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Abstract. One of the prevailing hindrances to the development of more
accurate climate models is the current inability to correctly model transport
and diffusion of chemical tracers in the atmosphere. Outfitting the model with
accurate mixing parameterizations becomes too computationally expensive,
yet neglecting these effects yields physically unrealistic output. We analyze
transport and diffusion on an annual scale by calculating Lyapunov exponents,
drift and diffusion in European Centre for Medium-Range Weather Forecasting
(ECMWF) ERA-15 reanalyses of global 315 K isentropic windfields. We
present a Lagrangian model of isentropic chaotic mixing for use in more
expansive future studies.

1. Introduction

Chaotc mixing is widely recognized as a major fac-
tor in determining the distribution of chemical tracers
and aerosols in the atmosphere, yet scientific under-
standing of the processes involved remains limited.
We have developed a model of isentropic chaotic mix-
ing in the atmosphere following the general approach
of Pierrehumbert and Yang (1993, herafter PY93). As
in PY93, we have performed our analysis on the 315
K isentropic surface, since it generally does not inter-
sect either the ground or the tropopause. On average,
this surface is located at approximately 300 hPa at the
poles and dips to around 600 hPa in the tropics. Since
trajectories are evaluated along isentropic surfaces,
each parcel should be seen as adiabatically contract-
ing and expanding as necessary along its path. As in
PY93, we have neglected diabatic motions across the
isentropic surface.

While PY93 has served as the basis for this work,
our analysis differs in significant ways. Whereas PY93
used once-daily windfields from a global general cir-
culation model (GCM) to drive global Lyapunov ex-
ponents, we will use 4-times-daily reanalysis wind-
fields from the European Centre for Medium-Range
Weather Forecasting (ECMWF) ERA-15 dataset, which
were unavailable when PY93 was published. In addi-
tion, while all integrations presented in PY93 were
run for only 60 days beginning on January 1 of the

GCM model run, we provide results for the complete
annual solar cycle. Most significantly, however, we
have chosen to evaluate Lyapunov exponents using a
trajectory separation method rather than the matrix
formulation presented in PY93. In future work, we
will compare the two methods in terms of both prox-
imity of results and computational expense.

We have chosen here to calculate Lyapunov expo-
nents and drift as measures of predictability, along
with diffusion as an indicator of the maximal rate of
spread we would likely observe in passive tracer fields
that originate at a given location. In future studies,
we will examine how variability in these fields may re-
late to large-scale atmospheric events, such as fluctu-
ations in the El Niño - Southern Oscillation (ENSO),
North Atlantic Oscillation (NAO), and solar cycle,
and the eruption of Mount Pinatubo in 1991.

The model presented here is essentially functional,
although modifications still need to be made on the
current methods and parameterizations. The results
should be viewed as preliminary, and have not been
extensively tested or independently verified. This re-
mains a work in progress, but will serve as the basis
for more extensive future studies.

2. Data

ECMWF ERA-15 reanalyses of geopotential height
are used to determine the isentropic windfield for

1



: 2

integration with the trajectory advection model de-
scribed below. ERA-15 was the initial product of the
ECMWF reanalysis project, which intends to improve
studies of climate by providing consistent meteorolog-
ical data over long time scales. The data assimilation
scheme used by ERA-15 remains invariant through-
out the 15 year reanalysis period to be used in this
study..

Spurious fluctuations in tropical temperatures have
been noted in these reanalyses on several timescales
[Trenberth et al., 2001]. These discrepancies should
not adversely affect this study, but will be considered
in the future as we analyze the results in terms of
large-scale atmospheric circulations.

We use the method of Randel (1992) to derive tem-
peratures, potential temperatures, and horizontal ve-
locities from ERA-15 geopotential heights. Tempera-
ture T is evaluated via the hydrostatic relation, where
we have assumed dry air for simplicity:

T = −
g

R

∂Z

∂ ln p
(1)

where Z is the ERA-15 geopotential height, ln p is
the logarithm of the associated pressure level, g is the
gravitational constant (9.81ms−2), and R is the gas
constant for dry air (287m2s−2K−1).

Potential temperature θ is then calculated as:

θ = T

(

1013mb

p

)κ

(2)

where 1013 mb represents average sea level pressure
and κ = 2/7.

Zonal mean winds outside the tropics are deter-
mined using the gradient wind expression:

ū2

a
tan φ + 2Ω sinφ · ū +

g

a

∂Z̄

∂φ
= 0 (3a)

while values in the tropical band from ±10◦ latitude
are linearly interpolated from the values at ±12.5◦.
Zonal Fourier components of the horizontal winds are
derived from the zonal and meridional momentum
equations linearized about the zonal mean wind:
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= 0, (3b)
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a
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Figure 1. An example of the windfield produced
using the data import and interpolation procedure
described in Section 3.

In equations (3a-c), λ denotes longitude, φ latitude,
a the radius of the earth (6.37 × 106 m), Ω the ro-
tation rate of the earth (7.3 × 106 m), and u and
v the zonal and meridional velocity components, re-
spectively. Zonal means are represented by overbars,
deviations by primes, and

f̂ =

[

2Ω sinφ −
1

a cosφ

∂

∂φ
(ū cosφ)

]

, (4a)

f̃ =

[

2Ω sinφ +
2ū

a
tan φ

]

. (4b)

Equations 3b-c are solved for each zonal wave num-
ber to determine the spectral coefficients of u′ and
v′. Since these equations become singular in zonal
wavenumber k as

δ ≡
(ū · k/a cosφ)2

f̂ f̃
→ 1, (5)

we substitute the geostrophic winds

vg =
g

2Ω sin φ

∂Z

∂x
, ug =

g

2Ω sinφ

∂Z

∂y
(6)

if δ > 0.5.

Pressure, temperature, and wind are then linearly
interpolated onto surfaces of constant θ to allow for
an analysis of quasi-horizontal mixing on isentropic
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surfaces. The windfield for March 1, 1979 on the 315
K isentropic surface determined using this method is
shown in Figure 1. A qualitative comparison with
the composite mean vector wind for this same day
using NCEP/NCAR reanalyses (not shown) indicates
a very good measure of agreement.

3. Governing Equations and Model

Formulation

This project centers around the determination of
attributes of quasi-horizontal motion along an isen-
tropic surface in the atmosphere. We initialize the
quasi-horizontal windfield [u(x, y, t), v(x, y, t)] using
the ECMWF ERA-15 reanalyses of geopotential height
to project the velocity field onto the 315 K potential
temperature surface as described above. For purposes
of this discussion, we will consider this surface to be
a horizontal Cartesian plane with coordinates [x, y].

Given the velocity field, the trajectory evolution
of a specified grid point is evaluated using a Runge-
Kutta fourth order numerical integration with one
hour time steps on the following ordinary differential
equations:

dx

dt
= u(x, y, t),

dy

dt
= v(x, y, t) (7)

subject to initial conditions [x(0), y(0)] = (x0, y0).
We evaluate an ensemble of such trajectories, where
each corresponds to an initial condition defined by the
2.5◦ × 2.5◦ grid.

While the velocity data is archived using a grid-
ded cylindrical equidistant projection of the globe, we
normalize distance along the surface of the earth ellip-
soid by iterating Vincenty’s direct and inverse formu-
lae, outlined in the Appendix [Vincenty, 1975]. This
method allows for a considerable measure of flexibil-
ity in accuracy and computational speed. While we
have opted here for speed at the expense of accuracy,
the code can be easily adapted for use in future work.
Accuracy in our implementation remains within a few
hundredths of a degree.

We have chosen to present this analysis in terms
of three aspects of the annual circulation: Lyapunov
exponents, drift, and diffusion. Lyapunov exponents
provide a lower bound on the predictability of trajec-
tories originating at a given gridpoint, drift provides a
more accurate measure of mixing characteristics and
predictability, and diffusion represents a measure of
the rate of spread for a passive tracer released at a

given gridpoint. All three quantities are computed
using a trajectory spreading algorithm.

Each gridpoint is initialized with a neighbor, in
this case the immediately neighboring gridpoint to the
south. The two trajectories are integrated until the
separation grows to a pre-determined factor of the ini-
tial separation (We present the results of integrations
using factors of 5 and 10 in Section 4). When this
distance is exceeded, the focus point remains where it
is, and the neighbor is reset to a unit distance away
on the grid in the same direction as it finished. The
process is iterated until the parcel has undergone a
complete annual cycle.

Average annual Lyapunov exponents are calcu-
lated using the formula:

λ =
1
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1
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∣
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∣

∣

∣

(8)

where i represents each segment in which the separa-
tion between the gridpoint in question and its neigh-
bor grows to exceed the chosen factor, ti is the time
required for that separation to be realized, and ∆x(0)
and ∆x(ti) are the initial and final separations, re-
spectively. T denotes the number of segments i that
take place over the course of the year. It should be
noted that ∆x(0) may vary from segment to segment
due to position on the globe or direction between
neighboring points.

Drift is determined similarly:

ṽ =
1

T
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∣
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(9)

This formulation should provide a more accurate mea-
sure of predictability in the system than the Lya-
punov exponent, since the calculation retains direc-
tional considerations during the summation, rather
than relying solely on distance. Note that the Lya-
punov exponent provides an upper bound on this
quantity.

We also calculate diffusion as a measure of the rate
of spread using the time-averaged square of the dif-
ference between final distance and initial distance:

D =
1

T

∑

i

< (x(ti) − x(0))2 > (10)

where <> denotes the time average, and all other
notation remains as in equation 8.
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Figure 2. Lyapunov exponents for the trajectory
starting at 32.5◦ N and 275◦ E and running for 60
days from January 1, 1979. λ5 is shown in blue and
λ10 in red.

4. Results

We have calculated the evolution of all three quan-
tities for the trajectory starting at 32.5◦ N and 275◦

E, near Atlanta, Georgia, United States. This inte-
gration begins on January 1, 1979 and continues for
60 days. Initial results indicate that the values of the
Lyapunov exponents calculated are somewhat depen-
dent upon the choice of separation factor, although
the trends appear similar [Figure 2].

In this case, we have used a separation threshold
factor of 5 and compared it to a factor of 10. At 4.5
days into the integration, lambda5 = .403 d−1, while
lambda10 = .169 d−1. By day 40, however, the differ-
ence between lambda5 and lambda10 is only .019 d−1.
At the end of 60 days, lambda5 has spiked to .432 d−1,
while lambda10 has plateaued at around .361 d−1. For
purposes of comparison, afterthe full year of integra-
tion, lambda5 = .394 d−1, while lambda10 = .295
d−1. Both values are within the range of Lyapunov
exponents reported by PY93.

We retain a measure of uncertainty about the va-
lidity of our results for drift and diffusion (Figure 3a,
b), but are confident that this can be resolved in the
near future. Initial results indicate that the value for
ṽ for trajectories originating at 32.5◦ N and 275◦ E
and running for 365 days is approximately 0.04 d−1,
while D appears to be between 5.5 and 6.5×104 m
d−1. Drift decreases monotonically with length of in-
tegration, which may require us to revise our formula,
and we have not yet devised a way to independently

Figure 3. As in Figure 2 but for drift [d−1].

Figure 4. As in Figure 2 but for diffusion [m d−1].

verify diffusion. We will use extensive model runs
that cover the 15 year period to help evaluate these
results, in addition to consulting additional sources
and possibly refining our methods.

Figure 4 shows the global distribution for all three
quantities after the yearlong run of wind data from
1979. The distributions are more homogeneous than
we expected based on PY93. It should be remem-
bered, however, that PY93 ran the model for only 60
days. Since the transport timescale between hemi-
spheres is usually around 6 months and within the
hemispheres is much shorter, the length of integration
may allow the majority of trajectories to converge to
a few large-scale convergence zones that then domi-
nate the results. In the future, we will generate global
maps every 30 days into the integration to better de-
scribe the evolution of the Lyapunov exponent, drift,
and diffusion fields.
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(a) Lyapunov Exponents

(b) Drift (c) Diffusion

Figure 5. (a) Lyapunov exponent, (b) drift, and (c) diffusion distributions for the full 365 day integration of 1979.
The distributions appear to be relatively homogeneous, which may be caused by the majority of trajectories being
attracted by areas of convergence that dominate the results. We will generate output for shorter timescales as well
in an effort to determine when this homogeneity sets in.
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5. Discussion and Future Work

We have presented a method for calculating Lya-
punov exponents, drift, and diffusion from isentropic
windfields that can serve as the basis for intensive
studies of atmospheric mixing and climate variabil-
ity. While much remains to be done, initial results
appear to be within reasonable ranges.

We will extend the preliminary findings presented
here to encompass the entire 15-year climatology,
and we will proceed as planned with our analysis of
relationships between changes in the Lyapunov ex-
ponents, drift, and diffusion, and large-scale atmo-
spheric variability. We will also attempt to imple-
ment the matrix formulation method for determing
Lyapunov exponents detailed in PY93 and compare
the results to those obtained using the trajectory sep-
aration method described in Section 3. We will likely
supplement these studies by tracking the evolution of
various initial distributions of passive tracer within
the model and investigating sensitivity in the model
by performing the calculations with different levels of
accuracy.

While this project has been limited by time con-
straints, now that the base model is complete, we will
consider the utility of additional datasets (such as the
40-year ECMWF reanalysis product or the NCEP re-
analyses), as well as the potential of examining re-
gional variability at smaller time and spatial scales
using satellite retrievals.

The potential applications of the methods described
here are not limited to the questions discussed. In
particular, this method could be used to explore
whether the atmospheric circulation is recurrent on
long timescales or not. This investigation could even-
tually lead to attempts to detect and classify recur-
rent motions in the atmosphere, which could in turn
have strong implications for climate change predic-
tion.

Appendix A: Appendix: Vincenty’s

Formulae

The notation in the following description of Vin-
centy’s formulae follows that given in Vincenty [1975].
A more complete explanation of the equations and the
associated error can be found in that reference.

A1. Direct Formula

The point on a sphere a certain distance s and
azimuthal direction α1 away from a given point P1 is

calculated by first computing

tan σ1 = tan(U1/ cosα1), (A1a)

sinα = cosU1 sin α, (A1b)

A = 1 +
u2

256
[64 + u2(−12 + 5u2)], (A1c)

and

B =
u2

512
[128 + u2(−64 + 37u2)]. (A1d)

where U1 is given by

tanU1 = (1 − f) tan φ1, (A2)

f is the flattening factor given by (a− b)/a, σ1 is the
angular distance on the sphere from the equator to
P1, α is the directional azimuth at the equator, and

u2 = cos2 α(a2
− b2)/b2 (A3)

where a and b are the major and minor semiaxes of
the earth, 6378 km and 6357 km, respectively. Then
the following set of equations are iterated until the
change in angular distance σ between P1 and P2 is
negligible:

2σm = 2σ1 + σ (A4a)

∆σ = B sin σ[cos 2σm +
1

4
B cosσ(−1 + 2cos22σm)]

(A4b)

σ =
s

bA
+ ∆σ. (A4c)

where σm is the angular distance on the sphere from
the equator to the midpoint of the line between P1 and
P2. The computation is then finished by calculating

γ =

√

sin2 α + (sin U1 sin σ − cosU1 cosσ cosα1)2

(A5a)
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tan φ2 =
sin U1 cosσ + cosU1 sin σ cosα1

(1 − f)γ
(A5b)

tanλ =
sin σ sin α1

cosU1 cosσ − sin U1 sinσ cosα1

(A5c)

C =
f

16
cos2 α[4 + f(4 − 3 cos2 α)] (A5d)

β = sinσ[cos 2σm + C cosσ(−1 +2 cos2 2σm)] (A5e)

L = λ − (1 − C)f sinα[σ + Cβ] (A5f)

where λ is the difference in longitude on an auxiliary
sphere, φ2 is the latitude of P2, and L is the difference
in longitude between P1 and P2.

A2. Inverse Method

The distance between two points on a sphere is
determined using a first approximation of λ = L and
then iterating until the change in λ is negligible.

sin2 σ = (cos U2 sin λ)2+ (A6a)

(cos U1 sin U2 − sinU1 cosU2 cosλ)2

cosσ = sin U1 sinU2 + cosU1 cosU2 cosλ (A6b)

tan σ = sin σ/ cosσ (A6c)

sin α = cosU1 cosU2 sinλ/ sin σ (A6d)

cos 2σm = cosσ − 2 sinU1 sin U2/ cos2 α (A6e)

where U2 is calculated as in equation 2. The calcula-
tion is then finished with

s = bA(σ − ∆σ) (A7)

where ∆σ is calculated from equations (A1c), (A1d),
and (A3b).
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