
Cycle Searching through Relaxation

Jimmy Corno

School of Physics

Georgia Institute of Technology

Atlanta, GA 30332-0430, U.S.A

April 29, 2004

Abstract

A painfully simple method for finding cycles in time independent flows

is generalized and demonstrated with the Rossler system.

1 Introduction

Finding periodic orbits in a constant vector field by means of the Newton-

Raphson method is very reliable, but in high dimensional flows it becomes

impractical. A possible alternative is a relaxation method that relies on mini-

mization of a cost function. This method would essentially be an extension of

a multishooting method. Instead guessing of a group of points on a cycle, one

starts with an entire guess cycle.

For a periodic orbit, the loop velocity ṽ would be the same as the local flow

velocity at every point on the loop. It is therefore natural to define the cost

function by the difference between the two.

F 2 ≡
∮

L

dt(~v − ṽ)2 (1)

This is fairly straightforward, but the time integral is problematic, since it

depends on the parametrization of the loop. This problem can be solved by

defining the component of the loop velocity that is parallel to the local flow

velocity to also have the same magnitude as the local flow velocity. In other

words,

1



Figure 1: A guess loop L near an actual cycle p.

ṽ = ṽ‖ + ṽ⊥ = ~v + ṽ⊥ (2)

.

This has the added benefit of simplifying the integrand. Unfortunately, it

will introduce another problem, which I will address later.

With this new parametrization, the time integral becomes a line integral.

F 2 ≡
∮

L

dx̃

|ṽ|
(ṽ⊥)2 (3)

which simplifies even further.

F 2 =
∮

L

dx|v(sec θ − cos θ)| (4)

Here θ is the angle between the loop velocity and the flow velocity. The cost

function should now be easy to calculate. If the loop is broken into straight

segments ~l then we can use

cos θ =
~v ·~l
vl

(5)

2



Reduction of the cost function is extremely simple and requires very little

additional calculation. Each point on the loop is adjusted based on the integral

of ṽ⊥.

∆x̃i = γ

∫ xi

xi−1

dtṽ⊥ (6)

where x̃i is a guess point on L and γ is a damping constant to reduce

overshooting. In my program γ is adjusted based on local contribution to the

cost function so that especially bad regions of the loop converge more quickly.

2 Implementation

Although the method appears to work well, its limitations quickly became ap-

parent even in two dimensions. Most importantly, it fails if, at any point in

the loop, the loop velocity is perpendicular or antiparallel to the flow veloc-

ity (the problem I mentioned earlier), which means time either stops or moves

backwards. I can’t see any way to overcome this limitation without completely

reworking the method, so the initial guess must at least be vaguely in the di-

rection of the flow at all points.

My relaxation was too simple even for the two dimensional case because it

wasted a lot of information. Instead of moving the endpoint of each loop seg-

ment, it is much better to move both ends of the segment at the same time.

Deformations in the loop propagate through much more quickly this way, re-

sulting in nearly an order of magnitude fewer calculations.

In three dimensions the biggest problem was kinking and bunching of the

loop. If allowed to move freely, the points that define the loop will move together

in some areas, and one will inevitably move so that the loop turns back on

itself. At this point, if the program is simply looking for a decrease in the

cost function, it runs out of control. This problem originally led me to believe

that the method was unworkable, as every trajectory mysteriously went wrong

no matter how close to an actual cycle. But the fix was remarkably simple.

3



Whenever the length ratio of neighboring sections grew beyond a certain point,

the middle point was replaced with the average of the two outer points. The

same method was used to remove kinks, which were located by their negative

contributions to the cost function.

The program won’t work without this correction, but there is probably a

much better way to implement it than this. The curvature of the line is removed

at this point, which could probably be avoided by taking into account points

beyond the immediate neighbors. It’s also difficult to find a compromise between

speed and effectiveness for the bunching threshold; I had to rely on trial and

error. Adjustments based on local curvature of the vector field would be a big

help.

3 Results

I was able to find three dimensional results, but only in the simplest case I could

find (most of my time was spent working on that bunching problem). I found

a stable periodic orbit for the Rossler system, roughed it up, and then let the

program track it back down.

ẋ = −y − z

ẏ = x + ay

ż = b + z(x + c) (7)

I used a = b = 0.2 and c = 2.5 to find a period 1 cycle (only one loop). The

program was much more effective than I expected it to be.

4



Figure 2: X-Y projection of a Rossler system cycle.

This took approximately 10,000 iterations to achieve (a little less than one

minute) with 100 loop points. The X-Z and Y-Z projections are similarly accu-

rate.

4 Conclusions

I am fairly confident that the program would work very well on more complicated

systems such as variations of the Rossler system. Given another day or so I

could probably fit higher period Rossler flows (there is a period two cycle for

c = 3.5 and a period three for c = 6.7) without any major changes to the

program. However, for anything more complicated would be helped by some

modifications. I’ve already mentioned the improvement for the unbunching and

unkinking. I believe it would also be useful to reevaluate the line integration. I

simply considered the loop to be constructed of straight lines joining the guess

points, adn I integrated along those lines. A more respectable method would

5



take the curvature of the loop into account and get a more accurate assessment

of the cost function. And though I cannot think of any better method, I believe

there must be a better way to approach the relaxation. The integration of ṽ⊥

seems much too simplistic, and it may be beneficial to take into account more

neighboring points in calculating the loop deformation.

6


