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Abstract

In order to become familiar with the tools provided by the periodic orbit theory, we investigate

the dynamics of the Rössler ODEs. Using symbolic dynamics and kneading theory the allowed

periodic orbits are determined. Next, the inverse topological zeta function is constructed and from

this the topological entropy is found. Finally, the leading Lyapunov exponent is calculated, which

serves to quantify the chaotic behaviour of the system.
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I. INTRODUCTION

The periodic orbit theory of classical chaos is an invaluable tool for examining aspects of

the behavior of chaotic dynamical systems. The theory expresses all long time averages over

chaotic dynamics in terms of cycle expansions [1]. Sums over periodic orbits (cycles) are

ordered hierarchically according to the orbit length. If the symbolic dynamics is known and

the flow is hyperbolic longer cycles are shadowed by the shorter ones, and cycle expansions

converge exponentially or even super-exponentially with the cycle length [6].

In sect. II I derive my differential equation which governs the evolution of the flow in time.

The details of my numerical implementation of the method are discussed in sect. IIIA. In

sect. III B, I test the method on the Rössler flow. My results are summarized discuss possible

improvements of the method in sect. V. Why I failed to complete the project is explained

in Appendix A.

II. MY PROBLEM DEFINED

A periodic orbit is a solution (x, T), x ∈ R
d, T ∈ R of the periodic orbit condition

fT(x) = x , T > 0 (1)

for a given flow or discrete time mapping x 7→ f t(x). Our goal is to determine periodic

orbits of flows defined by first order ODEs

dx

dt
= v(x) , x ∈ M ⊂ R

d , (x, v) ∈ TM (2)

in d dimensions. Here M is the phase space (or state space) in which evolution takes place,

and the vector field v(x) is smooth (sufficiently differentiable) almost everywhere.

A. My Equations

For the Rössler flow, x ∈ R
3 and is determined by the vector field v(x) given by
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ẋ = −y − z

ẏ = x + ay (3)

ż = b + z(x − c)

In this particular version of the Rössler flow, we choose a = b = 0.2 and c = 5.7. The

divergence of the flow is given by ∇ · v(x) = ∂ẋ
∂x

+ ∂ẏ

∂y
+ ∂ż

∂z
= a + x − c. Clearly the flow is

not conservative, and, furthermore, the contraction/expansion of volumes is not uniform in

the phase space.

There are two fixed points of the system

p± =
c ±

√
c2 − 4ab

2a
(a,−1, 1) (4)

For our particular choice of parameters the two equilibrium points are p+ =

(5.692973,−28.464869, 28.464869) and p− = (0.007026,−0.035131, 0.035131). The linearized

stability exponents of these fixed points are (λ+
1 , λ+

2 ) = (0.1929,−4.596×10−6± i5.428) and

(λ−
1 , λ−

2 ) = (−5.686, 0.0970 ± i0.9951)[1]. This means that trajectories which start near the

fixed point located far from the origin rotate and are slowly attracted to the stable eigen-

plane, while at the same time move away along the direction of the unstable eigenvector.

Trajectories originating near p− also rotate and move away along the unstable direction but

the attraction to the stable manifold in this case is quite extreme (Λz ≈ 10−15.6) [1].

It proves convenient to reduce the three dimensional flow to a one dimensional map using

a return map. First, one creates a Poincaré section of the flow at a particular value of θ0,

which are the set of points

Ω = {(r, θ, z) | r > 0, θ = θ0}. (5)

The flow is then reduced to a map via the function fΩ given by:

rn+1 = fΩ(rn) ≡ φτ (rn), rn, rn+1 ∈ Ω (6)

Here φ denotes the Poincaré map and τ the return time, which varies for each iteration of

the map. In practice these return maps were obtained by recording ∼3000 traversals of the

section by an arbitrary trajectory and discarding the first ∼500 or so data points in order

to allow the flow sufficient time to settle onto the attractor.
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FIG. 1: Return map: R(n+1) versus R(n) for a section taken at θ0 = 30
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FIG. 2: Return map: R(n+1) versus R(n) for a section taken at θ0 = 50

Denote by δn the deviation of a point xn on the periodic orbit p from the nearby point

yn,

xn = yn + δn .

Let x(t) = f t(x) be the state of the system at time t obtained by integrating (2), and

J(x, t) = dx(t)/dx(0) be the corresponding Jacobian matrix obtained by integrating

dJ

dt
= AJ , Aij =

∂vi

∂xj

, with J(x, 0) = 1 . (7)

For the Rössler flow,

A =











0 −1 −1

1 a 0

z 0 x − c










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FIG. 3: Return map: R(n+1) versus R(n) for a section taken at θ0 = 95
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FIG. 4: Return map: R(n+1) versus R(n) for a section taken at θ0 = 140

B. Symbolic Dynamics

Once the generic behavior of the flow has been determined, one may partition the phase

space into various regions, labeling each one with its own unique symbol. So, in general, one

is dealing with some finite set {1, 2, . . . , n} of symbols, which is known as the alphabet or

state set. Two distinct sequence spaces can be formed from this set. The one-sided space is

{1, 2, . . . , n}N whose sequences are of the form (s0s1s2 . . .). The two-sided sequence space is

{1, 2, . . . , n}Z and these sequences are of the form (. . . s−2s−1s0s1s2 . . .). In both cases each

si ∈ {1, 2, . . . , n} [3].

For the Rössler flow, the return maps of interest are unimodal on some interval, I, of the

radial coordinate. Thus, the most logical partitioning of the phase space is whether a given
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FIG. 5: Return map: R(n+1) versus R(n) for a section taken at θ0 = 215

trajectory falls to the right or to the left of the critical point (xc). If xi < xc, then si = 0,

and if xi > xc, then si = 1 (we denote this one-sided sequence space Σ2). This sequence

space can be defined as a metric space by introducing the notion of a “distance” between

two sequences, S = (s0s1s2 . . .) and T = (t0t1t2 . . .) given by d[S, T ] =
∑∞

i=0

|si−ti|
2i , which is

a convergent series. This metric allows us to determine how “close” two sequences are to

one another.

Next, we define the shift transformation on this space. The shift map σ : Σ2 7→ Σ2 is

given by σ(s0s1s2s3 . . .) = (s1s2s3 . . .). One can see why it is called the shift map as it

discards the first entry and shifts all subsequent entries one place to the left. Clearly, σ is a

two-to-one map on Σ2. Furthermore, in the metric space defined above, σ is a continuous

map [2].

Periodic points in Σ2 have the property that σp(x) = x. For p > 0, if p is the least such

power that satisfies the preceding equation, we say that x has period p. The number of

periodic points is countably infinite and they are dense in the space [3]. Eventually periodic

points have the property that σk(x) = σk+p(x).

For x ∈ I, its itinerary is given by S(x) = s0s1s2 . . .. This encoding of the itinerary via

S gives an equivalence between the dynamics of the return map, fΩ : I 7→ I, and the shift

map, σ : Σ2 7→ Σ2. S : I 7→ Σ2 is known as a homeomorphism and S(fΩ(x)) = σ(S(x)).

This implies that the maps σ and fΩ are topologically conjugate to one another (i.e., they

are completely equivalent in terms of their dynamics) [2].
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C. Kneading Theory

First, we must determine an ordering for our sequence space. This is achieved by associ-

ating a binary number τ with each itinerary, S(x) = s1s2s3 . . ., in our space via the following

algorithm:

w1 = s1

wt+1 =







wt if st+1 = 0

1 − wt if st+1 = 1
(8)

Note that this is slightly modified from [1]. The binary number τ is then given by:

τ = 0.w1w2w3 . . . =

∞
∑

t=1

wt

2t
(9)

Now that our space is well-ordered, we must determine a boundary with respect to this

ordering between admissible and inadmissible itineraries. The itinerary of the critical point,

S(fΩ(xc)), of our unimodular return map (commonly referred to as the kneading sequence)

defines the boundary. The kneading value K = τ(xc) given by (9) is the largest value that

any admissable sequence can have. Any sequence S has some maximum value τmax for its

corresponding binary number and is given by

τmax(S) = sup
k

τ(σkS) (10)

The orbit S is admissable if and only if τmax(S) ≤ K [7]. In practice, however, the

ideas presented in [2] are used to determine the allowed orbits and this is summarized in

sect. III B.

III. IMPLEMENTATION OF MY METHOD

A. Numerical implementation

A fourth order Rünge-Kutta scheme was used to advance the trajectory forward in time

using Cartesian coordinates. When the trajectory begins to near θ0 (the location of the

Poincaré section), the program checks to see when it crosses the section. Once this happens,

“Hènon’s trick” is employed in cylindrical coordinates so that the trajectory lands exactly
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on the section. Essentially this involves switching dt with dθ and using |θ − θ0| as the

“time-step”, where θ is understood to be the angular position of the previous time step.

Converting v(x) to cylindrical coordinates yields:

ṙ = −z cos θ + ar sin2 θ ≡ f1(r, θ, z)

θ̇ = 1 +
z

r
sin θ + a sin θ cos θ ≡ f2(r, θ, z) (11)

ż = b + z(r cos θ − c) ≡ f3(r, θ, z).

and using the chain rule, one obtains the new set of equations that are to be integrated

in θ

dr

dθ
= f1(r, θ, z)/f2(r, θ, z)

dt

dθ
= 1/f2(r, θ, z) (12)

dz

dθ
= f3(r, θ, z)/f2(r, θ, z).

Once the trajectory has landed on the section t and θ are again switched and the new

coordinate values are converted back to Cartesian [4].

B. Initialization of the search

For our particular analysis, we chose θ0 = 230◦ as the location in the xy-plane for

the Poincaré section. The return map for this section was constructed and from this

an estimate for the critical point was obtained and its z-value was recorded. Using

this information, the kneading sequence was examined as a function of the time step

∆t. It was found to converge to S(xc) = 100101111111010110110010110101 . . . giving

τc = .111001010101100100100011011001 . . . for its kneading value defined by (9).

Consider the sequence T = t1t2t3 . . . and let n be the first entry where S(xc) = s1s2s3 . . .

and T differ. As Devaney does in [2], we define an ordering ≺ on the sequence space Σ2

inductively. Let γ =
∑n−1

k=1
tk; if γ is even and tn < sn or if γ is odd and tn > sn, then

T ≺ S(xc) and the sequence is an admissible one. If neither condition is satisfied, then we

prune this orbit. This is how the admissibility of orbits was determined in practice.
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FIG. 6: The first 22 iterates of the kneading sequence

np 1 2 3 4 5 6 7 8 9

1 01 001 0111 01011 001011 0101011 01011011 010110111

011 01111 010111 0110111 01010111 010101111

011111 0101111 01101111 011011111

0111111 00101111 011010111

01011111 001011011

01111111 011101111

00101101 010111111

001001011

011111111

010101011

TABLE I: Admissible itineraries for periodic orbits up to length 9

Using the results from Appendix E in [1] for unimodal maps, we have that the inverse

topological zeta function is given by the following polynomial:
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1/ζtop(z) =
∏

p

(1 − zn
p ) = (1 − z)

n−1
∑

i=0

aiz
i;

ai =
i

∏

j=1

(−1)sj , a0 = 1 (13)

10 12 14 16 18 20 22 24 26 28 30

0.508

0.5085

0.509

0.5095

0.51

0.5105

0.511

Entropy as a Function of the Truncation of 1/ζ
top

Truncation Length: n

T
op

ol
og

ic
al

 E
nt

ro
py

: h
n

the entropy is
converging to the
value, h = .509856...

FIG. 7: Topological entropy as a function of the truncation of the inverse zeta function

Here the sj are the entries in the kneading sequence S = s1s2s3 . . .. Since we have

not been able to determine whether the kneading sequence is periodic, eventually periodic,

or aperiodic, n can be either finite or infinite. This ambiguity should not pose a problem,

however, since we will eventually have to truncate the expanded inverse zeta function anyway.

For our particular kneading sequence, S(fΩ(xc)), we have the following inverse topological

zeta function, which we have truncated to the first 31 terms:

1/ζtop(z) = (1 − z)(1 − z − z2 − z3 + z4 +

z5 − z6 + z7 − z8 + z9 − z10 + z11 − z12 −

z13 + z14 + z15 − z16 + z17 + z18 − z19 − (14)

z20 − z21 − z22 + z23 + z24 − z25 + z26 +

z27 − z28 − z29 + z30)
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IV. THE HOUR OF TRIUMPH

...unfortunately has not come yet.

V. DISCUSSION

Ultimate goals of the project were to find the periodic orbits using the Newton-Raphson

algorithm in conjunction with the multiple-shooting method. Time-evolving the Jacobian

along these trajectories would have allowed me to compute the stability for each of the orbits,

which, in turn, would have given an estimate for the leading Lyapunov exponent. However,

I did attain the minimal goal of computing return maps, finding the kneading sequence

(for my chosen parameters), pruning orbits, constructing a topological zeta function, and

evaluating the topological entropy in terms of the truncation of this function.

My main result was determining a convergent value for the topological entropy of the

flow. This result was obtained using the kneading theory associated with unimodal maps.

The method is applicable to any map which satisfies the unimodal conditions.
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APPENDIX A

I encountered several technical difficulties in trying to use the PCs available on campus.

Much time was wasted in compiling the tex file on zero (as acme does not have Latex as

far as i was able to ascertain), then scp’ing the ps file to acme, and finally opening the file

using the Ghostview on the PC just to see each change that i attempted to make. People

tried to help me set up an x-server through zero so that i might be able to use ghostview

inside that remote host (with no success), but in the end i was told that i should just buy

my own computer - something i intend to do very soon. Much of this is my fault, as i had

grown quite used to the Sun workstations at my old school; instead, i should have taken my

previously abundant spare time and familiarized myself with the various operating systems

that are out there.

More than anything, though, the use of MATLAB as a programming language was my

biggest mistake. This semester turned out to be a lot more work than i had anticipated
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and i frequently turned to MATLAB, since i knew i at least had access to it in the library,

for help on the homework problems. One week led to another and before i knew it i was

using an unfamiliar (as well as EXTREMELY slow) language to do my project. Now that i

have a LINUX account (and more time), i plan to spend some time converting my code to

FORTRAN and continue the project.
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