
In order to illuminate my problem, let us have a look at the ’prototype’ 2-
dimensional repeller, the single hyperbolic fixed point introduced in section 8.3,
and try to calculate its escape rate:

f(z1, z2) = (λsz1, λuz2) (1)

with 0 < λs < 1 and λu > 1. Of course the Perron-Frobenius operator

Lh(z1, z2) =
∫

R2
dw1dw2 δ((z1, z2)− f(w1, w2))h(w1, w2)

=
1

λsλu
h(z1/λs, z2/λu) (2)

has smooth eigenfunctions ϕn1,n2 = z−n1−1
1 zn2

2 , so I should be happy.

The drawback is that I must choose a finite sized neighbourhood of the repeller
in order to define an escape rate. For the example given here, let this region be
M := [−1, 1]× [−1, 1], and for the escape rate I have to examine

Γn =
1

|M|

∫
M
dw

∫
M
dz δ(z − fn(w)), (3)

and this is

Γn =
1

|M|

∫
M
dz L̃ni(z). (4)

with i(z) = 1 and an operator

L̃h(z1, z2) =
∫
M
dw1dw2 δ((z1, z2)− f(w1, w2))h(w1, w2) (5)

which is definitely not the Perron-Frobenius operator defined in (2). The repre-
sentation given by the second equality in (2) is valid for L̃ only if (z1, z2) ∈ f(M),
and L̃h(z1, z2) is zero otherwise. The eigenfunctions of L cannot be the eigen-
functions of L̃. So what has the escape rate to do with the Perron-Frobenius
operator? Why does it work?

Another question: Which linear combination of the ϕn1,n2 ’s yields i(z) = 1?
Smooth functions on M do not belong to the somewhat strange function space
spanned up by the ϕn1,n2 ’s.
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