operatorl6.23
vanishes. If we can compute the leading eigenvayg) and its derivatives, we
are done. Unfortunately, the infinite product formul&r © is no more than a
shorthand notation for the periodic orbit weights contiifog to the spectral det-
erminant; more work will be needed to bring such formulas atractable form.
This shall be accomplished in chaptis, but here it is natural to introduce still
another variant of a determinant, the dynamical zeta fancti

17.3 Dynamical zeta functions

It follows from sect.16.1.1that if one is interested only in the leading eigenvalue
of £, the size of thep cycle neighborhood can be approximated B}, the
dominant term in theT, = t — oo limit, where A, = []cApe is the product of
the expanding eigenvalues of the fundamental marjx With this replacement
the spectral determinant7.6) is replaced by thelynamical zeta function

1/¢ = exp[— Z Z %tfp] (17.14)
p r=1

that we have already derived heuristically in séct.2 Resumming the logarithms
usingy, t,/r = —In(1-tp) we obtain theEuler product representatioaf the dyn-
amical zeta function:

1z =]](1-t). (17.15)

p

In order to simplify the notation, we usually omit the exflidependence of /&,
tp onz, s, S whenever the dependence is clear from the context.

The approximate trace formula®.28 plays the same roleis-a-vis the dyn-

amical zeta function1(7.7)

Tot
I(s) = dimg-l: PP

— (17.16)
S 1=t
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as the exact trace formula.23 playsvis-a-vis the spectral determinant7.6).
The heuristically derived dynamical zeta function of séck.2now re-emerges
as the 1¢o..0(2) part of theexactspectral determinant; other factors in the infinite
product (7.9 affect the non-leading eigenvalues £f

In summary, the dynamical zeta functidiv(19 associated with the floi*(x)
is defined as the product over all prime cycles The quantities,T,, np and
Ap, denote the period, topological length and product of theaeging stability
eigenvalues of prime cyclp, A, is the integrated observabégx) evaluated on a
single traversal of cyclg (see (5.9), sis a variable dual to the time zis dual
to the discrete “topological” tima, andtp(z s, ) denotes the local trace over the
cycle p. We have included the factaf in the definition of the cycle weight in
order to keep track of the number of times a cycle traversestuhface of section.
The dynamical zeta function is useful because the term

1/4(9) =0 (17.17)

whens = s, Here s is the leading eigenvalue of! = €, which is often alll
that is necessary for application of this equation. The elmgument completes
our derivation of the trace and determinant formulas fosgitzal chaotic flows.
In chapters that follow we shall make these formulas taegiy working out a
series of simple examples.

The remainder of this chapteffers examples of zeta functions.
fast track:
@ chapter 18, p. 299
17.3.1 A contour integral formulation

y
J The following observation is sometimes useful, in particulor zeta
functions with richer analytic structure than just zeros @oles, as in the case
of intermittency (chapte23): I'n, the trace sumi(.26), can be expressed in terms
of the dynamical zeta functiori{.19

Zp
1/¢(2) = ]] (1— |A_p|) . (17.18)

as a contour integral

I S QY
rn_27ri yr7z (dzlogg (z))dz, (17.19)

[exercise 17.7]
where a small contouy; encircles the origin in negative (clockwise) direction.
If the contour is small enough, i.e., it lies inside the unitle |7 = 1, we may
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Figure 17.1: The survival probability, can be split
into contributions from poles (x) and zeros (0) between
the small and the large circle and a contribution from
the large circle.

write the logarithmic derivative of () as a convergent sum over all periodic
orbits. Integrals and sums can be interchanged, the in¢egga be solved term
by term, and the trace formuld .26 is recovered. For hyperbolic maps, cycl[(cahamer 18]
expansions or other techniques provide an analytical woation of the dynam-

ical zeta function beyond the leading zero; we may therefieferm the original

contour into a larger circle with radiu® which encircles both poles and zeros of

¢7%(2), as depicted in figuré7.1 Residue calculus turns this into a sum over the
zerosz, and polesg of the dynamical zeta function, that is

Ip= Zijsl pfsl = 56 dzzn 4 logs™t (17.20)
h= - = -+ — — g, .
FRE <R LN dz

where the last term gives a contribution from a large cingle It would be a
miracle if you still remembered this, but in sett4.3we interpreted, as fraction

of survivors aftem bounces, and defined the escape tass the rate of the find
exponential decay df,. We now see that this exponential decay is dominated by
the leading zero or pole af 1(2).

17.3.2 Dynamical zeta functions for transfer operators

y
J Ruelle’s original dynamical zeta function was a generéliraof the
topological zeta function13.21) to a function that assigns féérent weights to

. chapter 13
different cycles: fehap ]

z
n

00 n-1
@=exp) = 3, ][] g(f‘(m))] .
n=1 xieFixfn i=0
[exercise 16.2]
Here we sum over all periodic pointg of periodn, and g(x) is any (matrix
valued) weighting function, where the weight evaluatedtiplitatively along the
trajectory ofx;.

By the chain rule 4.50 the stability of anyn-cycle of a 1d map is given
by Ap = ?:1 f’(x), so the 1d map cycle stability is the simplest example
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of a multiplicative cycle weight(x) = 1/|f’(x)l, and indeed - via the Perron-
Frobenius evolution operatot4.9) - the historical motivation for Ruelle’s more
abstract construction.

In particular, for a piecewise-linear map with a finite Markgartition such
as the map of examplé4.1, the dynamical zeta function is given by a finite
polynomial, a straightforward generalization of the tamtal transition matrix
determinant 10.2). As explained in sectl3.3 for a finite [N x N] dimensional
matrix the determinant is given by

N
[]a-t)=> 7cn.
p n=1

wherec, is given by the sum over all non-self-intersecting closetthpaf length
n together with products of all non-intersecting closed pathtotal lengthn.

Example 17.4 A piecewise linear repeller: Due to piecewise linearity, the stability
of any n-cycle of the piecewise linear repeller (15.17) factorizes as Ass,..s, = AJAT™,
where mis the total number of times the letter s; = O appears in the p symbol sequence,
so the traces in the sum (16.28) take the particularly simple form

1 1\
trT" =T, :(—+—) .
" \Ad A

Thi ical function (17.14, I ing th
e dynamical zeta function (. ) evaluated by resumming the traces, [exercise 17.3]

1/£(2) = 1= 2/IAol - Z/IA4l, (17.21)

is indeed the determinant det (1 zT) of the transfer operator (15.19), which is almost
as simple as the topological zeta function (13.25).

[section 10.5]

More generally, piecewise-linear approximations to dyitahsystems yield
polynomial or rational polynomial cycle expansions, pdad that the symbolic
dynamics is a subshift of finite type.

We see that the exponential proliferation of cycles so d¥ddny quantum
chaologians is a bogus anxiety; we are dealing with exp@lgnmany cycles of
increasing length and instability, but all that really resdtin this example are the
stabilities of the two fixed points. Clearly the informatioarried by the infinity
of longer cycles is highly redundant; we shall learn in ckafi8 how to exploit
this redundancy systematically.

17.4 False zeros

Compare {7.21) with the Euler product17.15. For simplicity consider two
equal scalegAqg| = |A1] = €', Our task is to determine the leading zere €’
of the Euler product. It is a novice error to assume that tfiaita Euler product
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(17.15 vanishes whenever one of its factors vanishes. If that weeg each factor
(1-2"%/|Apl) would yield

0=1-gwo), (17.22)

so the escape ratewould equal the Floquet exponent of a repulsive cycle, one
eigenvaluey = vy, for each prime cyclep. This is false! The exponentially
growing number of cycles with growing period conspires tift$he zeros of the
infinite product. The correct formula follows from7.21)

O=1-g %" h=In2 (17.23)

This particular formula for the escape rate is a special cdsegeneral relation
between escape rates, Lyapunov exponents and entropiess that yet included
into this book. Physically this means that the escape irdilogethe repulsion
by each unstable fixed point is diminished by the rate of bzatksr from other
repelling regions, i.e., the entropy the positive entropy of orbits shifts the “false
zeros”z = e of the Euler product¥(7.15 to the true zera = e

17.5 Spectral determinantsys. dynamical zeta functions

In sect.17.3we derived the dynamical zeta function as an approximatoté
spectral determinant. Here we relate dynamical zeta fomstto spectral deter-
minantsexactly by showing that a dynamical zeta function can be expressed a
ratio of products of spectral determinants.

The elementary identity fad-dimensional matrices

— 1 : K. k
1= mEw é(—l) tr (A“Mm) (17.24)

inserted into the exponential representati@i.{4 of the dynamical zeta func-
tion, relates the dynamical zeta functiorvteightedspectral determinants.

Example 17.5 Dynamical zeta function in terms of determinants, 1- ~ d maps:  For
1-d maps the identity

1 1 1

=TTy Aacom

substituted into (17.14) yields an expression for the dynamical zeta function for 1-d
maps as a ratio of two spectral determinants

det (1- zL)

YO Get- 22wy

(17.25)
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where the cycle weight in L) is given by replacement t, — ty/Ap. As we shall see oo Isr:ns o
in chapter 21, this establishes that for nice hyperbolic flows 1/ is meromorphic, with 2
poles given by the zeros of det (1- zL)). The dynamical zeta function and the spectral ° R
determinant have the same zeros, although in exceptional circumstances some zeros L A
of det (1 zL)) might be cancelled by coincident zeros of det (1- zL(1)). Hence even P fEn s e g
though we have derived the dynamical zeta function in sect. 17.3 as an “approximation” o o o o o [lawrRes
to the spectral determinant, the two contain the same spectral information. o o o o o 4-amT
Figure 17.2: The classical resonances = {k,n} e
(17.29 for a 2-disk game of pinball.

Example 17.6 Dynamical zeta function in terms of determinants, 2-  d Hamiltonian

maps:  For 2-dimensional Hamiltonian flows the above identity yields is only one periodic orbit, with the periotland expanding eigenvaluegiven by

elementary considerations (see exer€is, and the resonances dsf ¢ A) = 0,

1 1 a = {k,n} plotted in figurel7.2

==~ (1-2/A+1/A?),
Al IAIL - 1/1\)2( )
2ni s
so Sy =—(k+ 1)1+ nT , neZ,keZ,, muliplicity k+1, (17.28)
det(1- det(1-
1= (1-zL)det(1-zLp) ‘ (17.26) . .
det(1-zLq) can be readfd the spectral determinant?.13 for a single unstable cycle:
This establishes that for nice 2-d hyperbolic flows the dynamical zeta function is meromorphic. -
k+1
dets-A) = [ [(1-e*T/1a1AY) i (17.29)
k=0
Example 17.7 Dynamical zeta functions for 2- d Hamiltonian flows: The relation In the abovel = In|A|/T is the cycle Lyapunov exponent. For an open system,
(17.26) is not particularly useful for our purposes. Instead we insert the identity the real part of the eigenvalig gives the decay rate ofth eigenstate, and the

imaginary part gives the “node number” of the eigenstatee figgative real part
of s, indicates that the resonance is unstable, and the decajnrtts simple
case (zero entropy) equals the cycle Lyapunov exponent.

! 2 1 11
SE-LA? A-LAR T AZ{I-1/AR

into the exponential representation (17.14) of 1/{x, and obtain
Rapidly decaying eigenstates with large negative Rars not a problem, but

as there are eigenvalues arbitrarily far in the imaginargation, this might seem
like all too many eigenvalues. However, they are necessas/can check this by
explicit computation of the right hand side df§.23, the trace formula for flows:

det(1-zLy)det (1- zLk:2)

Tt L)’ (17.27)

/4=

Even though we have no guarantee that det (1- zL) are entire, we do know that the
upper bound on the leading zeros of det (1-zL 1)) lies strictly below the leading zeros - o
of det (1- zL), and therefore we expect that for 2-dimensional Hamiltonian flows the Z et Z Z (k+1) (ks D)atri2emy T
dynamical zeta function 1/ generically has a double leading pole coinciding with the “

leading zero of the det (1- zL.1)) spectral determinant. This might fail if the poles and k=0 n=-co

leading eigenvalues come in wrong order, but we have not encountered such situations _ > K+ 1 1\ T 2T
in our numerical investigations. This result can also be stated as follows: the theorem - Z( +1) |A|AK Z
establishes that the spectral determinant (17.13) is entire, and also implies that the k:oo - ==
poles in 1/ must have the right multiplicities to cancel in the det(1- zL£) = [] 1/4‘2*1 _ k+1
product. - % JAIFAK Z or-t/T)
- r=—oco
o o(t-1rT)
=T _— 17.30
Zw IAI(1 - 1/AT)? (17.20)
17.6 Alltoo many eigenvalues?
(ﬁb Hence, the two sides of the trace formul® 23 are verified. The formula is fine
fort > 0; fort — 0., however, sides are divergent and need regularization.
What does the 2-dimensional hyperbolic Hamiltonian flowcsé determinant
(17.13 tell us? Consider one of the simplest conceivable hyperiflmws: the The reason why such sums do not occur for maps is that foratéstime we
game of pinball of figur@? consisting of two disks of equal size in a plane. There work with the variablez = €%, so an infinite strip along Im s maps into an annulus
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in the complexz plane, and the Dirac delta sum in the above is replaced by the
Kronecker delta sum in16.8). In the case at hand there is only one time scale
T, and we could just as well replaceby the variablez = €57, In general, a
continuous time flow has an infinity of irrationally relategcte periods, and the
resonance arrays are more irreguddr,figure 18.1

Résum é

The eigenvalues of evolution operators are given by theszef@orresponding

determinants, and one way to evaluate determinants is t@neixfhem in terms

of traces, using the matrix identity log dettr log. Traces of evolution operators
can be evaluated as integrals over Dirac delta functiortsiretinis way the spectra
of evolution operators are related to periodic orbits. Tiecsral problem is now

recast into a problem of determining zeros of eithergpectral determinant

sTp)r
det(s— A) = exp| Zzildﬁ:a 'Tw)i

or the leading zeros of th@ynamical zeta function

Ye=[]0-t%), t= ‘ApleﬁAp STy
p

The spectral determinant is the tool of choice in actual ations, as it
has superior convergence properties (this will be discussehapter21 and is
illustrated, for example, by tabl&8.2.2. In practice both spectral determinants
and dynamical zeta functions are preferable to trace fasbécause they yield
the eigenvalues more readily; the mairfifelience is that while a trace diverges
at an eigenvalue and requires extrapolation methods, rdigtents vanish as
corresponding to an eigenvalsg, and are analytic irsin an open neighborhood
of s,.

The critical step in the derivation of the periodic orbit farlas for spec-
tral determinants and dynamical zeta functions is the Hygeity assumption
(16.9 that no cycle stability eigenvalue is margingt,,j| # 1. By dropping the
prefactors in {.4), we have given up on any possibility of recovering the meci
distribution of the initialx (return to the past is rendered moot by the chaotic
mixing and the exponential growth of errors), but in exclewg gain an &ective
description of the asymptotic behavior of the system. Tkagant surprise (to be
demonstrated in chapt&B) is that the infinite time behavior of an unstable system
turns out to be as easy to determine as its short time behavior
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Commentary

Remark 17.1 Piecewise monotone maps. A partial list of cases for which the transfer
operator is well defined: the expanding Holder case, weistibshifts of finite type,
expanding dierentiable case, see Bowen]: expanding holomorphic case, see Ruelle [
piecewise monotone maps of the interval, see Hofbauer atidr{&4] and Baladi and
Keller [17].

Remark 17.2 Smale’s wild idea. Smale’s wild idea quoted on pag85was technically
wrong because 1) the Selberg zeta function yields the speaif a quantum mechanical
Laplacian rather than the classical resonances, 2) therapdeterminant weights are
different from what Smale conjectured, as the individual cy@®tts also depend on the
stability of the cycle, 3) the formula is not dimensionalyriect, ak is an integer ang
represents inverse time. Only for spaces of constant ivegairvature do all cycles have
the same Lyapunov exponeht In|A,|/Tp. In this case, one can normalize time so that
A= 1, and the factorg™=T/Af in (17.9 simplify to s(5*9T», as intuited in Smale’s quote
on page285 (wherel(y) is the cycle period denoted here By). Nevertheless, Smale’s
intuition was remarkably on the target.

Remark 17.3 Is this a generalization of the Fourier analysis? ~ Fourier analysis is a
theory of the space» eigenfunction duality for dynamics on a circle. The way inigth
periodic orbit theory generalizes Fourier analysis to ima@dr flows is discussed in ref][

a very readable introduction to the Selberg Zeta function.

Remark 17.4 Zeta functions, antecedents.  For a function to be deserving of the
appellation “zeta function,” one expects it to have an Epteduct representatiod7.15,
and perhaps also satisfy a functional equation. Variousskirf zeta functions are reviewed
inrefs. [7, 8, 9]. Historical antecedents of the dynamical zeta functiantbe fixed-point
counting functions introduced by Weil (], Lefschetz [L1] and Artin and Mazur{2], and
the determinants of transfer operators of statistical raeiis P6].

In his review article Smale?[3] already intuited, by analogy to the Selberg Zeta
function, that the spectral determinant is the right gelieton for continuous time
flows. In dynamical systems theory, dynamical zeta funetiarise naturally only for
piecewise linear mappings; for smooth flows the naturalali the study of classical
and quantal spectra are the spectral determinants. Ruelfieed the relation 7.3
between spectral determinants and dynamical zeta fursstinn since he was motivated
by the Artin-Mazur zeta function1@.2]) and the statistical mechanics analogy, he did
not consider the spectral determinant to be a more natujetothan the dynamical zeta
function. This has been put right in papers on “flat tracées} P3].

The nomenclature has not settled down yet; what we call éeoloperators here is
elsewhere called transfer operatofs][ Perron-Frobenius operators] [andor Ruelle-
Araki operators.

Here we refer to kernels such a(23 as evolution operators. We follow Ruelle in
usage of the term “dynamical zeta function,” but elsewherthe literature the function
(17.19 s often called the Ruelle zeta function. Ruell€][points out that the corresponding
transfer operatdf was never considered by either Perron or Frobenius; a mprejppate
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designation would be the Ruelle-Araki operator. Determisaimilar to or identical with

our spectral determinants are sometimes called Selbeas Z8elberg-Smale zetad,[
functional determinants, Fredholm determinants, or etemaximize confusion - dynamical
zeta functions 3. A Fredholm determinant is a notion that applies only tax¢ralass
operators - as we consider here a somewhat wider class aitopgrwe prefer to refer to
their determinants loosely as “spectral determinants.”

Exercises

17.1. Escape rate for a 1d repeller, numerically. Consider
the quadratic map () f(x)

01 11
f(x) = AL - X) (17.31)

on the unit interval. The trajectory of a point starting A A
in the unit interval either stays in the interval forever
or after some iterate leaves the interval and diverges
to minus infinity. Estimate numerically the escape rate
(20.9, the rate of exponential decay of the measure of
points remaining in the unit interval, for eithér= 9/2

or A = 6. Remember to compare your numerical
estimate with the solution of the continuation of this
exercise, exercises.2

(b) What if there are four dierent slopesgo, S1, Sio,
and s;; instead of just two, with the preimages
of the gap adjusted so that junctions of branches
S0, So1 @andsya, S1p Map in the gap in one iteration?
What would the dynamical zeta function be?

17.2. Spectrum of the “golden mean” pruned map.

(medium - Exercisé3.6continued) 17.4. Dynamical zeta functions from Markov graphs.
Extend sect13.3to evaluation of dynamical zeta func-
(a) Determine an expression for4P, the trace of tions for piecewise linear maps with finite Markov
powers of the Perron-Frobenius operatb4.(L0 graphs. This generalizes the results of exertis&
for the tent map of exercisk3.a o o
17.5. Zeros of infinite products. Determination of the
(b) Show that the spectral determinant for the Perron-  quantities of interest by periodic orbits involves working
Frobenius operator is with infinite product formulas.
det(i-z0) = [] (1_ ﬁ - %) (a) Consider the infinite product
k even o
I (1 + % + X—iﬁ%a F@ = ]kl(l + (@)

k odd

where the function$ are “suficiently nice.” This
infinite product can be converted into an infinite
sum by the use of a logarithm. Use the properties
of infinite sums to develop a sensible definition of

17.3. Dynamical zeta functions. (easy)

(a) Evaluate in closed form the dynamical zeta func-

tion P
infinite products.
2
1/¢(2 = H(l— A—p) N (b) If z° is a root of the functiorF, show that the
p Al infinite product diverges when evaluatedzat
for the piecewise-linear mafd$.17 with the left (c) How does one compute a root of a function
branch slopé\, the right branch slopA;. represented as an infinite product?

exerDet - 40ct2003.tex

X X

REFERENCES 297

17.6.

17.7.

17.8.

(d) Let p be all prime cycles of the binary alphabet Inthis expression det (1zL)) is the expansion one g
{0, 1}. Apply your definition ofF(2) to the infinite by replacing, — tp/A'; in the spectral determinant.
product » 17.10. Riemann ¢ function. The Riemanry function i

_ _zr defined as the sum
FO=[a-&)
p © g

(e) Are the roots of the factors in the above product {9 = Z s’ seC.

n=1

the zeros of(2)?

(Per Rosenqvist) (a) Use factorization into primes to derive the E

. ) ) ) product representation
Dynamical zeta functions as ratios of spectral determinarg.

(medium) Show that the zeta function _ 1
(9 1:[ =

1 zv
1/¢@) = exp[— S
;2 r Al

The dynamical zeta function exercide.15 is
called a “zeta” function because it shares

can be written as the ratio /4(2 = form of the Euler product representation with
det(1-zL))/det (1- zLyy) , Riemann zeta function.

where det (& 2L) = [T, [Tizo(L = Z%/IAplAS). (b) (Not trivial:) For which complex values afis the
Contour integral for survival probability. ~ Perform Riemann zeta sum convergent?

explicitly the contour integral appearing ih{.19. (c) Are the zeros of the terms in the produst,=
—In p, also the zeros of the Riemagrfunction

Dynamical zeta function for maps.  In this problem
If not, why not?

we will compare the dynamical zeta function and the

spectral determinant. Compute the exact dynamical zeta - ) h .
function for the skew Ulam tent map4.49 17.11. F_|n|te tr_uncatlons. (e_asy) Suppose_we ave ¢
dimensional system with complete binary dynar

_ 4 where the stability of each orbit is given by a sin
Y@= l_[ (1 - m) : multiplicative rule:

peP P

What are its roots? Do they agree with those computed Ap = AgeAT, Npo=#0inp, Ny = #11i

in exercisel4.7? 3A2
so that, for examplehooio1 = AAT.

17.9. Dynamical zeta functions for Hamiltonian maps.
Starting from (a) Compute the dynamical zeta function for
system; perhaps by creating a transfer m
> 1 analogous to1(5.19, with the right weights.
1/£(9) = exp[—z > —t[)) g k¢ . 9 9 g
= (b) Compute the finitep truncations of the cyc
) ) . . expansion, i.e. take the product only over
for a 2-dimensional Hamiltonian map. Using the up to given length witm, < N, and expand a:
equality series inz
1 2
1= ———S(1-2/A+1/A%, _r
Ay U(l |Ap|) '
show that Do they agree? If not, how does the disagree
1/¢ = det(1- L) det(1- L)/det(1- L(l))Z_ depend on the truncation lengt?
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Chapter 18

Cycle expansions

Recycle... It's the Law!
—Poster, New York City Department of Sanitation

amical zeta functions1(7.19 are really only a shorthand notation - the

zeros of the individual factors amt the zeros of the zeta function, and
convergence of such objects is far from obvious. Now we ghig# meaning
to the dynamical zeta functions and spectral determinantxpanding them as
cycle expansions, series representations ordered byasingetopological cycle
length, with products in1(7.9), (17.15 expanded as sums ovpseudocycles
products ofty’s. The zeros of correctly truncated cycle expansions yibkl
desired eigenvalues, and the expectation values of olidesvare given by the
cycle averaging formulas obtained from the partial derrest of dynamical zeta
functions (or spectral determinants).

THE EuLEr PRODUCT representations of spectral determinaritg.9 and dyn-

18.1 Pseudocycles and shadowing

How are periodic orbit formulas such ds/(15 evaluated? We start by computing
the lengths and stability eigenvalues of the shortest sycléis always requires
numerical work, such as the Newton method searches forgiersolutions; we
shall assume that the numerics is under control, andathathort cycles up to

a given (topological) length have been found. Examples @fddta required for
application of periodic orbit formulas are the lists of @&hiven in tabl7.2and
exercisel2.11 Itis important not to misany short cycles, as the calculation is as
accurate as the shortest cycle dropped - including cyclegelothan the shortest
omitted does not improve the accuracy (more precisely, avgs it, but painfully
slowly).

Expand the dynamical zeta functioh7(15 as a formal power series,
ve=[la-tp=1- 3" 0%t 1, (18.1)
p {P1P2... P}
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where the prime on the sum indicates that the sum is overstihdt non-repeating
combinations of prime cycles. As we shall frequently usésuens, let us denote
by t, = (=1)¢tp,tp, ...t an element of the set of all distinct products of the
prime cycle weights,. The formal power seried.8.1) is now compactly written
as

17=1-3"t. (18.2)

Fork > 1, t,are weights opseudocycleshey are sequences of shorter cycles
that shadow a cycle with the symbol sequems®, ... px along segmentgy,
P2,..., pk. > denotes the restricted sum, for which any given prime cycle
contributes at most once to a given pseudocycle wejght

The pseudocycle weight, i.e., the product of weighifg.10 of prime cycles
comprising the pseudocycle,

te = (fl)k“ﬁe“"’“"zm . (18.3)
T

depends on the pseudocycle topological lemgtlintegrated observabk,, period
T,, and stabilityA

N, = Np +...+Np, Ti=Tp +...+Tp
Ar = Ap ...+ A, Ax=ApAp, - Ap, . (18.4)

Throughout this text, the terms “periodic orbit” and “cytcéee used interchangeably;
while “periodic orbit” is more precise, “cycle” (which hasamy other uses in
mathematics) is easier on the ear than “pseudo-periodit-o¥Vhile in Soviet
times acronyms were a rage (and in France they remain so)hyavgay from
acronyms such as UPOs (Unstable Periodic Orbits).

18.1.1 Curvature expansions

The simplest example is the pseudocycle sum for a systembleddy a complete
binary symbolic dynamics. In this case the Euler prod@ict19 is given by

17 = (1-1t0)(1—t)(1 - tor)(L - toor)(1 - to11) (18.5)
(1 - too01)(1 — too11)(1 — tor11)(L — toooon) (1 — tooo11)
(1 - too100)(1 - too119)(1 — toro11)(L — to111) - - -

(see table0.1), and the first few terms of the expansidi8(2 ordered by increasing
total pseudocycle length are:

1/ = 1-to—1t1—1to1—1too1 — to11 — tooo1— too11 — tozaz—- .-
+ota + toto1 + toats + totoos + totoaa + tooats + to1ats
—totorts — . .. (186)
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We refer to such series representation of a dynamical zetdifun or a spectral
determinant, expanded as a sum over pseudocycles, ancarogrincreasing
cycle length and instability, as@cle expansion

The next step is the key step: regroup the terms into the dortfimdamental
contributionst; and the decreasingurvature correctionscy,, eachc; split into
prime cyclesp of length n,=n grouped together with pseudocycles whose full
itineraries build up the itinerary gf. For the binary case this regrouping is given

by

1 -1t -ty — [(tor — t1to)] — [(too1 — toato) + (toa1 — tosts)]
~[(tooo1 — totoo1) + (to111 — torats)

+(too11 — tooats — toto1 + totoats)] —

l—th—Zén. (18.7)
f n

17

All terms in this expansion up to lengtl, = 6 are given in tablé8.1.1  We
refer to such regrouped seriesa@svature expansions

Such separation into “fundamental” and “curvature” paftsycle expansions
is possibleonly for dynamical systems whose symbolic dynamics has finitegrar.
The fundamental cycles, t; have no shorter approximants; they are the “building
blocks” of the dynamics in the sense that all longer orbits loa approximately
pieced together from them. The fundamental part of a cygimesion is given
by the sum of the products of all non-intersecting loops efdksociated Markov
graph.  The terms grouped in brackets are the curvaturectioms; the terms
grouped in parenthesis are combinations of longer cyclésamesponding sequelbec
of “shadowing” pseudocycles. If all orbits are weighted &ltyu(t, = z*), such
combinations cancel exactly, and the dynamical zeta fancgduces to the topological
polynomial (L3.21). If the flow is continuous and smooth, orbits of similar syotib
dynamics will traverse the same neighborhoods and will fewelar weights,
and the weights in such combinations will almost cancel. Ttily of cycle
expansions of dynamical zeta functions and spectral détants, in contrast
to direct averages over periodic orbits such as the trageulas discussed in
sect.20.5 lies precisely in this organization into nearly cancelemnbinations:
cycle expansions are dominated by short cycles, with looesygiving exponentially
decaying corrections.

In the case where we know of no finite grammar symbolic dynarttiat
would help us organize the cycles, the best thing to usesialality cutgf which
we shall discuss in secl8.5 The idea is to truncate the cycle expansion by
including only the pseudocycles such thap, - -- Ap,| < Amax With the cutdf
Amaxequal to or greater than the most unstabjgin the data set.
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Table 18.1: The binary curvature expansiohd.7) up to length 6, listed in such way that
the sum of terms along thath horizontal line is the curvatuig associated with a prime
cyctle p, or a combination of prime cycles such as thg101+ tioo110palir.

-to

- tl

-T10 + 11l

-Ti00 + T10l0

-t + tiots

-Tioo0  + Tioolo

-tioor  +lioon  +tioato - tatioto

-tionn ol

-Tio000  + T10odlo

-tiooo1  +ticoifo  +tioodts - totioots

-ti0010  + tioolio

-tio101  + troatio

-tioo1r  +lioufo  +tiooafs - totioata

-tioar +tioaaly

-Ti00000 + T1000do

-ti00001  + tiooofo  + tioooda - totioogts

- ti00010 + tiooido  + tioodtzo - totiootio

-ti00011  +tioo1fo  + triocofa - totiooifs

-tioo101 - tiop110  + tro01d1  + tyo1ado

+ tiotiopr  + taootior - totaotyon - tatiotioo

-tio110 +tionada  +tioaatio - tatioatio

-tioo111  +ticorta  + tioaasfo - totioaafs

-tion111  + tionath

18.2 Construction of cycle expansions

18.2.1 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluabederically by first
computing the weights, = tp(8, ) of all prime cyclesp of topological length

np < N for given fixedg ands. Denote by subscripti) the ith prime cycle
computed, ordered by the topological lengiy < ng.1). The dynamical zeta
function 1/¢y truncated to the, < N cycles is computed recursively, by multiplying

Y = 14—y - tn2"), (18.8)

and truncating the expansion at each step to a finite polyeddmz”, n < N. The
result is theNth order polynomial approximation

N
Yin=1- Z . (18.9)
n=1

In other words, a cycle expansion is a Taylor expansion indiamy variable
z raised to the topological cycle length. If both the numbecygles and their
individual weights grow not faster than exponentially wiitle cycle length, and
we multiply the weight of each cyclg by a factorz™, the cycle expansion
converges for diciently small|zZ.

If the dynamics is given by iterated mapping, the leading z#r(18.9 as
function ofz yields the leading eigenvalue of the appropriate evolutiperator.
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For continuous time flows is a dummy variable that we set o= 1, and the
leading eigenvalue of the evolution operator is given byl¢la€eling zero of18.9
as function ofs.

18.2.2 Evaluation of traces, spectral determinants
Due to the lack of factorization of the full pseudocycle weijg
det(1— Mp,p,) # det(1 - My, ) det(1 - Mp,) ,

the cycle expansions for the spectral determinantd) are somewhat less transparent
than is the case for the dynamical zeta functions.

We commence the cycle expansion evaluation of a spectratrditant by
computing recursively the trace formulag(10 truncated to all prime cyclep
and their repeats such thagr < N:

2r 2r "N A -STo)r por
trl—ZE = tr—l—ZC' + NGy Z 7r
0) (1) = (- ag,)|
N
zL
tr = C.Z", Ch,=trL". 18.10
T Zl " n=trL (18.10)

This is done numerically: the periodic orbit data set cdasi$ the list of the
cycle periodsT, the cycle stability eigenvaluesp 1, Ap2. ..., Apg, and the cycle
averages of the observabhg, for all prime cyclesp such thatn, < N. The
codficient of Z%" is then evaluated numerically for the givef, §) parameter
values. Now that we have an expansion for the trace formified(as a power
series, we compute thdth order approximation to the spectral determinat®,

N
det(1-zL)ly=1- > QuZ',  Qn = nth cumulant (18.11)
n=1

as follows. The logarithmic derivative relatiohq.4) yields

L _ d
(tr 1= LE) det(1-z£) = —zd—zdet 1-zL)

(Ciz+CoZ + )1~ Quz- Q7 — )

Q1z+2Q7 +3Q3Z - -

so thenth order term of the spectral determinant cycle (or in thiecthe cumulant)
expansion is given recursively by the trace formula exgansoéficients

1
Qn= ﬁ (Cn=Cn1Q1~--CiQn1) s Q1 =Cy. (18.12)
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Table 18.2: 3-disk repeller escape rates computed from the cycle eigasf the
spectral determinanfl{.6 and the dynamical zeta functiodq.19, as function of the
maximal cycle lengthN. The first column indicates the disk-disk center separation
to disk radius raticR:a, the second column gives the maximal cycle length used, and
the third the estimate of the classical escape rate fromuhdamental domain spec-
tral determinant cycle expansion. As for larger disk-digparations the dynamics
is more uniform, the convergence is better fRla = 6 than forRa = 3. For
comparison, the fourth column lists a few estimates frormftbe fundamental domain
dynamical zeta function cycle expansidi8(7), and the fifth from the full 3-disk cycle
expansion18.39. The convergence of the fundamental domain dynamicalfaetzion
is significantly slower than the convergence of the corredpw spectral determinant,
and the full (unfactorized) 3-disk dynamical zeta functias still poorer convergence.
(P.E. Rosenqvist.)
Ra . det(s— A) 1/4(s) 1/5(5)3—disL
0.39 0.407

0.4105 0.41028 0.435
0.410338 0.410336  0.4049
0.4103384074 0.4103383  0.40945
0.4103384077696 0.4103384 0.410367
0.410338407769346482 0.4103383 0.410338
0.4103384077693464892 0.4103396
0.410338407769346489338468
0.4103384077693464893384613074
0.4103384077693464893384613078192

041

0.72

0.675

0.67797

0.677921

0.6779227

0.6779226894

0.6779226896002

0.677922689599532

0.67792268959953606

[uy

QOONOUTRWNHOOWORNOUITRAWNHZ

[ay
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Given the trace formulal@.10) truncated tazV, we now also have the spectral
determinant truncated @,

The same program can also be reused to compute the dynaetiadlinction
cycle expansion1@8.9), by replacingﬂ(l— Azi)‘j) in (18.10 by the product of
expanding eigenvalues;) = []cAg).e (See sectl7.3).

The calculation of the leading eigenvalue of a given comtirsuflow evolution
operator is now straightforward. After the prime cycles #relpseudocycles have
been grouped into subsets of equal topological length, whendy variable can be
set equal ta = 1. Withz = 1, expansion18.1]) is the cycle expansion fofL.7.6),
the spectral determinant det{ A) . We varysin cycle weights, and determine
the eigenvalues, by finding s = s, for which (18.11) vanishes. As an example,
the convergence of a leading eigenvalue for a nice hyperbgéitem is illustrated
in table 18.2.2by the listing of pinball escape rateestimates computed from
truncations of {8.7) and (L8.11) to different maximal cycle lengths.

[chapter 21]

The pleasant surprise is that the fitments in these cycle expansions can be
proven to fall df exponentially or even faster, due to analyticity of det(A) or
1/¢(s) for svalues well beyond those for which the corresponding tracendila
diverges.

18.2.3 Newton algorithm for determination of the evolutionoperator
eigenvalues

s
J The cycle expansions of spectral determinants yield theneues of the
evolution operator beyond the leading one. A convenient wwaearch for these
is by plotting either the absolute magnitudédat (s— A)| or the phase of spectral
determinants and dynamical zeta functions as functioniseofdmplex variable.
The eye is guided to the zeros of spectral determinants amanaigal zeta func-
tions by means of comples plane contour plots, with ffierent intervals of the
absolute value of the function under investigation assigfierent colors; zeros
emerge as centers of elliptic neighborhoods of rapidly ghancolors. Detailed
scans of the whole area of the compkeplane under investigation and searches
for the zeros of spectral determinants, figliB1, reveal complicated patterns of
resonances even for something so simple as the 3-disk gamietafll. With

a good starting guess (such as a location of a zero suggegtét romplexs
scan of figurel8.1), a zero ¥£(s) = 0 can now be easily determined by standard
numerical methods, such as the iterative Newton algorith#n4, with the mth
Newton estimate given by

V(s

18.13
T (18.13)

Smi1 = Sm— (((sn)c%é’l(sn))_l = Sn—

The dominator(T), required for the Newton iteration is given below, by the
cycle expansion1(8.22. We need to evaluate it anyhow, &), enters our cycle
averaging formulas.
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Figure 18.1: Examples of the comples plane -0.

scans: contour plots of the logarithm of the
absolute values of (a)/Z(s), (b) spectral deter-
minant det §—A) for the 3-disk system, separation
a: R =6, A subspace are evaluated numerically
The eigenvalues of the evolution operatfrare
given by the centers of elliptic neighborhoods of

the rapidly narrowing rings. While the dynamical -2,

zeta function is analytic on a strip Ims -1, the
spectral determinant is entire and reveals furthe
families of zeros. (P.E. Rosenqvist)

Figure 18.2: The eigenvalue condition is satisfied on.
the curveF = 0 the @3, s) plane. The expectation value
of the observablel.19 is given by the slope of the

curve.

306
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18.3 Cycle formulas for dynamical averages

The eigenvalue condition in any of the three forms that weetgiven so far -
the level sumZ20.18, the dynamical zeta functiori.2), the spectral determinant

(18.11):

(n)
1 = Zti,

g
1-3"t,

0 =1-) Q.
n=1

ti =48, 5(8),

o
1l

n=n,

tr = tﬂ(z’ﬂ’ S(ﬁ))

Qn = Qn(B. 5(8)) .

(18.14)

(18.15)

(18.16)

is an implicit equation for the eigenvalie= s(g) of form F(B, s(8)) = 0. The
eigenvalues = s(B) as a function of3 is sketched in figurd 8.2, the eigenvalue
condition is satisfied on the cunfe = 0. The cycle averaging formulas for the
slope and the curvature gfg) are obtained as inl6.19 by taking derivatives of
the eigenvalue condition. Evaluated aldhg- 0, the first derivative leads to

d
0 = @F(ﬂ,s(ﬂ))
oF , dsoF
9B dB Isls-sp)
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and the second derivative B{g, s(8)) = 0 yields

2 2 2 2 2
ds_ _|9F | ,As&F  (ds\"oF | OF (18.18)
dp? 03? dgopos  \dg) oas? |’ ds
Denoting by
oF oF
Pr = - — , (Me=—= ,
F 9B lg.s-stp) SIRE T
5 0%F
((A-<A) )F = o= (18.19)
B lp.s-st)

respectively the mean cycle expectation valud,dhe mean cycle period, and the
second derivative df computed foi (3, s(8)) = 0, we obtain the cycle averaging
formulas for the expectation value of the observalie 12, and its variance:

_ P
@ = o (18.20)
(@-@)y?) = <T1—>F<(A—<A))2>F‘ (18.21)

These formulas are the central result of the periodic oHgbty. As we shall
now show, for each choice of the eigenvalue condition famd&(3, s) in (20.19,
(18.2 and (18.11), the above quantities have explicit cycle expansions.

18.3.1 Dynamical zeta function cycle expansions

For the dynamical zeta function conditioh8(15, the cycle averaging formulas
(18.17), (18.2]) require evaluation of the derivatives of dynamical zetacfion
at a given eigenvalue. Substituting the cycle expansi@?( for dynamical zeta
function we obtain

w, = -2 > Adty (18.22)

ToBC
01 , 01 ,
M = 57 = D7 b, () = 25,7 = > e,

where the subscript ity - -), stands for the dynamical zeta function average over
prime cyclesA,, T,, andn, are evaluated on pseudocyclés ), and pseudocycle
weightst, = t,(z 8, S(8)) are evaluated at the eigenvals(g). In most applications

B = 0, andg(B) of interest is typically the leading eigenvalge = 5(0) of the
evolution generataf.
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For bounded flows the leading eigenvalue (the escape rateshes s(0) = 0,
the exponengA, — sT, in (18.3 vanishes, so the cycle expansions take a simple
form

’ Ap, +Ap, -+ A
_ k1P P2 Px
(A = g,, (-1 7|Ap1“‘/\pk| > (18.23)

and similarly for(T),, (n),. For example, for the complete binary symbolic
dynamics the mean cycle peri¢@), is given by

To T Tox To+ Ty
M, = _+_+( - ) 18.24
7 Aol Al \IAoal  TAoA] (18.24)
( Toor Toi+ To) ( Touw  Toi+ Tl)
[Aoodl  |Ao1Aol Aowal  [AoiAl )

Note that the cycle expansions for averages are groupethi@teame shadowing
combinations as the dynamical zeta function cycle expandi®.7), with nearby
pseudocycles nearly cancelling each other.

The cycle averaging formulas for the expectation value efdhservablea)y
follow by substitution into {8.21). Assuming zero mean drifg) = 0, the cycle
expansion 18.11) for the variance((A - (A))2>[ is given by

, (Ap + Ap ---+Apk)2
(), = > FDMW. (18.25)

18.3.2 Spectral determinant cycle expansions

The dynamical zeta function cycle expansions have a péatlgisimple structure,
with the shadowing apparent already by a term-by-term ictspe of table18.2.2
For “nice” hyperbolic systems the shadowing ensures exp@ieconvergence
of the dynamical zeta function cycle expansions. This, hawes not the best
achievable convergence. As has been explained in chaptdéor such systems
the spectral determinant constructed from the same cytéetdsse is entire, and
its cycle expansion converges faster than exponentially.practice, the best
convergence is attained by the spectral determinant cyglansion {8.16 and
its derivatives. Thé/ds, 9/9p derivatives are in this case computed recursively,
by taking derivatives of the spectral determinant cycleamgion contributions
(18.12 and (8.10.

The cycle averaging formulas are exact, and highly conveifge nice hyperbolic
dynamical systems. An example of its utility is the cycle axgion formula for
the Lyapunov exponent of exampl8.1 Further applications of cycle expansions
will be discussed in chapt@0.
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18.3.3 Continuous vs. discrete mean return time

Sometimes it is convenient to compute an expectation valorgaa flow, in

continuous time, and sometimes it might be easier to conipimtediscrete time,
from a Poincaré return map. Return tim&slj might vary wildly, and it is not at
all clear that the continuous and discrete time averagesetated in any simple
way. The relationship turns on to be both elegantly simpie, tatally general.

The mean cycle periodT), fixes the normalization of the unit of time; it
can be interpreted as the average near recurrence or tregeviast return time.
For example, if we have evaluated a billiard expectatioruevah)y in terms of
continuous time, and would like to also have the correspandiveragea)qscr
measured in discrete time, given by the number of reflectashbilliard walls,
the two averages are related by

(@dscr= (@ (T), /(M) , (18.26)
where(n), is the average of the number of bounegsalong the cyclep.

Example 18.1 Cycle expansion formula for Lyapunov exponents:

In sect. 15.3 we defined the Lyapunov exponent for a 1-d mapping, related it to
the leading eigenvalue of an evolution operator and promised to evaluate it. Now we
are finally in position to deliver on our promise.

The cycle averaging formula (18.23) yields an exact explict expression for the

Lyapunov exponent in terms of prime cycles:

1 ’ log|Ap,| + -+ + log|A
Q= — Z (—1)“1M ) (18.27)
(n); [Ap, -+ Apl

For a repeller, the 1/|Ap| weights are replaced by normalized measure (20.10) expnp)/|Apl,

where v is the escape rate.

We mention here without proof that for®Hamiltonian flows such as our game
of pinball there is only one expanding eigenvalue atflZ7) applies as it stands.

18.4 Cycle expansions for finite alphabets

y
J A finite Markov graph like the one given in figufe3.3(d) is a compact

encoding of the transition or the Markov matrix for a givelbshift. It is a sparse

matrix, and the associated determinalti.(7) can be written down by inspection:
it is the sum of all possible partitions of the graph into prets of non-intersecting

loops, with each loop carrying a minus sign:

det(1-T) = 1-to — too11 — tooo1 — tooor1+ totoo11 + tooritooos (18.28)
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The simplest application of this determinant is to the eatidun of the topological
entropy; if we setp = Z%, wheren, is the length of thep-cycle, the determinant
reduces to the topological polynomidl3.19.

The determinant1(8.29 is exact for the finite graph figuré3.3(e), as well
as for the associated finite-dimensional transfer opemft@xamplel15.2 For
the associated (infinite dimensional) evolution operatas, the beginning of the
cycle expansion of the corresponding dynamical zeta fancti

1/¢ = 1-to—too11— tooo1+ toooatoo11
—(tooo11— totoo11+ . . . CUrvatures). . (18.29)

The cycle<, 0001 andD011 are théundamentatycles introduced in1@®.7); they
are not shadowed by any combinations of shorter cycles, @tti@basic building
blocks of the dynamics.All other cycles appear togetheh vifieir shadows (for
example, théyoo11—totop11 cOMbination) and yield exponentially small corrections
for hyperbolic systems.

For the cycle counting purposes bdtly and the pseudocycle combination
tarb = tatp in (18.2 have the same weiglta*™, so all curvature combinations
tab—tatp Vanish exactly, and the topological polynomiaB(21) offers a quick way
of checking the fundamental part of a cycle expansion.

Since for finite grammars the topological zeta functionsicedo polynomials,
we are assured that there are just a few fundamental cydiethanall long cycles
can be grouped into curvature combinations. For exampdutidamental cycles
in exercise9.2 are the three 2-cycles which bounce back and forth between tw
disks and the two 3-cycles which visit every disk. Itis onfieathese fundamental
cycles have been included that a cycle expansion is expéztgdrt converging
smoothly, i.e., only fom larger than the lengths of the fundamental cycles are
the curvatures,, (in expansion 18.7)), a measure of the deviations between long
orbits and their short cycle approximants, expected toofaliapidly withn.

18.5 Stability ordering of cycle expansions

There is never a second chance. Most often there is not
even the first chance.

—John Wilkins
(C.P. Dettmann and P. Cvitanovit)

Most dynamical systems of interest have no finite grammaagtsmy order in
za cycle expansion may contain unmatched terms which do noeéitly into
the almost cancelling curvature corrections. Similarty, ihtermittent systems
that we shall discuss in chapt28, curvature corrections are in general not small,
so again the cycle expansions may converge slowly. For sygtkras schemes
which collect the pseudocycle terms according to someriiteother than the
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topology of the flow may converge more quickly than exparsibased on the
topological length.

All chaotic systems exhibit some degree of shadowing, amubd ¢runcation
criterion should do its best to respect the shadowing at kgsroximately. If
a long cycle is shadowed by two or more shorter cycles and dheifl smooth,
the period and the action will be additive in sense that théogeof the longer
cycle is approximately the sum of the shorter cycle perid8ignilarly, stability
is multiplicative, so shadowing is approximately presdrg including all terms
with pseudocycle stability

[Aps - Ap] < Amax (18.30)

and ignoring all more unstable pseudocycles.

Two such schemes for ordering cycle expansions which appeigly respect
shadowing are truncations by the pseudocycle period (@rgcand the stability
ordering that we shall discuss here. In these schemes a dyaia®ta function or
a spectral determinant is expanded keeping all terms fociwtie period, action
or stability for a combination of cycles (pseudocycle) ssl¢han a given cuf

The two settings in which the stability ordering may be pratiée to the
ordering by topological cycle length are the cases of baghgrar and of intermittency.

18.5.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of thetstspace generates the
“optimal” symbolic dynamics. Stability ordering does netjuire understanding
dynamics in such detail: if you can find the cycles, you canstiability ordered
cycle expansions. Stability truncation is thus easier tplément for a generic
dynamical system than the curvature expansi@fs/ which rely on finite subshift
approximations to a given flow.

Cycles can be detected numerically by searching a longctraje for near
recurrences. The long trajectory method for detectingesygbreferentially finds
the least unstable cycles, regardless of their topolodgeajth. Another practical
advantage of the method (in contrast to Newton method sesydb that it only
finds cycles in a given connected ergodic component of sgadees ignoring
isolated cycles or other ergodic regions elsewhere in #ite space.

Why should stability ordered cycle expansion of a dynamiegh function
converge better than the rude trace formu0.9? The argument has essentially
already been laid out in sedt3.7: in truncations that respect shadowing most of
the pseudocycles appear in shadowing combinations anlty eeacel, while only
the relatively small subsetffacted by the longer and longer pruning rules is not
shadowed. So the error is typically of the order phlsmaller by factoe™ than
the trace formulaZ0.9 error, whereh is the entropy and typical cycle length
for cycles of stabilityA.
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18.5.2 Smoothing

y
J The breaking of exact shadowing cancellations deservésefucomment.
Partial shadowing which may be present can be (partiallstpred by smoothing
the stability ordered cycle expansions by replacing the Weight for each term
with pseudocycle stabilith = Ap, --- Ap, by f(A)/A. Here,f(A) is a monotonically
decreasing function fronfi(0) = 1 to f(Amax) = 0. No smoothing corresponds to
a step function.

A typical “shadowing error” induced by the cuids due to two pseudocycles
of stability A separated byAA, and whose contribution is of opposite signs.
Ignoring possible weighting factors the magnitude of trelting term is of order
1/A — 1/(A + AA) ~ AA/AZ. With smoothing there is an extra term of the form
f/(A)AA/A, which we want to minimise. A reasonable guess might be tp kee
f/(A)/A constant and as small as possible, that is

f(A) = 1—(AA )2

max

The results of a stability ordered expansid8.30 should always be tested
for robustness by varying the ciifd\max. If this introduces significant variations,
smoothing is probably necessary.

18.5.3 Stability ordering for intermittent flows

y
J Longer but less unstable cycles can give larger contribatio a cycle
expansion than short but highly unstable cycles. In suclatin truncation by
length may require an exponentially large number of verytabis cycles before
a significant longer cycle is first included in the expansi®his situation is best
illustrated by intermittent maps that we shall study in detachapter23, the
simplest of which is the Farey map

_[fo=x(1-%x 0<x<1/2
f(X)_{fg=(1—X)/x 1/2<x<1 | (18.31)

a map which will reappear in the intermittency chagier

For this map the symbolic dynamics is of complete binary thygmelack of
shadowing is not due to lack of a finite grammar, but rathehéointermittency
caused by the existence of the marginal fixed pgint 0, for which the stability
equalsAg = 1. This fixed point does not participate directly in the dymesand is
omitted from cycle expansions. Its presence is felt in thbibties of neighboring
cycles withn consecutive repeats of the symbol 0's whose stability &ltnly as
A ~ 2, in contrast to the most unstable cycles withonsecutive 1's which are
exponentially unstabléAon| ~ [( V5 + 1)/2]2".
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. . 1
Figure 18.3: Comparison of cycle expansion

truncation schemes for the Farey mag.gJ); the 0.5
deviation of the truncated cycles expansion for

|1/Zn(0)) from the exact flow conservation value 0.2
1/¢£(0) = 0 is a measure of the accuracy of I
the truncation. The jagged line is logarithm of ¢ '(0) ™
the stability ordering truncation error; the smooth 0.05
line is smoothed according to sedi8.5.2 the

diamonds indicate the error due the topological 0.02

length truncation, with the maximal cycle length

N shown. They are placed along the stability
cutdf axis at points determined by the condition

that the total number of cycles is the same for both
truncation schemes.

0.01
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The symbolic dynamics is of complete binary type. A quickmtdn the style
of sect.13.5.2leads to a total of 74,248,450 prime cycles of length 30 &, Iest
including the marginal poinky = 0. Evaluating a cycle expansion to this order
would be no mean computational feat. However, the leasablestycle omitted
has stability of roughlyA; o ~ 30% = 900, and so amounts to al®b correction.
The situation may be much worse than this estimate sugdestause the next,

10% cycle contributes a similar amount,

and could easily reogothe error.

Adding up all such omitted terms, we arrive at an estimatedr exf about 3%,
for a cycle-length truncated cycle expansion based on rare1d pseudocycle
terms! On the other hand, truncating by stability at 8ayax = 3000, only 409
prime cycles sfiice to attain the same accuracy of about 3% error, figra

As the Farey map maps the unit interval onto itself, the legdiigenvalue
of the Perron-Frobenius operator should ecggat 0, so ¥£(0) = 0. Deviation
from this exact result serves as an indication of the comrerg of a given cycle
expansion. The errors offtiérent truncation schemes are indicated in figlBe3
We see that topological length truncation schemes are ésglgl bad in this case;
stability length truncations are somewhat better, but istther bad. In simple

cases like this one, where intermittency is

caused by aesimgkginal fixed point,

the convergence can be improved by going to infinite alplsabet

18.6 Dirichlet series

The most patient reader will thank me for compressing so
much nonsense and falsehood into a few lines.

—Gibbon
§
J A Dirichlet series is defined as

f(9) = Z ajeis
=t

(18.32)

wheres, a; are complex numbers, arid;} is a monotonically increasing series

of real numbersl; < A2 < --- < Aj < ---
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series is the Riemann zeta function for whgh= 1, 4; = Inj. In the present
context, formal series over individual pseudocycles swcfi@ 2 ordered by the
increasing pseudocycle periods are often Dirichlet serfes example, for the
pseudocycle weighil.3), the Dirichlet series is obtained by ordering pseudosycle
by increasing periods, = Tp, + Tp, + ... + Tp,, With the codficients

B (Apy+Apy+..+Ap)

y=—
|AP1AP2 o Apk|

T s

whered, is a degeneracy factor, in the case tiapseudocycles have the same
weight.

If the series}, |aj| diverges, the Dirichlet series is absolutely convergent fo

Re s> o, and conditionally convergent for Resso, whereo is theabscissa of
absolute convergence

N
. 1
o= hIll_rp00 supm In Jz:; ajl, (18.33)

ando is theabscissa of conditional convergence

N

Saf.

=1

(18.34)

. 1
o¢= lim sup—In
N—oco AN

We shall encounter another example of a Dirichlet serieshénsemiclassical
guantization, the quantum chaos part@faosBook.org.

Résum é

A cycle expansiolis a series representation of a dynamical zeta functionetra
formula or a spectral determinant, with products 7.5 expanded as sums
over pseudocyclegproducts of the prime cycle weightis

If a flow is hyperbolic and has a topology of a Smale horseshogubshift
of finite type), the dynamical zeta functions are holomaeplhine spectral det-
erminants are entire, and the spectrum of the evolutionabpeis discrete. The
situation is considerably more reassuring than what gieérs of quantum chaos
fear; there is no “abscissa of absolute convergence” ancgnwdpy barier,” the
exponential proliferation of cycles is no problem, spdaleterminants are entire
and converge everywhere, and the topology dictates theetaficycles to be
used in cycle expansion truncations.
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In that case, the basic observation is that the motion inmjecel systems of
few degrees of freedom is in this case organized around &feslamentatycles,
with the cycle expansion of the Euler product

Yo=1-) 1t =) .
f n

regrouped into dominarfundamentalkontributionst; and decreasingurvature
correctionscy. The fundamental cycles have no shorter approximants; they are
the “building blocks” of the dynamics in the sense that afider orbits can be
approximately pieced together from them. A typical curvatcontribution toch

is adifferenceof a long cycle{ab} minus its shadowing approximation by shorter
cycles{a} and{b}:

tap — tatp = ta\b(:l- - tatb/tab)

The orbits that follow the same symbolic dynamics, sucfabsand a “pseudocycle”
{al{b}, lie close to each other, have similar weights, and for loraged longer
orbits the curvature corrections falffaapidly. Indeed, for systems that satisfy
the “axiom A” requirements, such as the 3-disk billiard, vaiure expansions
converge very well.

Once a set of the shortest cycles has been found, and thepeyies, stabilities
and integrated observable computed, the cycle averagimgufas such as the
ones associated with the dynamical zeta function

@ = (A /(T

01l ’ o1 ,
B = =gpz = D A (Me=gez = 3Tl

yield the expectation value (the chaotic, ergodic average the non—-wandering
set) of the observabla(x).

Commentary

Remark 18.1 Pseudocycle expansions. Bowen'’s introduction of shadowingpseudoorbits]4]
was a significant contribution to Smale’s theory. Expras§pseudoorbits” seems to have

been introduced in the Parry and Pollicott’s 1983 pagkrHollowing them M. Berry ]

had used the expression “pseudoorbits” in his 1986 papeli@ndhn zeta and quantum
chaos. Cycle and curvature expansions of dynamical zetifurs and spectral deter-
minants were introduced in refs.(, 2]. Some literature13] refers to the pseudoorbits as
“composite orbits,” and to the cycle expansions as “Ditskeries” (see also rematk.6

and sect18.6).
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Remark 18.2 Cumulant expansion. To a statistical mechanician the curvature expansions

are very reminiscent of cumulant expansions. Inde#8,1Q) is the standard Plemelj-
Smithies cumulant formula for the Fredholm determinarg.@ifference is that in cycle
expansions eacf, codficient is expressed as a sum over exponentially many cycles.

Remark 18.3 Exponential growth of the number of cycles.  Going fromN, ~ N"
periodic points of lengtim to M, prime cycles reduces the number of computations from
N, to My, = N™1/n. Use of discrete symmetries (chapi€) reduces the number oth
level terms by another factor. While the reformulation @& theory from the tracel6.29

to the cycle expansiori8.7) thus does not eliminate the exponential growth in the numbe
of cycles, in practice only the shortest cycles are used,fanthem the computational
labor saving can be significant.

Remark 18.4 Shadowing cycle-by-cycle. A glance at the low order curvatures in the
table18.1.1leads to the temptation of associating curvatures to iddafi cycles, such as
€001 = tooo1 — totoor. Such combinations tend to be numerically small (see fompte
ref. [3], table 1). However, splitting,,’into individual cycle curvatures is not possible in
general P(]; the first example of such ambiguity in the binary cycle exgian is given by
thetigo10s t1001100 « 1 symmetric pair of 6-cycles; the countertetgmtoss in table18.1.1

is shared by the two cycles.

Remark 18.5 Stability ordering. The stability ordering was introduced by Dahlgvist
and Russberd [] in a study of chaotic dynamics for thg??)*/2 potential. The presentation
here runs along the lines of Dettmann and Morrisg] ffor the Lorentz gas which is
hyperbolic but the symbolic dynamics is highly pruned, aettBann and Cvitanovi¢ ]

for a family of intermittent maps. In the applications dissed in the above papers, the
stability ordering yields a considerable improvement dkiertopological length ordering.

In quantum chaos applications cycle expansion cancelatoa #fiected by the phases
of pseudocycles (their actions), hermmeriod orderingrather than stability is frequently
employed.

Remark 18.6 Are cycle expansions Dirichlet series?

Even though some literaturéd] refers to cycle expansions as “Dirichlet series,” they
are not Dirichlet series. Cycle expansions collect coatidns of individual cycles into
groups that correspond to the ¢deents in cumulant expansions of spectral determin-
ants, and the convergence of cycle expansions is contiofieeneral properties of spec-
tral determinants. Dirichlet series order cycles by theirigds or actions, and are only
conditionally convergentin regions of interest. The abseiof absolute convergenceis in
this context called the “entropy barrier”; contrary to thedfuently voiced anxieties, this
number does not necessarily has much to do with the actuatogence of the theory.
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Exercises

18.1. Cycle expansions.  Write programs that implement (b) Show that
binary symbolic dynamics cycle expansions for (a) a
dynamical zeta functions, (b) spectral determinants. Aqpcy = £2

18.2.

18.3.

Combined with the cycles computed for a 2-branch
repeller or a 3-disk system they will be useful in problem
that follow. (c) (hard) Compute the dynamical zeta functior
this system

and determine a rule for the sign.

Escape rate for a 1€ repeller. (Continuation of
exercisel7.1- easy, but long)
Consider again the quadratic may (31

{t=1-to—ty - (tor — tots) — -+

You might note that the convergence as fun
f(x) = AX(1-x) of the truncation cycle length is slow. Try
fix that by treating the\o = 4 cycle separate

on the unit interval, for definitiveness take eith®r= . .
(Continued as exercisis.12)

9/2 or A = 6. Describing the itinerary of any trajectory
by the binary alphabdD, 1} (0’ if the iterate is in the
first half of the interval and "1’ if is in the second half),
we have a repeller with a complete binary symbolic
dynamics.

18.4. Pinball escape rate, semi-analytical. Estimate the :
disk pinball escape rate f&® : a = 6 by substitutin
analytical cycle stabilities and periods (exercigg
and exercise9.4) into the appropriate binary cy

(a) Sketch the graph df and determine its two fixed expaqsion. Compare with the numerical esti
points0 and1, together with their stabilities. exercisel5.3

(b) Sketch the two branches 6f*. Determine all 18.5. Pinball escape rate, from numerical cycles. Compu

the prime cycles up to topological Ieng_th4gsing the escape rate fToR : a = 6 3-disk pinba
your pocket calculator and backwards iteration of by substituting list of numerically computed c
f (see sectl2.2.]). stabilities of exercisel2.5 into the binary cyc

(c) Determine the leading zero of the zeta function expansion.
(17.19 using the weights, = Z%/|A,| whereAp

is the stability of thep cycle. 18.6. Pinball resonances, in the complex plane. Plot thi

logarithm of the absolute value of the dynamical

(d) Show that forA = 9/2 the escape rate of function angor the spectral determinant cycle expar
the repeller is ‘(361509.. using the slpectral (18.9 as contour plots in the complex plane. D
determinant, with the same cycle weight. If you find zeros other than the one corresponding |
you have takenA = 6, the escape rate is complex one? Do you see evidence for a finite radi

in 0.83149298.., as shown in solutiornl8.2
Compare the cdgcients of the spectral determin-
ant and the zeta function cycle expansions. Whictg.7. Counting the 3-disk psudocycles. (Continuation ¢
expansion converges faster? exercisel3.12) Verify that the number of terms in
3-disk pinball curvature expansiohg.39 is given by

convergence for either cycle expansion?

(Per Rosenqyvist)

Escape rate for the Ulam map. (Medium; repeat of I_I (1 +t ) _ 1-32-27

exercisel2.1) We will try to compute the escape rate for o P 1-32-27
the Ulam map12.19 2(6+122+ 2
= 1+32+28+ —————
f(x) = 4x(1-X), 1-32-27

- thod of cvel ) " = 1+32+22+67+127

using the method of cycle expansions. e answer 7
should be zero, as nothing escapes. +207 + 487" + 847" + 1847 -
(a) Compute a few of the stabilities for this map. This means that, for example; has a total of 20 tern
Show thatAg = 4, A1 = -2, Ag1 = —4, Ago1 = -8 in agreement with the explicit 3-disk cycle expan

andAo1; = 8. (1836
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18.8. 3—disk unfactorized zeta cycle expansions. Check

18.9.

that the curvature expansiorl§.2 for the 3-disk
pinball, assuming no symmetries between disks, is given
by

(1-Zt12)(1 - Ztig)(1 - Zt2a)

(1- 129 (1 - Ptig)(1 - Zt1219)

(1 - Zt1232)(1 - Ptasad)(1 — Ptizazd -
= 1- 2ty Plys— Plar - ZP(tazs + izg)
~Z{(t1213— tiztya) + (1232 — tiotos)
+(t1323— taatza)]

—2[(t12123— taztaza) + -] — -+ (18.35)

Y =

The symmetrically arranged 3-disk pinball cycle
expansion of the Euler product.? (see tablel3.5.2
and figure9.3) is given by:

(1-2t12)°(1 - Pt129*(1 - Pt1219°
(1-2t12129%(1 - Pt121219°
(1-Zt21z2d®. ..

= 1-3Z2tp- 2Pt~ 37 (tio1z— 2,)
—62 (t12123— t1zti23)

—2 (Bt121213+ 3ti21303+ 15y — Otaotiniz— t359)
—62" (t1212123+ t1212313+ t1213103+ Ifztlzg

¢ =

—3t12t12123 t12at1219)
-32 (212121215t 2121315+ 212121323
+2112123123+ 212123213+ 112132123

+ 3t 213 + tiath,g — Blistizizis

- Btyati1323— Atroatizizs— iy —(18.36)

Remark 18.7 Unsymmetrized cycle expansions.

The above 3-disk cycle expansions might be useful
for cross-checking purposes, but, as we shall see
in chapter19, they are not recommended for actual

computations, as the factorized zeta functions yield
much better convergence.

4—disk unfactorized dynamical zeta function cycle
expansions  For the symmetriclly arranged 4-disk
pinball the symmetry group is 4 of order 8. The
degenerate cycles can have multiplicities 2, 4 or 8 (see
table13.5.2:

(1-2t12)*"(1 - 2t13)*(1 - Ptig)®

(1 - Z11219%(1 - Zt1210*(1 — Pt1234)?

(1- 21249 (1 - Pt12129°%(1 - 25t12124)81 ’
(1-Pt12139%(1 - Pt12149°

(1 - Ptizs1d®(1 - Ptizard® -

Y =

8.11.

(18.37)
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and the cycle expansion is given by

1/, = 1-Z(4tp+2ts) - 82t

~Z(8ti213+ Atip1a+ 2tioaa+ Alioas
—612, — t2; - 8t15t13)

—82(t12123+ ti2124+ o134+ tiznas+ tizss
+t12413— 411ot103 — 2t13t123)

—48(2Sg + Sa+ £, + 3t tiz + tiot,
—8t1oti213— 4tiotizg

—2t1ot1234 — 4tiotioaz

—4tigtio13— 2tiatizia — tistizas

~2t1atipa3— Ttyg) — -+ (18.38)

where in the cofficient toZ° the abbreviation$g and

S, stand for the sums over the weights of the 12 orbits
with multiplicity 8 and the 5 orbits of multiplicity 4,
respectively; the orbits are listed in taklg.5.2

Tail resummations. A simple illustration of such tail
resummation is thé function for the Ulam map1(2.19
for which the cycle structure is exceptionally simple: the
eigenvalue of thex, = O fixed point is 4, while the
eigenvalue of any othem-cycle is+2". Typical cycle
weights used in thermodynamic averaging are 47z,
t1 =t=27t, =t for p# 0. The simplicity of the
cycle eigenvalues enables us to evaluate(tifienction
by a simple trick: we note that if the value of amcycle
eigenvalue wer¢", (17.21) would yield /¢ = 1 - 2t.
There is only one cycle, thg fixed point, that has a
different weight (% to), so we factor it out, multiply the
rest by (1-t)/(1 - t), and obtain a rational function

(1-20)(1-to)

R

(18.39)
Consider how we would have detected the pole at

1/t without the above trick. As th@ fixed point is
isolated in its stability, we would have kept the factor
(1-to) in (18.7 unexpanded, and noted that all curvature
combinations in 18.7) which include thety factor are
unbalanced, so that the cycle expansion is an infinite
series:

ﬂ (1-tp) = (I-tg)(1-t-2~£~t*~.. )(18.40)
P

(we shall return to such infinite series in chap?&y.
The geometric series in the brackets sums ug &39.

Had we expanded the{1y) factor, we would have noted
that the ratio of the successive curvatures is exactly
Cni1/Cn = t; summing we would recover the rational
function (18.39.

Escape rate for the Rossler flow. (continuation

of exercisel2.7) Try to compute the escape rate for
the Rossler flow .17 using the method of cycle
expansions. The answer should be zero, as nothing
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escapes. Ideally you should already have computed the
cycles and have an approximate grammar, but failing
that you can cheat a bit and peak into exer&ige’.

stabilities of exercise.8.3 by constructing an expli
smooth conjugacyd( 1)

18.12.Ulam map is conjugate to the tent map. d'(Yo) = ho f'o h™'(yo)
(Continuation of exercis&8.3/ repeat of exercisé.3
and exercisel2.2 requires real smarts, unless you
look it up) Explain the magically simple form of cycle

that conjugates the Ulam map2.19 into the tent me
(10.9.
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Chapter 19

Discrete factorization

No endeavor that is worthwhile is simple in prospect; if it
is right, it will be simple in retrospect.

—Edward Teller

from quantum mechanics. Here we show that the classicatrapeeter-

minants factor in essentially the same way as the quanturs. olmethe
process we 1.) learn that the classical dynamics, oncetrie¢ashe language of
evolution operators, is much closer to quantum mechanars ithapparent in the
Newtonian, ODE formulation (linear evolution operaf®BEs, group-theoretical
spectral decompositions, .), 2.) that once the symmetry group is quotiented
out, the dynamics simplifies, and 3.) it's a triple home rummpder symbolic
dynamics, fewer cycles needed, much better convergencgcté expansions.
Once you master this, going back is unthinkable.

THE utiLity of discrete symmetries in reducing spectrum calculatisfemiliar

The main result of this chapter can be stated as follows:

If the dynamics possesses a discrete symmetry, the catibribof a cyclep
of multiplicity m,, to a dynamical zeta function factorizes into a product oler t
d.-dimensional irreducible representatiddg of the symmetry group,

(1-tp)™ = [ [det(1- Dathp)ta)" . t,=12™ .
a

wheret; is the cycle weight evaluated on the relative periodic opbig = |G| is

the order of the groughp is the group element relating the fundamental domain
cycle pto a segment of the full space cygieandm; is the multiplicity of thep

cycle. As dynamical zeta functions have particularly senpjcle expansions, a
geometrical shadowing interpretation of their convergeand stfice for determination
of leading eigenvalues, we shall use them to explain theggtbeoretic factorizations;
the full spectral determinants can be factorized usingdhgestechniquesp-cycle

into a cycle weightp,.
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This chapter is meant to serve as a detailed guide to the datigruof dynam-
ical zeta functions and spectral determinants for systeithsdiscrete symmetries.
Familiarity with basic group-theoretic notions is assumetth the definitions
relegated to appendid.1. We develop here the cycle expansions for factorized
determinants, and exemplify them by working two cases osjglay interestC, =
D1, Csy = D3 symmetriesCy, = Dy x D, andCa, = D4 Symmetries are discussed
in appendixH.

19.1 Preview

As we saw in chapteB, discrete symmetries relate classes of periodic orbits
and reduce dynamics to a fundamental domain. Such symmsairigplify and
improve the cycle expansions in a rather beautiful way; assical dynamics,
just as in quantum mechanics, the symmetrized subspacé® ganbed by linear
operators of dierent symmetries. If a linear operator commutes with themsgtry,

it can be block-diagonalized, and, as we shall now show, sseaated spectral
determinants and dynamical zeta functions factorize.

19.1.1 Reflection symmetric 1-d maps

Considerf, a map on the interval with reflection symmetif-x) = —f(x). A
simple example is the piecewise-linear sawtooth map ofdi§ut. Denote the
reflection operation biRx= —x. The symmetry of the map implies thaf{¥,} is a
trajectory, than als@Rx,} is a trajectory becausex,.1 = Rf(xn) = f(Rx%,). The
dynamics can be restricted to a fundamental domain, in #se ¢o one half of

the original interval; every time a trajectory leaves thiterval, it can be mapped
back usingR. Furthermore, the evolution operator commutes WthL(y, X) =
L(Ry,RX. R satisfiesR? = e and can be used to decompose the state space
into mutually orthogonal symmetric and antisymmetric pates by means of
projection operators

1 1
F’A1 = E(e+ R), PA2=§(e—R),

Ln00) = PaLO) = 5 (L0 + LC2)

La,(y. %)

P = 5 (£0:%) = L3, %) - (19.2)

To compute the traces of the symmetrization and antisynizaétyn projection
operators 19.1), we have to distinguish three kinds of cycles: asymmetaas
a, symmetric cycless built by repeats of irreducible segmergsahd boundary
cyclesb. Now we show that the spectral determinant can be writteheproduct
over the three kinds of cycles: det{1L) = det (1— £).det (1- £)zdet (1— L)p.
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Asymmetric cycles: A periodic orbits is not symmetric {x,} N {Rx} = 0, where
{xa} is the set of periodic points belonging to the cyele ThusR generates a
second orbit with the same number of points and the samdittgioperties.
Both orbits give the same contribution to the first term anaowtribution to the
second term in19.1); as they are degenerate, the prefacf@ dancels. Resuming
as in the derivation of1(7.15 we find that asymmetric orbits yield the same
contribution to the symmetric and the antisymmetric subspa

_ = ta 7
det(l—[i)a—U H(l F) =

Symmetric cycles: A cycle sis reflection symmetric if operating witR on the
set of cycle points reproduces the set. The period of a synmwycle is always
even (s = 2ng) and the mirror image of thes cycle point is reached by traversing
the irreducible segmerg 6f lengthng, f"(xs) = Rx%. d(x — (X)) picks up 2
contributions for every even traversal= rng, r even, andi(x + f"(x)) for every
odd traversaln = rng, r odd. Absorb the group-theoretic prefactor in the stability
eigenvalue by defining the stability computed for a segmékrmth ng,

HEMs(x)

As=—
° X

X=Xs

Restricting the integration to the infinitesimal neightmmt M; of the s cycle,
we obtain the contribution to #£7:

L] - dxi‘} (6(x = (X)) £ 6(x + (X))
Ms 2

even odd
= né[zfsnmsl 1//\, j:Zanmsl 1//\,
r=2

Substituting all symmetric cyclesinto det (1- £.) and resuming we obtain:
det(1- L£.)s = ]_[ ﬂ(u k]
Ag

Boundary cycles:In the example at hand there is only one cycle which is neither
symmetric nor antisymmetric, but lies on the boundary oftimelamental domain,
the fixed point at the origin. Such cycle contributes simmétusly to botfs(x — f"(x))
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ands(x + f"(x)):

2tr L]

l

f dx7 1 (8(x = (%)) = 6(x + (X))
My 2

°°6 gl 1,1

Z nh 2 (1—1//\' B 1+1/Af)

tr
n . n b
2Ll - E 6m1 1/A2f' 'tr LN > E (Sn,ArT/AZr.

Boundary orbit contributions to the factorized spectraledminants follow by
resummation:

- t = i
det(1- Lo =[] (1— A_gk] . det@-L)p=]] (1 - Az—tk’ﬂ]
b b

k=0 k=0

Only the even derivatives contribute to the symmetric sabepand only the odd
ones to the antisymmetric subspace, because the orbinlitsedoundary.

Finally, the symmetry reduced spectral determinants\ioliy collecting the
above results:

F_(z):l:[ ﬂ(l—%)ﬂ ﬂ[1+;—z]ﬂ(1—%) (19.2)

We shall work out the symbolic dynamics of such reflection syatric systems in
some detail in sectl9.5 As reflection symmetry is essentially the only discrete
symmetry that a map of the interval can have, this examplepéetes the group-
theoretic factorization of determinants and zeta funtifor 1-d maps. We now

turn to discussion of the general case. )
[exercise 19.1]

19.2 Discrete symmetries

A dynamical system is invariant under a symmetry gr@ug {e go,...,gg} if
the equations of motion are invariant under all symmetges G. For a map
Xnr1 = F(Xy) and the evolution operataf(y, X) defined by {5.23 this means

f) = g7f(99
Ly, ¥) £(gy. 9x) . (19.3)
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Bold face letters for group elements indicate a suitableesgmtation on state
space. For example, if a 2-dimensional map has the symmetsy —xq, Xo —
—Xo, the symmetry grouf® consists of the identity an@, a rotation byr around
the origin. The mag must then commute with rotations by f(RXY = Cf(X),
with R given by the [2x 2] matrix

R:( o _Ol). (19.4)

R satisfiesR? = e and can be used to decompose the state space into mutually
orthogonal symmetric and antisymmetric subspaces by nuégnsjection operators
(19.1). More generally the projection operator onto thereducible subspace of
dimensiond, is given byP, = (d,/IG]) 3 x.(h)h™, wherey,(h) = trD,(h) are

the group characters, and the transfer operéteplits into a sum of inequivalent
irreducible subspace contributiods, tr £,,

L9 = 2 3 L0 (195)

heG
The prefactod, in the above reflects the fact thatladimensional representation

occursd, times.

19.2.1 Cycle degeneracies

Taking into account these degeneracies, the Euler prodidctd takes the form

ﬂ(l—tp) = ﬂ(l—tﬁ)mﬁ. (19.6)
p

p

The Euler product(7.15 for the C3, symmetric 3-disk problem is given in
(18.39.

19.3 Dynamics in the fundamental domain

If the dynamics is invariant under a discrete symmetry, theesspacév can be
completely tiled by the fundamental domahand its imagesaM, bM, ... under
the action of the symmetry grop = {e a,b,.. .},

M=> M=) am.

acG aeG
In the above examplel.4) with symmetry groupG = {&C}, the state space
M = {x;-X plang can be tiled by a fundamental domah= {half-planex; > 0},

andCM = {half-planex; < 0}, its image under rotation by.

symm - 13jun2008.tex

CHAPTER 19. DISCRETE FACTORIZATION 325

If the spaceM is decomposed intg tiles, a functiong(x) over M splits into
a g-dimensional vectop,(x) defined byga(x) = #(X) if x € Mg, ¢a(x) = 0
otherwise. Leh = ab™* conflicts with be the symmetry operation that maps the
endpoint domairMy, into the starting point domai,, and letD(h)p,, the left
regular representation, be thg g] matrix whoseb, a-th entry equals unity if
a = hband zero otherwiseD(h)pa = dpha. Since the symmetries act on state
space as well, the operatibrenters in two guises: as g% g] matrix D(h) which
simply permutes the domain labels, and ad & ] matrix representatioh of a
discrete symmetry operation on tletate space coordinates. For instance, in the
above examplel©.4) h e C, andD(h) can be either the identity or the interchange
of the two domain labels,

D(e):(é 0), D(C):(g é) (19.7)

Note thatD(h) is a permutation matrix, mapping a tiM, into a diferent tile
Mna # M4 if h # e. Consequently onlyD(e) has diagonal elements, andith) =
O6he. However, the state space transformatfor¢ e leaves invariant sets of
boundarypoints; for example, under reflectian across a symmetry axis, the
axis itself remains invariant. The boundary periodic arltitat belong to such
pointwise invariant sets will require special care i tevaluations.

One can associate to the evolution operatérZ3 a [g x g] matrix evolution
operator defined by

Loa(y: ¥) = D(Mpal(y. %) .

if X € Mg andy € My, and zero otherwise. Now we can use the invariance
condition (L9.3 to move the starting pointinto the fundamental domaix= ax,
L(y,X) = L(aly,%), and then use the relaticar'b = h™ to also relate the
endpointy to its image in the fundamental domaifi(y, %) := £(h~1§, %). With

this operator which is restricted to the fundamental domtai@ global dynamics
reduces to

Loa(y. %) = D(WpaL(F. %) -

While the global trajectory runs over the full spade the restricted trajectory is
brought back into the fundamental domathany time it crosses into adjoining
tiles; the two trajectories are related by the symmetry atp@n h which maps the
global endpoint into its fundamental domain image.

Now the tracesX(7.3 required for the evaluation of the eigenvalues of the
transfer operator can be evaluated on the fundamental daaf@ie

L= j;ﬂ AXL(X X) = fM dg 3 rD(h) £ (19.8)
h

symm - 13jun2008.tex



CHAPTER 19. DISCRETE FACTORIZATION 326

The fundamental domain integréld)“( £L(h™1%, %) picks up a contribution from
every global cycle (for whicth = €), but it also picks up contributions from
shorter segments of global cycles. The permutation mBfinj guarantees by the
identity trD(h) = 0, h # e, that only those repeats of the fundamental domain
cycles p'that correspond to complete global cyclesontribute. Compare, for
example, the contributions of tHe2 and0 cycles of figurel1.2 tr D(h).L does
not get a contribution from th@ cycle, as the symmetry operation that maps the
first half of the12 into the fundamental domain is a reflection, arf@(t) = 0. In
contrasto? = e, trD(c2) = 6 insures that the repeat of the fundamental domain
fixed point tr QI)(h).Z)2 = GtS, gives the correct contribution to the global trace
tr £2 =3 2ty,.

Let pbe the full orbit,gthe orbit in the fundamental domain ahglan element
of Hp, the symmetry group op. Restricting the volume integrations to the
infinitesimal neighborhoods of the cyclgsand p, respectively, and performing
the standard resummations, we obtain the identity

(1-tp)™ = det (1 - D(hp)tp) . (19.9)

valid cycle by cycle in the Euler productsq.19 for det (1- £). Here “det” refers

to the [gx g] matrix representatiod(hg); as we shall see, this determinant can be
evaluated in terms of standard characters, and no exgigiesentation dD(hg)

is needed. Finally, if a cyclg is invariant under the symmetry subgrotify < G

of order hp, its weight can be written as a repetition of a fundamentahaio
cycle

ty = tgp (19.10)

computed on the irreducible segment that corresponds tadafoental domain
cycle. For example, in figurgl.2we see by inspection thab = tg andtyoz = tf.

19.3.1 Boundary orbits

Before we can turn to a presentation of the factorizationdyomical zeta func-
tions for the diferent symmetries we have to discuss #iiea that arises for
orbits that run on a symmetry line that borders a fundameddatain. In our
3-disk example, no such orbits are possible, but they existhier systems, such
as in the bounded region of the Hénon-Heiles potential antl-d maps. For
the symmetrical 4-disk billiard, there are in principle tkimds of such orbits,
one kind bouncing back and forth between two diagonally spgalisks and the
other kind moving along the other axis of reflection symmetng latter exists for
bounded systems only. While there are typically very fewrtatauy orbits, they
tend to be among the shortest orbits, and their neglect causly degrade the
convergence of cycle expansions, as those are dominatde Ishortest cycles.

While such orbits are invariant under some symmetry opsratitheir neighborhoods

are not. This fiects the fundamental matrM,, of the linearization perpendicular
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to the orbit and thus the eigenvalues. Typicadly.if the symmetry is a reflection,
some eigenvalues &, change sign. This means that instead of a weigtied(1—
Mp) as for a regular orbit, boundary cycles also pick up countiiims of form
1/det (L — hMp), whereh is a symmetry operation that leaves the orbit pointwise
invariant; see for example sed9.1.1

Consequences for the dynamical zeta function factoriaatéwe that sometimes
a boundary orbit does not contribute. A derivation of a dyitahweta function
(17.15 from a determinant like1(7.9) usually starts with an expansion of the
determinants of the Jacobian. The leading order terms queam the product of
the expanding eigenvalues and lead to the dynamical zettidan(17.15. Next
to leading order terms contain products of expanding anttactiing eigenvalues
and are sensitive to their signs. Clearly, the weightin the dynamical zeta
function will then be #&ected by reflections in the Poincaré surface of section
perpendicular to the orbit. In all our applications it wasgible to implement
these &ects by the following simple prescription.

If an orbit is invariant under a little groug{, = {e by,....bn}, then the
corresponding group element 9.9 will be replaced by a projector. If the
weights are insensitive to the signs of the eigenvalues, tthis projector is

h
1
gp = H;bp (19.11)

In the cases that we have considered, the change of sign ntakdreinto account
by defining a sign functiomp(g) = +1, with the “-” sign if the symmetry element
g flips the neighborhood. Thed9.1]) is replaced by

h
Op = % Z e(bi) by . (19.12)
i=1

We have illustrated the above in set®.1.1by working out the full factorization
for the 1-dimensional reflection symmetric maps.

19.4 Factorizations of dynamical zeta functions

In chapterd we have shown that a discrete symmetry induces degeneeanizsy
periodic orbits and decomposes periodic orbits into répas of irreducible segments;
this reduction to a fundamental domain furthermore leadsctinvenient symbolic
dynamics compatible with the symmetry, and, most impolyatd a factorization

of dynamical zeta functions. This we now develop, first in aagal setting and
then for specific examples.
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19.4.1 Factorizations of dynamical dynamical zeta functins

According to (9.9 and (19.10, the contribution of a degenerate class of global
cycles (cyclep with multiplicity my, = g/hp) to a dynamical zeta function is given
by the corresponding fundamental domain cyzle ~

(1-t2)9" = det(1- D(hg)ts) (19.13)

Let D(h) = B, d. D, (h) be the decomposition of the matrix representafih)
into thed, dimensional irreducible representatiom®f a finite groupG. Such
decompositions are block-diagonal, so the correspondingibution to the Euler
product (7.9 factorizes as

det (1- D(h)Y) = | | det (1~ Du(h))® . (19.14)

where now the product extends over all distidgtdimensional irreducible representations,
each contributingl, times. For the cycle expansion purposes, it has been camnteni

to emphasize that the group-theoretic factorization caeffieeted cycle by cycle,

as in (19.13; but from the transfer operator point of view, the key okagon

is that the symmetry reduces the transfer operator to a l@donal form; this

block diagonalization implies that the dynamical zeta fiows (17.15 factorize

as

1_ % , (—t - Ddet(l— Da(hp)ts) - (19.15)

@

Determinants ofi-dimensional irreducible representations can be evaluate
using the expansion of determinants in terms of traces,

det(1+ M) = 1+trM+= ((trM)2 tr M)
+é((trM)3—3(trM)(trM2)+2tr|v|3)

++d_1'((trM)d_) S (1916)

and each factor in1Q.14 can be evaluated by looking up the characierth) =
tr D, (h) in standard tables.[]]. In terms of characters, we have for the 1-dimensional
representations

det (1- Do(h)t) = 1 - yo(M)t
for the 2-dimensional representations

det(1- D,() = 1 xa(t+ 3 (o (0~ (9)) 2
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and so forth.

In the fully symmetric subspacela, (h) = 1 for all orbits; hence a straightforward
fundamental domain computation (with no group theory wisigalways yields a
part of the full spectrum. In practice this is the most ingéirey subspectrum, as it

contains the leading eigenvalue of the transfer operator. )
[exercise 19.2]

19.4.2 Factorizations of spectral determinants

Factorization of the full spectral determinarit7(3 proceeds in essentially the
same manner as the factorization of dynamical zeta furetmurtlined above.
By (19.5 and (19.9 the trace of the transfer operatdr splits into the sum of
inequivalent irreducible subspace contributigistr £, with

Ly = > xa(h) f A% L% %).

heG

This leads by standard manipulations to the factorizatiof1©.9 into

F@ = ]_[Fa(z)d"
1 Xa(hp)Z®'

@ - exp{ ZZf|det V)|
P.

por=1

. (19.17)

whereMg = hsMj is the fundamental domain Jacobian. Boundary orbits requir
special treatment, discussed in s&éét.3.1, with examples given in the next section
as well as in the specific factorizations discussed below.

The factorizations 19.19, (19.17 are the central formulas of this chapter.
We now work out the group theory factorizations of cycle exgians of dynam-
ical zeta functions for the cases ©f andC3, symmetries. The cases of tlg,,
Cy4, symmetries are worked out in appendibelow.

19.5 C,factorization

As the simplest example of implementing the above schemsidentheC,

symmetry. For our purposes, all that we need to know hereaisehch orbit
or configuration is uniquely labeled by an infinite strifsg}, s = +, — and that
the dynamics is invariant under the - — interchange, i.e., it i€, symmetric.
The C, symmetry cycles separate into two classes, the self-dudlgtmations
+—, ++-—— +++—-——, +——+—++—, -, with multiplicity my = 1, and
the asymmetric configurations, —, + + —, — — +, - - -, with multiplicity mp = 2.
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For example, as there is no absolute distinction betweetufifeand the “down”
spins, or the “left” or the “right” lobet, =t_,t,._ =t,__, and so on.

The symmetry reduced labeling € {0, 1} is related to the standagle {+, -}
Ising spin labeling by

If s = s.1 then p=1

If s # s-1 then pi=0 (19.18)
For example+ = --- + + + +--- maps into---111... = 1 (and so does"),
== —+—+--mapsinto--000--- =0, =+ F= = ——F+——++-
maps into---0101--- = 01, and so forth. A list of such reductions is given in
table11.2

Depending on the maximal symmetry grotify that leaves an orbjpinvariant
(see sectsl9.2and19.3as well as secfl9.1.]), the contributions to the dynamical
zeta function factor as

A A
Ho=1e): (1-tp)° = (L-ts)(1-1p)
Ho={eo}: (1-15) = (I-tp)(l+tp), (19.19)

For example:

7’{++— =1{e}: (1 - t++—)2 (1 - tOOl)(l - t001)
Heo=leo}: (I-t) = (1-to) (1+tk), t-=8

This yields two binary cycle expansions. TAgsubspace dynamical zeta function
is given by the standard binary expansidg.(/). The antisymmetrié, subspace
dynamical zeta functiodia, differs from¢a, only by a minus sign for cycles with
an odd number of 0's:

1/ln, (1 + to)(1 = t)(1 + t10)(1 — t100)(1 + tr02)(1 + t1000)
(1~ t2001)(1 + t1012)(1 — t10000(1 + t10001)

(1 +t20010(1 — t1001)(1 — ta0100)(1 + t1011) - - -

= 1+1to—t1+ (tao — tato) — (taoo — taoto) + (tro1 — taots)

~(tr001 — tatoo1 — troato + taotots) — . ..... (19.20)

Note that the group theory factors do not destroy the curgatorrections (the
cycles and pseudo cycles are still arranged into shadovandpmations).

If the system under consideration has a boundary ochbitséct.19.3.7) with
group-theoretic factoh, = (e+ 0)/2, the boundary orbit does not contribute to
the antisymmetric subspace

A Ay
boundary: (1-tp) = (1-tp)(1-0tp) (19.21)
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This is the ¢ part of the boundary orbit factorization of set.1.1

19.6 Cg, factorization: 3-disk game of pinball

The next example, th@s, symmetry, can be worked out by a glance at figure2(a).
For the symmetric 3-disk game of pinball the fundamental @ions bounded by

a disk segment and the two adjacent sections of the symmetsy/ that act as
mirrors (see figuréd 1.2 (b)). The three symmetry axes divide the space into six
copies of the fundamental domain. Any trajectory on thedplice can be pieced
together from bounces in the fundamental domain, with symnaxes replaced
by flat mirror reflections. The binarf0, 1} reduction of the ternary three disk
{1, 2, 3} labels has a simple geometric interpretation: a collisibtyjpe 0 reflects
the projectile to the disk it comes from (back—scatter), iwhe after a collision
of type 1 projectile continues to the third disk. For exam@le= - -- 232323 -
maps into---000- - - = 0 (and so ddl2 and13),123 = ---12312--- maps into
---111--- = 1 (and so doe&32), and so forth. A list of such reductions for short
cycles is given in tablé1.1

Cay has two 1-dimensional irreducible representations, sytricrand antisymmetric

under reflections, denoted; and Ay, and a pair of degenerate 2-dimensional
representations of mixed symmetry, denoEedlhe contribution of an orbit with
symmetryg to the 3¢ Euler product {9.14) factorizes according to

det (1-D(N) = (1 - xa, (M) (L xa (1) (1~ xe(h)t + xa,(2)” (19.22)

with the three factors contributing to ti@s, irreducible representation&;, A,
and E, respectively, and the 3-disk dynamical zeta functiondazes into =
§A1§Az§é- Substituting theCs, characters]0]

Ca |AL A, E
2

e 1 1
cc?| 1 1 -1
oy 1 -1 0

into (19.229), we obtain for the three classes of possible orbit syme{indicated
in the first column)

hs A A E
er (1-tp)° = (1-tp)d—tp)(1-2tp+13)?
cc?: (1-t)? A-tp)(L-tp)(A + tp+13)°
oy (-5 = (1-tp)(1+tp)(1+ Ot — t5)°. (19.23)

wherec, stands for any one of the three reflections.
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The Euler product {7.19 on each irreducible subspace follows from the
factorization (9.23. On the symmetricA; subspace théa, is given by the
standard binary curvature expansidi8(). The antisymmetridd, subspacea,
differs from¢a, only by a minus sign for cycles with an odd number of O's, and is
given in (19.20. For the mixed-symmetry subspaEehe curvature expansion is
given by

1/¢e

(1+ 2t + 221 - Z2)(L + Ptigo + (L - 2'12y)
(l + Z4t1001 + 28@001)(1 + 25t10000+ Zlotfooo&
(1 + Ptiot01+ 2°%%010)(1 - Ptico11)?. ..
= 1+2zf+2(8 - t2) + Z(toor - t1t3)

+7 [toon + (toor — atd)ts — t§1]

+2 [toooo1+ tor011~ 2too111+ (toor1 — 13t + (2 — tS)t106}9-24)
We have reinserted the powerszaf order to group together cycles and pseudocycles
of the same length. Note that the factorized cycle expagsgietain the curvature

form; long cycles are still shadowed by (somewhat less als)icombinations of
pseudocycles.

Referring back to the topological polynomidl3.31) obtained by setting, =

1, we see that its factorization is a consequence ohdactorization of the,
function:

Yip=1-22, 1ip=1, YE=1+z, (19.25)

as obtained from1(8.7), (19.20 and (19.24 for t, = 1.
Their symmetry iK = {e, o}, so according to19.11), they pick up the group-

theoretic factohy = (e + ¢7)/2. If there is no sign change tp, then evaluation of
det (1- &Ztp) yields

A A E
boundary: (-tp)°® = (1-tp)(1-0ts)(1-1t5)?, tp=ts. (19.26)

However, if the cycle weight changes sign under reflectign= —t3, the boundary
orbit does not contribute to the subspace symmetric undkection across the
orbit;

A A E
boundary: (-tp)°® = (1-0p)(L-t)(1-1t5)?, tp=tp. (19.27)

Résum é

If a dynamical system has a discrete symmetry, the symmietyld be exploited;
much is gained, both in understanding of the spectra andaédieir evaluation.
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Once this is appreciated, itis hard to conceive of a calimratithout factorization;
it would correspond to quantum mechanical calculation®iouit wave—function
symmetrizations.

While the reformulation of the chaotic spectroscopy frora ttace sums to
the cycle expansions does not reduce the exponential giowihmber of cycles
with the cycle length, in practice only the short orbits ased and for them the
labor saving is dramatic. For example, for the 3-disk gampilball there are
256 periodic points of length 8, but reduction to the fundataedomain non-
degenerate prime cycles reduces the number of the distntscof length 8 to
30.

In addition, cycle expansions of the symmetry reduced dycalnzeta func-
tions converge dramatically faster than the unfactorizgdachical zeta func-
tions. One reason is that the unfactorized dynamical zatatitn has many
closely spaced zeros and zeros of multiplicity higher thae; since the cycle
expansion is a polynomial expansion in topological cycfegth, accommodating
such behavior requires many terms. The dynamical zetaifurscbn separate
subspaces have more evenly and widely spaced zeros, ar¢hemalm not have
symmetry-induced multiple zeros, and fewer cycle expangoms (short cycle
truncations) sfiice to determine them. Furthermore, the cycles in the fundtahe
domain sample state space more densely than in the full spacexample, for
the 3-disk problem, there are 9 distinct (symmetry unréjatgcles of length 7 or
less in full space, corresponding to 47 distinct periodim{so In the fundamental
domain, we have 8 (distinct) periodic orbits up to length d #ws 22 diferent
periodic points in 16-th the state space, i.e., an increase in density by a factor
with the same numericaliert.

We emphasize that the symmetry factorizati@8.23 of the dynamical zeta
function isintrinsic to the classical dynamics, and not a special property oftalian
spectra. The factorization is not restricted to the Hamilin systems, or only
to the configuration space symmetries; for example, theatiscsymmetry can
be a symmetry of the Hamiltonian phase spade [n conclusion, the manifold
advantages of the symmetry reduced dynamics should thubvieus; full state
space cycle expansions, such as those of exetéis are useful only for cross
checking purposes.

Commentary

Remark 19.1 Symmetry reductions in periodic orbit theory. This chapter is based on
long collaborative ffort with B. Eckhardt, ref. []. The group-theoretic factorizations of
dynamical zeta functions that we develop here were firstéhtced and applied in refi].
They are closely related to the symmetrizations introdibge@utzwiller [4] in the context
of the semiclassical periodic orbit trace formulas, put imore general group-theoretic
context by Robbins7], whose exposition, together with Lauritzen¥ freatment of the
boundary orbits, has influenced the presentation given Agr@symmetry reduced trace
formula for a finite symmetry grou@ = {e, gy, ..., gg} with |G| group elements, where
the integral over Haar measure is replaced by a finite grasgretie suniG|* Y =1,
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was derived in ref.]]. A related group-theoretic decomposition in context opésbolic
billiards was utilized in ref. J0], and for the Selberg’s zeta function in ref.]]. One of
its loftier antecedents is the Artin factorization formofalgebraic number theory, which
expresses the zeta-function of a finite extension of a gieddis a product df-functions
over all irreducible representations of the correspon@atpis group.

Remark 19.2 Computations.  The techniques of this chapter have been applied to
computations of the 3-disk classical and quantum spectedsn[7, 13, and to a “Zeeman
effect” pinball and the®y? potentials in ref. { 7]. In a larger perspective, the factorizations
developed above are special cases of a general approaghiddieg the group-theoretic
invariances in spectra computations, such as those usedimezation of periodic geodesics]

3, 13] for hyperbolic billiards [ 7] and Selberg zeta functionsd].

Remark 19.3 Other symmetries.

In addition to the symmetries exploited here, time

reversal symmetry and a variety of other non-trivial disesymmetries can induce further
relations among orbits; we shall point out several of exa®pf cycle degeneracies under
time reversal. We do not know whether such symmetries carxpleited for further

improvements of cycle expansions.

Exercises

19.1.

19.2.

19.3.

Sawtooth map desymmetrization. Work out the
some of the shortest global cycles of fidrent
symmetries and fundamental domain cycles for the
sawtooth map of figur®.1 Compute the dynamical
zeta function and the spectral determinant of the Perron-
Frobenius operator for this map; check explicitly the
factorization (9.9.

2-d asymmetric representation. The above
expressions can sometimes be simplified further using
standard group-theoretical methods. For example, the
3((rM)2 —tr M?) term in (19.19 is the trace of the
antisymmetric part of thévl x M Kronecker product.

Show that ife is a 2-dimensional representation, this iig 4

the A; antisymmetric representation, and
2-dim:  det(ED,(h)t) = 1y, (h)t+ya, (W)2.(19.28)

3-disk desymmetrization.

a) Work out the 3-disk symmetry factorization for
the 0 and 1 cycles, i.e. which symmetry do they
have, what is the degeneracy in full space and how

do they factorize (how do they look in thig, A,  19.5.

and theE representations).

exerSymm - 10jan99.tex

b) Find the shortest cycle with no symmetries and
factorize itasin a)

c

-

Find the shortest cycle that has the property that
its time reversal is not described by the same
symbolic dynamics.

d

=

Compute the dynamical zeta functions and the
spectral determinants (symbolically) in the three
representations; check the factorizatiots.(9
and (19.179.

(Per Rosenqvist)

C, factorizations: the Lorenz and Ising systems. In

the Lorenz systeml] 3] the labels+ and - stand
for the left or the right lobe of the attractor and the
symmetry is a rotation by around the-axis. Similarly,
the Ising Hamiltonian (in the absence of an external
magnetic field) is invariant under spin flip. Work out
the factorizations for some of the short cycles in either
system.

Ising model. The Ising model with two states
& = {+,—} per site, periodic boundary condition, and
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Hamiltonian

H(© = =3 ) Saer -

19.6. One orbit contribution. If pis an orbit in th
fundamental domain with symmetry, show that
contributes to the spectral determinant with a facto

is invariant under spin-flip+ < —. Take advantage of
that symmetry and factorize the dynamical zeta function
for the model, i.e., find all the periodic orbits that
contribute to each factor and their weights.

det(l D(h) to )
)’

where D(h) is the representation df in the regule
representation of the group.
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Chapter 20

Why cycle?

“Progress was a labyrinth ... people plunging blindly in
and then rushing wildly back, shouting that they had found
it ... the invisible king the élan vital the principle of
evolution ... writing a book, starting a war, founding a
school...”

—F. Scott FitzgeraldThis Side of Paradise

operator formalism. Here we slow down in order to develop esdimgertip

I N THE PRECEDING CHAPTERS We have moved rather briskly through the evolution
feeling for the traces of evolution operators.

20.1 Escape rates

We start by verifying the claiml6.11) that for a nice hyperbolic flow the trace of
the evolution operator grows exponentially with time. ddes again the game
of pinball of figurel.1 Designate byM a state space region that encloses the
three disks, say the surface of the takl@ll pinball directions. The fraction of
initial points whose trajectories start out within the stgpace regiom and recur
within that region at the timeis given by

~ 1
rM(t):M f fM dxdys(y - f'(x) - (20.1)

This quantity is eminently measurable and physically ggéng in a variety of
problems spanning nuclear physics to celestial mechanit® integral overx
takes care of all possible initial pinballs; the integraéoy checks whether they
are still within M by the timet. If the dynamics is bounded, and envelops the
entire accessible state spaEg(t) = 1 for all t. However, if trajectories exiM
the recurrence fraction decreases with time. For exampjetrajectory that falls
off the pinball table in figurd.1is gone for good.

336
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These observations can be made more concrete by examieipitiall phase
space of figurel.9. With each pinball bounce the initial conditions that suevi
get thinned out, each strip yielding two thinner strips witit. The total fraction
of survivors (L.2) aftern bounces is given by

.1 o
I'n=— il 20.2
n MZIM.I (20.2)

wherei is a binary label of theth strip, and|M;| is the area of théth strip.
The phase space volume is preserved by the flow, so the sfripsavors are
contracted along the stable eigendirections, and ejetdad the unstable eigendirections.
As a crude estimate of the number of survivors in itthestrip, assume that the
spreading of a ray of trajectories per bounce is given by tofat, the mean
value of the expanding eigenvalue of the correspondingdomhtal matrix of the
flow, and replacéM;| by the phase space strip width estimgté|/|IM| ~ 1/A;.
This estimate of a size of a neighborhood (given already @&3)as right in spirit,
but not without drawbacks. One problem is that in generaleigenvalues of a
fundamental matrix for a finite segment of a trajectory havémariant meaning;
they depend on the choice of coordinates. However, we saheaipter16that the
sizes of neighborhoods are determined by stability eidaeseof periodic points,
and those are invariant under smooth coordinate transtmmnsa

In the approximatiori, receives 2 contributions of equal size

~ 2n
Fp~—+—,-- s T~ A A = gy (20.3)

>l
>l

up to pre-exponential factors. We see here the interplalyeofito key ingredients

of chaos first alluded to in sect.3.1 the escape ratg equals local expansion
rate (the Lyapunov exponent= In A), minus the rate of global reinjection back
into the system (the topological entropy= In 2).

As at each bounce one loses routinely the same fraction jetteaies, one
expects the sum2(.2) to fall off exponentially withn. More precisely, by the
hyperbolicity assumption of sedt6.1.1the expanding eigenvalue of the fundamental
matrix of the flow is exponentially bounded from both abovd helow,

1 < |Aminl < IAX)] < [Amad» (20.4)

and the area of each strip idQ(.2) is bounded byAad < IMi| < |A" |. Replacing

min
IMi] in (20.2) by its over (under) estimatgs in terms|Afay, |Aminl immediately
leads to exponential bounds/{&max)" < I'n < (2/|Amin))", i.€.,

1 .
IN|Amad —In2 > - InTy, > In|Aminl —In2. (20.5)

The argument based 02Q.5) establishes only that the sequenge= —% InT,
has a lower and an upper bound for amyn order to prove thag, converge to the
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limit y, we first show that for hyperbolic systems the sum over saniivtervals
(20.2 can be replaced by the sum over periodic orbit stabilifBys(20.4) the size
of M; strip can be bounded by the stability of ith periodic point:

1 |Mi| 1
C <Cor—, 20.6
YA S T™M S YA (206)

for any periodic point of periodn, with constant€; dependent on the dynamical
system but independent of The meaning of these bounds is that for longer and
longer cycles in a system of bounded hyperbolicity, thendtimg of theith strip is
better and better approximated by the derivatives evaluatethe periodic point
within the strip. Hence the survival probability can be bdead close to the cycle
point stability sum

Ciln< Y ——<Coln , (20.7)

wherel', = Zi(”) 1/|Ai| is the asymptotic trace sum.26. In this way we have
established that for hyperbolic systems the survival godiyasum (20.2 can be
replaced by the periodic orbit surhg.26.

[exercise 20.1]

We conclude that for hyperbolic, locally unstable flows tecfion @0.1) of [exercise 14.4]

initial x whose trajectories remain trapped withit up to timet is expected to
decay exponentially,

Cp(t) o e,

wherey is the asymptoti@scape ratelefined by

1
y = = lim ZINTa). (20.8)

20.2 Natural measure in terms of periodic orbits

We now refine the reasoning of se2f. 1. Consider the tracel.7) in the asymptotic
limit (16.29:

. () AT(x)
trL" = fdxé(x— (%) AN » Z T
T |

The factor ¥|Ai| was interpreted in20.2) as the area of théh phase space
strip. Hence tL" is a discretization of thintegral [ dxé’A"® approximated by a
tessellation into strips centered on periodic poitdigure1.11, with the volume
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of theith neighborhood given by estimag(| ~ 1/|A|, ande’A"® estimated by
e#A"(%) its value at théth periodic point. If the symbolic dynamics is a complete,
any rectangled. - - - S0.5152 - - - S) of sect.11.4.1always contains the cycle point
Sm- 9% Sy, hence even though the periodic points are of measure zero
(just like rationals in the unit interval), they are densetloe non—wandering set.
Equipped with a measure for the associated rectangle, dieriobits sitice to
cover the entire non-wandering set. The average®®fevaluated on the non—
wandering set is therefore given by the trace, properly atized so(1) = 1

(M) BA(X) /| A (W) .
b /1Al Z A0 (209)

A
< >n” Z(n)l/ll\l

Herey; is thenormalized natural measure
D=1, ui = € [IAl, (20.10)
i

correct both for the closed systems as well as the open sysitsect15.1.3

Unlike brute numerical slicing of the integration spaceiah arbitrary lattice
(for a critique, see sect4.3), the periodic orbit theory is smart, as it automatically
partitions integrals by the intrinsic topology of the flomdaassigns to each tile
the invariant natural measuge

20.2.1 Unstable periodic orbits are dense

(L. Rondoni and P. Cvitanovic)

Our goal in sectl5.1was to evaluate the space and time averaged expectation
value (15.9. An average over all periodic orbits can accomplish theqoly if
the periodic orbits fully explore the asymptotically acgibke state space.

Why should the unstable periodic points end up being densk& cycles
are intuitively expected to béensebecause on a connected chaotic set a typical
trajectory is expected to behave ergodically, and passtelfirmany times arbitrarily
close to any point on the set, including the initial pointhud trajectory itself. The
argument is more or less the following. Take a partitionddin arbitrarily small
regions, and consider particles that start out in regidn and return to it inn
steps after some peregrination in state space. In panti@ufgrticle might return
a little to the left of its original position, while a close ighbor might return a
little to the right of its original position. By assumptiothe flow is continuous,
so generically one expects to be able to gently move thealinptint in such a
way that the trajectory returns precisely to the initialrjpi.e., one expects a
periodic point of periodhin celli. As we diminish the size of regionsf;, aiming
a trajectory that returns td1; becomes increasingly fiiicult. Therefore, we are
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guaranteed that unstable orbits of larger and larger paredensely interspersed
in the asymptotic non—wandering set.

The above argument is heuristic, by no means guaranteed rio aod it
must be checked for the particular system at hand. A variétgrgodic but
insuficiently mixing counter-examples can be constructed - thetrfamiliar
being a quasiperiodic motion on a torus.

20.3 Flow conservation sum rules

If the dynamical system is bounded, all trajectories rencaimfined for all times,
escape rate20.9 vanishey = —sp = 0, and the leading eigenvalue of the Perron-
Frobenius operatorl¢.10) is simply expfty) = 1. Conservation of material flow
thus implies that for bound flows cycle expansions of dynaizeta functions
and spectral determinants satisfy exqmtv conservatiorsum rules:

1/£(0.0)

I
-
"
=
n
N
>[=
2
|
o

F(0,0) (20.11)

Il
[
|
(o}

=]
=
o
o
N
|
o

obtained by setting = 0 in (18.19, (18.19 cycle weightst, = e*STp/|Ap\ -
1/IApl . These sum rules depend neither on the cycle perigdsor on the
observable(x) under investigation, but only on the cycle stabilities;, Ap2, - -,
Apd, and their significance is purely geometric: they are a nreastihow well
periodic orbits tessellate the state space. Conservatioraterial flow provides
the first and very useful test of the quality of finite cycledémtruncations, and is
something that you should always check first when constrgeticycle expansion
for a bounded flow.

The trace formula version of the flow conservation flow sune mdmes in
two varieties, one for the maps, and another for the flows. &y flonservation
the leading eigenvalue & = 0, and for maps1(8.149) yields

1
tr LM = § — = 1+eM4 . 20.12
ek 1det (1— MN(x)) | ( )

For flows one can apply this rule by grouping together cyctesnft = T to
t=T+AT

1 T<ITp<T+AT Tp 1 T+AT
- —_— dt(1+e2t + ...
AT ; [det(1— my)| AT fT (trets..)
= 1+ % :1 e:: (64T -1) ~ 1+€%T +.. .(20.13)
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As is usual for the the fixed level trace sums, the convergef(@9.12) is controled
by the gap between the leading and the next-to-leading \egjezs of the evolution
operator.

20.4 Correlation functions

The time correlation function Gg(t) of two observablesA and B along the
trajectoryx(t) = f(xo) is defined as

1 (T
Cagltixo) = lim = fo drAX(T +D))B(X(7)), X0 =x(0). (20.14)

If the system is ergodic, with invariant continuous meagyg(®)dx, then correlation
functions do not depend oxy (apart from a set of zero measure), and may be
computed by a state space average as well

Caslt) = fM A% Po()A(F(%0))B() (20.15)

For a chaotic system we expect that time evolution will lodse information
contained in the initial conditions, so th@kg(t) will approach theuncorrelated
limit (A) - (B). As a matter of fact the asymptotic decay of correlation fioms

Cag = Cag— (A)(B) (20.16)

for any pair of observables coincides with the definitiomoking a fundamental
property in ergodic theory. We now assui® = O (otherwise we may define
a new observable bB(x) — (B)). Our purpose is now to connect the asymptotic
behavior of correlation functions with the spectrum of tleerBn-Frobenius oper-
ator £. We can write 20.15 as

Caalt) = [ dx [ oy MBIy - 100).
and recover the evolution operator
Caclt) = [ dx [ oy AL 90BN

We recall that in sectl4.1 we showed thap(x) is the eigenvector off
corresponding to probability conservation

f dy L1(x y)py) = p(¥).-
M
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Now, we can expand thedependent part in terms of the eigenbasigof

B(X)po(¥) = ) Capal).
a=0

wherepp(X) is the natural measure. Since the average of the left haledsizero
the codlicientcy must vanish. The action of then can be written as

Carlt) = Y e, [ dy Ay, 0) (2047)
a#0 M
[exercise 20.2]
We see immediately that if the spectrum hagag, i.e., if the second largest
leading eigenvalue is isolated from the largest eigenvédge= 0) then @0.179)
implies exponentialdecay of correlations

Cag(t) ~ e,

The correlation decay rate= s; then depends only on intrinsic properties of the
dynamical system (the position of the next-to-leading migkie of the Perron-
Frobenius operator), while the choice of a particular okage influences only
the prefactor.

Correlation functions are often accessible from time sarieasurable in laboratory
experiments and numerical simulations: moreover they iaked to transport
exponents.

20.5 Trace formulasvs. level sums

s
J Trace formulas 16.10 and (L6.23 diverge precisely where one would
like to use them, as equal to eigenvalues,. Instead, one can proceed as follows;
according to {6.27) the “level” sums (all symbol strings of lengtf) are asymptotically
going likee®"

ieFixfn
so annth order estimatey, of the leading eigenvalue is given by

A" () ()N
1= Y ¢ teson (20.18)

- Aj
ieFixfn IAil

which generates a “normalized measure.” Th&dlilty with estimating thisr —
oo limit is at least twofold:
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1. due to the exponential growth in number of intervals, dredexponential
decrease in attainable accuracy, the maximedtainable experimentally or numerically
is in practice of order of something between 5 to 20.

2. the pre-asymptotic sequence of finite estimatgss not unique, because
the sumd’, depend on how we define the escape region, and because imlgener
the areasV(; in the sum 20.2) should be weighted by the density of initial conditions
Xo. For example, an overall measuring unit rescalvlg — aM,; introduces In
corrections insy, defined by the log of the sun2Q.9: s — s — Ina/n. This
can be partially fixed by defining a level average

<93A(S)> = Z m (20.19)
O En I .

and requiring that the ratios of successive levels satisfy

_ <QBA(5(n)) >(n+ 1
(@A(&m))(m

This avoids the worst problem with the formul(18, the inevitable In corrections
due to its lack of rescaling invariance. However, even thoogich published
pondering of “chaos” relies on it, there is no need for sucimggstics: the dyn-
amical zeta functions and spectral determinants are airgamriant not only
under linear rescalings, but undgt smooth nonlinear conjugacies— h(x), and
require non — oo extrapolations to asymptotic times. Comparing with thdeyc
expansions8.7) we see what the fierence is; while in the level sum approach
we keep increasing exponentially the number of terms withigference to the
fact that most are already known from shorter estimatedyarcycle expansions
short terms dominate, longer ones enter only as exponlgraiakll corrections.

The beauty of the trace formulas is that they are coordiatiiz independent:
both |det(l— Mp)| = |det@ - MTp(x))| and & = &A™ contribution to the
cycle weightt, are independent of the starting periodic point pointFor the
fundamental matrixV, this follows from the chain rule for derivatives, and for
& from the fact that the integral ovefA™ is evaluated along a closed loop. In
addition,|det(l - Mp)| is invariant under smooth coordinate transformations.

Résum é

We conclude this chapter by a general comment on the relefitre finite trace
sums such as2(Q.2) to the spectral determinants and dynamical zeta functions
One might be tempted to believe that given a determinist&, aisum like 20.2
could be evaluated to any desired precision. For short fiimtes this is indeed
true: every regiom; in (20.2) can be accurately delineated, and there is no need
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for fancy theory. However, if the dynamics is unstable, loeaiations in initial
conditions grow exponentially and in finite time attain theeof the system. The
difficulty with estimating the& — co limit from (20.2) is then at least twofold:

1. due to the exponential growth in number of intervals, dedexponential
decrease in attainable accuracy, the maximadtainable experimentally or numerically
is in practice of order of something between 5 to 20;

2. the pre-asymptotic sequence of finite estimateis not unique, because
the sumd', depend on how we define the escape region, and because imlgener
the area$Mi| in the sum 20.2) should be weighted by the density of initig.

In contrast, the dynamical zeta functions and spectrahaiéants are invariant
underall smooth nonlinear conjugacies— h(x), not only linear rescalings, and
require non — oo extrapolations.

Commentary

Remark 20.1 Nonhyperbolic measures. g = 1/|Aj| is the natural measure only for
the strictly hyperbolic systems. For non-hyperbolic systethe measure might develop
cusps. For example, for Ulam type maps (unimodal maps witidratic critical point
mapped onto the “left” unstable fixed poirg, discussed in more detail in chaps),
the measure develops a square-root singularity o thele:

1

= 20.20
|Aol*2 ¢ )

Ho

The thermodynamics averages are still expected to converthe “hyperbolic” phase
where the positive entropy of unstable orbits dominates themarginal orbits, but they
fail in the “non-hyperbolic” phase. The general case remaimclear [ 9, 2, 3, 5].

Remark 20.2 Trace formula periodic orbit averaging. The cycle averaging formulas
are notthe first thing that one would intuitively write dovtine approximate trace formulas
are more accessibly heuristically. The trace formula ajemr(20.13 seems to have
be discussed for the first time by Hannay and Ozorio de Almgida.1]. Another
novelty of the cycle averaging formulas and one of their nv@itues, in contrast to the
explicit analytic results such as those of refl, is that their evaluatiomloes notrequire
any explicit construction of the (coordinate dependengerfunctions of the Perron-
Frobenius operator (i.e., the natural meagu)e

Remark 20.3 Role of noise in dynamical systems.  In any physical application the
dynamics is always accompanied by additional externabndike noise can be characterized
by its strengthr and distribution. Lyapunov exponents, correlation deaay dynamo

rate can be defined in this case the same way as in the detstimazise. You might fear
that noise completely destroys the results derived hereveder, one can show that the
deterministic formulas remain valid to accuracy comparatith noise width if the noise
level is small. A small level of noise even helps as it makesdyinamics more ergodic,
with deterministically non-communicating parts of thetstspace now weakly connected
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due to the noise, making periodic orbit theory applicabledn-ergodic systems. For
small amplitude noise one can expand

A=A+ moi+ @R+ ..,

around the deterministic averagas The expansion cdicientsay, ay, ... can also be
expressed via periodic orbit formulas. The calculationhefse cofficients is one of the

challenges facing periodic orbit theory, discussed in. ffefs5, 7].

Exercises

20.1.

20.2. Four scale map decay. Compute the second largest
eigenvalue of the Perron-Frobenius operator for the four

20.3.

Escape rate of the logistic map.

(a) Calculate the fraction of trajectories remaining

trapped in the interval [A] for the logistic map
1) = A(L- (2x- 1)), (20.21)

and determine thA dependence of the escape rate

v(A) numerically.

(b) Work out a numerical method for calculating the
lengths of intervals of trajectories remaining stuck

for n iterations of the map.

(c) What is your expectation about thedependence
near the critical valué; = 1?

scale map

aX
f(x) = glz- :(li)(éx - b/ag)/(b-b/ar)) + b

(1-b)((x-b-b/az)/(1-b-b/ag)) +b

Lyapunov exponents for 1-dimensional maps.

Extend your cycle expansion programs so that the
first and the second moments of observables can be
computed. Use it to compute the Lyapunov exponent

for some or all of the following maps:

(a) the piecewise-linear flow conserving map, the

skew tent map

f(x) = ax if0<x<al,
T\ &-x ifalsxs<l

(b) the Ulam mapf (x) = 4x(1 - X)
(c) the skew Ulam map

In our numerical work we fix (arbitrarily, the va
choseninref.g]) b = 0.6, so

f(x) = 0.1218x(1 - x)(1 - 0.6 x)
with a peak at (7.

(d) the repeller of (x) = Ax(1-X), for eitherA = 9/-
or A = 6 (this is a continuation of exercids.2).

(e) forthe 2-branch flow conserving map

h—p+ +/(h- p)? + 4hx
2h ’
h+p-1++/(h+p-1)2+4

2h

This is a nonlinear perturbation oh(= 0
Bernoulli map 21.6); the first 15 eigenvalues
the Perron-Frobenius operator are listed in ré
0 < Xfobpas 0.8,h = 0.1. Use these parameter va

g/ j‘lxﬁélﬁbér%?g;pl{t@ﬁggby Lyapunov exponent.

Ladeeqa) ardl(b) can be computed analytically;
(c), (d) and (e) require numerical computation of c
stabilities. Just to see whether the theory is wort
trouble, also cross check your cycle expansions r
for cases (c) and (d) with Lyapunov exponent comy
by direct numerical averaging along trajectorie
randomly chosen initial points:

fo(x)

f1(x)

(f) trajectory-trajectory separation1%.2% (hint
rescaleéx every so often, to avoid numeri
overflows),

(g) iterated stability 15.32.

How good is the numerical accuracy compared wit
periodic orbit theory predictions? oo

£(X) = Aox(1-X)(1-bX) ,  1/A¢ = Xo(1-x)(1-bx) .(20.23)
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Chapter 21

Why does it work?

Bloch: “Space is the field of linear operators.”
Heisenberg: “Nonsense, space is blue and birds fly
through it.”

—Felix Bloch, Heisenberg and the early days of
guantum mechanics

(R. Artuso, H.H. Rugh and P. Cvitanovit)

sometimes very well. The question is: Why? And it still is.€Tteuristic
manipulations of chapter$6 and 6 were naive and reckless, as we are
facing infinite-dimensional vector spaces and singulagrdl kernels.

A S WE SHALL S, the trace formulas and spectral determinants work well,

We now outline the key ingredients of proofs that put thedraed determinant
formulas on solid footing. This requires taking a closerki@ the evolution
operators from a mathematical point of view, since up to nosvhave talked
about eigenvalues without any reference to what kind of &tfan space the
corresponding eigenfunctions belong to. We shall restrictonsiderations to the
spectral properties of the Perron-Frobenius operator fgganas proofs for more
general evolution operators follow along the same linesatMre refer to as a “the
set of eigenvalues” acquires meaning only within a pregispkcified functional
setting: this sets the stage for a discussion of the anaypicoperties of spectral
determinants. In exampl&l.1we compute explicitly the eigenspectrum for the
three analytically tractable piecewise linear exampleselct.21.3we review the
basic facts of the classical Fredholm theory of integralagigns. The program
is sketched in sec21.4 motivated by an explicit study of eigenspectrum of
the Bernoulli shift map, and in sec1.5generalized to piecewise real-analytic
hyperbolic maps acting on appropriate densities. We shova @ery simple
example that the spectrum is quite sensitive to the redularoperties of the
functions considered.

For expanding and hyperbolic finite-subshift maps anatytiteads to a very
strong result; not only do the determinants have betteryticiéy properties than
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the trace formulas, but the spectral determinants areesinglt as entire functions

in th mpl lane.
the complexs plane [remark 21.1]

The goal of this chapter is not to provide an exhaustive vewé the rigorous
theory of the Perron-Frobenius operators and their sgefgtarminants, but rather
to give you a feeling for how our heuristic considerations t& put on a firm
basis. The mathematics underpinning the theory is both draadrofound.

If you are primarily interested in applications of the péiorbit theory, you
should skip this chapter on the first reading.

fast track:
W chapter 12, p. 195
21.1 Linear maps: exact spectra

We start gently; in exampl21.1we work out theexacteigenvalues and eigenfunctions
of the Perron-Frobenius operator for the simplest examiplmstable, expanding
dynamics, a linear &-map with one unstable fixed point. . Ref] ghows that

this can be carried over w-dimensions. Not only that, but in examé.5we
compute the exact spectrum for the simplest example of andigaé system with
aninfinity of unstable periodic orbits, the Bernoulli shift.

Example 21.1 The simplest eigenspectrum - a single fixed point: In order to get
some feeling for the determinants defined so formally in sect. 17.2, let us work out a
trivial example: a repeller with only one expanding linear branch

f(x) = AX, [Al>1,

and only one fixed point x* = 0. The action of the Perron-Frobenius operator (14.10) is
1
Lo(y) = | dxsly—Ax)¢(X) = mrﬁ(y//\) . (21.1)

From this one immediately gets that the monomials y* are eigenfunctions:

1
~JAIAK

Ly

¥, k=0,12... (21.2)

What are these eigenfunctions? Think of eigenfunctionsefSchrodinger
equation:k labels thekth eigenfunction in the same spirit in which the number
of nodes labels thigh quantum-mechanical eigenfunction. A quantum-mecladnic
amplitude with more nodes has more variability, hence adrigimetic energy.
Analogously, for a Perron-Frobenius operator, a higheigenvalue ZJA|AK is
getting exponentially smaller because densities thatwame rapidly decay more
rapidly under the expanding action of the map.
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Example 21.2 The trace formula for a single fixed point: The eigenvalues At
fall off exponentially with k, so the trace of L is a convergent sum

1o« 1 1
trlL=— A" = = N
IAl é IAI(L-ATY) 1Ty -1

in agreement with (16.7). A similar result follows for powers of L, yielding the single-
fixed point version of the trace formula for maps (16.10):

o e SR 1
— Sk —
_Z a7 ©° [AJAK” (21.3)

The left hand side of41.3) is a meromorphic function, with the leading zero
atz=|A|. So what?

Example 21.3 Meromorphic functions and exponential convergence: As an
illustration of how exponential convergence of a truncated series is related to analytic
properties of functions, consider, as the simplest possible example of a meromorphic
function, the ratio

z-a
h(z = —
3 = - b
with a, b real and positive and a < b. Within the spectral radius |2 < b the function h
can be represented by the power series

)

h@ =) o,

k=0

where oo = a/b, and the higher order coefficients are given by oj = (a - b)/bi*L.
Consider now the truncation of order N of the power series

N

B _a za-h)(1-2'/bY)
() = k;akif Bt waan

Let zy be the solution of the truncated series hy(zy) = 0. To estimate the distance
between a and 2y it is sufficient to calculate hy(a). It is of order (a/b)N*2, so finite order
estimates converge exponentially to the asymptotic value.

This example shows that: (1) an estimate of the leading pblke Ieading
eigenvalue off) from a finite truncation of a trace formula converges exptiady,
and (2) the non-leading eigenvaluesfie outside of the radius of convergence
of the trace formula and cannot be computed by means of swé eypansion.
However, as we shall now see, the whole spectrum is reachahlz extra &ort,
by computing it from a determinant rather than a trace.

Example 21.4 The spectral determinant for a single fixed point: The spectral
determinant (17.3) follows from the trace formulas of example 21.2:

z

det(1-2£) = ﬁ (1— m'%) = 2(—0@", = (21.4)

k=0

converg - 15aug2006.tex



CHAPTER 21. WHY DOES IT WORK? 350

where the cummulants Q, are given explicitly by the Euler formula

1 A—l A—n+1

Qn=1ATToAZ T IoAT

(21.5)

The main lesson to glean from this simple example is that tihenculantsQ,
decay asymptoticallfasterthan exponentially, a&~""-1)/2_ For example, if we
approximate series such axl(4) by the first 10 terms, the error in the estimate of
the leading zero is 1/A%%

So far all is well for a rather boring example, a dynamicateyswith a single
repelling fixed point. What about chaos? Systems where theauof unstable
cycles increases exponentially with their length? We nomm to the simplest
example of a dynamical system with an infinity of unstablequic orbits.

Example 21.5 Bernoulli shift: Consider next the Bernoulli shift map

X+ 2X (mod 1), x € [0,1]. (21.6)

The associated Perron-Frobenius operator (14.9) assambles p(y) from its two preimages

1 /yy 1 (y+1
— =)+ = . 21.7
) 2p(2)+2p( ! ) (21.7)
For this simple example the eigenfunctions can be written down explicitly: they coincide,
up to constant prefactors, with the Bernoulli polynomials B,(X). These polynomials are
generated by the Taylor expansion of the generating function

teXt

6(xt) = 5 =

= t 1
g BuX)pg- Bo®)=1.Bi(¥=x-5....

The Perron-Frobenius operator (21.7) acts on the generating function G as

t/2 /2 Xt/2 t/2 0 k
£6(x1) = 1(tex +te' e ) toev Z Bk(X)(t/Z)
k=1

2\le-1" -1 )" 2¢2-1 K

hence each By(x) is an eigenfunction of £ with eigenvalue 1/2%.

The full operator has two components corresponding to the two branches. For
the n times iterated operator we have a full binary shift, and for each of the 2" branches
the above calculations carry over, yielding the same trace (2" — 1)~! for every cycle on
length n. Without further ado we substitute everything back and obtain the determinant,

PR z
det(1-2£) = exp(— >z ﬂ] =[] (1_ ﬂ) . (21.8)
n=1 k=0
verifying that the Bernoulli polynomials are eigenfunctions with eigenvalues 1, 1/2, ...,

/2", ...
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The Bernoulli map spectrum looks reminiscent of the singledipoint spectrum
(21.2), with the diference that the leading eigenvalue here is 1, rather tHamn 1
The diference is significant: the single fixed-point map is a repelé&h escape
rate (L.6) given by the£ leading eigenvalug = In|A|, while there is no escape
in the case of the Bernoulli map. As already noted in discussf the relation
(17.23, for bound systems the local expansion rate (hef&|le In 2) is balanced
by the entropy (here In 2, the log of the number of preimaggs yielding zero
escape rate.

So far we have demonstrated that our periodic orbit formatascorrect for
two piecewise linear maps in 1 dimension, one with a singledfigoint, and one
with a full binary shift chaotic dynamics. For a single fixeaint, eigenfunctions
are monomials irx. For the chaotic example, they are orthogonal polynomials o
the unit interval. What about higher dimensions? We checKamulas on a 4
hyperbolic map next.

Example 21.6 The simplest of 2- d maps - a single hyperbolic fixed point: We
start by considering a very simple linear hyperbolic map with a single hyperbolic fixed
point,

f(X) = (fi(xa, X2), f2a(X1, X2)) = (AsXa, AuX2), O <|Ag <1, |[Ay >1.

The Perron-Frobenius operator (14.10) acts on the 2-d density functions as

1
Lp(x1, %) = mp(xl//\s» X2/ Au) (21.9)

What are good eigenfunctions? Cribbing the 1-d eigenfunctions for the stable, contracting
Xy direction from example 21.1 is not a good idea, as under the iteration of L the
high terms in a Taylor expansion of p(xi, X2) in the x; variable would get multiplied
by exponentially exploding eigenvalues 1/A'§. This makes sense, as in the contracting
directions hyperbolic dynamics crunches up initial densities, instead of smoothing them.
So we guess instead that the eigenfunctions are of form

Pk (X, %) = X2 /X K k=012, (21.10)

a mixture of the Laurent series in the contraction X, direction, and the Taylor series in
the expanding direction, the x, variable. The action of Perron-Frobenius operator on
this set of basis functions

o A%

_ o A _
Lo, (X1, %) = Al Ak Gk (X1, X2) . 0= Ag/IA4|

is smoothing, with the higher ky, ko eigenvectors decaying exponentially faster, by
A% /A factor in the eigenvalue. One verifies by an explicit calculation (undoing
the geometric series expansions to lead to (17.9)) that the trace of L indeed equals
1/|detl— M)| = 1/|(1 - Ay)(1 - Ag)l, from which it follows that all our trace and spectral
determinant formulas apply. The argument applies to any hyperbolic map linearized
around the fixed point of form f(Xq...., X4) = (A1X1, A2Xe, . . ., AgXd)-

So far we have checked the trace and spectral determinantifas derived
heuristically in chapter$6and17, but only for the case of 1- and@kinear maps.
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But for infinite-dimensional vector spaces this game isdhawvith dangers, and
we have already been mislead by piecewise linear examptespectral confusions:
contrast the spectra of examplé. 1and exampléd 5.2with the spectrum computed
in examplel6.1

We show next that the above results do carry over to a sizédse of piecewise
analytic expanding maps.

21.2 Evolution operator in a matrix representation

The standard, and for numerical purposes sometimes Yiegtige way to look at
operators is through their matrix representations. Eimiubperators are moving
density functions defined over some state space, and asérej@re can implement
this only numerically, the temptation is to discretize tteesspace as in sed.3
The problem with such state space discretization appradtiae they sometimes
yield plainly wrong spectra (compare exampfe2with the result of exampl&6.1),
so we have to think through carefully what is it that weally measure.

An expanding mapf (x) takes an initial smooth densit(x), defined on a
subinterval, stretches it out and overlays it over a langerval, resulting in a new,
smoother densityn.1(X). Repetition of this process smoothes the initial density,
so it is natural to represent densitiggx) by their Taylor series. Expanding

o) = ¢‘n”(0)§ A EDY 40,07
k=0 i

T
= !

682,00 = [ax 800~ 100000, . x=10),
and substitute the two Taylor series infigt(6):

4010) = (L) 0) = [ dxaly = ()0,
The matrix elements follow by evaluating the integral

13
Lac= ;7 [ axzo. 0 (21.11)

y=0

we obtain a matrix representation of the evolution operator

XK ‘
fdxz(y,x)F = Z%Lk,k, kk=012...
1T Lk
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which maps thex component of the density of trajectorigg(x) into the y<
component of the densit,.1(y) one time step later, with = f(X).

We already have some practice with evaluating derivatieg)) = %5@) from
sect.14.2 This yields a representation of the evolution operatotared on the
fixed point, evaluated recursively in terms of derivativéthe mapf:

k
L = f dxsO(x ~ 1(0) (21.12)
k! x=f(x)
_ i(d_i)fx_k
Pi\axe) |,

The matrix elements vanish fdr < k, soL is a lower triangular matrix. The
diagonal and the successivéf-diagonal matrix elements are easily evaluated
iteratively by computer algebra

(k+2)f”

L= L
e 2KIAIAKZ

1
M, I—k+1,k =

For chaotic systems the map is expanding,> 1. Hence the diagonal terms drop
off exponentially, as AA[<*1, the terms below the diagonal falff@ven faster, and
truncatingL to a finite matrix introduces only exponentially small estor

The trace formulaZ1.3 takes now a matrix form

2L i L

t - .
T T

(21.13)

In order to illustrate how this works, we work out a few exaespl

In example21.7we show that these results carry over to any analytic single-
branch 1d repeller. Further examples motivate the steps that leactoat that
spectral determinants for general analytic 1-dimensiexpknding maps, and -
in sect.21.5 for 2-dimensional hyperbolic mappings - are also entirefions.

Example 21.7 Perron-Frobenius operator in a matrix representation: As in

example 21.1, we start with a map with a single fixed point, but this time with a nonlinear

piecewise analytic map f with a nonlinear inverse F = =, sign of the derivative
o =o(F’) = F’/IF’|, and the Perron-Frobenius operator acting on densities analytic in
an open domain enclosing the fixed point X = w*,

Lo(y) = fdxé()'— f09)6(9) = o F'(y) 6(F(¥)) -

Assume that F is a contraction of the unit disk in the complex plane, i.e.,

IF(@l<0<1 and |F'(9/<C<oo for |7<1, (21.14)

converg - 15aug2006.tex



CHAPTER 21. WHY DOES IT WORK? 354

fw)
0.5-

Figure 21.1: A nonlinear one-branch repeller with a % 0.5 1
single fixed pointv*.

and expand ¢ in a polynomial basis with the Cauchy integral formula

o~ _ Ldw gw) _ Ldw g(w)
¢(Z)—;f¢n— 7 w_z’ n=Qor Wt

Combining this with (21.22), we see that in this basis Perron-Frobenius operator L is
represented by the matrix

_ _ Ldw o F'(W)(F(w))"

£¢(W) - ; Wanr¢n ’ Lmn - ﬁ T

Taking the trace and summing we get:

B _ Ldw o F'(w)
UL=D = Do wrw

This integral has but one simple pole at the unique fixed point w* = F(w*) = f(w*).
Hence

[exercise 21.6]

o F'w) 1

"L TTEw) T T -1

This super-exponential decay of cummula@s ensures that for a repeller
consisting of a single repelling point the spectral deteamt 1.4 is entire in
the complexz plane.

In retrospect, the matrix representation method for sgltfre density evolution
problems is eminently sensible — after all, that is the wag enlves a close
relative to classical density evolution equations, ther&dimger equationWhen
available, matrix representations fd@renable us to compute many more orders
of cumulant expansions of spectral determinants and mamg eigenvalues of
evolution operators than the cycle expensions approach.

Now, if the spectral determinant is entire, formulas sucfila?5 imply that
the dynamical zeta function is a meromorphic function. Treefcal import of
this observation is that it guarantees that finite orderess of zeroes of dyn-
amical zeta functions and spectral determinants convergenentially, or - in
cases such a®1.4 - super-exponentially to the exact values, and so the cycle
expansions to be discussed in chaji@represent &ue perturbativeapproach to
chaotic dynamics.
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Before turning to specifics we summarize a few facts aboutsttal theory
of integral equations, something you might prefer to skipficst reading. The
purpose of this exercise is to understand that the Fredhodory, a theory that
works so well for the Hilbert spaces of quantum mechanics tha¢ necessarily
work for deterministic dynamics - the ergodic theory is mbeinder.

fast track:
W sect. 21.4, p. 357
21.3 Classical Fredholm theory

He who would valiant be 'gainst all disaster
Let him in constancy follow the Master.
—John BunyanPilgrim’s Progress

,
J The Perron-Frobenius operator

£6(0) = f dys(x - () ()

has the same appearance as a classical Fredholm integralaspe

Ke(x) = fM dyK(x Y)e(y). (21.16)

and one is tempted to resort too classical Fredholm theoprder to establish
analyticity properties of spectral determinants. Thishp@t enlightenment is
blocked by the singular nature of the kernel, which is a itigtion, whereas the
standard theory of integral equations usually conceredf itgith regular kernels
K(x.y) € L3 (M?). Here we briefly recall some steps of Fredholm theory, keefor
working out the example of examphd.5

The general form of Fredholm integral equations of the sédamd is
e09 = [ ayKee) + €9 (21.17)

where&(x) is a given function in2(M) and the kernekK(x, y) € L2(M?) (Hilbert-
Schmidt condition). The natural object to study is then thedr integral operator
(21.16, acting on the Hilbert spade?(M): the fundamental property that follows
from theL2(Q) nature of the kernel is that such an operataoisipactthat is close
to a finite rank operator.A compact operator has the propkattfor everys > 0
only afinite number of linearly independent eigenvectors exist comedimg to
eigenvalues whose absolute value excéede we immediately realize (figugd.4)
that much work is needed to bring Perron-Frobenius operatto this picture.
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We rewrite 21.17) in the form
Te =&, T=1-%K. (21.18)

The Fredholm alternative is now applied to this situatiofoflews: the equation

T ¢ = & has a unique solution for eveey e L2(M) or there exists a non-zero
solution of7 ¢ = 0, with an eigenvector ok corresponding to the eigenvalue 1.
The theory remains the same if insteadofve consider the operat@r, = 1-1%
with 2 # 0. AsK is a compact operator there is at most a denumerable gdbof
which the second part of the Fredholm alternative holdsrtdpam this set the
inverse operator (417"~ exists and is bounded (in the operator sense). When
is suficiently small we may look for a perturbative expression f@tsan inverse,
as a geometric series

(1= %)Y = 14K+ PK2+ - = 1+ AW, (21.19)

whereK™ is a compact integral operator with kernel
K(xy) = fMM dz ...dz- 1 K(%z) - K(2z0-1,Y)

andW is also compact, as it is given by the convergent sum of cohquaarators.
The problem with 21.19 is that the series has a finite radius of convergence,
while apart from a denumerable set.8$ the inverse operator is well defined.
A fundamental result in the theory of integral equationssisis in rewriting the
resolving kernefW as a ratio of twaanalytic functions ofa

D(X,Y; A)

W) = =505

If we introduce the notation

{5
yl...Yn W(Xn,yl) V((Xn,Yn)

we may write the explicit expressions

> A" ... 7
— 1\
D) = 1+n;( i andzl.‘.dzJK(zlmzn)
= m
= exp(—z —tr‘Km] (21.20)
m=1 m
N X ()" X 2 ... Zn
DXy, ) = ’K(y)+2 o J;wndzl...dz(,’l((y z ... 7

n=1
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The quantityD(1) is known as the Fredholm determinant (s&é&.24):it is an
entire analytic function oft, andD(1) = 0 if and only if 1/1 is an eigenvalue of
XK.

Worth emphasizing again: the Fredholm theory is based ondhgactness
of the integral operator, i.e., on the functional propsrtisummability) of its
kernel. As the Perron-Frobenius operator is not compaetetis a bit of wishful
thinking involved here.

21.4 Analyticity of spectral determinants

They savored the strange warm glow of being much more
ignorant than ordinary people, who were only ignorant of
ordinary things.

—Terry Pratchett

Spaces of functions integrable!, or square-integrablé? on interval [Q1]
are mapped into themselves by the Perron-Frobenius opeaathin both cases
the constant functiogy = 1 is an eigenfunction with eigenvalue 1. If we focus
our attention ori.! we also have a family df* eigenfunctions,

) = Y, exp(ani) (21.21)
k#0

with complex eigenvalue 2, parameterized by complexwith Re ¢ > 0. By
varying 6 one realizes that such eigenvalues fill out the entire usi.diSuch
essential spectrumthe casek = 0 of figure 21.4, hides all fine details of the
spectrum.

What's going on? Spacés andL? contain arbitrarily ugly functions, allowing
any singularity as long as it is (square) integrable - andethie no way that
expanding dynamics can smooth a kinky function with a ndfeténtiable singularity,
let's say a discontinuous step, and that is why the eigetigpeds dense rather
than discrete. Mathematicians love to wallow in this kindnafick, but there
is no way to prepare a nowhereffdrentiableL?® initial density in a laboratory.
The only thing we can prepare and measure are piecewise Isifreat-analytic)
density functions.

For a bounded linear operatof on a Banach spac®, the spectral radius
is the smallest positive numbpgpec Such that the spectrum is inside the disk of
radius pspeo While the essential spectral radius is the smallest pesitumber
pessSuch that outside the disk of radipsssthe spectrum consists only of isolated
eigenvalues of finite multiplicity (see figug.4).

We may shrink the essential spectrum by letting the Perrobdnius oper-
ator act on a space of smoother functions, exactly as in teebcanch repeller
case of sect21.1 We thus consider a smaller spac&;®, the space ok times
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differentiable functions whoskth derivatives are Holder continuous with an
exponent O< « < 1: the expansion property guarantees that such a space is
mapped into itself by the Perron-Frobenius operator. Irsthip 0< Ref < k+a
mostgy will cease to be eigenfunctions in the spat®; the functiong, survives

only for integer valued) = n. In this way we arrive at a finite set afolated

eigenvalues 1271, ..., 27K and an essential spectral radjtsgs= 2+,

We follow a simpler path and restrict the function space duether, namely
to a space of analytic functions, i.e., functions for whibh Taylor expansion is
convergent at each point of the interval I0. With this choice things turn out easy
and elegant. To be more specific, ¢geve a holomorphic and bounded function on
the diskD = B(0, R) of radiusR > 0 centered at the origin. Our Perron-Frobenius
operator preserves the space of such functions providedR)}2 < Rso all we
need is to choos® > 1. If Fg, s € {0, 1}, denotes thes inverse branch of the
Bernoulli shift 21.6), the corresponding action of the Perron-Frobenius operat
is given by Lsh(y) = o F4(y) h o Fs(y), using the Cauchy integral formula along
thedD boundary contour:

dw  h(W)F4(y)

Lsh(y) = o i aDm .

(21.22)

For reasons that will be made clear later we have introducggnar = +1 of the
given real branchF’(y)| = o F’(y). For both branches of the Bernoulli shift 1,

but in general one is not allowed to take absolute valuesiasctuld destroy
analyticity. In the above formula one may also replace thealo D by any
domaincontaining [0 1] such that the inverse branches maps the closueioto

the interior ofD. Why? simply because the kernel remains non-singular under
this condition, i.e.w — F(y) # 0 whenevefw € dD andy € Cl D. The problem

is now reduced to the standard theory for Fredholm detemtsnaect21.3 The
integral kernel is no longer singular, traces and determiare well-defined, and
we can evaluate the trace 6f by means of the Cauchy contour integral formula:

)
L= Qo woFw

Elementary complex analysis shows that sificenaps the closure db into its
own interior,F has a unique (real-valued) fixed pokitwith a multiplier strictly
smaller than one in absolute value. Residue calculus thergfelds

oF(x7) 1

TS TG 0 -1

justifying our previousad hoccalculations of traces using Dirac delta functions.

Example 21.8 Perron-Frobenius operator in a matrix representation: As in
example 21.1, we start with a map with a single fixed point, but this time with a nonlinear
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piecewise analytic map f with a nonlinear inverse F = =, sign of the derivative
o =a(F)=F/IF

Lé(2) = fdxfi(Z— f(X))¢(X) = o F'(2 6(F(2).
Assume that F is a contraction of the unit disk, i.e.,
IF@l<0<1 and |F'(9l<C<oeo for |Z<1, (21.23)

and expand ¢ in a polynomial basis by means of the Cauchy formula

dw ow) _ rdw g(w)

¢(Z)=§z“¢n= > owg =P

Combining this with (21.22), we see that in this basis L is represented by the matrix

dw o F’(w)(F(w))"

LoW) = > W'lnndn, Lmn= QO 5= (21.24)
; m n mn 27” \mel

Taking the trace and summing we get:

S )
L= D= P o wrw

n=0

This integral has but one simple pole at the unique fixed point w* = F(w*) = f(w*).
Hence

o F/(w) 1

s R ST

We worked out a very specific example, yet our conclusiondeageneralized,
provided a number of restrictive requirements are met bydgheamical system
under investigation:

1) the evolution operator isltiplicativealong the flow,

2) the symbolic dynamics isfaite subshift

3) all cycle eigenvalues arkyperbolic (exponentially bounded in
magnitude away from 1),

4) the map (or the flow) igeal analyti i.e., it has a piecewise analytic
continuation to a complex extension of the state space.

These assumptions are romantic expectations not satisfiéielbdynamical

systems that we actually desire to understand. Still, theyat devoid of physical

interest; for example, nice repellers like our 3-disk garhgimball do satisfy the
above requirements.

Properties 1 and 2 enable us to represent the evolution topexs a finite
matrix in an appropriate basis; properties 3 and 4 enabl® lmtnd the size
of the matrix elements and control the eigenvalues. To sex wdn go wrong,
consider the following examples:
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necessitates much extra work. The problem is that the dyasamthe neighborhood

1 1 of a marginal fixed point is very slow, with correlations dgiog as power laws
4 rather than exponentially. We will discuss such flows in ¢aep3.
f(x) f(x) Property 4 is required as the heuristic approach of chdgiéaces two major
0.5 ’ ] 051 d ] hurdles:
i ) 1. The trace16.9) is not well defined because the integral kernel is singular.

Figure 21.2: (a) A (hyperbolic) tent map without 00' . Y o . Y
a finite Markov partition. (b) A Markov map with g2 Lo G2 I 2. The existence and properties of eigenvalues are by noswéear.
a marginal fixed point. (a) (b)

Property 1 is violated for flows in 3 or more dimensions by tblofving
weighted evolution operator

L'y, = IAPs(y - (%)

where Al(x) is an eigenvalue of the fundamental matrix transverse eofltiw.
Semiclassical quantum mechanics suggest operators @thisvith = 1/2.The

problem with such operators arises from the fact that whesidering the fundamental
matriceslap = JaJp fOr two successive trajectory segmeatndb, the corresponding

eigenvalues are in generabt multiplicative, Aap # AaAp (Unlessa, b are iterates
of the same prime cyclp, s0J,Jp = J{,ﬁ”“). Consequently, this evolution operator
is not multiplicative along the trajectory. The theoremguiee that the evolution
be represented as a matrix in an appropriate polynomiasbasd thus cannot
be applied to non-multiplicative kernels, i.e., kernelatttio not satisfy the semi-
group propertyl! £t = £0+

Property 2 is violated by the dtent map (see figurgl.2(a))
f)=al - 1-2x), 1/2<a<1l.

All cycle eigenvalues are hyperbolic, but in general théaai pointx; = 1/2 is
not a pre-periodic point, so there is no finite Markov pastitand the symbolic
dynamics does not have a finite grammar (see secb for definitions). In
practice, this means that while the leading eigenvalug ofight be computable,
the rest of the spectrum is very hard to control; as the paemds varied, the
non-leading zeros of the spectral determinant move wilbiyud

Property 3 is violated by the map (see figare2 (b))

_ [ x+2¢® | xelg=10,3]
f(x)‘{z-zx . xely=[3,1] -

Here the interval [01] has a Markov partition into two subintervdlsandl,, and
f is monotone on each. However, the fixed poinkat 0 has marginal stability

Ao = 1, and violates condition 3. This type of map is called “imétent” and
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Actually, property 4 is quite restrictive, but we need itlirepresent approach,
so that the Banach space of analytic functions in a disk isgoved by the Perron-
Frobenius operator.

In attempting to generalize the results, we encounter abpenblems. First,
in higher dimensions life is not as simple. Multi-dimensibresidue calculus is
at our disposal but in general requires that we find poly-dos@irect product
of domains in each coordinate) and this need not be the casen8, and perhaps
somewhat surprisingly, the ‘counting of periodic orbite2pents a diicult problem.
For example, instead of the Bernoulli shift consider theldiog map of the circle,
X — 2x mod 1,x € R/Z. Compared to the shift on the interval, [J the only
difference is that the endpoints 0 and 1 are now glued togetherauBe these
endpoints are fixed points of the map, the number of cyclesrgjthn decreases
by 1. The determinant becomes:

n_
det(1-z£) = exp(— > § ;n — i) =1-2 (21.25)
n=1

The valuez = 1 still comes from the constant eigenfunction, but the Beliho
polynomials no longer contribute to the spectrum (as theyat periodic). Proofs
of these facts, however, argfiftult if one sticks to the space of analytic functions.

Third, our Cauchy formulaa priori work only when considering purely expanding

maps. When stable and unstable directions co-exist we laesort to stranger
function spaces, as shown in the next section.

21.5 Hyperbolic maps

| can give you a definion of a Banach space, but | do not
know what that means.
—Federico BonnettdBanach space
(H.H. Rugh)

Proceeding to hyperbolic systems, one faces the followgggox: If f is an
area-preserving hyperbolic and real-analytic map of, fangple, a 2-dimensional
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torus then the Perron-Frobenius operator is unitary ongheesofL? functions,
and its spectrum is confined to the unit circle. On the otherdhavhen we
compute determinants we find eigenvalues scattered arogigkithe unit disk.
Thinking back to the Bernoulli shift exampl&l.5 one would like to imagine
these eigenvalues as popping up from tRespectrum by shrinking the function
space. Shrinking the space, however, can only make.thersp‘es.malyler S0 lIhIS Figue 213:  For an analytic hyperbolic map.
is obviously not what happens. Instead one needs to inteodumixed’ function specifying the contracting coordinate, at the initial
space where in the unstable direction one resorts to aodlytctions, as before, rectangle and the expanding coordinatat the image
but in the stable direction one instead considers a ‘dualespd distributions on rectangle defines a unique trajectory between the two
analytic functions. Such a space is neither included in noiudesL? and we rectangles. In particulary, andz, (not shown) are
have thus resolved the paradox. However, it still remainset@een how traces uniquely specified.
and determinants are calculated.
Analytic hyperbolic propertyEither f(M;) N Int(M;) = 0, or for each pair

The linear hyperpqlic fixed point exampRi.6i§ somewhat misleading, as wh € CI(DP), 2 € CI(D?) there exist unique analytic functions of, z: w, =
we have made_ exphmt use of a map that acts mdep_endentr}gaime stable Wy(Wh,z,) € INt(DY), zn = zn(Wh.2,) € Int(D), such thatf (wh, wy) = (2n, 2,).
and unstable directions. For a more general hyperbolic tiepe is no way to Furth i ! 1h and I th IJ" d h fioure 1
implement such direct product structure, and the wholeragni falls apart. Her urthermore, i, € Ij andz, € 1y, thenw, € 17 andz € 1 (see figure21.3.
comes an idea; use the analyticity of the map to rewrite theRd-robenius oper-
ator acting as follows (where denotes the sign of the derivative in the unstable

In plain English, this means for the iterated map that onkaoes the coordinates
Zy, 2, at timen by the contracting pai, wy,, wherew, is the contracting coordinate

direction): at timen + 1 for the ‘partial’ inverse map.
Ih _ o h(wg, wy) dwy dw, 2196 In two dimensions the operator i21.26 acts on functions analytic outside
(21.22) = (21 — fo(wr, Wo)(To(Wy, W) — 25) 271 27 ° (21.26) D! in the horizontal direction (and tending to zero at infinigd insideDY in

the vertical direction. The contour integrals are pregisébng the boundaries of

Here the functionp should belong to a space of functions analytic respectively these domains.

outsidea disk andinside a disk in the first and the second coordinates; with
the additional property that the function decays to zerohasfirst coordinate
tends to infinity. The contour integrals are along the bodedeof these disks.

It is an exercise in multi-dimensional residue calculusedfy that for the above
linear example this expression reduces2b.§). Such operators form the building
blocks in the calculation of traces and determinants. Ongpoave the following:

A map f satisfying the aba
theorem states that the assoc
formula (16.8) is correct.

perbolicand the
and that the trace

Examples of analytic hyperbolic maps are provided by snmeallydic perturbations
of the cat map, the 3-disk repeller, and the 2-d baker's map.
Theorem: The spectral determinant for 2-d hyperbolic analytic maperitire. [remark 2L.8]
The proof, apart from the Markov property that is the samepashie purely 21.6 The physics of eigenvalues and eigenfunctions
expanding case, relies heavily on the analyticity of the malpe explicit construction
of the function space. The idea is to view the hyperbolicgyaaross product of a
contracting map in forward time and another contracting magpackward time.
In this case the Markov property introduced above has to aboehted a bit.
Instead of dividing the state space into intervals, onedéwit into rectangles. The
rectangles should be viewed as a direct product of intei(galg horizontal and
vertical), such that the forward map is contracting in, fearaple, the horizontal
direction, while the inverse map is contracting in the weaitdirection. For Axiom
A systems (see remagki.8 one may choose coordinate axes close to the gtaisigble
manifolds of the map. With the state space divided MtectanglesM, Mo, ..., My},
M; = I'x1¥ one needs a complex extensibfix DY, with which the hyperbolicity
condition (which simultaneously guarantees the Markoyerty) can be formulated
as follows:

§
J We appreciate by now that any honest attempt to look at thetrsppe
properties of the Perron-Frobenius operator involves hnaathematics, but the
effort is rewarded by the fact that we are finally able to conthal &nalyticity
properties of dynamical zeta functions and spectral detemts, and thus substantiate
the claim that these objects provide a powerful and welkétd perturbation
theory.

Often (see chaptet5) physically important part of the spectrum is just the
leading eigenvalue, which gives us the escape rate fromedleeor, for a general
evolution operator, formulas for expectation values oeotables and their higher
moments. Also the eigenfunction associated to the leadggealue has a physical
interpretation (see chapté#): it is the density of the natural measures, with
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singular measures ruled out by the proper choice of the inmapace. This
conclusion is in accord with the generalized Perron-Fratsetheorem for evolution
operators. In the finite dimensional setting, such a theaseformulated as
follows:

[remark 21.7]

e Perron-Frobenius theorem: Let Lj; be a nonnegative matrix, such that
somen exists for which [");; > 0 Vi, j: then

1. The maximal modulus eigenvalue is non-degenerate m@bpasitive

2. The corresponding eigenvector (defined up to a constast)énnegative
coordinates

We may ask what physical information is contained in eigkrag beyond the
leading one: suppose that we have a probability conseryiatg®s (so that the
dominant eigenvalue is 1), for which the essential specadius satisfies 0<
pess< 0 < 1 on some Banach spage Denote byP the projection corresponding
to the part of the spectrum inside a disk of radiudVe denote byly, A7...,Am
the eigenvalues outside of this disk, ordered by the sizéeaf tibsolute value,
with 11 = 1. Then we have the following decomposition

M
Ly = Z/lilﬁi Livie + PLyp (21.27)

i=1

whenL; are (finite) matrices in Jordan canomical forbg & 0 is a [1x 1] matrix,
asAg is simple, due to the Perron-Frobenius theorem), whege#sa row vector
whose elements form a basis on the eigenspace correspotedingandy;” is
a column vector of elements @& (the dual space of linear functionals o8y
spanning the eigenspace gf corresponding tol. For iterates of the Perron-
Frobenius operator2(.27 becomes

M
Ll = 3 Auillyie + PL. (21.28)

i=1

If we now consider, for example, correlation between ihiti@volvedn steps and
final &,

@L) = fM dye(y) (L'0) ) = fM dw(eo fYWew),  (21.29)

it follows that
L

L) = Bonle,9) + Y A€ ¢) + 0", (21.30)
i=2
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where
We.p) = fM dyciLlvie.

The eigenvalues beyond the leading one provide two piecasafmation:
they rule the convergence of expressions containing higrepoof the evolution
operator to leading order (th&; contribution). Moreover ifwi(€,¢) = 0
then @1.29 defines a correlation function: as each term 21.80Q vanishes
exponentially in then — oo limit, the eigenvaluesly, ..., Ay determine the
exponential decay of correlations for our dynamical systérhe prefactorsw
depend on the choice of functions, whereas the exponergydrates (given
by logarithms oft;) do not: the correlation spectrum is thusiiversalproperty
of the dynamics (once we fix the overall functional space oiclwkhe Perron-
Frobenius operator acts).

[exercise 21.7]

Example 21.9 Bernoulli shift eigenfunctions: Let us revisit the Bernoulli shift
example (21.6) on the space of analytic functions on a disk: apart from the origin
we have only simple eigenvalues Ay = 2% k =0,1,... The eigenvalue 1o = 1

corresponds to probability conservation: the corresponding eigenfunction By(x) = 1
indicates that the natural measure has a constant density over the unit interval. If we
now take any analytic function n(x) with zero average (with respect to the Lebesgue
measure), it follows that wi(n,n) = 0, and from (21.30) the asymptotic decay of the
correlation function is (unless also w1(n,n) = 0)

C,.,(n) ~ exp(nlog2). (21.31)

Thus, —logA; gives the exponential decay rate of correlations (with a prefactor that
depends on the choice of the function). Actually the Bernoulli shift case may be
treated exactly, as for analytic functions we can employ the Euler-MacLaurin summation
formula

" = [ Cdwg) + 3, DO ) (21.32)
m=1 :

As we are considering functions with zero average, we have from (21.29) and the fact
that Bernoulli polynomials are eigenvectors of the Perron-Frobenius operator that

m!

sl —m\n(,,(m) _ (m 1
C,(n) = Z M ‘L‘ dzn(2)Bm(2) .
m=1

The decomposition (21.32) is also useful in realizing that the linear functionals y; are
singular objects: if we write it as

n@ = ), Bu@unlnl,
m=0
we see that these functionals are of the form

1
Uil = fo AW W)
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essential spectrum

Figure 21.4: Spectrum of the Perron-Frobenius oper ~ SP gctral radius jsolated eigénvalue
ator acting on the space @*** Holder-continuous
functions: onlyk isolated eigenvalues remain betwee
the spectral radius, and the essential spectral rad
which bounds the “essential,” continuous spectrum.

where

—1)-t )
¥i(w) = % (69 Dw-1) - 6Vw)) , (21.33)
wheni > 1 and Wo(w) = 1. This representation is only meaningful when the function &

is analytic in neighborhoods of w,w — 1.

21.7 Troubles ahead

The above discussion confirms that for a series of examplesmfasing generality

formal manipulations with traces and determinants aréiedt the Perron-Frobenius
operator has isolated eigenvalues, the trace formulasxpiieidy verified, and

the spectral determinant is an entire function whose zeyieds the eigenvalues.
Real life is harder, as we may appreciate through the fofigwzionsiderations:

e Our discussion tacitly assumed something that is phygiealiirely reasonable:
our evolution operator is acting on the space of analytictions, i.e., we
are allowed to represent the initial densit{x) by its Taylor expansions in
the neighborhoods of periodic points.  This is however famfrbeing
the only possible choice: mathematicians often work with flnction
spaceCk*® i.e., the space of times diferentiable functions whoséth
derivatives are Holder continuous with an exponert @ < 1: then every
yT with Ren > k is an eigenfunction of the Perron-Frobenius operator and
we have

[exercise 21.1]

1

1 =
Ly IAIAT

y7, neC.

This spectrum dfers markedly from the analytic case: only a small number
of isolated eigenvalues remain, enclosed between therapeatiius and a
smaller disk of radius AA[<*1, see figure21.4 In literature the radius of
this disk is called thessential spectral radius

In sect.21.4we discussed this point further, with the aid of a less tfivia
1-dimensional example. The physical point of view is compatary to
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the standard setting of ergodic theory, where many chaotipegties of a
dynamical system are encoded by the presencecoh&nuousspectrum,
used to prove asymptotic decay of correlations in the spadé square-

integrable functions. )
[exercise 21.2]

A deceptively innocent assumption is hidden beneath muatiwths discussed
so far: that 21.1) maps a given function space into itself. Tésgpanding
property of the map guarantees that: fifx) is smooth in a domairD
then f(x/A) is smooth on darger domain, providedA| > 1. For higher-
dimensional hyperbolic flows this is not the case, and, aswdrssect21.5
extensions of the results obtained for expandirgmaps are highly nontrivial.

Itis not at all clear that the above analysis of a simple arath, one fixed
point repeller can be extended to dynamical systems withtdCaets of
periodic points: we showed this in se2fl..4

Résum é

Examples of analytic eigenfunctions fordlmaps are seductive, and make the
problem of evaluating ergodic averages appear easy; jesfrate over the desired
observable weighted by the natural measure, right? No,rigenatural measure
sits on a fractal set and is singular everywhere. The poitttisfbook is that you
neverneed to construct the natural measure, cycle expansiohdanthat job.

A theory of evaluation of dynamical averages by means ofetfacmulas
and spectral determinants requires a deep understandithgiofnalyticity and
convergence.

We work here through a series of examples:

1. exact spectrum (but for a single fixed point of a linear map)
2. exact spectrum for a locally analytic map, matrix repnéston

3. rigorous proof of existence of discrete spectrum fak#perbolic maps

In the case of especially well-behaved “Axiofti systems, where both the
symbolic dynamics and hyperbolicity are under control,sitpbssible to treat
traces and determinants in a rigorous fashion, and strandtseabout the analyticity
properties of dynamical zeta functions and spectral detemts outlined above
follow.

Most systems of interest armt of the “axiom A’ category; they are neither
purely hyperbolic nor (as we have seen in chapiérand11) do they have finite
grammar. The importance of symbolic dynamics is generatigsly unappreciated;
the crucial ingredient for nice analyticity properties efa functions is the existence
of a finite grammar (coupled with uniform hyperbolicity).

converg - 15aug2006.tex



CHAPTER 21. WHY DOES IT WORK? 368

The dynamical systems which areally interesting - for example, smooth
bounded Hamiltonian potentials - are presumably nevey ftilaotic, and the
central question remains: How do we attack this problem ilystesnatic and
controllable fashion?
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Theorem: Conjecture 3 with technical hypothesis is true
in a lot of cases.

— M. Shub

Commentary

Remark 21.1 Surveys of rigorous theory. ~ We recommend the references listed in
remarkl.1for anintroduction to the mathematical literature on thisjsct. For a physicist,
Driebe’s monographd4] might be the most accessible introduction into matheratic
discussed briefly in this chapter. There are a number of wevief the mathematical
approach to dynamical zeta functions and spectral detamtsn with pointers to the
original references, such as refs, P]. An alternative approach to spectral properties
of the Perron-Frobenius operator is given in réf. [

Ergodic theory, as presented by Sinai][and others, tempts one to describe the
densities on which the evolution operator acts in terms thfeeiintegrable or square-
integrable functions. For our purposes, as we have alrezgly, $his space is not suitable.
An introduction to ergodic theory is given by Sinai, Korrdednd Fomin [5]; more
advanced old-fashioned presentations are Walters gnd Denker, Grillenberger and
Sigmund [L6]; and a more formal one is given by Petersai][

W. Tucker P8, 29, 30] has proven rigorously via interval arithmetic that the ¢tz
attractor is strange for the original parameters, and hasgdtable periodic orbit for the
slightly different parameters.

Remark 21.2 Fredholm theory. Our brief summary of Fredholm theory is based on
the exposition of ref.4]. A technical introduction of the theory from an operatomtof
view is given in ref. f]. The theory is presented in a more general form in i&f. [

Remark 21.3 Bernoulli shift. ~ For a more detailed discussion, consult chapter 3 of
ref. [34]. The extension of Fredholm theory to the case or Bernohlfi ®n C<+ (in
which the Perron-Frobenius operatonatcompact — technically it is onlguasi-compact
That is, the essential spectral radius is strictly smallantthe spectral radius) has been
given by Ruelle []: a concise and readable statement of the results is ceuatairref. ).

Remark 21.4 Hyperbolic dynamics. When dealing with hyperbolic systems one might
try to reduce to the expanding case by projecting the dyrmahing the unstable directions.
As mentioned in the text this can be quite involved techhjcab such unstable foliations
are not characterized by strong smoothness propertiesugbran approach, see reil.[

Remark 21.5 Spectral determinants for smooth flows. ~ The theorem on pag@62
also applies to hyperbolic analytic mapgiimensions and smooth hyperbolic analytic
flows in (d + 1) dimensions, provided that the flow can be reduced to apiseanalytic
map by a suspension on a Poincaré section, complementedimadytic “ceiling” function
(3.5) that accounts for a variation in the section return times.example, if we take as the
ceiling functiong(x) = €™, whereT (x) is the next Poincaré section time for a trajectory
staring atx, we reproduce the flow spectral determinatit.(3. Proofs are beyond the
scope of this chapter.
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Remark 21.6 Explicit diagonalization. For 1drepellers a diagonalization of an explicit
truncated-m, matrix evaluated in a judiciously chosen basis may yieldymaare eigenvalues
than a cycle expansion (see refs)[11]). The reasons why one persists in using periodic
orbit theory are partially aesthetic and partially pragmaiThe explicit calculation of
Lnn demands an explicit choice of a basis and is thus non-invaii contrast to cycle
expansions which utilize only the invariant information tbe flow. In addition, we
usually do not know how to construtt,, for a realistic high-dimensional flow, such
as the hyperbolic 3-disk game of pinball flow of secB whereas periodic orbit theory

is true in higher dimensions and straightforward to apply.

Remark 21.7 Perron-Frobenius theorem. A proof of the Perron-Frobenius theorem
may be found in ref.]7]. For positive transfer operators, this theorem has berargéized
by Ruelle [L3].

Remark 21.8 Axiom A systems. The proofs in sect21.5follow the thesis work
of H.H. Rugh P, 18, 19. For a mathematical introduction to the subject, condut t
excellent review by V. Baladi 1]. It would take us too far afield to give and explain
the definition of Axiom A systems (see ref@.3 24]). Axiom A implies, however, the
existence of a Markov partition of the state space from whith properties 2 and 3
assumed on pagis0follow.

Remark 21.9 Exponential mixing speed of the Bernoulli shift. We see fromZ1.3)
that for the Bernoulli shift the exponential decay rate ofretations coincides with the
Lyapunov exponent: while such an identity holds for a nuntdfesystems, it is by no
means a general result, and there exist explicit counterpbes.

Remark 21.10 Left eigenfunctions. We shall never use an explicit form of left eigenfunctions,
corresponding to highly singular kernels lik&l(33. Many details have been elaborated
in a number of papers, such as refl], with a daring physical interpretation.

Remark 21.11 Ulam’s idea. The approximation of Perron-Frobenius operator defined
by (14.14 has been shown to reproduce the spectrum for expanding, raaps finer
and finer Markov partitions are usedl]. The subtle point of choosing a state space
partitioning for a “generic case” is discussed in réf][
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Exercises

21.1. What space does/. act on? Show that 21.9
is a complete basis on the space of analytic functions
on a disk (and thus that we found tkempleteset of
eigenvalues).

21.2. What space doesL acton? What can be said about
the spectrum of41.1) on L*[0,1]? Compare the result
with figure21.4
21.3. Euler formula.  Derive the Euler formulall1.5 21.5.

)

0 uﬁ%
e lul2e%.
2fao aw
21.4. 2-d product expansion*. We conjecture that the
expansion corresponding t8X.39 is in this case 21.7.
= N Fi(u)
14ty = k
[Jared™ = ) a—ra—wpa-o
1 2u 5
SRR AR cpT T pTaTh
References

W(1+4u+u?)
A ur- @ - B

Fk(u) is a polynomial inu, and the cofficients fall df
asymptotically asC, ~ u™’. Verify; if you have
proof to all orders, e-mail it to the authors. (See
solution21.3.

Bernoulli shift on L spaces. Check that the fami

¢ 2u %1321) belongs toL*([0,1]). What can be said ab
1+ tu 1+ —+ ————— + ial- spectral radius @A([0,1])? A useft
LJeesd = o oty o

Cauchy inte443. Rework all complex analysis stt
used in the Bernoulli shift example on analytic funct
on a disk.

Escape rate. Consider the escape rate from a str
repeller: find a choice of trial functions and¢ suc
that 21.29 gives the fraction on particles surviving a
n iterations, if their initial density distribution iso(x)
Discuss the behavior of such an expression in the
time limit.
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Chapter 22

Thermodynamic formalism

Being Hungarian is not dhicient. You also must be
talented.

— Zsa Zsa Gabor

(G. Vattay)

N THE PRECEDING CHAPTERS We characterized chaotic systems via global quantities
I such as averages. It turned out that these are closely defateery fine
details of the dynamics like stabilities and time periodsndfvidual periodic
orbits. In statistical mechanics a similar duality exis#acroscopic systems are
characterized with thermodynamic quantities (presseraperature and chemical
potential) which are averages over fine details of the systalled microstates.
One of the greatest achievements of the theory of dynamystéis was when
in the sixties and seventies Bowen, Ruelle and Sinai madanhkgy between
these two subjects explicit. Later this “Thermodynamicrialism” of dynamical

systems became widely used making it possible to calcuéateus fractal dimensions.

We sketch the main ideas of this theory and show how periathit theory helps
to carry out calculations.

22.1 Renyi entropies

As we have already seen trajectories in a dynamical systenbhea@haracterized
by their symbolic sequences from a generating Markov pamtitWe can locate
the set of starting pointdss, s, Of trajectories whose symbol sequence starts
with a given set oh symbolss; s,...s,. We can associate manyfigirent quantities

to these sets. There are geometric measures such as theews(sss;...s,), the
areaA(s1%...sy) or the lengthl(s;s,...sy) of this set. Or in general we can have
some measurg(Mss,.s,) = u(S1S...Sy) of this set. As we have seen iBQ.10

the most important is the natural measure, which is the fibtyathat an ergodic
trajectory visits the sgt(s1%...1) = P(s1$...S). The natural measure is additive.

374
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Summed up for all possible symbol sequences of lengtlgives the measure of
the whole state space:

D M) =1 (22.1)
$19..-

expresses probability conservation. Also, summing uptferlast symbol we get
the measure of a one step shorter sequence

D i(s19..-80) = p($182...50-2).
S

As we increase the lengt)(of the sequence the measure associated with it
decreases typically with an exponential rate. It is therfulde introduce the
exponents

A$1%..5) =~ 10g(515..%). (22.2)

To get full information on the distribution of the natural aseire in the symbolic
space we can study the distribution of exponents. Let thebeuarof symbol
sequences of lengtiwith exponents betweehand + d1 be given byN,(2)dA.
For largen the number of such sequences increases exponentiallyaféhefithis
exponential growth can be characterizedgfy) such that

Nn(4) ~ exp(g(a)) .

The knowledge of the distributioN(2) or its essential pag(1) fully characterizes
the microscopic structure of our dynamical system.

As a natural next step we would like to calculate this distitm. However it
is very time consuming to calculate the distribution diletly making statistics
for millions of symbolic sequences. Instead, we introduggileary quantities
which are easier to calculate and to handle. These are gaiéition sums

Z@) = D W(Ensn.s) (22.3)

$192..-5

as they are obviously motivated by Gibbs type partition safisgatistical mechanics.
The parameteg plays the role of inverse temperaturgkdT and E(s;S,...Sn) =
—logu(sls,...sn) is the energy associated with the microstate labeles; By..s,

We are tempted also to introduce something analogous watlrtee energy. In
dynamical systems this is called the Rényi entrofjydefined by the growth rate
of the partition sum

11
= lim = —— B
Kg = nlm ni-p Iog[SlS;Snu (3152...51)]. (22.4)
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In the special casg — 1 we get Kolmogorov entropy

1
Ky = lim = 515223. (5155 10g 1(91%,... ).

while for g = 0 we recover the topological entropy

.1
htop = Ko = r!mo - logN(n),

whereN(n) is the number of existing lengtinsequences. To connect the partition
sums with the distribution of the exponents, we can writertfas averages over
the exponents

Z:(6) = f AN, (1) exp(-na).

where we used the definitior2Z.2). For largen we can replacéNy(1) with its
asymptotic form

Z,(6) ~ f dlexpOg() exp(-nig).

For largenthis integral is dominated by contributions from thasevhich maximize
the exponent

g(4) - 8.
The exponent is maximal when the derivative of the exponanishes
g() =5 (22.5)
From this equation we can determingg). Finally the partition sum is
Zn(B) ~ exp(lg(1"(8)) — 4" (B)B)).
Using the definitionZ2.4) we can now connect the Rényi entropies g
(B—1Kg = 1'(B)B - g(1"(B)). (22.6)

Equations 22.5 and @2.6) define the Legendre transform gft). This equation
is analogous with the thermodynamic equation connectiegetitropy and the
free energy. As we know from thermodynamics we can invertliegendre
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transform. In our case we can exprefd) from the Rényi entropies via the
Legendre transformation

9(4) = 48°(A) = (6"(4) — DKpr(. (22.7)
where nows*(1) can be determined from

d
ds*

[(B" = DKg] = A (22.8)
Obviously, if we can determine the Rényi entropies we caaver the distribution
of probabilities from £2.7) and ¢2.9.

The periodic orbit calculation of the Rényi entropies candarried out by

approximating the natural measure corresponding to a sysgsuence by the
expressionZ0.10

ev

H(S, s S) ¥ ——. (22.9)
Asis,. 5l
The partition sumZ%2.3 now reads
vy
ZB) = Yy —, 22.10
)~ ) (22.10)

where the summation goes for periodic orbits of lengthWe can define the
characteristic function

Qz.p) = eXp(— D %Zn(ﬁ)]- (22.12)

According to 2.4) for largen the partition sum behaves as

Zn(B) ~ e "D (22.12)

Substituting this intoZ2.11) we can see that the leading zero of the characteristic

function is
2(p) = V.

On the other hand substituting the periodic orbit approiona22.10 into (22.11)
and introducing prime and repeated periodic orbits as wseaet

2" e
Q = N
(z.p) exp[ pzr TIALP
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Figure 22.1:

We can see that the characteristic function is the same azetaefunction we
introduced for Lyapunov exponents (14 except we haved” instead ok Then
we can conclude that the Rényi entropies can be expresdédtive pressure
function directly as

P@®) = (B - 1)Kg + By, (22.13)

since the leading zero of the zeta function is the pressure Renyi entropies,
hence the distribution of the expone(@) as well, can be calculated via finding
the leading eigenvalue of the operatGr.4).

From 2.13 we can get all the important quantities of the thermodymami
formalism. ForB = 0 we get the topological entropy

P(0) = —Ko = ~htop. (22.14)
ForpB = 1 we get the escape rate
P1) =7y. (22.15)

Taking the derivative 0f42.13 in 8 = 1 we get Pesin’s formulal] connecting
Kolmogorov entropy and the Lyapunov exponent

P(1)=1=Ky+7. (22.16)
[exercise 22.1]

It is important to note that, as always, these formulas aretlgtvalid for nice
hyperbolic systems only. At the end of this Chapter we disdhe important
problems we are facing in non-hyperbolic cases.

On figure22.2we show a typical pressure ag@) curve computed for the two
scale tent map of Exercis#®2.4 We have to mention, that all typical hyperbolic
dynamical system produces a similar parabola like curvéhobigh this is somewhat
boring we can interpret it like a sign of a high level of unsality: The exponents
A have a sharp distribution around the most probable value riibst probable
value is1 = P’(0) andg(1) = hyp is the topological entropy. The average value
in closed systems is whegg?) touches the diagonalt = g(1) and 1= ¢/ (1).

Next, we are looking at the distribution of trajectories éalrspace.
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Figure 22.2: g(1) and P(B) for the map of
exercise22.4ata = 3 andb = 3/2. See solutiorS

for details. T : B

22.2 Fractal dimensions

By looking at the repeller we can recognize an interestiraiapstructure. In the
3-disk case the starting points of trajectories not leatiregsystem after the first
bounce form two strips. Then these strips are subdividedantinfinite hierarchy
of substrings as we follow trajectories which do not leawe giistem after more
and more bounces. The finer strips are similar to strips orger&cale. Objects
with such self similar properties are callgdctals

We can characterize fractals via their local scaling prioger The first step is
to draw a uniform grid on the surface of section. We can lookagibus measures
in the square boxes of the grid. The most interesting measagain the natural
measure located in the box. By decreasing the size of theegtid measure in
a given box will decrease. If the distribution of the measarsmooth then we
expect that the measure of thte box is proportional with the dimension of the
section

Hi ~ .

If the measure is distributed on a hairy object like the repele can observe
unusual scaling behavior of type

pi ~ €M,

whereq; is the local “dimension” or Holder exponent of the the oljeks « is not
necessarily an integer here we are dealing with objectsfreititional dimensions.
We can study the distribution of the measure on the surfaseaifon by looking
at the distribution of these local exponents. We can define

_ logui

aj = 5
" loge

the local Holder exponent and then we can count how manyeoh tare between
a anda + da. This is Ne(e)da. Again, in smooth objects this function scales
simply with the dimension of the system

N, ((Y) ~ €—d >
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while for hairy objects we expect andependent scaling exponent
Ne(@) ~ e '@,

f(@) can be interpreted] as the dimension of the points on the surface of section
with scaling exponent. We can calculatd (o) with the help of partition sums as
we did forg(1) in the previous section. First, we define

2@ = ) ui (22.17)

Then we would like to determine the asymptotic behavior ef plartition sum
characterized by the(q) exponent

Z(q) ~ ™.
The partition sum can be written in terms of the distributionction ofa-s
Z.(q) = fdaNe(a)eq”.

Using the asymptotic form of the distribution we get

Z.(q) ~ f Aot 1@

As e goes to zero the integral is dominated by the term maximittiegexponent.
Thisa* can be determined from the equation

d . .
F(qd - f(@")) =0,
(o4
leading to
q=f'(").
Finally we can read fd the scaling exponent of the partition sum
7(q) = @"q- f(a).

In a uniform fractal characterized by a single dimensiorhbetand f(«)
collapse tar = f(a) = D. The scaling exponent then has the farfg) = (q—1)D.
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In case of non uniform fractals we can introduce generaldietensions §] Dqy
via the definition

Dq = 7(q)/(q - 1).

Some of these dimensions have special namesq Fd the partition sum42.17)
counts the number of non empty boXds Consequently

log N,

Do =-Ilim
0 0 loge

B

is called the box counting dimension. Fpe 1 the dimension can be determined
as the limit of the formulas foq — 1 leading to

D1 = mZm log i/ loge.

This is the scaling exponent of the Shannon informatioropytf1 0] of the distribution,
hence its name imformation dimension

Using equisize grids is impractical in most of the applioas. Instead, we
can rewrite 22.17) into the more convenient form

q
H
Z @ 1. (22.18)

If we cover theith branch of the fractal with a grid of sizginstead ofe we can
use the relation]

q
Hi
Z @ 1, (22.19)

the non-uniform grid generalization @2.18 Next we show how can we use the
periodic orbit formalism to calculate fractal dimension&/e have already seen
that the width of the strips of the repeller can be approxauatith the stabilities
of the periodic orbits placed within them

Then using this relation and the periodic orbit expressibthe natural measure
we can write 22.19 into the form

eqyn
Z‘ g L (22.20)

thermodyn - 13jun2008.tex



CHAPTER 22. THERMODYNAMIC FORMALISM 382

where the summation goes for periodic orbits of lengtfhe sum for stabilities
can be expressed with the pressure function again

3 ;@ - &P
AT '

i
and @2.20 can be written as

g nPE-(@) _ 1
for largen. Finally we get an implicit formula for the dimensions
P(a-(d-1)Dq) = qy- (22.21)

Solving this equation directly gives us the partial dimensiof the multifractal
repeller along the stable direction. We can see again tleaptéssure function
alone contains all the relevant information. Setting O in (22.21) we can prove
that the zero of the pressure function is the box-countingedision of the repeller

P(Do) = 0.
Taking the derivative 0f32.21) in q = 1 we get
P'(1)(1-D1) = .

This way we can express the information dimension with tleajes rate and the
Lyapunov exponent

Dy =1-y/A. (22.22)

If the system is boundy(= 0) the information dimension and all other dimensions
areDq = 1. Also sinceD;0 is positive 22.22) proves that the Lyapunov exponent
must be larger than the escape rate y in general.

Résum é

In this chapter we have shown that thermodynamic quanttiesvarious fractal
dimensions can be expressed in terms of the pressure fanclibie pressure
function is the leading eigenvalue of the operator whichegetes the Lyapunov
exponent. In the Lyapunov cagés just an auxiliary variable. In thermodynamics
it plays an essential role. The good news of the chapter ighkalistribution of
locally fluctuating exponents should not be computed viaintaktatistics. We
can use cyclist formulas for determining the pressure. Therpressure can be

found using short cycles curvatures. Here the head reaches the tail of the snake.

We just argued that the statistics of long trajectories dadg(1) andP(g) can be
calculated from short cycles. To use this intimate relatietween long and short
trajectories fectively is still a research level problem.
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EXERCISES 383
Commentary

Remark 22.1 Mild phase transition. In non-hyperbolic systems the formulas derived
in this chapter should be modified. As we mentione@@nlin non-hyperbolic systems
the periodic orbit expression of the measure can be

o =€"/|Aol’,

wheres can difer from 1. Usually it is 12. For suficiently negatives the corresponding
term 1/|Aof’ can dominateZ2.10Q while in (22.3 €"/|Aq|’ plays no dominant role. In
this case the pressure as a functiog afin have a kink at the critical poift= 5. where
BeloglAol = (Bc — 1)Kg, + Bcy. ForpB < . the pressure and the Rényi entropiebei

P@B) # (B—1)Kg + By

This phenomena is called phase transition. This is howevea nery deep problem. We
can fix the relation between pressure and the entropies kgcieg 1/|Aq| with 1/|Aol® in
(22.10.

Remark 22.2 Hard phase transition.  The really deep trouble of thermodynamics is
caused by intermittency. In that case we have periodic omith [Ag] — 1 asn —

o0, Then forg > 1 the contribution of these orbits dominate bo#2.(.Q and @2.3.
Consequently the partition sum scaleZg®) — 1 and both the pressure and the entropies
are zero. In this case quantities connected With 1 make sense only. These are for
example the topological entropy, Kolmogorov entropy, Liyapv exponent, escape rate,
Do andD;. This phase transition cannot be fixed. It is probably fasay that quantities
which depend on this phase transition are only of mathemlatiterest and not very
useful for characterization of realistic dynamical system

Exercises

22.1. Thermodynamics in higher dimensions. Define where the summation goes for the positi¥é-s only
Lyapunov exponents as the time averages of the eigen-  Hint: Use thed-dimensional generalization c22.9

exponents of the fundamental matdix

1
u® = lim < log|AL(xo)l

as a generalization ol6.39.
Show that ind dimensions Pesin’s formula is

d
R
k=1
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(22.23)

(22.24)

22.2.

wp =€/ [ | A,
k

where the product goes for the expanding eigenvall
the fundamental matrix gf-cycle. (G. Vatta)

Stadium billiard Kolmogorov entropy.

(Continuation of exercis&.4) Takea = 1.6 an
d = 1 in the stadium billiard figure.1, and estima
the Lyapunov exponent by averaging over a very
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trajectory. Biham and Kvalelf] estimate the discrete 22.4. Two scale map
time Lyapunov tod ~ 1.0 + .1, the continuous time
Lyapunov tod ~ 0.43 + .02, the topological entropy
(for their symbolic dynamics) ~ 1.15+ .03.

Compute all those quantities -
dimensions, escape rate, entropies, etc. - for the repellel
of the one dimensional map

f(x):{ l+ax if x<O0,

1-bx if x>0 (22.25)

22.3. Entropy of rugged-edge billiards. Take a semi-circle
of diametere and replace the sides of a unit square by
[1/&] semi-circle arcs. wherea andb are larger than 2. Compute the fractal
dimension, plot the pressure and compute fi{e)

spectrum of singularities.

22.5. Four scale map Compute the Rényi entropies ag@l)
for the four scale map

arx |
f(x) = glz-;k_))(éx—b/al)/(b_b/al))*'b :
1

(a) Is the billiard ergodic as — 0? (1= b)((x~b-b/ag)/(1~b-b/ag)) + b

(b) (hard) Show that the entropy of the billiard mapis ~ Hint: Calculate the pressure function and u22.(3.

22.6. Transfer matrix Take the unimodal mag(x) =

sin(rx) of the intervall = [0,1]. Calculate the

four preimages of the intervalyy = [0,1/2] and

11 = [1/2,1]. Extrapolatef(x) with piecewise linear

functions on these intervals. Finai, a, and b of

the previous exercise. Calculate the pressure function

of this linear extrapolation. Work out higher level

Ky — 2I_nL ] approximations by linearly extrapolating the map on the
7L 2"-th preimages of.

2
K1 — —=Ine+ const,
Ve

ase — 0. (Hint: do not write return maps.)

(c) (harder) Show that when the semi-circles of the
stadium billiard are far apart, sdy, the entropy
for the flow decays as
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Chapter 23

Intermittency

Sometimes They Come Back
—Stephen King

(R. Artuso, P. Dahlgvist, G. Tanner and P. Cvitanovic)

N THE THEORY Of chaotic dynamics developed so far we assumed that thet@rol
operators have discrete spedz@ z, 2, . . .} given by the zeros of

1Y@ = ()] [@-z2).
k

The assumption was based on the tacit premise that the dgmé&®@iverywhere
exponentially unstable. Real life is nothing like that tstspaces are generically
infinitely interwoven patterns of stable and unstable birav The stable (in

the case of Hamiltonian flows, integrable) orbits do not camitate with the
ergodic components of the phase space, and can be treatéabbigal methods.
In general, one is able to treat the dynamics near stablésabiwell as chaotic
components of the phase space dynamics well within a peridit approach.
Problems occur at the borderline between chaos and reguiamics where
marginally stable orbits and manifolds presenfidilties and still unresolved
challenges.

We shall use the simplest example of such behavior - integnay in 1-
dimensional maps - to illustratéfects of marginal stability. The main message
will be that spectra of evolution operators are no longecrei®, dynamical zeta
functions exhibit branch cuts of the form

Y@ =()+0-27C-).

and correlations decay no longer exponentially, but as ptaves.
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Figure 23.1: Typical phase space for an area-
preserving map with mixed phase space dynamic:
here the standard map fer= 1.2 .
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23.1 Intermittency everywhere

In many fluid dynamics experiments one observes transifionsregular behaviors
to behaviors where long time intervals of regular behavilanginar phases”) are
interrupted by fast irregular bursts. The closer the patamis to the onset of
such bursts, the longer are the intervals of regular behaVioe distributions of
laminar phase intervals are well described by power laws.

This phenomenon is calledtermittency and it is a very general aspect of
dynamics, a shadow cast by non-hyperbolic, marginallylststiate space regions.
Complete hyperbolicity assumed ifi§.5) is the exception rather than the rule,
and for almost any dynamical system of interest (dynamicsrinoth potentials,
billiards with smooth walls, the infinite horizon Lorentzsg&tc.) one encounters
mixed state spaces with islands of stability coexistinghwiyperbolic regions,
see figure23.1  Wherever stable islands are interspersed with chaotioneg
trajectories which come close to the stable islands can'ghagd’ for arbitrarily
long times. These intervals of regular motion are inteedgby irregular bursts
as the trajectory is re-injected into the chaotic part ofghase space. How the
trajectories are precisely ‘glued’ to the marginally séakegion is often hard to
describe. What coarsely looks like a border of an island wvitler magnification
dissolve into infinities of island chains of decreasing sibeoken tori and bifurcating
orbits, as illustrated in figur3.1

Intermittency is due to the existence of fixed points and eyaf marginal
stability (5.5), or (in studies of the onset of intermittency) to the proiymof a
nearly marginal complex or unstable orbits. In Hamiltorsgstems intermittency
goes hand in hand with the existence of (marginally stabl&MKori. In more
general settings, the existence of marginal or nearly matgirbits is due to
incomplete intersections of stable and unstable manifolds Smale horseshoe
type dynamics (see figure3.2). Following the stretching and folding of the
invariant manifolds in time one will inevitably find stateagge points at which
the stable and unstable manifolds are almost or exactlyet#iaj to each other,
implying non-exponential separation of nearby points atesspace or, in other
words, marginal stability. Under small parameter perttidos such neighborhoods
undergo tangent bifurcations - a stablestable pair of periodic orbits is destroyed
or created by coalescing into a marginal orbit, so the pinitich we shall
encounter in chapterl, and the intermittency discussed here are two sides of the
same coin. [section 11.5]
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Figure 23.2: A complete binary repeller with a \ | , ,
marginal fixed point. X

Xn+1
08
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Figure 23.3: (a) A tent map trajectory. (b) A
Farey map trajectory.
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How to deal with the full complexity of a typical Hamiltonissystem with
mixed phase space is a venyfutiult, still open problem. Nevertheless, it is
possible to learn quite a bit about intermittency by considerather simple
examples. Here we shall restrict our considerations tariedsional maps which
in the neighborhood of a single marginally stable fixed pait=0 take the form

X f(X) = x+ O(xS), (23.1)

and are expanding everywhere else. Such a map may allowdapeslike the
map shown in figur€3.2 or the dynamics may be bounded, like the Farey map
(18.31) 163,164c153,154

[ x/(1-X xe[0,1/2]
X f(x)—{ 1-x)/x xe[1/2,1]

introduced in sectl8.5

Figure23.3compares a trajectory of the tent mam 6 side by side with a
trajectory of the Farey map. In a stark contrast to the umifpichaotic trajectory
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of the tent map, the Farey map trajectory alternates integntly between slow
regular motion close to the marginally stable fixed point] ehaotic bursts.

The presence of marginal stability has striking dynamioabequences: correlation
decay may exhibit long range power law asymptotic behavidrdifusion processes
can assume anomalous character. Escape from a repelles fufrth figure23.2
may be algebraic rather than exponential. In long time e&gilans of the dynamics
intermittency manifests itself by enhancement of natur@dsare in the proximity
of marginally stable cycles.

The questions we shall address here are: how does margahdlitgtaffect
zeta functions or spectral determinants? And, can we degulwer law decays of
correlations from cycle expansions?

In example21.5we saw that marginal stability violates one of the condgion
which ensure that the spectral determinant is an entiretitmc Already the
simple fact that the cycle weight/[L — A[,| in the trace (6.3 or the spectral
determinant17.3) diverges for marginal orbits witi\ ;| = 1 tells us that we have
to treat these orbits with care.

In the following we will incorporate marginal stability datb into cycle-expansions
in a systematic manner. To get to know théfidulties lying ahead, we will
start in sect23.2with a piecewise linear map, with the asymptotie8.(). We
will construct a dynamical zeta function in the usual wayheiit worrying too
much about its justification and show that it has a branch ingutarity. We
will calculate the rate of escape from our piecewise lineaprand find that it
is characterized by decay, rather than exponential decpgwer law. We will
show that dynamical zeta functions in the presence of malrgtability can still
be written in terms of periodic orbits, exactly as in chapteb and 20, with
one exception: the marginally stable orbits have to be eitigliexcluded. This
innocent looking step has far reaching consequences;dégous to change the
symbolic dynamics from a finite to an infinite alphabet, ania reorganization
of the order of summations in cycle expansions, s&&2.4

Branch cuts are typical also for smooth intermittent maytk igblated marginally
stable fixed points and cycles. In se28.3 we discuss the cycle expansions and
curvature combinations for zeta functions of smooth maifs éal to intermittency.
The knowledge of the type of singularity one encounters lesals to develop the
efficient resummation method presented in s2gt3.1

Finally, in sect23.4, we discuss a probabilistic approach to intermittency that
yields approximate dynamical zeta functions and providgeable information
about more complicated systems, such as billiards.

23.2 Intermittency for pedestrians

Intermittency does not only present us with a large repertfiinteresting dynamics,
itis also at the root of many sorrows such as slow convergehcgcle expansions.
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1

08

06

f(x)
04

Figure 23.4: A piecewise linear intermittent map 02
of (23.2 type: more specifically, the map piecewise
linear over intervalsZ3.8) of the toy example studied 0
below,a=.5,b=.6,s=10.

In order to get to know the kind of problems which arise wherlging dynamic-
al zeta functions in the presence of marginal stability witeensider an artfully
concocted piecewise linear model first. From there we wilenon to the more
general case of smooth intermittant maps, s&&t3

23.2.1 Atoy map

The Bernoulli shift map Z1.6) is an idealized, but highly instructive, example
of a hyperbolic map. To study intermittency we will now caost a likewise
piecewise linear model, an intermittent map stripped dawitstbare essentials.

Consider a map — f(x) on the unit intervalM = [0, 1] with two monotone
branches

fo(x) for xe My =1[0,4a]
f("):{ fi0) for xe My = [b.1] - (23.2)

The two branches are assumed complete, thig{ielo) = f1(M1) = M. The map
allows escape it < b and is bounded i& = b (see figure23.2and figure23.4).
We take the right branch to be expanding and linear:

fa(¥) = ﬁ(x 1.

Next, we will construct the left branch in a way, which willl@k us to
model the intermittent behavio28.1) near the origin. We chose a monotonically
decreasing sequence of poimgsin [0, a] with g1 = aandg, — 0 asn — co.
This sequence defines a partition of the left inteiVg] into an infinite number of
connected intervald,, n > 2 with

Ma=1th,Gr1]  and Mo ={_ | Mn. (23.3)
n=2

The mapfy(x) is now specified by the following requirements
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e fp(x) is continuous.
o fp(x) is linear on the interval$, for n > 2.
o fo(0h) = Gn-1, that isM, = 3™ ([a 1]) .
This fixes the map for any given sequericg}. The last condition ensures the

existence of a simple Markov partition. The slopes of théower linear segments
are

, _ fo@)-fo(w) _  1-
o) = ﬁ = lei/gl for x e M, (23.4)
fo® = 5 = for xe My

with |[My| = gn-1 — gn for n > 2. Note that we do not require as yet that the map
exhibit intermittent behavior.

We will see that the family of periodic orbits with code™jflays a key role
for intermittent maps of the forn2@.1). An orbit 10" enters the intervald; —
Mni1 = My — ... — My successively and the family approaches the marginal
stable fixed point ak = 0 forn — co. The stability of a cycle 10for n > 1 is
given by the chain rule4(50),

1 1-a
Ao = T5(Xns1) fo(Xn) . .. To(x2) f1 (x1) = Mol
N

e (23.5)
"

with X € M;.

The properties of the maj28.2) are completely determined by the sequence
{dn}. By choosingg, = 27", for example, we recover the uniformly hyperbolic
Bernoulli shift map 21.6). An intermittent map of the form2@3.3 having the
asymptotic behavior23.1) can be constructed by choosing an algebraically decaying
sequencéd,} behaving asymptotically like

1
On ~ s (23.6)

wheresis the intermittency exponent i28.1). Such a partition leads to intervals
whose length decreases asymptotically like a power-laat,igh

1

(Ml ~ s

(23.7)

As can be seen fron28.5), the stability eigenvalues of periodic orbit families
approaching the marginal fixed point, such as thefafily increase in turn only
algebraically with the cycle length.
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It may now seem natural to construct an intermittent toy nmferms of a
partition M| = 1/n**1/S, that is, a partition which follows23.7) exactly. Such
a choice leads to a dynamical zeta function which can beenritt terms of so-
called Jonquiére functions (or polylogarithms) whichsarhaturally also in the
context of the Farey mapl8.31), and the anomalous ftlision of sect24.3
We will, however, not go along this route here; instead, wi avigage in a bit
of reverse engineering and construct a less obvious partithich will simplify
the algebra considerably later without loosing any of the features typical for
intermittent systems. We fix the intermittent toy map by #yeq the intervals
M, in terms of Gamma functions according to

[remark 24.8]

I'h+m-1/s-1)

Ml =C r(n+m)

for n>2, (23.8)

wherem = [1/9] denotes the integer part of4andC is a normalization constant
fixed by the conditior) ), M| = a1 = &, that is,

0 -1
_ I'(n-1/9)
=2 2, Taen | 239)

n=m+1

Using Stirling’s formula for the Gamma function
I ~eZY2\2nr (1+1/122+ .. ),

we verify that the intervals decay asymptotically liké*/9, as required by the
condition €3.7).

Next, let us write down the dynamical zeta function of the nogp in terms
of its periodic orbits, that is

Y@ =] (1— If—pl)
p

One may be tempted to expand the dynamical zeta functiomrirstef the binary
symbolic dynamics of the map; we saw, however, in s&8t5 that such cycle
expansion converges extremely slowly. The shadowing nmésimebetween orbits
and pseudo-orbits fails for orbits of the form™With stabilities given by Z3.5),
due to the marginal stability of the fixed poidt It is therefore advantageous to
choose as the fundamental cycles the family of orbits wittectd¥! or, equivalently,
switch from the finite (binary) alphabet to an infinite alpatbiven by

10" > n.

Due to the piecewise-linear form of the map which maps irstieni,, exactly
onto Mp_1, all periodic orbits entering the left branch at least twace canceled
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exactly by pseudo cycles, and the cycle expanded dynangtafunction depends
only on the fundamental series1D, 10Q.. .:

1/¢(2)

s - 2
n(l_M)Zl_zV\w 1|

p£0

S [(n+m-1/s—1)
1- (1 b)Z Cl— 2y Wzn

(23.10)

The fundamental termlg.7) consists here of an infinite sum over algebraically
decaying cycle weights. The sum is divergent [ir> 1. We will see that this
behavior is due to a branch cut of{lstarting atz = 1. We need to find analytic
continuations of sums over algebraically decreasing tém(83.10. Note also
that we omitted the fixed poird in the above Euler product; we will discussed
this point as well as a proper derivation of the zeta functiomore detail in
sect.23.2.4

23.2.2 Branch cuts

Starting from the dynamical zeta functio@3(10, we first have to worry about
finding an analytical continuation of the sum fgr> 1. We do, however, get this
part for free here due to the particular choice of intervabtes made in43.9.
The sum over ratios of Gamma functions 28(10 can be evaluated analytically
by using the following identities valid for/b = « > 0 (the famed binomial
theorem in disguise),

e a non-integer

@ _ I‘(n (1’)
(1-z Z s 1)2” (23.11)
e «integer
1-2%log(1-2 = Za:(—l)"cnz” (23.12)

+ ( l)rr+la| Z (n @ - 1)'

n=a+1

with

In order to simplify the notation, we restrict the interraitty parameter to the
range 1< 1/s < 2 with [1/s] = m = 1. All what follows can easily be generalized
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to arbitrarys > 0 using equation2@.11) and @3.12. The infinite sum in23.10
can now be evaluated with the help @8(11) or (23.19, that is,

Z rh-1s , { (-H[A-2Ys-1+17 for 1<1/s<2;
I'(n+1) (1-2log(l-2+2z for s=1.

The normalization constam in (23.8) can be evaluated explicitly using@g.9
and the dynamical zeta function can be given in closed forra.otain for 1<
1/s<2

1-b s 1
1@ =1-1-b)z- Tsi1s a((l Vs —1+ gz). (23.13)
and fors=1,
1-b
1/((2=1-(1-bz- am (1-2log(1-2) + 2. (23.14)

It now becomes clear why the particular choice of intervady made in the
last section is useful; by summing over the infinite familypefiodic orbits 01
explicitly, we have found the desired analytical contimmatfor the dynamical
zeta function forlzl > 1. The function has a branch cut starting at the branch
pointz = 1 and running along the positive real axis. That means, thamycal
zeta function takes onfilerent values when approaching the positive real axis for
Rez> 1 from above and below. The dynamical zeta function for ganer 0
takes on the form

U@ =1-Q-Dz- o (-9 - a@) (@319

for non-integerswith m = [1/s] and

a 1-b 1

V2@ = 1-(-bjz- T o

(1-2"log(1-2) - gm(?)) (23.16)

for 1/s = minteger andgs(2) are polynomials of ordem = [1/s] which can

be deduced from23.17) or (23.12. We thus find algebraic branch cuts for non
integer intermittency exponentg<dand logarithmic branch cuts for/4 integer.
We will see in sect23.3that branch cuts of that form are generic for 1-dimensional
intermittent maps.

Branch cuts are the all important new feature of dynamici fienctions due
to intermittency. So, how do we calculate averages or esedpe of the dynamics
of the map from a dynamical zeta function with branch cuts?taike ‘a learning
by doing’ approach and calculate the escape from our toy wreg £ b.
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Figure 23.5: The survival probability 'y
calculated by contour integration; integrating
(23.17) inside the domain of convergends <
1 (shaded area) of /&(z) in periodic orbit
representation yieldsl6.26§. A deformation of

the contoury; (dashed line) to a larger circheg

gives contributions from the poles and zeros (x)
of 1/{(z) between the two circles. These are the
only contributions for hyperbolic maps (a), for
intermittent systems additional contributions arise,
given by the contouy,, running along the branch

cut (b). (@)

23.2.3 Escape rate

Our starting point for the calculation of the fraction ofguors afterntime steps,
is the integral representatiofd.19

Ip= % 515( z" (diz Iog(l(z))dz, (23.17)
where the contour encircles the origin in the clockwisediom. If the contour
lies inside the unit circléz = 1, we may expand the logarithmic derivative of
"Y(2) as a convergent sum over all periodic orbits. Integrals surds can be
interchanged, the integrals can be solved term by term fentbtmula (6.26 is
recovered. For hyperbolic maps, cycle expansion methodgher techniques
may provide an analytic extension of the dynamical zetatfancbeyond the
leading zero; we may therefore deform the original contoto & larger circle
with radiusR which encircles both poles and zeros/ot(2), see figure23.5(a).
Residue calculus turns this into a sum over the zegaand polesz of the dyn-
amical zeta function, that is

zeros ¢ P0|93
Inh= Z 7 —+— dzz —Iogg‘l (23.18)
Z.|<R \Z¢f|<R ﬂ

where the last term gives a contribution from a large cingle We thus find
exponential decay df,, dominated by the leading zero or pole/of(z).

Things change considerably in the intermittent case. Thetmo= 1 is a
branch cut singularity and there exists no Taylor seriesiesion ofZ = around
z=1. Second, the path deformation that led u2®.19 requires more care, as it
must not cross the branch cut. When expanding the contoarde|¥| values, we
have to deform it along the branch Re &)L, Im (z) = 0 encircling the branch cut
in anti-clockwise direction, see figug3.5(b). We will denote the detour around
the cut agycyt. We may write symbolically

zeros poles
375066
e R Yeut

inter - 12sep2003.tex



CHAPTER 23. INTERMITTENCY 396

where the sums include only the zeros and the poles in theea@ased by the
contours. The asymptotics is controlled by the zero, poleubrclosest to the
origin.

Let us now go back to our intermittent toy map. The asympgott the
survival probability of the map is here governed by the barenf the integrand
dﬁzlog ¢t in (23.17) at the branch point = 1. We restrict ourselves again to the
case 1< 1/s < 2 first and write the dynamical zeta functia?3(13 in the form

102 =a0+a(1-2) +bo(1-2Y5=G(1-2)

and

b—
=T bo

~a 1-b
T 1-1/s1-a

o))

Q

Settingu = 1 - z, we need to evaluate

1

d
— -_ _n_
5> Sécm(l u) " log G(u)du (23.19)

whereyc,: goes around the cut (i.e., the negativaxis). Expanding the integrand
8 Jog G(u) = G’(u)/G(u) in powers ofu andu®/* atu = 0, one obtains

4 _a 100 gen
au logG(u) = % + saou + O(u). (23.20)

The integrals along the cut may be evaluated using the gefoenaula

1 vy T-—a-1) 1
2 P UA-WTdu= TRy T

Yeut

(1+0@1/n) (23.21)

which can be obtained by deforming the contour back to a loopral the point
u = 1, now in positive (anti-clockwise) direction. The contantegral then picks
up the (-1)st term in the Taylor expansion of the functighatu = 1, cf. (23.11).
For the continuous time case the corresponding formula is

1
2ni

2edz= r 1

= e (23.22)

Yeut

Plugging €3.20 into (23.19 and using 23.21) we get the asymptotic result

bl 1 1 al-b 1 1
asT(1-1/9n¥s  s—1b-al(1-1/9nvs’ (23.23)
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Figure 23.6: The asymptotic escape from ar
intermittent repeller is a power law. Normally it is
preceded by an exponential, which can be related
zeros close to the cut but beyond the branch poi ;-

z=1, as in figure23.5(b). g 200 400 600 800 1000

We see that, asymptotically, the escape from an interntitegreller is described

by power law decay rather than the exponential decay we anéida with for
hyperbolic maps; a numerical simulation of the power-lavage from an intermittent
repeller is shown in figur@3.6

For general non-integer/& > 0, we write
1/¢(@ = AW + (W*°B(u) = G(U)

with u = 1 — zand A(u), B(u) are functions analytic in a disc of radius 1 around
u = 0. The leading terms in the Taylor series expansion&(of andB(u) are

_b-a by = a 1-b
=T Tg)1-a

see £3.15. ExpandingﬁI log G(u) aroundu = 0, one again obtains leading order
contributions according t02@3.20 and the general result follows immediately
using @3.21), that is,

Tn~ sg(l)b—al(1-1/s)n/s’ (23.24)

Applying the same arguments for integer intermittency egmis s = m, one
obtains

a 1-bm

o~ (1) sgn(l)b—anm”

(23.25)

So far, we have considered the survival probability for eeliep, that is we
assumedh < b. The formulas 23.24 and £3.25 do obviously not apply for the
casea = b, that is, for the bounded map. The €ogentay = (b —a)/(1 - a)
in the series representation @{u) is zero, and the expansion of the logarithmic
derivative ofG(u) (23.20 is no longer valid. We get instead

1 1/s-1
S ioge() = { (1o )3 s<1
u G(§+O(u %) s>1
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assuming non-integer/ &for convenience. One obtains for the survival probability.

I~ 1+0(n1s) s<1
n 1/s+0O(nYs 1) s>1 -

For s > 1, this is what we expect. There is no escape, so the survighhpility

is equal to 1, which we get as an asymptotic result here. Thdtriors > 1 is
somewhat more worrying. It says thgt defined as sum over the instabilities of
the periodic orbits as in20.12 does not tend to unity for large However, the
cases > 1is in many senses anomalous. For instance, the invariasttgeannot
be normalized. It is therefore not reasonable to expectpddbdic orbit theories
will work without complications.

23.2.4 Why does it work (anyway)?

Due to the piecewise linear nature of the map constructelaeiptevious section,
we had the nice property that interval lengths did exactlp@de with the inverse
of the stability of periodic orbits of the system, that is

Ml = 1/|Az0l™ ™.

There is thus no problem in replacing the survival probsblii, given by (L.2),
(20.2), that is the fraction of state spadd survivingn iterations of the map,

1 O
Tn=—— > IMI.
"M 2 IMi]

by a sum over periodic orbits of the forrh.2§. The only orbit to worry about is
the marginal fixed poind itself which we excluded from the zeta functicB(10.

For smooth intermittent maps, things are less clear andatttelfat we had to
prune the marginal fixed point is a warning sign that inteestimates by periodic
orbit stabilities might go horribly wrong. The derivatiofitbe survival probability
in terms of cycle stabilities in chaptgd did indeed rely heavily on a hyperbolicity
assumption which is clearly not fulfilled for intermittentyps. We therefore have
to carefully reconsider this derivation in order to showt fheriodic orbit formulas
are actually valid for intermittent systems in the first jglac

We will for simplicity consider maps, which have a finite nuentof says
branches defined on intervalds and we assume that the map maps each interval
Ms onto M, that is f(Ms) = M. This ensures the existence of a complete
symbolic dynamics - just to make things easy (see fig#&).

The generating partition is composed of the domals. The nth level

partition c™ = {M;} can be constructed iteratively. Hers are wordsi =
$S ... S of lengthn, and the intervals\i; are constructed recursively

Msj = M), (23.26)
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wheres jis the concatenation of lettsrwith word j of lengthn; < n.

In what follows we will concentrate on the survival probéil’,, postponing
other quantities of interest, such as averages, to latasiderations. In establishing
the equivalence of the survival probability and the pedaatibit formula for the
escape rate for hyperbolic systems we have assumed thataghésrexpanding,
with a minimal expansion ratgf’(X)] > Amin > 1. This enabled us to bound
the size of every survivor stripf; by (20.6), the stabilityA; of the periodic orbit
within the M;, and bound the survival probability by the periodic orbits{20.7).

The bound 20.6)

1 il 1
YA T TM T TEA

relies on hyperbolicity, and is thus indeed violated foemmtittent systems. The
problem is that now there is no lower bound on the expansite the minimal

expansion rate idmin = 1. The survivor stripMo» which includes the marginal
fixed point is thus completely overestimated byAly| = 1 which is constant for

all n. )
[exercise 17.7]

However, bounding survival probability strip by strip istrwhat is required
for establishing the bound(.7). For intermittent systems a somewhat weaker
bound can be established, saying that the average sizenfatgalong a periodic
orbit can be bounded close to the stability of the periodic orhitdib but the
interval Mo. The weaker bound applies to averaging over each prime gycle
separately

1 1 IMi| 1
C—<—§—<C—, 23.27
AG T £ TM TP IA @320

where the wordi represents a code of the periodic orpitand all its cyclic
permutations. It can be shown that one can find positive aott;, C, independent
of p. Summing over all periodic orbits leads then again2®.7).

To study averages of multiplicative weights we follow sé@ét.1and introduce
a state space observalag) and the integrated quantity

n-1

A'(x) = > alf ().

=0
This leads us to introduce the generating functitb. {0

(P A0,
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o

Figure 23.7: Markov graph corresponding to the
alphabet0“1;0, k> 1} OAQ‘Q D0 >

where(.) denote some averaging over the distribution of initial pgimvhich we
choose to be uniform (rather than thgriori unknown invariant density). Again,
all we have to show is, that constaxts, C, exist, such that

M1 1 . A
o & L[ er0gx< (23.28)
Ry LM g Al

is valid for all p. After performing the above average one gets

Ciln(B) < = f AN gx < CoIn(B), (23.29)
IM| I m
with
0, eBho
I'n(B) = ‘A i (23.30)

and a dynamical zeta function can be derived. In the intéentitcase one can
expect that the bound8.29 holds using an averaging argument similar to the
one discussed in2@3.27. This justifies the use of dynamical zeta functions for
intermittent systems.

One lesson we should have learned so far is that the natpitahiadt to use
is not {0,1} but rather the infinite alphabg®~11,0; k > 1}. The symbol 0
occurs unaccompanied by any 1's only in thenarginal fixed point which is
disconnected from the rest of the Markov graph see figaré

What happens if we remove a single prime cycle from a dyndméta func-
tion? In the hyperbolic case such a removal introduces a ipotee 1/¢ and
slows down the convergence of cycle expansions. The hieunigéerpretation
of such a pole is that for a subshift of finite type removal ofirrgle prime
cycle leads to unbalancing of cancellations within the itfiof of shadowing
pairs. Nevertheless, removal of a single prime cycle is goeentially small
perturbation of the trace sums, and the asymptotics of gexaged trace formulas
is undfected.

[chapter 21]

In the intermittent case, the fixed poidtdoes not provide any shadowing ,
and a statement such as

Aq.ger & Ao,
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is meaningless. It seems therefore sensible to take ouaitherf(1-tp) = 1 -z
from the product representation of the dynamical zeta fandfl7.19, that is, to
consider a pruned dynamical zeta functigdier(2) defined by

1/£(2) = (1 - 21/ dinter () -

We saw in the last sections, that the zeta functigtindi(2) has all the nice
properties we know from the hyperbolic case, that is, we eaihficycle expansion
with - in the toy model case - vanishing curvature contritmgi and we can
calculate dynamical properties like escape after havirtgrstood, how to handle
the branch cut. But you might still be worried about leaving the extra factor
1-zall together. It turns out, that this is not only a matter af\eenience, omitting
the marginal0 cycle is a dire necessity. The cycle weighj} = 1 overestimates
the corresponding interval length Mo in the partition of the phase spadéd by
an increasing amount thus leading to wrong results whenledicg escape. By
leaving out thed cycle (and thus also th&{y contribution), we are guaranteed to
get at least the right asymptotical behavior.

Note also, that if we are working with the spectral determina7.3), given
in product form as

det (1-z£) = E[ ﬁ( \AplA”‘) '

m=0

for intermittent maps the marginal stable cycle has to béuebedl. It introduces
an (unphysical) essential singularityzat 1 due the presence of a factor{%)~
stemming from thé cycle.

23.3 Intermittency for cyclists

Admittedly, the toy map is what is says - a toy model. The pietee linearity

of the map led to exact cancellations of the curvature dmmions leaving only
the fundamental terms. There are still infinitely many abitcluded in the
fundamental term, but the cycle weights were chosen in swehyathat the zeta
function could be written in closed form. For a smooth intiét@mt map this all

will not be the case in general; still, we will argue that wevdnalready seen
almost all the fundamentally new features due to interméye What remains are
technicalities - not necessarily easy to handle, but ngthary surprise any more.

In the following we will sketch, how to make cycle expansienhniques work
for general 1-dimensional maps with a single isolated nmaitdixed point. To
keep the notation simple, we will consider two-branch mayjith & complete
binary symbolic dynamics as for example the Farey map, fiQ&& or the
repeller depicted in figur23.2 We again assume that the behavior near the fixed
point is given by £3.1). This implies that the stability of a family of periodic
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Table 23.1: Infinite alphabet versus the original binary alphabet fer shortest periodic
orbit families. Repetitions of prime cycles (14 12,0101 = 012,...) and their cyclic
repeats (116 101, 1110= 1101 ...) are accounted for by cancelations and combination
factors in the cycle expansio8g.31).

oo — alphabet binary alphabet
n=1 n=2 n=3 n=4 n=>5
I-cycles n 1 10 100 1000 10000
2-cycles mn
1n 11 110 1100 11000 110000
2n 101 0101 10100 101000 1010000

3n 1001 10010 100100 1001000 10010000

4n 10001 100010 1000100 10001000 100010000
3-cycles kmn

1in 111 1110 11100 111000 1110000
12n 1101 11010 110100 1101000 11010000
13n 11001 110010 1100100 11001000 110010000
21n 1011 10110 101100 1011000 10110000
22n 10101 101010 1010100 10101000 101010000
23n 101001 1010010 10100100 101001000 1010010000
31n 10011 100110 1001100 10011000 100110000
32n 100101 1001010 10010100 100101000 1001010000
33n 1001001 10010010 100100100 1001001000 10010010000

orbits approaching the marginally stable orbit, as for exanthe family 10, will
increase only algebraically, that is we find again for lamge

1 1
A nbrls”

wheres denotes the intermittency exponent.

When considering zeta functions or trace formulas, we apaire to take
out the marginal orbiD; periodic orbit contributions of the forryn; are now
unbalanced and we arrive at a cycle expansion in terms oftelfirmany fundamental
terms as for our toy map. This corresponds to moving from @uarly symbolic
dynamics to an infinite symbolic dynamics by making the idiattion

10"t 5 n; 100110 5 nmp 100110™ 1104 S nmk . ..

see also tabl@3.3 The topological length of the orbit is thus no longer detesd

by the iterations of our two-branch map, but by the numbeiiroés$ the cycle
goes from the right to the left branch. Equivalently, one rdefine a new map,
for which all the iterations on the left branch are done in step. Such a map is
called aninduced magnd the topological length of orbits in the infinite alphabet
corresponds to the iterations of this induced map.

[exercise 11.1]

For generic intermittent maps, curvature contributionthim cycle expanded
zeta function will not vanish exactly. The most natural waytganize the cycle
expansion is to collect orbits and pseudo orbits of the sapeldgical length
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with respect to the infinite alphabet. Denoting cycle wesghtthe new alphabet
astym. = tygp-179m1_, ONE Obtains

™
AN
I
—
=
|
iR
=}
=
i
-
I
Ngk
(o]
®

(23.31)

p#0 n=1
= 1- Ztn - ZZ %(tmn—tmtn)
n=1 m=1n=1
- Z Z Z(%tkmn— %tkmtn + étktmtn) - Z Z Z Z e
k=1 m=1n=1 =1 k=1 m=1n=1

The first sum is the fundamental term, which we have alreaéy $e the toy
model, 3.10. The curvature terms, in the expansion are noefold infinite
sums where the prefactors take care of double counting wieppieriodic orbits.

Let us consider the fundamental term first. For generic iinitéent maps, we
can not expect to obtain an analytic expression for the tefsum of the form

f@) = Z hnZ". (23.32)
n=0
with algebraically decreasing ddeients
hy ~ n—la with >0

To evaluate the sum, we face the same problem as for our toy thegpower
series diverges far > 1, that is, exactly in the ‘interesting’ region where poles,
zeros or branch cuts of the zeta function are to be expecteda@fully subtracting
the asymptotic behavior with the help &f3.17) or (23.19, one can in general
construct an analytic continuation 6z) aroundz = 1 of the form

f@ ~ A@+1-2"1B@ a¢N (23.33)
f@ ~ A@+(1-2"'In(l-2 «eN,

whereA(2) and B(2) are functions analytic in a disc aroumd= 1. We thus again
find that the zeta functior2@.31) has a branch cut along the real axis Re 4.
From here on we can switch to auto-pilot and derive algelza@ape, decay of
correlation and all the rest. We find in particular that thgngstotic behavior
derived in 3.24 and @3.29 is a general result, that is, the survival probability
is given asymptotically by

1

In~Ce (23.34)
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for all 1-dimensional maps of the forn23.1). We have to work a bit harder if
we want more detailed information like the prefac@rexponential precursors
given by zeros or poles of the dynamical zeta function or éigitder corrections.
This information is buried in the functior&(z) andB(2) or more generally in the
analytically continued zeta function. To get this analy@ntinuation, one may
follow either of the two diferent strategies which we will sketch next.

23.3.1 Resummation

One way to get information about the zeta function near tlaadir cut is to
derive the leading cdicients in the Taylor series of the functioA$z) and B(2)
in (23.33 atz = 1. This can be done in principle, if the déeientsh, in sums
like (23.32 are known (as for our toy model). One then considers a reqatiom
of the form

.
2 h7 =
j=0

-t

T
o

a(l-2 + (172)"’1ibj(1— 2, (23.35)
=0

and the cogiicientsa; andb; are obtained in terms of thg's by expanding (22)
and (1- 21+~ on the right hand side arourm= 0 using @3.11) and equating
the codficients.

In practical calculations one often has only a finite humifecaeficients
hj, 0 < j < N, which may have been obtained by finding periodic orbits and
their stabilities numerically. One can still design a resation scheme for the
computation of the cdBcientsa; andb; in (23.39. We replace the infinite sums
in (23.39 by finite sums of increasing degreesandn,, and require that

Na Ny N
Dla-2' +(1-2"1 ) b1-2 = > hZ + 0" . (23.36)
i=0 i=0 i=0

One proceeds again by expanding the right hand side ampen@, skipping all
powersz¥*1 and higher, and then equating éients. It is natural to require that
[np + @ — 1 — ng| < 1, so that the maximal powers of the two sumsa8.86 are
adjacent. If one chooses + n, + 2 = N + 1, then, for each cufblengthN, the

integersn, and n, are uniquely determined from a linear system of equations.

The price we pay is that the so obtained fieeents depend on the cufoN.
One can now study convergence of the ficeents a;, and bj, with respect to
increasing values of, or various quantities derived froay andb;. Note that
the leading cofficientsag andbg determine the prefact@ in (23.39), cf. (23.23.
The resummed expression can also be used to compute zaids, @noutside the
radius of convergence of the cycle expansE)hjzi.

The scheme outlined in this section tacitly assumes thapesentation of
form (23.33 holds in a disc of radius 1 arourm= 1. Convergence is improved
further if additional information about the asymptoticsafms like £3.32) is used
to improve the ansat28.35.

inter - 12sep2003.tex

CHAPTER 23. INTERMITTENCY 405
23.3.2 Analytical continuation by integral transformations

We will now introduce a method which provides an analytictooration of sums
of the form 3.3 without explicitly relying on an ansat28.35. The main
idea is to rewrite the sun28.32 as a sum over integrals with the help of the
Poisson summation formula and find an analytic continuatiogach integral by
contour deformation. In order to do so, we need to knowrtlidependence of
the codficientsh, = h(n) explicitly for all n. If the codficients are not known
analytically, one may proceed by approximating the largehavior in the form

h(n) =n(Cy+Cont+..), n#0,

and determine the constai@snumerically from periodic orbit data. By using the
Poisson resummation identity

00

Z S(x—n) = i exp(2nimx), (23.37)

n=—co

we may write the sum a28.39
£2) = 2h(0) + > f dx &1MXn(x)Z". (23.38)
2 Ebo JO

The continuous variabla corresponds to the discrete summation indeand it

is convenient to writez = rexp(o) from now on. The integrals are still not
convergent for > 0, but an analytical continuation can be found by considerin
the contour integral, where the contour goes out along theaeis, makes a
quarter circle to either the positive or negative imaginaxis and goes back to
zero. By letting the radius of the circle go to infinity, we es8ally rotate the
line of integration from the real onto the imaginary axis.r BFem = 0 term in
(23.38, we transformx — ix and the integral takes on the form

fw dxh(X) r* e =i fm dx hix) rixe™.
0 0

The integrand is now exponentially decreasing for all0 ando # 0 or 2r. The
last condition reminds us again of the existence of a brantlatcRe z> 1. By
the same technique, we find the analytic continuation fathallother integrals in
(23.39. The real axis is then rotated accordingxte~ sign(m)ix where signifn)
refers to the sign ofn.

f dx eZIMXp(x) pXgxe = J_rif dx H(zix) r=*ex@im=o)
0 o
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Changing summation and integration, we can carry out theasarjm| explicitly
and one finally obtains the compact expression

@ = 3h0)+i fo X i) e -
: ifmdxl;ezzﬂx[h(ix)rixe_w—h(—ix)r‘ixe""L
0 _

The transformation from the original sum to the two integiial (23.39 is exact
forr < 1, and provides an analytic continuation fas 0. The expressior2@.39

is especially useful for anficient numerical calculations of a dynamical zeta
function for|z > 1, which is essential when searching for its zeros and poles.

23.3.3 Curvature contributions

So far, we have discussed only the fundamental &b, t, in (23.31), and
showed how to deal with such power series with algebraicbreasing cagcients.
The fundamental term determines the main structure of tteefaaction in terms
of the leading order branch cut. Corrections to both thesearal poles of the
dynamical zeta function as well as the leading and sublgadider terms in
expansions like43.33 are contained in the curvature terms 28(31). The first
curvature correction is the 2-cycle sum

1
E(tmn - tmtn) 5

i1
e

I
=N

n:

with algebraically decaying cdiécients which again diverge fdg > 1. The
analytically continued curvature terms have as usual braants along the positive
real z axis. Our ability to calculate the higher order curvatumente depends on
how much we know about the cycle weigltts. The form of the cycle stability
(23.5 suggests thdt,, decrease asymptotically as

1

- T (23.40)

tmn

for 2-cycles, and in general forcycles as

1

N Gy

If we happen to know the cycle weights m,..m, analytically, we may proceed as
in sect.23.3.2 transform the multiple sums into multiple integrals anthte the
integration contours.

We have reached the edge of what has been accomplished s@éamputing
and what is worth the dynamical zeta functions from periadtut data. In the
next section, we describe a probabilistic method appleablintermittent maps
which does not rely on periodic orbits.
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23.4 BER zeta functions

§
J So far we have focused on 1-d models as the simplest settindich
to investigate dynamical implications of marginal fixedmiei We now take an
altogether dferent track and describe how probabilistic methods may hetasred
in order to write down approximate dynamical zeta functiéos intermittent
systems.

We will discuss the method in a very general setting, for a flowrbitrary
dimension. The key idea is to introduce a surface of seckosuch that all
trajectories traversing this section will have spent sdme both near the marginal
stable fixed point anih the chaotic phase. An important quantity in what follows
is (3.5), thefirst return timer(x), or the time of flight of a trajectory starting in
x to the next return to the surface of sect®n The period of a periodic orbip
intersecting the” sectionn, times is

np-1

To= > (f*(xp)),

k=0

wheref(x) is the Poincaré map, ang, € # is a cycle point. The dynamical zeta
function (17.19

AoeBAp=sTp np=l
s =[](1-Z5) . Aem XAt (@aan
p k=0

[chapter 15]
associated with the observalalg) captures the dynamics of both the flawdthe
Poincaré map. The dynamical zeta function for the flow isinietd as 12(s,8) =
1/£(1, s, B), and the dynamical zeta function for the discrete time €axi@ map is
1/{(z B) = 1/¢{(z 0, B).

Our basic assumption will bprobabilistic ~ We assume that the chaotic
interludes render the consecutixeturn (or recurrence times Tx), T(X+1) and
observables(x;), a(x.1) effectively uncorrelated. Consider the quangtf*o-0-sT(xo.n)
averaged over the surface of sectidn With the above probabilistic assumption
the largen behavior is

<eBA(xo,n)—sT(xo,n)){P - (f eBa(X)fsrp(X)dx)n ’
P

wherep(x) is the invariant density of the Poincaré map. This typeedfdvior is
equivalent to there being only one zexs, 8) = [ €30-70) p(x)dxof 1/¢(z s.8)
in the zB plane. In the language of Ruelle-Pollicott resonancesrttéans that
there is an infinite gap to the first resonance. This in turrliesghat ¥(z s, B)

may be written as
[remark 15.1]
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Y(@sp) =2- f 09~ ()l | (23.42)
P

where we have neglected a possible analytic and non-zefacpse The dynam-
ical zeta function of the flow is now

¢(sp) = /(L sp) =1- fp 209 p(x)e W dlx (23.43)

Normally, the best one can hope for is a finite gap to the leadésonance of
the Poincaré map. with the above dynamical zeta functidy approximatively
valid. As itis derived from an approximation due to BaladikBhann, and Ruelle,
we shall refer to it as the BER zeta functiof¢ger(s, £) in what follows.

A central role is played by the probability distribution eturn times

U(t) = f §(r — 7(X))p(X)dx (23.44)
P
[exercise 24.6]
The BER zeta function gt = 0 is then given in terms of the Laplace transform of
this distribution
1Udser(® = 1= [ (e
[exercise 23.5]

Example 23.1 Return times for the Bernoulli map. For the Bernoulli shift map
(21.6)

X+ f(X) =2xmod 1,

one easily derives the distribution of return times

1

The BER zeta function becomes (by the discrete Laplace transform (16.9))

S ©
Yiper@ = 1= un?'=1-) =
n=1 n=1
_ o 1-z _
S 1727 T (@/(L-2/Ao). (23.45)

Thanks to the uniformity of the piecewise linear map measure (15.19) the “approximate”
zeta function is in this case the exact dynamical zeta function, with the cycle point O
pruned.
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Example 23.2 Return times for the model of sect. ~ 23.2.1.  For the toy model of
sect. 23.2.1 one gets y1 = |Myl, and yin = IMyl(1 - b)/(1 - a), forn > 2, leading to a
BER zeta function

1¢per(@ = 1-2Mil - ) IMilZ,

n=2

which again coincides with the exact result, (23.10).

It may seem surprising that the BER approximation produgesteesults in
the two examples above. The reason for this peculiarityashbth these systems
are piecewise linear and have complete Markov partitions.lofg as the map
is piecewise linear and complete, and the probabilistic@pmation is exactly
fulfilled, the cycle expansion curvature terms vanish. TEREzeta function and
the fundamental part of a cycle expansion discussed in $8ct.1are indeed
intricately related, but not identical in general. In pautar, note that the BER zeta
function obeys the flow conservation sum ruk®(L1) by construction, whereas
the fundamental part of a cycle expansion as a rule does not.

Résum é

The presence of marginally stable fixed points and cyclesgdmthe analytic
structure of dynamical zeta functions and the rules for tansng cycle expansions.
The marginal orbits have to be omitted, and the cycle expasshow need to
include families of infinitely many longer and longer undéadrbits which accumulate
toward the marginally stable cycles. Correlations for sumh-hyperbolic systems
may decay algebraically with the decay rates controlledheyliranch cuts of
dynamical zeta functions. Compared to pure hyperbolicesyst the physical
consequences are drastic: exponential decays are refgcsidw power-law
decays, and transport properties, such as tiiesibn may become anomalous.

Commentary

Remark 23.1 What about the evolution operator formalism? The main virtue of evolution
operators was their semigroup propert$ (5. This was natural for hyperbolic systems
where instabilities grow exponentially, and evolution @ters capture this behavior due
to their multiplicative nature. Whether the evolution cgier formalism is a good way

to capture the slow, power law instabilities of intermittelynamics is less clear. The
approach taken here leads us to a formulation in terndyémical zeta functionsather
than spectral determinants, circumventing evolution afmes altogether. It is not known

if the spectral determinants formulation would yield anpéfts when applied to intermittent
chaos. Some results on spectral determinants and intenojtican be found in?]. A
useful mathematical technique to deal with isolated maidbjirstable fixed point is that

of inducing that is, replacing the intermittent map by a completelydnpplic map with
infinite alphabet and redefining the discrete time; we haws ukis method implicitly

by changing from a finite to an infinite alphabet. We refer tts.r§3, 20] for detailed
discussions of this technique, as well as applicationsdariensional maps.
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Remark 23.2 Intermittency. Intermittency was discovered by Manneville and Poméhu [
in their study of the Lorentz system. They demonstratedithatighborhood of parameter
valuer. = 16607 the mean duration of the periodic motion scales as {)“/2. In ref. [5]

they explained this phenomenon in terms of a 1-dimensiorg (such as43.1) near
tangent bifurcation, and classified possible types of initency.

Piecewise linear models like the one considered here haae $tadied by Gaspard
and Wang §]. The escape problem has here been treated followingfefesummations
following ref. [8]. The proof of the bound43.27 can be found in P. Dahlqvist's notes on
ChaosBook.org/PDahlqvistEscape.ps.gz.

Farey map 18.3) has been studied widely in the context of intermittent dgitas,
for example in refs. 6, 17, 3, 18, 19, 14, 2]. The Fredholm determinant and the dyn-
amical zeta functions for the Farey mdB(3]) and the related Gauss shift map4(46
have been studied by Mayet{]. He relates the continued fraction transformation to the
Riemann zeta function, and constructs a Hilbert space onhwthe evolution operator is
self-adjoint, and its eigenvalues are exponentially spagest as for the dynamical zeta
functions p4] for “Axiom A" hyperbolic systems.

Remark 23.3 Tauberian theorems. In this chapter we used Tauberian theorems for
power series and Laplace transforms: Feller's monogrébis [a highly recommended
introduction to these methods.

Remark 23.4 Probabilistic methods, BER zeta functions.  Probabilistic description
of intermittent chaos was introduced by Geisal and Thorm&e The BER approximation
studied here is inspired by Baladi, Eckmann and Ruélg, fwith further developments
inrefs. [13, 15].
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Exercises

23.1. Integral representation of Jonquiere functions. 23.6. Accelerated difusion. ~ Consider a map, such th:

23.2.

23.3.

23.4.

23.5.

Check the integral representation

z 00 é_«u—l
Iza) = @fo dS— for a>0.(23.46)

Note how the denominator is connected to Bose-
Einstein distribution. Computd(x + ie) — J(x — i€) for
arealx> 1.

Power law correction to a power law. Expand

(23.20 further and derive the leading power law
correction to 23.23.

Power-law fall off.  In cycle expansions the stabilitiesy3 7.

of orbits do not always behave in a geometric fashion.
Consider the mafp

1
0.8
0.6
0.4

0.2

02 04 06 08 1

This map behaves ds— xasx — 0. Define a symbolic
dynamics for this map by assigning 0 to the points that
land on the interval [01/2) and 1 to the points that land
on (1/2,1]. Show that the stability of orbits that spend
along time on the 0 side goesw@é In particular, show
that

2
Aogoo1~N
—_——

n

Power law fall-off of stability eigenvalues in the
stadium billiard **.  From the cycle expansions point
of view, the most important consequence of the shear in
J" for long sequences of rotation bounagsin (8.13

is that theA, grows only as a power law in number of
bounces:

AnocnZ. (23.47)
Check.
Probabilistic zeta function for maps. Derive the

probabilistic zeta function for a map with recurrence
distributiony,.

exerlnter - 6jun2003.tex

h = f, butnow running branches are turner into star
branches and vice versa, so thaR,B, 4 are standir
while 0 leads to both positive and negative jumps.
the corresponding dynamical zeta function and -
that

t for @ >2
tint for =2
At ~{ 5 for ae(1,2)
t2/Int for a=1
t? for @ € (0,1)

Anomalous diffusion (hyperbolic maps
Anomalous dffusive properties are associatec
deviations from linearity of the variance of the pf
variable we are looking at: this means the theudiiol
constant{5.13 either vanishes or diverges. We bri
illustrate in this exercise how the local local prope
of a map are crucial to account for anomalous beh
even for hyperbolic systems.

Consider a class of piecewise linear maps, relev:
the problem of the onset offilision, defined by

AX for xe O,xﬂ
a—Ae, X=X for xe|xj, x5
fe(®) = ¢ 1-A(x-x3) for xe|x5,x;
l-a+Agx=x7| for xe|x;, %
1+A(x-1) for xe xg,l]

whereA = (1/3 - 7)1, A’ = (1/3 - 2€'7), A, =
eV a=1+e xt = 1/3,x{ = xt—ellr, X5 = X +ellr
and the usual symmetry properti€si(1]) are satisfiet

Thus this class of maps is characterized by two esc
windows (through which the ffusion process m
take place) of size &/”: the exponeny mimicks th
order of the maximum for a continuous map, w
piecewise linearity, besides making curvatures v
and leading to finite cycle expansions, prevent:
appearance of stable cycles. The symbolic dyn:
is easily described once we consider a sequer
parameter valuege,}, wheree, = A~™D: we the
partition the unit interval though the sequence of p
0,x7, X", X5, X, X', %, 1 and label the correspond
sub—intervals 1s,, S, 2, dp, da, 3: Symbolic dynamics
described by an unrestricted grammar over the follo
set of symbols

(1,2,3,5-1,d:-39  #=ab ik=mm-


http://ChaosBook.org/PDahlqvistEscape.ps.gz

REFERENCES 412

This leads to the following dynamical zeta function:

2z z 2z z
GYza)=1-2- 2 - 4cosh@)en” ™ - (1‘ _)

limit: as a matter of fact, from23.49 we get the
_,asymptotic behavioD ~ €7, which shows how the
onset of dffusion is governed by the order of the map at
its maximum.
from which, by 4.8 we get

Uy-1, m " Remark 23.5 Onset of diffusion for continuous maps.
_ 2em” A1 1/A) (23I49'}5he zoology of behavior for continuous maps at the
1-2_1_ 45§]/V*1(L1 + onset of difusion is described in refs1p, 13, 25): our

A(I-1/A) ; D ' )
L . . L ) treatment for piecewise linear maps was introduced in
The main interest in this expression is that it allows ref. [2].

exploring howD vanishes in thee = 0 (M — o)

Am(lfl/A)Z)
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Chapter 24

Deterministic diffusion

This is a bizzare and discordant situation.
—M.V. Berry

(R. Artuso and P. Cvitanovit)

Boltzmann's mechanical formulation of statistical medbanSinai, Ruelle

and Bowen (SRB) have generalized Boltzmann’s notion ofcigity for a
constant energy surface for a Hamiltonian system in eqiulib to dissipative
systems in nonequilibrium stationary states. In this maeaegal setting the
attractor plays the role of a constant energy surface, aadSRRB measure of
sect.14.1is a generalization of the Liouville measure. Such measaregurely
microscopic and indierent to whether the system is at equilibrium, close to dayiuim
or far from it. “Far for equilibrium” in this context refer®tsystems with large
deviations from Maxwell's equilibrium velocity distriboh. Furthermore, the
theory of dynamical systems has yielded new sets of micpisctynamics formulas
for macroscopic observables such gBugiion constants and the pressure, to which
we turn now.

THE ADVANCEs in the theory of dynamical systems have brought a new life to

We shall apply cycle expansions to the analysigrahsport properties of
chaotic systems.

The resulting formulas are exact; no probabilistic assionptare made, and
the all correlations are taken into account by the inclusibeycles of all periods.
The infinite extent systems for which the periodic orbit ttyegields formulas for
diffusion and other transport déieients are spatially periodic, the global state
space being tiled with copies of a elementary cell. The ratitw are physical
problems such as beam defocusing in particle acceleratochamtic behavior
of passive tracers in @-rotating flows, problems which can be described as
deterministic ditusion in periodic arrays.

In sect.24.1 we derive the formulas for ffusion codicients in a simple
physical setting, the &-periodic Lorentz gas. This system, however, is not
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Figure 24.1: Deterministic difusion in a finite >
horizon periodic Lorentz gas. (T. Schreiber”

the best one to exemplify the theory, due to its complicatgdb®lic dynamics.
Therefore we apply the theory first tdfision induced by a -maps in sect24.2

24.1 Diffusion in periodic arrays

The 2d Lorentz gads an infinite scatterer array in whichfilision of a light
molecule in a gas of heavy scatterers is modeled by the mofiarpoint particle

in a plane bouncing f® an array of reflecting disks. The Lorentz gas is called
“gas” as one can equivalently think of it as consisting of anynber of pointlike
fast “light molecules” interacting only with the statiogdiheavy molecules” and
not among themselves. As the scatterer array is built up waiy defocusing
concave surfaces, it is a pure hyperbolic system, and orreaimplest nontrivial
dynamical systems that exhibits deterministiffuiion, figure24.1. We shall
now show that theperiodic Lorentz gas is amenable to a purely deterministic
treatment. In this class of open dynamical systems quesititiaracterizing global
dynamics, such as the Lyapunov exponent, pressure fuadidn constant, can be
computed from the dynamics restricted to the elementaly Teé method applies
to any hyperbolic dynamical system that is a periodic tilivig= | et Mp Of the
dynamical state spacé( by translatesMp of anelementary celM, with T the
Abelian group of lattice translations. If the scatteringagrhas further discrete
symmetries, such as reflection symmetry, each elementimag be built from

a fundamental domainM by the action of a discrete (not necessarily Abelian)
groupG. The symbolM refers here to the full state space, i.e.,, both the spatial
coordinates and the momenta. The spatial componeﬂﬁ of the complement of
the disks in thevholespace.

We shall now relate the dynamics M to diffusive properties of the Lorentz
gas inM.

These concepts are best illustrated by a specific examplerestz gas based
on the hexagonal lattice Sinai billiard of figu&.2 We distinguish two types
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o

Figure 24.2:  Tiling of M, a periodic lattice .
of reflecting disks, by the fundamental domain
M. Indicated is an example of a global trajectory
X(t) together with the corresponding elementary cell
trajectoryx(t) and the fundamental domain trajectory
X(t). (Courtesy of J.-P. Eckmann)

of diffusive behavior; thénfinite horizoncase, which allows for infinite length
flights, and thefinite horizoncase, where any free particle trajectory must hit a
disk in finite time. In this chapter we shall restrict our cdiesation to the finite
horizon case, with disks fiiciently large so that no infinite length free flight is
possible. In this case theftlision is normal, withx(t)? growing liket. We shall
return to the anomalousftlision case in sec24.3

As we will work with three kinds of state spaces, good mannegsiire that
we repeat what hats, tildes and nothings atop symbols gignif

~  fundamental domain, triangle in figugg.2
elementary cell, hexagon in figugd.2
full state space, lattice in figu4.2 (24.1)

Itis convenient to define an evolution operator for eacheftkases of figurg4.2
K(t) = fY(%) denotes the point in the global spa&ereached by the flow in time
t. x(t) = f!(xo) denotes the corresponding flow in the elementary cell; wte t
are related by

fi(xo) = fi(x0) - fi(x0) € T, (24.2)

the translation of the endpoint of the global path into tresreintary cellM. The
quantity X(t) = f!(X) denotes the flow in the fundamental domatiiy fY(R) is
related tof!(X) by a discrete symmetry € G which mapsx(t) € M to x(t) € M.

[chapter 19]

Fix a vectorp € RY, whered is the dimension of the state space. We will
compute the dfusive properties of the Lorentz gas from the leading eigeevaf
the evolution operatorl6.17)

@) = Jim 1 log@ ), (24.3)

where the average is over all initial points in the elemgneail, x € M.
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If all odd derivatives vanish by symmetry, there is no drifidethe second
derivatives

a 0 1 o

a—ﬂi%s(ﬁ)Lzo = Jim () ~ (KO = ) ac

yield a (generally anisotropic) filusion matrix. The spatial fision constant is
then given by the Einstein relatiof%.13

I 1 ,
D= QZ @S(ﬁ)‘ﬁ:o = lim (@0 -

where theé sum is restricted to the spatial componegptsf the state space vectors
x = (g, p), i.e., if the dynamics is Hamiltonian to the number of thgrées of
freedom.

We now turn to the connection betwee?4(3 and periodic orbits in the
elementary cell. As the fulM — M reduction is complicated by the nonabeliewe

. o ; k 24.6
nature ofG, we shall introduce the main ideas in the abellein— M context. e ]

24.1.1 Reduction fromM to M

The key idea follows from inspection of the relation

G ﬁ o DI ETI5G - ().

JeM

M| = fM dxis the volume of the elementary ce¥l. As in sect.15.2, we have
used the identity & fMdyé(y— X(t)) to motivate the introduction of the evolution
operatorL(y, X). There is a unique lattice translatiorsich thaty™= y — A, with

y € M, and f'(x) given by @4.2. The diference is a translation by a constant,
and the Jacobian for changing integration frdjnto dy equals unity. Therefore,
and this is the main point, translation invariance can bd tseeduce this average
to the elementary cell:

(OO = Wll dedyé‘”"(x)*x)a(y— £1(x)) . (24.4)
X,YE

As this is a translation, the Jacobiarsigsy = 1. In this way the globaf!(x) flow
averages can be computed by following the flid{xo) restricted to the elementary
cell M. The equationZ4.4) suggests that we study the evolution operator

Ly, x) = EONsy - F(x), (24.5)
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wherex(t) = f‘(x) e M, butx, (), y € M. Itis straightforward to check that
this operator satisfies the semigroup propetty.25,

f dzLt(y. 95 %) = Lo0(y,x) .
M

Forp = 0, the operatord4.5) is the Perron-Frobenius operatd#(10, with the
leading eigenvalue® = 1 because there is no escape from this system (this will
lead to the flow conservation sum rul&(17) later on).

The restis old hat. The spectrum 6fis evaluated by taking the trace
[section 16.2]

trLt = f dx & Ms5(x - x(t)) .
M

Hereri(X) is the discrete lattice translation defined 24 (2. Two kinds of orbits
periodic in the elementary cell contribute. A periodic orisi calledstanding

if it is also periodic orbit of the infinite state space dynasnif Te(x) = x, and

it is calledrunning if it corresponds to a lattice translation in the dynamics on
the infinite state spacefrp(x) = x+ fp. In the theory of area—preserving maps
such orbits are calledccelerator modesas the difusion takes place along the
momentum rather than the position coordinate. The trawditenceny, = fir, (o)

is independent of the starting poixy, as can be easily seen by continuing the path
periodically in M.

The final result is the spectral determinaht ©)

det(s(B) — A) = ﬂ exp[—i EMJ R (24.6)
b =1 [det(1 - mp)

or the corresponding dynamical zeta functiam.(5
B p-sTy)

1 ,S) = 1-— 24.7
126.9 U( ) (24.7)

The dynamical zeta function cycle averaging formul&.21) for the difusion
constant {5.13, zero mean drift%;) = 0, is given by

_ 1 (*2>g _1 1 Z (~1) (Ap, + -+ + Ap)?
2d(T),  2d(T), |Ap, -+ Ap, ’

(24.8)

where the sum is over all distinct non-repeating combimatioprime cycles. The
derivation is standard, still the formula is strangeff§ion is unbounded motion
across an infinite lattice; nevertheless, the reductiohgé@tementary cell enables
us to compute relevant quantities in the usual way, in terihpgodic orbits.
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Figure 24.3: (a) f(%), the full space sawtooth R
map @4.9, A > 2. (b) f(x), the sawtooth map

restricted to the unit circle2¢.12, A = 6. (a) (b) ©

A sleepy reader might protest that = x(T,) — x(0) is manifestly equal to
zero for a periodic orbit. That is correaty, in the above formula refers to a
displacement on thimfinite periodic lattice, whilep refers to closed orbit of the
dynamics reduced to the elementary cell, withbelonging to the closed prime
cyclep.

Even so, this is not an obvious formula. Globally periodibimhavex?, =0,
and contribute only to the time normalization),. The mean square displacement
<>”<2>( gets contributions only from the periodic runaway trajeiets; they are
closed in the elementary cell, but on the periodic latticeheane grows like
%(t)? = (Ap/Tp)® = VAt2. So the orbits that contribute to the trace formulas
and spectral determinants exhibit either ballistic transpr no transport at all:
diffusion arises as a balance between the two kinds of motiomghtezl by the
1/IApl measure. If the system is not hyperbolic such weights mayheranally
large, with Y|Ap| ~ 1/Tp* rather than Ay = e vl wherel is the Lyapunov
exponent, and they may lead to anomalodRudion - accelerated or slowed down
depending on whether the probabilities of the running orstlamding orbits are

enhanced. [section 24.3]

We illustrate the main idea, tracking of a globallytdsing orbit by the associated
confined orbit restricted to the elementary cell, with aglafssimple 1d dynamical
systems where all transport dbeients can be evaluated analytically.

24.2 Diffusion induced by chains of 1d maps

In a typical deterministic diusive process, trajectories originating from a given
scatterer reach a finite set of neighboring scatterers inbooece, and then the
process is repeated. As was shown in chapfethe essential part of this process

is the stretching along the unstable directions of the flowd & the crudest
approximation the dynamics can be modeled lyelpanding maps. This observation
motivates introduction of a class of particularly simplel Bystems, chains of
piecewise linear maps.
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We start by defining the maﬁon the unit interval as

o[ AR %€ [0.1/2)
f(x)‘{A>‘<+1—A ge(z1 @ A2 (24.9)

and then extending the dynamics to the entire real line, IppBing the translation
property

f(x+n) = f®+n  nezZ. (24.10)

As the map is discontinuous at= 1/2, f(1/2) is undefined, and the = 1/2
point has to be excluded from the Markov partition. The mapnssymmetric
under thex“coordinate flip

f(®) = -f(-8). (24.11)

so the dynamics will exhibit no mean drift; all odd derivatvof the generating
function (15.11) with respect t¢8, evaluated g8 = 0, will vanish.

The map 24.9) is sketched in figur@4.3(a). Initial points sticiently close
to either of the fixed points in the initial unit interval reman the elementary cell
for one iteration; depending on the slafseother points jumm tells, either to the
right or to the left. Repetition of this process generatesnalom walk for almost
every initial condition.

The translational symmetry24.10 relates the unbounded dynamics on the
real line to dynamics restricted to the elementary cell hinexample at hand, the
unit interval curled up into a circle. Associated ﬁ(f() we thus also consider the
circle map

f=fR-[f®], x=%-[0e[01] (24.12)

figure 24.3(b), where [- ] stands for the integer par24.2). As noted above, the
elementary cell cycles correspond to either standing aringnorbits for the map
on the full line: we shall refer tay € Z as thumping numbeof the p cycle, and
take as the cycle weight

tp = 2P /|A . (24.13)

For the piecewise linear map of figub&.3we can evaluate the dynamical zeta
function in closed form. Each branch has the same value ofltpe, and the
map can be parameterized by a single parameter, for exatspdeitical value
a= f(1/2), the absolute maximum on the interval Prelated to the slope of the
map bya = A/2. The largerA is, the stronger is the stretching action of the map.
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The difusion constant formula2é.8) for 1-d maps is

D=:—* (24.14)

where the “mean cycle time” is given b§&.22

1

0 K Mpy + -+ Np,
) Z (- (24.15)

z=1 |Apl : Apkl

Ny, =
and the “mean cycle displacement squared” 18.25

fz (ot Do i)’ (24.16)

o &
()= 36D Aoy Apd

the primed sum indicating all distinct non-repeating camakions of prime cycles.
The evaluation of these formulas in this simple system wijjuire nothing more
than pencil and paper.

24.2.1 Case of unrestricted symbolic dynamics

WheneverA is an integer number, the symbolic dynamics is exceedinigipls.
For example, for the casé = 6 illustrated in figure24.3 (b), the elementary
cell map consists of 6 full branches, with uniform stretchfactorA = 6. The
branches have fierent jumping numbers: for branches 1 and 2 we Imeyed; for
branch 3 we hava = +1, for branch 4= —1, and finally for branches 5 and 6 we
have respectivelp = +2 andrf = —2. The same structure reappears whenavier
an even integeA = 2a: all branches are mapped onto the whole unit interval and
we have twan™= 0 branches, one branch for whioh="+1 and one for whictm =
-1, and so on, up to the maximal jurfijp = a— 1. The symbolic dynamics is thus
full, unrestricted shift in asymbols{0,, 1., ..., (@-1),, (a—1)_, ..., 1., 0_},
where the symbol indicates both the length and the directidhe corresponding
jump.

For the piecewise linear maps with uniform stretching théghveassociated

with a given symbol sequence is a product of weights for iiddial stepstsq =
tstq. For the map of figur@4.3there are 6 distinct weight£4.13:

t1 = th =2z/A
ts = fzZ/A, ti=ePz/A, ts=€PzZA, tsg=ePz/A.

The piecewise linearity and the simple symbolic dynamiesd ke the full cancellation
of all curvature corrections inlg.7). Theexactdynamical zeta function13.13
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is given by the fixed point contributions:

1/¢B.2 = 1-ty, —to. =+ —t@1), —ta1).
z a-1
= 1-2|1+ ) coshgj)|. (24.17)
a = Figure 24.4: (a) A partition of the unit interval
into six intervals, labeled by the jumping number
Ax) I = {0,,1,,2,,2.,1.,0_}. The partition is
The leading (and only) eigenvalue of the evolution opergtdrs) is Markov, as the critical point is mapped onto the

right border ofM, . (b) The Markov graph for this
partition. (c) The Markov graph in the compact
notation of @4.29 (introduced by Vadim Moroz). (@) (b)

a-1
s(B) = Iog{% [1 + Z coshﬁj)]} s A = 2a, ainteger. (24.18)
=1

the onlyB cosdficient diferent from zero would b8, = D. Hence, nonvanishing
The flow conservation20.17) sum rule is manifestly satisfied, s(0) = 0. The higher order coficients signal deviations of deterministid¢fdision from a Gaussian

first derivatives(0) vanishes as well by the lgfight symmetry of the dynamics, stochastic process.
implying vanishing mean driftXy = 0. The second derivative(3)” yields the

diffusion constantz4.14): For the map under consideration the first Burnettfitcient codficient By is

easily evaluated. For example, usiryt(19 in the case of even integer slope

1 o2 0? 12 22 (a-1y A =2awe obtain [exercise 24.2]
(W =2a% =1, <X>::2X+2X+2X+'”+2 (24.19)

By = —4'—160(a —1)(2a-1)(4a® - 9a+7). (24.24)
Using the identityyy_; k? = n(n+ 1)(2n + 1)/6 we obtain .

We see that deterministic filision is_nota Gaussian stochastic process. Higher

D = 2i4(A -1)(A-2), A even integer (24.20) order even ca@cients may be calculated along the same lines.
Similar calculation for odd integex = 2k — 1 yields ) - .
9 y [exercise 24.1] 24.2.3 Case of finite Markov partitions
1,5 .
D= 2_4(A -1, A odd integer (24.21) For piecewise-linear maps exact results may be obtainedheviee the critical
points are mapped in finite numbers of iterations onto pamntiboundary points,
) ) or onto unstable periodic orbits. We will work out here anragée for which this
24.2.2 Higher order transport codficients occurs in two iterations, leaving other cases as exercises.
The same approach yields higher order transporfficients The key idea is to constructMarkov partition(10.4), with intervals mapped
onto unions of intervals. As an example we determine a value optrameter
1 4 < A < 6forwhichf (f(1/2)) = 0. Asin the integen case, we partition the unit
By = T_ks(ﬂ) , B,=D, (24.22) interval into six intervals, labeled by the jumping numhéx) e {Mo,, M1, , Mo, Mo , M1, Mo_},
ki ds =0 ordered by their placement along the unit interval, figdet (a).
known fork > 2 as the Burnett cdicients. The behavior of the higher order In general the critical valua = f(1/2) will not correspond to an interval
codficients yields information on the relaxation to the asymiptdistribution border, but now we choosesuch that the critical point is mapped onto the right
function generated by theftlisive process. Herm is the relevant dynamical border of My,. Equatingf(1/2) with the right border ofMy,, x = 1/A, we
variable andBy’s are related to momen(s‘({() of arbitrary order. obtain a quadratic equation with the expanding solutbor= 2(V2 + 1). For
) ) this parameter valué(Mi,) = Mo, U M1,, T(M2) = Mo U My, while the
Were the difusive process purely Gaussian remaining intervals map onto the whole unit interyell. The transition matrix
g - L f ™ dx eIy _ o (24.23)
VanDt J-w
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(10.2) is given by

1 ( ¢o,
1| o1,
1| ¢2,
e |- (24.25)
1 o1
$o

[ = S R
PR R R R
CoOO0OO0ORrRR
PP, OOOOoO
N e e )

One could diagonalize2¢.25 on a computer, but, as we saw in sel.4, the
Markov graph figure24.4(b) corresponding to figur24.4 (a) dfers more insight
into the dynamics. The graph figued.4 (b) can be redrawn more compactly as
Markov graph figure4.4(c) by replacing parallel lines in a graph by their sum

@ —e>rme=lth+ls (24.26)

The dynamics is unrestricted in the alphabet
A= {0+a 1+s 2+O+a 2+1+s 2—1—7 2—0—, 1—7 0—}

Applying the loop expansionl@.13 of sect.13.3 we are led to the dynamical
zeta function

1/¢B.2 = 1-tg, —t1, —tr0, —t2,1, —t21 —tro —t1 —to

= 1- 2XZ(1+ coshp)) — i—zz (cosh(®) + cosh(B)) . (24.27)

For grammar as simple as this one, the dynamical zeta funitithe sum over
fixed points of the unrestricted alphabet. As the first chedkie expression for
the dynamical zeta function we verify that

4 4
1/£(0,1) _17X7F =0,

as required by the flow conservatioh0(11). Conversely, we could have started
by picking the desired Markov partition, writing down ther@sponding dyn-
amical zeta function, and then fixing by the /£(0, 1) = 0 condition. For more
complicated Markov graphs this approach, together witlidgbtrization 24.39,

is helpful in reducing the order of the polynomial conditidat fixesA.

The ditusion constant follows fron2@.14) [exercise 24.3]

12 2 1?2 22 | F
<n>{ = 4x+4p, <n>l:2X+2P+2p
15+2V2. (24.28)
16+8v2
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It is by now clear how to build an infinite hierarchy of finite Kkav partitions:
tune the slope in such a way that the critical vafi#/2) is mapped into the fixed
point at the origin in a finite number of iteratiopsf®(1/2) = 0. By taking higher

and higher values op one constructs a dense set of Markov parameter values,
organized into a hierarchy that resembles the way in whitbnals are densely
embedded in the unit interval. For example, each of the 6 gwnintervals

can be subdivided into 6 intervals obtained by the 2-nd tikecd the map, and

for the critical point mapping into any of those in 2 steps grammar (and

the corresponding cycle expansion) is finite. So, if we cavercontinuity of

D = D(A), we can apply the periodic orbit theory to the sawtooth n2apJj for
arandom “generic” value of the parameterfor exampleA = 4.5. The idea is to
bracket this value oi by a sequence of nearby Markov values, compute the exact
diffusion constant for each such Markov partition, and studyr tenvergence
toward the value ob for A = 4.5. Judging how dficult such problem is already
for a tent map (see sedt3.6), this is not likely to take only a week of work.

Expressions like34.20 may lead to an expectation that th&dsion codicient
(and thus transport properties) are smooth functions cdmpeters controlling
the chaoticity of the system. For example, one might exgeat the dffusion
codficient increases smoothly and monotonically as the slopéthe map 24.9
is increased, or, perhaps more physically, that tifteision codficient is a smooth
function of the Lyapunov exponent. This turns out not to be trueD as a
function of A is a fractal, nowhere fiierentiable curve illustrated in figut.5
The dependence @ on the map parametéy is rather unexpected - even though
for larger A more points are mapped outside the unit cell in one iteratioa
diffusion constant does not necessarily grow.

Thisis a consequence of the lack of structural stabilitygnesf purely hyperbolic
systems such as the Lozi map and thetdiffusion map 24.9. The trouble arises
due to non-smooth dependence of the topological entropysters parameters
- any parameter change, no mater how small, leads to creatidnlestruction of
infinitely many periodic orbits. As far asftlision is concerned this means that
even though local expansion rate is a smooth function,ahe number of ways
in which the trajectory can re-enter the the initial cell isigegular function of
A.

The lesson is that lack of structural stability implies ladlspectral stability,
and no global observable is expected to depend smoothlye®ystem parameters.
If you want to master the material, working through one of tle¢erministic
diffusion projects onChaosBook. org/pages is strongly recommended.

24.3 Marginal stability and anomalous dffusion

What dfect does the intermittency of chapt3 have on transport properties of
1-d maps? Consider a-1d map of the real line on itself with the same properties
as in sect24.2, except for a marginal fixed point at= 0.

A marginal fixed point fects the balance between running and standing orbits,
thus generating a mechanism that may result in anomaldiusidin. Our model
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Figure 24.5: The dependence dd on the map 0.805
parametea s continuous, but not monotone (from 6 62 64 66 68 7 56
ref. [8]). Herea stands for the slopa in (24.9. a

example is the map shown in figued.6 (a), with the corresponding circle map

shown in figure24.6 (b). As in sect.23.2.], a branch with support i, i =
1,2,3,4 has constant slop&;, while f|,,, is of intermittent form. To keep you

nimble, this time we take a slightly filerent choice of slopes. The toy example

of sect.23.2.1was cooked up so that th¢<dbranch cut in dynamical zeta func-
tion was the whole answer. Here we shall take a slightifecént route, and pick
piecewise constant slopes such that the dynamical zetéidorfor intermittent
system can be expressed in terms of the Jonquiére function

5.62 5.64 5.66

[remark 24.8]

Jzs) = i /K (24.29)
k=1

Once theD fixed point is pruned away, the symbolic dynamics is given by

the infinite alphabetl, 2,3,4,0'1,0i2,03,0'4}, i, j. k.| = 1,2,... (compare with
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172

Figure 24.6: (a) A map with marginal fixed point.

4

(b) The map restricted to the unit circle. (a) (b) -172
table 23.3. The partitioning of the subintervalio is induced byMgighy =
¢Ei ht) (Mz U My) (whereg(rigny denotes the inverse of the right branchfb{,to)

and the same reasoning applies to the leftmost branch. HEresegions over
which the slope ofﬂM0 is constant. Thus we have the following stabilities and
jumping numbers associated to letters:

K k1+rv a

03,04  Ap=kz =1
| | _ |1+(y o
01,02 Ap_—q/2 A, = -1

P
34  Ap=#A fp=1
21 Ap=:A By (24.30)

wheree = 1/sis determined by the intermittency exponed8 (l), while g is to
be determined by the flow conservatictd(1]) for f: —PCdefineR

%+2q§(a+l):l

so thatg = (A—4)/2A{(e+1). The dynamical zeta function picks up contributions
just by the alphabet’s letters, as we have imposed piecdinisarity, and can be
expressed in terms of a Jonquiere functian.p9:

4
1/{o(zB) = 1 - —zcoshp -

A mzcosh& Jza+1).

(24.31)

Its first zeroz(p) is determined by

4 A-4

XZ+ mZ' J(Z,(l+ 1) =

o
coshB ”
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By using implicit function derivation we see thtvanishes (i.e.z’(8)|s-1 = 0)
whena < 1. The physical interpretation is that a typical orbit wiick for long
times near thé marginal fixed point, and the ‘trapping time’ will be largfer
higher values of the intermittency parametérecalla = s™1). Hence, we need to
look more closely at the behavior of traces of high powersefttansfer operator.

The evaluation of transport cfigient requires one more derivative with respect
to expectation values of state space observables (see2debt. if we use the
diffusion dynamical zeta functio24.7), we may write the dfusion codicient as
an inverse Laplace transform,in such a way that any dighimétetween maps and
flows has vanished. In the case ofl Hiffusion we thus have

2 a+ico /
D = fim 2 1f dsetG:9

m 55 201 Jo 9% 59 (24.32)

=0
where the” refers to the derivative with respect $o

The evaluation of inverse Laplace transforms for high \&lofethe argument
is most conveniently performed using Tauberian theorenesshill take

w(d) = fom dxeu(x),

with u(x) monotone ak — oo; then, ast — 0 andx +— oo respectively (and
p €(0,00),

1 (1
if and only if

u(x) ~ 1"_(1p) X¥IL(X),

whereL denotes any slowly varying function with lim., L(ty)/L(t) = 1. Now

Y (€5h) (% + "As U(es,a + 1)+ J(e75,))) coshp
1/o(esB) ~ 1- 4escoshp - A€ (€S a+ 1) coshpd |

We then take the double derivative with respegs emd obtain

d2
7 (Vo' € B)1HE>B),

44 DA (J(eS o+ 1)+ IS a))
_ AT X = gu(9) (24.33)

, P
(1-4es- FhyesdEsa+1)
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The asymptotic behavior of the inverse Laplace transfa2fh3?) may then be
evaluated via Tauberian theorems, once we use our estimatlef behavior of
Jonquiére functions near= 1. The deviations from normal behavior correspond
to an explicit dependence Bfon time. Omitting prefactors (which can be calculated
by the same procedure) we have

s2 for a>1
0u(9) ~ { s for « € (0,1)
1/($Ins) for @ =1.

The anomalous éiusion exponents follow:

t for a>1
((X= %) ~ { t° for @ € (0,1) (24.34)
t/Int for a=1.

Résum é

With initial data accuracyx = [6x(0)| and system sizk, a trajectory is predictable
only to thefinite Lyapunov time

1
TLyap ® - In|6x/L]|,

Beyond the Lyapunov time chaos rules. Successes of chaos/thstatistical
mechanics, quantum mechanics, and questions of long teiiitst in celestial
mechanics.

Tabletop experiment: measurecroscopic transport diffusion, conductance,
drag — observe thus determinism menoscales

Chaos: whatis it good for? TRANSPORTMeasurable predictions: washboard
mean velocity figur@4.7(a), cold atom lattice figur4.7(b), AFM tip drag force
figure24.7(c).

That Smale’s “structural stability” conjecture turned eotbe wrong is not
a bane of chaotic dynamics - it is actually a virtue, perhdggsmost dramatic
experimentally measurable prediction of chaotic dynamAsslong as microscopic
periodicity is exact, the prediction is counterintuitiver fa physicist - transport
codficients arenot smooth functions of system parameters, rather they are non-
monotonic,nowhere dfferentiablefunctions.

The classical Boltzmann equation for evolution of 1-péetidensity is based
on stosszahlansatneglect of particle correlations prior to, or after a 2tjude
collision. It is a very good approximate description of t#lgas dynamics, but
a difficult starting point for inclusion of systematic correcsonin the theory

diffusion - 2sep2002.tex

[exercise 24.6]



Figure 24.7: (a) Washboard mean velocity, (b)
cold atom lattice, and (c) AFM tip drag force. (Y.

Lan)
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@

| e© % o

(b) sin@ t)

frequency Q

(c) velocity

developed here, no correlations are neglected - they anechided in the cycle
averaging formula such as the cycle expansion for tiesion constant

1 1 ’ An+---)(Ap +---+ 0N 2
D= __Z (_1)k+1( p+-) (Ap, )
2d (), Ao [Ap - Apd

Such formulas arexact the issue in their applications is what are the most
effective schemes of estimating the infinite cycle sums reddicetheir evaluation.
Unlike most statistical mechanics, here there are no phenotogical macroscopic
parameters; quantities such as transporffizients are calculable to any desired
accuracy from the microscopic dynamics.

Though superficially indistinguishable from the probaditi random walk
diffusion, deterministic diusion is quite recognizable, at least in low dimensional

settings, through fractal dependence of tHeudion constant on the system parameters,

and through non-Gaussion relaxation to equilibrium (nanishing Burnett cdécients).

For systems of a few degrees of freedom these results argaous footing,
but there are indications that they capture the essenti@mdics of systems of
many degrees of freedom as well.

Actual evaluation of transport cfiients is a test of the techniques developed
above in physical settings. In cases of severe pruning #ue tformulas and
ergodic sampling of dominant cycles might be mofieetive strategy than the
cycle expansions of dynamical zeta functions and systereatimeration of all
cycles.
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Commentary

Remark 24.1 Lorentz gas. The original pinball model proposed by Lorent} §onsisted
of randomly, rather than regularly placed scatterers.

Remark 24.2 Who's dunit? Cycle expansions for thefllision constant of a particle
moving in a periodic array have been introduced indepemgbgtR. Artuso [] (exact
dynamical zeta function for #l-chains of maps24.9), by W.N. Vance {],and by P.
Cvitanovi¢, J.-P. Eckmann, and P. Gaspaidthe dynamical zeta function cycle expansion
(24.9 applied to the Lorentz gas).

Remark 24.3 Lack of structural stability for D.  Expressions like44.20 may lead to
an expectation that the filision codicient (and thus transport properties) are smooth
functions of the chaoticity of the system (parameterized eikample, by the Lyapunov
exponenfl = In A). This turns out not to be tru@ as a function of\ is a fractal, nowhere
differentiable curve shown in figugel.5 The dependence &f on the map parametéris
rather unexpected - even though for largemore points are mapped outside the unit cell
in one iteration, the diusion constant does not necessarily grow. The fractal digrere

of diffusion constant on the map parameter is discussed in f&fs, [.0]. Statistical
mechanicians tend to believe that such complicated beh&vioot to be expected in
systems with very many degrees of freedom, as the additiaridoge integer dimension
of a number smaller than 1 should be as unnoticeable as asoapiz perturbation of a
macroscopic quantity. No fractal-like behavior of the codiivity for the Lorentz gas has
been detected so fat [].

Remark 24.4 Diffusion induced by 1-d maps. We refer the reader to refs.%, 13] for
early work on the deterministic fiusion induced by 1-dimenional maps. The sawtooth
map @4.9 was introduced by Grossmann and Fujisaké] who derived the integer
slope formulas Z4.2Q for the difusion constant. The sawtooth map is also discussed
in refs. [15].

Remark 24.5 Symmetry factorization in one dimension. Intheg = 0 limit the dynamics
(24.17) is symmetric under — —x, and the zeta functions factorize into products of zeta
functions for the symmetric and antisymmetric subspacedeacribed in sect9.1.1

L1 1 01191 131 -

(02 W09 &0 820 028 ladzls’

The leading (material flow conserving) eigenvatue 1 belongs to the symmetric subspace
1/¢4(0,1) = 0, so the derivative2¢.15 also depend only on the symmetric subspace:

1 1 0 1

(= 22 (24.36)

972002y~ (0.2 92 70.2) lpy

Implementing the symmetry factorization is convenient, it essential, at this level of
computation.
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length | # cycles Z(0,0) 1]

1 5[ -1.216975 -

2 10 | -0.024823| 1.745407

3 32| -0.021694| 1.719617

4 104 | 0.000329| 1.743494

5 351 | 0.002527| 1.760581

6 1243 | 0.000034| 1.756546

Table 24.1: Fundamental domain, 0.3 .

Remark 24.6 Lorentz gas in the fundamental domain.  The vector valued nature of
the generating functior?@.3 in the case under consideration makesfiidilt to perform

a calculation of the diusion constant within the fundamental domain. Yet we poutit o
that, at least as regards scalar quantities, the full réatutd M leads to better estimates.
A proper symbolic dynamics in the fundamental domain has irgeoduced in ref. 16].

In order to perform the full reduction for fiusion one should express the dynamical
zeta function 24.7) in terms of the prime cycles of the fundamental domainof the
lattice (see figur@4.2 rather than those of the elementary (Wigner-Seitz) 8¢l This
problem is complicated by the breaking of the rotational syetry by the auxiliary vector
B, or, in other words, the non-commutativity of translati@amsl rotations: see ref/].

Remark 24.7 Anomalous diffusion. ~Anomalous difusion for 1€ intermittent maps
was studied in the continuous time random walk approachf fe0, 11]. The first
approach within the framework of cycle expansions (basetwrtated dynamical zeta
functions) was proposed in ref.]]. Our treatment follows methods introduced in réfd]
applied there to investigate the behavior of the Lorentagtisunbounded horizon.

Remark 24.8 Jonquiére functions. In statistical mechanics Jonquiére functions

Iz = i /s (24.37)
k=1

appear in the theory of free Bose-Einstein gas, see r&is2].
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Exercises
24.1. Diffusion for odd integer A. Show that when the 24.6. Accelerated difusion. ~ Consider a mayh, such th:

24.2.

24.3.
24.4.

24.5.

slopeA = 2k—11in (24.9 is an odd integer, the fiusion
constant is given byD = (A? — 1)/24, as stated in
(24.29).

Fourth-order transport coefficient.  Verify (24.29.
You will need the identity

DK = in(m 1)(2n+ 1)(3n% + 3n - 1).
L 30

Finite Markov partitions.  Verify (24.29.

Maps with variable peak shape:
Consider the following piecewise linear map

h = f of figure 24.6 (b), but now running branct
are turner into standing branches and vice versa, ¢
1,2,3,4 are standing while 0 leads to both positive
negative jumps. Build the corresponding dynamica
function and show that

t for @ >2

tint for a =2
o2t ~{ 5 for ae(1,2)

t?/Int for a=1

t2 for a € (0,1)

= for xe o,%(lig)y. Rec?urrence timels for Lorentz gas V\{ith infinit

fo(x) = 4 (2|40 _ for xe|l(1-0),1 2 hagigo a. onsider the Lorentz gas with unboun
59 i (g 12 12 ; 2(2 ) ?( h%?li]iogwné;square lattice geometry, with disk ra
- 55 (x=§@+9) for xe[§2+0).3] g and unit lattice spacing. Label disks accordin

and the mapin [12, 1] is obtained by antisymmetry with
respect tox = 1/2,y = 1/2. Write the corresponding

dynamical zeta function relevant tofiision and then
show that

_6(2+9)

T 4(1-9)

See refs. 18, 19 for further details.
Two-symbol cycles for the Lorentz gas. Write down

all cycles labeled by two symbols, such as (0 6), (1 7),

(15) and (0 5).

ChaosBook.org/pages offers several project-length

deterministic difusion exercises.
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Chapter 25

Turbulence?

I am an old man now, and when | die and go to Heaven
there are two matters on which | hope enlightenment. One
is quantum electro-dynamics and the other is turbulence of
fluids. About the former, | am rather optimistic.

—Sir Horace Lamb

HERE IS ONLY ONE honorable cause that would justify sweating through so mucl

I formalism - this is but the sharpening of a pencil in ordet theamay attack 0%
the Navier-Stokes equation,

p(i;—l:+u'Vu):—Vp+vV2u+f, (25.1)

and solve the problem of turbulence.

Flows described by partial fierential equations [PDEs] are said to be ‘infinite
dimensional’ because if one writes them down as a set of argidifferential
equations [ODES], one needs infinitely many of them to reprethe dynamics
of one partial diterential equation. Even though the state space is infinite--
dimensional, the long-time dynamics of many systems ofighygterest is finite-
dimensional, contained within anertial manifold

Being realistic, we are not so foolhardy to immediately gielimtotheproblem
—there are too many dimensions and indices. Instead, wesstall, in one spatial
dimensionu — u, u- Vu — udy, assume constapt forget about the pressupe
and so on. This line of reasoning, as well as many other ggsefisible threads of
thought, such as the amplitude equations obtained via weekilinear stability
analysis of steady flows, leads to a small set of frequentigistl nonlinear PDEs,
like the one that we turn to now.
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25.1 Fluttering flame front

Romeo: ‘Misshapen chaos of well seeming forms!’
—W. Shakespear&omeo and JullietAct I, Scene |

The Kuramoto-Sivashinsky [KS] system describes the flaroet filutter of
gas burning on your kitchen stove, figu2g.1(a), and many other problems of
greater import, is one of the simplest nonlinear systemisetkaibit ‘turbulence’

(in this context often referred to more modestly as ‘spatigtiorally chaotic behavior’).

The time evolution of the ‘flame front velocityl = u(x,t) on a periodic domain
u(x,t) = u(x + L,t) is given by

Ut + %(UZ)X + Uxx + Uxxxx = 0, xe[0,L]. (25.2)

In this equatiort is the time and is the spatial coordinate. The subscrip@ndt
denote partial derivatives with respectt@andt: u; = du/dd, uxxxx Stands for the
4th spatial derivative ofi = u(x,t) at positionx and timet. In what follows we
use interchangeably the “dimensionless system dizedr the periodic domain
sizelL = 2z[, as the system parameter. We take note, as in the NavieesStok
equation 25.1), of the “inertial” termudyu, the “anti-difusive” terma2u (with a
“wrong” sign), etc..

The term (?)x makes this anonlinear system This is one of the simplest
conceivable nonlinear PDE, playing the role in the theorgptially extended
systems a bit like the role that thé nonlinearity plays in the dynamics of iterated
mappings. The time evolution of a typical solution of the Kmoto-Sivashinsky[
system is illustrated by figurg5.1(b).

Spatial periodicityu(x,t) = u(x + L,t) makes it convenient to work in the
Fourier space,

u(x.t) = i a(t)dt (25.3)

k=—00

with the 1-dimensional PDE26.2) replaced by an infinite set of ODEs for the
complex Fourier cacientsa(t):

. . . . k +00
&= W(@) = ((k/L)? - (k/D)*) ax - 5T n;W Bmk-m- (25.4)

Sinceu(x, t) is real,a = a*, , and we can replace the sum 5(10 by a sum
overk > 0.

Due to the hyperviscous dampingxxx long time solutions of Kuramoto-
Sivashinsky equation are smoodh drop df fast withk, and truncations of45.10
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Figure 25.1:(a) Kuramoto-Sivashinsky dynamics
visualized as the Bunsen burner flame flutter, with
u = u(xt) the “velocity of the flame front” at
position x and timet. (b) A typical “turbulent”
solution of the Kuramoto-Sivashinsky equation,
system sizeL = 8886. The color (gray scale)
indicates the value ofi at a given position and

instant in time. Thex coordinate is scaled with e
the most unstable wavelengthr 92, which is \
approximately also the mean wavelength of th

turbulent flow. The dynamics is typical of a
large system, in this case approximately 10 mea
wavelengths wide. (from refl[]) - -

! 5 6
@) o/ (27V/2)
(b)

to N terms, 16< N < 128, yield highly accurate solutions for system sizes
considered here. Robustness of the Fourier representaftigt® as a function
of the number of modes kept in truncations 25 (10 is, however, a subtle issue.
Adding an extra mode to a truncation of the system introdacesall perturbation.
However, this can (and often will) throw the dynamics intoifiedent asymptotic
state. A chaotic attractor fod = 15 can collapse into an attractive period-3 cycle
for N = 16, and so on. If we compute, for example, the Lyapunov expone
A(L, N) for a strange attractor of the syste@5(10), there is no reason to expect
A(L, N) to smoothly converge to a limit valug(L, «) asN — oo, because of
the lack of structural stability both as a function of trutiea N, and the system
size[. The topology is more robust fdrwindows of transient turbulence, where
the system can be structurally stable, and it makes sensantpute Lyapunov
exponents, escape rates, etc., for the repeller, i.e.,|tisere of the set of all
unstable periodic orbits.

Spatial representations of PDEs (such as thes@apshots of velocity and
vorticity fields in Navier-Stokes)fter little insight into detailed dynamics of low-
Reflows. Much more illuminating are the state space repreienta

The objects explored in this paper: equilibria and shor!qtm orbits, are
robust both under mode truncations and small system pagainehanges.

25.1.1 Scaling and symmetries

The Kuramoto-Sivashinsky equatia?5(2) is space translationally invariant, time
translationally invariant, and invariant under reflectior> —x, u — —u.

Comparingy and (%), terms we note that has dimensions o] /[t], henceu
is the “velocity,” rather than the “height” of the flame fromhdeed, the Kuramoto-
Sivashinsky equation is Galilean invariant:uifx, t) is a solution, thev + u(x +
2vt, ), with v an arbitrary constant velocity, is also a solution. Withtogts of
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generality, in our calculations we shall work in the mearoassiocity frame This is the infinite set of ordinary fierential equations promised in this chapter’s

introduction.
fdxu: 0. (25.5) Sinceu(x, 1) is real,bx = b*, , so we can replace the sum ovein (25.10 by
a sum ovem > 0. Asby = 0, by is a conserved quantity, in our calculations fixed

. ) ) ) to by = 0 by the vanishing meafu) condition @5.5) for the front velocity.
In terms of the system sidg the only length scale available, the dimensions

of terms in 5.9 are [x] = L, [t] = L2, [u] = L%, [v] = L2. Scaling out the

“viscosity” v Example 25.1 Kuramoto-Sivashinsky antisymmetric subspace: The Fourier
coefficients by are in general complex numbers. We can isolate the antisymmetric
B 1 subspace u(x,t) = —u(—x,t) by considering the case of by pure imaginary, by = ia,
X—Xxv2, t-oty, u-uw 2, where ax = —a_ are real, with the evolution equations
+00
brings the Kuramoto-Sivashinsky equati@® (2 to a non-dimensional form a = (k/0)? (1 - (k/ E)z)ak - (k/D) Z amak_m- (25.11)
M=—o0

1 ~ . ) . ) )
Up = (U2)x — Uy — Usscxs x € [0,Lyv"2] = [0, 2rL]. (25.6) By picking this subspace we eliminate the continuous translational symmetry from our
considerations; that is not an option for an experimentalist, but will do for our purposes.

In the antisymmetric subspace the translational invariance of the full system reduces

In this way we trade in the “viscosityy and the system sizk for a single
dimensionless system size parameter

L=L/(2rvy) (25.7)

which plays the role of a “Reynolds number” for the Kuram@&toashinsky system.
In the literature sometimédsis used as the system parameter, wiftixed to 1,
and at other timesis varied withL fixed to either 1 or 2. To minimize confusion,
in what follows we shall state results of all calculationsuinits of dimensionless
system sizd_. Note that the time units also have to be rescaled; for exanifpl

Ty is a period of a periodic solution o2§.2) with a givenv andL = 2r, then the
corresponding solution of the non-dimensionalized.§) has period

To=Ty/v. (25.8)

25.1.2 Fourier space representation

Spatial periodic boundary conditiargx, t) = u(x + 2L, t) makes it convenient to
work in the Fourier space,

= ) b (25.9)

k=—00

with (25.6) replaced by an infinite tower of ODEs for the Fourier fiméents:

b = (k/D)? (1 - (k/D)?) b + i(k/D) f Dbk - (25.10)
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to the invariance under discrete translation by half a spatial period L. In the Fourier

representation (25.11) this corresponds to invariance under

8m — Azm, Boms1 — —A2mi1- (25.12)

The antisymmetric condition amounts to imposing u(0,t) = O boundary condition.

25.2 Infinite-dimensional flows: Numerics

The trivial solutionu(x, t) = 0 is an equilibrium point ofZ5.2), but that is basically
all we know as far as useful analytical solutions are corexbrifo develop some
intuition about the dynamics we turn to numerical simulasio

How are solutions such as figue®.1 (b) computed? The salient feature of
such partial dferential equations is a theorem saying that for state spanteacting
flows, the asymptotic dynamics is describable liynie set of “inertial manifold”
ordinary diferential equations. How you solve the equati®f.®) numerically is
up to you. Here are some options:

Discrete mesh:You can divide thecinterval into a séficiently fine discrete grid of
N points, replace space derivatives #5(2 by approximate discrete derivatives,
and integrate a finite set of first orderfférential equations for the discretized
spatial components;(t) = u(jL/N,t), by any integration routine you trust.

Fourier modes: You can integrate numerically the Fourier mod#s. (0, truncating
the ladder of equations to a finite number of molege., set = O fork > N. In

the applied mathematics literature more sophisticateiénar of such truncations
are calledGalerkin truncationsor Gélerkin projections You need to worry about
“stiffness” of the equations and the stability of your integrafar. the parameter
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Figure 25.3:
dimensional

dimensional subspaces, coordinategda)az. as},
(b) {a1, @, a4}. System size. = 2.89109,N = 16

Figure 25.2: Spatiotemporally periodic solution
Uo(x, t), with periodT, = 30.0118 . The antisymmetric
subspaceu(x, t) = —u(—x,t), so we plotx € [0, L/2].
System sizel = 2.89109,N = 16 Fourier modes
truncation. (From ref.4])

Projections of a typical 16-
trajectory onto filerent 3-

Fourier modes truncation. (From ref]])

values explored in this chapter, truncatiddsn range 16 to 64 yields $iicient
accuracy.

Pseudo-spectral methods:You can mix the two methods, exploiting the speed
of Fast Fourier Transforms.

Example 25.2 Kuramoto-Sivashinsky simulation, antisymmetric subspac e: To
get started, we setv = 0.02991Q L = 2x in the Kuramoto-Sivashinsky equation (25.2),
or, equivalently, v = 1, L = 36.33052in the non-dimensionalized (25.6). Consider
the antisymmetric subspace (25.11), so the non-dimensionalized system size is L=
L/4r = 2.89109 Truncate (25.11) to 0 < k < 16, and integrate an arbitrary initial
condition. Let the transient behavior settle down.

Why this L? For this system size L the dynamics appears to be chaotic, as
far as can be determined numericall. Why N = 16? In practice one repeats the
same calculation at different truncation cutoffs N, and makes sure that the inclusion of
additional modes has no effect within the desired accuracy. For this system size N = 16
suffices.

Once a trajectory is computed in Fourier space, we can recover and plot the
corresponding spatiotemporal pattern u(x,t) over the configuration space using (25.9),
as in figure 25.1 (b) and figure 25.2. Such patterns give us a qualitative picture of
the flow, but no detailed dynamical information; for that, tracking the evolution in a
high-dimensional state space, such as the space of Fourier modes, is much more
informative.

25.3 Visualization

The problem with high-dimensional representations, suchruncations of the
infinite tower of equations25.10, is that the dynamics is fiicult to visualize.

The best we can do without much programming is to examinertjectory’s [
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-1.38

ug(n+1)
&

Figure 25.4: The attractor of the Kuramoto-
Sivashinsky system 26.10, plotted as theas 1
component of thea; = 0 Poincaré section return -14s
map. Here 10,000 Poincaré section returns of a typic

trajectory are plotted. Also indicated are the periodi 1
points 0, 1, 01 and 10. System size= 2.89109, B T e e
N = 16 Fourier modes truncation. (From ref].) ag(n)

projections onto any three axasa;, a, as in figure25.3

The question is: how is one to look at such a flow? Itis not dleatrrestricting
the dynamics to a Poincaré section necessarily helpsr-alfte section reduces
a (d + 1)-dimensional flow to a-dimensional map, and how much is gained by
replacing a continuous flow in 16 dimensions by a set of paini$ dimensions?
The next example illustrates the utility of visualizatiohdynamics by means of
Poincaré sections.

Example 25.3 Kuramoto-Sivashinsky Poincar é return maps: Consider the
Kuramoto-Sivashinsky equation in the N Fourier modes representation. We pick (arbitrarily)
the hyperplane a; = 0 as the Poincaré section, and integrate (25.10) witha; = 0, and an
arbitrary initial point (ay, ..., an). When the flow crosses the ay = 0 hyperplane in the
same direction as initially, the initial point is mapped into (&,,...a)) = P(az,...,an)-
This defines P, the Poincaré return map (3.1) of the (N — 1)-dimensional a; = 0
hyperplane into itself.

Figure 25.4 is a typical result. We have picked - again arbitrarily - a subspace
such as ag(n + 1) vs. ag(n) in order to visualize the dynamics. While the topology of the
attractor is still obscure, one thing is clear: even though the flow state space is infinite
dimensional, the attractor is finite and thin, barely thicker than a line.

The above example illustrates why a Poincaré section givesre informative
snapshot of the flow than the full flow portrait. While no fineisture is discernible
in the full state space flow portraits of the Kuramoto-Sivasky dynamics, figur@5.3
the Poincaré return map figue®.4reveals the fractal structure in the asymptotic
attractor.

In order to find a better representation of the dynamics, we tuon to its
topological invariants.

25.4  Equilibria of equilibria

(Y. Lan and P. Cvitanovic)

The set of equilibria and their stablanstable manifolds form the coarsest topological
framework for organizing state space orbits.
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The equilibrium conditionu; = 0 for the Kuramoto-Sivashinsky equation PDE
(25.6) is the ODE

(uz)x = Uxx — Uxxxx = 0

which can be analyzed as a dynamical system in its own rigitegtating once
we get

U2 = Uy — U = C, (25.13)

wherec is an integration constant whose value strongly influentesature of
the solutions. Written as a@dynamical system with spatial coordinatelaying
the role of “time,” this is a volume preserving flow

Uy =V, Ve =W, wy=ul-v-c, (25.14)
with the “time” reversal symmetry,

X—> =X, U—>-U V-V, W-— -W.
From (25.19) we see that

(U+Ww)y =12 —c.
If ¢ < 0, u+ wincreases without bound with— co, and every solution escapes
to infinity. If ¢ = 0, the origin (00, 0) is the only bounded solution.

Forc > 0 there is muchke-dependent interesting dynamics, with complicated
fractal sets of bounded solutions. The sets of the solutadrthe equilibrium
condition @5.14) are themselves in turn organized by the equilibria of thelixjium
condition, and the connections between them.d=e10 the equilibrium points of

(25.19 arec, = (+/c,0,0) andc_ = (- +/c, 0,0). Linearization of the flow around
¢, yields stability eigenvalues 2 —1 + i6] with

1
A= —sinhg, 0 = coshg,
V3

andg fixed by sinh® = 3v3c. Hencec, has a id unstable manifold and a®@
stable manifold along which solutions spiral in. By the-» —x “time reversal”
symmetry, the invariant manifolds of have reversed stability properties.

The non—-wandering set fo this dynamical system is quiteypratd surprisingly
hard to analyze. However, we do not need to explore the freetaf the Kuramoto-
Sivashinsky equilibria for infinite size system here; for xefi system sizé
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1 1
Figure 25.5: The non—-wandering set under study =0 30
appears to consist of three patches: the left part
(SL), the center partSc) and the right part$g), - =
each centered around an unstable equilibrium: (a) R R
centralC, equilibrium, (b) sideR; equilibrium on - 10 20 30 40 0 10 20 30
the interval [QL]. (@) X (b) X

with periodic boundary condition, the only surviving edjuila are those with
periodicity L. They satisfy the equilibrium condition fo2%.10

(k/D)? (1= (/D)%) b +i(k/ D) i brmbiem = 0. (25.15)

m=—co

Periods of spatially periodic equilibria are multiplesLofEvery timef crosses an
integer valuel. = n, n-cell states are generated through pitchfork bifurcations
the full state space they form an invariant circle due to thedlational invariance
of (25.6). In the antisymmetric subspace considered here, thegsmmonds to two
points, half-period translates of each other of the form

U ) = -2 ) brasinkny),
k

wherebyn, € R.

For any fixed period. the number of spatially periodic solutions is finite
up to a spatial translation. This observation can be hécalst motivated as
follows. Finite dimensionality of the inertial manifold bods the size of Fourier
components of all solutions.  On a finite-dimensional corhpaanifold, an
analytic function can only have a finite number of zeros. 8e,dquilibria, i.e.,
the zeros of a smooth velocity field on the inertial manifelck finitely many.

For a stificiently smallL the number of equilibria is small, mostly concentrated
on the low wave number end of the Fourier spectrum. Thesdismumay be
obtained by solving the truncated versions25.(L5.

Example 25.4 Some Kuramoto-Sivashinsky equilibria:

25.5 Why does a flame front flutter?

| understood every word.

) [section 16.2]
—Fritz Haake
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10

Figure 25.6: Lyapunov exponentds, versusk for *
the least unstable spatio-temporally periodic ofbit L
of the Kuramoto-Sivashinsky system, compared with "
the Floquet exponents of th&x,t) = O stationary
solution, 4 = k* — vk*. The eigenvaluey, for k > 8 40
falls below the numerical accuracy of integration and
are not meaningful. The cyclewas computed using %
methods of chaptet2. System sizel = 2.89109, . L L
N = 16 Fourier modes truncation. (From ref])| 2 4 6 8 10 12 14 16

We start by considering the case whegés an equilibrium pointZ.8). Expanding
around the equilibrium poirdg, and using the fact that the matux = A(ag) in
(4.2) is constant, we can apply the simple formula3() also to the fundamental
matrix of an equilibrium point of a PDE,

Fag =€ A=Ay).

Example 25.5 Stability matrix, antisymmetric subspace: The Kuramoto-Sivashinsky

flat flame front u(x,t) = 0 is an equilibrium point of (25.2). The stability matrix (4.3)
follows from (25.10)

(@)

A(@) = —-= = ((k/5)? = (k/ D))o - 2(k/ Dy (25.16)

a;

For the u(x, t) = 0 equilibrium solution the stability matrix is diagonal, and — as in (4.16)
- s0 is the fundamental matrix J; (0) = oi;e®/ D=Lyt

ForL < 1, u(xt) = 0 is the globally attractive stable equilibrium. As the
system sizd_ is increased, the “flame front” becomes increasingly unstahd
turbulent, the dynamics goes through a rich sequence afchaiions on which we
shall not dwell here.

The |k| <?? long wavelength perturbations of the flat-front equilibbr are
linearly unstable, while allk] >?? short wavelength perturbations are strongly
contractive. The higtk eigenvalues, corresponding to rapid variations of the
flame front, decay so fast that the corresponding eigertirecare physically
irrelevant. To illustrate the rapid contraction in the Heading eigendirections
we plot in figure25.6the eigenvalues of the equilibrium in the unstable regime,
for relatively small system size, and compare them with thbikty eigenvalues
of the least unstable cycle for the same system size. Thélegun solution is
very unstable, in 5 eigendirections, the least unstabléeoyaly in one. Note
that fork > 7 the rate of contraction is so strong that higher eigentices
are numerically meaningless for either solution; even ghothne flow is infinite-
dimensional, the attracting set must be rather thin.

While in general foll sufficiently large one expects many coexisting attractors
in the state space,in numerical studies most random initiadlitions settle converge
to the same chaotic attractor.
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From 25.10 we see that the origin(x, t) = 0 has Fourier modes as the linear
stability eigenvectors. Whelk| € (0, L), the corresponding Fourier modes are
unstable. The most unstable modes [kas L/ V2 and defines the scale of basic
building blocks of the spatiotemporal dynamics of the KuotorSivashinsky equation
in large system size limit, as shown in se22.

Consider now the case of initia suficiently small that the bilineaamayx_m
terms in @5.10 can be neglected. Then we have a set of decoupled lineati@ugia
for ax whose solutions are exponentials, at most a finite numbevtiarh k2 > viA
is growing with time, and infinitely many withk* > k? decaying in time. The
growth of the unstable long wavelengths (I¢k}) excites the short wavelengths
through theamax_m nonlinear term inZ5.10. The excitations thus transferred are
dissipated by the strongly damped short wavelengths, anbaotic equilibrium”
can emerge. The very short wavelengfiiss 1/ +/v remain small for all times,
but the intermediate wavelengths of ordkdr~ 1/+/v play an important role in
maintaining the dynamical equilibrium. As the damping paeter decreases,
the solutions increasingly take on shock front characterlpaepresented by the
Fourier basis, and many higher harmonics may need to be tkepirications of
(25.10.

Hence, while one may truncate the high modes in the expar@toh0, care
has to be exercised to ensure that no modes essential torthmitys are chopped
away.

In other words, even though our starting poi2% (9 is an infinite-dimensional
dynamical system, the asymptotic dynamics unfolds on @fuliinensional attracting
manifold, and so we are back on the familiar territory of s2ct the theory of a
finite number of ODESs applies to this infinite-dimensionalEP&s well.

We can now start to understand the remark on @dkat for infinite dimensional
systems time reversibility is not an option: evolution fard in time strongly
damps the higher Fourier modes. There is no turning backe ifeverse the time,
the infinity of high modes that contract strongly forward iimeé now explodes,
instantly rendering evolution backward in time meaningless so much you are
told about dynamics, this claim is also wrong, in a subtle viftye initial u(x, 0)
is in the non—-wandering se? ), the trajectory is well defined both forward and
backward in time. For practical purposes, this subtletyoisa much use, as any
time-reversed numerical trajectory in a finite-mode traiocawill explode very
quickly, unless special precautions are taken.

When is an equilibrium important? There are two kinds of roles equilibria
play:

“Hole” in the natural measure The more unstable eigendirections it has (for
example, ther = 0 solution), the more unlikely it is that an orbit will recur its
neighborhood.

unstable manifold of a “least unstable” equilibriumAsymptotic dynamics

spends a large fraction of time in neighborhoods of a fewlixjia with only a
few unstable eigendirections.
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Table 25.1: Important Kuramoto-Sivashinsky equilibria: the first feoguet exponents

S 2T+ [ PR Dt 0@
C; 0.04422+10.26160 -0.25%10.431 -0.34%1i0.463
R;  0.01135+i0.79651 -0.21%i0.549 -0.358:i0.262
T 0.25480 -0.0%10.645 -0.264

Example 25.6 Stability of Kuramoto-Sivashinsky equilibria:
spiraling out in a plane, all other directions contracting
Stability of “center” equilibrium
linearized Floquet exponents:

@+ i0® 4@+ iw®,..) = (0.044+ 10262, —0.255+ i 0.431, - --)

The plane spanned by u® + iw® eigenvectors rotates with angular period
T ~ 27/ = 2402

a trajectory that starts near the Cy equilibrium point spirals away per one rotation
with multiplier A pagig ~ exp®T) =2.9.

each Poincaré section return, contracted into the stable manifold by factor of
Az ~ exp®T) = 0.002

The local Poincaré return map is in practice 1 — dimensional

25.6 Periodic orbits

expanding eigenvalue of the least unstable spatio-tertipguariodic orbit 1:
A =-20...

very thin Poincaré section
thicknessx least contracting eigenvalue, = 0.007. ..

15d — 15 Poincaré return map projection on thas [— ag] Fourier
component is not evenb 1.

25.7 Intrinsic parametrization

Both in the Rossler flow of exampB4, and in the Kuramoto-Sivashinsky system
of example25.3we have learned that the attractor is very thin, but othenthe
return maps that we found were disquieting — neither figufenor figure25.4
appeared to be one-to-one maps. This apparent loss ofibiligris an artifact of
projection of higher-dimensional return maps onto lowierehsional subspaces.
As the choice of lower-dimensional subspace is arbitréug,resulting snapshots

PDEs - 27apr2007.tex

CHAPTER 25. TURBULENCE? 447

0.7

0.5~
P(s) 0.4
0.3~
Figure 25.7: The Poincaré return map of the
Kuramoto-Sivashinsky system2%.10 figure 25.4
from the unstable manifold of thé& fixed point to 0.1
the (neighborhood of) the unstable manifold. Also Jo . . . ., ., .
indicated are the periodic poinBsand01. 0 oL 02z 03 04 05 06 o7 08

0.2 10

of return maps look rather arbitrary, too. Other projediionight look even less
suggestive.

Such observations beg a question: Does there exist a “hatatansically
optimal coordinate system in which we should plot of a retuap?

As we shall now argue (see also sei2.1), the answer is yes: The intrinsic
coordinates are given by the stgbiestable manifolds, and a return map should be
plotted as a map from the unstable manifold back onto the idieteeneighborhood
of the unstable manifold.

Examination of numerical plots such as fig@fe3suggests that a more thoughtful
approach would be to find a coordinate transformator: h(x) to a “center
manifold,” such that in the new, curvilinear coordinategéascale dynamics takes
place in §1,y») coordinates, with exponentially small dynamicsy#y, - - -. But
- thinking is extra price - we do not know how to actually acgdish this.

Both in the example of the Rossler flow and of the Kuramot@a&hinsky
system we sketched the attractors by running a long chaejectory, and noted
that the attractors are very thin, but otherwise the retuapsithat we plotted were

disquieting — neither figurd.6 nor figure25.4appeared to be 1-to-1 maps. In this
section we show how to use such information to approximdoslgte cycles.

25.8 Energy budget
The space average of a functiar= a(x, t) on the interval,
1 L
(a) = —f dxaxt), (25.17)
L Jo
is in general time dependent. Its mean value is given by the &verage

1 t 1 t L
a=lim —fd-r (@ = lim —ffd‘rdxa(x,‘r). (25.18)
toeo t o t—e tL Jo Jo
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The mean valu@, a = a(u) evaluated on an equilibrium or relative equilibrium
u(x,t) = ug(x—ct) is

ag = () - (25.19)

Evaluation of the infinite time average. 18 on a function of a period, periodic
orbit or relative periodic orbitip(x, t) requires only a single traversal of the periodic
solution,

1 (e
ap=— dr (a) . (25.20)
Tp 0

Equation £5.2) can be written as
U = —Vy, V(X 1) = 3U% + Uy + Ugyy. (25.21)

u is related to the “flame-front heighti(x, t) by u = hy, SOE can be interpreted
as the mean energy densi§5(22. So, even though KS is a phenomenological
small-amplitude equation, the time-dependent quantity

1t 1w
E_Efode(xt)_Edex? (25.22)

has a physical interpretatiofi][as the average “energy” density of the flame front.
This analogy to the corresponding definition of the meantlénenergy density
for the Navier-Stokes will be useful in what follows.

The energy 5.22) is also the quadratic norm in the Fourier space,
E=) E. Ec= 3l (25.23)

Take time derivative of the energy densib(22), substitute 25.2) and integrate
by parts. Total derivatives vanish by the spatial peridgion theL domain:

m-
Il

u2
(Utu>:—<(E+UUx+UUxXX) u>

2
<+Ux u? + ()2 + Uy uxxx> . (25.24)

Substitution by ??) verifies that for an equilibriunt is constant:

. u2
E= <(? + Uy + uxxx)ux> =E(uy) =0.
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Figure 25.8: Power input((u,)?) vs. dissipation
(W) for L = 22 equilibria and relative
equilibria, for several periodic orbits and relative
periodic orbits, and for a typical “turbulent” state.
Note that(up)? of the (Tp,d,) = (328,10.96)
relative periodic orbit, figur@?(c), which appears
well embedded within the turbulent state, is close R
to the turbulent expectatiafui)? .

01

(ue) %>

< (Uxx)2>-<

2

Figure 25.9: E; (red), E; (green), E; (blue), ’ 0.4
connections fronE; to A(L/4)E; (green), from
A(L/4)E; to E; (yellow-green) and fromE; to
A(L/4)E; (blue), along with a generic long-time
“turbulent” evolution (grey) forL = 22. Three . i
different projections of theg <(ux)2>, ((uxx)z))— oz o0& 06 08 s

(()?)) representation are shown.

x)25-< (Uy) 2>

The first term in £5.24) vanishes by integration by pargi®)x) = 3(uy U?) = 0,
and integrating the third term by parts yet again we get timenergy variation

E = ((W)?) - ((xd?) (25.25)

balances the KS equatio®q.2 power pumped in by the anti{tlisionuyy against
energy dissipated by the hypervicosityxx [?].

In figure 25.8 we plot the power inpu((ux)2> Vs. dissipation((uxx)2> for
all L = 22 equilibria and relative equilibria , several periodibits and relative
periodic orbits, and for a typical “turbulent” evolution. h& time averaged energy
densityE computed on a typical orbit goes to a constant, so the exjmtizalues
(25.26 of drive and dissipation exactly balance each out:

- i
E= lIim ff drE = (Ug)? - (Uxx)? = 0. (25.26)
—00 0

In particular, the equilibria and relative equilibria sit the diagonal in figuré5.8§
and so do time averages computed on periodic orbits andvesfzgriodic orbits:

E L
p—T—pfo rEr)
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—_— TD [
)2 = T—lp fo dr (1)) = (Ue)?p.- (25.27)

In the Fourier basis?26.23 the conservation of energy on average takes form
+00 " - _
0= > (D~ (WD) B, Ex®) = ()P (25.28)
k=1

The largek convergence of this series is insensitive to the systemLsiEg have
to decrease much faster thap(/L)*.  Deviation of Ey from this bound for
smallk determines the active modes. This may be useful to bounduhéer
of equilibria, with the upper bound given by zeros of a smaimiber of long
wavelength modes.

Résumé

Turbulence is the graveyard of theories
— Hans W. Liepmann

We have learned that an instanton is an analytic solutioraofYMills equations
of motion, but shouldn’t a strongly nonlinear field theoryndynics be dominated
by turbulent solutions? How are we to think about systemsevleery spatiotemporal
solution is unstable?

Here we think of turbulence in spatially extended systentsrims of recurrent
spatiotemporal patterns. Pictorially, dynamics drivesvery spatially extended
system through a repertoire of unstable patterns; as wehveaterbulent system
evolve, every so often we catch a glimpse of a familiar patter

75,

— other swirls =

\

For any finite spatial resolution, the system follows apprately for a finite
time a pattern belonging to a finite alphabet of admissibtéepas, and the long
term dynamics can be thought of as a walk through the spacacbf gatterns.
Recasting this image into mathematics is the subject obidxk.

The problem one faces with high-dimensional flows is thatr tt@pology
is hard to visualize, and that even with a decent startingsgdier a point on
a periodic orbit, methods like the Newton-Raphson methadliaely to fail.
Methods that start with initial guesses for a number of Eo@iong the cycle, such
as the multipoint shooting method of set®.3 are more robust. The relaxatio
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(or variational) methods take this strategy to its logiceteme, and start by a
guess of not a few points along a periodic orbit, but a guesiseoéntire orbit. As
these methods are intimately related to variational ppiesi and path integrals,

we postpone their introduction to chapt.

At present the theory is in practice applicable only to systevith a low
intrinsic dimension- the minimum number of coordinates necessary to capture its
essential dynamics. If the system is very turbulent (a detsen of its long time
dynamics requires a space of very high intrinsic dimensiompre out of luck.

Commentary

Remark 25.1 Model PDE systems. The theorem on finite dimensionality of inertial
manifolds of state space contracting PDE flows is provenfinfi¢ =~ The Kuramoto-
Sivashinsky equation was introduced in refs. §]. Holmes, Lumley and Berkooz]
offer a delightful discussion of why this system deserves saglg staging ground for
studying turbulence in full-fledged Navier-Stokes equatidow good a description of a
flame front this equation is not a concern herdtisa it to say that such model amplitude
equations for interfacial instabilities arise in a varietfycontexts - see e.g. ref6] -
and this one is perhaps the simplest physically interestpragially extended nonlinear

system.

For equilibria theL-independent bound ok is given by Michaelsonq). The best
current bound?, ?] on the long-time limit ofE as a function of the system sizescales

asE « L32,

The work described in this chapter was initiated by Putkze&d1996 term project
(see ChaosBook.org/extras), and continued by Christiansen Cvitanovi¢, Davidchack,

Gibson, Halcrow, Lan, and Siminos},[7, 8, 16, 15, 10, 11, 9].

Exercises

25.1. Galilean invariance of the Kuramoto-Sivashinsky equation

(a) Verify that the Kuramoto-Sivashinsky equation is
Galilean invariant: ifu(x,t) is a solution, then
V + u(x + 2vtt), with v an arbitrary constant
velocity, i s also a solution.

(b) Verify that mean

1
<u>:Edexu

(c) Argue thatthe choice6.5 of the vanishing me:
velocity, (uy = 0 leads to no loss of generality
calculations that follow.

N

(d) J [thinking is extra cost] Inspecti
of various “turbulent” solutions of Kuramo
Sivashinsky equation reveals subregions
“traveling waves” with locally nonzerdu). Is
there a way to use Galilean invariance loc
even though we eliminated it by th@) =
condition?

is conserved by the flow. 25.2. Infinite  dimensional dynamical systems are n
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smooth. Many of the operations we consider
natural for finite dimensional systems do not have

smooth behavior in infinite dimensional vector spaces.

Consider, as an example, a concentrafiatiffusing on
R according to the diusion equation

1,
==V.
Oip > (0]
(a) Interpret the partial élierential equation as an

infinite dimensional dynamical system. That is,
write it asX = F(x) and find the velocity field.

(b) Show by examining the norm

llgl? = f} dx¢?(X)
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that the vector field is not continuous.

(c) Trythe norm
llgll = suplg(x)] .
XeR

Is F continuous?

(d) Argue that the semi-flow nature of the problem is
not the cause of our fliculties.

(e) Do you see a way of generalizing these results?
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Chapter 26

Noise

He who establishes his argument by noise and command
shows that his reason is weak.

—M. de Montaigne

(G. Vattay and P. Cvitanovic)

uis cHAPTER (Which reader can safely skip on the first reading) is aboiseno
how it affects classical dynamics, and the ways it mimics quantumrdigsa /

Why - in a study of deterministic and quantum chaos - stadigising noise?
First, in physical settings any dynamics takes place agaim®isy background,
and whatever prediction we might have, we have to check itgstness to noise.
Second, as we show in this chapter, to the leading order isenstrength the
semiclassical Hamilton-Jacobi formalism carries over &akly stochastic flows
in toto. As classical noisy dynamics is more intuitive thamatum dynamics, this
exercise helps demystify some of the formal machinery ofdessical quantization.
Surprisingly, symplectic structure emerges here not asp penciple of mechanics,
but an artifact of the leading approximation to quantuomsy dynamics, not respected
by higher order corrections. The same is true of semiclakgicantum dynamics;
higher corrections do not respect canonical invarianceirdThhe variational
principle derived here will be refashioned into a powerfaubltfor determining
periodic orbits in chapte?7.

We start by deriving the continuity equation for purely detimistic, noiseless
flow, and then incorporate noise in stagesdtugiion equation, Langevin equation,
Fokker-Planck equation, Hamilton-Jacobi formulationgchistic path integrals.

26.1 Deterministic transport

(E.A. Spiegel and P. Cvitanovit)
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Fluid dynamics is about physical flows of media with continsi@ensities. On
the other hand, the flows in state spaces of dynamical sydtemsently require
more abstract tools. To sharpen our intuition about thdsge,hielpful to outline
the more tangible fluid dynamical vision.

Consider first the simplest property of a fluid flow calle@terial invariant
A material invariantl (x) is a property attached to each pointhat is preserved
by the flow, 1(X) = I(f(x)); for example, at this point a green particle (more
formally: apassive scalgris embedded into the fluid. AX) is invariant, its
total time derivative vanishe$(x) = 0. Written in terms of partial derivatives this
is theconservation equatiofor the material invariant

&l +v-al =0. (26.1)

Let thedensityof representative points h€x,t). The manner in which the flow
redistributes! (x) is governed by a partial fierential equation whose form is
relatively simple because the representative points dfeemereated nor destroyed.
This conservation property is expressed in the integréistant

[)tfdxpl :—f do fivipl ,
% v

whereV is an arbitrary volume in the state spat¢ dV is its surfacen’is its
outward normal, and repeated indices are summed over thootigT he divergence
theorem turns the surface integral into a volume integral,

f 0ol + (vipl)] dx = O,
Vv

whered; is the partial derivative operator with respect¢oSince the integration
is over an arbitrary volume, we conclude that

i(pl) + di(plvi) = 0. (26.2)
The choicel = 1 yields thecontinuity equatiorfor the density:
5W+5i(pvi) =0. (26.3)

We have used here the language of fluid mechanics to easestiaization,
but, as we already saw in the discussion of infinitesimaloactf the Perron-
Frobenius operatorlé.29, continuity equation applies to any deterministic state
space flow.

noise - 170ct2007.tex



CHAPTER 26. NOISE 456

26.2 Brownian diffusion

Consider tracer molecules, let us say green molecules,daelién a denser gas
of transparent molecules. Assume that the density of tracéeculesp compared

to the background gas density is low, so we can neglect gyessmn collisions.
Each green molecule, jostled by frequent collisions wite Hackground gas,
executes its own Brownian motion. The molecules are nettteated nor destroyed,
so their number within an arbitrary volumé changes with time only by the
current densityj; flow through its surfacéV (with fiits outward normal):

atdep:—f do i i . (26.4)
A\ oV

The divergence theorem turns this into the conservatiorfdaivacer density:
O +0iji=0. (26.5)

The tracer density is defined as the average density of a “material particle,”
averaged over a subvolume large enough to contain many ¢meenstill many
more background) molecules, but small compared to the reespic observational
scales. What ig? If the density is constant, on the average as many molecules
leave the material particle volume as they enter it, so aredse phenomenological
assumption is that thaveragecurrent densityr{ot the individual particle current
densitypv; in (26.3) is driven by the density gradient

=% (26.6)

oxi

This is theFick law, with the difusion constanb a phenomenological parameter.
For simplicity here we assume thBtis a scalar; in generdd — Djj(x,t) is

a space- and time-dependent tensor. Substituting jtiigo (26.5 yields the
diffusion equation

0 (xt)—Daz x.1) (26.7)
Py T Pt :

This linear equation has an exact solution in terms of aralritirac delta density
distribution,p(x, 0) = §(X — Xo),

1 B (xz@)z 1 _ %
= e to= t,
(4nDt)4/2 (47rDt)d/2e

(%, 1) (26.8)
The average distance covered in tinabeys the Einstein ffusion formula

((x=%0)?), = f dxp(x t)(x - x0)? = 2dDt. (26.9)
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26.3 Weak noise

The connection between path integration and Brownian
motion is so close that they are nearly indistinguishable.
Unfortunately though, like a body and its mirror image,
the sum over paths for Brownian motion is a theory having
substance, while its path integral image exists mainly in
the eye of the beholder.

—L. S. Schulman

So far we have considered tracer molecule dynamics whichrislyp Brownian,
with no deterministic “drift.” Consider next a determingstiow X = v(x) perturbed
by a stochastic terr(t),

X =V(X) + &(t). (26.10)

Assume thak(t)’s fluctuate around Y- v(x)] with a Gaussian probability density

( 5t)—( ot )dlzer%‘St (26.11)
P&, o) = 47D ’ :

and are uncorrelated in time (white noise)
(€E(t)) = 2dDs(t - 1) . (26.12)

The normalization factors ir26.8 and @6.11) differ, asp(&, 6t) is a probability
density for velocityé, and p(x,t) is a probability density for positiox. The
material particle now drifts along the trajectorft), so the velocity diusion
follows (26.8 for infinitesimal timeét only. As D — 0, the distribution tends
to the (noiseless, deterministic) Dirac delta function.

An example is the Langevin equation for a Brownian partigiewhich one
replaces the Newton’s equation for force by two counteathehg forces: random

accelerationg(t) which tend to smear out a particle trajectory, and a damiging
which drives the velocity to zero.

The phenomenological Fick law curre@6(€) is now a sum of two components,
the material particle center-of-mass deterministic drf) and the weak noise
term

. P
ji = pvi - Da—;, (26.13)

Substituting thigj into (26.5) yields theFokker-Planck equation

A + 8i(pvi) = D Hp. (26.14)
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The left hand sidedp/dt = 9y + 3 - (pv), is deterministic, with the continuity
equation £6.3 recovered in the weak noise limid — 0. The right hand side
describes the diusive transport in or out of the material particle volume. If
the density is lower than in the immediate neighborhood,ldkel curvature is
positive, %0 > 0, and the density grows. Conversely, for negative cureatur
diffusion lowers the local density, thus smoothing the vaiighdf p. Where is
the density going globally?

If the system is bound, the probability density vanishéBaantly fast outside
the central regiong(x,t) — 0 as|X — oo, and the total probability is conserved

dep(X, t)=1.

Any initial density p(x,0) is smoothed by dliusion and with time tends to the
invariant density

po(¥) = lim p(x1), (26.15)
an eigenfunctiom(x, t) = €% po(X) of the time-independent Fokker-Planck equation
(0vi -D&? + ) pa = 0, (26.16)

with vanishing eigenvalusy = 0. Provided the noiseless classical flow is hyperbolic,
in the vanishing noise limit the leading eigenfunction @f Fokker-Planck equation
tends to natural measuré4 17 of the corresponding deterministic flow, the
leading eigenvector of the Perron-Frobenius operator.

If the system is open, there is a continuous outflow of prdibpbirom the
region under study, the leading eigenvalue is contractng; 0, and the density
of the system tends to zero. In this case the leading eigesgglof the time-
independent Fokker-Planck equatidt® (1§ can be interpreted by saying that a
finite density can be maintained by pumping back probabititp the system at
a constant rate = —s. The value ofy for which any initial probability density
converges to a finite equilibrium density is called #seape rateln the noiseless
limit this coincides with the deterministic escape réitg.(5.

We have introduced noise phenomenologically, and usedeh& noise assumption
in retaining only the first derivative gf in formulating the Fick law 26.6) and
including noise additively in26.13. A full theory of stochastic ODEs is much
subtler, but this will do for our purposes.

26.4 Weak noise approximation

In the spirit of the WKB approximation, we shall now study thlution of the
probability distribution by rewriting it as

X 1) = @R 26.17
P
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The time evolution oRis given by
AR+ VIR + (OR)? = DoV + DO°R.

Consider now the weak noise limit and drop the terms propaetito D. The
remaining equation

SR+ H(x, 0R) = 0

is the Hamilton-Jacobi equation . The functiRiean be interpreted as the Hamilton’s
principal function, corresponding to the Hamiltonian

H(x p) = puX) + p*/2,

with the Hamilton’s equations of motion

-
|

dpH=v+p
—0yH = -ATp, (26.18)

-
1l

whereA is the stability matrix 4.3)

o Ovi(X)
A9 = o=
The noise Lagrangian is then

L(x, ) =X-p—H= %[X—v(x)]z . (26.19)

We have come the full circle - the Lagrangian is the exponérduo assumed
Gaussian distribution26.17) for noise&? = [X — v(X)]2. What is the meaning
of this Hamiltonian, Lagrangian? Consider two poimgsand x. Which noisy
path is the most probable path that connects them in tthiEhe probability of a
given pathp is given by the probability of the noise sequeii® which generates
the path. This probability is proportional to the producttiod noise probability
functions @6.11) along the path, and the total probability for reachinfyjom xo
in timet is given by the sum over all paths, or the stochastic patigiatéwWiener
integral)

{p)?

ot d/2
P(x Xo.t) ~ PE(r)). 7)) = dej(—L| e on
S petenon [ [l (5]

. %;exp(—% I tdrfz(r)), (26.20)
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wheredt; = 7 — 7, and the normalization constant is

1, ori \¥2
z=m[1(z5) -

The most probable path is the one maximizing the integradénthe exponential.
If we express the nois€6.10 as

&) = X(t) - v(x(1) .
the probability is maximized by the variational principle
minfo‘ de[x(z) — v(x(7))]? = minfot L(x(7), X(r))dr.

By the standard arguments, for a giverx’ andt the the probability is maximized
by a solution of Hamilton’s equation&€.18 that connects the two pointg — X’
in timet.

Résum é

When a deterministic trajectory is smeared out under theenfte of Gaussian

noise of strengttD, the deterministic dynamics is recovered in the weak noise
limit D — 0. The dfect of the noise can be taken into account by adding noise

corrections to the classical trace formula.

Commentary

Remark 26.1 Literature. The theory of stochastic processes is a vast subject, sganni
over centuries and over disciplines ranging from pure nmatts to impure finance.
We enjoyed reading van Kampen classi§, [especially his railings against those who
blunder carelessly into nonlinear landscapes. Having cittednthis careless chapter
to print, we shall no doubt be cast to a special place on the lish of van Kampen’s
sinners (and not for the first time, either). A more spec@limonograph like Risken’s]
will do just as well. The “Langevin equation” introduces s®iand damping only into
the acceleration of Newton’s equations; here we are corsgleore general stochastic
differential equations in the weak noise limit. Onsager-Maekkminal paperl[s] was
the first to introduce a variational method - the “principfdeast dissipation” - based on
the Lagrangian of form26.19. This paper deals only with a finite set of linearly damped
thermodynamic variables. Here the setting is much morergénse study fluctuations
over a state space varying velocity fiefk). Schulman’s monographi ] contains a very
readable summary of Kac’s }] exposition of Wiener's integral over stochastic paths.
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Exercises
26.1. Who ordered vz ? Derive the Gaussian integral of two Gaussians

1 f“’ 2
— dxe= = +a, a>0.
V2r J-w

assuming only that you know to integrate the
exponential functiore™. Hint, hint: % is a radius- [f *gl(x) =

factorizes as

1
squared of something.r is related to the area or (2n)d

circumference of something. where

26.2. D-dimensional Gaussian integrals.  Show that the

f(x) = e'%xT'%'x,

14T Ly

o) = e P

f dk F(KG(K)ER™, (26.22

Gaussian integral iD-dimensions is given by F(k) = ﬁ fddx f(x)ex = \detAl\l/ze%

1 1,7 -1 1 y
Wfddqbe’?”’ MEe0d = detM)? e126"2) G(K) 1

whereM is a real positive definited/x d] matrix, i.e.,
a matrix with strictly positive eigenvalues, J are D-
dimensional vectors, and is the transpose of. [f + gJ(%)

Hence

26.3. Convolution of Gaussians.  Show that the Fourier
transform of convolution _

[f gl = f oy F(x - y)a)
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Chapter 27

Relaxation for cyclists

YCLES, i.€., solutions of the periodic orbit conditionZ.1)
¥ T = f'(x), T>0 (27.1)

are prerequisite to chaptefi$s and 17 evaluation of spectra of classical
evolution operators.Chaptég offered an introductory, hands-on guide to
extraction of periodic orbits by means of the Newton-Raphswthod.
Here we take a very fferent tack, drawing inspiration from variational prineipl
of classical mechanics, and path integrals of quantum nmécha

In sect.12.2.1we converted orbits unstable forward in time into orbitbkta
backwards in time. Indeed, all methods for finding unstaptdes are based on
the idea of constructing a new dynamical system such théte position of the
cycle is the same for the original system and the transforomed (i) the unstable
cycle in the original system is a stable cycle of the tramsft system.

The Newton-Raphson method for determining a fixed pwirfor a mapx’ =
f(x) is an example. The method replaces iterationf ©f) by iteration of the
Newton-Raphson maf2.5

—— . — A l .
X = (9 = % - (W)” (19 - (272)

A fixed pointx. for a mapf(x) is also a fixed point of(x), indeed a superstable
fixed point sincedg;(x.)/0x; = 0. This makes the convergence to the fixed point
super-exponential.

We also learned in chaptdr2 that methods that start with initial guesses
for a number of points along a cycle are considerably moreisoland safer
than searches based on direct solution of the fixed-poinditon (27.1). The
relaxation (or variational) methods that we shall now diésctake this multipoint
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approach to its logical extreme, and start by a guess of neivepbints along a
periodic orbit, but a guess of the entire orbit.

The idea is to make an informed rough guess of what the dgs@ealdic orbit
looks like globally, and then use variational methods twelthe initial guess
toward the exact solution. Sacrificing computer memory fiustness of the
method, we replace a guess thap@int is on the periodic orbit by a guess of
the entire orbit And, sacrificing speed for safety, in se2f.1we replace the
Newton-Raphsoiteration by a fictitious timeflow that minimizes a cost function
computed as deviation of the approximate flow from the trues #dong a loop
approximation to a periodic orbit.

If you have some insight into the topology of the flow and itsbplic dynamics,
or have already found a set of short cycles, you might be aldertstruct an initial
approximation to a longer cyclp as a sequence ™ points 10), igo), e iﬁ))
with the periodic boundary conditioxy;1 = X. Suppose you have an iterative
method for improving your guess; afteiterations the cost function

N

#6348 - 16 @3

or some other more cleverly constructed function (for étzdsnechanics - action)
is a measure of the deviation of tkidn approximate cycle from the true cycle. This
observation motivates variational approaches to deténgicycles.

We give here three examples of such methods, two for mapspaador
billiards. In sect27.1we start out by converting a problem of finding an unstable
fixed point of a map into a problem of constructing &etliential flow for which
the desired fixed point is an attracting equilibrium pointoivihg differential
equations can be time intensive, so in sé¢t2we replace such flows by discrete
iterations. In sect27.3we show that for B-dimensional billiard flows variation
of D coordinates (wher® is the number of Hamiltonian degrees of freedom)
suffices to determine cycles in the fulD2dimensional phase space.

27.1 Fictitious time relaxation

(0. Biham, C. Chandre and P. Cvitanovic)

The relaxation (or gradient) algorithm for finding cycleb&sed on the observation
that a trajectory of a map such as the Henon n&apd,

%1 = 1-ad+by
Visl = X, (27.4)

is a stationary solution of the relaxation dynamics defingthk flow
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Vi)
Figure 27.1: “Potential” Vi(x) (27.7) for a typical
point along an initial guess trajectory. For = +1 \.
the flow is toward the local maximum &£(x), and for
o = —1 toward the local minimum. A large deviation
of x’s is needed to destabilize a trajectory passing
through such local extremum ¥f(x), hence the basin

of attraction is expected to be large.

%:vi, i=L....n (27.5)
dr

for any vector fieldv; = vi(xX) which vanishes on the trajectory. Heres a
“fictitious time” variable, unrelated to the dynamical tirtia this example, the
discrete time of map iteration). As the simplest exampke ¥ato be the deviation
of an approximate trajectory from the exact 2-step recegdorm of the Hénon
map .19

Vi = %ip1 — 1+ ax - bx_g. (27.6)

For fixed x_1, Xi+1 there are two values of satisfyingv; = 0. These solutions
are the two extremal points of a local “potential” functiaro(sum on)

V=SV V9 = Xk - b - 1)+ 56 (27.7)

Assuming that the two extremal points are real, one is a lsgaimum of V;(x)
and the other is a local maximum. Now here is the idea; refl2ce) by

%:mvi, i:1,...,n, (27.8)
dr

whereo; = +1.

The modified flow will be in the direction of the extremal pogiven by the
local maximum ofV;(x) if o = +1 is chosen, or in the direction of the one
corresponding to the local minimum if we take = —1. This is not quite what
happens in solving27.8 - all x; andV;(x) change at each integration step - but
this is the observation that motivates the method. Tiemintial equations2(7.8
then drive an approximate initial guess toward the exagdtary. A sketch of
the landscape in whicly converges towards the proper fixed point is given in
figure 27.1 As the “potential” function 27.7) is not bounded for a large;|, the
flow diverges for initial guesses which are too distant frdra true trajectory.
However, the basin of attraction of initial guesses thatveaye to a given cycle is
nevertheless very large, with the spread in acceptableligitesses for figurg7.1
of order 1, in contrast to the exponential precision regLiéinitial guesses by
the Newton-Raphson method.
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Figure 27.2: The repeller for the Henon map at= i
18,b=03. s s 05 1s
Example 27.1 Hénon map cycles. Our aim in this calculation is to find all periodic

orbits of period n for the Hénon map (27.4), in principle at most 2" orbits. We start by
choosing an initial guess trajectory (X1, Xz, - - -, Xn) and impose the periodic boundary
condition X,+1 = X1. The simplest and a rather crude choice of the initial condition
in the Hénon map example is x; = 0 for all i. In order to find a given orbit one sets
o = —1 for all iterates i which are local minima of Vi(X), and o = 1 for iterates which
are local maxima. In practice one runs through a complete list of prime cycles, such
as the table 10.1. The real issue for all searches for periodic orbits, this one included,
is how large is the basin of attraction of the desired periodic orbit? There is no easy
answer to this question, but empirically it turns out that for the Hénon map such initial
guess almost always converges to the desired trajectory as long as the initial |X| is not
too large compared to 1/ +/a. Figure 27.1 gives some indication of a typical basin of
attraction of the method (see also figure 27.3).

The calculation is carried out by solving the set of n ordinary differential equations
(27.8) using a simple Runge-Kutta method with a relatively large step size (h = 0.1) until
V| becomes smaller than a given value € (in a typical calculation & ~ 10°7). Empirically,
in the case that an orbit corresponding to the desired itinerary does not exist, the initial

uess escapes to infinity since the “potential” Vi(X) grows without bound.
g P Y P i g [exercise 27.3]

Applied to the Hénon map at the Hénon's parameters choice a = 1.4, b = 0.3,
the method has yielded all periodic orbits to periods as long as n = 28, as well as
selected orbits up to period n = 100Q All prime cycles up to period 10 for the Hénon
map, a = 1.4 and b = 0.3, are listed in table 27.1. The number of unstable periodic
orbits for periods n < 28 is given in table 27.1. Comparing this with the list of all
possible 2-symbol alphabet prime cycles, table 10.1, we see that the pruning is quite
extensive, with the number of cycle points of period n growing as €*#%45" = (1.592)
rather than as 2".

As another example we plot all unstable periodic points up to period n = 14 for
a=18,b=03infigure 27.2. Comparing this repelling set with the strange attractor
for the Hénon's parameters figure 3.9, we note the existence of gaps in the set, cut out

by the preimages of the escaping regions. remark 27.2]

In practice, the relaxation flow (27.8) finds (almost) all periodic orbits which
exist and indicates which ones do not. For the Hénon map the method enables us to
calculate almost all unstable cycles of essentially any desired length and accuracy.

The idea of the relaxation algorithm illustrated by the abd¥enon map
example is that instead of searching for an unstable periadiit of a map, one
searches for a stable attractor of a vector field. More gépewmnsider ad-
dimensional mapx’ = f(x) with a hyperbolic fixed poink.. Any fixed pointx, is

relax - 29mar2004.tex



Table 27.1: All prime cycles up to period 10 for the Henon maps 1.4 andb = 0.3. The
columns list the periody, the itinerary (defined in remak’ .4, a cycle pointyy, xp), and

the cycle Lyapunov exponenp = In|Ap|/n,. While most of the cycles havg, ~ 0.5,
several significantly do not. THecycle point is very unstable, isolated and transient fixed
point, with no other cycles returning close to it. At perid®idne finds a pair of cycles with
exceptionally low Lyapunov exponents. The cycles are cfosenost of the trajectory,
differing only in the one symbol corresponding to two cycle posttaddle the (partition)
fold of the attractor. As the system is not hyperbolic, thereo known lower bound on
cycle Lyapunov exponents, and the Hénon'’s strange “attramight some day turn out

to be nothing but a transient on the way to a periodic attraxftsome long period.

n P (Yo, %p) A

I 0 (-1.13135447, -1.13135447) 118167262
1 (0.63135447,0.63135447) 0.65427061

2 01 (0.97580005 , -0.47580005) 0.55098676
4 0111 (-0.70676677, 0.63819399) 0.53908457
6 010111 -0.41515894 ,1.07011813 0.55610982
011111 -0.80421990, 0.44190995 0.55245341

7 0011101 -1.04667757, -0.17877958; 0.40998559
0011111 -1.08728604 , -0.28539206 0.46539757
0101111 -0.34267842, 1.14123046 0.41283650
0111111 -0.88050537, 0.26827759 0.51090634

8 00011101 -1.25487963, -0.82745422 0.43876727
00011111 -1.25872451,-0.83714168 0.43942101
00111101 -1.14931330, -0.48368863 0.47834615
00111111 -1.14078564 , -0.44837319 0.49353764
01010111 -0.52309999, 0.93830866 0.54805453
01011111 -0.38817041, 1.09945313 0.55972495
01111111 -0.83680827, 0.36978609 0.56236493

9 000111101 -1.27793296 , -0.90626780 0.38732115
000111111 -1.27771933, -0.90378859 0.39621864
001111101 -1.10392601, -0.34524675 0.51112950
001111111 -1.11352304, -0.36427104 0.51757012
010111111 -0.36894919, 1.11803210 0.54264571
011111111 -0.85789748, 0.32147653 0.56016658
10 0001111101 (-1.26640530, -0.86684837 0.47738235
0001111111 -1.26782752 , -0.86878943 0.47745508
0011111101 -1.12796804 , -0.41787432 0.52544529
0011111111 -1.12760083, -0.40742737 0.53063973
0101010111 -0.48815908 , 0.98458725 0.54989554
0101011111 -0.53496022 , 0.92336925 0.54960607
0101110111 -0.42726915, 1.05695851 0.54836764
0101111111 -0.37947780, 1.10801373 0.56915950
0111011111 -0.69555680, 0.66088560 0.54443884
0111111111 -0.84660200, 0.34750875 0.57591048

13 1110011101000 é—l.2085766485,—0.6729999948) 0.1e882
1110011101001 (-1.0598110494, -0.2056310390) 0.210r251

Table 27.2: The number of unstable periodic orbits of the Henon magferl.4,b = 0.3,
of all periodsn < 28. M, is the number of prime cycles of length andN, is the total
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0
Figure 27.3: Typical trajectories of the vector
field (27.9 for the stabilization of a hyperbolic fixed >
point of the lkeda map2(7.1]) located at X, y) =~
(0.532750.24689). The circle indicates the positior

of the fixed point. Note that the basin of attraction o
this fixed point is large, larger than the entire Iked ~

attractor. 0 x 1
by construction an equilibrium point of the fictitious timewi

X - x (27.9)
dr

If all eigenvalues of the fundamental matdgx.) = D f(x.) have real parts smaller
than unity, therx, is a stable equilibrium point of the flow.

If some of the eigenvalues have real parts larger than uhigyy one needs to
modify the vector field so that the corresponding directiofithe flow are turned
into stable directions in a neighborhood of the fixed pointthe spirit of £7.8),
modify the flow by

LT (27.10)
dr

whereC is a [dxd] invertible matrix. The aim is to turw, into a stable equilibrium
point of the flow by an appropriate choice 6f It can be shown that a set
of permutatiory reflection matrices with one and only one non-vanishingyentr
+1 per row or column (fod-dimensional systems, there a®? such matrices)
sufices to stabilize any fixed point. In practice, one choosesticpkar matrix

C, and the flow is integrated. For each choiceCofone or more hyperbolic fixed
points of the map may turn into stable equilibria of the flow.

Example 27.2 Ikeda map: We illustrate the method with the determination of the

periodic orbits of the lkeda map:

X =1+ a(xcosw — ysinw)
y' = a(xsinw + y cosw) (27.11)
where w="b- °

number of periodic points of periau(including repeats of shorter prime cycles).

28

16031

Np

69952
112452
177376
284042
449520

1+x2+y2’

witha = 0.9, b = 0.4, c = 6. The fixed point X, is located at (x,y) ~ (0.532750.24689)
with eigenvalues of the fundamental matrix (A1, A2) ~ (—2.3897 —0.3389) so the flow
is already stabilized with C = 1. Figure 27.3 depicts the flow of the vector field around
the fixed point X..

In order to determine X,, one needs to integrate the vector field (27.9) forward
in time (the convergence is exponential in time), using a fourth order Runge-Kutta or
any other integration routine.
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-0.36 -0.36
Figure 27.4: Typical trajectories of the vector
field (27.10 for a hyperbolic fixed pointx,y) ~
(-0.13529 -0.37559) of {3, wheref is the lkeda
map @7.11). The circle indicates the position of X,
the fixed point. For the vector field corresponding
to (@) C = 1, x, is a hyperbolic equilibrium point -0.38 -0.38
of the flow, while for f) C = (39%), x. is an

attracting equilibrium point. (a) 0.2 “o1 (b) 02

In contrast, determination of the 3-cycles of the Ikeda map requires nontrivial

C matrices, different from the identity. Consider for example the hyperbolic fixed point

(x,y) = (-0.13529 -0.37559)of the third iterate f° of the Ikeda map. The flow of the

vector field for C = 1, Figure 27.4 (a), indicates a hyperbolic equilibrium point, while for

C= ( é fl) the flow of the vector field, figure 27.4 (b) indicates that x. is an attracting
equilibrium point, reached at exponential speed by integration forward in time.

The generalization from searches for fixed points to searébecycles is
straightforward. In order to determine a prime cygle= (X1, X, ..., Xn) Of @
d-dimensional map< = f(x), we modify the multipoint shooting method of
sect.12.3 and consider thad-dimensional vector field

%‘ =C(f(N-x). (27.12)

where f(x) = (f(xn), f(x1), f(X2),..., f(Xr-1)), andC is an invertible fidx nd]
matrix. For the HEnon map, it is Bicient to consider a set of 2liagonal matrices
with eigenvaluest1. Risking a bit of confusion, we denote by f(x) both the
d-dimensional vectors in2(7.10, andnd-dimensional vectors in2(7.19, as the
structure of the equations is the same.

27.2 Discrete iteration relaxation method

(C. Chandre, F.K. Diakonos and P. Schmelcher)

The problem with the Newton-Raphson iteratidv () is that it requires very
precise initial guesses. For example, tith iterate of a unimodal map has as
many as 2 periodic points crammed into the unit interval, so deteation of all
cycles of lengthn requires that the initial guess for each one of them has to be
accurate to roughly 2. This is not much of a problem for 1-dimensional maps,
but making a good initial guess for where a cycle might lie id-dimensional
state space can be a challenge.

Emboldened by the success of the cyclist relaxation t#kdj of manually
turning instability into stability by a sign change, we najvgbandon the Newton-
Raphson method altogetheir) @bandon the continuous fictitious time flog27(9)
with its time-consuming integration, replacing it by a n@with a larger basin
of attraction (not restricted to a linear neighborhood effilxed point). The idea
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is to construct a very simple mayp a linear transformation of the originé| for
which the fixed point is stable. We replace the fundamentatixnprefactor in
(27.2 (whose inversion can be time-consuming) by a constantixnatefactor

X =g(X) = X+ ArC(f(X) — X), (27.13)

whereAr is a positive real number, ar@is a [dxd] permutation and reflection
matrix with one and only one non-vanishing entry per row or column. A fixed
point of f is also a fixed point of. SinceC is invertible, the inverse is also true.

This construction is motivated by the observation that foabAr — dr the
map @7.13 is the Euler method for integrating the modified floa7 (10, with
the integration stepr.

The argument why a suitable choice of mat@ixcan lead to the stabilization
of an unstable periodic orbit is similar to the one used tovate the construction
of the modified vector field in sec?7.1 Indeed, the flowZ7.8 is the simplest
example of this method, with the infinitesimal fictitious &nmcrementAr — dr,
the infinitesimal coordinate correctiox £ xX') — dx, and the fixn] diagonal
matrixC — o = +1.

For a given fixed point off (x) we again chose &€ such that the flow in the
expanding directions of(x.) is turned into a contracting flow. The aim is to
stabilizex, by a suitable choice d. In the case where the map has multiple fixed
points, the set of fixed points is obtained by changing theimé (in general
different for each unstable fixed point) and varying initial dbads for the map
g. For example, for 2-dimensional dissipative maps it canHmeve that the 3
matrices

o<{loz (o 2} o)}

suffice to stabilize all kinds of possible hyperbolic fixed points

[remark 27.3]

If At is chosen sfliciently small, the magnitude of the eigenvalues of the
fixed pointx, in the transformed system are smaller than one, and one halsla s
fixed point. HoweverAr should not be chosen too small: Since the convergence
is geometrical with a ratio + @At (where the value of constant depends on
the stability of the fixed point in the original system), shvat can slow down
the speed of convergence. The critical value\of which just sifices to make
the fixed point stable, can be reaff rom the quadratic equations relating the
stability codficients of the original system and those of the transformetesy. In
practice, one can find the optimat by iterating the dynamical system stabilized
with a givenC andAr. In general, all starting points converge on the attractor
providedAr is small enough. If this is not the case, the trajectory eitleerges
(if A7 is far too large) or it oscillates in a small section of theestgpace (it is
close to its stabilizing value).

The search for the fixed points is now straightforward: Atstgrpoint chosen
in the global neighborhood of the fixed point iterated with ttansformed dynamical

relax - 29mar2004.tex



CHAPTER 27. RELAXATION FOR CYCLISTS 472

systemg converges to the fixed point due to its stability. Numericaestigations

show that the domain of attraction of a stabilized fixed pa@ird rather extended
connected area, by no means confined to a linear neighbariAdtiches the basin

of attraction encompasses the complete state space ofithet@t so one can be
sure to be within the attracting basin of a fixed point regzssllof where on the
on the attractor on picks the initial condition.

The step sizég(x)— x| decreases exponentially when the trajectory approaches
the fixed point. To get the coordinates of the fixed points ithigh precision,
one therefore needs a large number of iterations for thedi@jy which is already
in the linear neighborhood of the fixed point. To speed up tevergence of the
final part of the approach to a fixed point we recommend a caatibim of the
above approach with the Newton-Raphson mett&d. Table 27.3: All prime cycles up to 6 bounces for the 3-disk fundamentahedm, center-
to-center separatioR = 6, disk radiusa = 1. The columns list the cycle itinerary, its
expanding eigenvalug,, and the length of the orbit (if the velocii this is the same as
its period or the action). Note that the two 6 cyc1011 and)01101 are degenerate
due to the time reversal symmetry, but are not related by &tyete spatial symmetry.
(Computed by P.E. Rosenqvist.)

The fixed points of thath iteratef” are cycle points of a cycle of periad If
we consider the map

X =g(X) = x+ ArC(f"(X) - X), (27.14)
p A T
T—ngmﬁsm%wmo

the iterates ofj converge to a fixed point provided th&t is suficiently small and (13 L :i-ﬂgéﬁggiggﬁgﬁ g-%%gggigg‘l‘gé
C is a [dxd] constant matrix chosen such that it stabilizes the flown &sows, At 001 1.24054255704410° 12.321746616182
has to be chosen smaller and smaller. In the case of the Ikageerample27.2 011 1.449545074956.0° 12.580807741032
the method works well fon < 20. As in 27.19, the multipoint shooting method 0001 -1.229570686194.0 16.322276474382
is the method of preference for determining longer cyclemsitlerx = (Xq, X2, . . ., Xn) ggﬁ i‘;g?ggzggéggg iggigg%gggggi
and thend-dimensional map 00001 -1.21733838705A.C° 20.322330025739
00011  1.4328209515440° 20.585689671758
, 00101  1.5392579074200° 20.638238386018
X' =109 = (f(xq), F(xa).- .., F(Xn-2))- 00111  -1.7041071554340° 20.853571517227
01011  -1.79901947942a0° 20.897369388186
o ) ) . ) ) ) N 01111  2.0102473474330° 21.116994322373
Determining cycles with period for thed-dimensionalf is equivalent to determining 000001 -1.2050629238%A0° 24.322335435738
fixed points of the multipointin-dimensionalf. The idea is to construct a matrix 000011 1-4185216228’@82 24.585734788507
C such that the fixed point of becomes stable for the map: 8881(1)1 _1'2522%3@%%& gigg%ggigggﬁ
001011 -1.7963549397830° 24.902167001066
, ATC(f 001101 -1.7963549397830° 24.902167001066
X = x+ ATC(F(x) - X), 001111 2.0057331062%80° 25.121488488111
010111 2.11961501536Q0° 25.165628236279
011111 -2.3663782548010° 25.384945785676

whereC is now a hdxnd] permutatiofreflection matrix with only one non-zero
matrix element:1 per row or column. For any given mati a certain fraction

of the cycles becomes stable and can be found by iteratingahsformed map

which is now and dimensional map.

From a practical point of view, the main advantage of thishoétcompared
to the Newton-Raphson method is twofold) the fundamental matrix of the
flow need not be computed, so there is no large matrix to ingmiplifying
considerably the implementation, arig émpirical basins of attractions for individual
C are much larger than for the Newton-Raphson method. The fwia reduction
in the speed of convergence.
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27.3 Least action method

(P. Dahlgvist)

The methods of sect®7.1 and 27.2 are somewhaad hoc as for general
flows and iterated maps there is no fundamental principleiidegus in choosing
the cost function, such a&7.3, to vary.

For Hamiltonian dynamics, we are on much firmer ground; Maujeleast
action principle. You yawn your way through it in every megita course—but as
we shall now see, it is a very hands-on numerical method fdirfgcycles.

Indeed, the simplest and numerically most robust methoddé&ermining
cycles of planar billiards is given by the principle of leastion, or equivalently,
by extremizing the length of an approximate orbit that sisitgiven sequence of
disks. In contrast to the multipoint shooting method of sé2t3which requires
variation of 21 phase space points, extremization of a cycle length resjuagation
of only n bounce positions;.

The problem is to find the extremum values of cycle lergtf) wheres =
(s1,..., ), that is find the roots ofiL(s) = 0. Expand to first order

GL(s0+069) = GiL(S0) + ) BidjL(S0)dS; + ...
i
[exercise 27.1]
and useM;jj(s)) = 0i9jL(s) in the n-dimensional Newton-Raphson iteration
scheme of sectl2.2.2

S S — EJ] (ﬁ) a;L(s) (27.15)

1]

The extremization is achieved by recursive implementatidhe above algorithm,
with proviso that if the dynamics is pruned, one also has &rklthat the final

extremal length orbit does not penetrate a billiard wall. )
[exercise 27.2]

As an example, the short periods and stabilities of 3-diskesycomputed thiglexercise 12.10]

way are listed tabl@7.2

Résum é

Unlike the Newton-Raphson method, variational methods@mgrobust. As each
step around a cycle is short, they do noffsufrom exponential instabilities, and
with rather coarse initial guesses one can determine cptladbitrary length.
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Commentary

Remark 27.1 Piecewise linear maps. The Lozi map 8.20 is linear, and 100,000's
of cycles can be easily computed by [2x2] matrix multiplioatand inversion.

Remark 27.2 Relaxation method. The relaxation (or gradient) algorithm is one of the
methods for solving extremal problemsy]. The method described above was introduced
by Biham and Wenzell], who have also generalized it (in the case of the Heénon map)
to determination o&ll 2" cycles of perioch, real or complex]. The applicability and
reliability of the method is discussed in detail by GrasgkerKantz and Moening?],

who give examples of the ways in which the method fails: (apight reach a limit
cycle rather than a equilibrium saddle point (that can besdied by the complex Biham-
Wenzel algorithm ]) (b) different symbol sequences can converge to the same cycle
(i.e., more refined initial conditions might be needed). tRemmore, Hansen (ref/T

and chapter 4. of ref.g]) has pointed out that the method cannot find certain cycles
for specific values of the Henon map parameters. In pradtieerelaxation method for
determining periodic orbits of maps appears to fbeative almost always, but not always.
Itis much slower than the multipoint shooting method of sé2t3 but also much quicker

to program, as it does not require evaluation of stabilityriv@s and their inversion. If the
complete set of cycles is required, the method has to be sogpited by other methods.

Remark 27.3 Hybrid Newton-Raphson/relaxation methods. The method discussed
in sect.27.2was introduced by Schmelcheral [9]. The method was extended to flows
by means of the Poincaré surface of section technique if¥élf It is also possible to
combine the Newton-Raphson method a#d.(3 in the construction of a transformed
map [L4]. In this approach, each step of the iteration scheme iseatisuperposition of
a step of the stability transformed system and a step of thetdfeRaphson algorithm.
Far from the linear neighborhood the weight is dominantlytenglobally acting stability
transformation algorithm. Close to the fixed point, the stefthe iteration are dominated
by the Newton-Raphson procedure.

Remark 27.4 Relation to the Smale horseshoe symbolic dynamics. For a complete
horseshoe Hénon repellex §ufficiently large), such as the one given in fig@&e2 the
signso; € {1,-1} are in a 1-to-1 correspondence with the Smale horshesholeadigm
dynamicss € {0, 1}:

S={O ifoj=-1, %<0 (27.16)

1 ifoj=+1, x>0

For arbitrary parameter values with a finite subshift syngynamics or with arbitrarily
complicated pruning, the relation of sign sequenges o, -+, 0oy} to the itineraries
{s1, %, -, S} can be much subtler; this is discussed in r&f. [

Remark 27.5 lkeda map. lkeda map 27.1) was introduced in ref.1[7] is a model
which exhibits complex dynamics observed in nonlinearagptiing cavities.

Remark 27.6 Relaxation for continuous time flows.  For ad-dimensional flowx =
v(x), the method described above can be extended by considerfgjncaré surface

relax - 29mar2004.tex



CHAPTER 27. RELAXATION FOR CYCLISTS 476 CHAPTER 27. RELAXATION FOR CYCLISTS a77

of section. The Poincaré section yields a mfawvith dimensiond-1, and the above investigations in the complex plane, Falcolini and de lavkl§23] do find it useful to
discrete iterative maps procedures can be carried out. Aodehat keeps the trial orbit minimize insteadsS, analogous to our cost functiof7.3.

continuous throughout the calculation is the Newton des@ewariational method for

finding periodic orbits of continuous time flows, is descdlierefs. [L5, 16].

Remark 27.7 Stability ordering. The parametear in (27.13 is a key quantity here.
It is related to the stability of the desired cycle in the sfammed system: The more
unstable a fixed point is, the small&r has to be to stabilize it. With increasing cycle
periods, the unstable eigenvalue of the fundamental matcbeases and thereforer
has to be reduced to achieve stabilization of all fixed poidtsmany cases the least
unstable cycles of a given periadare of physically most important []. In this context
At operates as a stability filter. It allows the selective dizdtion of only those cycles
which posses Lyapunov exponents smaller than a fiutatue. If one starts the search for
cycles within a given period with a valueAr ~ O(10™%), and gradually lowerar one
obtains the sequence of all unstable orbits of ordssrted with increasing values of their
Lyapunov exponents. For the specific choic€dhe relation betweeAr and the stability
codficients of the fixed points of the original system is strictlgmatonous. Transformed
dynamical systems with oth&’s do not obey such a strict behavior but show a rough
ordering of the sequence of stability eigenvalues of thelfp@ints stabilized in the course
of decreasing values farr. As explained in seci.8.5 stability ordered cycles are needed
to order cycle expansions of dynamical quantities of cleasytstems for which a symbolic
dynamics is not known. For such systems, an ordering of sywiéh respect to their
stability has been proposedd 14, 17], and shown to yield good results in practical
applications.

[section 18.5]

Remark 27.8 Action extremization method.  The action extremization (sec7.3

as a numerical method for finding cycles has been introducéependently by many
people. We have learned it from G. Russberg, and from M. 8®hed F. Steiner’s
hyperbola billiard computations [, 18]. The convergence rate is really impressive, for
the Sinai billiard some 5000 cycles are computed within CBtbads with rather bad
initial guesses.

Variational methods are the key ingredient of the Aubry-hatheory of area-preserving
twist maps (known in the condensed matter literature asiekel-Kontorova models of
1-dimensional crystals), discrete-time Hamiltonian dyital systems particularly suited
to explorations of the K.A.M. theorem. Proofs of the Aubryatfler theoremZ(] on
existence of quasi-periodic solutions are variational.wdts quickly realized that the
variational methods can also yield reliable, high precisiomputations of long periodic
orbits of twist map models in 2 or more dimensions, neede&fArM. renormalization
studies [9].

A fictitious time gradient flow similar to the one discussedehim sect.27.1was
introduced by Anegent’[]] for twist maps, and used by Golé€7] in his proof of the
Aubry-Mather theorem. Mathematical bounds on the regidnstability of K.A.M.
tori are notoriously restrictive compared to the numerindications, and de la Llave,
Falcolini and Tompaidis{3, 24] have found the gradient flow formulation advantageous
both in studies of the analyticity domains of the K.A.M. dlié&§y as well as proving
the Aubry-Mather theorem for extended systems (for a pegiagbintroduction, see the
lattice dynamics section of ref2f]).

All of the twist-maps work is based on extremizing the digedynamics version of
the actionS (in this context sometimes called a “generating functiohfpwever, in their
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Exercises
27.1. Evaluation of billiard cycles by minimization*. may be obtained by varying slowly (adiabatically) the

27.2.

Given a symbol sequence, you can construct a guess
trajectory by taking a point on the boundary of each
disk in the sequence, and connecting them by straight
lines. If this were a rubber band wrapped through 3
rings, it would shrink into the physical trajectory, which
minimizes the action (in this case, the length) of the
trajectory.

Write a program to find the periodic orbits for your
billiard simulator. Use the least action principle to
extremize the length of the periodic orbit, and reproduce
the periods and stabilities of 3-disk cycles, taBle2
(One such method is given in se@7.3) After that
check the accuracy of the computed orbits by iterating
them forward with your simulator. What is your error
[fTp(X) — X|?

Tracking cycles adiabatically. Once a cycle has
been found, orbits for dierent system parameters values
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Chapter 28

Figure 28.1: Unperturbed circle magk(= 0in (28.1)) \
with golden mean rotation number.

Irrationally windin
y g they turn out to be related to number-theoretic abysses asctine Riemann
conjecture, already in the context of the “trivial” models.

I don't care for islands, especially very small ones. 28.1 Mode Iocking
—D.H. Lawrence
(R. Artuso and P. Cvitanovic) The simplest way of modeling a nonlinearly perturbed rotatin a circle is by
1-dimensional circle maps— X’ = f(X), restricted to the one dimensional torus,
such as theine map

besides its physical relevance it nicely illustrates threafycle expansions K
away from the dynamical setting, in the realm of renorméliwatheory at Xni1 = F(%) = X1 + Q — — sin(2rxy) mod 1. (28.1)
the transition to chaos. 2n

Tms CHAPTER iS concerned with the mode locking problems for circle maps:

The physical significance of circle maps is connected witirthbility to f(x) is assumed to be continuous, have a continuous first degyand a continuous
model the two_frequencies mode_|ocking route to Chaosimphtive Systems_ second derivative at the inflection pOint (Where the secaerilative vanishes).
In the context ofdissipativedynamical systems one of the most common and For the generic, physically relevant case (the only oneidensd here) the inflection
experimentally well explored routes to chaos is the twepdency mode-locking is cubic. Herek parametrizes the strength of the nonlinear interactiod, s
route. Interaction of pairs of frequencies is of deep thiakinterest due to the the barefrequency.
generality of this phenomenon; as the energy input into sightive dynamical . o
system (for example, a Couette flow) is increased, typidatiy one and then two The state space of this map, the unit interval, can be thafgistthe elementary
of intrinsic modes of the system are excited. After two Hoiftfitzations (a fixed cell of the map
point with inward spiralling stability has become unstadhel outward spirals to
a limit cycle) a systgm ]ives ona two-tor'us. 'Such systemd terTnode-Iock: St = f(R0) = % + Q — k sin(2ry) - (28.2)
the system adjusts its internal frequencies slightly so tihey fall in step and 21
minimize the internal dissipation. In such case the ratitheftwo frequencies
is a rational number. An irrational frequency ratio conmsgs to a quasiperiodic where"is used in the same sense as in chajter
motion - a curve that never quite repeats itself. If the mlod&ed states overlap,
chaos sets in. The likelihood that a mode-locking occursdeg on the strength The winding number is defined as
of the coupling of the two frequencies.

W(k, Q) = lim (%, — %o)/n. (28.3)

Our main concern in this chapter is to illustrate the “glélthkory of circle N—eo
maps, connected with universality properties of the whobgibnal winding set.

We shall see that critical global properties may be expresiecycle expansions and can be shown to be independent of the initial vatue

involving “local” renormalization critical exponents. &menormalization theory . . . . .

of critical circle maps demands rather tedious numericatatations, and our Fork = 0, the map is a simple rotation (tséift map see figure28.1
intuition is much facilitated by approximating circle malpg number-theoretic

models. The models that arise in this way are by no means matfeally trivial, X1 = Xn + Q mod 1, (28.4)
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weQ)

Figure 28.2: The critical circle mapK = 1 in (28.1) 02 ‘
devil’s staircased]; the winding numbeWw as function 00

of the parametef. ) 0
and the rotation number is given by the paramgter
Wk=0,Q)=0Q.

For given values of2 and k the winding number can be either rational or
irrational.  For invertible maps and rational winding numb®&/ = P/Q the
asymptotic iterates of the map converge to a unique attraatstable periodic
orbit of periodQ

fo%)=%+P. i=012---,Q-1.

This is a consequence of the independencrygfréviously mentioned. There is
also an unstable cycle, repelling the trajectory. For atipmal winding number,
there is a finite interval of values ®f values for which the iterates of the circle
map are attracted to tH&/Q cycle. This interval is called the/Q mode-locked
(or stability) interval, and its width is given by

- ight left
Apjg= Q%0 = QR - QF . (28.5)

whereQ’F',%‘ (Q's/g) denote the biggest (smallest) valuebfor which W(k, Q) =
P/Q. Parametrizing mode lockings by the expongniather than the width\
will be convenient for description of the distribution oftinode-locking widths,
as the exponents turn out to be of bounded variation. The stability of &)

cycle is
OX
Apig= 5.2 = 100)1'0x) -+ 1'(q-)

For a stable cyclé\p/gl lies between O (the superstable value, the “center” of the
stability interval) and 1 (th@:?g[, Q'S/fé endpoints of 28.5). For the shift map
(28.4), the stability intervals are shrunk to points. Asis varied from 0 to 1,
the iterates of a circle map either mode-lock, with the wigdhumber given by

a rational numbeP/Q € (0, 1), or do not mode-lock, in which case the winding
number is irrational. A plot of the winding numbV as a function of the shift
parameteq is a convenient visualization of the mode-locking struetaf circle
maps. It yields a monotonic “devil’s staircase” of figut&.2whose self-similar
structure we are to unravel. Circle maps with zero slopeeaairtflection pointx.
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Figure 28.3: Critical circle map k = 1in (28.1)) with | | | ,

golden mean bare rotation number. X

(see figure28.3

Fx)=0. 7(x)=0

(k =1, % = 0in (28.1) are calleccritical: they delineate the borderline of chaos
in this scenario.  As the nonlinearity paramekencreases, the mode-locked
intervals become wider, and for the critical circle maks=(1) they fill out the
whole interval. A critical map has a superstaBj& cycle for any rationaP/Q,

as the stability of any cycle that includes the inflectionnp@&quals zero. If the
map is non-invertiblel > 1), it is called supercritical; the bifurcation structurfe o
this regime is extremely rich and beyond the scope of thigsitipn.

The physically relevant transition to chaos is connectet thie critical case,
however the apparently simple “free” shift map limit is @uiitstructive: in essence
it involves the problem of ordering rationals embedded & thit interval on a
hierarchical structure. From a physical point of view, thaimproblem is to
identify a (number-theoretically) consistent hierarchgceptible of experimental
verification. We will now describe a few ways of organizingioaals along the
unitinterval: each has its own advantages as well as itsttheks, when analyzed
from both mathematical and physical perspective.

28.1.1 Hierarchical partitions of the rationals

Intuitively, the longer the cycle, the finer the tuning of fr@ametef2 required to
attain it; given finite time and resolution, we expect to bleab resolve cycles up
to some maximal lengt®. This is the physical motivation for partitioning mode
lockings into sets of cycle length up @ In number theory such sets of rationals
are calledFarey series They are denoted b¥qo and defined as follows. The
Farey series of orde® is the monotonically increasing sequence of all irredwcibl
rationals between 0 and 1 whose denominators do not exQeedhus P;/Q;
belongs torg if 0 < P; < Q; < Qand @i|Q) = 1. For example
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A Farey series is characterized by the property th&;if/Q;_1 and P;/Q; are
consecutive terms of g, then

PiQ-1 - PiaQ = 1

The number of terms in the Farey serfeg s given by

Q 2
Q) = ) 4@ = 22 + 0QINQ). (28.6)
n=1

Here the Euler functiog(Q) is the number of integers not exceeding and relatively
prime toQ. For exampleg(1) = 1, ¢(2) = 1, ¢(3) = 2, ..., ¢(12) = 4,¢(13) =
12...

From a number-theorist’'s point of view, tikentinued fraction partitioningf
the unit interval is the most venerable organization obrals, preferred already
by Gauss. The continued fraction partitioning is obtaingdiwering rationals
corresponding to continued fractions of increasing lentjtive turn this ordering
into a way of covering the complementary set to mode-lockiimga circle map,
then the first level is obtained by deleting, Ay, - -+, Aa,, - - - mode-lockings;
their complement are theoveringintervals £y, £, ..., {a,, ... which contain all
windings, rational and irrational, whose continued fraictexpansion starts with
[a1,...] and is of length at least 2. The second level is obtained HWgtidg
A2p, Aaps - > A2p Aap s Al and so on.

Thenth level continued fraction partitioS, = {a;az - - - a,} is defined as the
monotonically increasing sequence of all ratioralsQ; between 0 and 1 whose
continued fraction expansion is of length n:

P e .a) = =
Qi 1, A2, s

aj +

a+t...—
an

The object of interest, the set of the irrational winding s, is in this partitioning
labeled byS., = {aqjapa3---}, ax € Z7, i.e., the set of winding numbers with
infinite continued fraction expansions. The continuedtfemdabeling is particularly
appealing in the present context because of the close coomef the Gauss shift
to the renormalization transformati@®) discussed below. The Gauss map

T = )-l(—[;l(] x%0
0

, x=0 (28.7)

([- - -] denotes the integer part) acts as a shift on the continaetidn representation
of numbers on the unit interval

X =[ag,a,az3,...] > T(X) =[agas,...]. (28.8)
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into the “mother” intervala,a, ...

However natural the continued fractions partitioning nbiggem to a number
theorist, it is problematic in practice, as it requires nueiag infinity of mode-
lockings even at the first step of the partitioning. Thus nucaéand experimental
use of continued fraction partitioning requires at leastsainderstanding of the
asymptotics of mode—lockings with large continued fratgatries.

The Farey tree partitioningis a systematic bisection of rationals: it is based
on the observation that roughly halfways between any twgelatability intervals
(such as 12 and ¥3) in the devil’s staircase of figu28.2there is the next largest
stability interval (such as/&). The winding number of this interval is given by the
Farey mediantR+P’)/(Q+Q’) of the parent mode-locking®/Q andP’/Q’. This
kind of cycle “gluing” is rather general and by no means ietgd to circle maps;
it can be attained whenever it is possible to arrange thaQtheterate deviation
caused by shifting a parameter from the correct value foiQeycle is exactly
compensated by th@'th iterate deviation from closing th@’-cycle; in this way
the two near cycles can be glued together into an exact cj@agthQ+Q’. The
Farey tree is obtained by starting with the ends of the utérial written as
and ¥1, and then recursively bisecting intervals by means ofyFarediants.

We define thenth Farey tree level F as the monotonically increasing sequence
of those continued fractiorsy, ay, . .., &] whose entriesia> 1, i = 1,2,... k-
1, a=>2adduptoZk, & = n+ 2 Forexample

To=1[4L22. L 120,30 = (5.5 5 o) (28.9)

allw

The number of terms i, is 2". Each rational in,_; has two “daughters” iff,,
given by

[...’a]
[.--,a=-1,2] [---,a+1]

Iteration of this rule places all rationals on a binary tiabgeling each by a unique
binary label, figure28.4

The smallest and the largest denominatof irare respectively given by

[n—2]:r12, [l,l,..‘,l,Z]:ELtocpn, (28.10)
n+

where the Fibonacci numbefg are defined by.1 = Fh+Fn1; Fo=0, F1 =
1, andp is the golden mean ratio

1+ 5
2

= 1.61803... (28.11)
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Note the enormous spread in the cycle lengths on the sanmefdhe Farey tree:
n < Q < p". The cycles whose length grows only as a power of the Fareyevel
will cause strong non-hyperbolidfects in the evaluation of various averages.

Having defined the partitioning schemes of interest hereyavebriefly summarize

the results of the circle-map renormalization theory.
28.2 Local theory: “Golden mean” renormalization

X
J The way to pinpoint a point on the border of order is to remetlyi adjust
the parameters so that at the recurrence times ny, ny, ng, - - - the trajectory
passes through a region of contractiortisiently strong to compensate for the
accumulated expansion of the precedmgsteps, but not so strong as to force
the trajectory into a stable attracting orbit. Thenormalization operation R
implements this procedure by recursively magnifying thigimeorhood of a point
on the border in the dynamical space (by rescaling by a fagton the parameter
space (by shifting the parameter origin onto the border aschling by a factaf),
and by replacing the initial map by thenth iteratef" restricted to the magnified
neighborhood

(%) = Rp(X) = a0 (x/a)

There are by now many examples of such renormalizations iichane new
function, framed in a smaller box, is a rescaling of the o@gifunction, i.e., the
fix-point function of the renormalization operat@r The best known is the period
doubling renormalization, with the recurrence tinmes= 2'. The simplest circle
map example is the golden mean renormalization, with recge timesy = F;
given by the Fibonacci numbergg.10. Intuitively, in this context a metric self-
similarity arises because iterates of critical maps armt@dves critical, i.e., they
also have cubic inflection points with vanishing derivasive

The renormalization operator appropriate to circle mapsaa generalization

of the Gauss shiftA8.39; it maps a circle map (represented as a pair of functions
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(g, ), of winding number §,b,c,...] into a rescaled map of winding number
[b,c,...]:

a-1 -1
g) _ ( ag®¥lofoa (28.12)

Ra(f agtlofogoa )
Acting on a map with winding numberja, a,...], Ra returns a map with the
same winding numbeg[a, . . ], so the fixed point oR, has a quadratic irrational
winding numbei = [a,a, a,...]. This fixed point has a single expanding eigenvalue
da. Similarly, the renormalization transformati®, ... Ra,Re; = Raja,.a, has a

fixed point of winding numbeW, = [a, ag, ..., an,, a1, a, ..., with a single
expanding eigenvalug,.

For short repeating blocks; can be estimated numerically by comparing
successive continued fraction approximantdAto Consider theP,/Q; rational
approximation to a quadratic irrational winding numi&p whose continued
fraction expansion consists ofrepeats of a bloclp. Let Q, be the parameter
for which the map 8.1 has a superstable cycle of rotation numPBerQ, =
[p.p.....pl. Thed, can then be estimated by extrapolating from

Q = Qi 6y (28.13)
What this means is that the “devil’s staircase” of fig@ge2is self-similar under
magnification by factos, around any quadratic irrations,.

The fundamental result of the renormalization theory (dedreason why all
this is so interesting) is that the ratios of succes8iv&, mode-locked intervals
converge tainiversallimits. The simplest example o28.13 is the sequence of
Fibonacci number continued fraction approximants to theeyomean winding

numberw = [1,1,1,..] = (V5-1)/2.

When global problems are considered, it is useful to haveaatland idea on
extemal scaling laws for mode—lockings. This is achievedj first analysis, by
fixing the cycle lengtiQ and describing the range of possible asymptotics.

For a given cycle length, it is found that thenarrowestinterval shrinks with
a power law

Aygq « Q73 (28.14)

For fixedQ thewidestinterval is bounded bi?/Q = F,_1/Fn, thenth continued
fraction approximant to thgolden mean The intuitive reason is that the golden
mean winding sits as far as possible from any short cycle Amzieng.

The golden mean interval shrinks with a universal exponent

Apjq o Q1 (28.15)
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whereP = Fp1, Q = Fpandy; is related to the universal Shenker number
(28.13 and the golden mea2§.11) by

njesyl
HL= 2lnp

= 1.08218... (28.16)

The closeness ¢f; to 1 indicates that the golden mean approximant mode-lgskin
barely feel the fact that the map is critical (in theklimit this exponentig: = 1).

To summarize: for critical maps the spectrum of exponerignar from the
circle maps renormalization theory is bounded from abovaéyharmonic scaling,
and from below by the geometric golden-mean scaling:

3/2 > ppyn > 1.08218 - -. (28.17)

28.3 Global theory: Thermodynamic averaging

Consider the following average over mode-locking intes\@B.5):

Q) = Z Z Avlo (28.18)
Q=1 (PIQ)=1

The sumis over all irreducible rationa®Q, P < Q, andAp,q is the width of the
parameter interval for which the iterates of a critical leinmap lock onto a cycle
of lengthQ, with winding numbeP/Q.

The qualitative behavior 0f28.19 is easy to pin down. For $iciently
negativer, the sum is convergent; in particular, for= -1, Q(-1) = 1, as for
the critical circle maps the mode-lockings fill the entiterange [L1]. However,
ast increases, the contributions of the narrow (laf@emode-locked intervals
Apyq get blown up to 1AL o and at some critical value afthe sum diverges.
This occurs forr < 0, asQ?O) equals the number of all rationals and is clearly
divergent.

The sum 28.19 is infinite, but in practice the experimental or numerical
mode-locked intervals are available only for small fif@eHence it is necessary
to split up the sum into subses, = {i} of rational winding number®;/Q; on
the “level” n, and present the set of mode-lockings hierarchically, vé#olution
increasing with the level:

Zor) = ) A (28.19)

i€Sh

The original sumZ8.18 can now be recovered as the 1 value of a “generating”
functionQ(z 7) = ¥, 2'Zy(7). Aszis anyway a formal parameter, ands a rather
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arbitrary “level” in somead hoc partitioning of rational numbers, we bravely
introduce a still more generdP/Q weighted generating function fo28.19:

Qg 7) = Z Z e PPeQHRQ | (28.20)
Q=1 (PIQ)=1

The sum £8.18 corresponds tq = 0. Exponentsp,q will reflect the importance
we assign to th&/Q mode-locking, i.e., theneasureused in the averaging over
all mode-lockings. Three choices of of thgq hierarchy that we consider here
correspond respectively to the Farey series partitioning

Q(q,7) = i O(Q)™ Z Qe | (28.21)
Q=1 (PIQ)=1

the continued fraction partitioning

Q@ 7) = Z gan Z Q¥Hia..anl | (28.22)
n=1

[ag,....an]

and the Farey tree partitioning

o0 n
Qo)=Y 2" ", Q/PiET,. (28.23)
k=n i=1

We remark that we are investigating a set arising in the aisbf the parameter
space of a dynamical system: there is no “natural measucédtdd by dynamics,
and the choice of weights reflects only the choice of hieiaatipresentation.

28.4 Hausdoff dimension of irrational windings

A finite cover of the set irrational windings at theth level of resolution” is
obtained by deleting the parameter values corresponditigetmode-lockings in
the subsesy; left behind is the set of complemetveringintervals of widths

G =0, —opax (28.24)

HereQQi?Q (Qpa%,) are respectively the lower (upper) edges of the mode-fggki
. r/Qr 1/Q . . R .
intervals Ap,;q, (Ap/q) bounding¢ andi is a symbolic dynamics label, for

example the entries of the continued fraction represem&iQ = [ay, &, ..., &)
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of one of the boundary mode-lockindss a;a; - - - a,. ¢ provide a finite cover for
the irrational winding set, so one may consider the sum

Zn(7) = Z 6T (28.25)

i€Sh

The value of-7 for which then — oo limit of the sum 8.2 is finite is the
Hausdoyf dimension Iy of the irrational winding set. Strictly speaking, this is
the Hausddf dimension only if the choice of covering intervalsis optimal;
otherwise it provides an upper boundg,. As by construction thé; intervals
cover the set of irrational winding with no slack, we expéuwttthis limit yields
the Hausddf dimension. This is supported by all numerical evidence ahuioof
that would satisfy mathematicians is lacking.

The physically relevant statement is that for critical lénmapsDy = 0.870. ..

is a (global) universal number. )
[exercise 28.2]

28.4.1 The Hausdoff dimension in terms of cycles

Estimating then — oo limit of (28.25 from finite numbers of covering intervals
¢ is a rather unilluminating chore. Fortunately, there egistsiderably more
elegant ways of extractin®y. We have noted that in the case of the “trivial”
mode-locking problem28.4), the covering intervals are generated by iterations
of the Farey map28.37) or the Gauss shift28.39. Thenth level sum 28.25 can

be approximated by’?, where

Loy, ) = 5(x = T O

This amounts to approximating each cover wiéthy |d f"/dX evaluated on the
ith interval. We are thus led to the following determinant

& 2 AL
det(1-zL;) = exp -;; IR
= ﬂ ]—[ (1- Z%IAp[7/AY) - (28.26)
p k=0

The sum 28.25 is dominated by the leading eigenvalue£f, the Hausddf
dimension conditiorZ,(—Dy) = O(1) means that = —Dy should be such that
the leading eigenvalue 8 = 1. The leading eigenvalue is determined by the
k = 0 part of £8.26; putting all these pieces together, we obtain a pretty tdam
relating the Hausdd dimension to the prime cycles of the mé&fx):

0= ﬂ (1-2/1Ap%%) . (28.27)
p
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Table 28.1: Shenker's,, for a few periodic continued fractions, from ref][
p
[1111.] -2.833612
[2222..] -6.7992410

3333..] -13.760499
4444.] -24.62160
5555..] -40.38625
6666... -62.140
1212.. 17.66549
1313.. 31.62973
1414 .. 50.80988
1515.. 76.01299
2323.. 91.29055

For the Gauss shif28.39 the stabilities of periodic cycles are available anasjtic
ly, as roots of quadratic equations: For example, sthéixed points (quadratic
irrationals withx, = [a, a,a. . .] infinitely repeating continued fraction expansion)
are given by

2
_ 2 2
roo At V@4 Za+4 Aam [w] (28.28)

and thexap = [a,b,a,b,a,b,...] 2—-cycles are given by

—ab+ +/(ab)? + 4ab
2
ab+ 2+ ab@b+ 4) )2
2

(28.29)

(XapXpa) 2 =

>
&
[

We happen to know beforehand tHay; = 1 (the irrationals take the full
measure on the unit interval, or, from another point of vithe Gauss map
is not a repeller), so is the infinite produ@8(27) merely a very convoluted
way to compute the number 1? Possibly so, but once the meai(@B.27)
has been grasped, the corresponding formula focthieal circle maps follows
immediately:

0= ﬂ (1-1/1601%) (28.30)
p

The importance of this formula relies on the fact that it eggesDy in terms

of universal quantities, thus providing a nice connection from localvarsal
exponents to global scaling quantities: actual computatiosing 28.30 are
rather involved, as they require a heavy computatioffaketo extract Shenker’s
scalingd,, for periodic continued fractions, and moreover dealingwain infinite
alphabet requires control over tail summation if an aceuegtimate is to be
sought. In tabl€8.4.1we give a small selection of computed Shenker’s scalings.
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28.5 Thermodynamics of Farey tree: Farey model

X
J We end this chapter by giving an example of a number theaiatiodel
motivated by the mode-locking phenomenology. We will cdasiit by means of
the thermodynamic formalism of chapt2, by looking at the free energy.

Consider the Farey tree partition su@B(23: the narrowest mode-locked
interval 28.19 at thenth level of the Farey tree partition sui2gq.23 is the golden
mean interval

Ar /R, o 1627 (28.31)

It shrinks exponentially, and farpositive and large it dominategr) and bounds
dg(r)/dr:

,_ Injoq

Oax = 5 = 1502642... (28.32)

However, forr large and negativey(r) is dominated by the interva28.14 which
shrinks only harmonically, ang{r) approaches 0 as

@ _ 3Inn

== (28.33)

So for finite n,gn(7) crosses the axis at—r = Dy, but in then — oo limit, the
q(r) function exhibits a phase transitiog(r) = 0 for r < —Dy, but is a non-trivial
function ofr for -Dy < 7. This non-analyticity is rather severe - to get a clearer
picture, we illustrate it by a few number-theoretic modéte (critical circle maps
case is qualitatively the same).

An approximation to the “trivial” Farey level thermodynarsiis given by the
“Farey model,” in which the intervalé,q are replaced bp2

»
Zy(d) = ) Q. (28.34)

i=1

Here Q; is the denominator of thah Farey rationalP;/Q;. For example (see
figure28.4),

Z5(1/2) =4+ 5+ 5+ 4

By the annihilation property28.39 of the Gauss shift on rationals, thth Farey
level sumZ,(—1) can be written as the integral

2,(-2)= [ dxa("09) = Y 118, 0 0).
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/2 | Zn(z/ 2)/§n—1(7/ 2)

3
5+ Vi7)/2
7

5+ V17)/2
7+46
26.20249...

U WN PO

Table 28.2: Partition function sum rules for the Farey model.

and in general

Zo(r) = f dx£7(0,%).

with the sum restricted to the Farey leegl+ ... + ax = n + 2. Itis easily checked

the Gauss map preimages»ok 0, i.e., by rationals, rather than by the quadratic
irrationals as in28.26. The sums are generated by the same transfer operator, so
the eigenvalue spectrum should be the same as for the peoidadi expansion, but

in this variant of the finite level sums we can can evalagt® exactlyfor r = k/2,

k a nonnegative integer. First, one observesZij@l) = 2". Itis also easy to check
thatZ,(1/2) = 3, Q = 2-3". More surprisingly,Z,(3/2) = ¥; Q% = 54. 71,

A few of these “sum rules” are listed in the tatil8.2, they are consequence of
the fact that the denominators on a given level are Farey sfidenominators on

r ing levels.
preceding levels [exercise 28.3]

A bound onDy can be obtained by approximatingd;34 by
Zn(1) = n% + 272", (28.35)

In this approximation we have replaced &g, except the widest intervath,,
by the narrowest intervdk, ,,r, (see £8.15). The crossover from the harmonic
dominated to the golden mean dominated behavior occurs atmdlue for which
the two terms in28.39 contribute equally:

Dn=D+ o('”T”), D=2 72 . (28.36)

For negativer the sum £8.35 is the lower bound on the suri§.29 , soD is
a lower bound oDy

From a general perspective the analysis of circle maps thdynamics has
revealed the fact that physically interesting dynamicatesys often exhibit mixtures
of hyperbolic and marginal stabilities. In such systemsetae orbits that stay
‘glued’ arbitrarily close to stable regions for arbitrgrilong times. This is a
generic phenomenon for Hamiltonian systems, where aliptands of stability
coexist with hyperbolic homoclinic webs. Thus the consitiens of chaptef3
are important also in the analysis of renormalization abihget of chaos.
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Résumé

The mode locking problem, and the quasiperiodic transitmmrhaos fer an
opportunity to use cycle expansions on hierarchical airestin parameter space:
this is not just an application of the conventional thermuatyic formalism, but
offers a clue on how to extend universality theory from localisga to global
quantities.

Commentary

Remark 28.1 The physics of circle maps. Mode—locking phenomenology is reviewed

in ref. [5], amore theoretically oriented discussion is containedin3]. While representative

of dissipative systems we may also consider circle mapsaside @pproximation to
Hamiltonian local dynamics: a typical island of stabilitya Hamiltonian 2d map is an
infinite sequence of concentric KAM tori and chaotic regidnghe crudest approximation,
the radius can here be treated as an external parafetnd the angular motion can
be modelled by a map periodic in the angular varialile9]. By losing all of the
“island-within-island” structure of real systems, circiap models skirt the problems of
determining the symbolic dynamics for a realistic Hamileansystem, but they do retain
some of the essential features of such systems, such adtlemgeean renormalization [
8] and non-hyperbolicity in form of sequences of cycles acalating toward the borders
of stability. In particular, in such systems there are artfiit stay “glued” arbitrarily close
to stable regions for arbitrarily long times. As this is a gga phenomenon in physically
interesting dynamical systems, such as the Hamiltoniaresyswith coexisting elliptic
islands of stability and hyperbolic homoclinic webs, depshent of good computational
techniques is here of utmost practical importance.

Remark 28.2 Critical mode—locking set The fact that mode-lockings completely fill
the unit interval at the critical point has been propose@fs.i?, 10]. The proof that the
set of irrational windings is of zero Lebesgue measure irmin ref. [L1].

Remark 28.3 Counting noise for Farey series. The number of rationals in the Farey
series of ordef is ¢(Q), which is a highly irregular function o®: incrementingQ by 1
increase®(Q) by anything from 2 taQ terms. We refer to this fact as the “Euler noise.”

The Euler noise poses a serious obstacle for numericallatitms with the Farey
series partitionings; it blocks smooth extrapolation®te» o limits from finite Q data.
While this in practice renders inaccurate most Farey-secgipartitioned averages, the
finite Q Hausdoff dimension estimates exhibit (for reasons that we do not nsiaied)
surprising numerical stability, and the Farey series paning actually yields théest
numerical value of the Hausdbrdimension £8.25 of any methods used so far; for
example the computation in ref.f] for critical sine map£8.1), based on 24 Q < 250
Farey series partitions, yield3y = .87012+ .00001. The quoted error refers to the
variation ofDy over this range o®; as the computation is not asymptotic, such numerical
stability can underestimate the actual error by a largefact
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Remark 28.4 Farey tree presentation function. The Farey tree rationals can be generated
by backward iterates of/2 by the Farey presentation functiord]:

fo(x)
fi(x)

x/(1-X) 0<x<1/2
(1-x)/x 1/2<x<1.

(28.37)

The Gauss shift48.7) corresponds to replacing the binary Farey presentatinotion
branchfy in (28.3% by an infinity of branches

5

| =

- 1 1
fa(x) fro i V(0 = X2 2o <%=
farc() = foo-ofoo fa(x). (28.38)

Arationalx = [ay, @, ..., &] is annihilated by théth iterate of the Gauss shift, a,..5,(X) =
0. The above maps look innocent enough, but note that whagimng fpartitioned is not
the dynamical space, but the parameter space. The flow beddsy 8.3% and by its
non-trivial circle-map generalizations will turn out to beenormalization grouglow
in the function space of dynamical systems, not an ordinawy fh the state space of a
particular dynamical system.

The Farey tree has a variety of interesting symmetries (asclflipping heads and
tails” relations obtained by reversing the order of the targd-fraction entries) with as
yet unexploited implications for the renormalization thecsome of these are discussed
in ref. [4].

An alternative labeling of Farey denominators has beewdhiced by Knauf(] in
context of number-theoretical modeling of ferromagnepmschains: it allows for a
number of elegant manipulations in thermodynamic averagesected to the Farey tree
hierarchy.

Remark 28.5 Circle map renormalization The idea underlying golden mean renormalization
goes back to ShenkeP][ A renormalization group procedure was formulated in.rgfs

14], where moreover the uniqueness of the relevant eigenisilaimed. This statement

has been confirmed by a computer—assisted prodf fand in the following we will

always assume it. There are a number of experimental evédefioc local universality,

see refs. 6, 17].

On the other side of the scaling tale, the power law scalimghésmonic fractions
(discussed in refs.2] ?, 4]) is derived by methods akin to those used in describing
intermittency P1]: 1/Q cycles accumulate toward the edge ¢1 ®node-locked interval,
and as the successive mode-locked intervdl®,1/(Q — 1) lie on a parabola, their
differences are of ord€y2.

Remark 28.6 Farey series and the Riemann hypothesis The Farey series thermodynamics
is of a number theoretical interest, because the Fareysspravide uniform coverings

of the unit interval with rationals, and because they arseaiprelated to the deepest
problems in number theory, such as the Riemann hypothesigf] . The distribution

of the Farey series rationals across the unit interval iprigingly uniform - indeed,

so uniform that in the pre-computer days it has motivated rapsiation of an entire
handbook of Farey serieg4]. A quantitative measure of the non-uniformity of the
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distribution of Farey rationals is given by displacemeritSarey rationals foP;/Q; € o
from uniform spacing:

i P

"TeQ

i=12---,0(Q)

The Riemann hypothesis states that the zeros of the Riemetanfunction lie on the

s = 1/2 + it line in the complexs plane, and would seem to have nothing to do with
physicists’ real mode-locking widths that we are interdstehere. However, there is
a real-line version of the Riemann hypothesis that lies \woge to the mode-locking
problem. According to the theorem of Franel and Landay P2, 23], the Riemann
hypothesis is equivalent to the statement that

> Il = o(QF)

Q=Q

for all e asQ — oo. The mode-lockingg\p,q contain the necessary information for
constructing the partition of the unit interval into thecovers, and therefore implicitly
contain thes; information. The implications of this for the circle-magating theory have
not been worked out, and is not known whether some conjeahget the thermodynamics
of irrational windings is equivalent to (or harder than) fRiemann hypothesis, but the
danger lurks.

Remark 28.7 Farey tree partitioning. The Farey tree partitioning was introduced in
refs. 26, 27, 4] and its thermodynamics is discussed in detail in ref§, [ 3]. The Farey
tree hierarchy of rationals is rather new, and, as far as waware, not previously studied
by number theorists. It is appealing both from the experimemd from the the golden-
mean renormalization point of view, but it has a serious thask of lumping together
mode-locking intervals of wildly dierent sizes on the same level of the Farey tree.

Remark 28.8 Local and global universality. Numerical evidences for global universal
behavior have been presented in réf. [The question was reexamined in refZ], where

it was pointed out how a high-precision numerical estimataipractice very hard to
obtain. Itis not at all clear whether this is the optimal glbguantity to test but at least
the Hausddf dimension has the virtue of being independent of how onétjpers mode-
lockings and should thus be the same for the variety of thdymamic averages in the
literature.

The formula 28.30, linking local to global behavior, was proposed in réf. [

The derivation of 28.30 relies only on the following aspects of the “hyperbolicity
conjecture” of refs.4, 18, 19, 2(]:

1. limitsfor Shenke#p’s existand are universal. This should follow from the renormalzat
theory developed in refs/[ 14, 15], though a general proof is still lacking.

2. 6, growexponentiallywith ny, the length of the continued fraction blopk

3. 6p for p = aja...n with a large continued fraction entry grows as gpower
of n. According to £8.19, limy_. 6p o n3. In the calculation of ref. 1] the
explicit values of the asymptotic exponents and prefact@i® not used, only the
assumption that the growth 6§ with nis not slower than a power of
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Remark 28.9 Farey model. The Farey model48.33 has been proposed in rei.q;
though it might seem to have been pulled out of a hat, the Faiagyel is as sensible
description of the distribution of rationals as the perioatibit expansion8.26.

Remark 28.10 Symbolic dynamics for Hamiltonian rotational orbits.  The rotational
codes of ref. ] are closely related to those for maps with a natural angt@abte, for
example for circle maps3fi, 36] and cat mapsi/]. Ref. [6] also dfers a systematic rule
for obtaining the symbolic codes of “islands around isldmdgtional orbits 9. These
correspond, for example, to orbits that rotate around ®thit rotate around the elliptic
fixed point; thus they are defined by a sequence of rotatiorbeusn

A different method for constructing symbolic codes for “islandsiad islands” was
given in refs. {2, 40]; however in these cases the entire set of orbits in an iskeasl
assigned the same sequence and the motivation was to seuttgutisport implications for
chaotic orbits outside the islands9 41].

Exercises
28.1. Mode-locked intervals.  Check that wheik # O the for {(s a) (via Euler summation formula) or keep
interval Ap/q have a non-zero width (look for instance subtracting leading contributions7].

at simple fractions, and considesmall). Show that for

smallk the width ofAg/1 is an increasing function d¢ 28.6. Hitting condition.

28.2. Bounds on Hausdoff dimension. By making use of the starting point, with polar angté,n: then draw tt
the boundsZ8.17% show that the Hausdfirdimension
for critical mode lockings may be bounded by the center of the (@) and (n, n) disks.

2/3 < Dy <.9240...

in table28.2 An elegant way to get a number of su 8
rules for the Farey model is by taking into account an™*
lexical ordering introduced by Contucci and Knauf, see
ref. [2€].

28.4. Metric entropy of the Gauss shift. Check

that the Lyapunov exponent of the Gauss map. ) is 28.9. Farey tree and continued fractions I.
given byn2/61In2. This result has been claimed to be ~ Farey tree presentation functién [0, 1] - [0, 1], suc
relevant in the discussion of “mixmaster” cosmologies, ~ thatifl =[0,1/2) andJ = [1/2,1], f|; = x/(1-X) an
see ref. B(]. fl; = (1 - x)/x. Show that the corresponding indu
map is the Gauss magfx) = 1/x— [1/x].

28.5. Refined expansions. Show that the above estimates

can be refined as follows: 28.10. Farey tree and continued fraction I1. (Lethal weapor
I).  Build the simplest piecewise linear approxima

F(z2) ~ {(2)+(1-2)log(1-2 - (1-2)

Prove §.39. Hint: togethe
with the real trajectory consider the line passing thr

perpendiculars to the actual trajectory, passing thi

28.7. jnand ag;.  Look at the integration region and ho
28.3. Farey model sum rules. Verify the sum rules reported scales by plotting it for increasing valuesrof

. Estimates of the Riemann zeta function.
approximate numerically the Riemann zeta functio
s = 2,4,6 using diferent acceleration algorithms: ch
your results with refs.g2, 33).

and

Fzs) ~ {9 +T(1-9(1-251-S(5)(1-2)

for s € (1,2) (S(s) being expressed by a converging
sum). You may use either more detailed estimate
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to the Farey tree presentation function (hint: subs
first the righmost, hyperbolic branch with a linear o
consider then the spectral determinant of the inc
mapd, and calculate the first two eigenvalues be:
the probability conservation one. Compare the re
with the rigorous bound deduced in ref.].
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