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A method for constructing Poincaré return maps for strongly contracting flows by coding the
arc-length along the unstable manifold in a Poincaré section is proposed. This method is used to
find return maps for the Rössler flow. The return map is used to partition the phase space using
the itinerary of the critical point. Inadmissible itineraries are pruned using kneading theory, and
admissible prime cycles up to length 9 are tabulated. The effects of finite computational accuracy
and errors in curve-fitting are treated as white noise to compute the limit of phase space partitioning.
A Markov diagram is constructed for generating the admissible itineraries till this limit. The cycles
of the Rössler flow are found using inverse iteration methods and corresponding cycle-stability values
are tabulated. Finally the Lyapunov exponent is computed using periodic orbit theory and verified
by numerical integration of the flow.
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I. INTRODUCTION

Analyzing the dynamics of a high dimensional flow in
the corresponding phase space is a non-trivial task. Con-
ventionally, instead of analyzing the continuous flow, we
observe the dynamics induced by the flow on a particu-
lar section of the phase space. The chosen section is the
called the Poincaré section and helps in visualizing the
problem. Typically a discrete mapping is derived from
the successive intersections of the flow with the section
to produce the return map.

This project investigates how to construct a good
Poincaré return map for a 3-dimensional Rössler flow,
with an eye on how the problem is solved for higher-
dimensional systems.

The concept of a Poincaré section is introduced in
sect. II. The Rössler flow and typical Poincaré sections
are described in sect. III. In sect. IV we show that for
the Rössler flow the Poincaré return maps are well ap-
proximated by 1-d mappings. Our method for computing
return maps based on unstable manifold is explained, to-
gether with details of numerical implementation. Details
of computation of admissible itineraries using symbolic
dynamics and kneading theory is presented in sect. V.
The Markov diagram and the transition matrix for the
map is derived. In sect. VII we search for the solutions
(x, T), x ∈ Rd, T ∈ R of the periodic orbit condition

f t+T(x) = f t(x) , T > 0 (1)

for the Rössler flow using the information from the sym-
bolic dynamics machinery developed earlier. Periodic
orbits are listed with their stabilities and return times.
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Finally these orbits are used to compute the Lyapunov
exponent using Periodic Orbit Theory.

Some of the background text is taken verbatim from
ref. [1]. This report and the programs used in its prepa-
ration are available on ChaosBook.org [2].

II. POINCARÉ SECTIONS

Successive trajectory intersections with a Poincaré sec-
tion, a (d − 1)-dimensional hypersurface or a set of
hypersurfaces P embedded in the d-dimensional phase
space M, define the Poincaré return map P (x), a d-
dimensional map of form

x′ = P (x) = fτ(x)(x) , x′, x ∈ P . (2)

Here the first return function τ(x) is the time of flight to
the next section for a trajectory starting at x. The choice
of the section hypersurface P is altogether arbitrary. The
hypersurface can be specified implicitly through a func-
tion U(x) that is zero whenever a point x is on the
Poincaré section,

x ∈ P iff U(x) . (3)

The gradient of U(x) evaluated at x ∈ P serves a two-
fold function. First, the flow should pierce the hypersur-
face P, rather than being tangent to it. A nearby point
x + δx is in the hypersurface P if U(x + δx) = 0. A
nearby point on the trajectory is given by δx = vδt, so a
traversal is ensured by the transversality condition

(v · ∂U) =
d∑
j=1

vj(x)∂jU(x) 6= 0 , x ∈ P . (4)

Second, the gradient ∂jU defines the orientation of the
hypersurface P. The flow is oriented as well, and a pe-
riodic orbit can pierce P twice, traversing it in either
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FIG. 1: The strange attractor for the Rössler flow (6).

direction. Hence the definition of Poincaré return map
P (x) needs to be supplemented with the orientation con-
dition

d∑
j=1

vj(xn)∂jU(xn) > 0 . (5)

In this way the continuous time t flow f t(x) is reduced
to a discrete time n sequence xn of successive oriented
trajectory traversals of P. However, visualization of high
dimensional maps can a challenge. The problem can be
simplified to a lower dimensional map if the system is
dissipative and the flow strongly contracting.

III. RÖSSLER FLOW

The Rössler flow(6) is given by the following set of
differential equations:

ẋ = −y − z
ẏ = x+ ay

ż = b+ z(x− c) . (6)

In all calculations that follow we shall use Rössler’s pa-
rameter values a = b = 0.2, c = 5.7. Consider Fig. 1, a
typical trajectory of the 3-dimensional Rössler flow (6).

It wraps around the z axis, so a good choice for a
Poincaré section is a plane passing through the z axis.

A sequence of such Poincaré sections placed radially
at increasing angles with respect to the x axis, Fig. 2,
illustrates the stretch and fold action of the Rössler flow.
To orient yourself, compare this with Fig. 1, and note the
different z-axis scales. Figure 2 assembles these sections
into a series of snapshots of the flow.

Once a particular Poincaré section is picked, we can
also exhibit the return map (2), as in Fig. 2. Cases (g)
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FIG. 2: (a)-(d) Poincaré sections of the Rössler flow at
0◦, 45◦, 90◦ and 135◦ with respect to the x-axis. (e)-(h) Re-
turn maps for the Rn → Rn+1 radial distance for the Poincaré
sections of (a)-(d).

and (h) are examples of nice 1-to-1 return maps. How-
ever, (e) and (f) appear multimodal and non-invertible,
artifacts of projection of the 2-d return map (Rn, zn) →
(Rn+1, zn+1) onto a 1-d subspace Rn → Rn+1.

The above examples illustrate why a Poincaré section
gives a more informative snapshot of the flow than the full
flow portrait. For example, while the full flow portrait of
the Rössler flow Fig. 1 gives us no sense of the thickness
of the attractor, we see clearly in the Fig. 2 Poincaré
sections that even though the return map is 2-d → 2-
d, the flow contraction is so strong that for all practical
purposes it renders the return map 1-dimensional.

IV. RETURN MAP

For strongly contracting flows like Rössler, an geomet-
rically intrinsic way to get a 1-dimensional map which
encodes the dynamics of the system is to follow the un-
stable manifold. The unstable manifold is an invariant
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of the flow and serves as a natural reference frame for
the dynamics. An important feature of the stretch and
fold dynamics of chaotic flows are the “turnback” points,
that is, points where the unstable manifold changes di-
rection due to folding. We shall refer to the part of the
manifold from the fixed point to the first turnback point
as the ‘primary segment’, and measure the position of
all other point along the flow with respect to it. We de-
note by s the Euclidean arc-length of the manifold mea-
sured from the fixed point, and by st the arc-length corre-
sponding to first, “primary,” turnback. For each point on
the manifold beyond st, the closest point on the primary
segment is found (either using a Euclidean metric, or -
better, but more laborious - by the intersection of the
primary segment and the stable manifold fold contain-
ing the point), and the corresponding s value is assigned
to it. Thus we have an encoding of the unstable mani-
fold based on arc-length along the curve measured from
the fixed point. Now we can convert the d-dimensional
Poincaré section mapping (2) of x′ = P (x) into an ap-
proximately 1-dimensional one based on the arc-length,
that is, s1 → s2. The accuracy of the method in faith-
fully describing the flow depends on the thickness of the
attractor which, in turn, is controlled by the least con-
tracting eigenvalue. If the contraction in stable directions
is not very strong, knowledge of sk gives a rough approx-
imation to the position of actual cycle point k in the
d-dimensional space. Nevertheless, this might be good
enough to get good starting guesses for Newton routines,
and correctly determine most of the admissible cycles.
The numerical procedure adopted to accomplish this task
is described next.

A. Numerical implementation

The inputs required by our numerical routine are the
equations of the flow and the coordinates of a hyperbolic
equilibrium whose unstable manifold is going to be used
to generate the Poincaré return map. The Jacobian of
the flow is computed using the “symbolic mathematics”
commands in MATLAB and is evaluated at the equi-
librium point. The eigenvalues and eigenvectors of the
Jacobian are next computed using MATLAB’s built-in
“eig” function. Among the unstable eigenvectors, de-
note the complex one with largest real part by

−→
V 1. The

Poincaré section is chosen as the subspace orthogonal
to
−→
V 2 = Re (

−→
V 1). Sufficiently close to equilibrium the

complex eigenvector rotates the flow through the sec-
tion, guaranteeing that the section is transverse. For
general sections, not anchored on an equilibrium point,
the section has to be chosen by trial and error, until the
transversality is ensured.

An initial point
−→
X 0 is chosen as:

−→
X 0 =

−→
X q + ε

−→
V 2 , (7)

where
−→
X q denotes the equilibrium point and ε is a small

number. The flow is integrated using this as an initial
condition to find two successive intersections with the
Poincaré section,

−→
XA and

−→
XB (vectors on the Poincaré

section are identified by zero dot product with
−→
V 2). N

initial points are distributed along the vector joining
−→
XA

and
−→
XB and are integrated along the flow to find ’int’

number of its intersections with the the Poincaré section.
This process ensures that we are iterating the projection
of a small part of the unstable manifold on our section
and hence we get a continuous curve.

The next problem is to find the turnback point. To ac-
complish this, we use the fact that at the turnback point,
the radius of curvature is going to be smaller than that
at other points on the manifold. Let

−→
A ,
−→
B and

−→
C be

three consecutive nearby points along the unstable mani-
fold. Any three points (not on a line) define a plane. Let
−→
O be the center of the circle that passes through these
points. Then we can express

−→
OA as a linear combination

of
−−→
AB =

−→
A −

−→
B and

−−→
BC =

−→
B −

−→
C :

−→
O =

−→
A + α

−−→
AB + β

−−→
BC .

We solve for the coefficients α and β using the constraint
that the perpendicular bisectors of

−−→
AB and

−−→
BC intersect

at
−→
O giving(

−→
O −

−→
A +

−→
B

2

)
· (
−−→
AB) = 0

⇒ α(
−−→
AB)2 + β(

−−→
AB) · (

−−→
BC) = −1

2
(
−−→
AB)2 . (8)

A similar equation can be obtained from the same condi-
tion applied to

−−→
BC. These two equations can be solved

for the scalar coefficients thus allowing computation of
the radius of curvature.

If the curvature is too sharp or the number of points
around the bend is small, we might be computing a wrong
value of the radius. Figure IV A shows two cases in which
we might compute wrong radius of curvature. However
the information that there was a turnback near the mid-
dle point can still be obtained using the following orien-
tation conditions:

turnback if (
−→
OA) · (

−−→
OB) < (

−→
OA) · (

−−→
OC)

or (
−−→
AB) · (

−→
AC) < 0 (9)

Once the first turnback is obtained, each point on the
manifold until turnback is assigned its corresponding arc-
length value computed as sum of Euclidean distances
along the curve. The second turnback can be obtained
as a mapping of the first or by again computing radii.
For each point, Y , on the secondary part of the unstable
manifold nearest neighbor on the primary branch, X, is
computed and Y inherits the arc-length value of X. Now
we can obtain the return map based on these arc-length
values as we know future iterates of every point.
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FIG. 3: The two possible ways in which wrong radius of
curvature might be computed.
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FIG. 4: The Poincaré section for the Rössler flow (6), ob-
tained by taking as the section the plane through the inner
equilibrium (x−, y−, z−) in (10), with normal vector V2 given
in (12). The figure axes are projections on the orthonormal
vectors P1 and P2 in the plane.

The method described above is used to find the
Póincare section and return map for the Rössler flow (6).
The flow has 2 equilibrium points given by

(x−, y−, z−) = (0.0070,−0.0351, 0.0351)

(x+, y+, z+) = (5.6929,−28.464, 28.464) . (10)

Trajectories that start out on the far side of the stable
manifold of the outer equilibrium, (x+, y+, z+) escape,
while those that start on the inner side spiral towards the
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FIG. 5: The Poincaré return map for the Rössler flow (6), ob-
tained by fixing the Poincaré section to be the plane through
the inner equilibrium point, with normal vector V2.

inner equilibrium point. Thus the stable manifold of the
outer equilibrium serves as the basin boundary. Consider
now the eigenvalues of the inner equilibrium point, “-”

(µ−1 , µ
−
2 ± iν

−
2 ) = (−5.7, 0.097± 0.99) (11)

One of the eigenvectors corresponding to the complex
eigenvalues is

V2 = (0.70728,−0.072725, 0.0041683) . (12)

We define a Poincaré section by the plane passing
through (x−, y−, z−) and normal to V2. Figure 4 shows
the section of the flow with the axes being two orthonor-
mal vectors in the plane given by

P1 = (−0.1023757,−0.994738, 0.0038795)
P2 = (−0.005434, 0.0044592, 0.9999752) . (13)

The plot exhibits the strong contraction along the z di-
rection, and surprisingly little nonlinearity between the
equilibrium point at p1 = 0, where linear approxima-
tion is valid, and the slope is given exactly by .... , and
p1 = 10, where the unstable manifold is far in the non-
linear part of the dynamics as it can possibly be. The
corresponding Poincaré return map is plotted in Fig. 5.

V. KNEADING SEQUENCE

The unimodal return map allows us to use symbolic
dynamics to partition the phase space by assigning la-
bels to neighborhoods of cycle points [1]. Finite Markov
graphs or finite automata for unimodal maps are dis-
cussed in ref. [3]. They belong to the category of regular
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languages. A good hands-on introduction to symbolic
dynamics is given in ref. [4].

The phase space is initially partitioned in two sections
by points to the right of the critical point (label “1”) and
points on the left (label “0”). In the second iteration,
each of these partitions are refined to get four partitions,
“00”,“01”,“11” and “10”, based on two step itineraries
of points and so on. These time-based itineraries,sn, can
be converted to their corresponding spatial ordering, γ
using the kneading rule, K, given by

wn+1 = wn , sn+1 = 0
= 1− wn , sn+1 = 1 .

The cause of this reversal is the folding nature of the map
to the right of the critical point. Thus given any itinerary
of binary values, S, we can specify the topological coor-
dinate by evaluating γ = K(S).

A. Admissible itineraries

At the nth level, we can have a maximum of 2n parti-
tions, but not all of them will be allowed by the dynamics.
Kneading theory for unimodal maps enables us to deter-
mine the admissible itineraries by from the itinerary Sc
of the critical point. The critical f(xc) is the rightmost
point visited by the dynamics, with the corresponding
kneading value κ = K(Sc). As we are interested in the
non-wandering set of points, cycles which visit a topo-
logical coordinate larger than κ cannot belong to the
non-wandering set for that map and are pruned. In the
Rössler example investigated here, the itinerary of the
critical point and its kneading value are:

Sc = 0.100101111 · · · ,
κ = 0.111001010 · · · . (14)

Note that due to finite precision in computation the
itinerary of the critical point is always going to be a cycle.
In this case, we found it to be a 13-cycle. To find the
topological coordinate of a p-cycle, we need to account
for the fact that it is an infinite string. Thus if the p cycle
itinerary repeating block has value Dp, its coordinate is
given by:

γp =
Dp

1− 2−p

Table I lists all admissible prime cycles of topological
length n ≤ 9 allowed by the kneading sequence (14). In
contrast to the tent map, the dike map can have stable
cycles, and its dynamics is closer to smooth unimodal
maps for whom chaotic parameter regions are densely
interspersed with stability windows. The itinerary of the
critical point is preperiodic to a stable cycle if it falls into
the flat-top region of the dike map.
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FIG. 6: The itinerary of the critical point, Rössler return
map Fig. 5.
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FIG. 7: The dike map of height κ computed in (14), with the
same critical point itinerary as the Rössler return map Fig. 5.

B. Markov diagrams

The Markov diagram representation of a topological
dynamics allows one to compactly generate all admissi-
ble itineraries. The compactness of the representation
arises from the fact that it encodes the finite memory
self-similarities in the admissible symbol-sequences trees
for the given dynamical system. To construct a Markov
diagram, we need to specify a grammar for the symbolic
representation of dynamics. Here we construct the gram-
mar from the unimodal maps pruning rule: no infinite
symbolic itinerary may have a sub-block whose spatial
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TABLE I: Admissible cycles for the Rössler flow of length
n ≤ 9.

Length Cycle Length Cycle Length Cycle

1 0 2 01 3 001

1 011

4 0111 5 01011 6 001011

01111 010111

011111

7 0101011 8 00100101 9 001001011

0101111 00100111 001001101

0110111 00101101 001001111

0111111 00101111 001011011

01010111 010110111

01011011 011011111

01011111 011101111

01101111 011111111

01111111

topological coordinate is greater than κc. For practical
implementation however, we truncate κc to a finite num-
ber of digits (corresponding to finite memory) to gener-
ate a graph with finite number of nodes. An inadmissible
symbol sequence of n symbols corresponds to the starting
point of a partition at the nth level that is to the right
of κ. Not all points in the previous interval are admissi-
ble, but the finite calculation precision limits evaluation
of further pruning rules.

At 6th step, the kneading sequence blocks prunes
blocks 100111 , 100110 , 100010 , 100011 , 100001
and 100000 . These can be grouped under two pruning
rules as the first two inadmissible blocks have same digits
in first five places and the next four inadmissible blocks
have same digits in first four places. All of the above
result in two inadmissible blocks: 1000 and 10011 .
Construction of the Markov diagram is shown in Fig. 8.
Draw the pruning tree as a section of a binary tree with
0 and 1 branches and label each internal node by the se-
quence of 0’s and 1’s connecting it to the root of the tree.
These are the potentially dangerous nodes - beginning of
blocks that might end up pruned. Add the side branches
to those nodes. As we continue down such branches we
have to check whether the pruning imposes constraints
on the sequences so generated. We do this by knocking
off the leading symbols and checking whether the short-
ened strings coincide with any of the internal pruning tree
nodes: 11→1; 101→01→1; 10010→0010→010→10. The
trees originating in identified nodes are self-similar. Now
connect the side branches to the corresponding nodes.
Nodes “.” and “0” are transient nodes where the dynam-
ics does not return. Hence they are removed to get the
final Markov graph.
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FIG. 8: A Markov diagram for the Rössler flow with the
kneading value truncated to 6 digits. The pruning blocks
in this case are 1000 and 10011 . (a) Starting with the
start node “.” delineate all pruning blocks on the binary tree.
A solid line stands for “1” and a dashed line stands for “0”.
Ends of inadmissible strings are marked with ×. Label all
internal nodes by reading the symbols connecting “.” and the
node. (b) Indicate all admissible starting blocks by arrows.
(c) Drop recursively the leading symbols in the admissible
blocks; if the truncated string corresponds to an internal node
in (a), connect them. (d) Delete the transient nodes.

C. Topological entropy

From the Markov diagram, one can easily get the corre-
sponding transition matrix. Since there are four distinct
nodes in the Markov graph, the transition matrix is a
4×4 matrix given by: 

1 1 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 (15)

The matrix is a Perron matrix as it should be because the
Markov graph is fully connected. The trace of the tran-
sition matrix multiplied “n” times, An, gives the number
of possible n-cycle points, Nn. The relation between Nn
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and the topological entropy, htop is given by:

Nn = eh·n (16)

As the transition matrix is a Perron matrix, we know it
has a positive eigenvalue which is strictly larger than the
other eigenvalues. This property allows us to compute
the topological entropy as:

htop = ln(λmax) = ln(1.7221) = 0.5435 (17)

From the Markov graph, we can also create the corre-
sponding topological zeta function by considering prod-
ucts of non self-intersecting loops as described in ref. [1]
to get:

1
ζtop

= 1−t1−t01−t001+t1t001 = 1−z−z2−z3+z4 (18)

The topological entropy obtained from the leading zero
of this polynomial also matches with the previously com-
puted value.

VI. THE BEST POSSIBLE PARTITION

In all discussions of symbolic dynamics till now, we
have considered infinite precision in computing pre-
images which is definitely not the case in real imple-
mentations. The kneading value for the critical point
depends on the accuracy of the Poincaré return map,
inaccuracies arising due to interpolation errors between
the finite number of data points considered and round-
off errors. Resolution in computing the kneading value
is limited to the step, nknead in which the inaccuracy in
obtaining the next symbol in the kneading trajectory is
higher than a certain threshold. We can then compute
admissible cycles only till this accuracy.

To find the admissible partitions, we need to find the
pre-images of the critical point, xc. For unimodal maps
like this, the interesting region is bounded by f(xc) and
f(f(xc)). One stops partitioning at the step npart when
two intervals overlap more than a certain threshold. It is
not necessary that all intervals overlap at this point. So
intervals which do not overlap may be further refined.

Then one determines all prime cycles for that partition,
nothing beyond. They correspond to all non-self inter-
secting loops on the corresponding Markov diagram.

To find the accuracy limits, we first consider a gaus-
sian probability distribution centered around the critical
point, xc given by:

ρ0(x) = C0e
−(β0(x−xc))

2
, (19)

where β0 models models the inaccuracy in knowing the
critical point. So instead of iterating a point, we now iter-
ate a density of points. The effect of the noisy mapping is
included by using the Fokker-Planck evolution operator,
 LD, instead of the Perron-Frobenius operator :

 LDρ(x) =
1

4πD

∫
dye

−(x−f(y))2

4D ρ(y) (20)
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FIG. 9: Forward evolution of a gaussian centered around the
critical point with β = 103. The number of digits in the
kneading trajectory is 10.

where D is the variance of the noise. The noisy evolu-
tion is represented by replacing the delta function in the
kernel of the Perron-Frobenius operator with a gaussian.
Similarly, one can get the operator for backward evo-
lution by considering the adjoint of the Fokker-Planck
evolution operator,  L†D given by:

 L†Dρ(x) =
∫ ∞
−∞

dye
−(f(x)−y)2

4D ρ(y) (21)

Thus we now get a convolution of a gaussian with a gaus-
sian. Since we know that the result of this convolution
is another gaussian, we can find a recursion relation be-
tween the widths of the densities iterated forward and
backward in time. For the forward iteration, we get:

β2
n+1 =

β2
n

4Dβ2
n + f ′2(xn)

(22)

and for the backward iteration we get:

β−(n+1) =
f ′2(f−1(x−n))β−n

1 + 4Dβ−n
(23)

The stopping condition was taken as the distance be-
tween centres of two gaussians being lesser than the sum
of their respective half-widths.

Figure 9 shows the evolution of a gaussian forward in
time till it significantly overlaps across the critical point
into both regions. The number of digits in this case with
β = 103 is 10. The number of digits for a case with
β = 108 is 13. The number of digits does not improve
beyond this as the critical point is part of a 13-cycle
and so after 13 iterations the gaussian spills into both
regions. Figure 10 shows the partitioning of the phase
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FIG. 10: Backward evolution of a gaussian centered around
the critical point with β = 103. The number of partitions
before two Gaussians overlap is 5.

space before overlap between any two regions occur. The
two Gaussians at the two borders are centered around the
two future iterates of the critical point while the others
are backward iterates of the critical point. The number
of non-overlapping partitions obtained with β = 103 is 5.

VII. WHERE ARE THE CYCLES?

In this section, we search for the solutions (x, T), x ∈
Rd, T ∈ R of the periodic orbit condition

f t+T(x) = f t(x) , T > 0 (24)

for a given flow or mapping.
A prime cycle p of period Tp is a single traversal of the

periodic orbit, so our task will be to find a cycle point x ∈
p and the shortest time Tp for which (24) has a solution.
A cycle point of a flow f t which crosses a Poincaré section
np times is a fixed point of the Pnp iterate of the Poincaré
section return map P , hence we shall refer to all cycles as
“fixed points”. By cyclic invariance, stability eigenvalues
and the period of the cycle are independent of the choice
of the initial point, so it will suffice to solve (24) at a
single cycle point.

If the cycle is an attracting limit cycle with a sizable
basin of attraction, it can be found by integrating the
flow for sufficiently long time. If the cycle is unstable,
simple integration forward in time will not reveal it. Due
to the exponential divergence of nearby trajectories in
chaotic dynamical systems, fixed point searches based on
direct solution of the fixed-point condition (24) as an
initial value problem can be numerically very unstable.

Methods that start with initial guesses for a number of
points along the cycle, such as the multipoint shooting

method and the variational methods, are considerably
more robust and safer.

A prerequisite for any exhaustive cycle search is a good
understanding of the topology of the flow: a preliminary
step to any serious periodic orbit calculation is prepa-
ration of a list of all distinct admissible prime periodic
symbol sequences, such as the list given in Table I. The
relations between the temporal symbol sequences and the
spatial layout of the topologically distinct regions of the
state space enable us to guess location of a series of pe-
riodic points along a cycle. As the return maps found
earlier were very nicely approximated by 1 dimensional
mappings, we next outline a few methods to get cycle
points from such maps.

A. Newton’s method

Newton’s method for determining a zero x∗ of a func-
tion F (x) of one variable is based on a linearization
around a starting guess x0:

F (x) ≈ F (x0) + F ′(x0)(x− x0). (25)

An approximate solution x1 of F (x) = 0 is

x1 = x0 − F (x0)/F ′(x0). (26)

The approximate solution can then be used as a new
starting guess in an iterative process. A fixed point of
a map f is a solution to F (x) = x − f(x) = 0. We
determine x by iterating

xm = g(xm−1) = xm−1 − F (xm−1)/F ′(xm−1)

= xm−1 −
1

1− f ′(xm−1)
(xm−1 − f(xm−1)) .(27)

B. Inverse iteration

We find the unstable cycles of Rössler return map
Fig. 5 by the very simple inverse map method: unsta-
ble cycles of 1-d maps are attracting cycles of the inverse
map. The inverse map is not single valued, so at each
backward iteration we have a choice of branch to make.
By choosing branch according to the symbolic dynamics
of the cycle we are trying to find, we converge to the
desired cycle. The rate of convergence is given by the
stability of the cycle, that is, the convergence is expo-
nentially fast. Figure 11 shows such paths to the 01011
and 01111-cycles.

The values obtained in this manner correspond to arc-
length along the manifold. From this information, we
can get back the point in the Poincaré section that cor-
responds to the cycle. As an example, consider the fixed
point with symbolic dynamics label 1. From the map,
we find its corresponding arc-length is s1 = 8.181006 to
get the Poincaré section point (0, y1, z1). The period T1,
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FIG. 11: The inverse iteration method converges to the two
admissible 5-cycles 01011 and 01111. The symbol sequence
can be read off from the figures directly by noting that the
critical point demarcates the border between intervals “0” and
“1”.
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FIG. 12: Rössler 3-d cycles found by inverse iteration of
Fig. 5, with trajectory integrated from each cycle point to
the first Poincaré section return: (a) 1-cycle (b) 001-cycle (c)
011-cycle.

expanding stability eigenvalues Λp,e and Lyapunov expo-
nent λp,e:

1-cycle: (x, y, z) = (−.8302326,−8.172687, .02675678)
T1 = 5.88117

Λ1,e = −2.42729
λ1,e = 0.15076 . (28)

Figure 12 (a) shows the computed 1-cycle.
Figure 12 (b)-(c) shows two examples of computa-
tion of longer cycles. Table II tabulates all admissible
prime cycles till a topological length of 5, one of their
points on the Poincarè section, their expanding eigen-
value, period of the cycle and the numerical error in the
computation quoted as an effective diffusion constant.

The numerical round-off errors along a trajectory are
uncorrelated, acting as noise, so the error sum Ep =∑np

k=1(xk+1 − f(xk))2 is expected to grow as the sum of
squares of uncorrelated steps, linearly with time. Hence
the numerical noise is characterized by an effective “dif-
fusion constant” Dp = Ep/2dnp. Cycle-by-cycle Dp eval-
uated in Table II show a surprising spread.

TABLE II: The short Rössler cycles, together with a Poincarè
section cycle point, cycle expanding eigenvalue cycle period
and error.

np p xp yp zp Λp Tp Dp

1 1 -.8302 -8.172 .02675 -2.42729 5.881170 2.05e-6

2 01 -.5331 -5.285 .02898 -3.522737 11.75676 8.74e-6

3 001 -.9951 -9.775 .02571 -2.347972 17.50960 1.46e-7

011 -.5331 -5.285 .02898 5.225288 17.59147 9.55e-6

4 0111 -.4741 -4.711 .02948 -16.74413 23.51310 2.43e-5

5 01011 -.4300 -4.283 .02989 -23.66509 29.35742 4.12e-6

01111 -.4507 -4.484 .02970 35.89404 29.39955 2.86e-5

TABLE III: The Rössler system: the itinerary p, a periodic
point xp = (0, yp, zp) and the expanding eigenvalue Λp for all
cycles up to the topological length 5. (Joachim Mathiesen)

np p yp zp Λe

1 1 6.091768319 1.29973193 -2.4039535318268

2 01 3.91580404 3.69283338 -3.5120069815161

3 001 2.27828103 7.4164809 -2.3419235232340

011 2.93287755 5.67080594 5.3449081538885

4 0111 3.46675871 4.50621753 -16.6967406980700

5 01011 4.16279878 3.30390333 -23.1995830097831

01111 3.27891435 4.89045292 36.8863297988981

For comparison with Table II Joachim Mathiesen’s
Table III from ChaosBook.org tabulates all admissible
prime cycles to n = 5, determined by Newton method.

C. Linear stability

An estimate of the stability of a Rössler cycle is ob-
tained multiplying the slopes of the 1-d return map Fig. 5
at the cycle points:

Λ(s0, n) =
d

ds
Sn(s0) =

n−1∏
m=0

S′(sm) , sm = Sm(s0) .

(29)
The stabilities of the cycles so derived are tabulated in

Table II and match closely with the ones computed by
Joachim Mathiesen tabulated in Table III.

As an application, of periodic orbit theory, we calculate
the Lyapunov exponent using numerical techniques and
compare it with the value obtained from the periodic
orbits. Figure 13 shows the logarithm of the increasing
separation of the distance between two points plotted
against time. When the separation reaches a threshold,
it is reset to δr0 again to prevent its saturation. Let δri
be the separation before reset and ti be the time for which
the integration was done between two resets. Then we
compute the Lyapunov exponent λ, a measure of local
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FIG. 13: The logarithm of the ratio of separation between two
points initially separated by δr0 is plotted against time. When
the separation reaches a threshold, it is reset to δr0 again to
prevent its saturation. The Lyapunov exponent computed
from this is λ = 0.10036±?.

TABLE IV: The cycle expansion terms for Rössler till order
5.

np Cycle Expansion

1 -t1

2 -t01

3 -(t011 − t01t1)− t001
4 -(t0111 − t011t1) + t001t1

5 -(t01011 − t011t01)− (t01111 − t0111t1) + t001t01

instability, as:

λ =
∑
i log(δri/δr0)∑

i ti
(30)

The above calculation gives the Lyapunov exponent to
be λ = 0.10036±?.

The cycle expansion for this system is expanded in in-
creasing order in Table IV. As can be seen, higher order
terms are shadowed by some lower order ones and so the
first few cycles give the major contribution to all compu-
tations while higher ones allow for curvature corrections.
Now, we calculate the Lyapunov exponent as an average
from the cycle averaging formula from [1] given by:

λ =
1

< n >ζ

∑
π

(−1)k+1 log|Λp1|+ ...log|Λpk
|

|Λp1...Λpk
|

, (31)

where the cycle mean is found from

< n >ζ=
∑
π

(−1)k+1np1 + ...npk
|Λp1...Λpk

|
. (32)

To compare with the Lyapunov exponent computed ear-
lier, we need to estimate the average return time be-
tween consecutive intersections of the poincaré section.
This can be done by plugging in the Tp values in Ta-
ble II in place of np in the formula for < n >ζ to get
Tp ≈ 5.81. The Lyapunov exponent computed this way
is 0.081 which is close to the earlier value.

VIII. DISCUSSION

In order to reduce the dimensionality of the Poincaré
return maps in strongly contracting high dimensional
flows where the attractor is approximately a thin curve,
we introduced a method of finding the return map based
on measuring lengths along the unstable manifold. The
main concept is based on finding the “turnback” points,
that is, points where the unstable manifold changes di-
rection due to folding. This is achieved by measuring
curvature of the manifold.

This was applied to the Rössler flow to obtain a return
map and guess the covering symbolic dynamics. Inter-
estingly, this flow has a very high contraction leading
to extremely large curvatures which renders the curva-
ture computation infeasible. An alternate method has
been developed for such highly contracting flows. Al-
lowed cycles were correctly predicted by this method and
the topological entropy based on the zeta function or the
Markov graph could be calculated. It should be noted
that the derivatives needed for all computations need to
be smoothed for good computational accuracy.
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