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Chapter 1

Research blog on fluid flows

1

Only dead fish go with the flow
— J Hightower, Texas politician

1.1 LaTeX blog

My main research blog is

www.channelflow.org/dokuwiki/doku.php/gtspring2009:spieker_blog.

Here I enter LaTeX text that can be used for my thesis or our papers.

10/21/09 DWS I’m getting an error inserting my references into my blog. I
moved all of the references listed from John E’s and John G’s svn repos-
itories to a file called elton.bib and just started building my own library
to cite.

10/22/09 PC building your own BibTeX is not good for our collaboration -
all existing references should be cited by their current names, I have cre-
ated bibtex/spieker.bib for you from halcrow/bibtex/halcrow.bib. Before
adding a BibTeX entry to your spieker.bib, check whether it is already
there, so you do not rename an existing one.

10/21/09 DWS I’ve found that a lot of the tools I’ve read about apply nicely
to small systems, but there doesn’t seem to be a bridge between, say,
the 16-D Kuramoto-Sivashinky equation and the 60000-D Navier-Stokes
equations. Today I read the Christiansen paper [2] provided on Predrag’s
homepage. I did find this paper quite a bit more helpful than others I’ve
read (like “Observations of Order and Chaos in Nonlinear Systems” by
Harry L. Swinney). I really like the Feigenbaum tree provided in Figure

1spieker/dailyBlog.tex, rev. 29: last edit by Dustin Spieker, 11/22/2009
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CHAPTER 1. RESEARCH BLOG ON FLUID FLOWS

1, and I think, eventually, we should be able to produce a similar tree
for Navier-Stokes with Re as the independent parameter. I also got to
thinking about the I −D = 0 Poincaré section for plane Couette flow.

10/22/09 PC I copied to the blog sect. 5.3 I wrote for you in the Chaos-
Book.org. When you edit this text, please do it in

dasbuch/book/chapters/appendStability.tex,

not here, so we do not have diverging edits of the same text. Compile
from dasbuch/book/ using

pdflatex bibtex pdflatex pdeflatex book

10/21/09 DWS I’ll look into making the change from s1, s2, s3 to the isotropy
groups on monday, and update that on the P96.66 table. I need to read
the Halcrow thesis before that. The parameters provided are accurate,
and I can provide more if need be. If these eigenvectors are orthogonal,
does that void the relevance of putting the corresponding eigenvalues into
a table or not?

10/22/09 PC The eigenvalues are invariant, and need to be tabulated. If the
eigenvectors are Gram-Schmidt orthogonalized, they have no particular
physical significance, save for the leading one. The Floquet eigenvectors
are what we need.

10/21/09 DWS I’m going to go ahead and calculate the eigenvalues of the
P96.66 solution over the weekend on post those in my blog next week as
well.

10/28/09 DWS I am starting an application for a DOE fellowship, due Novem-
ber 30th. I know that I should get my mentor in Los Alamos as one of my
references, but I’m not exactly sure who else to ask for recommendations
from. Is it kosher to ask your own advisor for one?

10/31/09 PC Nobody is Jewish, but hey, I and John G. will write letters for
you anyway. Who is your mentor in Los Alamos? For us it would be best
to develop a collaboration with Bob Ecke, if it is someone else skype John
G and me to discuss.

10/28/09 DWS So, according to John G., the eigenvectors calculated by
Arnoldi iteration are the non-orthogonal Floquet eigenvectors, so that
is good.

10/28/09 DWS I’m confused as to assigning values to σ(j)
p of complex eigen-

vector pairs. You prescribe σ(j)
p = Tpω

(j)
p , but based on the fact that

Tp = 1/ω
(j)
p , wouldn’t σ(j)

p just be ±1 for all complex eigenvalue pairs? I
guess I don’t understand what to calculate for complex eigenvalue pairs
in the table.

11/22/2009 4 rev. 47 (spieker, rev. 29)



CHAPTER 1. RESEARCH BLOG ON FLUID FLOWS

10/31/09 PC Period of a periodic orbit is not given by Tp = 1/ω
(j)
p , that is

period of spiralling around an equilibrium, nothing to do with periodic
orbits, except as a rough estimate of a time scale of a periodic orbit that
spends most of its time close to an equilibrium. I do not write σ(j)

p =

Tpω
(j)
p , my sign refers to the Floquet multiplier, not to its logarithm;

check ChaosBook.org/chapters/invariant.pdf. You would think that
a −1 sign in front of a Floquet multiplier of a periodic orbit could be
absorbed into the exponent as an extra π phase in ω(j)

p , but the problem
is that what is in the exponent is the iTpω

(j)
p , so there is no natural way

to include this sign into our list of exponents. By the way, as I have not
run into this in actual tabulations of Floquet exponents, I might be dead
wrong; now that I think of it I am most likely wrong, for complex Floquet
multipliers there is no overall sign, the Tpω

(j)
p phase can be anything in

the [0, π] interval. Would be good to straighten me out now, so I do not
write something stupid in ChaosBook.tex.

10/30/09 DWS I am currently reading about the isotropy groups in Halcrow’s
thesis ref. [11] so that I can write down the isotropy groups of the eigen-
vectors of the periodic orbits I have found. I feel like I need a better
understanding of group theory to continue on in this project, so at first
I looked in birdtracks.org, and I had no idea what was going on. I then
asked Domenico what he thought the best path of learning would be for
me and gave me his copy of Group Theory and Quantum Mechanics by
Tinkham, and told to read chapters 2 and 3.

10/31/09 PC Lets keep your dokuwiki blog the main daily blog (John G
prefers that), Enter here LaTeX text that can be used for your thesis
or our papers. My response to above is on your dokuwiki blog.

10/30/09 DWS I found a new equilibrium today in the ΩW03 cell which I have
labeled E16, see figure 1.3. I found it by integration of an initial condition
restricted to R = {e, σxz}×{e, σz}. When I initiated the hookstep search,
though, I did not constrain the solution search to any isotropy group, so
the solution I found may or may not be in R. I will hopefully be able
determine the isotropy groups of the three solutions I have found after I
learn a bit more group theory.

11/16/09 PC I know that both for pipe and planes equilibria and relative
equilibria people like to state ||u||,
but why? I do not see what does this number mean physically, and I do
not see how its value correlates with with any interesting property of a
solution. Dissipation rate D, by contrast, is a physical property which
reflects the amount of the vorticity of a solution.

11/16/09 PC A LaTeX remark: use \emph{...} for emphasis; it toggles the
font within italics text. \textit{...} is not distinguished, if the font is
changed to italics. Happens sometimes...

rev. 47 (spieker, rev. 29) 5 11/22/2009
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CHAPTER 1. RESEARCH BLOG ON FLUID FLOWS

Figure 1.1: Equilibrium E14 in ΩW03 found
on 09/24/2009 with dissipation D = 1.603
and ||u|| = .241.

Figure 1.2: Equilibrium E15 in ΩW03 found
on 09/28/2009 with dissipation D = 1.763
and ||u|| = .268

Figure 1.3: Equilibrium E16 in ΩW03 found
on 10/30/2009 with dissipation D = 3.492
and ||u|| = .333.

Figure 1.4: Equilibrium E17 in ΩW03 found
on 11/06/2009 with dissipation D = 2.979
and ||u|| = .291.

11/22/2009 6 rev. 47 (spieker, rev. 29)



CHAPTER 1. RESEARCH BLOG ON FLUID FLOWS

Figure 1.5: Equilibrium E18 in ΩW03 found
on 11/10/2009 with dissipation D = 3.659
and ||u|| = .325.

Figure 1.6: Equilibrium E19 in ΩW03 found
on 11/12/2009 with dissipation D = 5.542
and ||u|| = 0.427.

rev. 47 (spieker, rev. 29) 7 11/22/2009



Chapter 2

The importance of symmetry

2.1 Basics of group theory

Suppose that a set of elements A,B,C, ... has a form of group multiplication
that associates a third member of the set with two other elements of the set;
a group, G = {g1, g2, ..., gn}, is defined as the members of that set that satisfy
four conditions.

The first condition is called closure, namely that multiplication between any
two elements in a group produces an element in the same group:

gi ◦ gj ∈ G

The second condition is called associativity : the order in which group multipli-
cation is performed does not matter. If parenthesis denote the first operation
to be performed:

(gi · gj) ◦ gk = gi ◦ (gj ◦ gk) .

The third condition is that there must exist an identity element in the group,
usually denoted by e, such that for all gi ∈ G

e ◦ gi = gi ◦ e = gi .

The fourth condition is the existence of an inverse. For every element in a group
g ∈ G, there must exist an inverse h = g−1 ∈ G such that

g ◦ h = h ◦ g = e ,

where e once again represents the identity element. As an example, the real line
with the exception of zero, R∩0, forms an order∞ group under multiplication.
1 It satisfies all of the above conditions. Including 0 in the set would fail to

1Predrag: This example is probably more confusing than helpful, the group is continuous
but not a Lie group (no generators, I believe). I think you can also show that is a group/not
a group under addition.
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CHAPTER 2. THE IMPORTANCE OF SYMMETRY

Table 2.1: Group multiplication table for a square. The order of group opera-
tions is multiplying the column by the row.

E A B C D F G H

E E A B C D F G H
A A E G F H C B D
B B G E H F D A C
C C H F E G B D A
D D F H G E A C B
F F D C A B G H E
G G B A D C H E F
H H C D B A E F G

satisfy the existence of an inverse condition and the set would no longer be a
group.

Group theory is much more developed than the simple properties listed
above, but with these definitions alone, we might begin to apply our knowl-
edge of groups toward analysis of dynamical systems. First we must define
few terms that will come up frequently in our considerations. It will be useful
to consider a simple symmetric geometric object to reference throughout the
definitions. Consider a square that is symmetric under reflection by π about
axes A,B,C,D and rotations about the center of the square by π

2 , π,
3π
2 called

F,G,H respectively. We also include the identity symmetry E. With these 8
symmetries in place, we can work out the group multiplication table 2.1. 2

Now we might begin our definitions. The first term to come up regularly is
conjugacy. Suppose there exists a group G = {g1, g2, ..., gn}. Element Q is said
to be conjugate to P if giPg−1

i = Q or g−1
i Qgi = P for all elements gi ∈ G. 3

For example, in the square example, both E and G are conjugate to themselves
(but not to each other).

Suppose that we carry out the out calculations of the form g−1
i Agi for the

group of elements of our square symmetry. One would find

{AAA−1, BAB−1, CAC−1, DAD−1, EAE−1, FAF−1, GAG−1, HAH−1}
= {A,A,B,A,A,B,A,B} (2.1)

Notice that only the elements A and B turn up. If we do the same calculation
for B, we find that

{ABA−1, BBB−1, CBC−1, DBD−1, EBE−1, FBF−1, GBG−1, HBH−1}
= {B,B,A,B,B,A,B,A} (2.2)

2Predrag: No need to fix this now in table 2.1, but the multiplication tables convention
is to put identity into the first row/column, then other elements class by class, in increasing
class size. This will be useful later on, when you write down character tables which tell you
the weight for a given class within a given irreducible representation.

3Predrag: wrong as it stands - ’all elements’ defins the class, conjugacy works only for
specific elements, as you show in (2.1)
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CHAPTER 2. THE IMPORTANCE OF SYMMETRY

Again, note that only the elements A and B result. This property of A and B
links them in a way that is called a class, which is our next definition. A class
is a set of group elements C ∈ G, such that for any gi ⊂ G

giCg−1
i = C .

For our square symmetry group, we find there are 5 such classes: C1 = {E},
C2 = {G}, C3 = {F,H}, C4 = {A,B}, C5 = {C,D}. Note that all of the classes,
with the exception of C1, do not contain the identity element. This means
that classes, with the exception of the class that contain the identity as its sole
element, cannot be groups.

This brings us to our next definition: subgroups. A subgroup has all of the
same properties as a group, but is part of a larger group. Just by looking at our
multiplication table, one is able to see that there are a number of subgroups:
one of order 4, 5 of order 2, and the obvious order one identity subgroup.

2.2 Discrete symmetries of PCF

The Dirichlet boundary condition on the top and bottom plates leads to rota-
tional invariance in both the spanwise and streamwise directions, which leads
to three rotational symmetries in plane Couette flow

σz[u, v, w](x, y, z) = [u, v,−w](x, y,−z) (2.3)
σx[u, v, w](x, y, z) = [−u,−v, w](−x,−y, z) (2.4)
σxz[u, v, w](x, y, z) = [−u,−v,−w](−x,−y,−z) (2.5)

2.3 Continuous symmetries

Both the translational symmetries of the infinite-extent pipes and planes flows,
and their finite cell versions with periodic boundary conditions imposed in both
the streamwise and spanwise directions are examples of continuous symmetries.
Factoring out continuous symmetries in spatially extended systems can be useful
in reducing the state space and visualizing the dynamics of infinite dimensional
systems. How this state space reduction is implemented is discussed in detail in
refs. [19, 4] for the complex Lorenz flow.

2.3.1 PCF symmetries and isotropy subgroups
4 On an infinite domain and in the absence of boundary conditions, the Navier-
Stokes equations are equivariant under any 3D translation, 3D rotation, and
x → −x, u → −u inversion through the origin [6]. In plane Couette flow,
the counter-moving walls restrict the rotation symmetry to rotation by π about

4Predrag: copied this section from ref. [8]
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CHAPTER 2. THE IMPORTANCE OF SYMMETRY

the z-axis. We denote this rotation by σx and the inversion through the origin
by σxz. The suffixes indicate which of the homogeneous directions x, z change
sign and simplify the notation for the group algebra of rotation, inversion, and
translations presented in sects. 2.3.2 and 2.3.3. The σxz and σx symmetries
generate a discrete dihedral group D1 ×D1 = {e, σx, σz, σxz} of order 4, where

σx [u, v, w](x, y, z) = [−u,−v, w](−x,−y, z)
σz [u, v, w](x, y, z) = [u, v,−w](x, y,−z) (2.6)
σxz [u, v, w](x, y, z) = [−u,−v,−w](−x,−y,−z) .

The walls also restrict the translation symmetry to 2D in-plane translations.
With periodic boundary conditions, these translations become the SO(2)x ×
SO(2)z continuous two-parameter group of streamwise-spanwise translations

τ(`x, `z)[u, v, w](x, y, z) = [u, v, w](x+ `x, y, z + `z) . (2.7)

The equations of plane Couette flow are thus equivariant under the group Γ =
O(2)x × O(2)z = D1,x n SO(2)x ×D1,z n SO(2)z, where n stands for a semi-
direct product, x subscripts indicate streamwise translations and sign changes
in x, y, and z subscripts indicate spanwise translations and sign changes in z.

The solutions of an equivariant system can satisfy all of the system’s sym-
metries, a proper subgroup of them, or have no symmetry at all. For a given
solution u, the subgroup that contains all symmetries that fix u (that satisfy
su = u) is called the isotropy (or stabilizer) subgroup of u [14, 16, 10, 9].
For example, a typical turbulent trajectory u(x, t) has no symmetry beyond
the identity, so its isotropy group is {e}. At the other extreme is the laminar
equilibrium, whose isotropy group is the full plane Couette symmetry group Γ.

In between, the isotropy subgroup of the Nagata equilibria and most of the
equilibria reported here is S = {e, s1, s2, s3}, where

s1 [u, v, w](x, y, z) = [u, v,−w](x+ Lx/2, y,−z)
s2 [u, v, w](x, y, z) = [−u,−v, w](−x+ Lx/2,−y, z + Lz/2) (2.8)
s3 [u, v, w](x, y, z) = [−u,−v,−w](−x,−y,−z + Lz/2) .

These particular combinations of flips and shifts match the symmetries of in-
stabilities of streamwise-constant streaky flow [23, 25] and are well suited to the
wavy streamwise streaks observable in simulations, with suitable choice of Lx
and Lz. But S is one choice among a number of intermediate isotropy groups of
Γ, and other subgroups might also play an important role in the turbulent dy-
namics. In this section we provide a partial classification of the isotropy groups
of Γ, sufficient to classify all currently known invariant solutions and to guide
the search for new solutions with other symmetries. We focus on isotropy groups
involving at most half-cell shifts. The main result is that among these, up to
conjugacy in spatial translation, there are only five isotropy groups in which we
should expect to find equilibria.

rev. 47 (spieker, rev. 29) 11 11/22/2009



CHAPTER 2. THE IMPORTANCE OF SYMMETRY

2.3.2 Flips and half-shifts
5 A few observations will be useful in what follows. First, we note the key
role played by the rotation and reflection symmetries σx and σz (2.6) in the
classification of solutions and their isotropy groups. The equivariance of plane
Couette flow under continuous translations allows for traveling-wave solutions,
i.e., solutions that are steady in a frame moving with a constant velocity in
(x, z). In state space, relative equilibria either trace out circles or wind around
tori, and these sets are both continuous-translation and time invariant. The sign
changes under σx, σz, and σxz, however, imply particular centers of symmetry
in x, z, and both x and z, respectively, and thus fix the translational phases
of fields that are fixed by these symmetries. Thus the presence of σx or σz in
an isotropy group prohibits relative equilibria in x or z, and the presence of
σxz prohibits any form of relative equilibrium. Guided by this observation, we
will seek equilibria only for isotropy subgroups that contain the σxz inversion
symmetry.

Second, the periodic boundary conditions impose discrete translation sym-
metries of τ(Lx, 0) and τ(0, Lz) on velocity fields. In addition to this full-period
translation symmetry, a solution can also be fixed under a rational translation,
such as τ(mLx/n, 0) or a continuous translation τ(`x, 0). If a field is fixed un-
der continuous translation, it is constant along the given spatial variable. If it
is fixed under rational translation τ(mLx/n, 0), it is fixed under τ(mLx/n, 0)
for m ∈ [1, n − 1] as well, provided that m and n are relatively prime. For
this reason the subgroups of the continuous translation SO(2)x consist of the
discrete cyclic groups Cn,x for n = 2, 3, 4, . . . together with the trivial subgroup
{e} and the full group SO(2)x itself, and similarly for z. For rational shifts
`x/Lx = m/n we simplify the notation a bit by rewriting (2.7) as

τm/nx = τ(mLx/n, 0) , τm/nz = τ(0,mLz/n) . (2.9)

Since m/n = 1/2 will loom large in what follows, we omit exponents of 1/2:

τx = τ1/2
x , τz = τ1/2

z , τxz = τxτz . (2.10)

If a field u is fixed under a rational shift τ(Lx/n), it is periodic on the smaller
spatial domain x ∈ [0, Lx/n]. For this reason we can exclude from our searches
all equilibrium whose isotropy subgroups contain rational translations in favor
of equilibria computed on smaller domains. However, as we need to study
bifurcations into states with wavelengths longer than the initial state, the linear
stability computations need to be carried out in the full [Lx, 2, Lz] cell. For
example, if EQ is an equilibrium solution in the Ω1/3 = [Lx/3, 2, Lz] cell, we
refer to the same solution repeated thrice in Ω = [Lx, 2, Lz] as “spanwise-tripled”
or 3×EQ. Such solution is by construction fixed under the C3,x = {e, τ1/3

x , τ
2/3
x }

subgroup.
Third, some isotropy groups are conjugate to each other under symmetries

of the full group Γ. Subgroup H ′ is conjugate to H if there is an s ∈ Γ for which
5Predrag: copied this section from ref. [8]
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CHAPTER 2. THE IMPORTANCE OF SYMMETRY

H ′ = s−1Hs. In spatial terms, two conjugate isotropy groups are equivalent
to each other under a coordinate transformation. A set of conjugate isotropy
groups forms a conjugacy class. It is necessary to consider only a single rep-
resentative of each conjugacy class; solutions belonging to conjugate isotropy
groups can be generated by applying the symmetry operation of the conjugacy.

In the present case conjugacies under spatial translation symmetries are
particularly important. Note that O(2) is not an abelian group, since reflections
σ and translations τ along the same axis do not commute [13]. Instead we have
στ = τ−1σ. Rewriting this relation as στ2 = τ−1στ , we note that

σxτx(`x, 0) = τ−1(`x/2, 0)σx τ(`x/2, 0) . (2.11)

The right-hand side of (2.11) is a similarity transformation that translates the
origin of coordinate system. For `x = Lx/2 we have

τ−1/4
x σx τ

1/4
x = σxτx , (2.12)

and similarly for the spanwise shifts / reflections. Thus for each isotropy group
containing the shift-reflect σxτx symmetry, there is a simpler conjugate isotropy
group in which σxτx is replaced by σx (and similarly for σzτz and σz). We
choose as the representative of each conjugacy class the simplest isotropy group,
in which all such reductions have been made. However, if an isotropy group
contains both σx and σxτx, it cannot be simplified this way, since the conjugacy
simply interchanges the elements.

Fourth, for `x = Lx, we have τ−1
x σx τx = σx , so that, in the special case of

half-cell shifts, σx and τx commute. For the same reason, σz and τz commute,
so the order-16 isotropy subgroup

G = D1,x × C2,x ×D1,z × C2,z ⊂ Γ (2.13)

is abelian.

2.3.3 PCF: The 67-fold path
6 We now undertake a partial classification of the lattice of isotropy subgroups
of plane Couette flow. We focus on isotropy groups involving at most half-
cell shifts, with SO(2)x × SO(2)z translations restricted to order 4 subgroup of
spanwise-streamwise translations (2.10) of half the cell length,

T = C2,x × C2,z = {e, τx, τz, τxz} . (2.14)

All such isotropy subgroups of Γ are contained in the subgroup G (2.13). Within
G, we look for the simplest representative of each conjugacy class, as described
above.

Let us first enumerate all subgroups H ⊂ G. The subgroups can be of
order |H| = {1, 2, 4, 8, 16}. A subgroup is generated by multiplication of a

6Predrag: copied this section from ref. [8]
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set of generator elements, with the choice of generator elements unique up to
a permutation of subgroup elements. A subgroup of order |H| = 2 has only
one generator, since every group element is its own inverse. There are 15 non-
identity elements in G to choose from, so there are 15 subgroups of order 2.
Subgroups of order 4 are generated by multiplication of two group elements.
There are 15 choices for the first and 14 choices for the second. However, each
order-4 subgroup can be generated by 3 · 2 different choices of generators. For
example, any two of τx, τz, τxz in any order generate the same group T . Thus
there are (15 · 14)/(3 · 2) = 35 subgroups of order 4.

Subgroups of order 8 have three generators. There are 15 choices for the
first generator, 14 for the second, and 12 for the third. There are 12 choices for
the third generator and not 13, since if it were chosen to be the product of the
first two generators, we would get a subgroup of order 4. Each order-8 subgroup
can be generated by 7 · 6 · 4 different choices of three generators, so there are
(15 · 14 · 12)/(7 · 6 · 4) = 15 subgroups of order 8. In summary: there is the
group G itself, of order 16, 15 subgroups of order 8, 35 of order 4, 15 of order
2, and 1 (the identity) of order 1, or 67 subgroups in all [11]. This is whole lot
of isotropy subgroups to juggle; fortunately, the observations of sect. 2.3.2 show
that there are only 5 distinct conjugacy classes in which we can expect to find
equilibria.

The 15 order-2 groups fall into 8 distinct conjugacy classes, under conju-
gacies between σxτx and σx and σzτz and σz. These conjugacy classes are
represented by the 8 isotropy groups generated individually by the 8 genera-
tors σx, σz, σxz, σxτz, σzτx, τx, τz, and τxz. Of these, the latter three imply
periodicity on smaller domains. Of the remaining five, σx and σxτz allow rel-
ative equilibria in z, σz and σzτx allow relative equilibria in x. Only a single
conjugacy class, represented by the isotropy group

{e, σxz} , (2.15)

breaks both continuous translation symmetries. Thus, of all order-2 isotropy
groups, we expect only this group to have equilibria. EQ9, EQ10, and EQ11

described below are examples of equilibria with isotropy group {e, σxz}.
Of the 35 subgroups of order 4, we need to identify those that contain σxz

and thus support equilibria. We choose as the simplest representative of each
conjugacy class the isotropy group in which σxz appears in isolation. Four
isotropy subgroups of order 4 are generated by picking σxz as the first generator,
and σz, σzτx, σzτz, or σzτxz as the second generator (R for reflect-rotate):

R = {e, σx, σz, σxz} = {e, σxz} × {e, σz}
Rx = {e, σxτx, σzτx, σxz} = {e, σxz} × {e, σxτx} (2.16)
Rz = {e, σxτz, σzτz, σxz} = {e, σxz} × {e, σzτz}
Rxz = {e, σxτxz, σzτxz, σxz} = {e, σxz} × {e, σzτxz} ' S .

These are the only isotropy groups of order 4 containing σxz and no isolated
translation elements. Together with {e, σxz}, these 5 isotropy subgroups repre-
sent the 5 conjugacy classes in which expect to find equilibria.

11/22/2009 14 rev. 47 (spieker, rev. 29)
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The Rxz isotropy subgroup is particularly important, as the [17] equilibria
belong to this conjugacy class [23, 3, 25], as do most of the solutions reported
here. The NBC isotropy subgroup of ref. [18] and S of ref. [7] are conjugate
to Rxz under quarter-cell coordinate transformations. In keeping with previous
literature, we often represent this conjugacy class with S = {e, s1, s2, s3} =
{e, σzτx, σxτxz, σxzτz} rather than the simpler conjugate group Rxz. Schmiegel’s
I isotropy group is conjugate to our Rz; ref. [18] contains many examples of
Rz-isotropic equilibria. R-isotropic equilibria were found by [21] for plane
Couette flow in which the translation symmetries were broken by a streamwise
ribbon. We have not searched for Rx-isotropic solutions, and are not aware of
any published in the literature.

The remaining subgroups of orders 4 and 8 all involve {e, τi} factors and
thus involve states that are periodic on half-domains. For example, the isotropy
subgroup of EQ7 and EQ8 studied below is S×{e, τxz} ' R×{e, τxz}, and thus
these are doubled states of solutions on half-domains. For the detailed count of
all 67 subgroups, see ref. [11].

Exercise 2.1 ?-path for duct flows PC to DWS: this is optional, but it might
have customers. Repeat in this section Halcrow et al. classification of isotropy groups for
the duct flows (square profile, as opposed to the circular profile of the pipe). Reason:
number of groups (Nagata, Botero, Kawahara, etc - see Marburg turbulence conference
ETC12 proceedings [5], in ChaosBook.org/library, and my channelflow.org blog) are
repeating plane Couette kind of investigations for the duct problem. None of them have
worked detailed group theory, or the state space visualizations. For us it is simpler than
the pipe, as there is only one, streamwise continuous symmetry, and I believe it is pure
SO(2), not O(2).
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Chapter 3

Pipe flows

11/16/09 PC transferred halcrow/blog/TEX/pipe.tex to here. 1

3.1 Pipe flow blog
The main pipe flow research blog is

www.channelflow.org/dokuwiki/doku.php/chaosbook:pipes .

Here we mostly enter LaTeX text that can be used for Spieker thesis or our
papers.

09/07/07 Kerswell Yohann Duguet is currently looking for periodic orbits in
pipe flow.

10/29/07 PC Ooops - I have to publish this soon... I have a draft of a paper
ChaosBook.org/∼predrag/papers/preprints.html#trace
that young lions intensely dislike (they say group theory is incomprehen-
sible) so I’ll have to rewrite it before submitting it. But the point is:
look for RELATIVE periodic orbits in the pipe flow, relative both in the
shift down the pipe and rotation around the pipe axis. 2

Likelihood of finding a periodic orbit is ZERO, methinks. One expects
some only if in addition to a continuous symmetry one has a discrete
symmetry which is not a subgroup of the continuous symmetry. I believe
you do not have any such for pipe flow. 3 Duct flow would have them.
However, Kuramoto-Sivashinsky and plane Couette flow do have discrete
symmetries in addition - that is why there are some equilibria (as opposed

1spieker/blog/TEX/pipe.tex, rev. 47: last edit by Predrag Cvitanović, 01/05/2010
2Predrag: 11/15/09 I was wrong. Because of the azimuthal reflection symmetry, they

are always traveling downpipe, be either fixed (antisymmetric subspace under reflection) or
traveling azimuthally, in which case they come in clockwise / anti-clockwise pairs.

3Predrag: 11/15/09 I was wrong, there is an obvious azimuthal reflection symmetry. Still,
because of downstream SOn2, no equilibria, no periodic orbits.
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to relative equilibria) and some periodic orbits in these cases. They belong
to discrete symmetry subspaces. Atypical as they are (no turbulent solu-
tion will be confined to these subspaces) they are important for periodic
orbit theory, as there the shortest orbits dominate.

Divakar has plane Couette flow (relative) periodic orbits under control,
though that is only a start - we do not understand the topology of the
flow at all yet.

I have not looked at the isotropic turbulence orbits paper (van Veen et al
2006) in detail as I do not think there is any interesting physics in such
models; if they find any equilibrium, periodic orbit solutions, they should
be in the discrete symmetry reduced subspaces.

The deepest thinker on relative periodic orbits is in your neck of the woods,
Stephen Creagh in Nottingham. Thomas Bartsch at Laughborough is also
very good.

Please bug me about confusing things in the draft, the idea is very simple
and I have to write it clearly so people do not get discouraged by group
theory jargon.

09/07/07 Kerswell I can see (very roughly) how the cycle expansion becomes
one over relative periodic orbits but I don’t see how this precludes (true)
periodic orbits. I can see that relative periodic orbits should be more
generic but this doesn’t prevent (true) periodic orbits existing, does it?
In fact we already know of lots of periodic orbits in pipe flow (the relative
equilibriums) albeit of special type. I must admit that it isn’t the con-
tinuous rotational or (axial) translational symmetry that made me worry
about the existence of periodic orbits but rather the lack of mirror sym-
metry (there is net advection along the pipe).

I can sympathize with your young lions - the group theory analysis occurs
at breakneck speed! How about developing a simple example in tandem
with the general analysis in your preprint? I have struggled with all the
notation and missed steps (as, indeed, has Carl D who kept smiling as he
read this manuscript....)

11/16/09 PC Relative equilibria are not periodic orbits, they are group orbits,
morally the same as equilibria.

10/07/07 DV (Divakar’s relative periodic orbits symmetries) Connecting
the spectrum to correlation decay is a project that would be doable and
also quite interesting. I will be glad to follow up for Couette/pipe flow.
This could be a deeper way to look at transition thresholds than to just
look at the lower branch states or edge states.
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3.2 Quotienting pipe flows

06/14/07 PC Yohann understood immediately why and how to quotient (pipe
flow)/O(2)× SO(2) so there is a hope that someone will do it Predragian
way. For reasons that puzzle me the Atlanta Local has not been able to
quotient ZM this way (though reformulation in terms of invariant polyno-
mial does work, albeit on a hypersurface defined by a conserved syzygy -
maybe that is the right way to do it).

09/12/09 PC Yohann implemented my suggestion. When he ran it, he got a
growth in in numerical errors and gave up. I guess that’s the difference
between a physicist and an applied mathematician; when things do not
work a physicist is in heaven, and starts working really hard. A sensible
person gives up, goes does something else that is known to work. But I
digress. Unfortunately I made a wrong mistake, and the totally sensible
method I suggested to him is what Rowlwy and Marsden call the ‘method
of connections.’ We know that it does not reduce periodic orbits to relative
periodic orbits - it accrues a ‘geometrical phase’ that we all understand
for the Foucault pendulum, but I do not understand what that is good for
in pipes and planes.

Still, I do not understand why he got a growth of numerical errors - unlike
the ‘method of slices,’ the ‘method of connections’ should not run into any
artificial singularities. And it certainly should have worked for the relative
equilibria, there is no geometrical phase there.

3.3 Symmetries of pipe flow solutions

11/16/09 PC to Dustin: repeat in this section the Halcrow et al. classifica-
tion of isotropy groups [8], but this time for the pipe flow. It is easier than
the plane Couette flow, and is needed for the forthcoming Gibsonization
of pipe state space visualizations. This you need to do as part of your
thesis work - to be sure that the symmetries are under control. 4

11/21/09 PC With all due respect to the established tradition, the registry of
symmetries of Gibson, Halcrow and Cvitanović [8] seems more rational to
me then the various shift-reflects, so I think we may be so bold as to use
a similar (much simpler) list for pipes, as long as we clearly describe the
conjugacies that map solutions in the literature to our classification. Our
justification would be that we view pipes and planes as related problems.

Example 3.1 Symmetries of pipe flow solutions. The Navier-Stokes equations for
pipe flow are formulated in the cylindrical-polar coordinates, where (s, φ, z) are the
radius, azimuthal angle and the stream-wise (axial) positions, respectively. The fluid
velocity field u is represented by [u, v, w, p](s, φ, z), with u, v and w respectively

4Predrag: The formulation of the exercise is a bit confusing, edit it as you see fit.
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the radial, azimuthal and stream-wise velocity components, and p the pressure.
A pressure gradient drives the flow in the stream-wise, increasing z direction. In
numerical simulations the infinite pipe is represented by the L-cell with periodic
boundary condition in the streamwise direction.

Denote group actions by τ(θ, 0) for an azimuthal rotation by angle θ about the
symmetry axis of the pipe, σ for a reflection about the φ = 0 azimuthal angle, and
τ(0, `) for a streamwise translation by `:

τ(θ, `) [u, v, w, p](s, φ, z) = [u, v, w, p](s, φ+ θ, z + `)

σ [u, v, w, p](s, φ, z) = [u,−v, w, p](s,−φ, z) (3.1)

The equations for pipe flow are equivariant under azimuthal rotations, azimuthal
reflection (reversal of the direction of azimuthal rotation), and streamwise trans-
lations. The symmetry group of pipe flow is thus Γ = O(2)φ × SO(2)z = D1 n
SO(2)φ × SO(2)z, where n stands for a semi-direct product, z subscript indicates
streamwise translation, φ subscript indicates azimuthal rotation, and D1 azimuthal
reflection. While the flow equations are invariant under Γ, the solutions are typically
not. At the two extremes, the symmetry of a generic turbulent state is the trivial
symmetry group {e}, whereas the Hagen parabolic profile is invariant under all of
Γ.

Because of the continuous translational and rotational symmetries, we expect to
find relative equilibrium and relative periodic orbits that propagate in both the
streamwise direction (z, or axial traveling waves), and about the symmetry axis of
the pipe (φ, or rotational waves). The discrete reflection symmetry about φ = 0
can be used to prohibit relative equilibria and relative periodic orbits from circling
the symmetry axis of the pipe, hence we also expect streamwise relative periodic
orbits and relative equilibria which with zero azimuthal velocity.

In the special case of half-cell shifts, σ and τφ commute, so the order-8 isotropy
subgroup

G = D1 × C2,φ × C2,z ⊂ Γ (3.2)

is abelian.

Three types of solutions are invariant under stream-wise, azimuthal 1/2-shifts

{e, τφ} , {e, τz} , {e, τzφ} , (3.3)

where the solutions are invariant under half-shifts τz, τφ, defined in (2.10).

The periodicity in the azimuthal direction imposes discrete rotational symmetries
τ(2π/m, 0) on velocity fields. Not only can solutions have the trivial discrete sym-
metry of rotation by 2π, but solutions can also be invariant under rotations of
integer divisors of 2π. For example, a solution is said to be invariant under Cφ,5 if
the solution is invariant under rotations of 2π/5.

While solutions that are invariant under C2,φ are numerous, solutions have been
found to be invariant all the way up to C6,φ [26], where

Cn,φ = {e, τ1/nφ , τ
2/n
φ , · · · , τ1−1/n

φ } ⊂ SO(2)φ .

Due to existence of such solutions, symmetry considerations, though more general,
must be made to classify the isotropy subgroups of more highly symmetric solu-
tions. For solutions with invariant under the action of m-fold azimuthal rotational
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symmetry, Cm,φ, we can form two n-order invariant subgroups:

Rmφ = {e, στ(2π/m, 0)), στ(4π/m, 0)), · · · , στ((m− 1)2π/m, 0)}
Rmzφ = {e, στ(2π/m, 1/2), στ(4π/m, 1/2), · · · , στ((m− 1)2π/m, 1/2)} .(3.4)

One important feature of property of solutions invariant under 1/m shifts ∈ Cm
is that we do not expect relative periodic orbits to be invariant under 1/m shifts.
Relative periodic orbits are characterized by uT (x+ct) = u. For a relative periodic
orbit therefore, for all t, we don’t expect the typical puffs and slugs of pipe flow to
change length scales and therefore not obey

τ1/muT (x + ct) = u ∀ t (3.5)

This leaves the four conjugacy-inequivalent types of possible symmetries of pipe
flow solutions:

R = {e, σ}
Rz = {e, στz}
Rφ = {e, στφ} (3.6)
Rzφ = {e, στzφ}

Conjugation can eliminate two of these isotropy subgroups. Firstly, it can be easily
shown that

στφ(θ, 0) = τ−1
φ (θ/2, 0)σ τφ(θ/2, 0) . (3.7)

The right hand side of the equation is a similarity transformation that simply moves
the origin of our coordinate system. Therefore, any isotropy subgroup that contains
στφ can be replaced by one that simply contains σ. If an isotropy subgroup contains
both στφ and σ, conjugation would not simplify the subgroup as it would only switch
the two elements. In our half-cell rotation case, τ(π, 0) = τφ, we have

στφ = τ−1
φ
2

στφ
2

(3.8)

herefore, the isotropy subgroup Rφ {e, στφ} is conjugate to the simpler isotropy
subgroup R = {e, σ}. Similarly,

στ(θ, `z) = τ−1(θ/2, 0)σ τ(0, `z) τ(θ/2, 0) . (3.9)

In the specific case of half-cell rotations and translations, we have

στzφ = τ−1
φ
2

σ τz τφ
2

(3.10)

and it follows that isotropy subgroup Rzφ = {e, στzφ} is conjugate to the simpler
Rz = {e, στz}. We therefore have only two second order isotropy subgroups to
consider: Rz and R.

(D.W. Spieker and P. Cvitanović)
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Remark 3.1 Pipe flow. Example 3.1 follows Wedin and Kerswell [26], who
have found solutions with radial symmetries all the way up to C6,φ.

Pringle et al. [1] define following symmetries:

Rm : [u, v, w, p](s, φ, z)→ [u, v, w, p](s, φ+ 2π/m, z)

S : [u, v, w, p](s, φ, z)→ [u,−v, w, p](s,−φ, z + π/α)

Ωm : [u, v, w, p](s, φ, z)→ [u, v, w, p](s, φ+ π/m, z + π/α)

Zjπ/2m : [u, v, w, p](s, φ, z)→ [u,−v, w, p](s,−φ+, z) (3.11)

Rm is the same as our τ1/mφ . S is the same as σ τz. Ωm is the same as our
τ
1/m
φ τz. 5

Kerswell & Tutty JFM 2006 In this paper [15], I think they very succinctly enu-
merate only solutions invariant under the action of S: 6

Pipe flows that are invariant under the ‘rotate-and-reflect’ symmetry of Wedin
and Kerswell [26], defined in ref. [22] by:

[u, v, w, p](s, φ, z)→ [u,−v, w, p](s,−φ, z + πΛ) . (3.12)

This symmetry (here the Rz symmetry) reflects the velocity field about the
plane φ = 0 (or φ = π) and shifts it by half the pipe length.

the action of the shift and rotate symmetry

S : [u, v, w, p](s, φ, z)→ [u,−v, w, p](s,−φ, z + π/α) (3.13)

S is the same as our σ τz.

Viswanath and Cvitanović [22] denote the length of the periodic domain in the
z direction by 2πΛ.

(D.W. Spieker and P. Cvitanović)

Exercise 3.1 Symmetries of pipe flow solutions.

(a) Describe pipe flow, define the appropriate coordinates and velocity fields.

(b) Describe the symmetry group Γ of pipe flow. What discrete subgroups are
physically important at low Re numbers? 7

(c) What kinds of relative equilibrium (traveling wave) and relative periodic orbit
(modulated traveling wave) solutions do you expect?

5Dustin: I’m a little confused by the relation 2.5 in [1], and I don’t think it’s consistent
with 2.4 in the same paper. Based on my calculation, Zjπ/2m 6= Zφ in the case of j = 2,
unless the two symmetries are not meant to be the same thing.

6Dustin: I think we should adopt using wavenumbers in our symmetry notation, based on
these two papers

7Predrag: to extent possible, look how things are defined in sect. 2.3.1, and use the same
notation and macros. That will save time later
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(d) Do you expect to find any equilibrium and periodic orbit solutions? What sym-
metry is prerequisite to existence of equilibrium and periodic orbit solutions?
What kind of streamwise solutions do you expect?

(e) Explain why 1/2, 1/3 azimuthal and streamwise (discrete cyclic Cm subgroups
of SO(2)) shifts play a special role for equilibrium and periodic orbit solutions.
8 Describe the m-fold ‘rotationally symmetric solutions Rm’ of Wedin and
Kerswell [26].

(f) Interpret solutions invariant under 1/m shifts ∈ Cm. 9

(g) Enumerate possible symmetries of solutions, as is done for the plane Couette
flow in ref. [8], see sect. 2.3.1. Describe their relation to the ‘rotate-and-reflect’
symmetries of Wedin and Kerswell [26], defined in ref. [22] by:

[u, v, w, p](s, φ, z)→ [u,−v, w, p](s,−φ, z + πΛ) . (3.14)

This symmetry reflects the velocity field about the plane φ = 0 (or φ = π)
and shifts it by half the pipe length.
Does (2.11) eliminate any of (3.19) groups by conjugation?

(h) So far we have considered only azimuthal m = 2 case (half-rotations). Com-
plete the classification for any m. m > 2 are already observed in pipes at low
Re.

Solution 3.1 - Symmetries of pipe flow solutions.

(a) We formulate Navier-Stokes equations for pipe flow in the usual cylindrical
polar coordinate system (s, φ, z), following Wedin and Kerswell [26]. The
axial (stream-wise) direction is z, and u, v are radial and azimuthal velocity
components respectively. Any velocity field, u can therefore be represented by
[u, v, w, p](s, φ, z). p is a quantity specified in the system, because, unlike in
plane Couette flow, where streamwise shearing of the flow at the upper and
lower walls drives the flow, a pressure gradient in pipe flow drives the flow.
Viswanath and Cvitanović [22] denote the length of the periodic domain in
the z direction by 2πΛ.

(b) The pipe flow is invariant under azimuthal rotations, azimuthal reflection (re-
versal of the direction of azimuthal rotation), and streamwise translations. We
denote group actions by τ(θ, 0) for an azimuthal rotation by angle θ about the
symmetry axis of the pipe, σ for a reflection about the φ = 0 azimuthal angle,
and τ(0, `) for a streamwise translation by `, (in numerical simulations re-
placed by the L-cell periodic boundary condition in the streamwise direction):
10

τ(θ, `) [u, v, w, p](s, φ, z) = [u, v, w, p](s, φ+ θ, z + `)

σ [u, v, w, p](s, φ, z) = [u,−v, w, p](s,−φ, z) (3.15)
8Predrag: These arguments are perhaps already in sect. 2.3.1. Make them your own, also

edit the plane Couette flow text in a way that makes sense to you.
9Dustin: “ I firstly want to consider the order two isotropy subgroups. In order to form

order two subgroups, one needs to find symmetries that are their own inverses. σ already
satisfies this property, as do τφ and τ `z

2
.” PC: Need a physical reason to study only 1/2-shift

for such low Re, discuss it.
10Predrag: Replacing the azimuthal rotation Rθ by τ(θ, 0), Rπ by τφ, is probably not an

improvement, recheck other people’s choices.
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11 The equations of pipe flow are thus equivariant under the group Γ =
O(2)φ × SO(2)z = D2 n SO(2)φ × SO(2)z, where n stands for a semi-direct
product, z subscript indicates streamwise translation, and φ subscript indicates
azimuthal rotation. It is worth noting that while the equations are invariant
under Γ, velocity fields are not. A typical turbulent flow will only belong to the
trivial symmetry group {e} whereas the trivial solution of the laminar state in
pipe flow would be invariant under all of Γ.
As explained in sect. 2.3.2, in the special case of half-cell shifts, σ and τφ
commute, so the order-8 isotropy subgroup

G = D1,φ × C2,φ × C2,z ⊂ Γ (3.16)

is abelian.

(c) Because of the continuous translational and rotational symmetries of pipe
flow, we expect to find relative equilibrium and relative periodic orbits that
propagate in both the streamwise (z) direction and rotationally about the
symmetry axis of the pipe (φ).

(d) We expect equilibria and periodic orbits in isotropy subgroups where transla-
tional phases have been fixed by invariance under a change of sign. In pipe
flow, the discrete reflection symmetry about φ = 0 which would prohibit rel-
ative equilibria and relative periodic orbits from circling the symmetry axis of
the pipe. No such phase-fixing reflective symmetry is present in the stream-
wise direction, meaning that periodic orbits and equilibria, in all likelihood,
will not be present in pipe flow. Therefore, any discussion, hence forth, about
solutions will be referring to relative equilibrium and relative periodic orbits.

(e)

(f) Three types of solutions are invariant under stream-wise, azimuthal 1/2-shifts

{e, τφ} , {e, τz} , {e, τzφ} , (3.17)

where the solutions invariant under half-shifts τz, τφ, defined in (2.10), rep-
resent ??? of solutions???. Periodic boundary conditions prescribed in the
azimuthal direction impose discrete rotational symmetries τ(2π/m, 0) on ve-
locity fields. Not only can solutions have the trivial discrete symmetry of
rotation by 2π, but solutions can also be invariant under rotations of integer
divisions of 2π. For example, a solution is said to be invariant under Cφ,5 if
the solution is invariant under rotations of 2π/5.
One important feature of property of solutions invariant under 1/m shifts
∈ Cm is that we do not expect relative periodic orbits to be invariant under
1/m shifts. Relative periodic orbits are characterized by uT (x + ct) = u. For
a relative periodic orbit therefore, for all t, we don’t expect the typical puffs
and slugs of pipe flow to change length scales and therefore not obey

τ1/muT (x + ct) = u ∀ t (3.18)

11Dustin: “ Akin to the analysis of ref. [8], we seek isotropy subgroups to narrow our search
for invariant objects in the pipe flow system.” PC: For numerical reasons yes, but it is deeper
than that; in the reduced state space only symmetry-quotiented solutions contribute.
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(g) This leaves the four conjugacy-inequivalent types of possible symmetries of
pipe flow solutions: 12

R = {e, σ}
Rz = {e, στz}
Rφ = {e, στφ} (3.19)
Rzφ = {e, στzφ}

Conjugation can eliminate two of these isotropy subgroups. Firstly, it can be
easily shown that

στφ(θ, 0) = τ−1
φ (θ/2, 0)σ τφ(θ/2, 0) . (3.20)

The right hand side of the equation is a similarity transformation that simply
moves the origin of our coordinate system. Therefore, any isotropy subgroup
that contains στφ can be replaced by one that simply contains σ. If an isotropy
subgroup contains both στφ and σ, conjugation would not simplify the sub-
group as it would only switch the two elements. In our half-cell rotation case,
τ(π, 0) = τφ, we have

στφ = τ−1
φ
2

στφ
2

(3.21)

herefore, the isotropy subgroupRφ {e, στφ} is conjugate to the simpler isotropy
subgroup R = {e, σ}. Similarly,

στ(θ, `z) = τ−1(θ/2, 0)σ τ(0, `z) τ(θ/2, 0) . (3.22)

In the specific case of half-cell rotations and translations, we have

στzφ = τ−1
φ
2

σ τz τφ
2

(3.23)

and it follows that isotropy subgroup Rzφ = {e, στzφ} is conjugate to the
simpler Rz = {e, στz}. We therefore have only two second order isotropy
subgroups to consider: Rz and R. Pipe flows that are invariant under the
action of the shift and rotate symmetry (??) given by Wedin and Kerswell
[26] are equivalently invariant under the Rz isotropy subgroup.

(h) While solutions that are invariant under C2,φ are numerous, solutions have
been found to be invariant all the way up to C6,φ [26], where

Cn,φ = {e, τ1/nφ , τ
2/n
φ , · · · , τ1−1/n

φ } ⊂ SO(2)φ .

Due to existence of such solutions, symmetry considerations, though more gen-
eral, must be made to classify the isotropy subgroups of more highly symmetric
solutions. For solutions with invariant under the action of n-fold azimuthal
rotational symmetry, Cn,φ, we can form two n-order invariant subgroups:

Rnφ = {e, στ(2π/n, 0)), στ(4π/n, 0)), · · · , στ((n− 1)π/n, 0)} (3.24)
Rnzφ = {e, στ(2π/n, 1/2), στ(4π/n, 1/2), · · · , στ((n− 1)π, 1/2)} .(3.25)

(D.W. Spieker and P. Cvitanović)

12Dustin: ‘Seven distinct second order subgroups can be formed from these three symme-
tries.” PC: I find only four. Try to find sensible names for them.
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3.4 Tracking symmetry notation
Relating pipe symmetries in literature to our minimalist description

Pringle et al. 2009 The main symmetries presented in this paper [1] are

Rm : [u, v, w, p](s, φ, z)→ [u, v, w, p](s, φ+ 2π/m, z) (3.26)
S : [u, v, w, p](s, φ, z)→ [u,−v, w, p](s,−φ, z + π/α) (3.27)

Ωm : [u, v, w, p](s, φ, z)→ [u, v, w, p](s, φ+ π/m, z + π/α)(3.28)
Zjπ/2m : [u, v, w, p](s, φ, z)→ [u,−v, w, p](s,−φ+, z) (3.29)

Rm is the same as our τ1/m
φ . S is the same as σ τz. Ωm is the same as

our τ1/m
φ τz. 13

Kerswell & Tutty JFM 2006 In this paper [15], I think they very succinctly
enumerate only solutions invariant under the action of S: 14

S : [u, v, w, p](s, φ, z)→ [u,−v, w, p](s,−φ, z + π/α) (3.30)

S would be the same as our σ τz.

13Dustin: I’m a little confused by the relation 2.5 in [1], and I don’t think it’s consistent
with 2.4 in the same paper. Based on my calculation, Zjπ/2m 6= Zφ in the case of j = 2,
unless the two symmetries are not meant to be the same thing.

14Dustin: I think we should adopt using wavenumbers in our symmetry notation, based on
these two papers
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Chapter 4

Duct flows

4.1 Duct flow symmetries

We formulate the incompressible Navier-Stokes equations in a rectangular duct
using cartesian position and velocity coordinates because of the intrensic geom-
etry of a rectangular duct. Any velocity field, u, can therefore be represented
by [u, v, w, p](x, y, z), where u, v, w represent velocity components in the stream-
wise (x), cross-sectional vertical (y), and spanwise (y) directions respectively.
The p term represents the pressure exerted in the duct, as the gradient of the
pressure is what drives the flow.

For numerical simulations, we impose periodic boundary conditions in the
streamwise direction, so for a duct of length L, [u, v, w, p](x, y, z) = [u, v, w, p](x, y, z+
L). This periodic boundary condition on the velocity field leads to invariance of
flows under continuous translations in the streamwise direction of the velocity
field. Along with this continous, streamwise translational symmetry, we expect
invariant structures in the Duct Flow phase space to have reflection symmetry
about vertical and horizontal symmetry axes of the duct. The full symmetry
group of duct flow is therefore given by Γ = D2,y×D2,z×SO(2)x.1 We represent
the action of these symmetries with the following notation

σy : [u, v, w, p](x, y, z) → [u,−v, w, p](x,−y, z) (4.1)
σz : [u, v, w, p](x, y, z) → [u, v,−w, p](x, y,−z) (4.2)
σyz : [u, v, w, p](x, y, z) → [u,−v,−w, p](x,−y,−z) (4.3)
τ lxx : [u, v, w, p](x, y, z) → [u, v, w, p](x+ lx, y, z) (4.4)

2

1Dustin: If it isn’t obvious, I don’t know the exact notation for these kind of arguments
and I tried to extract it from previous examples. References/Help would be appreciated.

2Dustin: It seems like there should be invariance under π
2
rotations, not just rotation by

π with σyz . Body forces like gravity would break the rotational symmetry, but can anyone
refute/verify this? It seems like we should two seperate group theory decompositions for
square and just rectangular ducts.
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CHAPTER 4. DUCT FLOWS

Take note that all symmetry operations commute with each other. Because
of the continuous translational symmetry in the streamwise direction of the duct,
we expect and have already seen traveling wave (relative equilibria) and modu-
lated traveling wave (relative periodic solutions) to propogate in the streamwise
direction. We do not, however, expect equilibria or periodic orbits for lack of a
translational phase fixing reflection symmetry in the streamwise direction.

4.1.1 Isotropy Subgroups of Duct Flow
We expect there to be traveling wave solutions that are invariant under the
group action of a number of isotropy subgroups. Enumerated below are the
conjugacy inequivalent, order two isotropy subgroups:

Ry = {e, σy} (4.5)
Rz = {e, σz} (4.6)
Ryz = {e, σyz} (4.7)
Sy = {e, σyτx} (4.8)
Sz = {e, σzτx} (4.9)
Syz = {e, σyzτx} (4.10)

Here, τx, is shorthand for τ lx/2x , where lx is periodic length of the duct. I will
predominately consider discrete streamwise shifts of half box lengths because
symmetry under the action of discrete streamwise translational symmetry means
that the velocity field simply tiles the streamwise domain. For example, if a
solution is invariant under the group action of Clx/3x = {e, τ lx/3x , τ

2lx/3
x }, that

means the velocity field is is simply repeat of itself every third of a box length.
We do consider τ lx/2 because we are interested in bifurcations of solutions as
functions of streamwise wave number α = 2π/lx.

If one is searching for traveling wave solutions and not relative periodic or-
bits, one should focus on looking for solutions to Navier-Stokes that are invariant
under S-type isotropy groups. If one is searching for relative periodic orbits and
not traveling wave solutions, one should focus on looking for solutions invariant
under R-type isotropy groups. Having classified the kind of isotropy subgroups
where relative equilibria and relative periodic orbits would be present, we can
now enumerate the order-4 isotropy subgroups. For relative periodic orbits, I
expect only one order-4 isotropy subgroup.

I = {e, σy} × {e, σyz} = {e, σy, σz, σyz} (4.11)
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Chapter 5

Tables

1

5.1 Solution properties

Fluid states are characterized by their energy E = 1
2‖u‖

2 and energy dissipation
rate D = ‖∇ × u‖2, defined in terms of the inner product and norm 2

(u,v) =
1

V

∫
Ω

dx u · v , ‖u‖2 = (u,u) . (5.1)

The rate of energy input is I = 1/(LxLz)
∫ ∫

dxdz ∂u/∂y, where the integral
is taken over the upper and lower walls at y = ±1. Normalization of these
quantities is set so that I = D = 1 for laminar flow and Ė = I − D. It is
often convenient to consider fields as differences from the laminar flow, since
these differences constitute a vector space, and thus can be added together,
multiplied by scalars, etc. We indicate such differences with tildes: ũ = u− yx̂.
Note that the total velocity field u does not form a vector space: the sum of any
two total plane Couette velocity fields violates the u = ±1 boundary conditions
at the moving walls.

Most of this study is conducted at Re = 400 in one of the two small aspect-
ratio cells 3

ΩW03 = [2π/1.14, 2, 2π/2.5] ≈ [5.51, 2, 2.51] ≈ [190, 68, 86] wall units
ΩHKW = [2π/1.14, 2, 2π/1.67] ≈ [5.51, 2, 3.76] ≈ [190, 68, 128] wall units,

(5.2)

1spieker/tables.tex, rev. 24: last edit by Predrag Cvitanović, 11/17/2009
2Predrag: copied this paragraph from ref. [8]
3Predrag: copied this paragraph from ref. [8]. Please update with the more logical choice

of canonical cell defined by Gibson (Chanellflow.org wiki 2009), which I understand is the cell
size you will work in.
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CHAPTER 5. TABLES

Table 5.1: Properties of known equilibria of plane Couette flow. Re = 400
except for E6 which has Re = 330. Data on equilibria E0 to E13 taken from
ref. [8] (last updated by DWS on 10/30/09).

|| · || D H E
∑
λ+ K-Y

E0 0 1 Γ 0.1667 0
E1 0.209125 1.42926 S 0.1363 0.050123
E2 0.385806 3.04367 S 0.0780 0.13007
E3 0.125884 1.31768 S 0.1382 0.051762
E4 0.168116 1.45368 S 0.1243 0.10849
E5 0.218648 2.02013 S 0.1073 0.24575
E6 0.275125 2.81845 S 0.0972 -
E7 0.093586 1.25225 S × {e, τxz} 0.1469 0.080364
E8 0.346590 1.76977 S × {e, τxz} 0.1204 -
E9 0.156523 1.40475 {e, σxz} 0.1290 -
E10 0.328542 2.37207 {e, σxz} 0.1080 -
E11 0.404869 3.43223 {e, σxz} 0.0803 -
E12 0.303660 2.07134 {e, σxz} 0.1159 -
E13 0.404894 3.36118 {e, σxz} 0.0813 -
E14 0.240510 1.60344 {e, σxz} 0.1289 0.033852
E15 0.268269 1.76297 {e, σxz} 0.1242 0.084577
E16 0.333003 3.49153 R 0.0808 0.49640
E17 0.291661 2.97947 R 0.0884 0.70251
E18 0.325111 3.65963 R 0.0882 1.0039
E19 0.427491 5.54202 Rz 0.0658 1.1759
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CHAPTER 5. TABLES

Table 5.2: The first 29 least stable Floquet exponents, λ = µ±i ω of equilibrium
E16 for ΩW03 cell plane Couette flow, Re = 400, together with the symmetries of
corresponding eigenvectors. The exponents are ordered by the decreasing real
part.

j µ
(j)
EQ5 ω

(j)
EQ5 s1s2s3

1,2 0.08914764 0.1856416 S S S
3,4 0.07640964 0.2884856 S AA
5,6 0.06740066 0.2710526 A S A
7 0.05862082 S S S
8,9 0.03653549 0.06517621 AA S
10,11 0.03443270 0.1016705 S AA
12,13 0.03344769 0.1896621 - - A
14,15 0.02490208 0.1269611 AA S
16,17 0.02313113 0.1920084 A S A
18,19 0.02046181 0.005704649 AA S
20,21 0.01809113 0.1956752 S AA
22,23 0.01018023 0.1554619 S AA
24,25 0.003639039 0.3038429 A S A
26 5.362729e-05 S AA
27 -6.193149e-07 S AA

28,29 -0.006766147 0.08891588

where the wall units are in relation to a mean shear rate of 〈∂u/∂y〉 = 2.9 in non-
dimensionalized units computed for a large aspect-ratio simulation at Re = 400.
Empirically, at this Reynolds number the ΩHKW cell sustains turbulence for very
long times [12], whereas the ΩW03 cell exhibits only short-lived transient turbu-
lence [7]. The z length scale Lz = 4π/5 of ΩW03 was chosen as a compromise
between the Lz = 6π/5 of ΩHKW and its first harmonic Lz/2 = 3π/5 [24]. Unless
stated otherwise, all calculations are carried out for Re = 400 and the ΩW03 cell.
In the notation of this paper, the solutions presented in [17] have wavenumbers
(α, γ) = (0.8, 1.5) and fit in the cell [2π/0.8, 2, 2π/1.5] ≈ [7.85, 2, 4.18].4 Ref. [25]
showed that these solutions first appear at critical Reynolds number of 127.7
and (α, γ) = (0.577, 1.15). Ref. [18]’s study of plane Couette solutions and their
bifurcations was conducted in the cell of size Ω = [4π, 2, 2π] ≈ [12.57, 2, 6.28].

An overview of the properties of known equilibria of plane Couette flow at
Re = 400 is given in table 5.1.

5.2 New solutions

I list here properties of the new solutions reported in this thesis.

4Note also that Reynolds number in [17] is based on the full wall separation and the
relative wall velocity, making it a factor of four larger than the Reynolds number used in this
thesis.
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CHAPTER 5. TABLES

Table 5.3: The first 27 least stable Floquet exponents, λ = µ±i ω of equilibrium
E5 for ΩW03 cell plane Couette flow, Re = 400. The exponents are ordered by
the decreasing real part. The two zero exponents, to the numerical precision of
our computation, arise from the two translational symmetries. For details, see
ref. [11].

j µ
(j)
EQ5 ω

(j)
EQ5 s1s2s3

1,2 0.07212161 0.04074989 S S S
3 0.06209526 S AA
4 0.06162059 A S A
5,6 0.02073075 0.07355143 S S S
7 0.009925378 S AA
8,9 0.009654012 0.04551274 AA S

10,11 0.009600794 0.2302166 S AA
12,13 1.460798e-06 1.542103e-06 - - A
14,15 -0.0001343539 0.231129 AA S
16 -0.006178861 A S A

17,18 -0.007785718 0.1372092 AA S
19 -0.01064716 S AA

20,21 -0.01220116 0.2774336 S S S
22,23 -0.01539667 0.2775381 S AA
24,25 -0.03451081 0.08674062 A S A
26,27 -0.03719139 0.215319 S AA

The Floquet exponents of equilibrium E16 and the symmetries of correspond-
ing eigenvectors are reported in table 5.2. 5 6 7

5.3 Eigenspectra: what to make out of them?

Well Mack the Finger said to Louie the King
I got forty red white and blue shoe strings
And a thousand telephones that don’t ring
Do you know where I can get rid of these things?

— Bob Dylan, Highway 61 Revisited

Table 5.3, taken from ref. [11], is an example of how to tabulate the leading
Floquet eigenvalues of the stability matrix of an equilibrium or relative equilib-
rium. The isotropy subgroup GE,j of the corresponding eigenfunction should
also be noted. If the isotropy is trivial, GE,j = {e}, it is omitted from the
table. The isotropy subgroup GE of the solution itself needs to be noted, and
for relative equilibrium the velocity c along the group orbit. In addition, if the
least stable (i.e., the most unstable) eigenvalue is complex, it is helpful to state

5Predrag: Is table 5.2 equilibrium E16 or E18?
6Dustin: Equilibrium E17 in ΩW03 found on 11/06/2009
7Dustin: Equilibrium E18 in ΩW03 found on 11/10/2009
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CHAPTER 5. TABLES

the period of the spiral-out motion (or spiral-in, if stable), TE = 2π/ω
(1)
E . 8

Table 5.4, taken from ref. [20], is an example of how to tabulate the leading
Floquet exponents of the stability matrix of an periodic orbit or relative periodic
orbit. For a periodic orbit one states the period and the isotropy group of the
orbit; for a relative periodic orbit one states in addition all shift parameters
θ = (θ1, θ2, · · · θN ). It is also useful to state Λp =

∏
Λp,e, the product of

expanding Floquet multipliers, as 1/|Λp| is the geometric weight of cycle p in a
cycle expansion (remember that each complex eigenvalue contributes twice). We
often do care about σ(j)

p = Λp,j/|Λp,j | ∈ {+1,−1}, the sign of the jth Floquet
multiplier, or, if Λp,j is complex, its phase Tpω

(j)
p . 9

Surveying this multitude of Floquet exponents is aided by a plot of the
complex exponent plane (µ, ω). An example are the stability eigenvalues of
equilibrium E8 from ref. [8], plotted in figure 5.1. To decide how many of
the these are “physical” in the PDE case (where number of exponents is always
infinite, in principle), it is useful to look at the (j, µ(j)) plot. However, intelligent
choice of the j-axis units can be tricky for high-dimensional problems. For
Kuramoto-Sivashinsky system the correct choice are the wave-numbers which,
due to the O(2) symmetry, come in pairs. For plane Couette flow the good
choice is not known as yet; one needs to group O(2) × O(2) wave-numbers, as
well as take care of the wall-normal node counting. 10

Figure 5.1: Eigenvalues of equilibrium E8,
plotted according to their isotropy groups:
• +++, the S-invariant subspace,I +−−,
J − + −, and N − − +, where ± sym-
bols stand for symmetric/antisymmetric in
s1, s2, and s3 respectively. From ref. [8]. For
numerical values of all stability eigenvalues
see channelflow.org. −0.05 0 0.05 0.1

−0.4

−0.2

0

0.2

0.4

EQ
8

8Predrag: get rid of s1, s2, s3 - too primitive
9Predrag: made up numbers in (5.4) - Dustin, please create the real table

10Predrag: add here the example from the Siminos blog: KS Lyapunov spectrum, with
wavenumbers correctly doubled
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Table 5.4: The first 25 least stable Floquet exponents, λ = µ ± i ω of periodic
orbit T = 59.77 for ΩW03 cell(??) plane Couette flow, Re = 400, together with
the symmetries of corresponding eigenvectors. The exponents are ordered by
the decreasing real part. The one zero eigenvalue, to the numerical precision of
our computation, arises from the spanwise translational SO(2) symmetry. For
details, see ref. [20].

j σ
(j)
p µ

(j)
p ω

(j)
p Gp,j

1,2 0.02109336 0.0009197817 D1

3,4 1 0.01700347 0.03051915 ?
5 -1 0.003316719 0.05256136
6 0.002889900
7,8 -1 0.0003734452 0.03273554
9 7.8838787e-05
10 3.1675168e-06
11 -3.480887e-05
12 -0.0003734452 0.05256136

13,14 -0.006341600 0.01839710
15 -0.007849677

16,17 -0.01017134 0.03474715
18 -0.01029024

19,20 -0.01212553 0.04625345
21,22 -0.01342037 0.04664652
23 -0.01602901

24,25 -0.01908709 0.0114218
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