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Abstract

This paper discusses the implementation of the OGY method of control. A double pendulum is

simulated, then a fixed point of the system is found and stabilized, resulting in controlled periodic

motion.
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I. INTRODUCTION

The goal of this project was to take the chaotic motion of a double pendulum and control

it, resulting in periodic motion. This system has points which are periodic, but they are

unstable, which prevents sustained periodic motion. To allow this motion, the periodic orbit

needs to be stabilized.

A method for stabilizing unstable period orbits (UPOs) is the OGY method, named for

Ott, Gebogi and Yorke [3]. This method uses a small perturbation in a control parameter

to move a trajectory to the UPO, if the trajectory is already sufficiently close.

This project closely followed the principles described in ref. [2]. However, ref. [2] used

an experimental double pendulum, and found values experimentally. This paper discusses a

simulated double pendulum, and the data needed for control are found numerically.

In II, the OGY method is discussed in more detail, and the form the control parameter

should take is derived. In III, double pendulum is discussed and the equations of motion

are derived. In IV, the method for finding a fixed point of the system is described. In V,

the methods for determining the effect of applying the control parameter are described. In

VI, the methods for determining the unstable directions of a fixed point are described. In

VII, the above sections are combined to implement a control algorithm. In VIII, the results

of this control algorithm are discussed.

II. OGY METHOD

As described in ref. [3], the OGY Method is an approach to controlling a chaotic system

that involves stabilizing a particular UPO. When a trajectory is near the UPO, the OGY

method uses a perturbation to move the trajectory off the unstable manifold of the UPO

and onto the stable manifold.

Very close to the UPO, one can consider a hyper-sphere around the UPO. The dynamics of

the system will map this hyper-sphere into a hyper-ellipsoid. The axes of the hyper-ellipsoid
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which are larger than the radius of the original hyper-sphere are the unstable directions,

while those which are smaller are the stable directions. So in the immediate neighborhood

of the UPO, trajectories will either be pushed away or pulled into the UPO. The goal of

the OGY method is to disturb the trajectory such that it only has components in the stable

directions.

This perturbation is applied by adjusting a control parameter. Changing this parameter

will have the effect of shifting the UPO. The goal is to shift the UPO such that its unstable

direction will push the trajectory on to a stable direction of the unshifted UPO.

In the neighborhood of the UPO, the next point of the system’s Poincaré section can be

approximated using the Jacobian [4], J , evaluated at the UPO.

Xn+1 −XF (n+1)(pn) = J · (Xn −XFn(pn)), (1)

where XFn(pn) is the nth point along the UPO shifted by control parameter pn and pn =

p0 + (δp)n. The shifting of the UPO can be determined by a linear approximation

XFn(pn)−XFn(p0) = (δp)ngn, (2)

where gn = dXFn/dpn.

Combining these two equations results in

Xn+1 −XF (n+1)(p0)− (δp)ngn+1 = J ∗ (Xn −XFn(p0)− (δp)ngn). (3)

Then solving for (δp)n gives

(δp)n =
−(Xn+1 −XF (n+1)(p0)) + J · (Xn −XFn(p0))

J ∗ gn − gn+1

(4)

This equation involves Xn+1, which is a future point. The goal of this control method is

to reduce the projection of Xn along the unstable direction(s). So [2]

(Xn+1 −XF (n+1)(p0)) · fu = (1− ρ)(Xn −XFn(p0)) · fu, (5)

where fu is a unit vector in the unstable direction (or in this project, the dominant un-

stable direction). Dotting (4) by fu and substituting (5) gives the equation for the control

perturbation,

(δp)n =
(−(1− ρ)(Xn −XF (n)(p0)) + J · (Xn −XFn(p0))) · fu

(J · gn − gn+1) · fu

(6)
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III. DOUBLE PENDULUM

The system for which the OGY method was implemented was a driven double pendulum.

The double pendulum is simply one pendulum fixed to the end of another pendulum. For

a driven double pendulum, a sinusoidal torque is added to the inner pendulum. In this

case, the inner pendulum is modeled as a massless rod of length l1 with a mass, m1, on the

end. The outer pendulum is attached to the mass of the inner pendulum and is similarly a

massless rod of length l2 and a mass of m2.

The result is a system with 5 dimensions: θ1 and pθ1, the angle and angular momentum

for the inner pendulum, θ2 and pθ2, the angle and angular momentum for the outer pendulum

and φ, the drive phase.

The non-driven double pendulum is a Hamiltonian system, with a Hamiltonian,

H =
1

1− m2

M
cos2 ∆θ

(
p2

θ1

2Ml21
+

p2
θ2

2m2l21
− pθ1pθ2 cos ∆θ

Ml1l2

)

−Mgl1 cos θ1 −m2gl2 cos θ2, (7)

where M = m1 + m2 and ∆θ = θ1 − θ2.

The equations of motion for the driven double pendulum are those of the non-driven

double pendulum with an additional term for the driving torque and terms for dissipation.

Then δp is added to the inner pendulum’s momentum equation of motion, meaning that

the control parameter is small addition to the driving torque. Using c = 1
1−m2

M
cos2(∆θ)

, the

equations of motion are

θ̇1 = c

(
pθ1

Ml21
− pθ2 cos ∆θ

Ml1l2

)

θ̇2 = c

(
pθ2

m2l22
− pθ1 cos ∆θ

Ml1l2

)

ṗθ1 =
∂c

∂θ1

(
p2

θ1

2Ml21
+

p2
θ2

2m2l21
− pθ1pθ2 cos ∆θ

Ml1l2

)

+c

(
pθ1pθ2 sin ∆θ

Ml1l2

)
−Mgl1 sin θ1 − pθ1/Q

+A cos φ + δp

ṗθ2 =
∂c

∂θ2

(
p2

θ1

2Ml21
+

p2
θ2

2m2l21
− pθ1pθ2 cos ∆θ

Ml1l2

)

−c

(
pθ1pθ2 sin ∆θ

Ml1l2

)
−m2gl2 sin θ2 − pθ2/Q

φ̇ = ω. (8)
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FIG. 1: Stroboscopic Poincaré section for double pendulum, projected onto θ1 and ptheta1.

It is convenient to take φ = 0 as the condition for the Poincaré section shown in Fig. 1.

This makes a stroboscopic Poincaré section, with the period of the driving torque.

IV. FINDING A FIXED POINT

In order to implement the OGY method, the first important step is to find a UPO to

stabilize. For this case, a UPO of period 1 was wanted. Finding a fixed point is based on

finding x such that

fT(x)− x = 0 (9)

with the period T being the period of the driving torque. Finding x in this case is done using

the Newton-Raphson method as described in ref. [1]. This method requires the Jacobian J

which can be found by integrating,

dJ/dt = A · J, J(x, 0) = 1, (10)

where Aij = ∂ẋi

∂xj
.

With the Newton-Raphson method, for an initial guess x, a correction can be found by

solving the matrix equation


1− J v(x)

a 0





δx

δT


 =


f(x)− x

0


 . (11)

That correction is then applied to the guess, to become the new guess and so on. For a good

enough initial guess, this should converge to a fixed point of the system.
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FIG. 2: This is the periodic orbit to be stabilized. This figure shows θ1 and θ2 over the course of

one period.

In this particular system, applying the full correction led to overshooting which prevented

the method from converging. The solution was to apply half the correction, x′ = x + δx/2

instead of x′ = x + δx, basically taking smaller steps.

The fixed point found by this method, and used from here on, corresponds to fairly

traditional pendulum motion for the inner pendulum, though not for the outer pendulum

as in Fig. 2.

V. EFFECT OF CONTROL PARAMETER

The previous step allows one to find both a fixed point to stabilize, and the Jacobian at

that fixed point, two of the four missing pieces of information. Next is the vector g which

describes how the system is affected by the control parameter.

There seem to be two ways to consider the effect of the control parameter. First, as

described earlier, the control parameter can be considered to move the fixed point. In that

case, finding the vector g is just a modification of the previous step. Basically apply a

constant control parameter, and find the fixed point using the Newton-Ralphson method.

For a small control parameter, the shifted fixed point should be near the original. After

finding the shifts for several values of the control parameter, the vector g can be found by

a linear fit with the data.

A similar concept treats g as a vector describing how the trajectory is affected by the

control parameter [2]. Then the same principle applies, as the parameter is picked to shift
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the trajectory onto the stable manifold. From this point of view, finding g is based on

integrating the system from the fixed point with different values for the control parameter,

and then fitting them.

For this project, initially the 1st approach was taken. But when the control parameter

was changed several times per period and it became necessary to have a g vector for several

intermediate points, it was easier to calculate the variation of the trajectory.

The equation for the control parameter under the 2nd version is very similar [2],

(δp)n =
((1− ρ)(Xn −XF (n))− J · (Xn −XFn)) · fu

−gn · fu

. (12)

VI. UNSTABLE DIRECTIONS

The last remaining piece is to find the unstable directions of the fixed point, or at least

the most unstable direction. These directions can be found from looking at the Jacobian.

In some cases, the unstable directions correspond to the eigenvectors of the Jacobian with

eigenvalues greater than one. But this isn’t true for this particular case.

To get the leading unstable direction, one can take a unit vector, and apply the Jacobian

of the fixed point to it [4]. The resulting vector will stretch along the unstable direction.

Then the vector is renormalized, which makes the result like rotation towards the unstable

direction. When this is done repeatedly, the result is a good approximation to the greatest

unstable direction.

Alternately, a singular value decomposition can be done to the Jacobian [2]. The column

vectors of U that correspond to singular values greater than 1 are unstable direction, and

the greatest unstable direction is that with the highest singular value.

Both of these methods were tried, but the singular value method was easier to use when

many points were taken.

VII. CONTROL

Rather than attempt to control the system with one control signal per period, the period

was divided into intermediate sections. Specifically, the proper control signal was recalcu-

lated every 20th of a period [2]. At each interval, the control signal was chosen to reduce

the unstable component of the next point in the trajectory.
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To accomplish this, the system was integrated through one period, starting from the fixed

point. At each interval, all of the required data was collected. The intermediate points and

Jacobians were determined simply by integrating to that point in time.

The g vectors were determined by rerunning the integration of each interval with different

control parameter settings. This integration was started from each intermediate point with

two different control settings, and the difference was taken and scaled. This gave a rough

approximation to the derivative of the flow with respect to the control parameter at each

intermediate point.

The unstable direction was determined using the singular value decomposition technique

previously discussed. This method was applied to each intermediate Jacobian to get the

intermediate unstable directions.

With this data available, the control parameter could be updated 20 times per period.

Correcting the parameter more often helps reduce the effect of the inaccuracies of this process

by not allowing these errors to accumulate through a full period.

VIII. RESULTS

The control scheme described was successfully implemented with good results. For variety

of initial conditions, the control algorithm managed to capture the trajectory and hold it

near the chosen fixed point. When the control was switched off, the system resumed chaotic

behavior as can be seen in Fig. 3.

One major issue with this type of control is that the trajectory must pass close to the

fixed point to be stabilized before the control algorithm can capture it. All of the data used

to calculate the control parameter is based on local linear approximations which don’t hold

outside the immediate neighborhood of the fixed point in question. So unless the system is

started at the fixed point, there is a delay before the trajectory passes close enough to be

captured.

Another interesting effect was that for some parameters, the system settled into 2 or even

3-cycles around the intended fixed point. It’s unclear if these are real UPOs of length 2 or

3 that were stabilized instead of the fixed point, or if this is an artificial side effect of the

control parameter shifting the system around.
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(a)

(b)

(c)

(d)

FIG. 3: a)θ1, b)pθ1,a)θ2, and d)pθ2. Control ends on the 800th cycle
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