The problem I have is about the derivation of the fact that the escape rate
is the leading eigenvalue of the Perron-Frobenius-Operator. In order to calculate
the escape rate, one has to examine the asymptotic behaviour of the quantity
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Of course the dx-integral is nothing but the Perron-Frobenius-Operator L™ acting
on an uniform initial density i(z) = 1Vz € M:
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If T understood it correctly, you argue in the following way: the initial density
i(z) can be expanded in terms of eigenfunctions of L,

i) = X capalz), (3)

and therefore, for large n, I',, is dominated by Ao, the leading eigenvalue of L:
I, ~ A\ as n — oo.

My first and most important question is the following: is the decomposition
(3) really possible in an open system?

If trajectories can escape and the invariant set A is only a subset of M of zero
Lebesgue measure, I think the eigenfunctions ¢, must be zero almost everywhere.
Why? The eigenvalue condition
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yields that ¢, can have nonzero values only on the set N?_,f*(M). This set
becomes arbitrary small for large n, and (4) holds for every n, if f is invertible, it
holds even for negative n. Then, all the ¢, must be concentrated on the invariant
set A, or at least on the set A := N2 fH(M), and it is impossible to expand
i(r) = 1Vz € M in terms of the eigenfunctions ¢,

So how does it work? Do I have to think of the ¢, as functions that are a
little bit smoothed around AS? For large n, only points close to AS® contribute
to the dy-integral in (1). Or am I dead wrong?

If this problem is solved, there are two questions remaining. Is {¢,} a basis
for a (properly chosen) function space? And can I be sure that the coefficient ¢,
in (3) isn’t zero? Otherwise Ay would not be dominating.

Thank you very much for looking at this.



