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main critical effects are pointed out. An approach to semi-classical scattering is discussed, based on

the work by Berry.
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Introduction

Most of what I will write about is discussed in detail
in Nussenzveig [7].

I will begin by introducing the motivation of this re-
view on sect. I, explaining the problem of interest and
some of the different areas of application of the tech-
niques discussed here.

I will then review some of the different techniques that
have been used to study the problem of scattering by a
central potential. A brief review on the classical approach
will be given in sect. I A where some of the main critical
effects will make themselves evident.

Then, in sect. II I will review the Complex Angular
Momentum (CAM) techniques to approach the problem
of scattering by a sphere, and finally in sect. IIT T will
give a summary of what was explored.

I. SCATTERING

The scattering of classical particles has been studied
for many years, and the classical results are sufficient to
explain a wide range of scattering fenomena observed.
But the classical picture has its limitations and it be-
comes necesary to take into account quantum consider-
ations to explain effects as the Rainbow Effect or the
Glory Effect. The places where mathematical difficul-
ties arise in studing classical scattering, hint us of places
where interesting fenomena may occur if we approach the
scattering problem considering some quantum mechani-
cal effects.

Furthermore, while in classical scattering the interac-
tion is only between the scattered particles and the scat-
terer, in quantum mechanics different scattered contri-
butions may interfere giving raise to a different kind of
effect not found in classical scattering.

Tunneling effects and classically unattainable trajecto-
ries are possible when we consider the scattering problem
from a quantum mechanical point of view and even if we

*Electronic address: gtg089n@mail.gatech.edu

just approach the problem from a semi-classical perspec-
tive. Different techniques has been developed to be able
to compute the differential scattering-cross sections for
various problems, but one of the biggest limitations one
encounters is the poor convergence of most of the meth-
ods, or the short range of validity of them.

We will discuss some of the methods used to study
scattering, and will try to summarize their advantages
and range of application.

A. Classical Scattering

The classical problem of scattering of a particle of mass
m by a potential V(r) and be solved in terms of the
conservation laws of angular momentum and energy,

E=lm?+ Ur(r), (1)

L= 272
mre¢®, 2

with Ur(r) being the effective potential defined by

L2

Ur(r) =V(r)+ S

(2)

From the equations (1), we may find evaluate ¢/7 to find

L
¢/ = de/dr = mr T- 3)
{Z[E-UL(r)]}?

Integrating r from oo to rg, the largest root of 7+ = 0,
which is the radius of maximum approach, and then back
to oo and with the initial condition ¢ = 7 when r — oo,
we obtain the deflection angle

(L) =7 —2L /oo dr (4)

ro 12 {2m[E — Ur(r)]}?

It is clear that the actual solution will depend on the
form of the potential, but the range of values for the
deflection angle will depend on whether the potential is
attractive or repulsive. For purely attractive potentials
the deflection angle can have values in [0,7]. In this
case the deflection angle coincides with the scattering
angle 6. For repulsive potentials, it is possible that the



particle would go around the scatterer n times before
finally escaping with certain deflection, then for purelly
attractive potentials the relationship that must follow is

O + 2nm = 46, (n=0,1,2,...)

and 6 is required to remain the the interval 0 < 6 < 7.
We can also evaluate the differential scattering cross-
section, for this we consider the particles with an impact
parameter b (related to the angular momentum through
L = bp, where p is the particle’s linear momentum) be-
tween b and b+db, this corresponds to an incoming cross-
sectional area 27bdb. If these particles are scattered in a
solid angle d©2 = 27 sin 6df# then the differential scatter-
ing cross-section is given by

do b |db
dQ ~ sind ‘@ ’ 5)

In the case of an attractive potential, as well as in more
complicated cases as mixed potentials (attractive exterior
with a repulsive core, for example) many different impact
parameters may lead to the same scattering angle, and it
is necesary to write the scattering cross-section as a sum

—1

; (6)

4o ) _y b; (6) ‘ de
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where b; corresponds to the jth impact parameter with
corresponding scattering angle 6.

From the form of (5-6) there are at least three evident
places where singularities could occur.

Rainbow Scattering

When 6(b) has a local minimum or maximum, this
means the quantity |d6/dblgp—g, = 0. The names comes
from analogy with the optical rainbow effect.

Glory Scattering

When the scattering angle 8§ = 0 or —nw for an
non-zero impact parameter b # 0,b = b,. The dif-
ferential cross section diverges as (sinf)~! in the for-
ward(backward) direction for n even(odd). Despite the
name, the meteorogical glory effect seems to have a dif-
ferent origin.

Forward Peaking

When the effectvie potential U (r) has a long tail (or
decays exponentially) there are many contributions to

the 8 = 0 scattering angle as b — oo, so the forward
differential cross-section would diverge in this case as
well, since |df/db| remains bounded. This effect is not
seen in cutoff potentials though.

There is yet another singularity that may raise not
from the form of (5-6) but from the form of the effec-
tive potential and the calculation of the deflection angle,
when the energy for the particle has a value equal to a
local maximum of the effective potential. In this case the
particle would remain in an unstable circular orbit.

Orbiting

For a given Lo such that Ur,(r) has a maximum at
r =g, a path with energy E such that

ULy(ro) =E,  (dUg,/dr),_,, =0 (7)

T=To

will mean that a circular orbit with radius ry will exist.
This causes the integral (4) to diverge in the lower limit,
which means that a particle comming with the right en-
ergy and angular momentum will spiral around the scat-
terer indefinitely.

B. Semi-Classical Scattering

As soon as one finishes studying the classical effects,
one of the first questions to ask is when are these effects
important when considering quantum scattering. In gen-
eral, we would expect a quantum mechanical approach
to reproduce the classical effects in the limit # — 0. To
gain more insight on how to recover the classical effects
from quantum mechanics, we may remember that Hamil-
tonian description of mechanics places a non-relativistic
particle with energy E within a potential V' (r) following
a path corresponding to that an optic light ray would
follow in a medium with refractive index

¥=(1-10)", ®

and the principle of least action is equivalent to Fermat’s
principle. Shrodinger’s description uses the de Broglie’s
wavelength

A=1/k = h/p=h/{2m[E - V(r)]}? 9)

II. COMPLEX ANGULAR MOMENTUM

III. DISCUSSION
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