In order to illuminate my problem, let us have a look at the ’prototype’ 2-
dimensional repeller, the single hyperbolic fixed point introduced in section 8.3,
and try to calculate its escape rate:
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with 0 < A; < 1 and A, > 1. Of course the Perron-Frobenius operator
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has smooth eigenfunctions ¢, », = 21 m=102 560 T should be happy.

The drawback is that I must choose a finite sized neighbourhood of the repeller
in order to define an escape rate. For the example given here, let this region be

M :=[-1,1] x [-1,1], and for the escape rate I have to examine
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with i(z) = 1 and an operator

Ch(z1, 2) = /M dwrdws (21, 22) — f(wn, wa))h(wy, ws) (5)

which is definitely not the Perron-Frobenius operator defined in (2). The repre-
sentation given by the second equality in (2) is valid for £ only if (21, 22) € f(M),
and Lh(z1, z2) is zero otherwise. The eigenfunctions of £ cannot be the eigen-

functions of £. So what has the escape rate to do with the Perron-Frobenius
operator? Why does it work?

Another question: Which linear combination of the ¢, »,’s yields i(z) = 17
Smooth functions on M do not belong to the somewhat strange function space
spanned up by the ¢, »,’s.



