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Abstract

I. Introduction

Kuramoto-Sivashinsky equation was introduced by Kuramoto [1976] in
one-spatial dimension, for the study of phase turbulance in the Belousov-
Zhabotinsky reaction. Sivashinsky derived it independently in the context of
small thermal diffusive instabilities for laminar flame fronts. It and related
equations have also been used to model directional solidification and , in
multiple spatial dimensions, weak fluid turbulence1.2

In recent years unstable periodic orbits have been shown to be an effec-
tive tool in the nonlinear dynamical systems3.4The theory has been success-
fully applied to low-dimensional ordinary differential equations (determin-
istic chaos) and linear partial differential equations (semiclassical quantiza-
tion). Since5,6 it has been demonstrated that K-S Equations are rigorously
equivalent to a finite dimensional dynamical system of ordinary differential
equations(ODE’s). In ref.,7 it was shown that the periodic orbit theory can
be used to describe spatially extended systems, by applying it as an example
to the Kuramoto-Sivashinsky equation:

ut = (u2)x − υuxx − uxxxx. (1)

They applied Galerkin projection onto a subspace spanned by fourier
modes with periodic boundary conditions,u(x, t) = u(x + 2π, t). They iso-
lated a smaller subspace of the system,bk = iak , where ak are real. By
picking this subspace of the antisymmetric solutions u(x, t) = −u(x, t) ,
they eliminated the continuous translational symmetry. For that simpli-
fied system, spatiotemporally chaotic dynamics is described by means of an
infinite hierarchy of its unstable spatiotemporally periodic solutions. An
intrinsic parameterization of the corresponding invariant set serves as an
accurate guide to the high-dimensional dynamics, and the periodic orbit
theory yields several global averages characterizing the chaotic dynamics.

II Kuramoto-Sivashinsky system
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Figure 1: (a)My System in the quasiperiodic regime (greasy parameter υ =
0.04494382, N = 16 modes truncation) (b)My System in the chaotic regime
(greasy parameter υ = 0.121205, N = 8 modes truncation)

Kuramoto-Sivashinsky system is one of the popular models to analyze
weak turbulence or ’spatiotemporal chaos’. We shall study unstable spa-
tiotemporallyperiodic solutions of the full Kuramoto-Sivashinsky system.
Setting:

u(x, t) =
+∞∑

k=−∞
ak(t) exp(ikx), (2)

we perform a Galerkin projection to obtain

ȧk = (k2 − υk4) + ik
+∞∑

k=−∞
akak−m, (3)

Comparing with previous studies,7 our particular interest is in symmetry
unrestricted space.

III Numerical simulation

Guided by the results of the ref.7 We have carried out a large number of
numerical experiments. The size of the truncation ranged from 4 to 16. The
dynamics of the system is more complicated as the dissipation parameter υ
(υ = L2/(2π)2,L is the length of the system before normalization)decreases.
We found some interesting windows are:(i) quasiperiod route to chaos,(ii) a
period doubling route to chaos.

To test my jacobian, I calculate the Lyapunov exponents for the system:

2



(a) −1.5 −1.45 −1.4 −1.35
−1.5

−1.45

−1.4

−1.35

a6(n)

a
6

(n
+

1
)

(b) −0.23 −0.228 −0.226 −0.224 −0.222 −0.22 −0.218 −0.216 −0.214 −0.212
−0.23

−0.228

−0.226

−0.224

−0.222

−0.22

−0.218

−0.216

−0.214

−0.212

Re(a3)(n)

R
e

(a
3

)(
n

+
1

)

Figure 2: Poincare section retuen map. (a)The attractor of the system in
antisymmetry case in ref.7 υ = 0.02991, N = 16 modes truncation) (b)The
attractor of the system in unrestricted symmetry case, 10000 Poincare sec-
tion returns of a typical trajectory. ( υ = 0.121205, N = 8 modes truncation)

υ = 0.121205000,λ1 = 0.18, λ2 = λ3 = 0.00,chaotic
υ = 0.121210000,λ1 = 0.16, λ2 = λ3 = 0.00,chaotic
υ = 0.121216583,λ1 = 0.00, λ2 = λ3 = 0.00,12-cycle

IV Goal

For the project, we will look at the full space of solutions ( the mean
velocity is zero ) and follow the main idea of the paper.7 We will use Galerkin
projection method to expand the system in a discrete spatial Fourier series.
For simulation, we will truncate the ladder of equations to a finite length and
also need to fix the parameter values corresponding to the weak turbulence.

Then we shall determine the periodic solutions in the space of Fourier
coefficients. We need to develop a numerical program: find initial guesses
for periodic points of the full Fourier modes truncation and then determine
the cycles by a multi-shooting Newton routine.

Next, we will reconstitute from cycles the unstable spatiotemporally pe-
riodic solutions of (1). Having determined the periodic solutions p in the
Fourier modes space, we will back to the configuration space and plot the
corresponding spatiotemporally periodic solutions.

If enough time remains, we will test the periodic orbit theory by eval-
uating Lyapunov exponents, escape rates, or another physically motivated
global average.
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Figure 3: Power spectrum ( υ = 0.121205, N = 8 modes truncation)
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Schedule

Oct 23, 2003
Find a suitable truncation length N and a value of υ, which corresponds to
the chaotic state.
Oct 30, 2003
Directly find the Lyapunov exponent of the system with the value of υ. De-
termine the poincare section the system and finish the density plot.
Nov 06, 2003
Study the symbolic dynamics of the system. Finish the program of finding
the periodic orbits with the single shooting method. Try to find the periodic
orbits with the lowest periods.
Nov 13, 2003
Find all the periodic orbits up to lengh 4.
Nov 20, 2003
If possible, revise the method to find longer periodic orbits (Multipoint
shooting method, Variational method)
Nov 27,2003
Calculate the lyapunov exponent of the system with the periodic orbits.
Find the energy and the momentum of the system.
Dec 04,2003
Finish the report of the project.
Dec 11,2003
If ok, turn in the the project.
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