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Introduction

��� Introduction

In the beginning of the present century the discovery of the �rst quantum
e�ects associated with the radiation of light from atoms� presented a serious
riddle to the established community of physics� It was until then a commonly
accepted fact that physics developed so far was capable of explaining all the
phenomena of nature if one was just su�ciently detailed and patient� It was
therefore natural to expect that the new quantum phenomena could be suitably
explained just by hard work� By the success of the Bohr postulates and the
calculation of the Rydberg constant and the energy levels of the hydrogen atom�
it became clear that at least some minor modi�cations were needed to explain
the physics going on on the atomic scale� It was �rst noted by Einstein ��	

that the methods developed by Bohr and Sommerfeld would not be capable
of describing generic systems that display chaos� Later by the failure of the
Bohr�Sommerfeld model in describing the energy levels of Helium� it indeed
turned out that it was necessary to introduce some drastical new concepts�
This realization led in the following years to the development of the theory of
quantum mechanics as we know it today�

With the development of chaos theory a new interest in the old quantum
theory arose� It has been realized that dynamical systems in general display
a very complicated and unpredictable behavior � chaos� which means that the
integrable case which provided the �rst success of the Bohr�Sommerfeld model
is rather an exception than a rule� With the work of Gutzwiller ��
 the im�
portance of classical orbits in quantum systems which has a chaotic underlying
classical dynamics became evident� The Gutzwiller trace formula expresses the
density of states of a quantum system as a sum over the periodic orbits of the
corresponding classical system� Various resummation techniques can be applied
to the Gutzwiller trace formula� yielding altogether one of the principal bod�
ies of theoretical methods available for the analysis of quantum systems whose
classical analogs are chaotic� Considerable progress has been made along these
lines in the recent years� and new methods have appeared for understanding

�
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a variety of systems in atomic� molecular and nuclear physics� Many of these
results are in a sense just improvements of the Gutzwiller trace formula� having
di�erent advantages as for instance in their convergence properties� It is along
this line of work the present thesis should be considered a small contribution�
In the following sections we shall try to describe our search for improvements
and variations on the theme of Gutzwiller�

A guide to the busy reader

The content of the following thesis might� at a �rst sight� seem quite overwhelm�
ing� However� because the work follows mainly three di�erent directions� a lot
of di�erent basic material� which should not be considered as a main part of
the original work� has been included� To help the reader to focus on the part
of the thesis I �nd is due to my own work it is therefore appropriate here to
sketch an outline of the following sections�

�� In section �� we introduce the ��disk scattering system and describe the
properties of this in order to be able to use this as an example for nu�
merical studies throughout the following sections� This section should
not provide any dramatic new information since it is based on work by
Gaspard and Rice���
� and on several articles by Cvitanovi�c ���
�

�� In section ���� we describe the results on �ows� semiclassical quantization
and cycle expansions obtained in the recent years before the start of the
present work� This work should also be well known for people within the
�eld of classical chaos and semiclassical quantization� and is only included
for self consistency of the thesis�

�� The last three sections however� should �nally contain my own contri�
butions� but of course also here I have to relay on results recently ob�
tained by others� In section �� we start by studying the �rst attempt �the
quantum Fredholm determinant� to improve the convergence properties of
semiclassical spectral determinants� This work is based on the articles of
Cvitanovi�c and Rosenqvist ���
 and on the article by Cvitanovic� Rosen�
qvist� Rugh and Vattay ���
� Next we investigate the evolution operator
introduced by G� Vattay ��
� which has the property that it is multiplica�
tive and therefore results in an entire spectral determinant� My work here
consists in obtaining the general expression for this in the N �dimensional
case� and examplify the results with a few numerical examples�

�� In section �� we �rst describe the theory of geometrical optics by Keller
���� ��
� and then use his results and the work by Franz ���
 to introduce
new generalized di�ractive periodic orbits in the Gutzwiller trace formula�
This work was done together with G� Vattay and A� Wirzba and resulted
in the articles ��
�

� Finaly in section �� we described the recent theory of G� Vattay �
 on
how to calculate �h corrections to the Gutzwiller trace formula �or the re�
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lated Gutzwiller�Voros zeta function�� by studying local Schr�odinger prob�
lems in the neighbourhood of the classical periodic orbits of the system�
It should be emphasized that we take this theory as a starting point for
the further work in the section and that we do not want to steal the credit
for the original idea which is solely due to G� Vattay� My contribution in
this section is therefore to specialize the theory to ��dimensional billiard
systems� to develop a simple numerical code �listed in the appendix� that
calculates the �rst �h correction for any ��dimensional billard system and
�nally to use this code for numerical studies on the ��disk system�

	� To minimize the content of the main part of the thesis I have decided
to postpone a lot of the tedious derivations to a couple of appendices�
These derivations can be interesting if one would like to go through all
the detailed calculations but I think that in general they would lower the
readability of the main part of the work which is already bothered with
a lot of tedious calculations� In the main text I have indicated which
derivations one can �nd �at least a sketch of� in these appendices� As
mentioned above we also list the FORTRAN code which has been used
for calculating the �h corrections in the ��disk scattering system�

It is my hope that the above considerations should provide readers� who are
already familiar with these topics� with a useful guide to �nd their way through
the thesis�
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The laboratory

��� Classical Pinball

The model that we shall use for numerical studies throughout this thesis is sim�
ple� yet physical and instructive� One can use it to illustrate almost everything
one needs to know about deterministic chaos� from Smale horseshoes� Cantor
sets� Lyapunov exponents� symbolic dynamics� discrete symmetries� bifurca�
tions� pruning and di�usion� all the way to transfer operators� thermodynamic
formalism� and classical and quantum zeta functions�

Our classical pinball model consists of a point particle and three identical
circular disks in the plane ��g� ���a��

The point particle is scattered elastically o� the disks and moves freely
between collisions� The dynamics with one or two disks is simple �there is
either no or one trapped trajectory�� but with three or more disks there are
in�nitely many trapped trajectories� forming a repeller� This repeller can be
in principle observed by measurements such as irregularly �uctuating outgoing
angles vs� impact parameter �the irregular or chaotic scattering���
�� but such
measurements are di�cult and very sensitive to small perturbations� Much
more robust are the global averages of quantities such as the mean trapping
time in the classical case or the scattering resonances in the quantummechanical
case�

��� Symmetries of the model

As the three disks are equidistantly spaced� the system has the C�v symmetry�
Applying an element �identity� rotation by ������ or re�ection� of this symme�
try group to any trajectory yields another dynamically acceptable trajectory�
Symmetry operations map nonsymmetric orbits into di�erent orbits of the same
shape� and for a symmetric orbit� the symmetry operation will map the set of
points making up the orbit in phase space into itself�

�
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Figure ���� The scattering geometry for the disk radius�separation ratio a �
R � � � ��� �a� the three disks� with ��� ��� and ��������� cycles indicated�
�b� the fundamental domain� ie� a wedge consisting of a section of a disk� two
segments of symmetry axes acting as straight mirror walls� and an escape gap�
The above cycles restricted to the fundamental domain are now the two �x
points � and � and the ��� cycle�

For symmetric periodic orbits �a trajectory is periodic if it returns to the
starting position and momentum in phase space� some or all symmetry opera�
tions act like a shift in time� advancing the starting point to the starting point
of a symmetry related segment� In this way a symmetric periodic trajectory
can be subdivided into a sequence of irreducible segments� Stability� action and
traversal time is the same for all irreducible segments� The global periodic or�
bits can be described completely in terms of the irreducible segments� by folding
the irreducible segments into periodic orbits in the fundamental domain ��	
�
The fundamental domain is a one sixth slice of the full ��disk system� with the
symmetry axes acting as re�ecting mirrors� see �g� ���b�

Orbits related in the full space by discrete symmetries map onto a single
fundamental domain orbit� The reduction to the fundamental domain desym�
metrizes the dynamics and removes all global discrete symmetry induced degen�
eracies� rotationally symmetric global orbits have degeneracy �� re�ectionally
symmetric ones have degeneracy �� and global orbits with no symmetry are
	�fold degenerate� The time�reversal degeneracies persist in the fundamental
domain as well� Some examples of such orbits are shown in �g� ����
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Figure ���� Some examples of ��disk cycles� �a� ����� and ����� are mapped
into each other by ���� the �ip across � axis� this orbit has degeneracy 	 under
C�v symmetries� Similarly �b� ��� and ��� and �c� ����� ���� and ���� are
degenerate under C�v� The orbits �d� ��������� and ��������� are related by
time reversal but not by any C�v symmetry�
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��� Symbolic coding

The motion of a point particle is such that after a collision with one disk it
either continues to another disk or it escapes to in�nity� Labelling the disks
�� � and �� this suggests associating with every trajectory a sequence of labels�
indicating the disks with which the particle collides� The collision sequence
will be �nite for a scattering orbit� coming in from in�nity and escaping after
a �nite number of collisions� and it will repeat periodically for a �trapped�
periodic orbit� Arguments used in the usual horseshoe construction show that
among the in�nitely long sequences and the in�nitely long unstable trapped
orbits there is a one�to�one relationship� there exists an orbit to every �allowed�
in�nite sequence and every �allowed� in�nite sequence labels a unique orbit�

There is one obvious restriction to the possible sequences� namely that two
consecutive symbols must not be identical� since the particle cannot collide two
times in succession with the same disk� In addition� there are relabeling symme�
tries� relating for instance the periodic orbits ��� ��� and ��� which are mapped
into the same fundamental domain orbit� �A bar over a sequence indicates
periodic repetitions� it will often be omitted when it is clear from the context
that we are dealing with periodic orbits�� By replacing the absolute disk labels
by relative symbols� indicating only the orientation of the motion �clockwise
or anticlockwise�� both the symbol repetitions and the symmetry degeneracy
are removed� We shall use the symbol � to indicate that the orientation after
collision is kept� and the symbol � to indicate that it is reversed� Depending
on the symmetry of the global orbit� periodically continued binary string labels
correspond either to the full periodic orbit or to a repeating irreducible segment
�examples are shown in �g� ����� If the disks are su�ciently far apart � there
are no further restrictions on symbols� and all periodic binary sequences are
realized as allowed periodic orbits� Table ��� lists some of the shortest binary
symbol strings� together with the corresponding full ��disk symbol sequences
and orbit symmetries�

��� Counting prime cycles

In order to use the cycles of the system in our semiclassical determinants it
is essential that we get all of the orbits up to a certain length� It is therefore
necessary to be able to count the orbits in order not to miss any of them�
For the ternary dynamics the number of periodic orbits of length n is simply

N
���
n � � � �n��� since we are not allowed any consecutive bounce on the same

disk� For the binary symbolic dynamics we get N
���
n � �n since we have no

pruning� Having calculated the number of periodic points� our next objective
is to evaluate the number of prime cycles Mn for a dynamical system whose
symbolic dynamics is built from N symbols� The problem of �nding Mn is

�For ratios R � a � ���������� � � � there is no pruning of the system 	��
� and thus all the
possible symbol sequences correspond to physically realizable periodic orbits�
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Table ���� C�v correspondence between the binary labeled fundamental domain
prime cycles �p and the full ��disk ternary f�����g cycles p� together with the
C�v transformation that maps the end point of the �p cycle into the irreducible
segment of the p cycle� The degeneracy of p cycle is mp � 	n�p�np�

classical in combinatorics �counting necklaces made out of n beads out of N
di�erent kinds� and is easily solved� There are Nn possible distinct strings
of length n composed of N letters� These Nn strings include all Md prime
d�cycles whose period d equals or divides n� A prime cycle is a non�repeating
symbol string� for example� p � ��� � ��� � ��� � � � � ������ � � � is prime�
but ���� � ������ � � � � �� is not� A prime d�cycle contributes d strings to the
sum of all possible strings� one for each cyclic permutation� The total number
of possible periodic symbol sequences of length n is therefore related to the
number of prime cycles by

Nn �
X
djn

dMd � �����
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where Nn equals trT
n� The number of prime cycles can be computed recursively

Mn �
�

n

�
�Nn �

d�nX
djn

dMd

�
A �

or by the M�obius inversion formula

Mn � n��
X
djn

�

�
n

d

�
Nd � �����

where the M�obius function ���� � �� ��n� � � if n has a squared factor� and
��p�p� � � � pk� � ����k if all prime factors are di�erent�

��� Periodic orbits

There is only one length scale in the system� the ratio of the center�to�center
separation to the disk radius R � a� The energy is a quadratic function of
momenta� H � p���m� so motion at di�erent energies E and E� is related by
the scaling pE � p�

p
E�E� for momenta� tE � t�

p
E��E for times� and

S�E� � L
p
�mE � S�E��

q
E�E� �����

for the actions� where L is the geometrical length of the orbit� The eigenvalues
of the Jacobian transverse to a periodic orbit �see below� are invariant under
the above energy rescaling� These observations will be useful below in the
semiclassical context where ����� will combine with �h to the relevant quantum
variable� the wavenumber k �

p
�mE��h�

The motion between collisions is completely characterized by an angle �
marking the point of collision along a disk and the impact parameter b � �b�R
measured in units of the radius� Because of symmetry� we can always select the
disk � as the disk of current collision and the disk � as the origin of the particle�
Ingoing coordinates then are ��in� bin� and outgoing coordinates are � ��out��bout��
where the � indicates that these coordinates refer to the next collision disk�
When working in the fundamental domain they still need to be mapped back
onto disk �� Accordingly� we have two types of collisions�

�� the particle returns to the disk it is coming from
�� the particle continues to the next disk�

The corresponding maps are �the angle � is measured clockwise relative to the
line connecting the centers of disks � and ��

T� �

�
�out � ��in � �arcsin bin
bout � �bin � d

R sin�out
�����
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for re�ection and

T� �

�
�out � �in � � arcsin bin � �shift

bout � bin � d
R sin�out

����

with �shift � ���� for the case of continuation� Each map has a �xed point�
corresponding to the orbits � and �� Longer periodic orbits are �xed points of
sequences of maps� e�g�

T�T�T�T�T�x����� � x����� � ���	�

�note that in our convention the maps are applied in reverse order compared to
the symbolic sequence��

The Jacobian of the single collision map is given by

Ji �
	Ti��in� bin�

	��in� bin�
�����

and the cycle Jacobian Jp is given by the product of Jacobians for the bounces
around the cycle p� As the dynamics is phase�space volume preserving� det J �
� and the eigenvalues depend only on tr�J��

 � �
�

�

�
tr�J��

q
tr�J�� � �

�
� �����

The sign of the eigenvalue depends of the number of collisions along the cycle�
For the !�" symbol there are two bounces in the fundamental domain� one with
the disk and one with the re�ecting wall� Since the wall can be regarded as a
disk of in�nite radius� the trace changes sign two times and thus the eigenvalues
are positive� Symbol !�" corresponds to one bounce with the disk but two wall
bounces and hence the eigenvalues of the !�"�cycle are negative� For an arbitrary
fundamental domain cycle� the eigenvalue sign is given by ����n� � where n� is
the number of !�"s in the binary string corresponding to the cycle�

The exact lengths and eigenvalues of �� � and �� cycles follow from elemen�
tary geometrical considerations �we set the disk radius R � � throughout�� For
the fundamental domain � �the ��cycle of the complete ��disk space� and � �the
��cycle of the complete ��disk space� �xed points we obtain

�� L� � d� �  � � �d� �� �p�d� ��� � �
�� L� � d�p�  � � �� �p

�
d� ���

q
� �p

�
d� ��� � � � �����

and for the ���cycle we obtain

��� L�� �
q
� � ��d �p��� � �� tr�J��� �

L���L������L�����p
�d���� � �L�� � � �
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 �� then follows from ������ Longer cycles require numerical evaluation by
methods such as orbit length minimization� which we describe in section ������
Formulas for evaluation of the cycle Jacobians we are going to study in the
following section�

��� Cycle stability for billiards

Consider a ��dimensional billiard with phase space coordinates �q�� q�� p�� p���
Let tk be the instant of the k�th collision of the billiard with the billiard bound�
ary� and t�k � tk � 
� 
 positive and in�nitesimal� Setting the mass and the
velocity equal to �� we impose the energy conservation by parametrizing the
momentum direction by angle �� �q�� q�� sin �� cos ��� Now parametrize the ��d
neighborhood of a trajectory segment between �k � ���th and k�th collisions
by �x � ���� �z�� where �zk is the coordinate variation transverse to the k�th
segment of the �ow� Using dqi�dt � pi� we obtain the equations of motion for
the linearized neighborhood

d

dt
�� � ��

d

dt
�z � �� �

Let ��k � ���t�k � and �zk � �z�t�k � be the local coordinates immediately af�
ter the k�th collision� and ���k � ���t�k �� �z

�
k � �z�t�k � immediately before�

Integrating the free �ight from t�k�� to t
�
k we obtain

���k � ��k��
�z�k � �zk�� � k��k�� � k � tk � tk�� � ������

and the transverse Jacobian is given by

JT �xk� �

�
� �

k �

	
�

At incidence angle �k �the angle between the outgoing particle and the outgoing
normal to the billiard edge�� the incoming transverse variation �z�k projects
onto an arc on the billiard boundary of length �z�k � cos�k� The corresponding
incidence angle variation ��k � �z�k �Rk cos�k� Rk � local radius of curvature�
increases the angular spread to

��k � � ���k �
�

Rk cos�k
�z�k

�zk � ��z�k � ������

so the Jacobian associated with the re�ection is

JR�xk� � �
�
� rk

� �

	
� rk �

�

Rk cos�k
�
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The Jacobian of a cycle p of length np is therefore given by

Jp � ����np
npY
k	�

�
� rk

� �

	 �
� �

k �

	
� ������

As detJ � �� the sign of the leading eigenvalue depends only on the trace
of the determinant�  � �

��TrJ �
p
Tr�J � ��� and by ������ the trace after

n compositions of the determinants has the sign ����n� ie� the eigenvalues
�ip sign at each collision� This yields a convenient way of �nding the correct
sign of the stabilities in the fundamental domain� since a straight wall can be
considered as the limit of a disk whose radius tends to in�nity� A typical set of
the periodic orbit data� for d � R � 	 and length � 	� is listed in ����

period  p Action code

� ����������		E��� �������������� �
� ����������	��E��� ���	���������� �

� ���������������E��� ����	�����	� ��

� ������������E��� ��������		�	��� ���
� ����������	E��� �������������� ���

� ��������	�	��	E��� �	������	������ ����
� ������������E��� �	�������	��� ����
� ���������������E��� �	������������ ����

 ��������������E�� �������������� �����
 ������������E�� ����	��	���� �����
 ������������E�� ���	�������	��� �����
 ������������E�� ������������ �����
 ��������������	E�� �������	������	 �����
 ��������������E�� �����	��������� �����

	 ������	�������E��	 ������������� ������
	 �������	�����E��	 ������������ ������
	 �����������E��	 ���	���	������ ������
	 ���	��	�������E��	 ������������� ������
	 �����	�������E��	 �������	�����		 ������
	 �����	�������E��	 �������	�����		 ������
	 ���������	���E��	 �������������� ������
	 �����	����	�E��	 ���		����	��� ������
	 ����		��������E��	 ���������	�	 ������

Table ���� Classical periodic orbits for the three disk system at d � R � 	� The
columns list the symbolic period� the instability  p� the length or action of the
orbit and the binary symbolic coding of the orbit� Note the two period 	 orbits
������ and ������� which have the same action and stability� they are related
by time reversal symmetry but not by any discrete spatial symmetry�
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��� Orbit length minimization method

The simplest method for determining billard cycles is given by the principle of
least action� or� equivalently� by minimizing the length of an approximate orbit
that visits a given sequence of disks� In contrast to the multipoint shooting
method which requires variation of �N phase�space points� minimization of the
cycle length requires variation of only N bounce positions si� i � �� �� � � � � N �
In the following we shall see that this variation indeed can be accomplished by
considering only a one�dimensional minimization problem�

The method works for any billard system but let us for now assume that
we are working with N non�intersecting disks with radii Ri� Let the point

�xi� yi� denote the center of the i"th disk� and s
���
i be the initial guess of the

i"th bouncing position� which is an angle measured with respect to some �xed
point on the surface of the i"th disk� The length �or equivalently� the period or
the action� of the initial approximate cycle is given by

L��� �
NX
i	�

l
���
i �

NX
i	�

��#x
���
i �� � �#y

���
i ��
���

where #x
���
i � xi���xi�Ri�� cos�s

���
i����Ri cos�s

���
i � � xN�� � x�� and similarly

for #y
���
i � The idea is now the following� taking the gradient of L��� gives us the

direction in s space in which the total length decreases with the highest rate�
Following this direction until we reach a minimum de�nes a new point s��� which
is now the next approximation to the real cycle� Iterating this procedure then
�naly leads to a cycle that obeys the Fermat principle and therefore is the cycle
we are interested in� In our case the gradient of the length function in the j"th
approximation can be obtained directly and reads�

��rL�j��i �
	l

�j�
i��

	s
�j�
i

�
	l

�j�
i

	s
�j�
i

� Ri

�
�sin�s�j�i ��

#x
�j�
i

l
�j�
i

� #x
�j�
i��

l
�j�
i��

�� cos�s�j�i ��
#y

�j�
i

l
�j�
i

� #y
�j�
i��

l
�j�
i��

�

�
A �

The minimization algorithm can now be implemented by following the recursion
scheme�

�� Select an initial set of bounce positions �s��

�� Evaluate �rL j�s	�s� �
�� Minimize L along the hyper line spanned by the above gradient� ie� min�
imize the function L��s� � �rL j�s	�s� �t� with respect to the parameter t�

�� Use the bounce points �s� so determined as the starting point for the next
iteration of the algorithm� and proceed iterating items ��� and � until the
desired accuracy is attained�
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� If the dynamics is pruned� check that the �nal minimal length orbit does
not penetrate any of the disks�

One way to ensure that the algorithm has obtained the limit of the procedure
is to evaluate the gradient �or the length of the gradient� at the di�erent points
s���� s���� s���� � � �� In practice when the length of the gradient is zero up to
accuracy of the implemented precision �quadruple precision � � ������� further
iteration does not alter the bouncing positions� It turns out that the algorithm
converges very fast to this limit� of course depending on the initial guess and the
length of the cycle� To get a good initial guess� one can construct the following
s���� �rst you consider the full space itinerary ��� ��� � � � � �np that describes the

sequence in which the disks are visited by the cycle� To construct s
���
i we then

consider the two line segments that connects the centers of the previous and

following disk to the center of the current disk� Then s
���
i can be set as the

angle that divides the angle spanned by these two line segments in two equal
parts�

The above method has been applied succesfully to the ��disk system at
three di�erent disk�disk separations� namely with R � a � � � R � a � 	 and
R � a � ��� and all orbits up to topological length �in binary alphabet� �� have
been obtained� Besides this we have also ���
 checked the method on the ��
and ���disk systems where the disks have been positioned as �rst and second
approximations to the Lorentz gas ���
�



Chapter �

Classical periodic orbit

theory

��� Flows	 evolution operators and their spectra

Functional determinants and zeta functions arise in classical and quantum me�
chanics because in both the dynamical evolution can be described by the action
of linear evolution operators on in�nite�dimensional vector spaces� The classi�
cal evolution operator for a d�dimensional map or a �d� ���dimensional �ow is
given by�

Lt�y� x� � ��y � f t�x��gt�x� � �����

For discrete time� fn�x� is n�th iterate of the map f � for continuous �ows� f t�x�
is the trajectory of the initial point x� gt�x� is a weight multiplicative along the
trajectory� its precise functional form depends on the dynamical average under
study� For purposes of this section it su�ces to take gt�x� � �� essentially the
Perron�Frobenius operator case�

The global averages �escape rates� energy eigenvalues� resonances� fractal
dimensions� etc�� can be extracted from the eigenvalues of the evolution op�
erators� The eigenvalues are given by the zeros of appropriate determinants�
One way to evaluate determinants is to expand them in terms of traces� log det

� tr log� and in this way relate the spectrum of an evolution operator to its
traces� ie� the periodic orbits of the system� Formally� the traces trLt are easily
evaluated as integrals of Dirac delta functions as follows�

����� Trace formula for maps

If the evolution is given by a discrete time mapping� and all periodic points are
known to have stability eigenvalues  k �� � strictly bounded away from unity�

�



�	 CHAPTER �� CLASSICAL PERIODIC ORBIT THEORY

the trace Ln is given by the sum over all periodic points x of period n�

trLn �

Z
dxdy��x � y�Ln�y� x�

�
X
p

np

�X
r	�

�n�npr

jdet


	� Jrp

�
j
� �����

where

Jp�x� �

np��Y
j	�

J�f j�x��� Jkl�x� �
	

	xl
fk�x� �����

is the �d	d
 Jacobian matrix evaluated at the periodic point x� and the product
goes over all periodic points xi belonging to a given prime cycle p� The trace

formula is the Laplace transform of trLt which� for discrete �ows� is simply the
generating function

trL�z� �
�X
n	�

zntrLn �
�X
�	�

ze���

�� ze���

where e��� � e��� � e��� � � � � are the eigenvalues of L� For large times det


	� J�n��xi�

�
�

 i� where  i is the product of the expanding eigenvalues of J
�n��xi�� so the trace

is dominated by

trL�z� 

�X
n	�

zn
X

xi�Fix�fn�

�

j ij

�
ze���

�� ze���
� � � � � �����

and diverges at the leading eigenvalue ��z � e��� � This approximation� which
in current physics literature is called the $thermodynamic% or the $f of �%
formalism ��	
� is adequate �but far from optimal� for extraction of the leading
eigenvalue of L� and di�cult to apply to extraction of the non�leading eigenval�
ues�

����� Trace formula for �ows

For �ows the eigenvalue corresponding to the eigenvector along the �ow �the
velocity vector� necessarily equals unity for all periodic orbits� and therefore
the integral ����� requires a more careful treatment ���
�

To evaluate the contribution of a prime periodic orbit p of period Tp� one
choses a local coordinate system with a longitudinal coordinate dxk along the
direction of the �ow� and d transverse coordinates x�

trpLt �
Z
Vp
dx�dxk��x� � f t��x����xk � f tk�x�� � ����
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Integration is restricted to an in�nitesimally thin tube Vp enveloping the cycle
p�

Let v � jF�x�j be the velocity along the orbit� and change the longitudinal
variable to dxk � vd � Whenever the time t is a multiple of the cycle period
Tp� the longitudinal delta function contributes a term ��v� canceling the cor�
responding factor v from the change of variables� and the integral along the
trajectory yields a factor Tp�

Z
Vp
dxk��xk � f tk�x�� �

�X
r	�

��t� rTp�

Z
p
d

� Tp

�X
r	�

��t� rTp� � ���	�

Linearization of the periodic �ow in a plane perpendicular to the orbit yields
the same weight as for the maps�

Z
Vp
dx���x� � f

�rTp
� �x�� �

�

jdet


	� Jrp

�
j
� �����

where Jp is the p�cycle �d	d
 transverse Jacobian� and we have assumed hy�
perbolicity� ie� that all transverse eigenvalues are bounded away from unity� A
geometrical interpretation of weights such as ����� is that after the r�th return
to a surface of section� the initial tube Vp has been stretched out along the
expanding eigendirections� with the overlap with the initial volume given by

��jdet


	� Jrp

�
j�

Substituting ���	����� into ����� we obtain an expression for trLt as a sum
over all prime cycles p and their repetitions

trLt �
X
p

Tp

�X
r	�

��t� rTp�

jdet


	� Jrp

�
j
�

A Laplace transform replaces the above sum of Dirac delta functions by the
trace formula for classical �ows ���
�

trL�s� �
Z �

�
dt esttrLt �

X
p

Tp

�X
r

esTpr

jdet


	� Jrp

�
j
� �����

We should caution the reader that in taking the Laplace transform we have
ignored a possible t� �� volume term� as we do not know how to regularize
the delta function kernel in this limit� In the quantum �or heat kernel� case
this limit gives rise to the Weyl or Thomas�Fermi mean eigenvalue spacing� A
more careful treatment might assign to such volume term some interesting role
in the theory of classical resonance spectra�
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The semi�classical evaluation of the quantum trace is considerably more
laborious� but the �nal result� given in sect� ���� is very similar in form to the
above classical trace�

����� Fredholm determinants

The problem with the classical ������ ����� and the Gutzwiller trace formulas
������ is that they diverge precisely where one would like to use them �we
return to this in sect� ������ While in the physics literature on dynamically
generated strange sets this does not prevent numerical extraction of reasonable
$thermodynamic% averages� in the case of the Gutzwiller trace formula this leads
to the perplexing observation that crude estimates of the radius of convergence
seem to put the entire physical spectrum out of reach� This problem is cured
by going from trace formulas to determinants� which turn out to have larger
analyticity domains� For maps� the two are related by

F �z� � det��� zL� � exp

�
�

�X
n

zn

n
trLn



For �ows the classical Fredholm determinant is given by

F �s� � exp

�
��X

p

�X
r	�

�

r

esTpr

jdet


	� Jrp

�
j

�
A � �����

and the classical trace formula ����� is the logarithmic derivative of the classical
Fredholm determinant

trL�s� � � d

ds
logF �s� � ������

With z set to z � es� the Fredholm determinant ����� applies both to maps and
�ows� A Fredholm determinant can be rewritten as an in�nite product over
periodic orbits� by noting that the r sum in ����� is close in form to expansion
of a logarithm� We cast it into such a form by expanding the Jacobian weights
in terms of stability eigenvalues� For a ��dimensional Hamiltonian �ow with
one expanding eigenvalue  � and one contracting eigenvalue �� � the weight in
����� may be expanded as follows�

�

jdet


	� Jrp

�
j
�

�

j jr��� �� rp��

�
�

j jr
�X
k	�

�k � �� �krp � ������

With this we can rewrite the Fredholm determinant exponent as

�X
r	�

�

r

esTpr

jdet


	� Jrp

�
j
�

�X
k	�

�k � �� log

�
�� esTp

j pj kp


�
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and represent the Fredholm determinant as a Selberg�type product ���


F �s� �
Y
p

�Y
k	�



�� tp� 

k
p

�k��
�

tp �
esTp

j pjz
np � ������

z is a book�keeping variable that we will use to expand zeta functions and
determinants� set to z � � in calculations� The �rst �k � �� zeta function in
the product is the Ruelle or dynamical zeta function ��


� �
Y
p

��� tp�� � ������

where in general� tp depends on the dynamical average one wishes to evaluate�
The simplest example is the weight ������ used in computation of escape rates
and correlation spectra� ������ also yields the leading semi&classical quantum
resonances� if tp is the quantum weight ������ associated with the cycle p�

The above heuristic manipulations are potentially dangerous� as we are deal�
ing with in�nite�dimensional vector spaces and singular integral kernels� how�
ever� the Fredholm determinants are entire functions in any dimension� provided
that ���


�� the evolution operator is multiplicative along the �ow�
�� the symbolic dynamics is a �nite subshift�
�� all cycle eigenvalues are hyperbolic �su�ciently bounded away from ���
�� the map �or the �ow� is real analytic� ie� it has a piecewise analytic contin�
uation to a complex extension of the phase space�

The notion of Axiom A systems is a mathematical abstraction of � and �� It
would take us too far to give and explain the de�nition of the Axiom A systems
�see ref� ��
�� Axiom A implies� however� the existence of a Markov partition
of the phase space from which � and � follow� Properties � and � enable us
to represent the evolution operator as a matrix in an appropriate basis space�
properties � and � enable us to bound the size of the matrix elements and
control the eigenvalues�

��� Cycle expansions

A cycle expansion���
 is a series representation of a zeta function or a Fredholm
determinant� expanded as a sum over pseudo�cycles� products of prime cycle
weights tp� ordered by increasing cycle length and instability� The products
������������� are really only a shorthand notation for zeta functions and deter�
minants � for example� the zeros of the individual factors in in�nite products
������������� are not the zeros of the corresponding zeta functions and determi�
nants� and convergence of such objects is far from obvious�
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����� Curvature expansions

Curvature expansions are based on the observation���� �� �
 that the motion in
dynamical systems with �nite grammar is organized around a few fundamental

cycles� more precisely� that the cycle expansion of the dynamical zeta function
������ allows a regrouping of terms into dominant fundamental contributions tf
and decreasing curvature corrections cn�

��� � ��
X
f

tf �
X
n

cn � ������

The fundamental cycles tf have no shorter approximants� they are the $building
blocks% of the dynamics in the sense that all longer orbits can be approximately
pieced together from them� In piecewise linear approximations to the �ow� ���
is given by the determinant for a �nite Markov transition matrix� and all cn
vanish identically� Hence the designation $curvatures%� size of cn is an indication
how far the �ow is from a piecewise linearization�

A typical curvature term in ������ is a di�erence of a long cycle fabg and
its shadowing approximation by shorter cycles fag and fbg�

tab � tatb � tab��� tatb�tab�

The orbits that follow the same symbolic dynamics� such as fabg and the
$pseudo orbit% fagfbg� lie close to each other� have similar weights� and for
longer and longer orbits the di�erences are expected to fall o� rapidly� For sys�
tems that satisfy Axiom A requirements� such as the ��disk repeller� curvature
expansions converge very well���
� It is crucial that the curvature expansion
is grouped �and truncated� by topologically related cycles and pseudo�cycles�
truncations that ignore topology� such as inclusion of all cycles with Tp � Tmax�
will contain un�shadowed orbits� and exhibit a mediocre convergence compared
with the curvature expansions�

����� Fredholm determinant cycle expansions

While for the dynamical zeta function cycle expansions the shadowing is easy
to explain� the resulting convergence is not the best achievable� as explained
above� Fredholm determinants are expected to be entire� and their cycle ex�
pansions should converge faster than exponentially� The Fredholm determinant
cycle expansions are somewhat more complicated than those for the dynamical
zeta functions� We expand the exponential representation ����� of F �s� as a
multinomial in prime cycle weights tp

Fp � ��
�X
r	�

�

r

trp

jdet
h
	� Jrp

i
j
�
�

�
�� � ��� � � � � �

�
�X
r	�

Cpkt
k
p �
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This yields the cycle expansion for F �s��

F �s� �
�X

k�k�k����	�

p
k�
�
p
k�
�
p
k�
�
���


p
k�
�
p
k�
�
p
k�
�
��� �

�Y
i	�

Cpiki
tkipi �

where the sum goes over all pseudo�cycles�

����� Numerical calculations with cycle expansions

In practice we do not do anything as complicated as the expansion of the pro�
ceeding section� Consider the prototype of any of the determinants we are going
to evaluate numerically

F �z� s� �
Y
p

�Y
l	�

��� tp�l�s�z
np�� �����

where tp�l is the weight associated with the p"th primitive cycle� and z is the
book�keeping variable keeping track of the topological length np of the cycles�
Now the product ����� can be written as an exponential like in �����

F �z� s� � exp

�
�
X
p

�X
l	�

�X
r	�

�

r
�tp�lz

np�r


����	�

where we expanded the logarithm in the identity x � exp�lnx�� For most of the
cases we are going to encounter the above l sum can be performed analytically
so that we end up with

F �z� s� � exp

�
�
X
p

�X
r	�

�

r
crpz

npr


� ������

By gathering all terms of the same power in z we then �naly get

F �z� s� � exp��
�X
n	�

Trnz
n�� ������

where Trn is just the total contribution� which is �nite� from all the cycles to
the power n of z� A cycle of topological length np will thus contribute to the
sum by the powers of znp � z�np � � � � � zrnp � � � �� Adding up the contribution from
all the individual cycles to the Trn"s can then be performed by a single loop in
a program� Next we expand each of the exponentials exp��Trnzn� in a power
series in z� Finaly� by multiplying these power series together we obtain the
�nal power series expansion in z of the determinant� This should then be cut
of at the maximal cycle length N

FN �s� z� �
NX
n	�

Cn�s�z
n ������
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In the �nal evaluation z is set to z � �� but the organization by powers of zn is
crucial to the convergence of cycle expansions�

To �nd the zeros of the determinant� we use the standard Newton�Raphson
searching algorithm� To obtain a good starting point for this one can start by
scanning the area of the complex plane under investigation� One should then
search for local low values of the determinant by evaluating this on a suitable
grid� Having obtained these initial guesses we apply the recursion scheme

si�� � si � FN �si� ���F
�
N �si� ��� ������

to search for the zeros� To obtain the derivative of the determinant we can use
exactly the same routine as to determine it� From ������ we can directly get
the derivative

F �
N �z� s� � ��

NX
n	�

Tr�nz
n�FN �z� s�� ������

which means that in the same loop where we sum up the Trn"s we should merely
at the same time sum up also the derivatives of these� After this one just has
to make one extra power series multiplication in order to obtain F �

N �z� s�� Of
course� also here we in the end put z � ��

����� Convergence of cycle expansions

It is fairly easy to establish that for Axiom A systems the trace formulas con�
verge exponentially with the number of cycles included� As will be explained
in sect� ����� the trace formulas are not absolutely convergent where you need
them� and in addition� shadowing of longer orbits by nearby pseudo�orbits is
not implemented� so we will not use trace formulas at all� However� it should
be noted that for systems other than Axiom A� we do not know how to improve
convergence by shadowing cancellations� or de�ne determinants that are guar�
anteed to be entire� and it is still possible that for generic systems determinants
do not converge any better than traces�

For dynamical zeta functions geometrical estimates ��
 imply that for Axiom
A systems the curvature expansion coe�cients fall o� exponentially� Ck 
 �Ck�
and the expansion sums up to a pole

�X
n	�

Ckz
k �

�X
n	�

� �Cz�k �
�

�� �Cz
�

Such poles are indeed observed numerically ��
� Convergence of dynamical zeta
functions cycle expansions can be accelerated by a variety of numerical methods�
but both on theoretical grounds and in practice� the preferred alternative is to
use Fredholm determinants instead�
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����� Symmetry factorizations

Discrete symmetries of the classical dynamics play a role with which we are
familiar from quantum mechanics� as they commute with the evolution opera�
tors� they can be used to decompose them and factorize the associated deter�
minants ��	
�

�����disk �
Y
�

���d�� �

The product is over the d��dimensional irreducible representations � of the
symmetry group� in this case C�v � with two ��dimensional representations A��
A� and a pair of ��dimensional representations E� The factorization relates each
fundamental domain orbit to the corresponding degenerate set of full space or�
bits as follows�

symmetry full space A� A� E

rotation � ��� t�rot�
� � ��� trot� ��� trot� �� � trot � t�rot�

�

re�ection � �� � t�ref �
� � ��� tref� �� � tref� ��� t�ref �

�

none � ��� tnon�

 � ��� tnon� ��� tnon� ��� tnon�

�

Fundamental domain cycles up to length  are listed in table ��� in section
���� together with the symmetry factors that map them into the corresponding
global orbit irreducible segments� these determine which of the above factor�
izations apply to a given cycle� Substituting the shortest cycles into the zeta
functions� we obtain for the completely symmetric A� subspace�

���A�
�z� � ��� zt����� zt����� z�t������ z�t������� z�t����

��� z�t�������� z�t������� � z�t������� � z�t��������� z�t������

��� z�t�������� � z�t��������� z�t��������� z�t������ � � � � ������

In the example at hand� with complete symbolic dynamics and no pruning rules�
the cycle expanded zeta function is obtained by expanding the in�nite product
as a power series in z�

���A�
�z� � �� zt� � zt� � z���t�� � t�t��


�z���t��� � t��t��� �t��� � t��t��


�z���t���� � t�t���� � �t���� � t���t��

��t���� � t���t� � t�t��� � t�t��t��
� � � � � ������

For the A� subspace cycles with an odd number of �"s pick up an additional
minus sign�

���A�
�z� � � � zt� � zt� � z���t�� � t�t��


�z���t��� � t��t�� � �t��� � t��t��


�z���t���� � t�t���� � �t���� � t���t��

��t���� � t���t� � t�t��� � t�t��t��
� � � � � ������
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The E subspace cycle expansion takes a somewhat less obvious form ��	
�

���E � �� � zt� � z�t������ z�t����� � zt��� � z�t�������� z�t����

�� � zt���� � z�t�������� � zt����� � z�t�������

�� � zt����� � z�t���������� z�t������
� � � �

� � � zt� � z��t�� � t��� � z��t��� � t�t
�
��

�z�
h
t���� � �t��� � t�t

�
��t� � t���

i
�z�

h
t����� � t����� � �t����� � �t���� � t����t� � �t

�
� � t���t���

i
� � � � �����

For orbits running on one of the symmetry lines� one has to take special care��	
�
All our numerical results are obtained by determining the zeros of �nite cycle
length truncations of the above cycle expansions� or the corresponding ones
for the Gutzwiller Voros zeta function� and related expressions for semiclassical
spectral determinants which we are going to study in the following sections�


