
Chapter �

Semiclassical periodic orbit

quantization

��� The Van Vleck propagator

The Van Vleck formula is a semiclassical approximation for the usual propagator
in quantum mechanics

G�x�� t��x� t� � � x�jU�t�� t�jx � ��t� �����

where U�t�� t� is the unitary time evolution operator for some quantum system
which might be time dependant	 and ��t� is the unit step
 or Heaviside func

tion� The Van Vleck formula is the starting point for a number of derivations	
approximations and intuitive leaps which take one from exact quantum expres

sions to a variety of results expressing energy eigenvalues and their correlations	
wave functions and matrix elements in terms of classical periodic orbits�

The propagator

G�x�� t��x� t� � � x�� t�je
i
�h
�H�t��t�jx� t � �����

ful�lls

� H � i�h
�

�t
�G�x�� t��x� t� � �i�h��t� t��� �����

To derive the semiclassical approximation to the propagator one can take as the
starting point the solution to the initial value problem of quantum mechanics
following the WKB procedure� This can be done since the propagator can
be considered as the solution G�x�� t��x� t� of the time
dependant Schr�odinger
equation	 subject to the initial condition G�x�� t��x� t� � ��x � x�� at t � �� To
solve the initial value problem in the WKB approximation we start by making
the following ansatz� Suppose we are given an initial wave function of the form

��x� t� � A��x� exp�iS��x�	�h�� �����

��
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where the initial amplitude A��x� is assumed to be real and positive	 and S��x�
is the initial action� We can then make the assumption that the wave function
at a later time can again be expressed in the same WKB form i�e�

��x� t�� � A�x� t�� exp�iS�x� t��	�h�� �����

Our problem is to �nd the �nal amplitude A�x� t�� and action S�x� t��� Inserting
����� into the Schr�odinger equation	 expanding in powers of �h	 and neglecting
terms of order �h and higher we get to the lowest order

H�x�
�S�x� t��

�x
� t�� �

�S�x� t��

�t�
� � �����

which we recognize as the time dependant Hamilton
Jacobi equation for the ac

tion S� Here the momentum dependance has been replaced by p � �S	�x� This
result can easily be obtained for standard Hamiltonians of the form H�x� p� t� �
p�	�m�V �x� t�	 but is actually valid for any Hamiltonian which has a classical
limit� The result of the expansion to the �rst order in �h is the so called am

plitude transport equation which can be conveniently expressed in terms of the
density 
	 de�ned by


�x� t� � jA�x� t�j�� �����

Since 
 can be interpreted as the probability density it can be thought of as
a con�guration space density of classical particles� The amplitude transport
equation then takes the shape of the usual continuity equation known from
�uid mechanics and electrodynamics

�
�x� t�

�t
�

�

�x
�
�x� t�v�x� t�� � �� �����

where the x derivative is a divergence in more than one dimension	 and where
we have de�ned the velocity �eld

v�x� t� �
�

m

�H�x� p� t�

�p
�����

with p � �S�x� t�	�x� In the following we shall assume that m � �� As we see
the continuity equation is driven by the solution S of the autonomous Hamilton

Jacobi equation	 and it is therefore necessary to �rst solve this for S� We will not
solve the equations here but merely state the results� A very good derivation of
the solution can be found in ����� The solution to the Hamilton
Jacobi equation
is given by

S�x�� t�� � S�x� t� �R�x�� t��x� t� ������

where R�x�� t��x� t� is the line integral
R
�pdx � Hdt� along a classical orbit

connecting �x� t� with �x�� t���

The solution of the continuity equation can be obtained in a straightforward
manner by applying probability conservation� Because of the interpretation of

 being a classical density of particles	 conservation of the number of particles
allows us to write


�x�� t��dx� � 
�x� t�dx� ������
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or	 in terms of the amplitudes	

A�x�� t�� � A�x� t�jdet
�x

�x�
j���� ������

where the determinant determines the volume ratio of an evolved con�guration
space volume element to the initial volume element� The solution to the initial
value problem in WKB theory therefore takes the form

��x�� t�� � A�x� t�jdet
�x

�x�
j��� exp�

i

�h
�S�x� t� �R�x�� t��x� t��� ������

for the case where the initial action function develops no singularities in the
elapsed time� In the case where the action function goes through caustics one
has to deal with several branches of the action function and the solution to the
initial value problem correspondingly changes to be a sum over WKB terms
like ������ 
 one for each branch

��x�� t�� �
X
b

Ab�x� t�jdet
�x

�x�
j��� exp�

i

�h
�S�x� t� �Rb�x

�� t��x� t� � i�
�

�
��

������

where � is the integer Maslov index absorbing the possible change of sign of the
amplitude ����

To get the semiclassical expression of the propagator we therefore just have
to put in the initial value of the propagator in the WKB form� This however
is not directly possible since we have G�x� x�� �� � ��x � x�� which cannot
be realized in the WKB ansatz ������ However	 by working in momentum
space the initial wave function becomes completely well de�ned	 and we can
carry out the very same calculations for this wave function� After evolving the
momentum wave function in time t we can then transform the solution back �by
a stationary phase approximation� to con�guration space and thereby �nally
obtain an expression for the propagator� The result of this procedure yields

G�x�� t��x� t� �
�

���i�h�f��

X
b

j
�pb
�x�

j���

� exp�
i

�h
Rb�x

�� t��x� t�� i�b
�

�
�� ������

where pb � pb�x
�� t� t�� is the initial momentum of the particle ending up at the

p�th branch �x�� p�b� at time t� and where if�� means eif���� This is �nally the
Van Vleck expression of the propagator� We note that all orbits connecting
x to x� in time t carry their own amplitude contributions	 and that these can
interfere since they are added as complex numbers�

Next we can relate the propagator to the density of states� If we start out
with the special case when H is independant of time	 then the propagator only
depends on t� � t so we can set t � � and just write G�x� x�� t�� In that case we
have

G�x� x�� t� � ��t�
X
n

e�iEnt��hjn �� nj ������



�� CHAPTER �� SEMICLASSICAL PERIODIC ORBIT QUANTIZATION

where the sum is over the �assumed discrete� set of energy eigenstates� Next
we can de�ne the energy dependant Greens function

G�x� x��E� �
�

i�h

Z �

��
dt eiEt��hG�x� x�� t� ������

Since G�t� � � for t � � the lower limit can be replaced by �� Here E is a
complex energy like variable� The integral is guaranteed to converge only for
ImE � �	 where it de�nes an analytic function �G�E�� �G�E� is then de�ned for
ImE � � by analytic continuation� Inserting ������ into ������ gives

�G�E� �
X
n

jn �� nj

E �En

�
�

E �En
������

the resolvant operator� Finally we de�ne g�E� as the trace of �G�E�	

g�E� � Tr �G�E�

�
X
n

�

E �En
������

which has poles at the energy eigenvalues� If we now replace the complex E by
E � i	 where now E is real and  � �	 we note that

Im

�
�

E � i�En

�
�

�

�E �En�� � �

� ����E �En� for � �� ������

Therefore we have

lim
���

��

�
Img�E � i� �

X
n

��E �En� � n�E�

where n�E� is the density of states�

To proceed	 we can obtain a semiclassical expression for the density of states
by inserting the Van Vleck propagator into the exact quantum mechanical ex

pression for the density of states� This calculation is not done here 
 we will
only state the most important steps� A very good derivation of all the necessary
steps is done in the lecture notes of Littlejohn �����

First	 when making the Fourier transform to get G�x� x��E� we make a sad

dlepoint approximation which provides us with a simple semiclassical expression
for the energy domain propagator� We then �nd that the orbits that before were
parametrized by time now can be parametrized by the energy E according to
the stationary phase condition used in the saddle point approximation of the
Fourier transform� Second	 by taking the trace we have to consider only the
orbits that are closed in con�guration space� By also evaluating the trace by
stationary phase approximation we obtain that the orbits should also be closed
in momentum space	 so that we end up considering the periodic orbits of the
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system� The trace integral is then divided up into two parts� one integral along
the periodic orbit which basically yields the cycle period of the periodic orbit	
and f � � integrals in orthogonal directions to the cycle	 which are evaluated
then by stationary phase approximation� Then �nally one has to work on the
�nal expression to relate the transverse stability properties of the periodic orbit
to the result of the transverse Gaussian integrations� The result for the trace is

trG�E� � g�E� �
�

i�h

X
p

Tp

�X
r

e�
i
�h
Sp�E�r	i�

�p
�
r

jdet
�
�� Jrp

�
j
�

�

� ������

whereas the result for the density of states then �nally reads

n�E� �
�

��h

X
p

Tp

�X
r
�

cos r�Sp�E�	�h � �p�	��

jdet��� Jrp�j
���

������

where the sum is over the prime periodic orbits	 Jp is the Jacobian containing
the transverse stabilities of the surface of section or Poincare mapping and �p is
the Maslov index associated with the orbit� A prime periodic orbit is just one
single representative of the periodic manifold and all the other periodic orbits
lying on top of this can be obtained by a time shift and r traversals of the orbit	
where r counts the number of repetitions� Also in the formula ������ we have
neglected the contribution from zero length orbits which gives the �averaged
density of states �n�E�� This is given by the Thomas
Fermi �or the �rst Weyl�
term

�n�E� �

Z
dfqdfp

����h�f
��H�q� p� �E� ������

The formula ������ is known as the Gutzwiller trace formula	 �rst derived by
Gutzwiller ���� in ����� Gutzwiller took as the starting point for his derivation
the path integral expression for the trace of the propagator	 and did not use the
Van Vleck propagator directly� We �nd the derivation sketched above more in
the spirit of modern analysis of dynamical systems in terms of periodic orbits�

��� The Gutzwiller�Voros zeta function

The problem with the Gutzwiller trace formula is that it diverges precisely
where one would like to use it� Crude estimates of its radius of convergence
lead to the observation that the entire physical spectrum may be out of reach�
The problem is cured by going from the trace formula to the related spectral
determinant	 which can be formally written

!�E� �
Y
n

�E �En�� ������

which is related to the trace by

TrG�E� �
d

dE
ln!�E�� ������
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and which has zeros at the eigenenergies� A semiclassical expression for the
spectral determinant was �rst obtained by Voros ���� using the results of Gutzwiller�
The analog of ������ in the semiclassical case can be derived easily for the �

dimensional case of unstable periodic orbits by looking at the oscillatory part of
the Gutzwiller trace formula� In that case the determinant in the denominator
takes the form

det��� Jrp� � ��� "r
p���� "�rp � ������

because of the symplectic structure of the Jacobian� For the oscillatory part of
the density of states we then have

n�E� � Re
�

��h

X
p

�X
r
�

Tp
ei�Sp�E���h��p����r

j"pjr����� "�rp �

� Re
�

��h

X
p

�X
r
�

�X
j
�

Tp
�
j"pj

����"�jp ei�Sp�E���h��p����
�r

� Re
�

��h

X
p

�X
j
�

Tp
j"pj

����"�jp ei�Sp�E���h��p����

�� j"pj����"
�j
p ei�Sp�E���h��p����

� �
�

�
Im
X
p

�X
j
�

�

�E
ln
�
�� j"pj

����"�jp ei�Sp�E���h��p����
�

� �
�

�
Im

�

�E
lnZ�E� ������

where Z�E� is a dynamical zeta function like expression for the semiclassical
spectral determinant� In the following we shall denote this determinant the
Gutzwiller�Voros determinant or the Gutzwiller
Voros zeta function when re

ferring to this� We see that the Gutzwiller
Voros determinant has the structure

Z�E� �
�Y
j
�

���j �E�

� exp

�
��X

p

�X
r
�

eiSp�E�r��h��p���

r
q
j"pjr��� "�rp �

�
A � ������

where

���j �E� �
Y
p

��� tp	"
j
p�E��� ������

and we have de�ned the j�th weight associated with the p�th cycle as

tp�E� � znp
eiSp�E���h��p���

j"pj���
� ������

where z is a book
keeping variable that keeps track of the topological cycle
length np	 used to expand zeta functions and determinants �see sect� �����

An in�nite product over prime periodic orbits like the one in ������ is de

noted a dynamical zeta function ���� by analogy to the Riemann zeta function



���� THE GUTZWILLER�VOROS ZETA FUNCTION ��

which is an in�nite product over the prime integers

���R �s� �

	
�X
n
�

n�s

��

�
Y
p

��� e�s ln p�� ������

As in many applications the wave number k is a more natural choice of
variable than the energy E	 we shall henceforth replace E by k in all semi

classical formulas�

The Gutzwiller trace formula	 apart from the quantum and Maslov phases	
di#ers from the classical trace formula in two aspects� One is the volume term
g�E� in ������ which is a missing from our version of the classical trace formula�
While an overall pre
factor does not a#ect the location of zeros of the deter

minants	 it might play a role in relations such as functional equations for zeta
functions� The other di#erence is that the quantum kernel leads to a square
root of the cycle Jacobian determinant	 a re�ection of the relation probabil


ity � �amplitude��� The �	
q
det��� Jp� weight leads in turn to the product

representation

Z�k� �
Y
p

�Y
k
�

�
�� tp	"

k
p

�
� ������

which di#ers from the classical Fredholm determinant ������ by missing expo

nent k � ��
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Convergence

��� Entire spectral determinants in semiclassics

Even though the divergence problem with the Gutzwiller trace formula could be
partially solved by considering spectral determinants instead of trace formulas	
the divergence problem is not cured in a satisfying way� This is due to the
fact that the Gutzwiller
Voros zeta function has a �nite radius of convergence
�seen as parallel stribes�	 and if we look for scattering resonances in the complex
k
plane we will encounter this ���� when searching for nonleading zeros� It is
therefore important to get a spectral determinant which has a larger domain
of analyticity or which might even be entire� As we saw in section ��� Such
spectral
 or Fredholm determinants are known in the case of maps and in the
case of classical �ows�

In this section we start by taking a look at the �rst attempts to improve the
analytic properties of semiclassical spectral determinants �the Gutzwiller
Voros
spectral determinant�	 by studying the so
called quantum Fredholm determi

nant introduced by Cvitanovi$c and Rosenqvist ����� Next we follow the work by
Vattay who introduced a multiplicative operator which is capable of evolving
quasi�classical wavefunctions and which has an entire related spectral deter

minant� Finally we derive the general N 
dimensional formula of this entire
determinant�

����� The quantum Fredholm determinant

While various periodic orbit formulas may be formally equivalent	 in practice
some are vastly preferable to others� Trace formulas	 such as the thermody

namic averages in classical dynamics	 and the semi
classical Gutzwiller trace for

mula in quantum mechanics are di%cult to use for anything other than the lead

ing eigenvalue estimates� The convergence of cycle expansions of zeta functions
and Fredholm determinants depends on their analytic properties� and as we saw
in section ��� the classical Fredholm determinants are entire functions����� A

��
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formal analogy to the classical case leads us to the introduction of the quantum
Fredholm determinant ����	 which for two
dimensinal Hamiltonian �ows reads

Fqm�E� �
Y
p

�Y
k
�

	
��

e�
i
�h
Sp�E�	i�mp��

j"pj���"k
p


k	�

� exp

�
��X

p

�X
r
�

eiSp�E�r��h��p���

r
q
j"pjr��� "�rp ��

�
A � �����

as an alternative to the Gutzwiller
Voros zeta function

Z�E� �
Y
p

�Y
k
�

	
��

e�
i
�h
Sp�E�	i�mp��

j"pj���"k
p



� �����

We present here the numerical evidence in support of the conjecture of ref� �����

For Axiom A systems the quantum Fredholm determinant has a larger domain

of analyticity than the Gutzwiller�Voros zeta function�

We shall consider here only the purely hyperbolic �ow of the �
disk repeller

The conjecture we test in this section	 asserts that one may replace the
Gutzwiller
Voros zeta function ������ by the quantum Fredholm determinant

�����	 ie� the Fredholm determinant ������ with the quantum weights tp	 without
disturbing the leading semi
classical eigenvalues	 but improving the convergence
of cycle expansions used in evaluating the spectrum�

The form of the quantum weight ������ suggests that the quantum evolu

tion operator should be approximated by a classical evolution operator with a
quantum weight�

Lt�y� x� � ��y � f t�x��
q
j"t�x�je�

i
�h
St�x�	i�mp�x��� �

However	 even though the Jacobians are multiplicative i�e� Jab � Ja � Jb	 the
same rule does not apply to their eigenvalues so in general we have "ab �� "a"b	
and the above operator is therefore not multiplicative along the trajectory	
and consequently does not satisfy the assumptions required by the theorems
that guarantee that a Fredholm determinant is entire ����� Nevertheless	 our
numerical results support the conjecture that the j"j��� weighted determinant
has a larger domain of analyticity than the commonly used Gutzwiller
Voros
zeta function and that some related determinant �see section ����might even be
entire�
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����� Abscissa of absolute convergence

Consider the approximation ����� in the case of the Gutzwiller trace formula
�������

TrG�k� �
X
p

Tp

�X
r

e�
i
�h
Sp�k�r	i�mpr��

j"r
pj
���

�

This approximation omits the non leading � �	"p terms that vanish in the
t � 	 limit and do not a#ect the leading eigenvalues� If the phases conspire
to partially cancel contributing terms	 the sum diverges for a larger value of
Im�k�� The abscissa of absolute convergence in the complex k plane is obtained
by maximizing the sum	 ie� replacing all terms by their absolute values�

trG�k� �
X
p

Tp

�X
r

eTpIm�k�r

j"r
pj
���

�

�we have for simplicity taken Sp to be the action for billiards	 Sp	�h � Tpk�� The
value of Im�k� for which this sum diverges determines the abscissa of absolute
convergence� We can also use determinants to accurately estimate this abscissa
of absolute convergence	 by replacing all cycle weights tp in ������ by their
absolute values�

To evaluate the abscissa of absolute convergence of the Gutzwiller
Voros zeta
function we �rst note that inserting the identity � � ����	"r

p�	����	"r
p� into

the exponent of Gutzwiller
Voros zeta function ������	 one obtains the following
relation between the Gutzwiller
Voros zeta function and the quantum Fredholm
determinant�

Z�k� �
Fqm�k�

F �

�

�k�
�

where

F �

�

�k� � exp

	
�
X
p

�X
r
�

�

r

trp
"r
p��� �	"r

p�
�



� �����

The radius of convergence of Zqm�k� is therefore determined by the leading
zeros of F �

�

�k�� To estimate the upper bound on Im�k� for the zeros of F �

�

	 we

omit all signs and phases in the weights in F �

�

�

F �

�

�k� � exp

	
�
X
p

�X
r
�

�

r

jtrpj

j"r
pj��� �	"r

p�
�



� �����

and compute its leading zero at Re�k� � �� An example is given in sect� ������
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����� Numerical results

In this section we present the evidence that the quantum Fredholm determinant
is numerically as convergent as the classical Fredholm determinant	 in contrast
to the Gutzwiller
Voros zeta function which has a �nite radius of convergence�

Following refs� ���	 ��	 ��	 ���	 we perform our numerical tests on the �
disk
repeller� The �
disk repeller is the simplest physical realization of an Axiom
A system	 particularly convenient for numerical investigations� For billiards
the cycle weight tp required for evaluation of the classical escape rates and
correlation spectra is given by ������� The action Sp is proportional to the
cycle period Tp	 and the Maslov index changes by �� for each disk bounce	
�p � �np	 so the quantum weight ������ is given by

tp � ����np
e�ikTpq
j"pj

znp � �����

where k � �momentum�	�� is the wave
number	 and we take velocity � �	
mass � ��

Cycle expansion ������ coe%cients jCnj for di#erent determinants and zeta
functions are plotted in �gs� ��� as function of the topological cycle length n�
Zeta functions exhibit exponential fallo#	 implying a pole in the complex plane	
while both the classical and the quantum Fredholm determinants appear to
exhibit a faster than exponential fallo#	 with no indication of a �nite radius of
convergence within the numerical validity of our cycle expansion truncations�

In particular	 the quantum Fredholm determinant enables us to uncover
more resonances than what was hitherto accessible by means of the dynamical
zeta functions ���	 ��	 ���� The eye is conveniently guided to the zeros by means
of complex s plane contour plots	 with di#erent intervals of the absolute value of
the function under investigation assigned di#erent colours� zeros emerge as cen

ters of elliptic neighborhoods of rapidly changing colors �see �gs� ����� Detailed
scans of the whole area of the complex s plane under investigation and searches
for the zeros of classical and quantum Fredholm determinants	 �g� ���	 reveal
complicated patterns of resonances	 with the classical and the semi
classical
resonance patterns surprisingly similar� It is known ���� that the leading semi

classical resonances are very accurate approximations to the exact quantum
resonances� the semi
classical resonances further down in the s complex plane
in �g� ��� has �rst recently been compared with the exact quantum values �����
This comparison showed that the resonances of the quantum Fredholm deter

minant though highly convergent	 unfortunately did not match the exact data�
On the other hand for cycle expansions to order � and �	 the Gutzwiller
Voros
zeta function gives remarkably good results even in this domain�

Contour plots are also helpful in comparing the domain of convergence of
the Fredholm determinant to that of the Gutzwiller
Voros zeta function� As
can be seen from �g� ���	 the quantum Fredholm determinant can be continued
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Figure ���� �a� log�� jCnj	 the contribution of cycles of topological length n to
the cycle expansion

P
Cnz

n for �
disk repeller� Shown are� ��� �	��	 ��� the
Gutzwiller
Voros zeta function	 ��� �	���

�
� 	 and ��� the quantum Fredholm

determinant� Exponential fallo# implies that �	�� and the Gutzwiller
Voros
zeta function have the same leading pole	 canceled in the �	���

�
� product� For

comparison	 �
� the classical Fredholm determinant coe%cients are plotted as
well� cycle expansions for both Fredholm determinants appear to follow the
asymptotic estimate Cn � "�n

���
� A� symmetric subspace	 with center spacing


 disk radius ratio R � a � � � �	 evaluated at the lowest resonance	 wave
number k � ������ � ������ i	 maximal cycle length n � �� �b� Same as �a� 	
but with R � a � � � �� This illustrates possible pitfalls of numerical tests of
asymptotics� the quantum Fredholm determinant appears to have the same pole
as the quantum �	���

�
� 	 but as we have no estimate on the size of pre
asymptotic

oscillations in cycle expansions	 it is di%cult to draw reliable conclusions from
such numerics� See �g� ��� for estimate of the quantum Fredholm determinant
abscissa of absolute convergence�
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Figure ���� Leading resonances in the �
disk repeller A� subspace	 �a� for the
classical Fredholm determinant	 and �b� the ��� leading resonances of the quan

tum Fredholm determinant Fqm� Ratio R � a � � � �	 cycle expansions truncated
at cycle length n � ��

considerably farther down in the complex k plane	 in contrast to the dynamical
zeta function scans such as those given in ref� ����� While the zeta functions
clearly exhibit a �nite radius of convergence	 both the classical Fredholm de

terminant and the quantum Fredholm determinant behave as entire functions�
We compute the abscissa of absolute convergence for the Gutzwiller
Voros zeta
function by means of ������ for the case at hand we obtain the leading zero at
kac � ����i �������������� � � �� This estimate might be a bit too crude since the
results of Wirzba ���� indicate that to curvature order � the Gutzwiller
Voros
zeta function gives nice results for the resonances even down to Imk � ����	 as
shown in �gure ���� Interestingly enough	 the apparent border of Gutzwiller

Voros zeta function convergence in �g� ��� seems to coincide with Re�s� � �	
Im�s� � ����������� � � �	 the zero obtained from F����k� by removing quantum
phases	 tp � jtpj	 but keeping the eigenvalue "p sign in ������

��� The quasi�classical approximation

In this section we follow Vattay ���� and show how the eigenvalues of the �rst
order partial di#erential equation derived by the quasi
classical approximation
of the Schr�odinger equation in the case of an Axiom A �ow	 can be computed
from the trace of a classical operator� The corresponding spectral determinant
of the new operator is an entire function in the complex plane in contrast to
the usual Gutzwiller
Voros
 or quantum Fredholm determinants�

For a single particle of unit mass the Schr�odinger equation in a potential U
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Figure ���� The A� resonances of the �
disk system with R � a � �� The
exact quantum mechanical resonances calculated by A� Wirzba are denoted
by a diamond� The semiclassical Gutzwiller
Voros resonances are calculated
up to the ��th order in the curvature expansion and are denoted by crosses�
It should be noted that by inclusion of longer orbits in the calculation	 the
picture becomes much worse	 as the Gutzwiller
Voros zeta function is only an
asymptotic series and the cycle expansion start diverging� The data are from
A� Wirzba�
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Figure ���� Complex s plane contour plot comparison of �a� the Gutzwiller

Voros zeta function log jZqm�s�j with �b� the quantum Fredholm determinant
log jFqm�s�j� The border of the convergence of the Gutzwiller
Voros zeta func

tion agrees with the location of the abscissa of absolute convergence	 given by
the F��� leading eigenvalue at Re�s� � �	 Im�s� � ��������������� � � �� The
quantum Fredholm determinant can be continued at least a factor � further
down in the complex plane� �
disk repeller	 R � a � � � �	 A� subspace	 maxi

mal cycle length n � ��

is

i�h
��

�t
� �

�h�

�
!� � U�q��� �����

where ! is the Laplace operator and ��q� t� is the wave function� In the limit
�h� � the solution of this equation is given by the quasi
classical approximation
which is an asymptotic solution of the form

��q� t� � ��q� t�eiS�q�t���h� �����

where the amplitude ��q� t� and the phase S�q� t� are smooth real functions on
some bounded region of the con�guration space� The reason for the changed
notation as compared to the WKB ansatz �����	 is that we shall here keep the
wave function as one single term of the WKB form and not as a sum of contri

butions from di#erent branches as in the case of the Van Vleck propagator� This
is also what lies in the notion of a quasi
classical wave function� Substituting
����� into the Schr�odinger equation and expanding the equation to zeroth and
�rst order in �h we get partial di#erential equations for the amplitude and the
phase with initial conditions ��q� �� � ���q� and S�q� �� � S��q� respectively�
The equations are

��

�t
� div ��rS� � �� �����

�S

�t
�H�q�rS� � �� �����
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where ��q� t� � ���q� t� and H�q� p� is the Hamilton function� Equation ����� is
the classical Hamilton
Jacobi equation� It is an autonomous �rst order partial
di#erential equation whose solution corresponding to an initial S�q� �� � S��q�	
can be given independently of ������ Equation ����� is the continuity equation
known from e�g� �uid or electro dynamics� As we see it is not an independant
equation since it is driven by the solution of ������

From the theory of �rst order PDE�s ��� we know that their solutions lead
to ordinary di#erential equations� The Hamilton
Jacobi equation for instance
leads to the well known Hamilton di#erential equations of motion

&q �
�H�q� p�

�p
�

&p � �
�H�q� p�

�q
� ������

where the new variable
p � rS�q� t�

has been introduced�

When we take the wievpoint of the PDE description we evolve the whole
function S�q� t� and compute its gradient at a given point q�� This requires
information about the behavior of the function S�q� t� in the vicinity of q� and
cannot be recovered from the value of S�q�� t� alone� In the ODE description
however	 we evolve both q and the gradient p � rS�q� t�� At a given time we
therefore do not have to compute the gradient from S�q� t� since the evolution
is local in the �q� p� space� The �nal solution of the partial di#erential equation
can be constructed from the ODE description as

S�q�� t� � S�q� �� �

Z t

�
L�q���� &q����d�� ������

where the Lagrange function is integrated along the phase space trajectory with

q� � q�t�� q � q����rS�q�� t� � p�t��rS�q� �� � p����

In general there exists only one such trajectory�

Next we consider the �local� solution of the continuity equation ������ At a
given starting point q� the momentum is given by p� � rS��q��	 and the am

plitude of the wave function is ���q�� During time t the coordinate q� evolves
to q�t� and p� to p�t� following the full Hamiltonian �ow� Using probability
conservation the new amplitude can be derived as follows� First we take an
in�nitesimal initial d dimensional oriented volume V �q�� around q� in con�g

uration space� In time t this volume evolves to the in�nitesimal orientated
volume V �q�t�� around q�t� according to the full Hamiltonian �ow� Applying
the probability conservation the new amplitude is given by

��q�t�� � �

�
V �q�t��

V �q����

�����
���q��� ������
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where the sign �� re�ects the ambiguity of the transformation from the density
� to �� The ratio of volumes is independent of the way we specify the initial in

�nitesimal volume� To determine the volume ratio	 we specify an initial directed
parallelepiped around q� with edges given by d independent in�nitesimal vectors
�q�� �q�� � � � �qd� In time t these vectors are transformed into �q��� �q

�
�� � � � �q

�
d

by the �ow� We then note that the initial point �q�� p�� and the set of initial
vectors �q is not enough to specify uniquely the image vectorsi �q�� This of
course is due to the fact that we have not speci�ed the initial momenta �p of the
points in the volume	 and that this is evolved by the full phase �ow� The initial
function S��q� however determines a set �p�� �p�� � � � �pd of initial momentum
vectors through the second derivative matrix�

�p �M�q� Mji �
��S��q�

�qj�qi
� ������

which we hereafter call the curvature matrix� The initial curvature matrix M�

is therefore an important initial condition	 and we are able to compute the
image of the volume only by specifying it� The vector ��qi� �pi� is transformed
by the Jacobi matrix

�q�i � Jqq�qi � Jqp�pi� ������

�p�i � Jpq�qi � Jpp�pi� ������

������

where the subscripts q and p denote the corresponding �d � d� submatrices of
the full ��d� �d� Jacobian� The Jacobian is determined by the initial condition
�q�� p�� and can be computed as a time ordered integral along the phase space
trajectory

J�q� p� t� � T exp

�Z t

�
d�D�H�q���� p����

�
� ������

where D�H�q� p� denotes the second symplectic derivative matrix

D�H �

�
� ��H

�qi�pj
��H
�pi�pj

� ��H
�qi�qj

� ��H
�qi�pj

�
A

� D�H

of the Hamiltonian and T is the time ordering operator� The derivation of equa

tion ������ is sketched in appendix ���� The curvature matrix of the function
S�q� t� around q�t� relates between the in�nitesimal vectors as in ������

�p� �M��q�� M�
ji �

��S�q�� t�

�qj�qi
� ������

From ������ and ������	 we can eliminate the vectors �pi and �p�i and get
relations between the initial and �nal in�nitesimal con�guration vectors and
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the curvature matrices

�q� � �Jqq � JqpM��q� ������

M� � �Jpq � JppM��Jqq � JqpM���� ������

From the �rst relation it immediately follows that the volume ratio is given by

V �q��

V �q��
� det�Jqq � JqpM�� ������

The second relation is a recursion relation for M which can be considered as
the matrix generalization of the usual rational fraction transformation� Fur

thermore equation ������ allows us to derive a di#erential equation for M�t�	
which yields

&M � �

	
��H

�q�q
�M

��H

�p�q
�

��H

�q�p
M�M

��H

�p�p
M



� ������

The derivation of this equation is also sketched in appendix ���� As we see
equation������ is driven since the second partial derivatives of the Hamilton
function should be computed along the phase space trajectory� If we solve this
di#erential equation along the phase space trajectory the volume ratio can be
written as an integral along the phase space and M�t� trajectory �see appendix
��� for the derivation��

V �q��

V �q��
� exp

Z t

�
Tr�

��H

�p�q
�

��H

�p�p
M�d�

�
������

The square root of the volume ratio is then also given by an integral�

�
V �q��

V �q��

�����
� exp


�
�

�

Z t

�
Tr

�
��H

�p�q
�

��H

�p�p
M

�
d�

�
� ������

The computation of this expression requires some care when the solution of the
di#erential equation ������ is singular� Close to a singularity	 where

M�t� tc� �	�

we can neglect the non leading terms from ������ and use the solution of

&M � �M
��H

�p�p
M� ������

The second derivative matrix can be decomposed into combinations of dyads
and their eigenvalues in the usual way

��H

�p�p
�

dX
i
�

�iDi� DiDj � �ijDj � ������
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where Dj is the matrix constructed by the matrix product of the j�th right and

left eigenvectors of ��H	�p�� Dj � e
right
j e

left
j �

The solution close to the singularity can be a linear combination of some of
these dyads corresponding to singular directions l�

M�t� �
�

t� tc

RX
l
�

�

�l
Dl� ������

where R is the number of singular directions� The time ordered integral close
to the singularity is then dominated by

	
V �q�tc	���

V �q�tc����


����
� exp

�
�
�

�

Z tc	�

tc��

R

� � tc
d�

�
� ������

This integral can be computed by adding in�nitesimal imaginary value i to tc

and taking the � � limit

	
V �q�tc	���

V �q�tc����


����
� exp�i��R	���� ������

Between two singular points the time ordered integral is positive and gives the
absolute value of the volume ratio� Notice that R counts the number of rank
reductions of the matrix M along the classical path	 and it is also a function
on the initial condition M��

We now have the necessary ingredients to describe the time evolution of a
quasi
classical wave function� The wave function at time t becomes

��q�� t� � ��q�� t�eiS�q
��t���h � �

�
V �q��

V �q��

�����
ei
R t
�
Ld���h���q��e

iS��q����h������

where q� is the starting point of a classical trajectory with initial momentum
rS��q�� which ends up in q after time t with momentum rS�q� t�	 and the
volume ratio is determined by the curvature matrix M � �i�jS�q� ��� We note
again that in contrast to the solution of the initial value problem in the WKB
theory ������	 we here only get one contribution to the quasi
classical wave
function at time t�

����� Time evolution

We are now in a position to express the volume ratio and the momentum by
the second and �rst derivatives of the minimal action between q� and q� In this
way we recover the usual Van Vleck propagator� However	 from equation ������
we see that the wave amplitude � at time t and at coordinate q� is determined
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by the amplitude at t � � at coordinate q� In calculations involving the Van
Vleck operator kernel this nice property is lost	 and we have to compute lots of
trajectories to compute the volume ratio and we have to know the whole initial
wave function too� However we have a better option� We can keep track of
the variables p and M along only one trajectory and compute ������ and the
volume ratio ������� This means that the evolution takes place on the extended
�q� p�M� space� We can introduce classical density functions �� de�ned on this
space� The wave function then corresponds to the special function

���q� p�M� t� � ��q� t���p �rS�q� t���

	
M�

��S�q� t�

�qj�qi



� ������

The evolution of a general classical density function on the extended space
according to ������ can be rewritten in terms of a classical transfer operator

���q�� p��M�� t� �

Z
dqdpdML�q�� p��M�� t j q� p�M� �� ���q� p�M� ��� ������

with the kernel

e
i�		

R t
�
d� iL

�h
	 �

�
Tr
n

��H
�p�q

	 ��H
�p�p
M

o
� ��q� � qt�q� p�� �

��p� � pt�q� p�� � ��M� �Mt�q� p�M��� ������

where qt�q� p�	 pt�q� p� andMt�q� p�M� denote the evolution of q	 p andM from
the initial coordinates q	p � rS��q� and M � �i�jS��q� during the time t	 and
� � N �R	�� The integrals should be computed along the full trajectory	 and
also the number of rank reductions R and the number of orientation changes
N � We note that the sign of the trace integral in the exponent has changed
compared to the sign in ������� This arises as the integration over p�M and q
picks up an additional volume ratio in the denominator	 and the �nal expression
should therefore be multiplied with the square root of the volume ratio in the
numerator to give the right result as in ������� The derivation of this is shown
in appendix ����

We also note that the above evolution operator or kernel is multiplicative	
since the delta functions ensure that the operator connects coordinates	 which
are connected by the classical dynamics	 and give the correct amplitude� This
operator can evolve densities	 which are not of the form ������	 and therefore
we can expect that only a part of its spectrum has relevance to semiclassics�

��� Derivation of the trace integral

In this section we consider how the trace integration of the evolution opera

tor introduced above	 can be performed by considering the generalized rational
fraction transformation ������ that governs the evolution of the curvature ma

trix� An alternative derivation of this result where we follow explicitely the
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Lagrangian manifolds around the periodic orbit	 is given in appendix ���� Here
we �rst �nd explicitely the periodicM solutions of the map	 which gives us the
solution to the second order of the Hamilton Jacobi equation in the neighbour

hood of a periodic orbit� Next we look at the symplectic structure of the �ow
which imposes the same restriction on the number of periodic M solutions as
was previously obtained� Finally we obtain the stabilities of the M solutions by
�di#erentiating the rational fraction transformation and inserting the periodic
solutions of the curvature �ow�

We are interested in the trace of the evolution operator Lt in ������

trLt �

Z
dqdpdM��q � qt���p� pt���M �Mt�

� exp

�
i�� �

Z t

�
d�

iL

�h
�

�

�
TrfHpq �HppMg

�
� ������

Following the strategy in section ��� we introduce longitudinal xk and perpen

dicular x� coordinates along the total x � �q� p�M� �ow to evaluate the con

tribution from a prime periodic orbit to the trace� In the longitudinal direction
we getZ

dxk�k�x� xt� � Tp

�X
r
�

��t� rTp� ������

where Tp is the period of the prime periodic orbit� In the perpendicular direction
we getZ

dx����x� xrTp� �
�

jdet��� �Jrp�j
������

where �Jp is the transverse stability matrix	 u�t � Tp� � �Jpu�t� of the entire

�ow� Since �qt

�M
� �pt

�M
� � it has the structure

det �Jp �

�
Jtr �

� JM

�
������

and since this is block diagonalizable the determinant splits up into a product
of the usual transverse determinant and a determinant corresponding to the M
�ow

det��� �Jrp� � det��� Jrp� � det��� JM
r
p�� ������

We can then write the trace in a form similar to the one in ����

TrLt �
X
p

Tp

�X
r
�

��t� rTp�e
iSp�E�r��h

jdet��� Jrp�j
!p�r�

������

with

!p�r �
X

MrTp
M

e
�

�

R rTp
�

�Hpq	HppM�d�

jdet��� JM
r
p�j

������
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The related spectral �or Fredholm� determinant F �k� can be obtained by ob

serving that the Laplace transform of the trace

TrL�k� �

Z �

��
dt ektTrLt� ������

is a logarithmic derivative TrL�k� � � d
dk logF �k�

F �k� � exp

	
�
X
p�r

ei�	r	iTpkr

rjdet��� JM
r
p�j

!p�r



� ������

In the following we shall refer to ������ as the Vattay determinant� The Vattay
determinant is very similar in shape to the classical Fredholm determinant ������
The new thing we have to calculate is the curvature trace �������

The �rst point in obtaining ������ is then to �nd the periodic solutions of
theM �ow	 and evaluate their stabilities� Next we have to deal with the volume
ratio	 that is the integral

exp

�Z t

�
d�

�

�
TrfHpq �HppMg

�
�

����� Finding periodic M solutions

In this section we derive a method of �nding periodic solutions of the rational
fraction transformation of the curvature matrix ������� The method is general
and thus applies also to equations where the solution M is not required to be
symmetric�

Let A�B�C�D and M be N � N matrices� We consider the generalized
rational fraction transformation map f � M�M� given by

f�M� � �C�DM��A�BM���� ������

which we assume to be well de�ned� If we are looking for �xed points of the
map f�M� �M equation ������ results in a generalized second order equation

MBM�MA�DM�C � �� ������

To solve the �xed point equation we start by taking an alternative approach to
the map f � Consider the �N � �N matrix J given by

J �

�
A B

C D

�
������

and assume that it is diagonalizable�

� � TJT��

where � is a diagonal matrix� We note that if for instance J is the Jacobian of
a nondegenerate Hamiltonian �ow	 then this diagonalization is indeed possible�
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Now for any N by N matrix M and for any vector x  RN we can construct
the �N dimensional vector

�
x

p

�
�

�
x

Mx

�
� ������

Mapping this by J results in

�
x�

p�

�
� J

�
x

p

�

To �nd the �xed points of the map ������	 we now show the following small
theorem

Theorem � M is a �xed point of the map f if and only if for all vectors

x  RN

�
x�

Mx�

�
�

�
A B

C D

� �
x

Mx

�
� ������

Note that the curvature matrix is the same on both sides of the equality sign�

Proof

If M is a �xed point of the equation ������ we have�
A B

C D

� �
x

Mx

�
�

�
�A�BM�x
�C�DM�x

�

�

�
x�

�C�DM��A�BM���x�

�

�

�
x�

Mx�

�
������

so that the condition is ful�lled�

On the other hand� if the condition ������ is ful�lled we have

Mx� � M�A�BM�x

� �C�DM�x ������

which is equivalent to

M�A�BM� � �C�DM� ������

which gives

M � �C�DM��A �BM��� ������
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implying

f�M� � M � ������

Now to use the theorem we can multiply by the diagonalization matrix T
on both sides of the condition ������� This yields

T

�
x�

Mx�

�
� TJT��T

�
x

Mx

�
� ������

which implies�
�x�

�M�x�

�
�

� �A �

� �D

� �
x
�M�x

�
� ������

where we introduced the new coordinates�
�x
�p

�
�

�
Tqq Tqp

Tpq Tpp

� �
x

p

�
� ������

������ now shows that �M is a �xed point for the map �f by the theorem� The
new phase space coordinates �x and �p are given in terms of the old coordinates
by

�x � �Tqq �TqpM�x�

�p � �Tpq �TppM�x� ������

Inserting this in the expression for �p � �M�x we �nd

�M � �Tpq �Tpp��Tqq �TqpM���� ������

By the theorem we therefore have that M is a �xed point for f if and only
if �M is a �xed point of the transformed map �f 	 which is obtained from the
original map just by substituting in the new transformed tilde matrices from
the transformed Jacobian� But

�f� �M� � �D �M �A��� ������

where �D and �A now are diagonal so this is only a simple linear equation

�Mij � �ij �Mij � ������

which can easily be solved� From the �M solution we therefore �nally get the
M solution from ������ as

M � � �MTqp �Tpp�
���Tpq � �MTqq�� ������

If we suppose that the eigenvalues of the Jacobian are non degenerate	 i�e�
�ij �� �	 we therefore only have the trivial solution for �M �

�M � � ������

which �nally gives the M solution

M � �T��pp Tpq ������

A couple of examples of the solution of second order matrix equations by
use of ������ are given in appendix ����
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����� Symplectic matrices

By the above procedure we get K�N�N � ��N�'	N '� periodic solutions of the
rational fraction transformation	 which are too many since the matrixM should
ful�ll certain conditions imposed by the intrinsic nature of the Hamiltonian
�ow� In this section we show which restrictions the symplectic structure of the
Jacobian imposes on the curvature matrix�

Let � be the symplectic ��N � �N � bilinear invariant

� �

�
� �

�� �

�
� ������

A matrix A is said to be symplectic if

At�A � �� ������

Writing A as four block matrices

A �

�
a�� a��

a�� a��

�
� ������

the condition ������ immediately implies the following rules for the individual
block matrices in order that the total matrix should be symplectic

at��a�� � at��a��� and at��a�� � at��a��� ������

at��a�� � at��a�� � at��a�� � at��a�� � �� ������

Further more we get from ������ that

A�� � ��At�� ������

since ��� � ��	 which implies

a��a
t
�� � a��a

t
�� 	 and a��a

t
�� � a��a

t
��� ������

����� The general M solution

In section ����� we saw that the general solution of the �xed point equation for
the curvature matrix was given by

M � � �MTqp �Tpp�
���Tpq � �MTqq��
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If J is a symplectic matrix and the diagonalizing matrix T is also a symplec

tic matrix	 then the diagonalization � of J is also symplectic� Writing the
diagonalized Jacobian as

TJT�� �

�
�A �B

�C �D

�
�

this however implies that

�A ����
D � ������

so that the eigenvalues belonging to each other must be placed in the same order
in the diagonal of �A and �D respectively� Assuming that we are dealing with
Hamiltonian hyperbolic systems the linear �xed point equation ������ for �M
then becomes

�mij � ��i �mij � ������

where �i �� � and hence the equation has only the solution

�M � �� ������

This means that the solution in the original coordinate system will have the
form

M � �T��pp Tpq� ������

which follows from ������� From the results in ������ we obtain

M�M���t � T��pp Tpq��T
��
pp Tpq�

���t

� T��pp TpqT
t
pp�T

��
pq �

t

� T��pp TppT
t
pq�T

��
pq �

t

� �� ������

so that

M � �T��pp Tpq

� Mt� ������

and hence the curvature matrix is symmetric as a consequence of the symplectic
structure� This implies that �q�Mq� does in fact span a Lagrangian manifold
as it should since M is the symmetric second derivative matrix of the phase
function S�x� t� �see appendix �����

The next question is how many symmetric M solutions are there( To get
the answer we have to study the diagonalization matrix T� We know that T��

have to contain the eigenvectors of J but it seems that we are free to permute
them as we want as well as we have the possibility to scale the individual
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eigenvectors arbitrarily� As we shall see now the symplectic structure puts
quite a restriction on this liberty� A permutation of the columns of T�� can
be performed by multiplication from the right by a permutation matrix P� �a�
that permutes the columns following the permutation � and at the same time
multiply the columns by the weighting vector a � �a�� a�� � � � � a�N �� Such a
permutation matrix can be de�ned by

�P� �a��ij � ���j��iaj� ������

For instance

�
����

� a � e
� b � f
� c � g
� d � h

�
����
�
����

� � a� �
a� � � �
� a� � �
� � � a�

�
���� �

�
����
a�a a�� a�� a�e
a�b a�� a�� a�f
a�c a�� a�� a�g
a�d a�� a�� a�h

�
���� �

Similarly the rows can be permuted by multiplication from the left with per

mutation matrices� From the de�nition of P� �a� it follows immediately that

P��� �a� � Pt
� �a

���� ������

where a�� means �a��� � a��� � � � � � a��N �	 and superscript t denots the transposed
matrix� The symplectic condition for a permutation matrix can be written

Pt
� �a�� � �P��� �a�� ������

and using the relation ������ and writing the permutation matrix as the usual
four block matrices we get

�
�Pt

���a� Pt
���a�

�Pt
���a� Pt

���a�

�
�

�
Pt
���a

��� Pt
���a

���

�Pt
���a

��� �Pt
���a

���

�
�

so that the condition for a permutation matrix to be symplectic is

�P���a� � P���a
���� ������

and

P���a� � P���a
���� ������

Since the columns in T�� must contain the eigenvectors of the Jacobian	 we
see that the Jacobian can only be diagonalized by symplectic rotations if they
are of the form

�T � PT� ������

where T is a symplectic matrix that diagonalizes J	 and P is a symplectic
permutation matrix�
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Now what is the signi�cance of the local block matrices in P( The blocks
in the diagonal P�� and P�� simply permutes the local rows of Tqq�Tqp and
Tpq�Tpp respectively� As we can write

�M � ��pTpp�
��pTpq �M�

we see that such a local permutation p does not change the M solution� How

ever	 the elements di#erent from zero in P�� exchange rows in Tpp and Tpq with
upper rows in T and hence change the M solution� Each row in P�� say	 has
then essentially two possible states� either it is a pure zero row	 or it contains
a ���� The exact position of the ��� is not important since this can be shifted by
a local permutation and thus does not alter the M solution� Since P�� has N
rows each having two possible states there must be �N di#erent solutions to the
M �x point equation	 which can be obtained from symplectic diagonalizations
of the Jacobian�

By studying the symplectic structure we have thus found that there are �N

symmetric periodic solutions to ������� A couple of examples where the solution
formula ������ and the above considerations is applied to a symplectic matrix
are given in appendix ����

����� Stabilities of the periodic curvature solutions

Let us for now suppose that we have found the periodic solutions of the rational
fraction transformation map f 	

f�M� � �C�DM��A �BM���� ������

i�e� the periodic curvature matrix solutions� We now would like to �nd the
stabilities of the periodic solutions by using ������� This can be accomplished
by variation of the map

f�M� �M� � f�M� �Df��M� �O�k�M�k�� ������

where the so called Frechet derivativeDf is just a linear map� For an alternative
approach to the stability calculation see appendix ���� To simplify notation we
introduce the two functions

N�M� � C�DM�

D�M� � A�BM� ������

where N stands for the numerator	 and D for the denominator� To obtain the
Frechet derivative of the rational fraction transformation we proceed in the way
of usual di#erentiation

f�M� �M� � f�M� � N�M� �M�D���M� �M��N�M�D���M�

� �N�M� �M��N�M��D���M� �M�

� N�M��D���M� �M� �D���M��� ������
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where in the last equation we have just subtracted and added the same term
N�M�D���M� �M� �

If we now consider the �rst term	 we obtain in the limit �M� � directly

��term � D�MN���M�� ������

For the denominator part in the second term we write

D���M� �M� �D���M� � D���M� �M�f� �

�D�M� �M� �D�M� �D�M��D���M�g

� D���M� �M� �D�M� �M��D�M��D���M��

In the limit �M� � this becomes

��term � �D���M�B�MD���M�� ������

Gathering both terms we can write

f�M� �M� � f�M� �
�
D�N�M�D���M�B

�
�MD���M� �O�k�M�k��

������

so that the general expression for the derivative is

Df��M� � �D�N�M�D���M�B��MD���M�� ������

Since the stabilities are robust to change of coordinates i�e� the �x point x for
the map f has the same stability as the transformed �x point g�x� of the map
�f � g � f � g��	 we can calculate the stabilities in the basis where we have
diagonalized the Jacobian matrix�

In the case where M is a �xed point of the map we get

Df��M� � �D�MB��MD���M�

� �D�MB��M�A �BM���� ������

And in the case where we have diagonalized J we therefore simply get

Df��M� � D�MA��

� �"i"j�Mij ��

������

where A and D are diagonal� We note ������ is a symmetric matrix if the
variation �M is itself symmetric� The eigenvariations can now be found from
the equation

Df��M� � �"�M� ������

and for symmetric variations �M the N�N � ��	� eigenvalues are read o#
as

�"i � "i"j� i � �� � � � N j � i� � � � � N ������

since the matrices A and D are diagonal and ful�lls A�� � D according to
������� The eigenvalues are thus given in terms of the original cycle stabilities�
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The volume ratio

The only thing we miss in obtaining the general result for TrL	 is then to �nd
the volume ratio ������

V �q��

V �q��
� det�Jqq � JqpM�� ������

To determine this	 we note that for a given M �the periodic solutions� the
matrix

jM � Jqq � JqpM� ������

is the con�guration space Jacobian	 which governs the evolution of the projec

tion of the total phase space �ow on con�guration space� The con�guration
space �ow of course depends on the momentum also and to see that ������
is the right expression	 we can look at the map given by the full phase space
Jacobian�

x�

M�x�

�
�

�
Jqq Jqp

Jpq Jpp

� �
x

Mx

�
� ������

which tells us that local variations in con�guration space �q maps into

�q� � �Jqq � JqpM��q� ������

The volume ratio ������ is therefore given by the product of the N eigenvalues
�i of jM� To �nd these eigenvalues let us �rst assume that we have found
the corresponding eigenvectors e�� � � � � eN � Then by constructing the full phase
space vector �ei�Mei�	 and mapping this by the full phase space Jacobian J we
obtain

J

�
ei
Mei

�
�

�
�Jqq � JqpM�ei
�Jpq � JppM�ei

�
�

�

�
�Jqq � JqpM�ei

�Jpq � JppM��Jqq � JqpM���e�i

�
������

but since ei was assumed to be an eigenvector of jM corresponding to the
periodic curvature solution M we just get

J

�
ei
Mei

�
� �i

�
ei
Mei

�
� ������

which implies that �i must be the same as one of the full phase space eigenvalues
ie� �i � "j for some j� Conversely it is easy to show �see appendix ���� that if
we can write a full phase space eigenvector as e � ��q� �M�q� for some �M	 then
this �M will be a periodic solution of the curvature map ������� For each periodic
M solution we therefore have N con�guration space eigenvalues which are just
given by the eigenvalues of the full phase space eigenvectors corresponding to
the periodic solutionM �see appendix ����� The volume ratio ������ is therefore
just the product of the cycle stabilities corresponding to the given M solution�
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These can be identi�ed by noting that for a given M solution	 the manifold
spanned by ��q�M�q� corresponds to a de�nite subset of the �N phase space
eigenvectors spanning the same �Lagrangian� manifold� For a detailled study
of this correspondance we refer to appendix ���� The volume ratio after r
repetitions of the cycle can now be written as

V �qrTp�

V �q�
�

NY
i
�

j"�ri j �������

We are thus �nally in a position where we can state the general result for
the curvature trace ������� This reads

!p�r �

Z
dMe

R rTp
�

d� �
�
Tr�Hpq	HppM���M�MrTp�M��

�
�NX
l
�

NY
il
�

j"il j
�r��

NY
j
il

j�� "r
j"

r
il
j��� �������

where l labels the periodic M solutions� From this result we are now also able
to evaluate the Vattay determinant ������ in any number of dimensions�

In the simple �
dimensional case the above formula reduce to

!p�r �

Z
dMe

R rTp
�

d� �
�
TrM��M�MrTp�M��

�
�X
l
�

�Y
il
�

j"il j
�r��

�Y
j
�

j�� "r
j"

r
il
j��

�
j"r

pj
���

j�� "��rp j
�
j"r

pj
����

j�� "�r
p j

�
j"r

pj
���

�� "��rp
�
j"r

pj
����

�� "��rp
� �������

which is the result obtained in �����

��� Validity of the entire determinant

To examplify the validity of the new determinant we can try to do the same
calculation as we did with the quantum Fredholm determinant in section ������
Evaluating the coe%cients of the cycle expansion of the Vattay determinant at
the leading zero ������� � � ��i������� � � � in the case of the �
disk scatterer with
R � a � � we get the results shown in �gure ���� As we see the coe%cients of the
Vattay determinant displays a super exponential decay indicating that indeed
there is no pole present� In the case of the quantum Fredholm determinant we
see that the initial super exponential decay turns over in an exponential decay
implying the presence of a pole�

The new spectral determinant has also recently been subject to a large
number of investigations due to A� Wirzba ����� This was due to the follow

ing observation� the Gutzwiller
Voros zeta function is an asymptotic series that
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Figure ���� The logarithm �base ��� of the absolute value of the expansion
coe%cients Cn of the quantum Fredholm determinant ��� and the Vattay de

terminant ��� versus cycle length n� The coe%cients are evaluated at the
leading zero ������� � � � � i������� � � � of the �
disk system at R � a � ��

mimics the behaviour of the quantum resonances up to a certain curvature order
and then diverges� At curvature order � the leading as well as the subleading
resonances are very well approximated as we saw in �gure ���	 but by inclu

sion of more periodic orbits the series diverges and the subleading resonances
disappear� For the Vattay determinant the situation is much di#erent� At cur

vature order � the leading resonances are found with high precision but in the
domain of the subleading resonances a very complicated pattern of resonances
occur	 that does not resemble the correct resonances at all� However	 if one
continues and include more periodic orbits in the curvature expansion it turns
out that at curvature order �� �see �gure ���� the resonance system breaks up
into two di#erent parts� the �rst part now also approximates the subleading
resonances with good precision and the second part has nothing to do with the
exact quantum resonances at all� These �fake quantum resonances are pre

sumably due to the fact that the Vattay evolution operator is not constructed
speci�cally for quantum densities but is capable of evolving classical densities
as well� We should therefore only expect a part of the resonance spectrum to
be related to quantum mechanics� By inclusion of still more periodic orbits in
the expansion we expect that the leading as well as the subleading resonances
will stay put	 since the spectral determinant should be an entire function in the
complex plane�

Another problem occurs when one considers the �fake resonances� Here it
is hoped that these resonances can be �ltered away by following the technique
of Ref� ����� The main idea here is that one can formally rewrite the Gutzwiller

Voros determinant as ����

Z�k� �
F	�

�
� � k�F��


� � k�

F��
�
� � k�F	�

�
� � k�

�������
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Figure ���� Scattering resonances of the A� representation of the R � a � �
�
disk system� The exact quantum resonances are denoted by diamonds	 and
the Vattay determinant resonances by crosses� In the cycle expansion of the
Vattay determinant periodic orbits up to topological length �� were used� The
leading part of the spectrum is very well matched by the Vattay determinant�
For the nonleading part of the spectrum the Vattay determinant also has the
right quantum mechanical resonances	 but furthermore yields a lot of unphysical
resonances� It should be noted that the nonleading part of the spectrum is �rst
obtained at curvature order �� of the Vattay determinant� The data are from
A� Wirzba�
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where

F
��� k� � exp

	
�
X
p�r

�rp
rj"r

pj

erkTp

��� "�rp ��
!p�r���



�������

with �p � "p	j"pj for F�	 and �p � � for F		 and where only the �rst term in
!p�r

!p�r��� �
j"r

pj
��	�

�� "��rp
�

j"r
pj
���

�� "��rp
�������

is included� The Gutzwiller
Voros zeta function is thus written as a ratio of
entire functions ����	 and the fake zeros of F	�

�
� � k� should be cancelled by the

zeros of F��
�
� � k�� By numerical studies it turns out that the �fake quantum

resonances of F	�
�
� � k� almost coincide �up to a few digits� with the zeros of

F��
�
� � k�	 so that it is possible to extract the �nal approximation to the true

quantum spectrum� The remaining problem is to �nd out why the cancellation
of the fake zeros is not exact	 which it should be as the determinants in the ratio
should be entire� This might have to do with the interpretation of how a formal
expansion like ������� should be carried out� Also numerical studies on the total
scattering phase shift ���� indicates that the Gutzwiller
Voros zeta function is
preferable to any other determinants or just the quantum zeta function� These
problems are therefore still open� For the reader interested in following the
discussion and developments on these subjects we refer to �����

��� Conclusion

In this section we have followed the work on improving the convergence prop

erties of the Gutzwiller
Voros zeta function by introducing new evolution oper

ators that yield a larger domain of analyticity and at the same time still gives
the correct semiclassical resonances� First we studied the �quantum Fredholm 
determinant which was �historically� our �rst candidate for this� This determi

nant has convergence properties that are superior to the Gutzwiller
Voros zeta
function	 but unfortunately it does not give the correct nonleading resonances�
Next we followed the work of Vattay and studied an evolution operator which
is multiplicative and therefore gives an entire spectral determinant� We derived
the general N 
dimensional expression for this determinant in terms of the cycle
stabilities	 and made a few numerical �
disk investigations on our result� In
contrast to the Gutzwiller
Voros zeta function which is only an asymptotic se

ries	 the Vattay determinant converges to the right resonances by inclusion of
still more and more orbits� It has however	 certain disadvantages as well� �rst	
to get the quantum resonances with large negative imaginary part one has to
include many more periodic orbits in the calculation of the determinant than in
the Gutzwiller
Voros zeta function case� In the Gutzwiller
Voros zeta function
case on the other hand	 inclusion of longer orbits makes the determinant di

verge and destroys all the previously obtained lowlying resonances� Second	 the
Vattay determinant has resonances that are not at all related to the physical
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problem	 
 a problem which one does not encounter in the Gutzwiller
Voros
zeta function� One can hope that it will be possible to �lter out these fake
resonances by the technique used in �����


