Part 1V

Hamiltonian systems

273






Chapter 10

Smooth Hamiltonian systems

In this chapter we will discuss the difficult problem of analyzing a smooth Hamilto-
nian system. It is not proven for any nontrivial example that there exist a partition
of the non-wandering set, and there is no theory analog to the MSS theory which
explains the ordering of different bifurcations in these systems. We will show some
examples where we can understand bifurcations better than before by using the
results we have obtained on folding maps and on billiard systems. These examples
support the conjectures and speculations we present below concerning the smooth
Hamiltonian systems and we suggest future investigations of these problems.

In an area preserving smooth system, e.g. a Hamiltonian system, there is a
non-wandering set of stable and unstable orbits. The major difference from the
smooth dissipative system is that the stable orbits are not attracting neighboring
orbits but are surrounded by KAM tori [134]. The determinant of the Jacobian of a
dissipative system is less than 1 while for the area preserving map the determinant
is 1.

From a two-dimensional Hamiltonian we can find the Jacobian for the canonical
variables (7, 6) [134] (also called the monodromy matrix) and since the determinant

is 1 a period n orbit is hyperbolic (unstable) if

Trd| > 2 (10.1)
and the orbit is elliptic (stable) if

Trd| <2 (10.2)

If |TrJ| = 2 we have a bifurcation point. If the periodic orbit is elliptic then the

eigenvalues are

Aipg = e (10.3)

T
o = arccos (%) (10.4)
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and there is a bifurcation of a periodic orbit for all rational values of o /27 [148, 8, 94].
The typical bifurcation for o/2m = p/q is the creation of two period ¢ - n orbits in
the Poincaré map where one orbit is elliptic and one is hyperbolic and the orbits
have ¢ points in a chain surrounding each point of the period n orbit in the Poincaré
plane. If ¢ < 5 the orbits may have a different bifurcation depending on the system.
The general classification of bifurcations is given by Meyer [148] and is used to show

general scaling behavior of bifurcations [94].

This general theory does not predict neither the shape of the bifurcated orbit
in the configuration space nor how many times a given periodic orbit has the same

value of ¢ scanning a parameter line.

10.1 Hamiltonian Hénon maps

The once folding maps are for some parameter values area preserving maps and
could in principle be constructed as a Poincaré map of a Hamiltonian flow. The
Hénon map has det J = —b and is area preserving for |b| = 1 and also the Lozi map

is area preserving for |b| = 1.

In chapter 4 we found that some cusp bifurcations have to be exactly at b = 1
or b = —1 because of symmetries in the symbol strings describing the orbits. In
a 2"-dimensional symbolic parameter space the area preserving maps seem not to
correspond to a simple line or surface but to points characterized by a special
symmetry in the strings giving the values kg, K1, K10, Koo, Ko1, K11, - - .- Similarly in
the pruning front language it is not obvious which pruning fronts that give an
area preserving map, but the points (d,7) on the pruning front must have special

symmetries in the symbol strings.

That we at all can describe bifurcations e.g. the period 4 cusp {1011, 1000, 1001}
in the symbolic parameter space (19, Koo, o1, £11) indicates that the non-wandering
set at |b] = 1 can be described by the binary symbolic dynamics. However conjec-
ture 1 which gave a continuous partition curve of the Hénon map in the (z;, x441)
space assumed that the unstable manifold is not dense in (z;,x;,1) which is not
necessarily true for |o) = 1. When there is a bifurcation of a turning points the
partition curve may break up into not connected parts. A not connected partition
curve may be acceptable if it goes through the unstable manifold in a unique way,
but the partition of the area conserving Hénon map is not understood and further

investigations is needed.
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10.2 The (2%y?)'/* potential

One group of smooth Hamiltonians which seem to be promising candidates for
a good symbolic description is the two-dimensional potentials V(z,y) that have
a shape which can be compared with a billiard system. We can consider these
systems to be created by starting with a billiard potential which is 0 in the domain
accessible to the particle and +oo in the forbidden regions and then smoothen this
hard potential to a soft potential.

One example of this is the potential

Vir,y) = (a%7)° (10.5)

which was investigated by Dahlqvist and Russberg [57, 58] and other authors. In
the limit @ — 0 this potential becomes the hyperbola billiard (7.10) which we in
section 7.4 found was described by a slightly pruned trinary alphabet. Dahlqvist
and Russberg adiabatically followed periodic orbits starting at the hyperbola billiard
a = 0 and letting the parameter a increase slowly. They found that an unstable
periodic orbit in the hyperbola billiard smoothly changes and is hyperbolic when
a increases, and some orbits have a parameter interval (a window) where the orbit
is elliptic, and then the orbit disappears in a bifurcation and does not exist for
larger values of a. Other orbits bifurcate and disappear without becoming stable.
They described a number of bifurcations and found that the symbolic description of
the orbits merging into each other is similar. They conjectured [58] that all orbits
pruned during one bifurcation cascade, have a symbolic description consisting of
combinations of two symbolic strings.

Figure 10.1 shows Dahlqvist and Russbergs calculation of TrJ as a function of a
for some periodic orbits. The symbols they use are slightly different than those used
here. In figure 10.2 the same bifurcations are drawn with dashed lines indicating
hyperbolic orbits and solid lines indicating elliptic orbits. For clarity the parameter
axis is not at correct scale and the vertical axis is a sketch of a possible point in a
Poincaré map.

Dahlqvist and Russberg showed that the orbit S = 1(32)%34(23)%2 is stable in a

window that includes the parameter value a = 1, and therefore that an earlier con-

jecture claiming that the potential V' = x?y? is completely chaotic was wrong [57].
We are now interested in the symbolic description of the orbits bifurcating in
one bifurcation scenario. Dahlqvist and Russbergs conjecture is that all orbits in

the cascade in figure 10.2 a) are described by the symbol strings of the form

o 2t _143419232t1434t523 . .. (10.6)
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Figure 10.1: The TrJ as a function of a for some periodic orbits. From [58].

with ¢; either symbol 3 or no symbol, and that the orbits in figure 10.2 b) are
described by the strings

o 1sq(32)_14t(23) 5151 (32)"1415(23) s, . . . (10.7)

with s; either 2 or no symbol, and ¢; either symbol 3 or no symbol.

We now compare these bifurcations to the bifurcation families for the billiard
systems in chapter 9 and we find that the strings describing a billiard family of
orbits are the same strings that give the orbits bifurcating in the bifurcation trees
of the potential (10.5). The 4 disk system with r. = 2.104231..., figure 10.4, is
the bifurcation point of the orbits with symbolic description (10.6) and for r, =
2.0312... there is a singular bifurcation of the orbits (10.7), figures 9.5 and 9.6.

We now state a general conjecture of bifurcations of “billiard like” smooth po-
tentials.

Conjecture 2 In a billiard like smooth Hamiltonian system the orbits bifurcating
in one bifurcation cascade are the orbits of one family bifurcating at a singular

parameter r. for a corresponding billiard system.

We can also state an other interesting conjecture.

Conjecture 3 The symbolic description of the bifurcation family of the billiard sys-
tem predicts the minimum number of times a periodic orbit has to bifurcate with the
same complex eigenvalues A\ o = e for any one-dimensional parameter path from

the complete horseshoe repellor to the parameter value where the orbit disappear.
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Figure 10.2: A sketch of the bifurcation trees of the orbits in figure 10.1. Solid lines
are elliptic orbits while dashed lines are hyperbolic orbits.
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One major difficulty in these conjectures is that we have not precisely defined
a “billiard like” Hamiltonian and which billiard one associates with a specific po-
tential. A guiding line may be that a smooth slope is represented as a hard billiard
wall, convex and concave walls in the billiard are similarly shaped in the smooth

potential and the symmetries in configuration space have to be the same.

The potential (10.7) has four hills which we identify with the 4 disks in the 4-
disk system. We could have studied the hyperbola billiard (7.10) and changed the
hard hyperbola walls to find the bifurcations, but the bifurcation families would be
the same in these two billiards and the 4-disk system is more convenient. In some
cases the 4-disk system may give problems because it has the corner pruning which
is not present in the potential (10.7). The singular bifurcation of a billiard is when
the orbit is tangent to the disk. In the smooth potential there is no sharp wall to be
tangent to, but in Dahlqvist and Russbergs plot of orbits in the configuration space,
figure 10.3, we find that orbits that are going to bifurcate together, move closer such
that the curves corresponding to the tangent line in figure 10.4 straighten out and
move closer to each other. We then get a kind of tangent curve off a soft wall. This
kind of curve is what we have to identify as a singular orbit or a turning point in the
smooth potential. The orbit is tangential to a constant energy line but the position
is not given as simple as for the billiard system. To find this orbit in general is an

open question.

We can illustrate the conjectures 2 and 3 by the two examples in figure 10.2. In
figure 10.2 a) the orbit 2343 4323 becomes elliptic in a bifurcation where the orbit
243 4323 disappears and then the elliptic orbit changes once through each winding
numbers o and then the orbit disappears together with the unstable orbit 243 423.
The bifurcation where the elliptic orbit becomes hyperbolic is a symmetry breaking
bifurcation which in some Poincaré map is a bifurcation from a fixed point to a
period two orbit. In the 4-disk system all orbits in the family (10.6) bifurcate for
r. = 2.104231 ... where one line is tangent to a disk, figure 10.4.

The family ... 1s¢(32)%¢4t(23)%s; ... in the 4-disk system, figure 9.5, has one
more tangent line do the disks than the ...2¢y434¢,23 ... family. If the symmet-
ric orbit 12(32)%343(23)42 bifurcates in a similar way as the orbit 2343 4323 then
12(32)*343(23)*2 has to bifurcate two times to bifurcate together with the differ-

ent symmetry broken orbits. For these two examples we find that the number of

tangent lines of the billiard orbit at r. is equal to the number of stable windows of
the orbit. We may conjecture that this is a general feature such that the number of
tangent lines in the singular bifurcation gives the number of times the short orbit

has to go through a stable window.



10.2. THE (X?Y?)Y/4 POTENTIAL 281

.210. .1000.

a=0.1

a=0.5

Figure 10.3: The orbits 243 423 and 2343 4323 in potential (10.7) for two different

parameter values. From [58].

Figure 10.4: The orbit 243 423 in the 4 disk system for r. = 2.104231 .. ..
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In figure 10.2 a) we also find that orbits bifurcating in the stable window at
rational values of o/27 are described by the symbol string (10.6). The length of
the symbol string gives approximately the length of the orbit in the potential.

The non-periodic symbol strings from (10.6) and (10.7) may be orbits from the
accumulation point of n-tuplings of stable periodic orbits or from quasiperiodic
orbits created between the creation of periodic orbits at irrational values of /27

In the two examples shown here the shortest critical billiard orbit is tangent to
the wall 2 or 4 times. If the orbit is tangent only one time we expect the bifurcation
where the shortest elliptic orbit turns hyperbolic to be a period doubling bifurcation

instead of the symmetry breaking bifurcation.

10.3 Parabola shaped potentials

We will sketch here how an investigation of bifurcations in a smooth potential can

be interpreted in terms of symbolic dynamics of a corresponding billiard.

10.3.1 NELSON

Baranger and Davies [23] have carefully studied bifurcations in a potential

22\? a2

Vi(z,y) = (y — 3> + 55 (10.8)
which they called NELSON, and other more complicated potentials [1]. They stud-
ied the bifurcations of periodic orbits as a function of the energy for this potential.
Figure 10.5 shows equipotential contours of potential (10.8). This system without
any other parameters does not have a limit of a hard billiard system and Baranger
and Davies did not try to give a symbolic description of orbits but denoted them
different names according to how they look and how they bifurcate. The potential
is just chosen as one typical system of a parabolic shape and it is no reason to
expect that the increasing energy , E, should be a more special parameter path
than a change of a parameter in the potential as in the (22y?)'/® potential.

We will now try to give the periodic orbits as a symbolic description by replacing
the soft walls with hard billiard walls and find singular bifurcations which corre-
sponds to a bifurcation tree in the smooth potential. In addition to the billiard
bifurcation where the singular orbit is tangent to a dispersing wall we also find it
necessary to allow two consecutive bounces in a focusing wall to merge into one

bounce.
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Figure 10.5: Equipotential contours of the potential (10.8).

Baranger and Davies have chosen to plot the bifurcations in the (E,7) plane
where E is the energy and 7 is the length of the periodic orbit. Some of their
bifurcation diagrams are given in figure 10.6. In these diagrams orbits are denoted
by different letters and the plots of some of the periodic orbits in (z,y) are given
in figure 10.7.

We will define a billiard system with a symbolic dynamics and identify the orbits
in figure 10.7 with a symbol string. A “smiling billiard” is drawn in figure 10.8.
This is just a hand-drawn billiard which is not ergodic and the periodic orbit is also
just sketched by hand. A change of parameter is a change in the shape of the walls.
We define the symbols:

s =1 for a bounce off the dispersing wall,

s = 2 for a counterclockwise bounce off the focusing wall,

s = 3 for a clockwise bounce off the focusing wall and

s = 4 for a normal bounce off the focusing wall.

If the normal bounce s = 4 is on the symmetry line x = 0 we denote it 4'. We
assume this is a covering (and heavily pruned) alphabet. A number of periodic
orbits of the billiard are drawn in figures 10.8 and 10.9 together with the symbol
string S and the Baranger-Davies name for the corresponding smooth orbit.

In figure 10.6 we find that when the smooth orbit A; 133122 changes from elliptic
to hyperbolic then the orbit q2; 13131212 is born. In our smiling billiard there exists
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Figure 10.6: The bifurcation diagram (FE, 1) of the potential (10.8). From [23].
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Figure 10.7: Some periodic orbits in the potential (10.8). From [23].
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Figure 10.8: The symbols and some periodic orbits in the “smiling billiard”.




10.3. PARABOLA SHAPED POTENTIALS 287

viIico i1

131214 13312214 1313121214

\ , 1313121214 v
131331221214 1313133122121214

131331221214 13131312121214 @ v

13131212 1313312212 131313121212 1331212

NS N

Figure 10.9: Periodic orbits in the “smiling billiard”.

a singular bifurcation of these two orbits where the orbits have a line tangential to
the dispersive wall. This orbit is drawn in figure 10.8. The singular bifurcation
gives a change of symbols 33 <+ 313 or 22 <+ 212. The singular bifurcation family
of orbits have the symbolic description

1381312602136, 312852 .. (10.9)

with t; either 1 or no symbol. One other periodic orbit in this bifurcation family
is 1331212 which is drawn in figure figure 10.9 and which we identify with an orbit
bifurcating from q2; 13131212 in figure 10.6.

An other example of a tangent type of a singular orbit in the billiards is the

family
o 13136-1312t9214138,3125,214 . .. (10.10)

with ¢; either 1 or no symbol. In figure 10.9 the singular orbit is drawn and the
two orbits p2; 13312214 and p3; 1313121214 are drawn for a different parameter
values. The orbits p2 and p3 bifurcate together in the (E, 7) plane in figure 10.6.

It seems to be necessary to make an ad. hoc. assumption of a second bifurcation
in the smiling billiard. We allow one bounce in the focusing wall close to x = 0 to
split into two bounces. This bifurcation implies the change of symbols 3 <> 33 or

2 <> 22. This is not an bifurcation that are a singular bifurcation in a billiard but in
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the region below origin in the smooth potential a path changes very smoothly and
a billiard model may not be a good approximation here. An example of a family

from this bifurcation is
... 13r0125914137,125,14 . .. (10.11)

with r; either 3 or no symbol and with s; either 2 or no symbol. The symbol 4 can
turn into 2 or 3 if the combination of r; and s; gives an orbit that is not symmetric.
The two orbits p1; 131214 and p2; 13312214 in figure 10.6 are members of this fam-
ily. A periodic orbit may be member of both these two kind of singular bifurcations
and this gives the zig-zag structure in figure 10.6 b) which Baranger and Davies calls
a “duet of asymmetric librations”. The orbit 1331212 in figure 10.9 is a member of
the family (10.9) and of the family (10.11) and is the hard version of the smooth
orbit Baranger and Davies calls the “first rotational bridge”. Figure 10.10 a) shows
Baranger and Davies’ rotational bridge for different parameter values connecting
the orbits g2 and p2. Figure 10.10 b) is the billiard orbit 1331212 connecting the
orbits 13131212 and 13312214. The symbolic description of all bifurcation families

in this zig-zag structure is
o (13)EFLe312t2(12)F ..
o (13)R 3128, 2(12)F 14 L
o (13)R g 1250 (12)F
o (13)EFLrg12s0(12)F14 . .
with ¢; € {1,@}, S; € {2,@} and r; € {3,@}
It seems possible to describe all bifurcations in this system in terms of a symbolic

(10.12)

alphabet but more investigations of the bifurcations in this and similar systems
should be done to test this conjecture. The family of orbits obtained by splitting
one bounce in the focusing wall into two bounces is made ad. hoc. to fit the
description of the smooth system and are not directly motivated from the billiard
suggested as a hard model of the potential. From a symbolic dynamics point of
view is this a simple creation of symbol strings but from a physical point of view
we would like to have a better billiard model that also had this family of orbit as a

singular bifurcation.

10.3.2 Stgrmers problem

A physical problem which has a kind of parabola shaped potential is the motion of
a charged particle in a magnetic dipole field. Pioneering numerical investigations
of this problem was started by Carl Stgrmer 1903 [187] who probably was the first

to numerically calculate complicated chaotic orbits [122, 123].
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Figure 10.10: a) The “first rotational bridge” of the potential (10.8). From [23]. b)
The orbit 1331212 in the “smiling billiard”.
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Figure 10.11: The path of a particle in a magnetic dipole field. Drawing by P. Cvitanovi¢
after C. Stormer [187]
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The problem can be reduced to a two dimensional problem with the Hamiltonian

1

2
1 1 p
H = ~(p? 2 N 10.1
Q(pp+pz)+2<p r3> (10.13)

where p, ¢, 2z is the cyclical coordinates around the magnetic dipole and r is the
distance from the particle to the origin. For low energies the potential is near
integrable with KAM tory and it has a shape similar to a parabola but with one
path going into the dipole. For slightly larger values of the energy the problem
is a scattering problem with a structure comparable to the three-disk problem.
For large enough values of the energy the system is a complicated but not chaotic
scatter. This system is investigated in several works [31, 38, 62, 64, 123, 124] but
a careful study of the bifurcation structure has not been done. We expect that
we can describe the bifurcation diagrams for the Stgrmer problem by a symbolic
dynamics obtained from a corresponding billiard system as we could do for the
potential (10.8). Figure 10.11 shows one path of a scattered particle in the dipole
field.
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