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Chapter 1

Space-time, sliced & sectioned

The Day Dynamics Died
January 24, 2016 at 6 AM PST, Santa Barbara, CA

— Predrag Cvitanović

Abstract

Motivated by space-time translational invariance ‘spatiotemporally chaotic’ or
‘turbulent’ flows are recast as aD+1 dimensional spatiotemporal theory which
treats space and time equally. In this formulation time evolution is replaced by
a repertoire of spatiotemporal patterns taking the form of D + 1 invariant tori.
Infinite space-time is then explained by the shadowing of these tori. This is
formalized by the development of a D + 1 dimensional symbolic dynamics
whose alphabet is comprised of space-time tori of minimal size. Enumerating
these spatiotemporal building blocks enables the construction of all admissible
spatiotemporal patterns. These ideas are investigated in the context of the Ku-
ramoto-Sivashinsky equation using new open source spatiotemporal computa-
tional codes. These codes offer easy access to new spatiotemporal techniques,
persistent homology, convolutional neural networks and more.

Spatiotemporal tiling of the Kuramoto-Sivashinsky system
Abstract Nov 19, 2020

Using (1) spacetime translational invariance, and (2) exponentially unsta-
ble dynamics, ‘spatiotemporally chaotic’ or ‘turbulent’ flows are reformulated
as a (D+1)-dimensional spatiotemporal theory which treats space and time on
equal footing. In this theory there is no evolution in time: time evolution is
replaced by the enumeration of the repertoire of the spatiotemporal solutions
(translationally invariant (D+1)-dimensional invariant tori, or ‘periodic orbits’)
of system’s equations, very much as the statistical mechanics’ weighted parti-
tion function of Ising model is constructed as a sum formed by enumerating
all its lattice states.
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CHAPTER 1. SPACE-TIME, SLICED & SECTIONED

Our hypothesis is that the entirety of the spacetime solutions can be con-
structed by gluing together tiles from a finite collection of ‘fundamental tiles’
that shadow larger solutions. We demonstrate that (1) these fundamental tiles
can be extracted from generic, large spacetime domain solutions, and (2) that
they in turn can be used as the ‘building blocks’ of turbulence. Left for the fu-
ture work is (3) our conjecture that these results should enable us to construct
a (D+1)-dimensional symbolic dynamics with an alphabet (whose ‘letters’ are
these fundamental tiles) enables one to systematically enumerate and label all
‘turbulent’ solutions.

These ideas are investigated in the context of the 1+1 dimensional space-
time of the Kuramoto-Sivashinsky equation in one spatial dimension, using
my open source Python package ‘OrbitHunter’.

1.1 Introduction

Recent experimental and theoretical advances [33] support a dynamical vi-
sion of turbulence: For any finite spatial resolution, a turbulent flow follows
approximately for a finite time a pattern belonging to a finite alphabet of ad-
missible patterns. The long term dynamics is a walk through the space of these
unstable patterns. The question is how to characterize and classify such pat-
terns? 1 Chaotic nonlinear systems constitute one of the few classical physics
problems yet to be solved. The behaviors exhibited are so peculiar that it has
permeated into popular culture via the butterfly effect. This behavior poses a
serious challenge which has effects everything from weather prediction to air
travel. In the recent past computational successes were made by studying tur-
bulent flows on minimal cells: small domains that could support turbulence
and remain computationally tractable. These successes came in form of time
invariant solutions alkso known as “exact coherent structures” (ECS) [55, 57].
These solutions are important because it is their unstable and stable manifolds
that dictate the dynamics [7]. Not only have conventional methods not worked
on large domains, we argue that they never could have worked. The motiva-
tion behind minimal cells was to develop an intuition for turbulence which
would be used to obtain results on progressively large domains.

In light of all of these difficulties we believe that new bold ideas are required
to resume forward progress. We retreat from the conventional wisdom to start
anew with a truly spatiotemporal theory, one that treats infinite space-time as
the shadowing of a finite number of fundamental patterns which we denote as
“tiles”.

2 The primary claim that we make is that in hindsight, describing turbu-
lence via an exponentially unstable dynamical equation never could have worked.
Conventional methods treat spatial dimensions as finite and fixed and time as
inherently infinite. Our spatiotemporal formulation of chaos treats all continu-
ous dimensions with translational invariance democratically as (1 +D) differ-

1Matt 2020-01-20: [Background]
2Matt 2020-01-20: [Revolution] WHY?
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CHAPTER 1. SPACE-TIME, SLICED & SECTIONED

ent ‘times’. The proposal is inspired by the Gutkin and Osipov [31] modelling
of chain of N coupled particle by temporal evolution of a lattice of N coupled
cat maps.

The alternative that we propose to describe infinite space-time chaos via the
shadowing of fundamental patterns which we refer to as “tiles”. These tiles are
the minimal “building blocks” of turbulence; they are realized as invariant 2-
tori which are global solutions with compact support. Finding the tiles of tur-
bulence is fundamentally easier than finding invariant 2-tori on larger domains
due to the exponential growth in complexity of solutions. In other words there
are fewer important solutions on smaller domains. This in turn implies that
there can only be a small number of fundamental tiles. This is what makes the
problem tractable: if we can collect the complete set of tiles then we have the
ability to construct every invariant 2-torus according to our theory.

The lack of exponentially unstable dynamics has powerful and immediate
effects. Because there is no time integration, the problem of finding invariant
2-tori is now a variational one. The benefit of this is that there is no need to start
an initial guess on the attractor; the optimization process handles this entirely.
This allows us to find arbitrarily sized invariant 2-toribut in fact there is no
need to. Our hypothesis is that we need only to find the building blocks which
shadow larger invariant 2-tori and infinite space-time.

The spatiotemporal formulation allows a much easier categorization of what
is “fundamental” by virtue of the frequency that patterns admit in the collec-
tion of invariant 2-tori. By identifying the most frequent patterns, we shall clip
these patterns out of the invariant 2-tori they shadow and use them as initial
conditions to search for our tiles.

The notion of “building blocks of turbulence” is one of the reasons for
studying fluid flows in the first place. There is evidence that certain physi-
cal processes are fundamental, but they have yet to be used in a constructive
manner. The spatiotemporal description is able to actually put these ideas in
practice. The spatiotemporal completely avoids this by constructing larger in-
variant 2-tori from the combination of smaller invariant 2-tori. The reason why
the search for the fundamental tiles is classified as “easy” is because in the
small domain size limit there just aren’t that many invariant 2-tori; the dynam-
ics is relatively simple.

The first key difference is that the governing equation dictates the spa-
tiotemporal domain size in an unsupervised fashion. The results here are not
The only reason why L was treated as fixed is due to the inherent instability
it includes when treated as a varying quantity. This small detail, allowing the
domain size L to vary, is not as trivial as it seems. This difficulty is especially
evident in the Kuramoto-Sivashinsky equation, whose spatial derivative terms
are of higher order than the first order time derivative, but also there is a spatial
derivative present in the nonlinear component.

Specifically, we propose to study the evolution of Kuramoto-Sivashinsky on
the 2-dimensional infinite spatiotemporaldomain and develop a 2-dimensional
symbolic dynamics for it: the columns coding admissible time itineraries, and
rows coding the admissible spatial profiles. Our spatiotemporal method is the

03/20/2019 siminos/spatiotemp/chapter/spatiotemp.tex8 7451 (predrag–6812)



CHAPTER 1. SPACE-TIME, SLICED & SECTIONED

clear winner in both a computational and theoretical sense. By converting to a
tile based shadowing description we have essentially removed the confound-
ing notion of an infinite number of infinitely complex invariant 2-tori from the
discussion. Now we must put these ideas into practice. The testing grounds
for these ideas will be the spatiotemporal Kuramoto-Sivashinsky equation

ut + uxx + uxxxx + uux = 0 where x ∈ [0, L], t ∈ [0, T ] (1.1)

where u = u(x, t) represents a spatiotemporal velocity field. This equation
has been used to model many different processes such as the laminar flame
front velocity of Bunsen burners. While (18.1) is much simpler than the spa-
tiotemporal Navier-Stokes equation, we would argue that the main benefit is
the simplicity of visualizing its two-dimensional space-time. This visualiza-
tion makes the arguments more understandable and compelling in addition to
making the tiles easier to identify. The translational invariance and periodicity
of (18.1) make spatiotemporal Fourier modes a natural choice. The inherently
infinitely dimensional equations are approximated by a Galerkin truncation
of these spatiotemporal Fourier modes. The Kuramoto-Sivashinsky equation
(18.1) in terms of the Fourier coefficients û is a system of differential algebraic
equations û

F (û, L, T ) ≡ (ω − k2 + k4)û+
k

2
F(F−1(û)2) . (1.2)

The nonlinear term is computed in a pseudospectral fashion: a method which
computes the nonlinear term as a product in physical space as opposed to a
convolution in spectral space. The definitions of each term is as follows; F and
F−1 represent the forward and backwards spatiotemporal Fourier transform
operators. Likewise, ω and k contain the appropriate temporal and spatial fre-
quencies to produce the corresponding derivatives. Any and all indices are
withheld to avoid unnecessary confusion at this stage. The spatiotemporal
system of differential algebraic equations (18.2) is of the form F (û, L, T ) = 0.
This type of optimization problem is ubiquitous in engineering and optimiza-
tion literature. Therefore solving (18.2) is a matter of adapting known numer-
ical methods to its idiosyncracies. Once we have the ability to solve (18.2) we
need to first create a collection of invariant 2-tori. The only requirement that
the collection must satisfy is that it must capture all fundamental patterns by
adequately sampling the set of invariant 2-tori. In other words an exhaustive
search is not our aim; not only that, but also the collection need not sample all
spatiotemporal domain sizes. We hypothesize that there is some upper bound
on the spatiotemporal size of fundamental tiles due to spatiotemporal corre-
lation lengths. Once the collection is deemed sufficient we proceed to visual
inspection. In this manner we determine the most frequent patterns and single
them out as tile candidates. This is done by literally clipping them out of the
invariant 2-tori that they shadow. Each clipping is then treated as an initial
guess for a fundamental tile which is itself a invariant 2-torus. Therefore, these
represent initial conditions for the optimization method. It is not a guaran-
tee that every clipping converges to a invariant 2-torus; therefore the number
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CHAPTER 1. SPACE-TIME, SLICED & SECTIONED

of attempts to find a tile should continue until it does in fact converge. The
number of convergence attempts is typically proportional to how confident
we are that the pattern being scrutinized is in fact a tile. Once a collection of
tiles is collected, we can construct new and reproduce known invariant 2-tori.
This is completed with a method we refer to as “gluing”. It is as straight-
forward as one might infer: tiles are combined in a spatiotemporal array to
form initial conditions used to find larger invariant 2-tori. Methods of gluing
temporal sequences of invariant 2-tori exist but never has the ability to glue
invariant 2-tori spatiotemporally existed before. With the implementation of
the gluing method can begin to probe the 2-dimensional spatiotemporal sym-
bolic dynamics previously mentioned. A fully determined symbolic dynamics
is sufficient to describe infinite space-time completely. We already have the two
edges of this symbol plane - theL = 22 minimal cell [10, 44] is sufficiently small
that we can think of it as a low-dimensional (“few-body” in Gutkin and Klaus
Richter [17–20] condensed matter parlance) dynamical system, the left-most
column in the Gutkin and Osipov [31] 2D symbolic dynamics spatiotemporal
table (not a 1-dimensional symbol sequence block), a column whose temporal
symbolic dynamics we will know, sooner or later. Michelson [46] has described
the bottom row. The remainder of the theory will be developed from the bot-
tom up, starting with small spatiotemporal blocks.

The plans for our spatiotemporal formulation have been laid bare. The
main concept is that the infinities of turbulence can be described by spatiotem-
poral symbolic dynamics whose letters are fundamental spatiotemporal pat-
terns. Consequentially, we have created numerical methods which not only
perform better than conventional methods but also present incredible new-
found capabilities. These newfound capabilities include but are not limited
to finding small invariant 2-tori which shadow larger invariant 2-tori but also
constructing larger invariant 2-tori from smaller ones. These new and robust
methods alone present a way forward for turbulence research, hence their is
merit in a spatiotemporal formulation even though the theory has not been
fully fleshed out. To test our spatiotemporal ideas we require three separate
numerical methods: the first should be able to find invariant 2-tori of arbitrary
domain size. The second needs to be able to clip or extract tiles from these
invariant 2-tori. Lastly, we need a method of gluing these tiles together. All
three of these techniques require the ability to solve the optimization problem
F (û, T, L) = 0 on an arbitrarily sized doubly periodic domain.

3 As previously discussed, this work does not use approximate recurrences
or time integration to generate initial conditions. Instead we simply initialize a
lattice of Fourier modes by first deciding on the dimensions of the lattice and
then assigning random values to the modes. Specifically, random values in
this case are drawn from the standard normal distribution and then normal-
ized such that the physical field u(x, t) has the assigned maximum value. Ma-
nipulations of the Fourier spectrum can also be made but we have no specific
recommendation for how to do so as it can be rather unintuitive.

3Matt 2020-02-18: How?
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CHAPTER 1. SPACE-TIME, SLICED & SECTIONED

The first method substitutes an equivalent optimization problem instead of
directly solving F = 0. The optimization problem is formed by the construc-
tion of a scalar cost function

I(û, T, L) =
1

2
||F (û, T, L)||22 . (1.3)

taking a derivative with respect to a fictitious time τ

∂I
∂τ

= ∇
(1

2
||F (û, T, L)||22

)
∂τ [û, T, L]

=

([∂F
∂û

,
∂F

∂T
,
∂F

∂L

]>
F (û, T, L)

)
· ∂τ [û, T, L]

≡
(
J>F

)
· ∂τ [û, T, L] . (1.4)

This equation (18.4) by itself does not provide us with a descent direction be-
cause ∂τ [û, T, L] remains unspecified. The simplest choice is the negative gra-
dient of the cost function; this choice corresponds to the gradient descent algo-
rithm.

∂τ [û, T, L] = −
(
J>F

)
, (1.5)

such that
∂I
∂τ

= −
∣∣∣∣∣∣(J>F)∣∣∣∣∣∣2

2
≤ 0 . (1.6)

In order to “descend” we use Euler’s method to integrate in the descent direc-
tion. Note that this integration is with respect to fictitious time and represents
making successive variational corrections; it is not dynamically unstable time
integration. We elect to use a combination of step limit and absolute tolerance
to determine when the descent terminates. If the cost function doesn’t cross
the threshold by the step limit then the descent is terminated. The descent al-
gorithm can be viewed as a method of converging approximate solutions close
enough to a final invariant 2-torus such that the least-squares algorithm can
converge them, akin to [21].

The second method is application of a least-squares solver to the root find-
ing problem F = 0. The Newton system is derived here for context.

F (û+ δû, T + δT, L+ δL) ≈ F (û, T, L) + J · [δû, δT, δL] + . . . . (1.7)

substitution of zero for the LHS (the root) yields

J · [δû, δT, δL] = −F (û, T, L) . (1.8)

where
J ≡

[∂F
∂û

,
∂F

∂T
,
∂F

∂L

]
. (1.9)

Technically this equation is solved iteratively, each time producing its own
least-squares solution which guides the field to invariant 2-torus. The equa-
tions are augmented to include variations in T, L and as such the linear sys-
tem is actually rectangular. We chose to solve the equations in a least-squares
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manner as we are not focused on finding a unique solution; any member of
a invariant 2-tori group orbit will do. The price of this indefiniteness is that
we might collect invariant 2-tori which belong to the same group orbit. To im-
prove the convergence rate of the algorithm we also include backtracking: the
length of the Newton step is reduced until either a minimum length is reached
(failure) or the cost function decreases. As a caveat, our specific least-squares
implementation is memory limited. That is, we can only apply it to some maxi-
mum dimension as it requires the explicit construction of a large, dense matrix.
Currently it suits our purposes such that we do not include any other numeri-
cal methods in this discussion. The primary numerical methods that we apply
have been described. Now we can move onto describing exactly how we used
these method to further our spatiotemporal theory.

As previously mentioned, we must first find a collection of invariant 2-tori
which we believe adequately samples the space of invariant 2-tori, up to some
maximum size. We automated the search over a range of periods and domain
sizes. Periods were chosen from the range T ∈ [20, 180]. Meanwhile, the spatial
range was L ∈ [22, 88]. The discretization size depended on the spatiotemporal
domain size; more modes are needed to resolve larger solutions. The number
of lattice points in each dimension were typically chosen to be powers of two in
order because of their interaction with discrete Fourier transforms. A strict rule
for lattice size was never developed so we offer is the approximate guidelines

M = 2int(log2(L)+1) (1.10)

for space and
N = 2int(log2(T )) . (1.11)

for time. The tolerance of the cost function for the gradient descent was typi-
cally set at 10−4 and the step limit was set as a function of the size of the lattice.
For the least-squares with backtracking the tolerance for termination was orig-
inally 10−14 and the step limit was 500. The large step limit was because of
the allowance of back-tracking, which reduces the step length. The final toler-
ance can likely be relaxed as there is minimal change in solutions over many
orders of magnitude of the cost function; an indication that a different norm
should be used. As a reminder, our claim is that the tiles are invariant 2-tori
which shadow larger invariant 2-tori. Therefore we should be able to converge
subdomains which have been numerically clipped out of larger invariant 2-
tori. After visual inspection, we believed the number of fundamental tiles to
be small. Therefore, a precise and unsupervised algorithm for clipping was
not developed. Instead the only criteria we abided by is that the clipping must
include the tile being sought after; of course, clippings that were closer to be-
ing doubly periodic were sought after. For the original invariant 2-torus with
dimensions x ∈ [0, L0] and t ∈ [0, T0] defined on a lattice, the clipping can
be described as follows. Find the approximate domain on which the shadow-
ing occurs and then literally extract the subregion of the parent lattice, setting
the new spatiotemporal dimensions according to the smaller lattice. In other
words, the same grid spacing was maintained throughout this procedure. This
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process in combination with our numerical methods was sufficient for find-
ing tiles. It is one thing to claim that certain spatiotemporal invariant 2-tori
are the building blocks of turbulence for the Kuramoto-Sivashinsky equation.
It is another thing entirely to put our money where our mouth is by actually
using them in this manner. We would like to remind the audience that the
ability to construct and find solutions in this manner has not been witnessed
in the literature. With this in mind our choices should be treated as prelimi-
nary ones; it is entirely possible and likely that many improvements could be
made. Much like the clipping process used to find tiles combining solutions
in space-time, the overarching idea of gluing is straightforward and intuitive.
Specifically, the tiles represent the Brillouin zone, fundamental domain, unit
cell of a lattice, etc. of each fundamental invariant 2-torus. The general case is
that we have a general sn × sm sized mosaic of tiles. The admissibility of the
gluing is determined by the (currently unknown) symbolic dynamics. Gluing
is only well defined if the lattices being combined have the same number of
grid points along the gluing boundary. This creates a problem, however, as
different tiles will have different spatiotemporal dimensions T, L because they
are fundamentally different solutions. This actually helps provide a precise
meaning to the term “gluing”. Gluing is a method of creating initial conditions
which approximates a non-uniform rectangular lattice (combination of tiles)
as uniform. This of course introduces local error which depends on the grid
size; therefore there should not be an extreme discrepancy between the invari-
ant 2-tori or tiles being glued. With this in mind, we simply rediscretize and
concatenate the new lattices. The dimensions of the new lattice are determined
by the sum or average of the original dimensions. For example, if gluing two
tiles together in time, the new period would be T = T1 + T2 but the new spa-
tial period isL = L1+L2

2 . In this case the number of spatial grid points and
temporal grid spacing should be the same. There are many more complicated
alternatives, limited only by the imagination.

1.2 Kuramoto-Sivashinsky equation

The Kuramoto-Sivashinsky equation [42, 51], which arises in the description
of stability of flame fronts, reaction-diffusion systems and many other physical
settings [40, 49], is one of the simplest nonlinear PDEs that exhibits spatiotem-
porally chaotic behavior. In one space dimension it is defined on the doubly
infinite spacetime plane

ut + uux + uxx + uxxxx = 0 , (x, t) ∈ R2 , (1.12)

where t is the time, x is the spatial coordinate, subscripts (·)x and (·)t denote
partial derivatives with respect to x and t, and the field u = u(x, t) can be
thought of as the ‘flame front velocity’ at the spacetime point (x, t). Occasion-
ally the form of (18.1) will include a coefficient ν on the “hyper-viscosity” term,
i.e., νuxxxx. We have exchanged this control parameter for non-dimensional
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length via the relation

L =
L

2π
√
ν
, (1.13)

and setting ν = 1. This seems to be the more natural choice as solutions have
on the order of L number of wavelengths at any given time; this allows for
quick interpretation and verification of figures of scalar fields later on. We do
note that this may be a frustrating choice as there is much literature in which
L = 22 is the spatial domain size being reported on [5, 10, 14, 15, 25]. This
translates to L22 ≈ 3.50 for reference. An alternative choice would be to set the
scale in terms of the most unstable wavelength L̃∗ = L

2π
√

2

There is much interest in Kuramoto-Sivashinsky equation because (18.1) is
a 1-dimensional PDE analogue of the 3-dimensional Navier-Stokes PDEs

∂v

∂t
+ (v · ∇)v− 1

R
∇2v + (· · · ) = 0 , (x, t) ∈ R4 , (1.14)

where (· · · ) stands for various forcing terms. Holmes, Lumley and Berkooz [34]
offer a delightful discussion of why Kuramoto-Sivashinsky system deserves
study as a staging ground for studying turbulence in full-fledged Navier-Stokes
boundary shear flows. First, high quality simulations of Navier-Stokes [26, 58]
are much harder than Kuramoto-Sivashinsky simulations [38]. Second, and
the real reason why in this paper we introduce the reader to the spatiotempo-
ral theory of turbulence using Kuramoto-Sivashinsky as an example, is that it
is very hard to visualize 3-dimensional velocity field at every 3-dimensional
spatial pointand at every instant in time. In contrast, spatiotemporal visual-
ization of Kuramoto-Sivashinsky as color-coded magnitude of 1-dimensional
velocity field u over the spacetime (x, t), as in figure 1.1, is immediate.

It suffices to inspect a single generic spatiotemporal solution of Kuramoto-
Sivashinsky equation such as figure 1.1, to be almost always able to recognize
any other solution u as a solution of Kuramoto-Sivashinsky equation. Indeed,
the goal of this paper is to explain why, by deriving the alphabet of admissi-
ble patterns from the Kuramoto-Sivashinsky equation, and assigning a unique
spatiotemporal “word” to any solution that can be seen embedded into the
chaotic (turbulent) attractor (inertial manifold). It is intuitive by inspection
that there is a typical spatial “mean wavelength” (sect. 1.5) and a typical time
scale, that the patterns are exponentially decorrelated beyond several space
and time scale units (sect. 1.5 and sect. 1.6), and that all statistical averages,
such as energies and dissipation rates, should be extensive (see sect. 1.6.4).

1.3 Exact solutions of Kuramoto-Sivashinsky

1.3.1 Equilibria and relative equilibria

Equilibria (or the steady solutions) are the fixed profile time-invariant solu-
tions,

u(x, t) = uq(x) . (1.15)
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Figure 1.1: A spacetime heat map of a typical “steady state turbulence” Ku-
ramoto-Sivashinsky solution u(x, t), integrated forward in time on a periodic
domain of size L ≈ 79.57 (after the initial transient has died out). The most
unstable wavelength 2π

√
2 of the u=0 equilibrium (see sect. 1.5) is an estimate

the mean spatial wavelength of the turbulent Kuramoto-Sivashinsky flow, so
there are approximately 55 wiggles across the spatial domain at any instant in
time. The color bar indicates the heat map scheme for u(x, t), used also for the
subsequent figures of this type.
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Due to the spatial translational symmetry, the Kuramoto-Sivashinsky system
also allows for relative equilibria (traveling waves, rotating waves), character-
ized by a fixed profile uq(x) moving with constant speed c, i.e.

u(x, t) = uq(x− ct) . (1.16)

Here suffix q labels a particular invariant solution. Because of the reflection
symmetry (12.45), the relative equilibria come in counter-traveling pairs uq(x−
ct), −uq(−x+ ct).

The relative equilibrium condition for the Kuramoto-Sivashinsky PDE (18.1)
is the ODE

1
2 (u2)x − c ux + uxx + uxxxx = 0 (1.17)

which can be analyzed as a dynamical system in its own right. Integrating once
we get

1
2u

2 − cu+ ux + uxxx = E . (1.18)
4 This equation can be interpreted as a 3-dimensional dynamical system with
spatial coordinate x playing the role of ‘time,’ and the integration constant E
can be interpreted as ‘energy,’ see sect. 1.6.4.

For E > 0 there is richE-dependent dynamics, with fractal sets of bounded
solutions investigated in depth by Michelson [46].

From (1.24) we see that the origin u(x, t) = 0 has Fourier modes as the lin-
ear stability eigenvectors. The |k| < L̃ long wavelength perturbations of the
flat-front equilibrium are linearly unstable, while all |k| > L̃ short wavelength
perturbations are strongly contractive. The high k eigenvalues, correspond-
ing to rapid variations of the flame front, decay so fast that the corresponding
eigendirections are physically irrelevant. The most unstable mode, nearest to
|k| = L̃/

√
2, sets the scale of the mean wavelength

√
2 of the Kuramoto-Siva-

shinsky ‘turbulent’ dynamics, see figure 1.1.
5

1.3.2 Relative periodic orbits, symmetries and periodic orbits

Kuramoto-Sivashinsky equation (18.1) is time translationally invariant, and
space translationally invariant under the 1-d Lie group of O(2) rotations: if
u(x, t) is a solution, then u(x + d, t) and −u(−x, t) are equivalent solutions for
any −L/2 < d ≤ L/2. As a result of invariance under τd/L , Kuramoto-Siva-
shinsky equation can have relative periodic orbit solutions with a profile up(x),
period Tp, and a nonzero shift dp

τdp/Lu(x, Tp) = u(x+ dp, Tp) = u(x, 0) = up(x) . (1.19)

4Predrag 2019-09-21: Is this an interesting form?
1
2

(u− c/2)2 + ux + uxxx = E + c2/8 .

5Matt 2019-05-13: Spatiotemporal symmetries are discussed in sect. 12.3.2, I think it is worthy
to elaborate on the different classes of solutions but I don’t think pre-periodic orbits should be
referred to as relative periodic orbit solutions with reflection
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Relative periodic orbits (1.19) are periodic in vp = dp/Tp co-rotating frame, but
in the stationary frame their trajectories are quasiperiodic. Due to the reflection
symmetry (12.45) of Kuramoto-Sivashinsky equation, every relative periodic
orbit up(x) with shift dp has a symmetric partner −up(−x) with shift −dp.

Due to invariance under reflections, Kuramoto-Sivashinsky equation can
also have relative periodic orbits with reflection, which are characterized by a
profile up(x) and period Tp

σu(x+ d, Tp) = −u(−x− d, Tp) = u(x+ d, 0) = up(x) , (1.20)

giving the family of equivalent solutions parameterized by d (as the choice of
the reflection point is arbitrary, the shift can take any value in −L/2 < d ≤
L/2).

As d is continuous in the interval [−L/2, L/2], the likelihood of a relative
periodic orbit with dp = 0 shift is zero, unless an exact periodicity is enforced
by a discrete symmetry, such as the dihedral symmetries discussed above. If
the shift dp of a relative periodic orbit with period Tp is such that dp/L is a
rational number, then the orbit is periodic with period nTp. The likelihood to
find such periodic orbits is also zero.

However, due to the Kuramoto-Sivashinsky equation invariance under the
dihedral Dn and cyclic Cn subgroups, the following types of periodic orbits are
possible:

(a) The periodic orbit lies within a subspace pointwise invariant under the
action of Dn or Cn. For instance, for D1 this is the U+ antisymmetric subspace,
−up(−x) = up(x), and u(x, Tp) = u(x, 0) = up(x). The periodic orbits found
in refs. [8, 44] are all in U+, as the dynamics is restricted to antisymmetric
subspace. For L = 3.5014087480216975 the dynamics in U+ is dominated by
attracting (within the subspace) heteroclinic connections and thus we have no
periodic orbits of this type, or in any other of the Dn–invariant subspaces.

(b) The periodic orbit satisfies

u(x, t+ Tp) = gu(x, t) , (1.21)

for some group element g ∈ O(2) such that gm = e for some integer m so
that the orbit repeats after time mTp (see ref. [28] for a general discussion of
conditions on the symmetry of periodic orbits). If an orbit is of reflection type
(1.20), στd/Lu(x, Tp) = −u(−x − d, Tp) = u(x, 0), then it is pre-periodic to a
periodic orbit with period 2Tp. Indeed, since (στd/L)2 = σ2 = 1, and the KS
solutions are time translation invariant, it follows from (1.20) that

u(x, 2Tp) = στd/Lu(x, Tp) = (στd/L)2u(x, 0) = u(x, 0) .

Thus any shift acquired during time 0 to Tp is compensated by the opposite
shift during evolution from Tp to 2Tp. Pre-periodic orbits are a hallmark of
any dynamical system with a discrete symmetry, where they have a natural
interpretation as periodic orbits in the fundamental domain [9, 11].

For any given relative periodic orbit a convenient visualization is offered
by the mean velocity frame, i.e., a reference frame that rotates with velocity vp =
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dp/Tp. In the mean velocity frame a relative periodic orbit becomes a periodic
orbit. However, each relative periodic orbit has its own mean velocity frame
and thus sets of relative periodic orbits are difficult to visualize simultaneously.

1.4 Pre-periodic orbits

As discussed in Sect. 1.3.2, a relative periodic orbit will be periodic, i.e., dp = 0,
if it either (a) lives within the U+ antisymmetric subspace,−u(−x, 0) = u(x, 0),
or (b) returns to its reflection or its discrete rotation after a period: u(x, t+Tp) =
gu(x, t), gm = e, and is thus periodic with period mTp.

1.5 Spatially periodic Kuramoto-Sivashinsky

It is not possible to integrate numerically the Kuramoto-Sivashinsky equation
on the spatiotemporally doubly infinite domain (18.1). Instead, the standard
practice is to confine the system to a spatially L-periodic domain, specify a
smooth spatially periodic initial condition u(x, t) = u(x+ L, t), and integrate

ut + uxx + uxxxx + uxu = 0 , x ∈ [0, L) (1.22)

forward in time on the spatiotemporal cylinder of figure 1.2 (a). Though sta-
ble periodic solutions do exist [23], for a generic, sufficiently large spatial do-
mains, all numerical Kuramoto-Sivashinsky solutions exhibit “steady state tur-
bulence” illustrated by figure 1.1.

Smooth, spatially periodic velocity field u is naturally represented in the
Fourier space,

u(x, t) =
+∞∑

m=−∞
am(t) ei2πmx/L , (1.23)

with the 1D PDE (1.22) replaced by an infinite set of ODEs for the complex
Fourier coefficients am(t):

ȧm = (q2
m − q4

m) am − i
qm
2

+∞∑
k=−∞

akam−k (1.24)

where qm = 2πm/L. Since u(x, t) is real, am = a∗−mm, and we can replace the
sum by a m > 0 sum.

Consider the Kuramoto-Sivashinsky equation (18.1) on a spatiotemporal
cylinder (x, t) ∈ ([0, L),R), defined on a a spatial strip of width L, with spa-
tially periodic boundary condition u(x, t) = u(x + L, t), see figure 1.2 (a). Dis-
cretize spatially the Kuramoto-Sivashinsky system by Fourier expanding the
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Figure 1.2: (a) The 1D Kuramoto-Sivashinsky equation is usually integrated
on a spatiotemporal cylinder of an arbitrary fixed L periodic spatial extent,
with time t ∈ {−∞,∞); for an example, see figure 1.1. (b) It is also possible to
integrate the equation on a spatiotemporal cylinder of an arbitrary fixed T pe-
riodic temporal extent, with position ranging over x ∈ {−∞,∞), see sect. 1.6.
(c) Here we shall seek spatiotemporally invariant 2-torus solutions u(x, t) over
a 2-torus of dynamically determined size (L, T) , see sect. 1.6.1.

field u(xn, t) = un(t) over N points of a periodic spatial 1D lattice xn = nL/N ,

ûk(t) =
1

N

N−1∑
0

un(t)e−iqkxn =
1

N

N−1∑
0

un(t)e−i2πkn/N , qk =
2πk

L

un(t) =
N−1∑
k=0

ûk(t)eiqkxn =
N−1∑
k=0

ûk(t)ei2πkn/N , (1.25)

and expressing (18.1) in terms of discrete spatial Fourier modes as N ordinary
differential equations (ODEs) in time

d

dt
ûk(t) = (q2

k − q4
k) ûk(t)− iqk

2

N−1∑
k′=0

ûk′(t)ûk−k′(t) . (1.26)

In the Fourier representation the relative equilibria time dependence is

ak(t)e−itcqk = ak(0) . (1.27)
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Differentiating with respect to time, we obtain the Fourier space version of the
relative equilibrium condition (1.17),

vk(a)− iqkcak = 0 , (1.28)

which we solve for (time independent) ak and c.

Temporal stability

To calculate the temporal stability of a spatial equilibrium ûq
6 we need to eval-

uate the stability matrix (the matrix of temporal velocity gradients)

Aij(ûq) =
∂ ˙̂ui
∂ûj

∣∣∣∣∣
û=ûq

. (1.29)

For Kuramoto-Sivashinsky we can compute A(ûq) efficiently using the linear-
ity of the Fourier transform, see ref. [10]. Consider the four matrices ∂ḃk

∂bj
, ∂ḃk∂cj

, ∂ċk∂bj
, ∂ċk∂cj

,
where the real and imaginary parts of ûk are ûk = bk+ick. For illustration, con-
sider the bk = 0 invariant antisymmetric subspace U+,

ċk = vk(c) = (q2
k − q4

k) ak −
qk
2

∞∑
m=−∞

cmck−m , qk = k/2πL . (1.30)

The temporal stability matrix (1.29) restricted to the invariant antisymmetric
subspace U+ follows from (1.30):

Akj(c) =
∂vk(a)

∂cj
= (q2

k − q4
k)δkj + qk(ck−j − ck+j) . (1.31)

For the full state space, consult sect. 6.2 Calculating stability of equilibria of Simi-
nos thesis [50].

Kuramoto-Sivashinsky u = 0 temporal equilibrium

The Kuramoto-Sivashinsky flat flame front u(x, t) = 0 is always a temporal
equilibrium of (18.1), whose temporal stability matrix (1.30) is diagonal, with
real temporal stability exponents λ(k) = q2

k − q4
k, the eigenvectors are spatial

Fourier modes, and consequently the temporal Jacobian matrix is diagonal as
well, J tkj = δkjΛk(t) , Λk(t) = e(q2k−q

4
k) t .

1.6 Temporally periodic Kuramoto-Sivashinsky

Consider next the case of temporally periodic velocity field

u(x, t) = u(x, t+ T) (1.32)
6Predrag 2019-05-16: dropped (or a temporally periodic orbit).
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on temporal domain of fixed period T, and any x, i.e., cylinder (x, t) ∈ R×[0, T),
see figure 1.2 (b). In order to express Kuramoto-Sivashinsky as a set of first-
order PDEs, define four fields

(u0, u1, u2, u3) ≡ (u, ux, uxx, uxxx) . (1.33)

Using the values of the four fields for all t ∈ [0, T) at a fixed space point x0, as
initial values, one may attempt to determine u(t, x) for any x on a time-periodic
strip t ∈ [0, T) by solving the Kuramoto-Sivashinsky (18.1) rewritten as a set of
equations first order in spatial derivatives 7

∂

∂x
u0 = u1 ,

∂

∂x
u1 = u2 ,

∂

∂x
u2 = u3 , (1.34)

∂

∂x
u3 = − ∂

∂t
u0 − u2 − u0u1 .

Given the time-periodic boundary condition (1.32), it is natural to expand the
Kuramoto-Sivashinsky field u(x, tn) = un(x) as a temporal Fourier u(x, tn) =
un(x) overM points of a periodic temporal lattice tn = nT/M , n = 0, 1, · · · ,M−
1:

ui(x, t) =
M−1∑
n=0

ûi,n(x) eiωntn , where ωn = 2πn/T . (1.35)

Rewriting (1.34) in terms of temporal Fourier modes, we obtain 4M ordinary
differential equations,

∂

∂x
û0,n = û1,n

∂

∂x
û1,n = û2,n

∂

∂x
û2,n = û3,n (1.36)

∂

∂x
û3,n = −iωnû0,n − û2,n −

M−1∑
n′=0

û0,n−n′ û1,n′ .

8

Integrating Kuramoto-Sivashinsky on a T = 0 line

[2016-02-06 Predrag summarize the Michelson [46] case on the spatialL → ±∞
domain. Review the reflection-invariant subspace discussed in Lan’s thesis [43]
and his thesis-work article [16, 44]. Then set up the full O(2) equivariant case,
and describe the O(2)-symmetry reduced case, following refs. [5, 6]. ]

7Predrag 2016-07-23: The equations seem correct to me. The notation of refs. [43, 44] is different,
but Burak’s u(j) fields are easier to keep track of. 2019-05-18 PC experimenting with uj format.

8Predrag 2016-09-12, 2016-09-23: Checked, except for the range of n′.
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Figure 1.3: The energy (1.38) of the equilibria and relative equilibria that exist
up to L = 22, L̃ = 3.5014 . . ., plotted as a function of the system size L̃ = L/2π
(additional equilibria, not present at L = 22 are given by Greene and Kim [29]).
Solid curves denote n-cell solutions E2 and E3, dotted curves the GLMRT equi-
librium E1, and dashed curves the relative equilibria TW±1 and TW±2. The
parameter α of refs. [29, 40] is related to the system size by L̃ =

√
α/4. (From

Cvitanović, Davidchack and Siminos [10])

If u is a temporal equilibrium, u = u(x + vt, 0) whose spatial profile does
not change in time, with a vanishing ut = 0 (for an equilibrium) or a constant
traveling wave velocity ut = v (for a relative equilibrium), one can integrate
(18.1)

ut − v = 0 = −
(
u2/2− ux − uxxx

)
x

(1.37)

once over space, and the highest order derivative in (1.34) becomes the third
order [16, 43, 44, 46]. We shall refer to this case as the T = 0 temporal strip,
as specifying u = u(x0, 0) at t = 0 instant suffices to initialize the spatial evo-
lution, which in this case is given by a set of three ODEs and an integration
constant, which can be interpreted as the energy density E,

E = 1
2u

2 − cu+ ux + uxxx . (1.38)

Computationally, it is more robust to compute E by averaging over L, as in
(1.51).

Eqs. (1.34), however, remain a set of four PDEs for any T > 0 temporal strip.

Spatial stability of u = 0 equilibrium

To calculate the spatial stability of a spatial equilibrium, we need to evaluate
the stability matrix of the system in the complex representation (1.36) in terms
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of the 16 sub-blocks

AIJij (û) =
∂û
′ (I)
i

∂û
(J)
j

, û
′

= ûx . (1.39)

The trivial equilibrium of (1.36) is given by û
(I)
j = 0. In terms of [M ×M ]

temporal Fourier modes blocks its spatial stability matrix is

AIJ(0) =


0 1 0 0
0 0 1 0
0 0 0 1

Diag{−iωk} 0 −1 0

 (1.40)

1.6.1 Kuramoto-Sivashinsky on a torus

Here we propose to describe all solutions u(x, t) of Kuramoto-Sivashinsky equa-
tion (18.1) as the closure of the union of the set of all prime (non-repeating)
invariant 2-tori

u(x, t) = u(x, t+ T) = u(x+ L, t)

= u(x+ L, t+ T) , (x, t) ∈ ([0, L), [0, T)) . (1.41)

Consider a torus (L, T) with spatiotemporally doubly-periodic u(x, t) =
u(x + L, t + T), (x, t) ∈ ([0, L), [0, T)), see figure 1.2 (c), and combine the dis-
crete spatial Fourier modes expansion (1.25) with the discrete temporal Fourier
modes expansion (1.35). Discretize u(xn, tm) = unm over N points of a peri-
odic spatial lattice xn = nL/N , and M points of a periodic temporal lattice
tm = mT/M ,

ûkj =
1

NM

N−1∑
n=0

M−1∑
m=0

umn e
−i(qkxm+ωjtn) , qk =

2πk

L
, ωj =

2πj

T

umn =
M−1∑
k=0

N−1∑
j=0

ûkj e
i(qkxm+ωjtn) , (1.42)

In its Fourier discretization, Kuramoto-Sivashinsky PDE (1.26) is a set of MN
algebraic equations for the spatiotemporal Fourier coefficients û,

[
iωj − (q2

k − q4
k)
]
ûkj + i

qk
2

M−1∑
k′=0

M−1∑
j′=0

ûk′j′ ûk−k′,j−j′ = 0 . (1.43)

In other words, we have reduced the problem of either temporal or spatial
evolution on a spatiotemporally periodic domain to the fixed point problem of
determining an invariant 2-torus, a fixed point in the NM -dimensional state
space.
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9 First, however, we must eliminate the temporal translation marginal eigen-
mode by a Poincaré section, and the spatial translation marginal eigenmode by
a slice. Generically, they both can fixed by the first Fourier mode Poincaré sec-
tion / slice. The Newton method then requires inversion of 1−J , i.e., det (1−J),
where J is the 2-torus Jacobian matrix. 10

We can generalize the notion of average ‘energy’ density (1.51) and apply it
to any invariant 2-torus p by also averaging over time

Ep =
1

LT

∮
dx

∮
dt
u2

2
, (1.44)

The Fourier space average spatial energy density (1.52) generalized to any spa-
tiotemporal solution (1.42) is then:

E =

N−1∑
k=0

M−1∑
n=0

1
2 |ûkn|2 . (1.45)

1.6.2 Spatiotemporal u = 0 equilibrium
11 Consider the ûkn = 0 equilibrium of (1.43). Its linearization is 12

iωn = q2
k − q4

k

i
2πn

T
=

(
2πk

L

)2

−
(

2πk

L

)4

. (1.46)

The two special cases are the spatial strip of sect. 1.5, which yields the 2N real
temporal stability exponents λk = iω(k) for a fixed spatial strip of width L, and
the temporal strip of sect. 1.6, which yields the 4 + 8(M − 1) complex spatial
stability exponents iq±,±(n) for a fixed temporal strip of period T, as the four
solutions of the quartic equation (1.43) for each iωn, n = 0,±1,±2,±M/2 :

(iqk)4 + (iqk)2 + iωn = 0 ⇒ iq±,±(n) = ±
√

(−1±
√

1− 4iωn)/2 (1.47)

13 Each solution appears twice, corresponding to (ωn,−ωn), except for

q±,±(0) = ∓i
√

(−1± 1)/2 = (0, 0,−1, 1) . (1.48)

There are two root magnitudes for each n 6= 0, independent of the sign of n:

|2q±,±(n)|2 = 1 +
√

1 + 16ω2
n ±
√

1 + 4iωn ±
√

1− 4iωn . (1.49)
9Matt 2019-05-13: Elimination of space and time translations effectively reduces the codimen-

sion of each solution by two, this is undesirable when numerically solving the (??) in a least-squares
sense

10Predrag 2018-04-08: see also sect. 1.6.3.
11Predrag 2019-03-16: Incorporate here the spatial evolution stability analysis of blog posts

starting with 2016-09-02 Matt Stability of u=0 equilibria.
12Matt 2016-09-12 : Added the factor of i that was missing in (1.43) 2016-09-23 restored signs to

match (1.26) and (1.43)
13Matt 2016-09-20: I think I should have been looking for iqk not qk? If so, it matches the

stability exponents of (1.40)
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1.6.3 Spatiotemporal stability

Let uq(x, t) be a doubly-periodic solution of (1.43) on the (x, t) ∈ [0, L)× [0, T)
torus, a point in the L T-dimensional state space. Add an arbitrary small per-
turbation field δu(x, t), also doubly periodic. Linearize (1.43). The linearized
operator acting on δu(x, t) must annihilate it, i.e., (WRONG AS IT STANDS)

(J(uq)− Λj1)δu = 0

where the Jacobian matrix is the linearization over the whole 2-torus

J(ûq)kn =
[
iωn − (q2

k − q4
k)
]
δkn + iqk

N−1∑
k′=0

M−1∑
m′=0

ûk′m′δk−k′,m−m′ . (1.50)

In d = 1 case (pure temporal evolution) det (J(uq) − 1) is the usual period T
cycle weight, this time obtained not by integration in time but by evaluating the
determinant of the Toeplitz matrix over the whole cycle in one go (this might
be familiar to some from the path-integral derivation of Gutzwiller formula
cycle weight. With (1.50), det (J(uq) − 1) is the pattern weight in d = 2, and
this generates to defining the invariant weight for any d-torus.

1.6.4 Energy transfer rates

In physical settings where the observation times are much longer than the dy-
namical ‘turnover’ and Lyapunov times (statistical mechanics, quantum physics,
turbulence) periodic orbit theory [9] provides highly accurate predictions of
measurable long-time averages such as the dissipation and the turbulent drag [27].
Physical predictions have to be independent of a particular choice of ODE rep-
resentation of the PDE under consideration and, most importantly, invariant
under all symmetries of the dynamics. In this section we discuss a set of such
physical observables for the 1-d Kuramoto-Sivashinsky invariant under reflec-
tions and translations. They offer a representation of dynamics in which the
symmetries are explicitly quotiented out. ⇓PRIVATEThe time-dependent L2 norm of u,

E(t) =
1

L

∮
dx

u2

2
, (1.51)

has a physical interpretation [29] as the average energy density. The energy
density is intrinsic to the flow, invariant under translations and reflections, and
independent of the particular ODE basis set chosen to represent the PDE. In the
Fourier space the energy density (1.51) is a diagonalized quadratic norm,

E(t) =
∞∑

k=−∞

Ek(t) , Ek(t) = 1
2 |ûk(t)|2 . (1.52)

⇑PRIVATE
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The space average of a function a = a(x, t) = a(u(x, t)) on the interval L,

〈a〉 =
1

L

∮
dx a(x, t) , (1.53)

is in general time dependent. Its mean value is given by the time average

a = lim
t→∞

1

t

∫ t

0

dτ 〈a〉 = lim
t→∞

1

t

∫ t

0

1

L

∮
dτ dx a(x, τ) . (1.54)

The mean value of a = a(uq) ≡ aq evaluated on q equilibrium or relative equi-
librium u(x, t) = uq(x− ct) is

aq = 〈a〉q = aq . (1.55)

Evaluation of the infinite time average (1.54) on a function of a periodic orbit or
relative periodic orbit up(x, t) = up(x, t+Tp) requires only a single Tp traversal,

ap =
1

Tp

∫ Tp

0

dτ 〈a〉 . (1.56)

Equation (18.1) can be written as

ut = −Vx , V (x, t) = 1
2u

2 + ux + uxxx . (1.57)

If u is ‘flame-front velocity’ then E, defined in (1.18), can be interpreted as the
mean energy density. So, even though Kuramoto-Sivashinsky is a phenomeno-
logical small-amplitude equation, the time-dependent L2 norm of u,

E =
1

L

∮
dxV (x, t) =

1

L

∮
dx

u2

2
, (1.58)

has a physical interpretation [29] as the average ‘energy’ density of the flame
front. This analogy to the mean kinetic energy density for the Navier-Stokes
motivates what follows.

The energy (1.58) is intrinsic to the flow, independent of the particular ODE
basis set chosen to represent the PDE. However, as the Fourier amplitudes are
eigenvectors of the translation operator, in the Fourier space the energy is a
diagonalized quadratic norm,

E =

∞∑
k=−∞

Ek , Ek = 1
2 |ak|2 , (1.59)

and explicitly invariant term by term under translations (12.46) and reflections
(12.45).

Take time derivative of the energy density (1.58), substitute (18.1) and in-
tegrate by parts. Total derivatives vanish by the spatial periodicity on the L
domain:

Ė = 〈ut u〉 = −〈
(
u2/2 + ux + uxxx

)
x
u〉

= 〈ux u2/2 + ux
2 + ux uxxx〉 . (1.60)
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The first term in (1.60) vanishes by integration by parts, 3〈ux u2〉 = 〈(u3)x〉 = 0 ,
and integrating the third term by parts yet again one gets [29] that the energy
variation

Ė = P −D , P = 〈ux2〉 , D = 〈uxx2〉 (1.61)

balances the power P pumped in by anti-diffusion uxx against the energy dissi-
pation rate D by hyper-viscosity uxxxx in the Kuramoto-Sivashinsky equation
(18.1).

The time averaged energy density E computed on a typical orbit goes to
a constant, so the expectation values (1.62) of drive and dissipation exactly
balance each out:

Ė = lim
t→∞

1

t

∫ t

0

dτ Ė = P −D = 0 . (1.62)

In particular, the equilibria and relative equilibria fall onto the diagonal in ref-
figf:drivedrag, 14 and so do time averages computed on periodic orbits and
relative periodic orbits:

Ep =
1

Tp

∫ Tp

0

dτ E(τ) , P p =
1

Tp

∫ Tp

0

dτ P (τ) = Dp . (1.63)

In the Fourier basis (1.59) the conservation of energy on average takes form

0 =
∞∑

k=−∞

(q2
k − q4

k)Ek , Ek(t) = 1
2 |ak(t)|2 . (1.64)

The large k convergence of this series is insensitive to the system size L; Ek
have to decrease much faster than q−4

k . Deviation of Ek from this bound for
small k determines the active modes. For equilibria the L-independent bound
on E is given by Michaelson [46]. The best current bound [3, 24] on the long-
time limit of E as a function of the system size L scales as E ∝ L2.

1.7 Spatiotemporal symbolic dynamics

The square lattice discretization uz of a spacetime field u(x, τ) is obtained by
specifying its values umn = u(xm, tn) on lattice points z = (m,n) ∈ Z2. Exam-
ples are diffusive coupled map lattices [36, 37] and Gutkin et al. spatiotemporal
cat [12, 30, 31]. In this paper the first index will refer to configuration space,
and the second to time. In the Fourier representation ûkj , the first index will
refer to the spatial Fourier mode, and the second to the frequency.

There are two lattices at play here: (i) the spacetime discretization (1.42),
and (ii) the symbolic dynamics discretization. What follows refers to as yet
unattained latter.

Lattices. Consider a 2-dimensional square lattice infinite in extent, with
each site labeled by 2 integers z = (m,n) ∈ Z2. Assign to each site z a letter

14Predrag 2019-12-06: Reference ‘f:drivedrag’ undefined
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sz from a finite alphabet A. A particular fixed set of letters sz corresponds
to a particular lattice state M = {sz} . In other words, a 2-dimensional lattice
requires a d-dimensional code M = {mn1n2

} for a complete specification of
the corresponding state U. The full shift is the set of all 2-dimensional symbol
blocks that can be formed from the letters of the alphabet A

Σ̂ = {{sz} : sz ∈ A for all z ∈ Z2} . (1.65)

Multidimensional shifts. For an autonomous dynamical system, the evo-
lution law f is of the same form for all times. If f is also of the same form
at every lattice site, the group of lattice translations, acting along the spatial
lattice direction by shift σ, is a spatial symmetry that commutes with the tem-
poral evolution. A temporal mapping f that satisfies f ◦ σj = σ ◦ f along the
spatial lattice direction is said to be shift invariant, with the associated symme-
try of dynamics given by the d-dimensional group of discrete spatiotemporal
translations.

Blocks. Let Rz ⊂ Z2 be a finite [`1×`2] rectangular lattice region, `k ≥ 1,
whose lower left corner is the z = (n1n2) lattice site

R = R[`1×̀ 2]
n = {(n1 + j1, · · ·n2 + j2) | 0 ≤ jk ≤ `k − 1} . (1.66)

The associated finite block of symbols sz ∈ A restricted to R, MR = {sz|z ∈
R} ⊂ M is called the block MR of area nR = `1`2. For example, a R = [3 × 2]
block is of form

M =

[
s12s22s32

s11s21s31

]
(1.67)

and volume (in this case, an area) equals 3× 2 = 6. In our convention, the first
index is ‘space’, increasing from left to right, and the second index is ‘time’,
increasing from bottom up.

Cylinder sets. While a particular admissible infinite symbol array M = {sz}
defines a point U (a unique lattice state) in the state space, the cylinder setMR,
corresponding to the totality of state space points U that share the same given
finite block MR symbolic representation over the region R. For example, in
d = 1 case

MR = {· · · a−2a−1 . s1s2 · · · s`a`+1a`+2 · · · } , (1.68)

with the symbols outside of the block unspecified.
Invariant 2-tori. A state space point is spatiotemporally periodic if it belongs

to a invariant 2-torus, i.e., its symbolic representation is a block over region R
defined by (16.61),

Mp = MR , R = R[L×T]
0 , (1.69)

that tiles the lattice state M periodically, with period L in the spatial lattice
direction, and period T in the time lattice direction.

Subshifts. Let Σ̂ be the full lattice shift (16.60), i.e., the set of all possible
lattice state M labelings by the alphabet A, and Σ̂(MR) is the set of such blocks
over a region R. The principal task in developing the symbolic dynamics of a
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dynamical system is to determine Σ, the set of all admissible itineraries/lattice
states, i.e., all states that can be realized by the given system.

Pruning, grammars, recoding. If certain states are inadmissible, the alpha-
bet must be supplemented by a grammar, a set of pruning rules. Suppose that
the grammar can be stated as a finite number of pruning rules, each forbidding
a block of finite size,

G = {b1, b2, · · · bk} , (1.70)

where a pruned block b is an array of symbols defined over a finite R lattice
region of size [L1×L2]. In this case we can construct a finite Markov partition by
replacing finite size blocks of the original partition by letters of a new alphabet.
In the case of a 1-dimensional, the temporal lattice, if the longest forbidden
block is of length L + 1, we say that the symbolic dynamics is Markov, a shift
of finite type with L-step memory.

Let U = {uz ∈ T1, z ∈ Z2} be a spatiotemporally infinite solution of Ku-
ramoto-Sivashinsky equation (1.42), and let M = {sz ∈ A , z ∈ Z2} be its
symbolic representation. By the presumed connection between U and M, the
corresponding symbolic dynamics block M is unique and admissible, i.e., M
defines the unique spatiotemporal state U and vice-versa.

Assume now that only partial information is available, and we know only
a finite block of symbols MR ⊂ M, over a finite lattice region R ⊂ Z2. What
information about the local spatiotemporal pattern UR = {xz ∈ T1, z ∈ R}
does this give us? To be specific, let R be a rectangular [`1× `2] region (see
(16.61) for the definition), and let MR be the [`1×`2] block of M symbols.

This formalism is necessary for us to interpret results but it cannot inform
us of the grammar (rules which dictate admissible combinations) of the sym-
bolic dynamics. To uncover the grammar of the symbolic dynamics we can
combine tile solutions numerically and find which combinations are inadmis-
sible. The manner with which we combine such tiles is described in sect. 1.9.
This can proceed in an automated manner, taking all possible spatiotemporal
combinations of tiles. This portion has not been completed just yet and there
are some key details that must be worked out before we can proceed. The
main problem is in regards to false negatives. Because the gluing procedure
of sect. ?? is a numerical effort, utmost care must be taken in combining solu-
tions. If the tiles are not combined properly, the combination of tiles may be
falsely deemed an inadmissible combination which would give us the incor-
rect grammar or set of pruning rules. We will provide a number of examples
of what can go wrong but the list is far from exhaustive. The first example of
how a false negative may occur is that if the wrong members of the continuous
families are combined then the combination may not converge even though the
corresponding symbolic block is admissible. Another example is that when the
tiles are being combined there must be some numerical procedure for how to
smooth discontinuities where the boundaries of the tiles are conjoined. This
typically isn’t a huge issue but it definitely has a larger effect on smaller com-
binations. One must also take into consideration the initial conditions for the
extent of the spatiotemporal domain [T×L]. For this we approximate the spa-
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tiotemporal domain as simply being the arithmetic average of the dimensions
but this may be too crude as it does not take into account how the coupling
between tiles affects the domain size. Our last example is a debate between
whether to glue progressively larger symbolic blocks together (i.e., the “tiles”
are replaced by larger and larger numerically converged invariant 2-tori ). Al-
ternatively, we can start each attempt by gluing the indivisible elements, the
tiles. These two methods both take combinations of numerically converged
invariant 2-tori. The difference lies in the size of the continuous families of so-
lutions. Anecdotal evidence seems to suggest that the tiles exist on a smaller
interval of spatial domain sizes L± ε when compared to larger invariant 2-tori.

The goal of the previous discussion is to enumerate and describe the “best”
method to produce the grammar of the spatiotemporal symbolic dynamics.
Once the details are in place, the combinations would be tested in an auto-
mated fashion which would hopefully produce a consistent set of pruning
rules which could be used to define the inadmissible symbolic blocks of the
spatiotemporal symbolic dynamics.

1.8 Examples
Example 1.1. Equivariance under infinitesimal transformations. A flow ẋ = v(x)
is G-equivariant, if symmetry transformations commute with time evolution

v(x) = g−1 v(g x) , for all g ∈ G . (1.71)

For an infinitesimal transformation the G-equivariance condition becomes

v(x) = (1− φ ·T) v(x+ φ ·Tx) + · · · = v(x)− φ ·Tv(x) +
dv

dx
φ ·Tx+ · · · .

The v(x) cancel, and φa are arbitrary. Denote the group flow tangent field at x by
ta(x)i = (Ta)ijxj . Thus the infinitesimal, Lie algebra G-equivariance condition is

ta(v)−A(x) ta(x) = 0 , (1.72)

where A = ∂v/∂x is the stability matrix. A learned remark: The directional derivative
along direction ξ is limt→0(f(x+ tξ)− f(x))/t . The left-hand side of (1.72) is the Lie
derivative of the dynamical flow field v along the direction of the infinitesimal group-
rotation induced flow ta(x) = Tax,

Ltav =

(
Ta −

∂

∂y
(Tax)

)
v(y)

∣∣∣∣
y=x

. (1.73)

The equivariance condition (1.72) states that the two flows, one induced by the dy-
namical vector field v, and the other by the group tangent field t, commute if their Lie
derivatives (or the ‘Lie brackets ’ or ‘Poisson brackets’) vanish.

click to return: p. 499

Example 1.2. Stability of spatiotemporal patterns. How does one determine the
eigenvalues of the finite time local deformation Jt for a general nonlinear smooth flow?
The Jacobian matrix is computed by integrating the equations of variations

x(t) = f t(x0) , δx(x0, t) = Jt(x0) δx(x0, 0) . (1.74)
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The equations are linear, so we should be able to integrate them–but in order to make
sense of the answer, we derive this integral step by step.

Consider the case of a general, non-stationary trajectory x(t). The exponential of a
constant matrix can be defined either by its Taylor series expansion or in terms of the
Euler limit:

etA =

∞∑
k=0

tk

k!
Ak = lim

m→∞

(
1 +

t

m
A

)m
. (1.75)

Taylor expanding is fine if A is a constant matrix. However, only the second, tax-
accountant’s discrete step definition of an exponential is appropriate for the task at
hand. For dynamical systems, the local rate of neighborhood distortion A(x) depends
on where we are along the trajectory. The linearized neighborhood is deformed along
the flow, and the m discrete time-step approximation to Jt is therefore given by a gen-
eralization of the Euler product (1.75):

Jt(x0) = lim
m→∞

1∏
n=m

(1 + δtA(xn)) = lim
m→∞

1∏
n=m

eδtA(xn) (1.76)

= lim
m→∞

eδtA(xm)eδtA(xm−1) · · · eδtA(x2)eδtA(x1) ,

where δt = (t− t0)/m, and xn = x(t0 + nδt). Indexing of the product indicates that
the successive infinitesimal deformation are applied by multiplying from the left. The
m→∞ limit of this procedure is the formal integral

Jtij(x0) =
[
Te

∫ t
0 dτA(x(τ))

]
ij
, (1.77)

where T stands for time-ordered integration, defined as the continuum limit of succes-
sive multiplications (1.76). This integral formula for Jt is the main conceptual result of
the present chapter. This formula is the finite time companion of the differential defini-
tion (??). The definition makes evident important properties of Jacobian matrices, such
as their being multiplicative along the flow,

Jt+t
′
(x) = Jt

′
(x′) Jt(x), where x′ = f t(x0) , (1.78)

which is an immediate consequence of the time-ordered product structure of (1.76).
click to return: p. 499

Example 1.3. Floquet multipliers of a spatiotemporal torus are invariant. The
1-dimensional map Floquet multiplier is a product of derivatives over all points around
the cycle, and is therefore independent of which periodic point is chosen as the initial
one. In higher dimensions the form of the Floquet matrix Jp(x0) does depend on the
choice of coordinates and the initial point x0 ∈ Mp. Nevertheless, as we shall now
show, the cycle Floquet multipliers are intrinsic property of a cycle in any dimension.
Consider the ith eigenvalue, eigenvector pair (Λj , e

(j)) computed from Jp evaluated at
a periodic point x, 15

Jp(x) e(j)(x) = Λj e
(j)(x) , x ∈Mp . (1.79)

Consider another point on the cycle at time t later, x′ = f t(x) whose Floquet matrix is
Jp(x

′). By the semigroup property (1.78), JT+t = Jt+T , and the Jacobian matrix at x′

can be written either as

JT+t(x) = JT(x′) Jt(x) = Jp(x
′) Jt(x) ,

15Predrag : fix scale in figure ??, refer to it
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or Jt(x) Jp(x). Multiplying (1.79) by Jt(x), we find that the Floquet matrix evaluated at
x′ has the same Floquet multiplier,

Jp(x
′) e(j)(x′) = Λj e

(j)(x′) , e(j)(x′) = Jt(x) e(j)(x) , (1.80)

but with the eigenvector e(j) transported along the flow x→ x′ to e(j)(x′) = Jt(x) e(j)(x).
Hence, in the spirit of the Floquet theory one can define time-periodic eigenvectors (in
a co-moving ‘Lagrangian frame’)

e(j)(t) = e−λ
(j)t Jt(x) e(j)(0) , e(j)(t) = e(j)(x(t)) , x(t) ∈Mp . (1.81)

Jp evaluated anywhere along the cycle has the same set of Floquet multipliers {Λ1,Λ2,
· · · , 1, · · · ,Λd−1}. As quantities such as tr Jp(x), det Jp(x) depend only on the eigen-
values of Jp(x) and not on the starting point x, in expressions such as det

(
1− Jrp (x)

)
we may omit reference to x,

det
(
1− Jrp

)
= det

(
1− Jrp (x)

)
for any x ∈Mp . (1.82)

We postpone the proof that the cycle Floquet multipliers are smooth conjugacy invari-
ants of the flow; time-forward map (1.80) is the special case of this general property of
smooth manifolds and their tangent spaces.

click to return: p. 499

1.9 Tiling spatiotemporal solutions

1.9.1 Tiling state space

The crux of our hypothesis is the ability to enumerate fundamental spatiotem-
poral invariant 2-tori that will comprise a symbolic dynamical alphabet. The
defining quality of these building block solutions, or “tiles”, is that they are
invariant 2-torus solutions with minimal spatiotemporal extent that represent
fundamental patterns seem frequently in large spatiotemporal simulations. The
size of these tiles are on the order temporal and spatial scales of the Kuramoto-
Sivashinsky equation. Their importance is two fold, Firstly, from the theory of
cycle expansions for dynamical systems [1] it is known that the shortest cycles
are the most important of all cycles. Secondly, even though the complexity of
solutions grows exponentially in each continuous direction this is not due to
emergence of unique spatiotemporal patterns but rather combinations of spa-
tiotemporal tiles. In other words, these tiles serve as the “building blocks” for
all invariant 2-tori.

Analyzing fundamental geometrical shapes and how they combine is not a
new idea. The importance of time invariant sets and exact coherent structure
has been known for quite some time in dynamical systems. What is new is to
treat continuous time as merely another dimension which parameterizes our
special patterns, the tiles. That is to say, there is nothing special about time
and it should be treated on the same footing as space. The identification and
utilization of special patterns appears in other disciplines such as the study of
topological defects in nematic liquid crystals [22] and cosmology [52], as well

03/20/2019 siminos/spatiotemp/chapter/spatiotemp.tex32 7451 (predrag–6812)



CHAPTER 1. SPACE-TIME, SLICED & SECTIONED

as the study of motifs in complex networks [45, 47]. The patterns are impor-
tant for different reasons in the different fields of study, but all are relevant
and connected for our study. In the case of liquid crystals the difference of
defects from “regular” patterns is that they carry an energy cost. Cosmolog-
ically, topological defects are suspected as possible sources for the structures
seen in the universe today [2]. Motifs in complex networks are important be-
cause they represent subgraphs which appear much more frequently than one
would expect in randomized networks, and certain patterns seem to be specific
to different categories of networks (biological, technological, etc.) [47]. There
are many different perspectives with which we can view the Kuramoto-Siva-
shinsky equation. Perhaps we should view the infinite spacetime problem as
structure imposed on an infinite isotropic field by virtue of linear instability
of the equations. Or we could view it from a liquid crystal point of view and
say that the patterns present themselves in the manner that they do because
of energetically favorable configurations. Using network motifs we could gen-
eralize these ideas to other equations and claim that it is the equations which
determine the motifs and statistics thereof. There are many fascinating con-
cepts at play in our formulation but sadly our time is not infinite so we shall
try to focus on the rules that determine which combinations of tiles are admis-
sible. These concepts provide strong foundation for our theory; all three exam-
ples strongly reinforce the fact that in many systems there are special patterns
whose importance stands far above the rest.

In order to progress this theory we first need to actually find a collection of
tile solutions. The first method to find tiles is simply to search for them directly,
for instance by applying the methods formed in sect. ?? to initial conditions
defined on small spatiotemporal domains. There is no harm in doing this, but
we apply a more supervised technique which is much more effective.

1.9.2 Tile extraction

To find tiles in a smarter and more guided manner, we use scalar fields di-
rectly clipped from converged invariant 2-torias our initial conditions. First
we identify a pattern which appears frequently in the library of converged in-
variant 2-toriand is nearly doubly-periodic. After a pattern has been specified
we choose a invariant 2-torus which contains this pattern and proceed to nu-
merically clip if from the invariant 2-torus. Specifically, If the invariant 2-torus
has spatiotemporal dimensions [L, T] and is given numerically by a rectangu-
lar discretization [M,N ] with M points in space and N points in time, then
candidate tile is a discretization subdomain [M̃, Ñ ], M̃ ≤ M , Ñ ≤ N , with a
spatiotemporal invariant 2-torus whose initial periodicities are guessed to be
[L̃, T̃] =

[
M̃L
M , ÑLN

]
. This initial condition for the tile is clearly not going to

be doubly periodic else it would have covered the original invariant 2-torus.
Therefore, there are going to be discontinuities introduced at the boundaries
which need to be accounted for numerically. A cheap method to do so is to
truncate the spatiotemporal Fourier spectrum before passing the initial con-
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dition to our numerical methods described in sect. ??,sect. ??. If the numer-
ical optimization routine is successful then we add the converged invariant
2-torus to the collection of known tiles. Because tiles are few in number, one
can and should visually inspect the converged tile to ensure that it indeed a
realization of the desired pattern, as it is possible to converge to larger invari-
ant 2-toriwhich are not themselves tiles (this usually happens as a result of the
domain size changing over the course of the optimization process).

Extracting tiles

By following this schematic we were able to converge a number of initial con-
ditions, some of which are spatiotemporal tiles. This process is summarized in
the Figures 18.2, 18.1, 18.3, 18.4, 18.5, 17.12, 17.13 and 17.14 which show (a) the
initial invariant 2-torus, (b) initial guess extracted as a subdomain, and (c) the
final, converged tile (invariant 2-torus).

Sequential subdomain extraction

While typically robust enough to find tiles in “one step”,i.e.with a single initial
condition, we can also employ our numerical methods iteratively to find tiles
by sequentially converging to progressively smaller subdomains. We demon-
strate this process in its entirety in figure 18.6; the result is the same as fig-
ure 18.5 but it is still a good example. The advantage of this method is that by
converging progressively smaller invariant 2-tori we increase our chances of
converging to a spatiotemporal tile. Numerically, this is because the invariant
2-tori adjust themselves to account for the change in spatiotemporal domain
size and so each succeeding subdomain becomes a more “accurate” initial con-
dition. Note that this procedure is only applicable if there is a sequence of
subdomains which are approximately doubly periodic; choosing an arbitrary
subdomain would likely fail. A disadvantage of this method is, of course, that
the repeated computations require more time and, in our implementation, the
selection of each subdomain is done manually.

Ternary tile alphabet

As one would expect from “fundamental” solutions, the patterns represented
by our tiles can be described very succinctly. Typically, each of the tiles contains
no more than two wavelengths as can be seen by the red-blue (crest-trough)
pairs in the corresponding scalar fields. Because of this we will refer to them by
shorthand names that capture their general behavior and makes a connection
to pattern names which, as we shall see, are relatively common in the study of
fluid flows [35, 48, 54]. In the spirit of topological defects [22, 41, 45] we shall
give the tiles new names so that they can be easily identified and referred to.
The first pattern is the single wavelength equilibrium solution which we shall
refer to as the “streak” ((a) from figure 1.10. The streak tile is the smallest tile
solution, as it has no temporal dimension because its an equilibrium solution
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(a) (b)

(c)

Figure 1.4: (a) [La, Ta] = [3.50 · · · , 94.59 · · · ] fundamental domain of an al-
ready computed invariant 2-torus with spatial translation symmetry. (b) The
clipped-out [Lb, Tb] = [2, 17] subdomain used the initial guess for the funda-
mental domain of a shift-reflect symmetric tile. (c) The converged [Lc, 2Tc] =
[2.07 · · · , 18.46 · · · ] invariant 2-torus with spatial translation symmetry.
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(a) (b)

(c)

Figure 1.5: (a) [La, Ta] = [3.50 · · · , 94.59 · · · ] fundamental domain of an al-
ready computed invariant 2-torus with spatial translation symmetry. (b) The
clipped-out [Lb, Tb] = [2.2, 20] subdomain used the initial guess for the funda-
mental domain of a shift-reflect symmetric tile. (c) The converged [Lc, 2Tc] =
[2.07 · · · , 15.46 · · · ] invariant 2-torus with spatial translation symmetry.
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(a) (b)

(c)

Figure 1.6: (a) [La, Ta] = [3.50 · · · , 85.73 · · · ] fundamental domain of an al-
ready computed invariant 2-torus with spatiotemporal shift-reflection symme-
try. (b) The clipped-out [Lb, Tb] = [2.6, 17] subdomain used the initial guess
for the fundamental domain of a shift-reflect symmetric tile. (c) The converged
[Lc, Tc] = [2.06 · · · , 19.92 · · · ] invariant 2-torus with spatial translation symme-
try.
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(a) (b)

(c)

Figure 1.7: (a) [La, Ta] = [3.50 · · · , 10.25 · · · ] fundamental domain of an al-
ready computed invariant 2-torus with spatiotemporal shift-reflection symme-
try. (b) The clipped-out [Lb, Tb] = [2.1, 10.5] subdomain used the initial guess
for the fundamental domain of a shift-reflect symmetric tile. (c) The converged
[Lc, Tc] = [2.08 · · · , 9.22 · · · ] invariant 2-torus with spatial translation symme-
try.

but it also has the smallest spatial extent, L
2π ≈ 1.02. As seen by its near inte-

ger value, this spatial extent happens to be in line with the important spatial
scale of the Kuramoto-Sivashinsky equationṪhe streak tile was found directly
as an equilibrium solution without any extraction efforts. Although it has no
temporal extent, we shall still refer to this as a invariant 2-torus because the
shadowing events do have temporal variations. There seems to be no single
time scale for these shadowing events, but rather the time scale is determined
by the local interactions with its neighbors. In this way the streak almost plays
role as a space filler and perhaps we should view spatiotemporal state space as
defects inserted into an infinite equilibrium solution.

Next we have a tile whose behavior is best summarized as a two-to-one
wavelength merger. Two wavelengths propagate in time while adjacent spa-
tially; eventually turning inwards and colliding such that only the “outer” pair
of remain and form a single wavelength. We shall refer to this pattern as a
“merger”. This pattern is strikingly similar to what is know as “edge disloca-
tions” [41] but we prefer to refer to it as a “merger” because in our system this
pattern does not arise as the result of physical strain. This tile, ((b) figure 1.10),
is a invariant 2-torus with dimensions L ≈ 2.07,T ≈ 18.5 and continuous spa-
tial translation symmetry parameter value approximately equal to a quarter of
the domain size σ ≈ 0.2529L. This tile might be the most important out of all
as we shall see

The last tile consists of a pair of wavy streaks. This is exactly how it sounds;
a streak pattern which waves back and forth in the spatial direction before
returning to its original position. Not only is it a invariant 2-torus but it is a
invariant 2-torus that lies in the reflection invariant subspace sect. 12.3.2, which
allows us to think of the tile in one of two ways. We could consider a single
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(a) (b)

(c)

Figure 1.8: (a) [La, Ta] = [4.25 · · · , 54.13 · · · ] fundamental domain of an al-
ready computed invariant 2-torus with spatiotemporal shift-reflection symme-
try. (b) The clipped-out [Lb, Tb] = [2.7, 15] subdomain used the initial guess
for the fundamental domain of a shift-reflect symmetric tile. (c) The converged
[Lc, Tc] = [2.90 · · · , 17.95 · · · ] full reflection symmetric invariant 2-torus.
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(a)

(b)

(c) (d)

Figure 1.9: Sequential subdomain extraction to find tiles. (a) A periodic or-
bit from the collection of new solutions [La, Ta] = [4.25 · · · , 54.12 · · · ]. By
taking progressively smaller subdomains (b)-(d) and numerically converging
them to invariant 2-tori at each step, we are able to find the smallest sub-
domain of (a) which can be converges to a invariant 2-torus, namely (d).
(b)[Lb, Tb] = [4.16 · · · , 18.93 · · · ] (c)[Lc, Tc] = [2.79 · · · , 17.14 · · · ] (d)[Ld, Td] =
[1.39 · · · , 17.14 · · · ]
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(a)

(b) (c)

Figure 1.10: (a) The “streak tile”. Converged equilibriumLs = 1.02 · · · demon-
strating the fundamental streak pattern. There is no temporal variation or scale
but the solution u(x) is plotted as a spatiotemporal function simply to be con-
sistent with other spatiotemporal figures. (b) The “merger” tile. Converged
invariant 2-torus depicting two-to-one wavelength merging. This tile is a rela-
tive periodic invariant 2-torus [Lm, Tm] = [2.07 · · · , 15.86 · · · ] with spatial shift
parameter τx ≈ 1.06. This represents a spatial shift approximately equal to a
quarter of the domain. (c) The “gap” tile. Converged invariant 2-torus depict-
ing “wavy streak” behavior. [Ld, Td] = [2.80 · · · , 17.14 · · · ] (plotted in the full
state space for reasons described in sect. 1.9).

wavelength to be the tile; there are a number of reasons why we avoid this.
Firstly, sometimes it isn’t clear how to distinguish a single wavy streak from
a regular streak deformed by coupling to its neighbors. Numerically, these
patterns are so similar that it is possible to converge to the same solution using
either type of streaks; one would merely increase the cost functional value as
its more “out of place” that the other. It might be hard to distinguish between
a single wavy streak and a regular streak, but when you have a pair of wavy
streaks it is quite clear, as they are symmetry partners which are adjacent to
one another. Secondly, it seems that the pair of wavy streaks is shadowed more
often, indicating that it is in fact the representation that we should use. We will
refer to the tile comprised of two wavy streaks as the “gap” tile, because when
two wavy streaks repel each other, it creates a region of spacetime where the
magnitude of the scalar field is small,i.e., a “gap” in the scalar field. This can be
seen in plot (c) of figure 18.6. The gap tile shown in figure 1.10 has dimensions
L ≈ 2.81, T ≈ 17.95.

The merger tile captures a key spatiotemporal process in a minimal amount
of information. Let us transgress back into a dynamical systems context to
elaborate. Performing linear stability analysis on the Kuramoto-Sivashinsky
equation shows that there is a range of modes which are linearly unstable [10].
In addition to this, there exists a mode which is the most unstable such that
the number of wavelengths fluctuates around the most unstable wavenumber
as a function of time. The number of wavelengths is calculated by taking the
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average of the number of local minima and maxima (which exceed a certain tol-
erance value in magnitude to avoid extraneous counting). The fluctuation of
this of quantity indicates that there are wavelengths being both “annihilated”
and “created” in time. The merger tile encapsulates both of these processes.
Previously, we described the merger tile as being a two to one wavelength
merger; this is the “annihilation” process in action. There’s slightly more to the
story, however, as very shortly after the wavelength merger a new wavelength
is born in the vacant space. This can be seen in the depiction of the converged
merger tile (c) from figure 18.1. These three tiles provide us with an entirely
new perspective of how to view the Kuramoto-Sivashinsky equation, which is
that the spatiotemporal behavior of solutions seems to be described by the in-
teraction of crest-trough pairs. Specifically, the streak tile describes how wave-
lengths remain constant in time, the gap tile describes how wavelengths repel
each other and the merger tile captures how wavelengths attract and combine.
Technically, on a small spatiotemporal domain the gap tile can be interpreted
as both attracting and repelling because the domain is periodic. Therefore, an
alternative description of the gap tile is that it represents wavelength attraction
without the wavelength merger. This emergent behavior seems to be unique to
the spatiotemporal formulation or is at least not obvious by inspection of the
Kuramoto-Sivashinsky equation (18.1) alone.

The largest concern regarding this formulation is whether or not our alpha-
bet is missing a tile. This would likely be devastating as we know from the
work on cycle expansions that short cycles has the greatest importance [8]. The
only evidence we have to indicate that we have found all tiles is that we simply
have not found any more unique tiles despite a thorough search. Most trials
converge to known tiles (up to symmetry operations). This can be seen in the
comparison between converged invariant 2-tori in figure 1.11.

There are also examples which do not converge to tiles but to combinations
of tiles. Examples include figure 17.12, figure 17.13,figure 17.14. These attempts
all started with what appears to be two patterns conjoined in time. One might
ask why we chose these as tile candidates given they have more than one con-
stituent pattern; our reason is that they were frequently shadowed and we did
not know a priori what tiles existed, hence their consideration as tile candidates.
Their respective converged invariant 2-tori all appear to be two (symmetry re-
lated) copies of the merger tile conjoined temporally, indicating that the initial
conditions were indeed two separate patterns conjoined in time. As just men-
tioned, in the converged invariant 2-tori the two conjoined patterns are much
more similar that in the initial conditions. The explanation for this process can
be explained by the discovery that tiles do not exist as stand alone solutions;
rather, they exist in continuous families (related by smooth deformations) pa-
rameterized by spatiotemporal domain size parameters L and T.

16 17

16Predrag 2019-09-20: Length units (ticks on x-axis) in figure 17.14 (vs. the numbers stated in
the caption) seem screwy, they should be in units of L̃ = L/2π, or (but I do not think that would
be good) in “mean wavelength” units 2π

√
2, see figure 1.1. Or are you plotting lengths in L units?

17Predrag 2019-05-16: Perhaps replace spatial period everywhere with L̃ = L/2π , define L̃
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(a) (b)

(c) (d)

Figure 1.11: (a) Invariant 2-torus from figure 18.1(c), [La, 2Ta] =
[2.07 · · · , 18.46 · · · ] invariant 2-torus with spatial translation symmetry. (b)
Invariant 2-torus from figure 18.2(c), [Lc, 2Tc] = [2.07 · · · , 15.46 · · · ] invari-
ant 2-torus with spatial translation symmetry. (c) Invariant 2-torus from fig-
ure 18.3(c), [Lc, Tc] = [2.06 · · · , 19.92 · · · ] invariant 2-torus with spatial trans-
lation symmetry. (d)Invariant 2-torus resulting from performing pseudo-
arclength continuation on figure 18.4(c). Final invariant 2-torus has [Lc, Tc] =
[2.06 · · · , 23.21 · · · ] and spatial translation symmetry.

1.9.3 Continuous families of tiles

The streak, gap, and merger tiles will be used to construct known and new
solutions. This of course supports our claim that invariant 2-tori and tiles are
shadowing partners. Tiles are never exhibited exactly in invariant 2-tori, how-
ever, because of spatiotemporal coupling. Another way of phrasing this is that
the shadowed tiles deform in order to fit on a spatiotemporal domain and obey
the Kuramoto-Sivashinsky equation simultaneously. This deformation makes
it hard to quantify the shadowing process as we lack a good metric. This cou-
pling also creates difficulties and raises questions when combining tiles to form
initial conditions as we shall see in sect. ??. Through some investigation it
seems that these “deformations” are in fact various instances of continuous
families. This can be shown to by applying pseudo-arclength continuation of
the tiles with respect to the parameters T, L. One such related pair of tiles that
appear different but are in fact representations of the same pattern are the con-
verged invariant 2-tori from figure 18.1 and figure 18.4. Their comparison by
numerical continuation is shown in figure 1.11, along with other similar pat-
terns. In summary, the comparison of figure 1.11 demonstrates that the tiles
appear identical up to translational symmetries; we could fix the phases of the
spatiotemporal Fourier coefficients to demonstrate their equality but we would
rather stress that the same tile can be represented in numerous ways. Not
only is there a continuous family parameterized by the spatiotemporal area,
but also for each spatiotemporal area there is a group orbit (states reachable

with a numbered equation early on. Than have to do it for the time T/2π as well...?
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(a) (b)

(c)

Figure 1.12: (a) [La, Ta] = [3.49 · · · , 73.52 · · · ] fundamental domain of an al-
ready computed invariant 2-torus with spatiotemporal shift-reflection symme-
try. (b) The clipped-out [Lb, Tb] = [2.4, 20] subdomain used the initial guess
for the fundamental domain of a shift-reflect symmetric tile. (c) The converged
[Lc, Tc] = [2.09 · · · , 52.00 · · · ] full shift-reflect symmetric invariant 2-torus.
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(a) (b)

(c)

Figure 1.13: (a) [Lg, Tg] = [3.49 · · · , 92.77 · · · ] fundamental domain of an al-
ready computed invariant 2-torus with spatiotemporal shift-reflection symme-
try. (b) The clipped-out [Lg, Tg] = [2.3, 20] subdomain used the initial guess
for the fundamental domain of a shift-reflect symmetric tile. (c) The converged
[Lg, Tg] = [2.12 · · · , 45.25 · · · ] full shift-reflect symmetric invariant 2-torus.
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(a) (b)
(c)

Figure 1.14: (a) [L0, T0] = [3.49 · · · , 47.77 · · · ] fundamental domain of an al-
ready computed invariant 2-torus with spatiotemporal shift-reflection symme-
try. (b) The clipped-out [Lg, Tg] = [2.06, 25] subdomain used the initial guess
for the fundamental domain of a shift-reflect symmetric tile. (c) The converged
[Lp, 2Tp] = [2.12 · · · , 51.73 · · · ] full shift-reflect symmetric invariant 2-torus.

by symmetry operations) resulting from continuous and discrete symmetries.
The comparison of figure 18.1 and figure 18.4 we have demonstrated allows
us to reinterpret the results from figure 17.12, figure 17.13,figure 17.14. This
new interpretation is that the initial conditions shadow the same tile family
twice; not the same exact tile twice. Upon hindsight this actually makes a lot
of sense as no shadowing events are ever identical. Perhaps this should have
been obvious from the start because larger invariant 2-tori also exist in contin-
uous families, but the reverse idea might be more enlightening. For instance,
it might be more correct to say that invariant 2-tori exist in continuous families
because the tiles exist in continuous families, not the other way around. This in-
terpretation seems to have more impact but it is not without bias as it supports
our tiling methods, however, showing that invariant 2-tori can be constructed
from specific tile combinations provides some good evidence. To account for
continuous families of tiles we must adjust our description of our spatiotempo-
ral symbolic dynamics. The two-dimensional symbolic blocks (one dimension
for each continuous symmetry) now consist of “lattice sites” which are not of
the conventional discrete type but rather each site will represent a invariant
2-torus solution defined on a malleable spatiotemporal domain parameterized
by T,L,σ. This is perhaps what we should have expected to begin with, as
the deformability aligns itself with the principle of shadowing. The shadow-
ing of spatiotemporal invariant 2-tori can be described by regions of spacetime
that are “close” to the invariant 2-torus in some norm. The explanation for
why these shadowing events appear as one family member over another is
quantitatively hard to describe but qualitatively the invariant 2-torus must be
coupled to its spatiotemporal neighbors in order to locally solve the Kuramo-
to-Sivashinsky equation, so whichever family member fits on the domain with
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(a)
(b)

(c)

Figure 1.15: Demonstration of the continuous merger tile family via nu-
merical continuation. The family exists approximately on the range of do-
main sizes L

2π ∈ [≈ 2,≈ 2.13]. Invariant 2-torus solutions reached by nu-
merical continuation of the merger tile solution with spatiotemporal dimen-
sions, (a) [La, Ta] = [2.03 · · · , 35.73 · · · ], (b) [Lb, Tb] = [2.06 · · · , 22.80 · · · ], (b)
[Lc, Tc] = [2.08 · · · , 8.61 · · · ]

its neighbors is the one that is realized. The numerical continuation performed
in figure 1.15 demonstrates at the very least that the merger tile can exist on
multiple spatiotemporal domain sizes. It does not exist on all domain sizes,
however; the displayed examples are close to the “boundaries” of the continu-
ous family (with respect toL). When the solutions (a) and (c) are numerically to
smaller (larger) L they approach a homoclinic connection and relative equilib-
rium solutions, respectively. We expect that the discovery of continuous fami-
lies actually helps us immensely. The benefit is that it provides a much needed
flexibility towards finding admissible patterns. In summary, an optimistic in-
terpretation is that we have a ternary alphabet for our symbolic dynamics pa-
rameterized by parameters such as L and T . This dramatic reduction in the
number of available patterns (seemingly innumerable down to three, give or
take an infinite number of continuous deformations) seems too good to be true.
As we shall see, however, this trinary alphabet is indeed sufficient to repro-
duce known solutions and produce new solutions which provides empirical
evidence that shows we are on the right track. In fact, with some manual la-
bor, we were able to produce an initial condition that converged to the known
solution. This is demonstrated in figure 18.11. The explicit construction of the
initial condition used in figure 18.11 is given by figure 18.12.

Invariant 2-tori from tiles

We have displayed that it is possible to find small spatiotemporal invariant 2-
tori that are embedded in larger invariant 2-tori. Now we will demonstrate the
opposite, finding larger invariant 2-tori by combining smaller invariant 2-tori,
is also possible in a method we call “tiling”. Not only will this provide us with
yet another method to find invariant 2-tori but also it will allow us to inves-
tigate the symbolic dynamics of our spatiotemporal system. Specifically, we
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(a)

(b)

(c) (d)

Figure 1.16: (a) Spatiotemporal symbolic block representation created using
group orbits of three tile families, (b) initial condition produced by combining
tiles according to (a); dimensions initialized at [Lb, Tb] = [4.79 · · · , 88.62 · · · ], (c)
converged invariant 2-torus when using (b) as an initial condition, (d) targeted
invariant 2-torus which (c) was trying to match.
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(a) (b) (c)

(d) (e) (f)

(g)

(h) (i)

Figure 1.17: Demonstration of how to construct an initial condition corre-
sponding to a specific spatiotemporal symbolic block. (a),(b) and (c) together
are the set of tiles used for all other plots in this figure. (d) is a subdomain com-
prised of two copies of (a) and one copy of (b). (e) is a subdomain comprised
of two copies of (a) and one copy of the reflection of (b). (f) is a subdomain
comprised of two copies of (a) and a single copy of (c). The last row of figures
demonstrate how to combine (d),(e), and (f). (g) is the combination of (d) and
(e). (h) is the combination of (d),(e) and (f) (equivalently, (g) and (f)). Lastly (i)
is the smoothed version of (h) which will serve as the initial condition.
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will investigate the grammar [1, 4] or set of rules that dictates which symbolic
sequences are admissible or, in other words, which tilings will be physically
realized as invariant 2-tori. In general, symbolic dynamics may be arbitrarily
complex even in systems as simple as the logistic map [1]. In spite of this, we
will attempt to reverse engineer the grammar by using brute force, no less.
This brute force method consists of finding all admissible tilings. With the in-
admissible tiling combinations we hope to construct a consistent grammar, or
at least find an approximate grammar that can be used as rough guideline.
First, however, a method to create initial conditions from combining tiles was
required. The crudest way to do so is to numerically combine them without
any preprocessing; this introduces numerical discontinuities at every conjunc-
tion of tiles. We expend slightly more effort handling these discontinuities by
numerically padding the tiles with a boundary of grid points, all initialized
with a field value of zero. This creates buffer regions between tiles or “zero
padding”, which aims to smooth the field and bring it closer to being periodic.
In addition to this zero padding, we also truncate the spatiotemporal Fourier
coefficients for further smoothing. One downside to this two step method is
that it creates initial conditions with localized spatiotemporal features; this is
unnatural for the Kuramoto-Sivashinsky equation because of its linearly un-
stable modes. An alternative would be to approximately solve the boundary
value problem induced by the zero padding, using a Chebyshev polynomial
collocation method, for instance. Because of the non periodic boundary con-
ditions in this augmented problem, it may very well be more difficult that our
original problem, hence why we avoid such calculations.

There are many subtleties and details to consider for the automated tiling
method. For instance, the discretization of each tile needs to be modified so that
tiles are combined with the correct aspect ratios. In the case of the streak tile
this is not very straightforward because it does not have an intrinsic timescale
(other than zero if you would like). Currently, we make the simple but crude
choice which is to say that the period is not affected by combination with streak
tiles. We leave any error introduced by this assumption to our numerical opti-
mization procedure. Because we are only creating initial conditions which are
not themselves solutions we are able to be less than perfect. There are of course
many other numerical details but also theoretical details which would improve
this process. Some details that we have not implemented nor investigated are
how the energetics of the tiles or their local Galilean velocities affect the tiling
procedure. We stated in sect. 12.3.2 that the Galilean invariance (12.31) is used
to set the mean velocity of the overall front to zero. For an arbitrary subre-
gion of width L1 < L, the mean velocity is generically 〈u〉(t) 6= 0. Actually,
we know that as function of L the velocity front executes a random walk, 18

and hence the range of the color bar in a figure such as figure 1.1 has to grow
proportionally to

√
L. The variance grows only in the spatial direction, in the

time direction E(t) → E. That implies that in gluing letters uj of alphabet
18Predrag 2019-12-06: make sure that this is explained in the text elsewhere, then link here to the

variance equation “with variance E(t) = 1
2
〈u2〉(t) ∝ L by the extensivity of Kuramoto-Sivashin-

sky,”
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figure 1.10 into larger patterns, one also has to vary 〈uj〉(t) averaged over the
tile of width Lj , in order to glue optimally. In other words, we have to use
the Galilean symmetry group orbit of the letter uj , and slice that group orbit
at 〈uj〉(t0) = 0 for purposes of plotting its representative in figure 1.10. The
tiles figure 1.10 were all converged with under the zero mean velocity condi-
tion; locally, subdomains of the tiling has local Galilean velocities so long as the
subdomain is not a tile (or a tile plus zero padding, as zeroes do not contribute
to the integral (12.31)). In summary there are many different properties that
we have not taken into account and so any results can really only be validated
numerically.

We move on to the results and utility of our tiling method. We begin with a
simple tiling example which iteratively adds the streak tile in the spatial direc-
tion to the merger tile. The symbolic blocks (1.83),(1.84),(1.85) represent these
tilings (in theory). In all tiling examples that follow, the invariant 2-tori are
converged in the full state space; that is, they have only the trivial subgroup as
their isotropy subgroups.

M =
[

01
]

(1.83)

M =
[

001
]

(1.84)

M =
[

0001
]

(1.85)

As we can see in the collection of figure 18.13, figure 18.15, figure 1.20. From
the spatiotemporal dimensions of the tiles in figure 1.10 we can see that sim-
ple addition would predict that figure 18.13 should have spatial domain size
approximately equal to L01 ≈ Ls + Lm = 3.09. The true value comes out
to L01 = 3.13 · · · . Likewise, each new streak addition should approximately
modify the spatial domain size in the same way, which is exactly what occurs,
as L001 = 4.12 · · · and L0001 = 5.16 · · · . Note that in each step both L and T
change by a different amount such that the resulting invariant 2-torus satisfies
(18.1). This is expected as we are allowing both dimensions to change, we are
solving the equations in a least-squares manner, and of course the equations
are nonlinear.

We have established that it is at least possible to find solutions by our tiling
method but we need some way to confirm our results. First, the converged in-
variant 2-torus resulting from a symbolic sequence should be invariant under
symmetry transformations of the symbols themselves. We provide an example
of this in (1.86) and (1.87). The two symbolic blocks in question are spatial ro-
tations of one another but they numerically converge to invariant 2-tori which
are only approximately related by the same rotation, as seen in figure 1.21 and
figure 1.22. The reason why the two converged solutions do not differ only by
spatial rotation, as one might expect, is because the solutions are being found
in a least-squares manner and the initial spatiotemporal Fourier coefficients
differ by a phase factor. This phase difference is sufficient enough to affect
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(a)
(b)

Figure 1.18: (a) Initial spatiotemporal field for the one-by-two symbolic block
given by (1.83) (b) Invariant 2-torus resultant from numerically converging (a),
[Lb, Tb] = [3.13 · · · , 20.84 · · · ]

(a)

(b)

Figure 1.19: (a) Initial spatiotemporal field for the one-by-three symbolic block
given by (1.84) (b) Invariant 2-torus resultant from numerically converging (a),
[Lb, Tb] = [4.12 · · · , 23.15 · · · ].

(a)

(b)

Figure 1.20: (a) Initial spatiotemporal field for the one-by-four symbolic block
given by (1.85) (b) Invariant 2-torus resultant from numerically converging (a),
[Lb, Tb] = [5.16 · · · , 23.77 · · · ].
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(a)

(b)

Figure 1.21: (a) Initial spatiotemporal field for the one-by-three given by
(1.86) (b) Invariant 2-torus resultant from numerically converging (a), [Lb, Tb] =
[6.36 · · · , 24.98 · · · ].

the numerical results. In this manner, the numerical methods and symmetry
actions are only approximately “conjugate”; in other words, the order tech-
nically matters. Specifically, the discrepancy of the solutions can mainly be
explained by their differing domain sizes. These spatiotemporal domain sizes
are [Lb, Tb] = [6.36 · · · , 24.98 · · · ] and [Lb, Tb] = [6.07 · · · , 16.58 · · · ] for (1.86)
and (1.87) respectively. We expect that numerical continuation in spatiotempo-
ral domain size would be able to connect these solutions such that the results
would be the same field up to a symmetry operation. This belief comes from
performing exactly this computation for tiles in figure 1.11. This idea should
of course be applicable to all symmetry related symbolic blocks but it is techni-
cally possible that for a large tiling the phase factor can change which invariant
2-torus the initial condition converges to. This has not been confirmed not de-
nied but we offer this possibility as a caution for others.

M =
[

0 1 2
]

(1.86)

M =
[

2 0 1
]

(1.87)

Both examples so far have only considered spatial tiling. The general case,
tiling spatiotemporal patterns, is a much more appropriate demonstration of
tiling. To demonstrate this extension, we create two initial conditions corre-
sponding to the two-by-two symbolic blocks (1.88) and (1.89), as well as a sim-
ple three-by-three symbolic block example (1.90).

M =

[
0 1
1 0

]
(1.88)

M =

[
0 2
1 0

]
(1.89)
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(a) (b)

Figure 1.22: (a) Initial spatiotemporal field for the one-by-three symbolic block
given by (1.87) (b) Invariant 2-torus resultant from numerically converging (a),
[Lb, Tb] = [6.07 · · · , 16.58 · · · ].

M =

 0 0 0
0 0 0
0 0 2

 (1.90)

All three of these initial conditions converge numerically, as indicated in the
corresponding figures figure 1.23, figure 1.24, figure 1.25. Figure 1.23 converges
to a invariant 2-torus closest to what one might expect as the second half of the
orbit (in time) seems to be very close to a reflection of the first half, a property
restricted to shift-reflection invariance. This makes sense due to the antisym-
metric (approximately in the merger tile’s case) nature of the tiles themselves.
Meanwhile, it is hard to distinguish whether figure 1.25 is a quality result or
not. By construction of the initial condition there are three wavelengths repre-
sented by the first two “rows” of the symbolic block, but four wavelengths in
the last row. The converged invariant 2-torus, however, seems to converge to a
solution that has three well defined (amplitude) wavelengths at any given time.
This result appeals to our knowledge of the physical scales of the Kuramoto-
Sivashinsky equation as the initial domain size is closer to three multiples of
the most unstable wavelength than four.

In light of these results, recall that our original goal was to explain the spa-
tiotemporal symbolic dynamics by enumerating all admissible tilings; so far,
the results have been good numerically but poor in regards to the symbolic dy-
namics. Most of the tilings converge numerically but it is not evident that they
always converge to the targeted symbolic block. We have only been able to tell
by manually inspection of the features of each converged block. The features
in the converged invariant 2-torus should of course match the symbolic block,
at least up to continuous deformations. If invariant 2-tori shadow too many
or too few invariant 2-tori, then that initial condition has likely converged to a
different symbolic block. This possibility is unsettling in terms of the develop-
ment of our symbolic dynamics. Errant convergence only serves to misinform
us regarding the grammar of the symbolic dynamics. How can we determine if
a converged invariant 2-torus is indeed a representation of a specific symbolic
sequence or not? For validation of our results we seek a numerical method that
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(a)

(b)

Figure 1.23: (a) Initial spatiotemporal field for the two-by-two symbolic block
given by (1.88) (b) Invariant 2-torus resultant from numerically converging (a),
[Lb, Tb] = [3.64 · · · , 45.26 · · · ].

can detect tiles embedded in large invariant 2-tori. This method also needs to
account for continuous families of tile deformations; therefore, it seems natural
to search for a method which searches for specific features.

We can postulate some methods but we have not created a method that can
automatically validate converged symbolic invariant 2-tori. For instance, we
can use an image processing technique, “feature detection”. Image “features”
are very loosely defined and they can be as general as corners or edges; of
course we need to tune this to detect signatures of different tiles instead. The
primary property of these features is that they can be detected even after differ-
ent transformations of the image such as affine transformations. This of course
is good as the signatures of our tiles manifest differently for each continuous
tile deformation. First, we begin by representing the invariant 2-torus as a grey
scale images. Once a gray scale image is produced, we utilize numerical meth-
ods from the Python package scikit-image for the feature detection. The re-
sults are quite striking in regards to how tiles are represented by specific shapes
even after such a large amount of data reduction. In this representation streaks
still manifest as streaks. Creations of streaks, however, is represented by an up-
wards facing pitchfork. Annihilation of streaks (merger tile) is represented by
downward facing pitchforks (in this case there it is possible to see “imperfect
pitchforks” like from bifurcation theory). There is a thick wishbone type shape
which represents a gap and a ring like structure on the left side on the domain
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(a)

(b)

Figure 1.24: (a) Initial spatiotemporal field for the two-by-two symbolic block
given by (1.89) (b) Invariant 2-torus resultant from numerically converging (a),
[Lb, Tb] = [3.19 · · · , 45.81 · · · ].

(a) (b)

Figure 1.25: (a) Initial spatiotemporal field for the three-by-three symbolic
block given by (1.90). (b) Invariant 2-torus resultant from numerically con-
verging (a), [Lb, Tb] = [3.89 · · · , 19.22 · · · ].
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(a) (b) (c)

Figure 1.26: (a) Invariant 2-torus converged in full state space purported to
be symbolic block 1012 (spatial sequence) (b),(c) are two separate attempts
at “feature detection” using the “ORB” numerical routine that is part of
scikit-image

which appears to represent either a hook (member of the merger tile family).
Using these shapes as indicators we believe that figure 1.26(a) is not a repre-
sentation of the symbolic sequence 1012 as previously believed; determined by
inspecting the spatiotemporal ordering of these features. The features that are
detected seems to be heavily dependent on the parameter values input into the
numerical method. The ideal case for us is to only detect non-streak features.
This is desirable because if we find locations of all gap and merger tiles, the re-
mainder of the invariant 2-torus should be covered by streaks if the alphabet is
trinary. The problem with this is that the feature detection picks up creation of
streaks which isn’t useful. Tuning the different parameters of the ORB feature
detection scheme from scikit-image package produces a set of data points
which cluster around the desired features. by analyzing the pixel intensities of
the image. We apply this to two different examples; the converged invariant 2-
torus from a tiling and a ergodic trajectory segment with large spatiotemporal
extent. The first example is to attempt to validate the symbolic representation
we claim, the second it to see how this scheme holds up when the features are
small relative to the image.

While the accuracy of our symbolic dynamics is still suspect, it is worth
repeating that we have formulated multiple techniques for finding invariant 2-
tori. These include finding large invariant 2-tori by combining small invariant
2-tori, finding small invariant 2-tori embedded in large invariant 2-tori, and
numerical continuation of invariant 2-tori. These methods work in tandem
with one another; giving us the ability to search for nearly any sized invariant
2-torus using previously acquired data. The flexibility and agility gained from
the combination of these methods is substantial and it allows for a targeted
search for invariant 2-tori. This flexibility can help us overcome some prob-
lems which are currently present in numerical studies of fluid flow. Once such
example is the wide variety of parameter values and geometries (boundary
conditions) studied in the world of fluid dynamics which makes comparison
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between periodic orbits in different flows difficult. If connections between ge-
ometries can be made then obviously direct comparisons between periodic or-
bits could be made by also the specific effect of geometry could be more easily
targeted.

In any fluid dynamics research one of the most critical pieces of informa-
tion is the value of the Reynolds number. Its importance cannot be understated
as this single parameter dictates entire regimes of fluid behavior; unfortunately
its value varies wildly depending on the geometry and phenomena being stud-
ied. For instance, in computational studies of plane Couette flow, Re = 400 is
a common value [32, 53, 56]. For experimentalists, the Reynolds number is on
the order of thousands in small scale experiments [13] to tens, even hundreds,
of thousands in large scale experiments [39]. Continuation of solutions from
one Reynolds number to another is already performed in dynamical systems
calculations [7] but much like the initial value problem it can be very sensitive
to perturbations; we appeal again to spatiotemporal techniques. The difference
becomes apparent when attempting to perform numerical continuation of the
spatial domain size. In the numerical studies of plane Couette flow [32, 53, 56]
there have been differing choices as to the size of the computational domain.
In this case the qualitative effect isn’t drastic because all three domain sizes
are comparatively small. However, quantitative comparisons and reproduc-
tion of results becomes difficult. One could technically include spatial domain
size as a variable in the dynamical system formulation but we posit that the
ill conditioning of changing the domain size in combination with the exponen-
tial instability of the dynamics will make this a fruitless endeavor. As we have
seen shown it is not only possible for us to numerically continue invariant 2-
tori with respect to domain size but keep domain size as a variable; we have
seen neither of these techniques in the literature.

A possible objection to these methods is that there is no real point in vary-
ing the domain size as if there was a desire to study a specific domain size,
then one would do just that. The problem is that as domain size increases it
becomes harder and harder to simply find periodic orbits. Therefore, the more
we can leverage already known data the less we waste computational time.
One of the more compelling arguments is by far in favor of numerical contin-
uation in spatial domain size is the ability to match changes in experimental
setups for whatever reason; perhaps more precise measurements of the geom-
etry were made, or perhaps there was a systematic reason why the setup needs
to be changed. Essentially, numerical continuation and the ability to change
the domain size allows for the tuning of numerical data to match experimen-
tal data. The limits of continuation in spatial domain size are unknown but
we do know it depends on the specific invariant 2-torus being continued. This
method likely won’t be able to doubling the spatial domain size, but for smaller
changes it seems useful.

In addition to tiling; combining spatiotemporal tiles to find larger invariant
2-tori, we can also glue larger invariant 2-tori together to find yet larger invari-
ant 2-tori. Although quite similar, we make the distinction between the two
methods because tiling has a symbolic dynamic motivation while gluing does
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not.

1.9.4 "Rubbery" tiles in far-from equilibrium dynamics

As we have shown in sect. 1.9.3 for (1+1)-dimensional spacetime, our tiles form
continuous families of solutions which are not related by exact geometrical
symmetries, but rather by deformations, with continuously varying physical
properties, such as their dissipation rates.

It is a situation familiar from Hamiltonian dynamics, where the unstable
compact solutions are isolated on a fixed energy shell, but form continuous
families as functions of the energy parameter. The fixed energy shell is pro-
tected by energy conservation at all times.

In steady-state far-from-equilibrium systems solutions also form continu-
ous families (see figure 10 of ref. [HGC08]), but only on average. There is no
instantaneous ‘energy shell’ - the driving power-in and the dissipation rate are
equal only in the infinity-time average sense (the mean power-in and mean
dissipation rates for each unstable solution lie on the diagonal in figure 8 of
ref. [HGC08]).

Which solution one is to pick from a continuous family depends on what
averages one wants to balance. For example, for a plane Couette flow restricted
to a ‘minimal cell’ [27], every solution can be continuously deformed by the
width or the length of the cell (see figure 11 of ref. [HGC08]). However, im-
posing zero mean pressure gradient, or zero mean velocity leads to different
solutions (see sect. 3 of ref. [27]).

For the Kuramoto-Sivashinsky system at hand, we impose the constant
mean dissipation rate (computed as along-time average over any ergodic tra-
jectory) to be satisfied by every compact unstable solution, resulting in a single
(or no) solution contribution for each continuous family. All cycle averaging
formula are evaluated on these isolated compact solutions, there are no rub-
bery continuous families of rubbery deformations of tiles to worry about.
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[10] P. Cvitanović, R. L. Davidchack, and E. Siminos, “On the state space ge-
ometry of the Kuramoto-Sivashinsky flow in a periodic domain”, SIAM
J. Appl. Dyn. Syst. 9, 1–33 (2010).
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(a)

(b)

Figure 1.27: (a)Segment of ergodic trajectory produced by time integration at
defined on [L, T] = [79.57 · · · , 500 · · · ] (b The result of passing a modified gray
scale image of (a) to the “ORB” feature detection numerical routine that is part
of scikit-image
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Chapter 2

Space-time numerical
methods

2.1 Variational methods
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Chapter 3

Variational methods

In this section we cast the problem of searching for invariant 2-tori as a varia-
tional optimization problem. In variational formulations of the spatiotemporal
problem there is no dynamics, and no numerical integrations of the equations
of motion. Instead, one looks for global solutions whose tangent space satisfies
the given set of ODEs or PDEs locally and everywhere over a given spacetime
domainR, with given b.c.’s. For example, consider the function

G = ut + uux + uxx + uxxxx (3.1)

of the Kuramoto-Sivashinsky field u and its spacetime derivatives. The Ku-
ramoto-Sivashinsky equation (18.1) is satisfied only for those spacetime field
configurations u(x, t) for which the spatial and temporal tangent fields (local
field derivatives) balance each other so that G(u) = 0.

The standard, simplest approach to numerical determination of a field u
that solve G(u) = 0 over region R (see, for example, refs. [7, 23]) is to assume
that one has a guess field configuration ug that is everywhere close to the de-
sired solution u, compute G(ug), and then minimize the error G(ug) − G(u)
overR as a least squares sum.

That requires having a norm XXXXXXXX
The functional that is the center of our discussion is the L2 norm of (3.1),

known as the cost functional

F [u] =
1

2

∫ T

0

∫ L

0

dxdt ||G(u(x, t))||2 (3.2)

In order to perform numerical compute quantities relevant to this problem, we
need to discretize the scalar field u(x, t). This discretizes the expression for the
cost functional such that

F (u(x, t)) =
1

2

N−1∑
n=0

M−1∑
m=0

||G(u(xm, tn))||2 (3.3)
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where tn = nT
N and xm = mL

M . For convenience, we will exchange index nota-
tion in favor of vector notation

F =
1

2
||G||2 . (3.4)

whose critical points correspond to invariant 2-tori. Intrinsic to the definition
(3.4) is the choice of norm. We have not avoided the crutch of choosing an ar-
bitrary norm, or so it seems. In the dynamical system context, the norm is used
as a metric of distance between points in state space. As previously discussed
there is an underlying geometry which is not being taken into consideration.
In our variational formulation however the norm merely becomes a measure
of whether our current state is a solution or not. In other words, the use of
an arbitrary norm in the variational problem does not seem to share the same
pitfalls as in the dynamical systems context. Note that we are not saying that
our choice of norm is absent of all negative consequences however as it may
not be the best indicator of whether we are numerically close to a solution or
not. Therefore the norm here, while still not motivated by any underlying ge-
ometry, manages to avoid the previously described pitfall.

The cost functional is a mathematical construction that assists the numerical
optimization required to find the solutions that we desire. The cost functional
(3.4) is a specific example of a much broader class of variational problems. To
avoid confusion, the analysis is different than the study of “discrete Lagrangian
systems”, commonly seen in the context of variational time integrators refs. [25,
26].

1 2

3 For Kuramoto-Sivashinsky they break the reflection symmetry by intro-
ducing a constant drift c, so the remaining symmetry is SO(2). They do not
remark that symmetry should be reduced, perhaps because they break it by
considering a 2-boundary points problem? We will have to slice the equations.

Loop L: a smooth, differentiable closed curve x̃(t̃) ∈ L ⊂M, parameterized by
t̃ ∈ [0, L] with x̃(t̃) = x̃(t̃ + L), with the magnitude of the loop tangent vector
fixed by the (so far arbitrary) parametrization of the loop,

ṽ(x̃) =
dx̃

dt̃
, x̃ = x̃(t̃) ∈ L .

There are other spatiotemporal variational formulations that are worth de-
scribing in detail. Wang et al. [33] explain why in the future spatiotemporal
methods will be required in order leverage parallel computing power. The al-
gorithm they deploy is standard, except for the implicit inclusion of a “space-
time parallel iterative solver” which can take many different forms depending

1Predrag 2019-09-11: Isn’t here a start of a distinct, new section?
2Matt 2019-09-12: was a leftover chunk of text from when variational.tex was the intro-

duction to the numerical methods section I believe; which it may be better to revert to now that
Ibragimov style analysis has been migrated to LieGroupAnalysis.tex

3Predrag 2017-02-12: Transcription of Wang et al. [33] Towards scalable parallel-in-time turbulent
flow simulations, “least squares shadowing (LSS) method” to ChaosBookese starts here.
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on the numerical implementations. Therefore, instead of worrying about the
algorithmic details we instead describe the general procedure for how they
setup the variational problem.

Consider a dynamical system

ẋ(t) = v(x) . (3.5)

Rescale the time ∂t̃
∂t = 1 + η(t̃) , so

(1 + η(t̃))
∂x(t(t̃))

∂t̃
= v(x) . (3.6)

Assume that the action is given by the integral over a Lagrangian, a quadratic
cost function together the equations of motion constraint,

S[L] =

∫ T

0

dt

(
1

2
〈x− x̃|x− x̃〉+

1

2
η2 + 〈w|ẋ− v(x)〉

)
, (3.7)

where w(t̃) is the Lagrange multiplier. The critical points of this Lagrangian
ensures that η and u − ur is minimized and that u satisfies the equations of
motion.

Varying the Lagrange function with arbitrary perturbations δx, δη and inte-
grating by parts yields

δS[L] =

∫ T

0

dt

(
〈δx|x− x̃〉+ δη η + δη〈w|∂x

∂t̃
〉+ 〈w|∂δx

∂t
−Aδx〉

)
=

∫ T

0

dt 〈δx|x− x̃− ∂w

∂t
−A>w〉

+

∫ T

0

dt δη

(
η + 〈w|∂x

∂t̃
〉
)

+ 〈δx|w〉|T0 , (3.8)

where A is the stability matrix or velocity gradients matrix, i.e., the linearized
operator

Aij(x) =
∂

∂xj
vi(x) (3.9)

evaluated at x̃, and A> is the adjoint of A. Setting δS[L] = 0 for arbitrary δx
and δη provides two independent equations

x = x̃+
∂w

∂t
+A>w

η = −〈w|∂x
∂t̃
〉 . (3.10)

Whereupon substitution of the expression for x from (3.10) into (3.5) produces a
second order boundary value problem with a transformed time derivative due
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to the second component of (3.10). The second order boundary value problem
can be summarized by the following optimality system

u = x̃+
∂w

∂t
+A>w

0 =
∂

∂t
(x̃+

∂w

∂t
+A>w)− v(x̃+

∂w

∂t
+A>w)

η = −〈w|∂x
∂t̃
〉

w|t̃=0 = 0

w|t̃=T = 0 (3.11)

where the general procedure would be to solve for w and then substitute into
the equation for u. The solutions w are acquired via a “space-time parallel
iterative solver” whose implementation is left to the reader as previously men-
tioned. The authors use Newton’s method by solving the linearized system of
equations that represent the linearization of the double boundary value prob-
lem in (3.11). This linearization is the consequence of assuming u − ur and η
are small and simplifying. This linearization is the quintessential piece of the
numerical process we derive here in the same form as Wang et al. [33]. The
first term is handled by simple application of the time derivative, while the
second term is expand as R(∂w∂t + L∗w + ur) ≈ R(ur) + L(∂w∂t + L∗w) because
u− ur = ∂w

∂t + L∗w is small. This brings us to the simplified form

∂2w

∂t2
+ (

∂

∂t
A> −A ∂

∂t
)w +AA>w = − ∂

∂t
x̃+ v(x̃) . (3.12)

where we have yet to utilize the assumption that η is small which will be used
in the expression for the transformed time derivative. Assuming that this only
implies that we discard terms quadratic in η we can group the η terms after
substitution of ∂

∂t = (1 + η) ∂
∂t̃

into (3.12). This yields

∂2w

∂τ2
+(

∂

∂τ
A>−A ∂

∂τ
)w+AA>w+[η

∂2

∂τ2
+
∂

∂τ
η
∂

∂τ
−η ∂

∂τ
A>−Aη ∂

∂τ
]w = −(1+η)

∂

∂τ
x̃+v(x̃) .

(3.13)
Now as one can see this includes a number of terms with the variable η which
are not present in the final representation in ref. [33]. It’s apparent that the
terms are neglected because of the assumption η is small, but there is the pres-
ence of a term Pw which can be accounted for by the term −(1 + η) ∂

∂τ x̃ on the
RHS of the equation. Specifically, this can be handled by the substitution (from
the optimality system (3.11)) for η.

(1 + 〈w|∂x
∂t̃
〉)∂x̃
∂τ

= (1 + 〈w| ∂
∂t̃
〉(x̃+

∂w

∂t
+A>w))

∂x̃

∂τ
(3.14)

and by using the assumption u− ur = ∂w
∂t +A>w is small this can be rewritten

(1 + 〈w| ∂
∂t̃
〉(x̃+

∂w

∂t
+A>w))

∂x̃

∂τ
≈ (1 + 〈w|∂x̃

∂τ
〉)∂x̃
∂τ

(3.15)
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where the term with the inner product accounts for the term in ref. [33].

Pw = 〈w|∂x̃
∂τ
〉∂x̃
∂τ

. (3.16)

We walked through this derivation to attempt to reproduce the same equations
as Wang et al. [33] because they are general and quintessential to the spatiotem-
poral optimization process. As the following discussion seems to suggest is
that they chose the final form that they did because of its numerical properties.

In summary, this section is a survey on the tools and algorithms that are
relevant for a variational formulation. We reserve discussion regarding the op-
timization of the various functionals described in this section to the numerical
methods sect. ??, sect. ??, and sect. ??. All of the numerical discussions are cen-
tered around finding the minimizers of (3.4) by a combination of descent and
iterative methods.

The spatiotemporal reformulation of a dynamical problem also requires a
reformulation of its linear stability analysis.

The absence of this tool in the new variational formulation is a large handi-
cap because it disallows one of the most intuitive and common types of analy-
sis of time invariant solutions to chaotic nonlinear equations (more references
for papers that look at linear stability).

Therefore, if possible, we want to find an alternative type of analysis which
is as useful without having to change our spatiotemporal formulation. There
are two avenues of pursuit towards this endeavor. The first is known as Hill’s
formula [4]. It discusses how the determinant of a finite matrix of the Hessian
of an action functional of a discrete Lagrangian system, can be related to the
eigenvalues of the monodromy matrix corresponding to a critical point of said
action functional, which represents a critical point. As stated in [4], Hill pro-
posed this formula without any proof of convergence of the determinant (his
derivation utilized an infinite dimensional Hessian), but a rigorous proof was
later presented by Poincaré. The application of this formula requires a discrete
Lagrangian system, which means we need equations which have a Lagrangian
structure. The cost functional as described by (3.4), although a scalar function
of our system variables, does not have the correct Lagrangian structure that
is needed, so instead we introduce the concept of formal Lagrangians refs. [18,
20, 22]. In this context the Lagrangian structure is imposed by construction,
allowing for a valid application of Hill’s formula. The interpretation of this ap-
plication is slightly confusing however as the Hessian and monodromy matrix
are now functions of the “original” velocity field and its partial derivatives but
also a collection of adjoint variables.

3.1 Formal Lagrangian adjoint derivation

Following sect. 2 Quasi-self-adjoint equations of Ibragimov [18] (which does not
reference refs. [16, 17]), we can write the formal Lagrangian of the Kuramoto-
Sivashinsky equation to derive the spatiotemporal adjoint equations in terms
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of the original spatiotemporal field u(x, t), and then one is free to use whatever
representation suits the user in discretization; the cavaet is that numerically it
seems better to use a real valued representation Fourier representation for the
adjoint descent. 4

Ibragimov notation, for the Kuramoto-Sivashinsky case: the independent
variable is denoted by x. The dependent variable is u, used together with its
first-order partial derivative u(1) :

u(1) = {uαi }, uαi = Di(u
α),

and higher-order derivatives u(2), . . . , u(4) , where

u(2) = {uαij}, uαij = DiDj(u
α), . . . ,

u(s) = {uαi1···is}, uαi1···is = Di1 · · ·Dis(u
α).

Here Di is the total differentiation with respect to xi :

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ · · · . (3.17)

Using the definition for the formal Lagrangian L,

L ≡ v [ut + uxx + uxxxx + uux] , (3.18)

and then taking the functional derivative,

δL
δu

= 0 . (3.19)

The surviving terms from this functional derivative are

∂L
∂u

= vux

−∂t
∂L
∂ut

= −vt

−∂x
∂L
∂ux

= −vux − uvx

∂2
x

∂L
∂uxx

= vxx

∂4
x

∂L
∂uxxxx

= vxxxx, (3.20)

where the sum of these terms equals (3.19) and hence must be zero. The resul-
tant adjoint equation is (±vux terms cancel),

− vt + vxx + vxxxx − uvx = 0 . (3.21)
4Predrag 2018-05-08: Ibragimov [18] is included in Archives of ALGA 4.
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xk+1
xk−1

xk

Figure 3.1: Discrete Euler-Lagrange equations are an extremum of the action.

If we take the adjoint variable to be the Kuramoto-Sivashinsky equation,

F ≡ v = − [ut + uxx + uxxxx + uux] , (3.22)

we arrive at the equation which I claim provides adjoint descent direction with-
out explicit construction of the gradients matrix J ,

− J†F = (∂t + ∂2
x + ∂4

x)F + u∂xF (3.23)

(I believe the negative sign in (3.22) is motivated so that the functional deriva-
tive is strictly decreasing or zero).

Numerical evidence is suggestive as the real valued adjoint descent is work-
ing better than before when I was trying to reverse engineer J†F in a matrix-
free way.

3.2 Discrete Lagrangian methods

In our Newton methods we measure the distance of the guess to the solution
by Euclidian sums of squares.

In discrete Lagrangian methods the distance between a guess solution and
the exact solution is measured in the symplectic area between the two.

Lagrangian: L(q, q̇) = K(q̇)− V (q)

Action: S(q) =
∫ T

0
dtL(q, q̇)

Hamilton’s principle: δS(q) = 0
if we vary the path slightly, action is unchanged to first order.
The variational principle: path extremizes action
Discrete treatment of Lagrangian mechanics:
Approximate action integral by a quadrature rule

L(qk, qk+1) ≈
∫ tk+1

tk

L(q, q̇) dt = ∆tL(qk, qk+1) .

Symplecticity: If we graph trajectories in the phase plane, symplectic meth-
ods preserve areas in time. This means that a closed loop (e.g. a periodic mo-
tion, like the pendulum) won’t expand or contract.
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The Legendre transforms between different generating function are of form

H(qk, pk+1) = pk+1qk+1 − L(qk, qk+1) ,

where qk+1 is implicitly defined by pk+1 = ∂2L(qk, qk+1)

Search for:
Asynchronous variational integrators (AVI). They assign different time steps

at different points in space (where more/less accuracy is needed).
Example: falling object
Discrete Lagrangian:

L(qk, qk+1) = ∆t

[
1

2
m

(
qk+1 − qk

∆t

)2

−mg
(
qk + qk+1

2

)2
]
.

Discrete Euler-Lagrange equations

∂

∂qn
(L(qn−1, qn) + L(qn, qn+1)) = 0 . (3.24)

lead to

−m qk+1 − qk
∆t

− 1

2
∆tmg +m

qk − qk−1

∆t
− 1

2
∆tmg = 0 .

hence, writing the acceleration as s discrete time Laplacian, the falling object
equation is

1

∆t2
2xn = −g
2xn ≡ xn+1 − 2xn + xn−1 . (3.25)

Adding forcing/dissipation
For non-conservative forces, use the discrete Lagrange d’Alembert princi-

ple by varying the action

δSn,n+k +
n+k−1∑
i=n

(
F−(qi, qi+k) δqk + F+(qi, qi+k) δqk+1

)
, (3.26)

This gives the forced discrete Euler-Lagrange equations

∂

∂qn
L(qn−1, qn) +

∂

∂qn
L(qn, qn+1) + F−(qi, qi+k) + F+(qi, qi+k) = 0 . (3.27)

This is then illustrated by two strengths of frictional (linear in velocity) damp-
ing of a damped pendulum.
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3.2.1 Literature survey

2018-03-28 PC Henry O. Jacobs course notes Crash course in discrete Lagrangian
mechanics [21] are in their entirety based on Marsden and West [25] Dis-
crete mechanics and variational integrators, which has some 600 citations, so
ther is a large amount of literature to scan through.

Eva Kanso says that the discrete Lagrangian integration is formulated
for Euler in Pavlov [28] Structure-preserving discretization of incompressible
fluids, arXiv:0912.3989, but if it works, it should also work for Navier-
Stokes by “modelling the dissipation.” They write: “ Euler fluids have
Lagrangian and Hamiltonian descriptions, where the configuration space
is defined as the volume-preserving diffeomorphisms, and Kelvin’s cir-
culation theorem is viewed as a consequence of Noether’s theorem asso-
ciated with the particle relabeling symmetry of fluid mechanics. How-
ever computational approaches to fluid mechanics have been largely de-
rived from a numerical–analytic point of view, and are rarely designed
with structure preservation in mind, and often suffer from spurious nu-
merical artifacts such as energy and circulation drift. In contrast, this
paper geometrically derives discrete equations of motion for fluid dy-
namics from first principles in a purely Eulerian form. Our approach
approximates the group of volume-preserving diffeomorphisms using
a finite-dimensional Lie group, and associated discrete Euler equations
are derived from a variational principle with non-holonomic constraints.
The resulting discrete equations of motion yield a structure-preserving
time integrator with good long-term energy behavior and for which an
exact discrete Kelvin’s circulation theorem holds.

[...] understanding what this geometric picture of fluid flows brings com-
pared to traditional Large Eddy Simulation or Reynolds-Averaged Navier-
Stokes methods would be interesting, as our structure-preserving ap-
proach is also based on local averages (i.e., integrated values) of the ve-
locity field.

The discretization of the Euler equations that we have obtained on the
regular grid coincides with the Harlow-Welsh scheme [14], and our Eq.
(28) is a Crank-Nicolson (trapezoidal) time update. Therefore, our vari-
ational scheme can be seen as an extension of this approach to arbitrary
grids, offering the added bonus of providing a geometric picture. ”

2018-03-29 Evangelos Good people to ask about such methods might be Cristel
Chandre or Phil Morrison.

2018-03-30 PC Cristel is a regular visitor, but it is all about Dirac brackets - not
sure it helps for dissipative flows. I think it is the same / similar story for
Phil. But we can ask - Jeffrey Heninger is now his PhD student.

2018-03-30 PC Eva Kanso sent us Grinspun et al. [12] Discrete Differential Ge-
ometry: An Applied Introduction set of coure=se notes to read. Presumably
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Figure 3.2: Kelvin’s Theorem: (left) in the continuous setting, the circulation
on any loop being advected by the flow is constant. (middle) the discrete in-
tegration scheme enforces this property on each Voronoi loop, (right) thus on
any discrete loop. (Fig. 5 on page 63 ofn ref. [12])

we should read Discrete differential forms for computational modeling, which
is a mostly mathematical discussion of “discrete differential modeling,”
which I intend to skip, unless really forced to learn it. Stable, circulation-
preserving, simplicial fluids is perhaps more relevant:

“ the approach also provides an accurate treatment of vorticity through a
discrete preservation of Kelvin’s circulation theorem.”

The code, however, for all examples discussed, is spatial, and steps for-
ward in time.

“ For purposes of computation one must derive discrete (in space and
time) representations of the underlying equations. The theories, which
are discrete from the start, and have key geometric properties built into
their discrete description can often more readily yield robust numerical
simulations which are true to the underlying continuous systems: they
exactly preserve invariants of the continuous systems in the discrete com-
putational realm.

Jos Stam [1999; 2001] introduced to the graphics community the method
of characteristics for fluid advection and the Helmholtz-Hodge decom-
position to ensure the divergence-free nature of the fluid motion [Chorin
and Marsden 1979].

Discrete exterior calculus (DEC) leads to numerically robust and efficient
simulations of the Navier-Stokes equations. ”

“ Fluid simulation are rarely designed to conserve defining physical prop-
erties. Consider, for example, the need in many methods to continu-
ally project the numerically updated velocity field onto the set of diver-
gence free velocity fields; or the need to continually reinject vorticity lost
due to numerical dissipation as a simulation progresses. We describe a
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geometry-based algorithm for fluid simulation which exactly preserves
vorticity at a discrete level.

A careful setup of discrete differential quantities, designed to respect
structural relationships such as vector calculus identities, leads to a nu-
merical simulation method which respects the defining geometric struc-
ture of the fluid equations.

We construct an integration scheme which employs intrinsically divergence-
free variables, and removes the need to enforce the usual divergence-free
constraint through a numerically lossy projection step.

The fundamental idea of geometric integration algorithm is to ensure that
Kelvin’s theorem holds in the discrete setting: the circulation around any
loop in the fluid remains constant as the loop is advected, see figure 3.2.
”

2018-04-27 Samuel Hadden A widely used method for integrating multi-planet
systems is Wisdom and Holman [36], see also discussion of it in Wis-
dom [35].

Tsang et al. [32] generalize symplectic integration to treat dissipative forces,
arXiv:1506.08443

2018-04-27 Noah DeTal, Predrag Michael Kraus is a busy beaver, developing
variational integrators for MHD.

Kraus and Maj [22] Variational integrators for nonvariational partial differ-
ential equations seems to be one of the most recent treatments with all
features we talked about: variational / Lagrangian formulation, enforce-
ment of conserved quantities / incompressibility, and applicability to vis-
cous / dissipative systems.

It’s quite interesting - it imposes the constraint of satisfying the equations
of motion locally as we always do, by a Lagrangian multiplier. But then
one gets quite a bit of milage out of that matter of fact statement.

Kraus works with Phil Morrison, and by extension with Jeffrey Heninger,
who is currently his PhD student, see 2018-03-29 Evangelos remark above.
They presented a 2017 poster titled First numerical results towards a 3D
MHD equilibrium solver via artificial relaxation mechanisms , but I do not see
a published version yet.

They say:

Embed an arbitrary dynamical system into a larger Lagrangian system
using the method of formal (or adjoint) Lagrangians, and thereby extend
the application domain of variational integrators to include all dynamical
systems.

To obtain a formal Lagrangian L, the equation F [u] = 0 is multiplied by
an adjoint variable v, giving L = v ·F [u]. Variation of the resulting action
functional A =

∫
dn+1xL with respect to v recovers the original equation
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F [u] = 0. Variation of the action functional with respect to the physical
variable u gives an additional equation that determines the evolution of
the adjoint variable v.

The dynamics of v play a key role in relating symmetries of the formal
Lagrangian to conservation laws satisfied by u. Ibragimov [16–18] de-
veloped conservation laws of arbitrary differential equations by extend-
ing the Noether theorem to formal Lagrangians for the extended system
(u, v), which can be restricted to the original system provided that it is
possible to express the solution of the adjoint variable v in terms of u.

About Ibragimov: see here, ALGA, and his collected works. Further
articles to check out:

Ibragimov [19] Nonlinear self-adjointness and conservation laws: “ The gen-
eral concept of nonlinear self-adjointness of differential equations is in-
troduced. It embraces the strict self-adjointness and quasi-self-adjointness.
The equations possessing nonlinear self-adjointness can be written equiv-
alently in a strictly self-adjoint form by using appropriate multipliers. All
linear equations possess the property of nonlinear self-adjointness, and
hence can be rewritten in a nonlinear strictly self-adjoint form. ”

Ibragimov [20] Conservation laws and non-invariant solutions of anisotropic
wave equations with a source.

The good news is the Ibragimov is a triviality, says Anco [1] On the in-
completeness of Ibragimov’s conservation law theorem and its equivalence to a
standard formula using symmetries and adjoint-symmetries

Then come along Ruggieri and Speciale [29] Conservation laws by means
of a new mixed method, and, citing but ignoring Anco’s contemporaneous
gripe, “merge the Ibragimov’s method and the 1966 one by Anco and
Bluman.”

2019-04-17 Predrag Wei and Wang [34] Symmetry analysis, conserved quantities
and applications to a dissipative DGH equation describe and utilize Ibragi-
mov’s approach:

“ Sophus Lie introduced the notion of Lie group in order to study the so-
lutions of ordinary differential equations. He showed that the order of an
ordinary differential equation can be reduced if it is invariant under one-
parameter Lie group of point transformations. The applications of Lie
groups to differential systems were mainly established by Lie and Emmy
Noether. In 1918, Noether presented the relationship between a mathe-
matics symmetry and conservation law of a physical system. Noether’s
(first) theorem states that every differentiable symmetry of the action of
a physical system has a corresponding conservation law. [...]

Noether’s theorem can only be applied to equations with variational struc-
ture. A large number of differential equations without variational struc-
ture admit conservation laws. Thus, many authors developed some meth-
ods which do not rely on the knowledge of Lagrangian functions to ob-
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tain conservation laws, such as the characteristic method [27] and the
direct method [2, 3]. Ibragimov [17] proved a result which allows one to
construct conservation laws for equations without variational structure.
Ibragimov theorem is an extension of Noether’s theorem where a formal
Lagrangian is introduced in order to get rid of the variational limitation.
This paper uses the viewpoint of Lie symmetry analysis to construct con-
servation laws by Ibragimov’s theorem in this paper.

They start by presenting the notations, definition of nonlinear self-adjointness
and Ibragimov’s theorem on conservation laws. Next, they carry out Lie
symmetry analysis, derive some symmetry reductions and invariant so-
lutions for their system, a dissipative DGH equation. They then study
the self-adjointness and conservation laws of DGH by the Ibragimov’s
theorem. ”

2019-05-21 Predrag Mikhail Skopenkov (smart cookie; for slides, see skopenkov.ru)
Discrete field theory: symmetries and conservation laws [31], arXiv:1709.04788,
gives “a general algorithm constructing a discretization of a classical field
theory from a Lagrangian, with a discrete Noether theorem relating sym-
metries to conservation laws and an energy conservation theorem not
based on any symmetry. This gives exact conservation laws for electro-
dynamics, gauge theory, Klein-Gordon and Dirac theory. He constructs a
conserved discrete energy-momentum tensor, approximating the contin-
uum one at least for free fields. The theory is stated in topological terms,
such as coboundary and products of cochains.”

His principles of discretization are:

• keep approximation of continuum theory;

• keep conservation laws exact;

• drop spatial symmetries easily.

He obtains:

• discretization of several field theories in a similar fashion keeping
conservation laws exact;

• a discrete Noether theorem relating symmetries to conservation laws;

• a discrete energy conservation theorem not based on a symmetry.

2019-11-05 James Hanna <hannaj@vt.edu> from Virginia Tech writes: Could
you please point me to the discrete Noether business you referred to?

Arash Yavari is an interesting neighbor of yours. He has been teaching at
GaTech since 2005. He studies computational mechanics, and in particu-
lar has been working to develop systematic theories of discrete mechan-
ics for crystalline solids with defects.

Here is something else interesting:
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Gay-Balmaz and Yoshimura [8] A Lagrangian variational formulation for
nonequilibrium thermodynamics. Part I: Discrete systems, early version arXiv:1510.00792

Gay-Balmaz and Yoshimura [11] A free energy Lagrangian variational for-
mulation of the Navier-Stokes-Fourier system, arXiv:1706.09010

2019-11-06 Predrag More of such, some of it impossible to read:

Scholle and F. Marner [30] A non-conventional discontinuous Lagrangian for
viscous flow, also here looks quite interesting, and perhaps even imple-
mentable: “ In an analogy with Madelung quantum mechanical fluid, a
new Lagrangian is proposed for a variational formulation of the Navier–Stokes
equations. ”

Gay-Balmaz and Yoshimura [9] Dirac structures in nonequilibrium thermo-
dynamics, arXiv:1704.03935: “ In absence of irreversible processes these
Dirac structures reduce to canonical Dirac structures associated to canon-
ical symplectic forms on phase spaces. Our geometric formulation of
nonequilibrium thermodynamic thus consistently extends the geometric
formulation of mechanics, to which it reduces in absence of irreversible
processes. ”

Gay-Balmaz and Yoshimura [10] Variational discretization of the nonequilib-
rium thermodynamics of simple systems, arXiv:1601.04882: “ [...] extend the
variational integrators of Lagrangian mechanics to include irreversible
processes. The structure preserving property of the flow of such sys-
tems is an extension of the symplectic property of the flow of the Eu-
ler–Lagrange equations. In the discrete setting, we show that the discrete
flow solution of our numerical scheme verifies a discrete version of this
property. ”

Bourdin et al. [5] Variational integrators of fractional Lagrangian systems in
the framework of discrete embeddings, arXiv:1601.04882: “ [...] interested
in the conservation at the discrete level of this Lagrangian structure by
discrete embeddings. We then replace in this framework the variational
integrators developed in [Hairer et al. [13], Chapter VI.6, (click here)] and
Marsden and West [25].

Not directly related, but I liked Harmeet Singh and J. Hanna Impulse
and material symmetry APS DFD talk at Virginia Tech (Jean-Luc Thiffeault
would like it too, I think): “ The balance of material momentum, also
known as impulse or pseudomomentum, arises from material (relabel-
ing) symmetry. We will present a brief overview of the history of this
balance law of continuum mechanics, and discuss it in the context of an
ideal fluid. It will be shown that Kelvin’s circulation theorem, Cauchy’s
invariants, Weber’s integral, and other related quantities follow from this
balance law ”
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3.3 Noether’s theorem

2016-11-23 Predrag A variational principle (such as the action (20.42) in case
at hand) together with a continuous symmetry implies

Noether’s theorem: To every one-parameter, continuous group
of symmetries of a Lagrangian dynamical system there corre-
sponds a scalar, real-valued conserved quantity.

Is there is a version of it for discrete translations? What is the conserved
quantity for a single cat map? What is it for the lattice? Internet says
many contradictory things:

“The fact that a Lagrangian is unchanged by a discrete transformation
is of no significance. There is no conserved quantity associated with the
transformation.”

“For infinite symmetries like lattice translations the conserved quantity
is continuous, albeit a periodic one. So in such case momentum is con-
served modulo vectors in the reciprocal lattice. The conservation is local
just as in the case of continuous symmetries.”

Read about it here.

Mansfield [24] in proceedings here and in her talk defines total difference
and says “ Just as an integral of a total divergence depends only on the
boundary data, so does the sum over lattice domain of a total difference.”

She states the discrete Noether’s Theorem, and in her Example 1.3.7 she
shows that for a discretization of a standard mechanical Lagrangian, time
invariance yields “energy” as a the conserved quantity.

Hydon and Mansfield [15].

Capobianco and Toffoli [6] Can anything from Noether’s Theorem be salvaged
for discrete dynamical systems? is fun to read (but ultimately unsatisfac-
tory):

“ we take the Ising spin model with both ferromagnetic and antiferro-
magnetic bonds. We show that –and why– energy not only acts as a gen-
erator of the dynamics for this family of systems, but is also conserved
when the dynamics is time-invariant.”

The microcanonical Ising model is strictly deterministic and invertible: on
a given step, a spin will flip (that is, reverse its orientation) if and only if
doing so will leave the sum of the potential energies of the four surround-
ing bonds unchanged. The Ising dynamics is a second-order recurrence
relation. They define “energy” as the length of the boundary between
‘up’ and ‘down’ domains. While the magnetization—number of spins
up minus number of spins down—may change with time, that length,
and thus the energy, remains constant. The total energy of a system may
be defined as
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1. A real-valued function of the system’s state,
2. that is additive,
3. and is a generator of the dynamics.

In a discrete Hamiltonian dynamics, a state is no longer a “position /
momentum” pair < q, p > as in the continuous case, but an ordered pair
of configurations < q0, q1 >.

A second-order dynamical system has an evolution rule of the form

xt+1 = g(xt, xt−1) .
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Chapter 4

Symmetries of space-time
Kuramoto-Sivashinsky
equation

In this chapter we look at the discrete subgroups of O(2) × SO(2) that arise
when calculating invariant 2-torus spatiotemporal solutions, and write up the
projection operators algebra needed to restrict the computations to invariant
subspaces. The discussion will be restricted to solutions that lie in the flow
invariant antisymmetric subspace U+, whose spatiotemporal subgroup is Z2×
(e), and pre-periodic orbits whose discrete symmetry subgroup is Z2 × C2. 1

4.1 Symmetries of Kuramoto-Sivashinsky equation

The Kuramoto-Sivashinsky equation (18.1) is equivariant under spatial trans-
lations, spatial reflections and temporal translations and Galilean transforma-
tions. The Galilean symmetry u(x, t) is a solution, then u(x − ct, t) − c, with
c an arbitrary constant speed, is also a solution. Without loss of generality, in
our calculations we shall set the mean velocity of the front to zero,

〈u〉(t) =

∫ L

0

dxu(x, t) = 0 . (4.1)

If the system is compactified on a 2-torus, with periodic boundary condi-
tions u(x, t) = u(x+ L, t+ T), the symmetry group is

G = O(2)x × SO(2)t = D1,x n SO(2)x × SO(2)t . (4.2)

1Predrag 2018-04-24: Summarize here the Kuramoto-Sivashinsky analogue of relevant parts
of the plane Couette flow equilibria and relative equilibria classification of Gibson, Halcrow and
Cvitanović [7].
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The elements of the 1-parameter group of spatial shifts and reflections are
O(2)x : {τd/L , σ}, and the elements of the 1-parameter group of temporal shifts
are SO(2)t : {τd/T}. If u(x, t) is a solution, then τd/L u(x, t) = u(x + d, t) is
an equivalent solution for any shift 0 ≤ d < L, as is the reflection (‘parity’ or
‘inversion’)

σ u(x, t) = −u(−x, t) . (4.3)

Consider a cyclic group

Cm = {e, τ, τ2, · · · , τm−1} , τm = e .

where τ is an SO(2) rotation by 2π/m. Cm is a discrete subgroup of SO(2) for
any m = 2, 3, · · · .

A field u on the 2π/m domain is now a tile whosem copies tile the entire do-
main. It is periodic on the 2π/m domain, and thus has Fourier expansion with
Fourier modes exp(2πimjx). This means that SO(2) always has an infinity of
discrete subgroups C2,C3, · · · ,Cm, · · · ; for each the non-vanishing coefficients
are only for Fourier modes whose wave numbers are multiples of m.

If we take discrete subgroups in C2,x in place of both SO(2) groups then
the order of the discrete group G̃ = D1,x n C2,x × C2,t is of order 8. All spa-
tiotemporal symmetries of discussion can be described by isotropy subgroups,
which are symmetry subgroups which leave solutions invariant. Specifically
the discrete symmetries, spatial reflection symmetry and spatiotemporal shift-
reflection symmetry. These particular symmetries have isotropy subgroups
G = D1,x and G = C2,t respectively. To cover the discrete spatiotemporal sym-
metries that are realized by invariant 2-tori we need to investigate the group
G = D1,x ×C2,t , because its description includes reflection and shift-reflection
symmetries. The term shift-reflection denotes solutions which are left invari-
ant only after spatial reflection and a time translation by half a period. We
have disregarded C2,x for the discussion of discrete symmetries. This is per-
mitted because spatial half-cell shifts, even in combination with other group
elements only permit equivariant solutions, not invariant. Solutions invariant
under half-cell shifts in space would have to be doubly periodic in space. For
combination with the cyclic group in time it would be a yet undiscovered in-
variant 2-toruswhich is invariant after a half-cell shifts in space and then time.
The general CM,x×CN,t case is harder to describe; if M = N then one example
of a way to construct an invariant solution would be to construct a solution
which would be invariant after N total rotations. For instance, a solution with
the form

u(x, t) =

 1 2 3
3 1 2
2 3 1

 (4.4)

would be invariant after a cycle consisting of one space rotation and two time
rotations or two space rotations and one time rotation (each by one third of the
domain in the respective, positive directions). This seems incredibly unlikely
as it requires the solution to be comprised of permutations of three patterns
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which are all equivalent in domain size. This unlikelihood only gets worse
for higher order cyclic groups We return from our tangent by getting into the
meat of the discussion by analyzing the group D1,x × C2,t. We demonstrate
some standard group theoretic calculations such as looking at the character
table table 12.1 and projection operators (12.35).

Table 4.1: Because the direct product group is abelian we only have one di-
mensional representations and as such the character table follows directly.

e σx τt σxτt
E 1 1 1 1
Γ1 1 1 -1 -1
Γ2 1 -1 1 -1
Γ3 1 -1 -1 1

The character table table 12.1, leads to the construction of four linear pro-
jection operators

P++ =
1

4
(1 + σx + τt + σxτt)

P+− =
1

4
(1 + σx − τt − σxτt)

P−+ =
1

4
(1− σx + τt − σxτt)

P−− =
1

4
(1− σx − τt + σxτt) , (4.5)

where σx,τt denote spatial reflection about the x = 0 line and time transla-
tion by half a period, respectively. The solution space can be decomposed
into the irreducible subspaces produced by these projection operators U =
U++ ⊕ U+− ⊕ U−+ ⊕ U−−. In the context of a real valued spatiotemporal
Fourier basis each of these subspaces corresponds to a subset of coefficients
in the expansion (??)

u−+(x, t) =
∑
k

∑
j

âkj cos(ωjtn) cos(qkxm)

u−−(x, t) =
∑
k

∑
j

b̂kj sin(ωjtn) cos(qkxm)

u++(x, t) =
∑
k

∑
j

ĉkj sin(qkxm) cos(ωjtn)

u+−(x, t) =
∑
k

∑
j

d̂kj sin(qkxm) sin(ωjtn) . (4.6)

We won’t use these equations just yet but they are good for classifying what
each projection operator corresponds to. This classification comes naturally
from the parity (odd, even) of the trigonometric functions therein. They can
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later be used to derive constraints on the spatiotemporal Fourier coefficients
pertaining to invariance under certain symmetry operations.

Before we continue, it will first be convenient to calculate the relationships
between the projection operators (12.35) and the spatial differentiation opera-
tor. The utility comes later when we apply these projection operators to the
Kuramoto-Sivashinsky equation, specifically when considering the nonlinear
term.

DxP
++ =

1

4
Dx(1 + σx + τt + σxτt)

=
1

4
(1− σx + τt − σxτt)Dx

= P−+Dx

DxP
+− =

1

4
Dx(1 + σx − τt − σxτt)

=
1

4
(1− σx − τt + σxτt)Dx

= P−−Dx

DxP
−+ =

1

4
Dx(1− σx + τt − σxτt)

=
1

4
(1 + σx + τt + σxτt)Dx

= P++Dx

DxP
−− =

1

4
Dx(1− σx − τt + σxτt)

=
1

4
(1 + σx − τt − σxτt)Dx

= P+−Dx . (4.7)

These identities allow us to rewrite the nonlinear terms present in each projec-
tion of the Kuramoto-Sivashinsky equation as derivatives of projection compo-
nents as opposed to projections of derivatives, which we believe leads to less
confusing analysis. Note that the effect can be summarized by flipping the first
±, pertaining to the coefficient of the spatial reflection terms in (12.35) The sur-
viving nonlinear terms after the application of each projection operator are as
follows

P++(u∂xu) = u±±∂x(u±±)

P+−(u∂xu) = u±±∂x(u±∓)

P−+(u∂xu) = u±±∂x(u∓±)

P−−(u∂xu) = u±±∂x(u∓∓) . (4.8)

Using these relations (12.38) we can produce the projections of the Kuramoto-
Sivashinsky equation onto the different irreducible subspaces, noting that the
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projection operator commutes with the linear terms such that

P++F (u) = u++
t + u++

xx + u++
xxxx

+ (u++∂x(u++) + u+−∂x(u+−)

+ u−+∂x(u−+) + u−−∂x(u−−))

P+−F (u) = u+−
t + u+−

xx + u+−
xxxx

+ (u++∂x(u+−) + u+−∂x(u++)

+ u−+∂x(u−−) + u−−∂x(u−+))

P−+F (u) = u−+
t + u−+

xx + u−+
xxxx

+ (u++∂x(u−+) + u+−∂x(u−−)

+ u−+∂x(u++) + u−−∂x(u+−))

P−−F (u) = u−−t + u−−xx + u−−xxxx

+ (u++∂x(u−−) + u+−∂x(u−+)

+ u−+∂x(u+−) + u−−∂x(u++)) . (4.9)

Solutions to (18.1) satisfy F = 0 by definition so by extension solutions must
also satisfy P±±F = 0. With this we can determine the combinations of pro-
jection operators whose equations are “self contained”. This is similar to the
notion of flow invariant subspaces but because we do not have dynamics we can’t
really use this term. Instead, these subspaces correspond to a constrained set
of equations that solutions with particular discrete symmetries must adhere to.
For example, assume that the only nonzero component u is u = u++. Substitu-
tion of (12.39) yields

P++F (u++) = u++
t + u++

xx + u++
xxxx + u++∂x(u++)

P+−F (u++) = 0

P−+F (u++) = 0

P−−F (u++) = 0 , (4.10)

so U++ is an invariant subspace. In fact, this subspace corresponds to equilib-
ria solutions which live on the T = 0 line. The meaning of self contained in
this example is that we assumed that u = u++ and the only nonzero part of
(12.40) is the P++F (u++) component. Perhaps a more elucidating example is
generated by the assumption that u = u−− 6= 0. Substitution yields

P++F (u−−) = u−−∂x(u−−)

P+−F (u−−) = 0

P−+F (u−−) = 0

P−−F (u−−) = u−−t + u−−xx + u−−xxxx (4.11)

which indicates that the equations are not self contained as components other
than P−−F (u−−) are non-zero. Recall that each of these components is equiv-
alently equal to zero. Because these equations represent scalar field values
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defined at every x, t this implies that in order to satisfy u−−∂x(u)−− = 0 either
u−−, its derivative ∂x(u)−−, or both must equal to zero at every point on the
spatiotemporal domain. The only nontrivial possibility is if there are (at least)
two disjoint regions such that Ωu = {(x, t) : u(x, t) = 0} and Ωux = {(x, t) :
ux(x, t) = 0}. By smoothness, if u = 0 then ux = 0. This implies that ux = 0
for all (x, t); if ux = 0 everywhere and u = 0 for some (x, t) then it must be
the case that u = 0 everywhere which contradicts our original assumption that
u = u−− 6= 0. The rest of the symmetry invariant subspaces follow from a sim-
ilar substitutions. To expedite the derivation process, note that the equation
for P++F contains all of the symmetric terms u±±∂x(u±±) such that there is
no possibility of an invariant subspaces which does not intersect U++. Follow-
ing a process of elimination we can show that the possible symmetry invariant
subspaces are U++, U++⊕U−−, U++⊕U+− and U++⊕U−+ and of course the
full space U. There are no triplet subspaces (comprised of three components)
which can be shown using the parity of the different subspaces. We can in-
terpret these subspaces by addition of the corresponding projection operators
(12.35)

P0 ≡ P++ =
1

4
(1 + σx + τt + σxτt)

Pσx ≡ P++ + P+− =
1

2
(1 + σx)

Pτt ≡ P++ + P−+ =
1

2
(1 + τt)

Pσxτt ≡ P++ + P−− =
1

2
(1 + σxτt) . (4.12)

With these projection operators we can interpret the symmetry invariant sub-
spaces as follows: U++ represents the fixed point (T = 0) subspace, U++⊕U+−

the spatial reflection invariant subspace, U++⊕U−− the shift-reflection invari-
ant subspace, and lastly U++⊕U−+ which contains solutions that are invariant
after a half period shift in time. This subspace of “twice repeating” solutions is
trivial and not useful; doubly periodic solutions can always be made to repeat
twice in time by definition. The interpretation of the corresponding subspace
is therefore not very intuitive.

The next question to answer is how continuous spatial translation symme-
try manifests itself in this spatiotemporal context. How do these subspaces
relate to the continuous spatial translation symmetry? The three subspaces
U0,Uσx ,Uσxτt share an interesting property in a real valued (SO(2)) represen-
tation. Specifically, the subspaces of spatiotemporal Fourier coefficients corre-
sponding to invariance under these discrete symmetries are all orthogonal to
the space of spatial translations. This can be seen by acting on the different or-
bits with the spatial derivative operator which is the generator of infinitesimal
translations. The subgroup H = CM,x represents continuous spatial transla-
tion symmetry after discretization. We utilize a co-moving frame ansatz to
handle this symmetry, which we will now develop. As previously mentioned,
we use a real valued (SO(2)) representation for the spatiotemporal Fourier co-
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efficients. This choice makes the matrix representations of the group elements
slightly more complicated as they will be block diagonal as opposed to exactly
diagonal. Note that because of doubly periodic boundary conditions, transla-
tions are the same as rotation. The matrix representation of the group element
which spatially rotatesM Fourier modes by a value θ is a block diagonal matrix
with M blocks; each block being a representation of two dimensional rotations
for the corresponding wavenumber k

g̃(θ) ≡
[
cos qkθ − sin qkθ
sin qkθ cos qkθ

]
. (4.13)

This block diagonal matrix acts on M Fourier modes; the corresponding ex-
tension to the set of spatiotemporal Fourier coefficients is simply N copies of
(12.43). In other words we haveN blocks of (12.43). This form lends itself to the
matrix representation for the co-moving reference frame transformation. The
co-moving reference frame is the reference frame which makes relative peri-
odic orbits periodic by applying a time-dependent spatial translation to every
point of the invariant 2-torus. Using (12.43) the matrix representation of the
co-moving frame transformation is as follows

g(
σtn
T

) ≡


g̃(σt1T ) 0 · · · 0

0 g̃(σt2T ) · · · 0
...

...
. . .

...
0 0 0 g̃(σtNT )

 . (4.14)

Transformations of the type (12.44) will be used in our ansatz for doubly peri-
odic solutions of the Kuramoto-Sivashinsky equation which are relatively pe-
riodic.

4.1.1 OLD: Symmetries of Kuramoto-Sivashinsky equation

G, the group of actions g ∈ G on a state space (reflections, translations, etc.) is
a symmetry of the KS flow (18.1) if g ut = F (g u). The Kuramoto-Sivashinsky
equation is time translationally invariant, and space translationally invariant
on a periodic domain under the 1-parameter group of O(2) : {τd/L , σ}. If u(x, t)
is a solution, then τd/L u(x, t) = u(x+d, t) is an equivalent solution for any shift
−L/2 < d ≤ L/2, as is the reflection (‘parity’ or ‘inversion’)

σ u(x) = −u(−x) . (4.15)

The translation operator action on the Fourier coefficients (1.23), represented
here by a complex valued vector a = {ak ∈ C | k = 1, 2, . . .}, is given by

τd/L a = g(d) a , (4.16)

where g(d) = diag(eiqk d) is a complex valued diagonal matrix, which amounts
to the k-th mode complex plane rotation by an angle k d/L̃. The reflection acts
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on the Fourier coefficients by complex conjugation,

σ a = −a∗ . (4.17)

Reflection generates the dihedral subgroup D1 = {1, σ} of O(2). Let U be the
space of real-valued velocity fields periodic and square integrable on the inter-
val Ω = [−L/2, L/2],

U = {u ∈ L2(Ω) | u(x) = u(x+ L)} . (4.18)

A continuous symmetry maps each state u ∈ U to a manifold of functions with
identical dynamic behavior. Relation σ2 = 1 induces linear decomposition
u(x) = u+(x) + u−(x), u±(x) = P±u(x) ∈ U±, into irreducible subspaces
U = U+ ⊕ U−, where

P+ = (1 + σ)/2 , P− = (1− σ)/2 , (4.19)

are the antisymmetric/symmetric projection operators. Applying P+, P− on
the Kuramoto-Sivashinsky equation (18.1) we have [14]

u+
t = −(u+u+

x + u−u−x )− u+
xx − u+

xxxx

u−t = −(u+u−x + u−u+
x )− u−xx − u−xxxx . (4.20)

If u− = 0, Kuramoto-Sivashinsky flow is confined to the antisymmetric U+

subspace,
u+
t = −u+u+

x − u+
xx − u+

xxxx , (4.21)

but otherwise the nonlinear terms in (12.50) mix the two subspaces.
Any rational shift τ1/mu(x) = u(x + L/m) generates a discrete cyclic sub-

group Cm of O(2), also a symmetry of Kuramoto-Sivashinsky equation. Reflec-
tion together with Cm generates another symmetry of Kuramoto-Sivashinsky
equation, the dihedral subgroup Dm of O(2). The only non-zero Fourier com-
ponents of a solution invariant under Cm are ajm 6= 0, j = 1, 2, · · · , while for a
solution invariant under Dm we also have the condition Re aj = 0 for all j. Dm

reduces the dimensionality of state space and aids computation of equilibria
and periodic orbits within it. For example, the 1/2-cell translations

τ1/2 u(x) = u(x+ L/2) (4.22)

and reflections generate O(2) subgroup D2 = {1, σ, τ, τσ}, which reduces the
state space into four irreducible subspaces (for brevity, here τ = τ1/2):

τ σ τσ

P (1) =
1

4
(1 + τ + σ + τσ) S S S

P (2) =
1

4
(1 + τ − σ − τσ) S A A

P (3) =
1

4
(1− τ + σ − τσ) A S A (4.23)

P (4) =
1

4
(1− τ − σ + τσ) A A S .
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P (j) is the projection operator onto u(j) irreducible subspace, and the last 3
columns refer to the symmetry (or antisymmetry) of u(j) functions under re-
flection and 1/2-cell shift. By the same argument that identified (12.51), the
Kuramoto-Sivashinsky flow stays within the US = U(1) + U(2) irreducible in-
variant D1 subspace of u profiles symmetric under 1/2-cell shifts.

While in general the bilinear term (u2)x mixes the irreducible subspaces of
Dn, for D2 there are four subspaces invariant under the flow [14]:

• {0}: the u(x) = 0 equilibrium

• U+ = U(1) + U(3):
the reflection D1 irreducible space of antisymmetric u(x)

• US = U(1) + U(2):
the shift D1 irreducible space of L/2 shift symmetric u(x)

• U(1):
the D2 irreducible space of u(x) invariant under x 7→ L/2− x, u 7→ −u.

With the continuous translational symmetry eliminated within each subspace,
there are no relative equilibria and relative periodic orbits, and one can focus
on the equilibria and periodic orbits only, as was done for U+ in refs. [3, 16,
17]. In the Fourier representation, the u ∈ U+ antisymmetry amounts to hav-
ing purely imaginary coefficients, since a−k = a∗k = −ak. The 1/2 cell-size
shift τ1/2 generated 2-element discrete subgroup {1, τ1/2} is of particular inter-
est because in the U+ subspace the translational invariance of the full system
reduces to invariance under discrete translation (12.52) by half a spatial period
L/2.

Each of the above dynamically invariant subspaces is unstable under small
perturbations, and generic solutions of Kuramoto-Sivashinsky equation belong
to the full space. Nevertheless, since all equilibria of the KS flow studied in
ref. [5] lie in the U+ subspace, U+ plays important role for the global geometry
of the flow. However, linear stability of these equilibria has eigenvectors both
in and outside of U+, and needs to be computed in the full state space.

Predrag’s notes - temporary section

Symmetries of plane Couette flow are discussed in Gibson, Halcrow and Cvi-
tanović [8] Equilibrium and traveling-wave solutions of plane Couette flow. Here
I adopt clips from the repository halcrow/n00bs/n00bs.tex to the spa-
tiotemporal Kuramoto-Sivashinsky, and will use this text as a temporary stag-
ing ground before editing Matt’s chap:disc_symm text. Not very important, but
my life is a bit easier if I harmonize the notation with ChaosBook.org.

We denote the spatial reflection through the origin by σ. The σ symmetry
generates a discrete dihedral group D1,x = {e, σ} of order 2, where

σ u(x, t) = −u(−x, t) . (4.24)
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With periodic boundary conditions, the spatial and time translation symme-
tries become the SO(2)x × SO(2)t continuous two-parameter group of com-
muting spacetime translations

τ(dx)xτ(dt)tu(x, t) = u(x+ dx, t+ dt) . (4.25)

The Kuramoto-Sivashinsky equations are thus equivariant under the group
G = O(2)x × O(2)t = D1,x n SO(2)x × SO(2)t, where n stands for a semi-
direct product, x subscripts indicate spatial translations and reflections in x,
and t subscripts indicate time translations in t.

The solutions of an equivariant system can satisfy all of the system’s sym-
metries, a proper subgroup of them, or have no symmetry at all. For a given
solution u, the subgroup that contains all symmetries that fix u (that satisfy
su = u) is called the isotropy (or stabilizer) subgroup of u [9, 10, 13, 20]. For
example, a typical turbulent trajectory u(x, t) has no symmetry beyond the
identity, so its isotropy group is {e}. At the other extreme is the laminar equi-
librium, whose isotropy group is the full symmetry group G.

Consider S = {e, τx, τt, τxt}, where

τx u(x, t) = u(x+ L/2, t)

τt u(x, t) = u(x, t+ T/2) (4.26)
τxt u(x, t) = u(x+ L/2, t+ T/2) .

2018-05-01 TO BE CONTINUED
Four isotropy subgroups of order 4 are generated by picking σxt as the first

generator, and σt, σtτx, σtτt, or σtτxt as the second generator (R for reflect-
rotate):

R = {e, σ, σt, σxt} = {e, σxt} × {e, σt}
Rx = {e, στx, σtτx, σxt} = {e, σxt} × {e, στx} (4.27)
Rt = {e, στt, σtτt, σxt} = {e, σxt} × {e, σtτt}
Rxt = {e, στxt, σtτxt, σxt} = {e, σxt} × {e, σtτxt} ' S .

These are the only isotropy groups of order 4 containing σxt and no isolated
translation elements. Together with {e, σxt}, these 5 isotropy subgroups repre-
sent the 5 conjugacy classes in which expect to find equilibria.

The Rxt isotropy subgroup is particularly important, as many equilibria
belong to this conjugacy class.

4.2 Fourier transform normalization factors
2 We have time-periodic solutions, namely two repeats of pre-periodic orbits,
however, in my intuition (which might be wrong) we don’t necessarily need to
start simulations from those. Since the dynamics is chaotic, after a finite time,

2Matt 2016-06-17: Burak Budanur wrote this.
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say 20 Lyapunov times (e−20 ∼ O(10−9)), correlations between initial condition
and final point will be so low that imposing periodicity in time will not effect
the outcome.

With this in mind, let’s say that you solved the Kuramoto-Sivashinsky equa-
tion in spatially periodic domain, with an initial condition on the strange at-
tractor (no transients), and obtained u(x, t), for x ∈ [0, L) and t ∈ [0, T ). You
can find the spatial derivatives by inverse Fourier transformations:

ux(x, t) = F−1 {iqkuk} , uxx(x, t) = F−1
{

(iqk)2uk
}
,

uxxx(x, t) = F−1
{

(iqk)3uk
}
, uxxxx(x, t) = F−1

{
(iqk)4uk

}
. (4.28)

In fact, you must compute spatial derivatives as above (not by approximating
with finite-differences) because otherwise they will not be as accurate numeri-
cally. Side note: depending on the implementation you’re using, Fourier trans-
forms would need you to add a normalization factor, usually a division by N
(number of modes).

Now that you have ux(x, t) and its space derivatives, you should take their
value at x = 0 for t ∈ [0, T ) as your initial condition and input it to the space-
integrator. Then you can compare the outcome with the one you already have
from time-integration.

3 In this section we go through the derivation of (1.36) and state the correct
normalizations for Fourier transforms.

Let us start from the following definition of the Fourier expansion of the
time-periodic function u(t) = u(t+ T):

u(t) =
∞∑

k=−∞

ûke
iωkt , where ωk = 2πk/T . (4.29)

In order to find Fourier coefficients ûk, we multiply the above equation
from the left by 1

T

∫ T
0
dt e−iωmt, on the RHS we get:

∞∑
k=−∞

ûk
1

T

∫ T

0

dt ei(ωk−ωm)t =
∞∑

k=−∞

ûk
1

T

∫ T

0

dt ei2π(k−m)t/T . (4.30)

If k 6= m, then the integral above is integral of a periodic function over one
full period, hence 0. If k = m, then it is the integral of 1 from 0 to T, and we
can replace the integral by Tδkm, which picks out ûm from the sum. Hence we
obtain the forward Fourier transform of u(t) as

ûk =
1

T

∫ T

0

dt u(t)e−iωkt (4.31)

We can approximate the above transformation by replacing the integral by a
Riemann sum

∫ T
0
dt → ∑N−1

n=0 ∆t, ∆t = T/N , hence we obtain the discrete

3Matt 2016-07-13: Burak Budanur wrote this section.
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Fourier transform as

ûk =
1

N

N−1∑
n=0

u(tn)e−iωktn ,where tn = nT/N

=
1

N

N−1∑
n=0

u(tn)e−i2πnk/N ,

=
1

N
F{u(tn)} , (4.32)

where F{.} denotes the Fourier transformation in Matlab’s normalization con-
vention. Consequently, if we take 2N+1 terms from the series (4.29), we obtain
the inverse discrete Fourier transform as

u(tn) =

N/2∑
k=−N/2

ûke
iωktn , =

N/2∑
k=−N/2

ûke
i2πkn/N ,

= NF−1{ûk} , (4.33)

where F−1{.} is the inverse Fourier transform in the Matlab’s convention.
In Matlab it is probably is computationally preferable to carry out the con-

volution in the fourth equation of (1.36) in time-domain as

∞∑
m=−∞

û
(0)
`−mû

(1)
m = F

{
F−1

{
û(0)

}
F−1

{
û(1)

}}
, (4.34)

where F and F−1 denote the Fourier transform and its inverse, respectively.
One should experiment with time-domain sizes and truncation of the Fourier
expansion.

One can insert the definition (4.29) into (1.34) and then multiply from left
by the integral 1

T

∫ T
0
dt e−iωmt in order to confirm that the equation (1.36) is

correct. But in order to compute the nonlinear term pseudospectrally, we take
the Fourier transform of u(0)u(1), that is

1

T

∫ T

0

dt e−iωmtu(0)(t)u(1)(t) ≈ 1

N

N−1∑
n=0

u(0)(tn)u(1)(tn)e−iωmtn ,

=
1

N
F{u(0)u(1)} . (4.35)

4.3 Selection rules for Fourier coefficients

4.3.1 Selection rules for Kuramoto-Sivashinsky

7451 (predrag–6859) 9505/09/2019 siminos/spatiotemp/chapter/discsymm.tex



CHAPTER 4. SYMMETRIES OF SPACE-TIME KURAMOTO-SIVASHINSKY
EQUATION

4.3.2 Selection rules for real-valued Fourier coefficients

Although the spatiotemporal Kuramoto-Sivashinsky equation is easier to write
in terms of a complex Fourier-Fourier basis, the symmetry invariant subspaces
generated by symmetry constraints is easier to describe in terms of real valued
Fourier coefficients. The real valued spatiotemporal Fourier expansion can be
written

This is the expansion for a general spatiotemporal solution. For each dis-
crete symmetry of the spatiotemporal Kuramoto-Sivashinsky equation there is
a unique set of constraints or “selection rules” for the spatiotemporal Fourier
coefficients. These selection rules constitute symmetry invariant subspaces of
solutions of the spatiotemporal Kuramoto-Sivashinsky equation. In this sec-
tion we commit to the description of the selection rules of the Fourier coeffi-
cients. For more discussion on the symmetries themselves we refer the reader
to sect. 12.3.2.

The two discrete symmetries we will describe are spatial reflection symme-
try and spatiotemporal shift-reflection symmetry. The shift-reflection symme-
try is a special case of the broader symmetry group Dn × Cn (n = 2). Due to
the uncommon appearance of solutions with n > 2 and the relatively easy gen-
eralization of the n = 2 shift-reflection case, we shall only consider the n = 2
symmetry group.

The general procedure for producing these selection rules is not very com-
plicated. Let R represent an arbitrary symmetry operation. If a solution is in-
variant under R then it satisfies the invariance condition Ru = u or equivalently
(R − 1)u = 0. Substitution of the expansion (??) produces a set of constraints
that can only be satisfied when a subset of real valued Fourier coefficients are
individually equal to zero. To begin we start with spatial reflection symmetry,
as it is almost trivial. Solutions invariant under spatial reflection only admit
spatially antisymmetric basis functions. Therefore, the selection rules for spa-
tial reflection symmetry are

âkj, b̂kj = 0 for all k, j . (4.36)

Spatiotemporal shift-reflection is the composition of two symmetry operations:
spatial reflection σx and time translation by τT/2. The action of this symmetry
is as follows σxτT/2u(x, t) = −u(−x, t+T/2). When directly applied to the real
valued Fourier expansion (??) and by virtue of trigonometric identities and the
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parity of sin and cos we have

σxτT/2 u(xm, tn) = −
∑
k,j

cos(qk(−xm))(âkj cos(ωj(tn + T/2)) + b̂kj sin(ωj(tn + T/2)))

+ sin(qk(−xm))(ĉkj cos(ωj(tn + T/2)) + d̂kj sin(ωj(tn + T/2)))

=
∑
k,j

− cos(qkxm)(âkj cos(ωjtn) cos(πj) + b̂kj sin(ωjtn) cos(πj)))

+ sin(qkxm)(ĉkj cos(ωjtn) cos(πj) + d̂kj sin(ωjtn) cos(πj))

=
∑
k,j

(−1)j+1 cos(qkxm)(âkj cos(ωjtn) + b̂kj sin(ωjtn))

+ (−1)j sin(qkxm)(ĉkj cos(ωjtn) + d̂kj sin(ωjtn)) ,

By combining this with the invariance condition (σxτT/2 − 1)u = 0, we find
that the selection rules for spatiotemporal shift-reflection are as follows

âkj, b̂kj = 0 for j even

ĉkj, d̂kj = 0 for j odd . (4.37)

4.3.3 Selection rules for Fourier coefficients of Navier-Stokes
pre-periodic orbits

This section makes the assumption that one is not in the flow invariant sub-
space defined by Golubitsky and Stewart [10] and Gibson, Halcrow and Cvi-
tanović [7], and also assumes that outside of this flow invariant subspace that
there are pre-periodic orbits. Then one can calculate the number of active vari-
ables much like sect:selection_KS (?) if one took real valued transforms.

The main results which I’ll describe is for s1 and s3 "pre-periodic orbitsolu-
tions" if they exist, which I couldn’t confirm. Think of this as an algebra check
on the previous work if its worthless or not interesting.

For s1 we have [u, v, w](x, y, z, t) = [u, v,−w](x + Lx
2 , y,−z, t + T

2 ). The
functions u, v, w have generic expansions (i.e. there is a sum over index m that
denotes unit directions x̂m that I’m not including) given by the following.

u(x, t) =
∑
jkn`

T`(y)[cos(qjx) cos(qkz)(ajkn` cos(wnt) + bjkn` sin(wnt))

+ cos(qjx) sin(qkz)(cjkn` cos(wnt) + djkn` sin(wnt))

+ sin(qjx) cos(qkz)(ejkn` cos(wnt) + fjkn` sin(wnt))

+ sin(qjx) sin(qkz)(gjkn` cos(wnct) + hjkn` sin(wnt))] (4.38)

applying symmetry operation τs1 results in (with trigonometric identities and
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parity of functions)

u(x, t) =
∑
jkn`

T`(y)[(−1)j+n cos(qjx) cos(qkz)(ajkn` cos(wnt) + bjkn` sin(wnt))

+ (−1)j+n+1 cos(qjx) sin(qkz)(cjkn` cos(wnt) + djkn` sin(wnt))

+ (−1)j+n sin(qjx) cos(qkz)(ejkn` cos(wnt) + fjkn` sin(wnt))

+ (−1)j+n+1 sin(qjx) sin(qkz)(gjkn` cos(wnt) + hjkn` sin(wnt))] (4.39)

which results in the selection rules that j + n must be even for the terms
ajkn`, bjkn`, ejkn`, fjkn` and j + n must be odd for cjkn`, djkn`, gjkn`, hjkn` for
terms in the sums to be non-zero. These selection rules also apply to the v com-
ponent of the velocity field, but they switch for the w component due to the
extra −1 that results from s1 symmetry operation.

For j + n to be even, they either both half to be even, or both have to be
odd, which reduces the number of terms in the summation by a factor of 4.
Likewise, j+n to be odd, the indices j, n need to either be odd,even or even,odd
pairs; again reducing the number of terms in the summation by a factor of four.
Therefore by imposing this type of symmetry and having an spatiotemporal
discretization only increases the dimensionality of the problem by a factor of
Nt/4, making it more manageable memory wise.

For solutions with invariant under τs3 we have

[u, v, w](x, y, z, t) = [−u,−v,−w](−x,−y,−z +
Lz
2
, t+

T

2
) ,

using the parity of Chebyshev polynomials (because this transformation in-
cludes changes to y), trigonometric identities, and parity of sine and cosine
functions, we get

u(x, t) =
∑
jkn`

T`(y)[(−1)l+k+n+1 cos(qjx) cos(qkz)(ajkn` cos(wnt) + bjkn` sin(wnt))

+ (−1)l+k+n cos(qjx) sin(qkz)(cjkn` cos(wnt) + djkn` sin(wnt))

+ (−1)l+k+n sin(qjx) cos(qkz)(ejkn` cos(wnt) + fjkn` sin(wnt))

+ (−1)l+k+n+1 sin(qjx) sin(qkz)(gjkn` cos(wnt) + hjkn` sin(wnt))] , (4.40)

where the selection rules are identical for each component of the velocity field
because the symmetry transformation changes the sign on all of the compo-
nents. Because the result has the same requirement but over three indices I
believe that this just reduces the number of variables by a factor of 8, so includ-
ing a time dimension only increases the dimensionality by a factor of 8.

4.3.4 Selection Rules for Cn shift-reflection symmetries in Kol-
mogorov flow

I’ve been working towards two dimensional Kolmogorov flow code and I re-
alized that it was imperative to figure out the symmetry invariant subspace re-
lated for shift reflection where the shift is not a half domain but rather a cyclic
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shift of order n as determined by the forcing profile in the doubly periodic
domain of numerical simulations.

Because the algebra get’s exceedingly long I’ll present the final result for the
selection rules as the equivalent problem of finding the kernel of a matrix op-
erator. The idea is to work completely with the vorticity field ω(x, y, t), which
has symmetries of n-cell shift and spatial reflection, as well as rotation by π.
Specifically shift reflection on a spatial domain x ∈ [0, 2π] and y ∈ [0, 2π], with
forcing profile of n cells is given by,

ω(x, y, t)→ −ω(−x, y +
π

n
, t) (4.41)

and the rotation is given by,

ω(x, y, t)→ ω(−x,−y, t) . (4.42)

By using applying the invariance condition only for shift-reflection invari-
ant (three) tori solutions, we start with the expansion for the scalar field in
terms of the real-valued Fourier basis functions.

ω(x, y, t) =
∑
jkn

[cos(qjx) cos(qky)(ajkn cos(wnt) + bjkn sin(wnt))

+ cos(qjx) sin(qky)(djkn cos(wnt) + fjkn sin(wnt))

+ sin(qjx) cos(qky)(gjkn cos(wnt) + hjkn sin(wnt))

+ sin(qjx) sin(qky)(mjkn cos(wnt) + pjkn sin(wnt))] (4.43)

If we assume there are preperiodic solutions under (`)-cell shift reflection af-
ter a prime period Tp, the general selection rules can be written as constraint
conditions

ajkn = (−1)n+1[ajkn cos(
qkπ

`
)− bjkn sin(

qkπ

`
)]

bjkn = (−1)n[ajkn cos(
qkπ

`
)− bjkn sin(

qkπ

`
)]

djkn = (−1)n[djkn cos(
qkπ

`
) + fjkn sin(

qkπ

`
)]

fjkn = (−1)n[−djkn cos(
qkπ

`
) + fjkn sin(

qkπ

`
)]

gjkn = (−1)n+1[gjkn cos(
qkπ

`
) + hjkn sin(

qkπ

`
)]

hjkn = (−1)n[gjkn cos(
qkπ

`
)− hjkn sin(

qkπ

`
)]

mjkn = (−1)n[mjkn cos(
qkπ

`
) + pjkn sin(

qkπ

`
)]

pjkn = (−1)n[−mjkn cos(
qkπ

`
) + pjkn sin(

qkπ

`
)] (4.44)

By doing some algebra one realizes that the coefficients are zero unless ky
the wavenumber associated with the direction that the forcing profile varies
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over is only nonzero for integer multiples of the forcing wavelength. In other
words, if the forcing repeats four times, the only nonzero ky are ky = 4, 8, 12, · · · .
The way that the preperiodic (time) condition comes into play is just like how
it comes into play in the Kuramoto-Sivashinsky equation equation, half of the
modes are zero depending on whether the time index n is even or odd. Specif-
ically, the modes that are zero are,

For ky being an odd number of multiples of the forcing profile index `, we
have the following constraints

djkn, fjkn,mjkn, pjkn = 0 forn odd
ajkn, bjkn, gjkn, hjkn = 0 forn even (4.45)

For ky being an even number of multiples of the forcing profile index `, we
have the following constraints

djkn, fjkn,mjkn, pjkn = 0 forn even
ajkn, bjkn, gjkn, hjkn = 0 forn odd (4.46)

Of course for equilibria this simplifies due to not having a third continuous
dimension, and we only have four distinct sets of coefficients (combinations of
sin and cos in x, y). In fact, it simplifies even more due to not having the extra
factor −1n, such that the only non-zero coefficients

ajk, bjk = 0 for ky even multiple of forcing index
djk, fjk = 0 for ky odd multiple of forcing index

(4.47)

In summary, for equilibria with discrete shift reflection symmetry, the num-
ber of non-zero modes equals Nx ∗ Ny2∗` and for preperiodic orbits it totals Nx ∗
Ny
` ∗ Nt2 .

Note, this is also useful for the Kuramoto-Sivashinsky equation if one de-
sires the selection rules for ` cyclic shift reflection, as there is no difference be-
tween shift reflection in two continuous spatial dimensions versus one space
and one time; the analogy is perfect with y playing the role of t in the Kuramo-
to-Sivashinsky equation.
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4.4 Tiles’ GuBuCv17 clippings and notes

Move good text not used in ref. [12] to this file, for possible reuse later.

2016-11-05 Predrag A theory of turbulence that has done away with dynamics?
We rest our case.

2019-03-19 Predrag Dropped this:
In what follows we shall state results of all calculations either in units of
the ‘dimensionless system size’ L̃, or the system size L = 2πL̃.

Due to the hyperviscous damping uxxxx, long time solutions of Kuramo-
to-Sivashinsky equation are smooth, ak drop off fast with k, and trunca-
tions of (1.24) to 16 ≤ N ≤ 128 terms yield accurate solutions for system
sizes considered here (see appendix ??).

For the case investigated here, the state space representation dimension
d ∼ 102 is set by requiring that the exact invariant solutions that we com-
pute are accurate to ∼ 10−5.

4.4.1 GuBuCv17 to do’s

Internal discussions of ref. [12] edits.

2019-03-17 Predrag to Matt My main problem in writing this up is that I see
nothing in the blog that formulates the variational methods that you use,
in a mathematically clear and presentable form. Perhaps there is some
text from
siminos/gudorf/thesisProposal/proposal.tex
that you can use to start writing up variational justification for your nu-
merical codes, section 3 Variational methods.

2019-03-17 Predrag to Matt Please write up tile extraction and glueing in the
style of a SIADS article.

2019-03-17 Predrag to Matt Should any of Appendix 4.2 Fourier transform nor-
malization factors be incorporated into GuBuCv17 [12]?

2019-04-10 Matt writing To begin variational.tex I included two equiva-
lent formulations of the variational problem; the first is written in a more
concise manner while the second is written in a more explicit manner.
The longer of the two is commented out. The more explicit description
uses dummy variables (Lagrange multipliers) which replace parameters
(L, T) as independent variables.

I’m including explanations of the numerical algorithms but I don’t think
I should present them in their style for algorithms, because we didn’t
invent them just applied them in a unique way. If desired I think the
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easiest way of including them per SIADS style guide is to use the algo-
rithm package they suggest: algpseudocode and algorithmic are
the package names.

I feel conflicted as to whether to define the gradient matrix using a new
letter or the “mathematician way". e.g. A(x) or DG(x). Also, I started
using z to represent state space vectors. I’m not a fan of using z but I
don’t want to confuse people by using u,x, etc.

I need to get better at writing or stop being OCD over how sentences are
written.

2019-04-16 Matt update In an effort to make the chapters and GuBuCv17.tex
more modular, I’ve split apart some of the chapters into smaller, more
manageable pieces. For example, variational.tex was covering too
many topics to be reflected by the file name and numerics.tex predom-
inately covered discrete lagrangian systems and Noether’s theorem. The
algorithms (matrix free adjoint descent, matrix free GMRES and Gauss-
Newton) have yet to be discussed in excruciating detail. This is my fault,
in hindsight I’ve done a poor job with recording what I do and how I do
it. I’m going to get better at this.

For the time being, until it is deemed unnecessary or unintelligent, I
am going to break the chapters into the files adjointdescent.tex
and iterativemethods.tex. I’m going to change the discourse so
that instead of requiring the current order, namely, variational.tex-
>adjointdescent.tex->iterativemethods.tex the pieces will be
written as to be independent of one another.

In order to get specific, I needed to include the Kuramoto-Sivashinsky
equation written in the Fourier-Fourier basis; I put this in sFb.tex

2019-04-17 MNG update Realized that in order to get specific with the numer-
ical methods I need to include both an exposition on the spatiotempo-
ral Fourier modes as well as the matrix-free computations. The latter
really stresses the improvements over the finite-difference approxima-
tion of the Jacobian that requires time integration ubiquitous in plane-
couette and pipe numerics. Expanding on adjointdescent.tex and
iterativemethods.tex. Again, the main stratagem is to make the
separate .tex files as independent as possible to avoid “long distance
references”.

2019-04-18 MNG Heavy edits to tiles.tex Added section on precondition-
ing preconditioning.tex Formatting edits to matrixfree.tex can
be ignored.
Added details in iterativemethods.tex regarding GMRES and SciPy
wrapper for LAPACK solver GELSD

2019-04-23 MNG Converting indices to abide by the conventions: physical
space indices u(xm, tn), and spatiotemporal Fourier space indices ûkj .
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2018-05-09 PC can do. Also, remember that u(xm, tn) implies that every-
where the ordering is (L, T), and not (T, L).

Luca Dieci asked (borderline pleaded) to abide by the mathematics con-
vention that n is the index for discrete time. I’m avoiding ` and τt due to
the unnecessary confusion with domain size L and period T.
2018-05-09 PC Agreed. τt we usually control by macro \zeit, so currently
tn.

2019-04-24 MNG Discussion of how I foresee paper(s) playing out in blogMNG.tex
by considering subject matter, narratives, and paper length. Perhaps un-
surprisingly I lean towards structuring a paper similar to my thesis.

I’m unsure how to approach spatiotemporal symmetries in a practical
manner. Projection operators which produces symmetry invariant sub-
spaces are nice and complements the selection rules for different symme-
tries nicely. Specifically it provides the reason for why the selection rules
exist and motivates the use of symmetry constrained Fourier transforms.
The only issue I have with this is that the results of the formal derivation
are not really used beyong that. I think this is likely a case of “It-is-trivial-
now-that-I-know-it’ syndrome. Perhaps it would be sufficient to say that
the selection rules constitute these subspaces without the formalism?

2019-04-29 MNG Rewrite of KSsymm.tex after double checking the deriva-
tions. Going to rewrite sFb.tex, I’m paying for the expedient manner
in which is was written; in other words just use a single Fourier basis as
opposed to a real basis and a complex basis, Matt.

2019-04-30 MNG Rewrites to describe the spatiotemporal Kuramoto-Sivashin-
sky equation only in terms of real valued Fourier coefficients for consis-
tency. The index notation gets a little rough but the pseudospectral form
of the equation is nice enough.

Tried to find the most concise description of how I handle relative peri-
odic orbits using mean velocity frame (time dependent rotation transfor-
mation).

2019-05-02 MNG Is it necessary to recap all of the results in sect. 1.5 in this
paper? Other than the spatial integration calculation the results described
in refs. [4, 5]. I’m unsure how to connect the spatiotemporal calculations
to results pertaining to the dynamical system formulation, e.g. temporal
stability and energy budget.

Moved SpatTempSymbDyb.tex to after tiles.tex such that it pro-
ceeds from finding tiles to using tiles.

The bulk of each section is complete; perhaps need to add some more
detail to glue.tex and tiles.tex but mostly need to work on picking,
producing, and inserting figures.

Going to list suggestions for figures at the top of each section in com-
mented text.
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2019-05-02 MNG Added tile figures: Extraction and converged results in tiles.tex.

Modifying scripts to produce figures of general numerical convergence
(initial condition to final converged invariant 2-torus), produce figures
demonstrating step-by-step gluing for repeated gluing, and produce fig-
ures for the “frankenstein” plots (combining tiles to produce invariant
2-tori). Basically just producing more figures.

2019-05-11 PC moved Ibragimov to gudorf/thesis/thesis.tex until we
find it useful.

2019-05-13 MNG • Added spatial gluing figures
• Added description of gluing procedure

2019-05-13 PC Figures are looking great, and in my talks people seem to “get”
tile extraction and gluing, so they are very important. A few notes, before
you produce the next versions:

• I think you should label all u color bars in multiples of 1, or or 0.5 if
that is really needed, not different units in every plot.

• Once you have improved a given figure, keep the same name rather
than renaming it (they are often shared between different articles,
presentations and blogs)

2019-07-05 PC dropped from trawl.tex: “ In both formulations there is no guar-
antee of convergence but it is clearly better to take less time regardless of
convergence.

In our formulation, convergence can not be guaranteed either, but the
resources committed to the initial guesses generation are negligible. ”

qk = 2π
k

L
, k = 1, · · · ,M/2− 1

ωj = 2π
j

T
, j = 0, · · · , N/2− 1

xm =
m

M
L , m = 0, · · · ,M − 1

tn =
n

N
T , n = 0, · · · , N − 1 . (4.48)

2019-08-21 MNG Moved discussion of recurrence plots and multiple shooting
from trawl.tex to variational.tex

It seemed more coherent to first describe the disadvantages of the IVP
to motivate the variational problem. I’m going to refer to what I do as
“solving a variational problem” as opposed to boundary value problem
because it insinuates (at least to me) that we’re solving a Dirichlet BC in
1 + 1 dimensions problem.

General narrative of variational.tex
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• Exponential instability bad

• Variational formulation good

• How to solve variational problem (general description of optimiza-
tion)

• Losses from variational formulation (notion of dynamics, stability,
bifurcation analysis).

• How to recoup from these losses (adjoint sensitivity, Lagrangian,
Hill’s formula)

It’s currently a hot mess.

2019-09-20 MNG Input references to topological defects and motifs in com-
plex networks. Renamed the “defect tile” to the “merger tile” but also
made the connection that similar patterns in crystals are referred to as
“edge dislocations”.

Just clean up and rewriting tiles.tex mainly; it’s almost in shape.

2018-05-09 PC Dropped: The following definitions will be devoid of symme-
try considerations such that the equations represent the general case.

For L̃ < 1 the only equilibrium of the system is the globally attracting
constant solution u(x, t) = 0, denoted E0 from now on. With increasing
system size L the system undergoes a series of bifurcations. The resulting
equilibria and relative equilibria are described in the classical papers of
Kevrekidis, Nicolaenko and Scovel [14], and Greene and Kim [11], among
others. The relevant bifurcations up to the system size investigated here
are summarized in figure 1.3: at L̃ = 22/2π = 3.5014 · · · , the equilib-
ria are the constant solution E0, the equilibrium E1 called GLMRT by
Greene and Kim [11, 18], the 2- and 3-cell states E2 and E3, and the pairs
of relative equilibria TW±1, TW±2. All equilibria are in the antisymmet-
ric subspace U+, while E2 is also invariant under D2 and E3 under D3.

Due to the translational invariance of Kuramoto-Sivashinsky equation,
they form invariant circles in the full state space. In the U+ subspace
considered here, they correspond to 2n points, each shifted by L/2n. For
a sufficiently small L the number of equilibria is small and concentrated
on the low wave-number end of the Fourier spectrum.

dropped this: G, the group of actions g ∈ G on a state space (reflections,
translations, etc.) is a spatial symmetry of a given system if gut = F (g u).

An instructive example is offered by the dynamics for the (L, T) = (22, T)
system that ref. [5] specializes to. The size of this small system is ∼ 2.5

mean wavelengths (L̃/
√

2 = 2.4758 . . .), and the competition between
states with wavenumbers 2 and 3.

The two zero Lyapunov exponents are due to the time and space transla-
tional symmetries of the Kuramoto-Sivashinsky equation.
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For large system size, as the one shown in figure 1.1, it is hard to imag-
ine a scenario under which attractive periodic states (as shown in ref. [6],
they do exist) would have significantly large immediate basins of attrac-
tion.

2019-10-17 MNG : Merged symmetry discussions. KSsymmMNG1 was deleted
because seems to be an old discussion predating the spatiotemporal sym-
metry group discussion as it still mentions equivariance. The focus should
only be on invariance under symmetry operations, as invariance gives
rise to the the practical application of the symemtry discussion which is
constraints on the spatiotemporal Fourier coefficients. KSsymmMNG was
deleted because it is just an older version of KSsymm. KSsymmPC uses
different notation and says things better than I do so I’ll have to figure
out how to merge it in.

2019-10-25 PC dropped from variational.tex:

Linear stability analysis has been used in bifurcation analysis of describe
the existence and bifurcations of solutions as well as the geometry of state
spaces corresponding to different flows refs. [7, 17, 23].

Commonly time variational integrators preserve symplectic structure

2019-09-05 MNG Dropped from variational.tex: multishooting optimization of
cost functional because it doesn’t jive with spatiotemporal methods (based
on integration)

Adjoint sensitivity and Hill’s formula sections when I figure them out or
they seem useful:

Section on adjoint sensitivity The spatiotemporal reformulation of a dy-
namical problem also requires a reformulation of its linear stability anal-
ysis.

Nevertheless, we still have the notions of tangent spaces and derivatives
so the natural replacement is the notion of sensitivity. In the context of
finite element (finite difference) representation, instead of computing a
derivative and transporting it around a periodic orbit, it instead com-
putes the derivative of the temporal average of the quantity with respect
to whichever parameter is desired [1, 19, 24]. Because there is no trans-
port, one need not worry about the exponential instability present. Es-
sentially sensitivity is to stability as boundary value problem is to ini-
tial value problem in this context. Because the spatiotemporal boundary
problem is defined on a compact domain on which the scalar field does
not diverge, dynamical observables are bounded; they do not experience
numerical overflow (underflow) associated with unstable (stable) mani-
folds.

S =

∫
M
L(u, v, ux, vx, ut, vt, uxx, vxx)dxdt (4.49)
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such that the matrix of second variations, or Hessian, of this action func-
tional is defined as

H = ∇∇>S (4.50)

such that the derivatives are taken with respect to the infinite dimen-
sional scalar fields u, v, . . . , such that the Hessian matrix is infinite di-
mensional prior to discretization of the scalar fields. The resultant dis-
crete Lagrangian system and subsequent Hessian should be the Hessian
of Hill’s formula, I believe. If one is trying to derive Hamilton’s action
principle as a result of discretization (i.e., finite differences) as in ref. [15]
then one must take care to define spatiotemporal differentiation opera-
tors in a manner consistent with an action principle. A large amount of
the derivation of the discrete action principle and discrete Noether’s the-
orem of [15] relates to using a finite element discretization in physical
space. I am unsure how these ideas extend to a Fourier basis; I currently
am assuming that as long as the differentiation operators, and hence the
derivatives (jet bundle) is properly defined then everything should work
out. When two total derivatives of the Lagrangian density are taken, one
arrives at the following matrix representation of the Hessian. Keep in
mind that we have ordered the variables in terms of the order of the cor-
responding derivatives (u, v, ut, vt, ux, vx, uxx, vxx).

−vx(t, x)/3 ux(t, x)/3 0 −1/2 v(t, x)/3 −2u(t, x)/3 0 0
ux(t, x)/3 0 1/2 0 u/3 0 0 0

0 1/2 0 0 0 0 0 0
−1/2 0 0 0 0 0 0 0

v(t, x)/3 u(t, x)/3 0 0 0 −1 0 0
−2u(t, x)/3 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

(4.51)
This is an infinite dimensional matrix, but upon discretization each block
will represent a diagonal matrix whose diagonal contains the scalar field
values of the corresponding spacetime coordinates. For instance, ux/3 ≡
1
3ux(x, t)→ 1

3ux(tn, xm). Because each of the blocks are diagonal, i.e., 1 ≡
IN∗M , the determinant expansion is long but not impossible to decipher.
Note the presence of the adjoint variables v, vx. There is freedom in the
choice of what these variables should be, because they are non-physical.

2020-02-28 MNG Reformatted the paper into sections which follow the outline
so far: ,tileoutline.tex
tileintro.tex
tilebody.tex
tilesummary.tex
tilefuture.tex

2020-05-04 PC might reuse these somewhere:
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Motivated by the presence of continuous symmetries we recast chaotic
nonlinear dynamical systems via a (D + 1)-dimensional space-time the-
ory.

Space-time translationally recurrent solutions are invariant (D + 1)-tori

larger tori can be constructed from the combination of smaller tori.

the entirety of space-time can be explained via the shadowing by these
tori.

This sets the stage for a 2-dimensional symbolic represention of the infi-
nite space-time Kuramoto-Sivashinsky equation wherein the fundamen-
tal patterns constitute the symbolic alphabet.

As longer periods periodic orbits are shadowed by the shorter ones, trun-
cations of the theory to finite sets of periodic orbits should suffice to pre-
dict any observable of the ‘turbulent’ flow to a finite accuracy.

There is a vast literature on relative periodic orbits since their first appear-
ance, in Poincaré study of the 3-body problem [2, 21], where the Lagrange
points are the relative equilibria. They arise in dynamics of systems with
continuous symmetries, such as motions of rigid bodies, gravitationalN -
body problems, molecules, nonlinear waves and the plane Couette fluid
flow [22].

2020-05-12 PC Who’s this Gunzberger02 in rf{BorSch11,Gunzberger02,BoyVan04}?

2020-05-14 MNG It’s a text on numerical optimization.

2020-05-19 PC Cannot find any such Gunzberger textbook, removed the refer-
ence, sticking with the traditional Russian BorSch.

2020-02-26 MNG Let’s get this done. I’m realizing how little was actually writ-
ten now that I’m done with my thesis and it is kind of laughable.

2020-02-28 Flushing out tileintro.tex.

Note to Predrag - send this paper to
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Chapter 5

Chronotopic literature

2020-06-24 Predrag This chapter is now included into
siminos/spatiotemp/blogCats.tex blog.
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Chapter 6

Spatiotemporal literature

The Nature of Space and Time
— Kaća Bradonjić

6.1 Spatiotemporal rocket science

2017-01-23 Predrag not sure where to put this - into pipe blog or here, but
Wang et al. [108] Towards scalable parallel-in-time turbulent flow simulations
introduces “the least squares shadowing (LSS) method” and uses Kura-
moto-Sivashinsky to illustrate the power of their method: “ The initial
condition is relaxed and information is allowed to propagate both for-
ward and backward in time. [...] next-generation simulation paradigm
can likely be spacetime parallel simulations. These simulations subdivide
the four-dimensional spacetime computational domain. Each comput-
ing core handles a contiguous subdomain of the simulation spacetime.
Compared to subdivision only in the three-dimensional space, spacetime
parallel simulations can achieve significantly higher level of concurrency,
and reduce the ratio of inter-core communication to floating point opera-
tions. [...] Efficient time domain parallelism can only be achieved through
reformulating turbulent flow simulation into a well-conditioned prob-
lem. We reformulate turbulent flow simulation into a well-conditioned
problem by relaxing the initial condition. [...] Instead of trying to find the
flow solution that satisfies both the governing equation and the initial
condition, we aim to find a flow solution satisfying only the governing
equation. [...] Stability of the trajectory with a relaxed initial condition is
achieved by splitting a perturbation into stable and unstable components,
and propagating their effects forward and backward in time, respectively.
”

Blonigan and Wang [8, 9, 11] might also be of interest.

2017-01-25 Evangelos In the sense that you describe in the last paragraph,
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hasn’t dynamics been dead already since Poincaré and Lorenz? I mean
that they showed that we have to study geometry and then time becomes
irrelevant. It’s more like “Dynamics is dead, long live dynamics!”

Wang et al. [108] is very interesting indeed. I find it very similar to your
variational method for finding periodic orbits [34, 68]. In G. Sanchez-
Arriaga et al. [95] we have developed (without much thinking) a bound-
ary value solver discretized with finite differences both in time and in
space in order to detect periodic orbits. It resulted in a sparse linear alge-
bra system that was parallelizable, but we didn’t study how performance
scales. There should be a straightforward extension of Wang et al. [108]
for periodic orbits.

The main two challenges that I see with methods such as the above refs. [34,
68, 95, 108] is 1) finding a suitable initial guess and 2) increased memory
requirements. The first one is there already when we search for periodic
orbits and I suspect that it will be worse for turbulence simulations. The
second one might not be as serious in next generation HPC platforms.

2017-03-09 Predrag Andrej Junginger, Jörg Main, Günter Wunner and Rigob-
erto Hernandez, Variational principle for the determination of unstable peri-
odic orbits and instanton trajectories at saddle points, arXiv:1703.02472 (Prof.
Uzer knows the authors well) write: “ The complexity of arbitrary dy-
namical systems and chemical reactions, in particular, can often be re-
solved if only the appropriate periodic orbit - in the form of a limit cy-
cle, dividing surface, instanton trajectories or some other related struc-
ture - can be uncovered. Determining such a periodic orbit, no matter
how beguilingly simple it appears, is often very challenging. We present
a method for the direct construction of unstable periodic orbits and in-
stanton trajectories at saddle points by means of Lagrangian descriptors.
Such structures result from the minimization of a scalar-valued phase
space function without need for any additional constraints or knowledge.
We illustrate the approach for two-degree of freedom systems at a rank-1
saddle point of the underlying potential energy surface by constructing
both periodic orbits at energies above the saddle point as well as instan-
ton trajectories below the saddle point energy.

2014-11-15,2017-01-26 Burak Fazendeiro, Boghosian, Coveney and Lätt [43] Un-
stable periodic orbits in weak turbulence seem to have applied the variational
periodic orbit finding method to fluid flow by parallelizing the whole
thing.

2017-05-05 Predrag Boghosian et al. [13] New variational principles for locating
periodic orbits of differential equations is the most detailed discussion (see
also refs. [12, 43]):

They reformulate the space–time algorithm of Lan and Cvitanović [68]
in a clear-headed way, and use using the methods of gradient descent or
conjugate gradients to solve the variational equations.
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They apply it to the lattice-Boltzmann method for the solution of the
Navier–Stokes equations, with a fully parallel implementation using the
Message Passing Interface. The method has first been tested on the Lorenz
equations [12]. They apply this to weak homogeneous turbulence driven
by an Arnold–Beltrami–Childress force field in three spatial dimensions.
Because the algorithm requires storage of the space–time lattice, even the
smallest orbits require resources on the order of tens of thousands of com-
puting cores. Using this approach, two UPOs have been identified and
some of their properties have been analysed.

In ref. [44] they discuss “Ginzburg–Landau-type minimization.” (Proba-
bly not worth pursuing, they do not return to it)

”

2017-08-16 Matt : Discussed David Lasagna’s paper [70] on time averages and
their sensitivity to parameters. PC brought up the fact that derivatives of
averages tend to be fractal in nature due to horseshoes?

2017-08-16 Ashley, 2019-02-21 Predrag Davide Lasagna [70] Sensitivity analy-
sis of turbulence using unstable periodic orbits: a demonstration on the Kuramoto-
Sivashinsky equation.
Ashley Periodic orbits are finite, so can compute sensitivity avoiding the
time integral.

Sets up a Lagrangian depending on parameters, takes variational deriva-
tive

ends up with the adjoint equation

(8b) is not a condition, it is fact.

Lasagna, Sharma and Meyers [72] Periodic shadowing sensitivity analysis
of chaotic systems, arXiv:1806.02077 is a continuation of Wang [106, 107].
The find Wang [106] Shadowing Lemma a major advance. They credit
Lasagna [70] for “deriving periodic boundary conditions in time for the
sensitivity equations.” The contribution of ref. [72] is a shadowing-based
algorithm, based on the idea of enforcing periodic boundary condition in
time to the sensitivity equations, leading to the time periodic shadowing.
Providing such boundary conditions directly not only results in a method
that is potentially simpler, but it sufficient to obtain bounded (periodic)
solutions almost always, resulting in accurate gradients.

The adjoint periodic shadowing method we employ a classical Lagrangian
approach [15, 18] starts by constructing the finite-time Lagrangian func-
tion (16).

“Sum-of-squares" papers (seem unrelated to the spatiotemporal effort):

Huang, Chernyshenko, Goulart, Lasagna, Tutty and Fuentes [53] Sum-of-
squares of polynomials approach to nonlinear stability of fluid flows: an example
of application
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Lasagna, Huang, Tutty and Chernyshenko [71] Sum-of-squares approach to
feedback control of laminar wake flows

Huang, Jin, Lasagna, Chernyshenko and Tutty [54] Expensive control of
long-time averages using sum of squares and its application to a laminar wake
flow

The “adjoint periodic shadowing methods” papers are rather tedious
read (lots of variational equations!):

Cacuci [18] Sensitivity theory for nonlinear systems. I. Nonlinear functional
analysis approach is cited by many authors up to 2019, with suggestive
paper titles, like

Luchini and Bottaro [78] Adjoint equations in stability analysis

Cacuci [19] Second-order adjoint sensitivity analysis methodology (2nd-ASAM)
for computing exactly and efficiently first- and second-order sensitivities in large-
scale linear systems: I. Computational methodology

Cacuci [20] Second-order sensitivities of a general functional of the forward and
adjoint fluxes in a multiplying nuclear system with source:
2nd-order (Hessian) sensitivity information accelerates the convergence
of optimization algorithms.
In atmospheric sciences “second-order adjoint models" were used to com-
pute products between the Hessian of the cost functional and a vector
(representing a perturbation in sensitivity analysis, a search direction in
optimization, an eigenvector, etc.) to perform sensitivity analysis of the
cost function with respect to distributed observations.

2017-02-05 Tobias Schneider <tobias.schneider@epfl.ch> There were several
talks about these topics at pasc16.org. In a session I organised Diego
Donzis gave an exciting talk about fluid dynamics simulations in the
future. Donzis and Aditya [37] Asynchronous finite-difference schemes for
partial differential equations is one of the papers but there is a lot of unpub-
lished stuff.

Check MS14 at pasc16.org/program for Donzis abstract: “ Turbulence is
the most common state of fluid motion in nature and engineering and is
critical in environmental, astrophysical and engineering flows. However,
the complexity of the governing equations leads to wide ranges of tempo-
ral and spatial scales and render the problem almost intractable analyti-
cally. Thus, simulations, in particular direct numerical simulations (DNS)
which resolve the entire range of scales from the exact governing equa-
tions, have become an indispensable tool to advance the field. While very
accurate spectral methods have been used extensively up to petascale
levels, they typically require collective communications and synchroniza-
tions, two well-known potential bottlenecks at exascale. We present our
recent work on novel asynchronous numerical schemes that virtually re-
move computational obstacles at a mathematical level and present a path
towards exascale DNS of turbulent flows. We will highlight implications,
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challenges and opportunities in terms of numerical issues, parallel per-
formance, and implementation issues on future exascale systems. ”

2019-03-19 Tobias update I haven’t seen any further developments beyond what
Diego Dozis was talking about but I am also not following the field too
closely. These developments are moreover aimed at something less excit-
ing than treating space and time on an equal footing. The idea is: How
to relax the requirement that all CPUs in a large computer have to work
in a perfectly synchronised way. This leads to numerical time-marching
schemes for which the individual CPU cores can work asynchronously.
It’s a big question that arises with modern computers with literally thou-
sands of CPU cores. Essentially the idea is that you split the spatial do-
main and time-integrate this domain independently of the others. When
one needs info on the neighbouring domains (typically at the boundaries)
one does not insist that the data for all subdomains is given at exactly the
same time step. Of course that leads to small errors but those integration
errors can be controlled. It’s really just about time-marching schemes
that pose fewer synchronisation constraints and are thus better suited for
huge computers where inter-CPU communication is expensive.
I think numerical schemes that truly appreciate that space and time are
to be treated together will be on us and our community.
I have a few ideas that I would love to discuss. We are working on con-
structing a variational code for Navier-Stokes (matrix-free). We will start
with a Kuramoto-Sivashinsky demonstration (by the early fall?) and then
move to 3D Navier-Stokes.
My plan is to develop variational adjoint methods [97].
Machine learning will be used for constructing initial guesses.
Matrix-free adjoints [40].
Setup for 3D Navier-Stokes: combine parallelized Channelflow 2.0 with
a robust, variational tool for computing periodic orbits of 3D flows.
Historically, guesses are extracted from approximate recurrences observed
in long turbulent simulations [2]. This is inefficient, useful only for the
short, least unstable orbits.2CB

2017-09-04 Predrag Junginger et al. [59] Variational principle for the determina-
tion of unstable periodic orbits and instanton trajectories at saddle points seem
specific to Hamiltonian dynamics. They write:
The complexity of arbitrary dynamical system (chemical reaction, in par-
ticular) can often be resolved if only the appropriate periodic orbit - in
the form of a limit cycle, dividing surface, instanton trajectories, or some
other related structure - can be uncovered. We present a method for the
direct construction of unstable periodic orbits and instanton trajectories
at saddle points by means of Lagrangian descriptors. Such structures re-
sult from the minimization of a scalar-valued phase-space function with-
out the need for any additional constraints. We illustrate the approach
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for two-degree of freedom systems at a rank-1 saddle point of the un-
derlying potential-energy surface by constructing both periodic orbits at
energies above the saddle point as well as instanton trajectories below
the saddle-point energy.

Check also Jiménez Madrid and Mancho [57] Distinguished trajectories in
time dependent vector fields: Fixed points and periodic orbits are keystones
for describing solutions of autonomous and time periodic dynamical sys-
tems, as the stable and unstable manifolds of these hyperbolic objects
form the basis of the geometrical template organizing the description of
the dynamical system. They give a new definition of “distinguished tra-
jectory” that encompasses the concepts of fixed point and periodic orbit
and which when applied to finite time and aperiodic dynamical systems
identifies special trajectories that play an organizing role in the geometry
of the flow. The definition is valid for identifying distinguished trajecto-
ries with hyperbolic and nonhyperbolic types of stability. The definition
is implemented numerically and the procedure consists of determining
a path of limit coordinates. In the context of highly aperiodic realistic
flows the definition characterizes distinguished trajectories in finite time
intervals, and states that outside these intervals trajectories are no longer
distinguished.

2017-11-03 Predrag Jianke Yang [112] A numerical method for computing time-
periodic solutions in dissipative wave systems is another paper that finds Ku-
ramoto-Sivashinsky and complex Ginzburg-Landau relative periodic or-
bits using spatiotemporal methods.

It looks quite interesting, but it will requires bit of work to understand the
paper. Yang’s Matlab codes are available online, so one can download his
Kuramoto-Sivashinsky code and give it a go on some of our solutions.

2019-02-06 Predrag Catching up on the more recent work of Patrick Blonigan
(who happens to be recent Farazmand coauthor :) and Qiqi Wang.

Wang [106] Forward and adjoint sensitivity computation of chaotic dynamical
systems has 44 citations. It uses Lyapunov eigenvector decomposition
for sensitivity analysis, but that has high computational cost when the
dynamical system has many positive Lyapunov exponents.

Blonigan and Wang [6] Multigrid-in-time for sensitivity analysis of chaotic
dynamical systems:

Wang [107] Convergence of the least squares shadowing method for computing
derivative of ergodic averages

Their papers say that LSS was introduced in Wang, Hu and Blonigan [109]
Least Squares Shadowing sensitivity analysis of chaotic limit cycle oscillations.
The paper has 42 citations.

LSS computational cost is O(mn3) where m is the number of time steps,
and n is the number of dynamical degrees of freedom.
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When the dynamical system is high dimensional, e.g., a discretized par-
tial differential equation, iterative solution methods should be used in-
stead of direct matrix solvers. Because the system is well-conditioned
and only twice as large as an initial value problem, an iterative solution
can potentially cost only a small multiple of an initial value solution.

What I do not get is the cost function - it is usual squares, but with respect
to a “pre-specified reference trajectory.”

Sensitivity analysis [74] computes the derivative of outputs to inputs (deriva-
tive with respect a control parameter) of a simulation. Conventional
methods, including the tangent and the adjoint method, fail when the dy-
namical system is chaotic and the outputs are long time averaged quan-
tities.

ensemble adjoint method [74]

Chater et al. [23] Least squares shadowing method for sensitivity analysis of
differential equations

Chater, Ni and Wang [24] Simplified Least Squares Shadowing sensitivity
analysis for chaotic ODEs and PDEs

Blonigan and Wang [10] Multiple shooting shadowing for sensitivity analysis
of chaotic dynamical systems present a variation of the method suitable for
high-dimensional systems, using multiple-shooting strategies.

Craske [28] Adjoint sensitivity analysis of chaotic systems using cumulant
truncation

Blonigan [7] Adjoint sensitivity analysis of chaotic dynamical systems with
non-intrusive least squares shadowing introduces a “non-intrusive least-squares
shadowing (NILSS)” algorithm.

Ni and Wang [88] Sensitivity analysis on chaotic dynamical systems by Non-
Intrusive Least Squares Shadowing (NILSS)

Ni [87] Hyperbolicity, shadowing directions and sensitivity analysis of a turbu-
lent three-dimensional flow uses the NILSS algorithm.

Kim and H. Choi [64] Space-time characteristics of a compliant wall in a tur-
bulent channel flow

2019-03-19 Predrag to Matt One of our problems is that we do not know what
our spatiotemporal variational method is called by other people who
have presumably already crossed this bridge before us.

In CCIS 2019 Conference of Computational Interdisciplinary Sciences Darrell
Pepper gave a pleasant engineering talk to non-specialist audience on
his “meshfree approach.” He has have been at this for a while, but is still
active. His students use the method in fluid dynamics problems. He tells
many jokes, like older professors from Las Vegas tend to. Sometime. His
claims to fame are many, but in particular he computed the direction of
the radioactive plumes for both 3-Mile Island and Chernobyl.
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Most recently, Pepper has been working on how to equip Las Vegas fire-
men with real time info which way the plumes are going, see Pepper and
Gonzalez [91] A localized meshless technique for generating 3-D wind fields.
For us Sect. 4. The Meshless Method is helpful, as a succint summary. The
point there is that they replace a square mesh by support on a set of ir-
regularly placed points (for example, Las Vegas firehouses). Few bullet
points from his talk

1. boundary element methods reduce the problem by one dimension
(boundary instead of the bulk)

2. Local Petrov-Galerkin good for steep gradients, i.e., shocks

3. Mashless methods work for Navier-Stokes, heat transfer, etc. They
work with primitive equations (velocity fields) rather than with vor-
ticities, as boundary conditions are difficult in the vorticity formula-
tions.

4. Multiquadrics are good as they have explicit expressions for deriva-
tives

5. Global mashless equation (linearized?) is a large matrix equation.
It can suffer poor conditioning, and is efficient only for square do-
mains.

6. Local mashless methods loop through all points one by one. They
are not ill conditioned.

7. They are engineers, they are happy if solutions are good to a few %.

8. FreeFEM finite element code is free and can be downloaded

9. In atmospheric simulations: minimize variance between the observed
and the computed.

10. My feeling: meshless methods are good for inhomogenous discretiza-
tions, funky boundary conditions. In our case, spectral methods
(Fourier represenatations) probably work better.

The rest is my reading. The meshless method was introduced by Fasshauer [41]
from whom I gleaned this:

They are interested in the numerical solution of a generic nonlinear (el-
liptic) PDE as a boundary value problem on some domain. Instead of
discrete meshes, they work with the globally supported radial basis func-
tion (RBFs). Not clear to me how well these bases can be used on periodic
domains. Globally supported multiquadric radial basis functions can be
used for Newton iteration numerical solution of nonlinear partial differ-
ential equations. The use of coarse meshes during the initial iterations
along with a multiquadric parameter which is adjusted with the mesh-
size increases the efficiency and stability of the algorithm.

Fasshauer [41] “test problem” is a nonlinear elliptic (i.e., a single 2D
Laplacina) PDE on a unit square, different from but not totally irrelevent
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for our Kuramoto-Sivashinsky application: he computes what we would
call solution u(t, x) over a quadratic domain, compatible with the given
PDE. His solutions are of much simpler shape than most of Matt’s solu-
tions, so Matt seems to be solving a harder problem.

If of interest, try to check out the Fasshauer book [42] with MATAB codes.
Maybe we also have to learn about “Nash iteration” and the Kansa [60,
61] or “multiquadric method” for solving problems in 2D and 3D arbi-
trary domains. Engineers like it for applying it to inhomogeneous and
irregular complex geometries. Closer to home, it has been used for com-
puting solutions to Burger’s equation [46, 96].

6.1.1 Adjoint sensitivity analysis

Sensitivity analysis, according to Julia:
The local sensitivity of a solution of an ODE or a PDE model is given by the

derivative of the ith independent field of the solution with respect to the jth
parameter, ∂ui/∂pj . There are three types of sensitivity analysis. Local forward
sensitivity analysis gives the gradient of the solution along the time evolution
with respect to a parameter. Local adjoint sensitivity analysis gives the gradi-
ent of some functional of the solution, such as a cost function. Global sensitivity
analysis methods computes the sensitivity over a domain without calculating
derivatives.

Adjoint sensitivity analysis is used to find the gradient of the solution x(t, p)
with respect to some functional of the solution. This adjoint requires the defini-
tion of a scalar observable a(x) where x is a solution to the differential equation.
Adjoint sensitivity analysis finds the gradient of the integrated observable

At(x0, p) =

∫ t

0

dτa(x(τ, p)), (6.1)

I also like this introduction by Marc Schwalbach. Unfortunately he lost
steam after one post :) For a weatherman’s angle, see Errico [39] What is an
adjoint model?.

Traditional adjoint sensitivity methods face fundamental limitations when
applied on turbulence, which are addressed by development of robust meth-
ods for adjoint analysis [109].

Over the past two decades it has been established that the numerically exact
invariant solutions of the Navier-Stokes equations (“recurrent flows") serve as
the “building blocks" that shape turbulent dynamics.

This dynamical framework will be used to solve (and design) turbulent
drag reduction and optimisation problems in turbulence, in particular design
of compliant surfaces for drag reduction in plane channel flow.

Lasagna and Sharma are developing so called adjoint-based variational meth-
ods for sensitivity analysis. With sensitivity information, they can design opti-
mal drag-reducing surfaces by using gradient-based optimisation methods.
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The existing periodic orbit theory, so far successfully applied only to low-
dimensional dynamical systems, posits that the description of the chaotic /
turbulent state space is given by ensembles of hierarchically organised unsta-
ble period solutions of increasing length. In contrast, Lasagna’s working hy-
pothesis is that a few periodic orbits of long periods, embedded in state-space
regions most frequented by turbulence and thus capturing the full range of dy-
namical events, suffice. Which strategy works best in practice remains an open
question, and the approach proposed here should certainly be explored.

They plan to develop new space-time parallel numerical methods to find
periodic orbits with long period and then develop adjoint solverss (formulated
as a boundary value problem with periodic boundary condition) to obtain gra-
dient information.

The approach is based on the idea that adjoint analysis of such structures
can provide accurate sensitivities of time averaged quantities with respect to
the design surface parameters.

The proposed adjoint approach offers the ability to obtain gradient infor-
mation with respect to a large number of parameters (the spatial distribution
of material properties)

For small perturbations, the sensitivity of a system is given by the gradi-
ent with respect to a parameter. Lasagna and Sharma have shown that this
gradient can be obtained by adopting adjoint techniques to periodic orbits.

A variation of any of the system’s parameters (the viscosity in case of Kuramoto-
Sivashinsky) produces a computable state-space distortion of periodic trajecto-
ries. They illustrate this by varying viscosity ν from (2π/39)2 to (2π/38.5)2 for
their shortest periodic orbit.

They compute a few thousand periodic orbits of period' 1000ν. The ques-
tion is: what is the right orbit to use?

1 They plan to consider only one periodic orbit, having a sufficiently long
period such as to span all possible dynamical events encountered by long
chaotic trajectories, i.e. shadowing many shorter, more elementary recurrent
structures. This is a different direction, where long-period orbits capture statis-
tics of turbulence. The approach is based on empirical evidence that, at least
for low dimensional systems, the variability across periodic orbits of similar
period T , e.g. the standard deviation of distribution follows the central limit
theorem and decreases as 1/

√
T .

They view turbulent flows as stationary equilibria of a four-dimensional
PDE, the Navier-Stokes equations in three spatial directions plus time, with
periodic conditions in time justified by the invariance under time translation
of statistically developed flows. With sufficiently long temporal domains (akin
to spatial domains larger than a minimal flow unit), they expect that averages
and their gradients will converge with the size of the temporal domain.

Their goals are to a) demonstrate that these periodic orbits exists in Navier-
Stokes problems b) develop an understanding of their significance in describ-

1Predrag 2019-03-19: It is Japanese heresy all over again (see comments at the end of this sec-
tion)
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ing turbulent structure and evolution, b) formalise a framework for control and
optimisation of turbulence.

Time-parallel methods for long orbits They plan to develop new compu-
tational methods, suitable for arbitrarily long orbits.

The system arising in the Newton search iterations is the adjoint of this. The
global-in-time nature of the adjoint problem on periodic orbits enables mixed
space/time domain decomposition methods, to distribute computation across
independent nodes of a distributed memory system.

They use multiple-shooting techniques, exploiting time as an additional di-
rection for distributed memory parallelism. The approach consists in partition-
ing the temporal interval into independent sub-domains and than seeking the
terminal adjoint solution at the shooting points, imposing that the solution is
globally periodic and continuous at the shooting points. 2

Matrix-vector products for the construction of the Krylov basis vectors in
the GMRES solver can now exploit the block-banded structure of this prob-
lem, by distributing the sub-matrix/sub-vector products to different compu-
tational nodes in a time-parallel fashion, and using independent adjoint time-
steppers to calculate actions, with minimal communication required. Mixing
spatial/temporal parallelism, via processor grouping routines is a natural ex-
tension.

Even if the proposed approach based is likely not applicable to high-Reynolds
number flows, the work holds the potential to accelerate future development
of adjoint methods suitable for chaotic systems [72].

Task A.1 – This will be based on in-house codes under development at
Southampton and freely available software (e.g. J Gibson’s channelflow). The
influence of the compliant wall will be modelled by linearised kinematic bound-
ary conditions, using standard modelling procedures [64, 79].

Space-time parallel algorithms for long periodic orbits.
A dedicated c++ parallel Krylov subspace library being developed at Southamp-

ton gitHub.com/gasagna/ParK. The Newton-Krylov-hookstep [105] approach
will be used. They will initially rely on temporal parallelism and subsequently
extend the library to spatial parallelism.

Space-time parallel adjoint solver. We will then couple the adjoint time
steppers developed in B.1 with the available parallel Krylov solver to solve the
adjoint boundary value problem.

The intersection of recurrent flow analysis with adjoint techniques for op-
timisation is largely unexplored. So far, recurrent flows have been primarily
used as a proxy to understand dynamics, i.e. as an analysis tool. Their pro-
gram is complementary to our efforts, because they aim to employ these ideas
for control and design.

On Japanese Heresy, from dasbuch/book/chapter/recycle.tex:

2Predrag 2019-03-19: Just to drive Predrag more bewildered, they plot time horizontally, space
vertically :)
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2011-11-15 Predrag Then there is in literature an ‘Alternative Periodic Orbit
Theory’ so bold that one can only call it The Heresy: the conjecture is
that if one looks carefully enough, there exists a single periodic orbit that
captures all dynamical averages of a turbulent flow. This is so wrong that
one is at loss what to say: there is NO such single periodic orbit. Instead,
there is the well established theory that says how periodic orbits are to
be used, and how many are needed to capture the hyperbolic parts of
the non–wandering set to a desired accuracy. It is as elegant and system-
atic as Statistical Mechanics and Quantum Field Theory. Read Chaos-
Book.org. But who reads books nowadays?

Of course, if one picks at random a very long periodic orbit, one will
get estimates as good as from an ergodic trajectory of comparable length,
but then why make life hard by insisting on exact recurrence? When one
starts out, The Heresy is one of the paths to enlightenment: Berry diplo-
matically writes “he found one orbit” in a pean to Gutzwiller [4]. Indeed,
in Gutzwiller first paper (1969) on anisotropic Kepler system, the one pe-
riodic orbit obtained by adiabatic deformation of a Kepler ellipse yielded
10% accuracy, which was great, as in those days it was generally believed
that semiclassics should be bad for the ground state. Two years later
Gutzwiller invented periodic orbit theory as a tool for physicists, applied
it to the full anisotropic Kepler problem, and since then there is no turn-
ing back. Similarly, Kawahara [62] computed the first Navier-Stokes pe-
riodic orbit solution embedded in turbulence, and observed that it gave
rather accurate estimates of observables such as the dissipation rate.

From siminos/blog/UPO.tex:

2012-05-13 Predrag [...] until the first unstable periodic solutions of Navier-
Stokes were computed by Kawahara and Kida [62] in 2001, determining
such solutions seemed utterly out of reach. Their plane Couette flow ‘up-
per’ periodic orbit appears embedded in the turbulent sea, and captures
statistics so well that it lead to the ‘Heresy’, a belief of the innocent that
there exists a single periodic orbit (!) that captures turbulent statistics; we
do not cite these papers, as that was a vain hope of those too busy to read
ChaosBook.org.

2011-11-15 Predrag From pipes/blog/Alabama.tex:
Can you try this? Compute the averages for (D(t), I(t)) for one period of
rpo36.92 and for your S-subspace turbulent trajectory. That should yield
two point on the diagonal. Kawahara was lucky there - they were un-
reasonably close, the root of the Japanese Heresy. If they are not close,
rpo36.92 does not go through the most concentrated regions of natural
measure.

From ref. [33]: “ Similarly close prediction of mean dissipation rate in
the plane Couette flow from a single-period periodic orbit computed by
Kawahara and Kida [62] has lead to optimistic hopes that ‘turbulence’ is
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different from low-dimensional chaos, insofar that the determination of
one special periodic orbit could yield all long-time averages. Regrettably,
not true – as always, here too one needs a hierarchy of periodic orbits of
increasing length to obtain accurate predictions [32]. ”

2007-11-28 Predrag: Japanese heresy We do not want to refer to wrong pa-
pers, but here it is, for the internal record, so we do not forget not to
cite it:

Mitsuhiro Kawasaki and Shin-ichi Sasa [63], “Statistics of unstable peri-
odic orbits of a chaotic dynamical system with a large number of degrees
of freedom.”

2012-08-12 Predrag Goldobin [47] Limit distribution of averages over unstable pe-
riodic orbits forming chaotic attractor, arXiv:1208.1691, is much weirder
still: it is motivated by the Japanese Heresy and cites only the Maryland
non-theory paper as the source on the periodic orbit theory. Remind him
to cite ChaosBook.

From siminos/lyapunov/Henon.tex:

2011-10-06 Kazz There should be many periodic orbits flowing like the chaotic
trajectory. They therefore have long periods and are non-hyperbolic (al-
most, always). But, in my view, it would be interesting to decompose
properties of the chaotic trajectory into those of only a few number of
periodic orbits, whose period is rather short and thus each of which cov-
ers only a local region of the attractor. For the Hénon map, we are still
lacking such a minimal periodic orbit, which accounts for the remaining
non-hyperbolic points of the chaotic trajectory.

2011-10-06 Predrag Wow! This comment makes no sense, but it does smack
of the famous Japanese Heresy. There is NO such thing - instead of this
there is perfectly well developed theory that says how you use periodic
orbits and how many do you need to capture the hyperbolic parts of the
non–wandering set.

6.2 Spatiotemporal literature - a blog

2018-07-17 Matt Notes on Literature review in thesis proposal I tried to mo-
tivate the need to go spatiotemporal by the wall that’s been hit in pipe
and channelflow while still celebrating the amount of work that codes
like channelflow and openpipeflow have been able to accomplish.
It probably comes off as arrogant and I need to rewrite it but I’m trying
to get the point across that: There are lots of people stepping back and
trying to find other paths to solving the issues of high-dimensional sys-
tems because the direct approach is providing diminishing returns.

Don’t mind all of the names and bibtex references, it was just brainstorm-
ing that I didn’t remove.
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2018-07-21 Predrag “Lots of people stepping back and trying to find other
paths?” Only our Wednesday Hangout crowd has computed Navier–
Stokes exact coherent structures in small computational domains, and
I’m not aware of anyone thinking of “other paths” to computing exact
coherent structures in spatially infinite domains other than you and me.
Looking forward to reading the literature review of these many paths
that I’m unaware of.

2018-07-23 Matt I meant more along the ideas of what people are to do af-
ter the small computational domain calculations are exhausted, not that
others are attempting to explain infinite spatiotemporal domains. For
instance, some of the “other paths" are looking for edge states, families
of self-similar solutions, investigating localized solutions, reduced-order
models using Koopman modes, Nigel Goldenfeld’s predator-prey ideas.
My statement was merely attempting to describe the many branches of
turbulence research. They are unrelated to my project so I’ll use the ex-
cuse that this was just an expedient comment in my blog and not a deep
philosophical statement.

2016-11-10 Predrag Sobolev norms we have pondered a lot (sprinkled through
various blogs) but for now stick to the L2 (AKA Euclidean) norm.

Papers to read, possibly to test your variational code on the soultions
reported there:

Rempelet al. [93] Analysis of chaotic saddles in high-dimensional dynamical
systems: the Kuramoto-Sivashinsky equation. Only in the antisymmetric
subspace U+, periodic on 2π and vary hyper-viscosity ν. Might be good
- do not know. For some reason neither Siminos nor Budanur nor Xiong
seem to have looked at this paper, nor the subsequent ones.

Saikiet al. [94] Reconstruction of chaotic saddles by classification of unstable
periodic orbits: Kuramoto-Sivashinsky equation: they work only in the anti-
symmetric subspace U+, see their Eq. (3), but are periodic on 2π and vary
hyper-viscosity ν, so you’ll have to convert. Looks like cut and paste
of their earlier ref. [93]. They use the PIM triple method [90, 92]. BTW,
calling a periodic orbit UPO is like saying “I am riding unstable bicycle”
every time you get on a bike (all bicycles are unstable): ‘Note that our
notation “a-UPO” may sound awkward when expanded as “attractor-
unstable periodic orbit.”’ In all fairness, stupider things are known, like
“nonchaotic orbit" instead of periodic orbit, check the next cubicle :)

What is obvious from looking at a paper like this one is that spacetime
invariant 2-tori persist in continuous families, as one change the domain
size L, so that must mean an additional marginal direction eigenvector
for the torus-finding variational routine...

Croft’s papers [27, 29–31] probably use pseudoinverse - Levenberg-Marq-
uardt described in an appendix of ref. [33] is might be an example.
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2016-12-20 Matt Read through half of Moser [86]. It is indeed hard to read
but I’m hoping that in conjunction with de la Llave’s Introduction to KAM
Theory I will get something out of it.

Read through about a quarter more of Trefethen [102] as well as went
to the physical library to skim some texts that another student recom-
mended for me. They were math texts on par with Moser [86] about
functional analysis. Read some more of numerical linear algebra, Tre-
fethen [102], starting to enjoy it as I think it is written quite well.

2017-05-05 Matt Read Boghosian et al. [13].

2017-05-08 Matt I was reading a number of papers [17, 26, 83, 85] having to do
with ill-conditioned linear systems and how to circumvent issues with
GMRES.

2017-06-06 Matt Read some Guckenheimerref. [50]

2017-09-05 Matt Read Junginger et al. [59] ez, “Variational principle for the deter-
mination of unstable periodic orbits and instanton trajectories at saddle points,
I think it could possibly introduce some important topics.

2017-04-14 Matt I’ve been reading a bunch of papers [101] on preconditioning
methods; and specifically for GMRES algorithm.

2018-01-23 Matt Browsed through arXiv to try to survey the recent literature
in fluid dynamics and chaotic dynamics fields just to try and branch out a
little bit so that my world view isn’t a single leaf of the forest. Trying not
to spend too much time with them, just skimming and reading abstracts
until my curiosity is peaked.

Also rereading the cats’ blog, and subsequent papers in depth so that I
can attempt to be of some use to Han Liang. I find Predrag’s write-up
about the relative action definitions that appeared in ref. [75] to be much
more understandable than the actual paper, and am hoping to under-
stand the spatiotemporal cat map definition version of the relative action
soon.

Recently checked out a book on spectral methods in fluid dynamics from
the Gatech library, it’s a secondary read for sure but I find it useful in
formalizing the ideas I have learned through coding.

2018-02-12 Matt Been reading the same texts as well as refs. [14, 76, 81].

2018-02-16 Matt Read Mackay and Meiss [80]. Even though its three pages I
didn’t really understand the corollary where they prove that multipliers
corresponding to the stability of the second variation of the action (be-
cause the first variation is by definition to be zero) are reciprocal reals,
past the point that they know that there is a matrix that can be written in
a certain way under certain circumstances
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2018-02-16 Matt Reading Lopez [76] 2015. It seems that what we’re doing is
very close to being identical except the fact that I am allowing the spa-
tial domain size to vary. In the appendices she also notes that the best
(among numerous different behaviors) convergence behavior was when
she used GMRES as well as a preconditioning matrix that is the inverse
of the linear portion of the Jacobian matrix. (The matrix of variations of
the corresponding linear portion of the nonlinear algebraic equations),
so with that I would argue that what is being done on my front is only
different in the fact that I am working with the Kuramoto-Sivashinsky
equation and am allowing the spatial domain size to vary, which I be-
lieve is a non-trivial addition.

2018-07-17 Matt To that effect I gave examples of the “stepping stones" be-
tween toy models and full three-dimensional turbulence. In my expe-
rience they are the Kuramoto-Sivashinsky equation and the two-dimen-
sional Kolmogorov flow.

I intend to go over all of the spatiotemporal literature that I could find,
namely refs. [16, 65, 76, 77, 98, 108], with the work by Vanessa López’
having the closest resemblance to my own, which is unsurprising due
to the fact that I used López [77] as a resource; however, none of these
studies formulate a spatiotemporal theory of turbulence.

2018-07-17 Matt KnoMoor90 Knobloch and Moore [65] write:

We have checked our results by expanding each modal ampli-
tude in a Fourier series in time, and obtaining algebraic equa-
tions for the amplitudes of the Fourier components. We have
found that this method works well for our parameter values
provided all the harmonics through fourth order are retained.

Due to this statement its hard to tell if Knobloch and Moore [65] Minimal
model of binary fluid convection accomplished something similar to me due
to the fact there are still parameters being set and not determined by the
equations.

2018-07-21 Predrag There is probably much to be learned from Knobloch and
Moore [65], but your calculations seem much harder. They have three
fields, and in eq. (11) they expand them in three real spatial Fourier modes,
i.e., we are looking at a 9-dimensional dynamical system. They fix the
domain x ∈ [0, 1] and impose Dirchlet boundary conditions, their eq. (2).
They have two parameters (σ, τ) that they vary, and as they mostly care
about bifurcations, the few spatial Fourier modes suffice for their goals.

The only thing that seem not the usual is that they indeed Fourier expand
in time and obtain algebraic equations, to study a time-modulated wave
(MW), which is weakly oscillating relative periodic orbit, a Hopf bifurca-
tion in Fig. 4.2 (a) giving rise to a a single MW branch. Hopf bifurcation
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is a pure circle (one complex Fourier coefficient), and their MW is weekly
distorted circle that it suffices to keeping only 4 time Fourier coefficients.

Expanding time dependence of a periodic orbit in Fourier is much older
than their work, see for example Divakar Viswanath [104] The Lindstedt-
Poincaré technique as an algorithm for finding periodic orbits, as is discussed
in other blogs in the siminos repo. Divakar credits Lindstedt and Poincaré,
but has many more recent references that use time Fourier series to com-
pute periodic orbits, probably worth reading and citing some of those.

I owe nothing to this paper, honestly; I just thought that due to the fact
that it presented a spatiotemporal idea it was worth mentioning.

2018-07-17 Matt SoiMei91 Soibelman and Meiron [98] numerical procedures
are spatiotemporal minus being able to change the spatial domain; their
analysis however is still in terms of continuation of solutions in Reynolds
number to find bifurcations. Bifurcations imply changes of stability which
implies analysis that views the problem as a time dynamical system.
Therefore I think this is along the lines of Lan and Cvitanović [69] where
the periodic orbit’s are found spatiotemporally but the analysis is done
as a time-dynamical system.

2018-07-17 Matt BrKevr96 State the premise of going to a spatiotemporal Fourier
basis, but because they were investigating modulating traveling waves
they claim that it would be too costly due to the time discretization re-
quired to resolve the high frequency temporal oscillations. Claims Soibel-
man and Meiron [98] and Knobloch and Moore [65] have done it... see
above.

2018-07-17 Matt WGBGQ13 They show its possible, even with the modified
Kuramoto-Sivashinsky equation that doesn’t have reflection symmetry,
but they’re more interested in the scalability and possibility rather than
analysis of the results.

2018-07-17 Matt lop05rel Similar to the exposition of ref. [98]. These numeri-
cal procedures are the closest to my code but still they do not allow sys-
tem size to change, and then they play around with the parameters in
López [76].

6.3 Summary: Lan thesis

The beginning of Yuheng Lan’s PhD thesis [66] Dynamical Systems Approach to
1 − d Spatiotemporal Chaos – A Cyclist’s View, is concerned with the history of,
and ways how to approach turbulence from the dynamical systems, periodic
orbit theory point of view.
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6.3.1 Periodic orbit theory

This section offers a brief review of periodic orbit theory [32], including dy-
namical systems both discrete and continuous. The first topic is how to calcu-
late physical averages: space and time averages over ergodic trajectories. For
a quantity on a trajectory segment defined by

At(x0) =
t∑

k=0

a(fk(x0)), (6.2)

the time average is defined as

a(t) = lim
t→∞

1

t
At(x0), (6.3)

and a weighted space average is defined as

〈a〉 (t)ρ =

∫
M
dx ρ(x)a(f t(x)) (6.4)

The second topic discussed is how to formulate evolution operators and invari-
ant measures. The time evolution operator defined by a continuous function
h(x) is defined as,

Lt ◦ h(x) =

∫
M
dyδ(x− f t(y))eβA

t

h(y) (6.5)

The important results are the trace formula, spectral determinant and dy-
namical zeta function for flows, which are respectively:

trLt =
∑
p

Tp

∞∑
r=1

erβ·Ap

|det (1− Jrp )|δ(t− rTp) (6.6)

F (s) = det (s−A) = exp

[
−
∑
p

∞∑
r=1

1

r

eβ·Ap−sTp

|det (1− Jrp )|

]
(6.7)

1

ζ(z)
= exp

(
−
∑
p

∞∑
r=1

1

r
trp

)
=
∏
p

(1− tp) (6.8)

The definition of the dynamical zeta function is impractical so it is best rewrit-
ten as a sum of terms listed in order of decreasing contributions.

1

ζ(z)
= 1− t0 − t1 − [t01 − t0t1]− . . . (6.9)

= 1−
∑
f

tf −
∑
n

cn (6.10)

where tf are “fundamental” terms and cn are corrections.
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6.3.2 Variational method

The variational method is employed via an initial guess and equation:

∂2x̃

∂s∂τ
− λA∂x̃

∂τ
− v ∂λ

∂τ
= λv − ṽ (6.11)

Wherein a true periodic orbit can be found which minimizes the functional:

I =

∫ 2π

0

(
ṽ − λ∂x

∂s

)2

ds (6.12)

If there is a parameter c, a different equation can be employed:(
A− λ ∂

∂s

)
∂x

∂τ
+
∂vc
∂c

∂c

∂τ
= −

(
vc − λ

∂x

∂s

)
, (6.13)

The main benefit of this method avoids using multiple Poincaré sections
due the numerical stability originating from topological sources.

Search for equilibria

Steady solutions play an important role in organization of the state space, albeit
in a coarse manner. The equation that governs the steady solutions (equilibria
and relative equilibria) of the Kuramoto-Sivashinsky equation is: 3

1

2
u2 + ux + uxxx = c

With a substitution of variables, this equation can be written as a set of first
order ODE’s, namely:

ux = v, vx = w, wx = u2 − v − c

This equation exhibits a reversal symmetry, x→ −x, u→ −u, v → v, w → −w.

(u+ w)x = u2 − c

The last equation’s behavior is dependent on the constant c, where equilibria
exist if c > 0, namely at c± = (±√c, 0, 0 )

Thirteen periodic solutions for L = 43.5, ν = 1, were found using the the
variational method, with their importance varying. The importance was mea-
sured by determining the distance between points on a typical orbit and the
equilibria. Typical orbits in the non-wandering set seem to be similar to these
equilibria.

The average number of peaks of u(x, t) seems to follow closely to the aver-
age number of peaks in these thirteen equilibria.

3Predrag 2016-08-08: Much of this has already been said in sect. 12.1.3. Merge the material,
label relevant equations there and here refer to them only by their numbers/labels.
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6.3.3 Steady solutions for a given c value

Further study was done with c = 0.40194. In this regime, there are four peri-
odic orbits that lay the foundation for the symbolic dynamics developed in this
paper. Specifically, these four important periodic orbits were labelled a, b, ac−,
ac+. These were redefined as 0, 1, 2, 3, respectively, for convenience.

Four cycles of topological length 2 were found, namely: 01, 02, 03, 23. Four-
teen cycles of topological length 3 were found, and 43 cycles of topological
length 4 were found. It is believed that cycles with 12 and 13 are pruned from
the symbolic dynamics.

The power of the symbolic dynamics and variational method lies in their
combination. When used in conjunction, they can be used to find long orbits.

Study of 2D return maps on a Poincaré section was the next step in order to
further devolve the state space into partitions.

6.3.4 Bifurcations

This section investigates how the fundamental cycles used to develop the sym-
bolic dynamics bifurcate when changing the value of c. For cycles 0 and 1, there
is evidence that a saddle-node bifurcation exists at c = 0.80167 and an inverse
period-doubling bifurcation occurs at c = 0.00078, both of which are supported
by eigenvalues of the respective Jacobians near these bifurcation points. In the
limit of small c, c→ 0+, perturbation techniques are used to analyze the prop-
erties of the equations governing the steady solutions.

For cycle 2, there is a very similar cycle near c = 0.29304. There is evidence
of a saddle-node bifurcation, supported by the eigenvalues of the Jacobian of
both cycles near the bifurcation point. A similar phenomenon appears at c =
0.42031.

A table provides evidence that there are intervals of periods for which cer-
tain cycles do not exist. When within the "bands" of the table, the cycles exist
with the corresponding period and c value, which was undetermined.

6.4 Kuramoto-Sivashinsky equilibria literature sur-
vey

2017-10-02 Andy Michelson [84] searches for relative equilibria moving with
velocity c2

u(x, t) = −c2t+ v(x) (6.14)

for the Kuramoto-Sivashinsky equation and arrives at the ODE

d4v

dx4
+
d2v

dx2
= c2 − 1

2

(
dv

dx

)2

. (6.15)

However, the version of the Kuramoto-Sivashinsky equation that Michel-
son uses differs from (10.1) in the first derivative term: ChaosBook has
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takes the square first and then the derivative while Michelson reverses
the operations. As a result, Michelson’s initial Kuramoto-Sivashinsky
equation would allow for degenerate solutions of parity symmetry with
respect to x. Section 4 of Michelson [84] employs a finite difference al-
gorithm to find the steady state solutions y = dv

dx . I have gone through
the steps to obtain (4.2) and the finite difference equation. I am currently
writing a script to recreate the solutions that Michelson found with cer-
tain c values.

I extended the iteration to include when the trajectory diverges from the
periodic orbit.

2017-10-23 Predrag For whatever that is worth, my lecture on the equilibria of
Kuramoto-Sivashinsky is here.

2016-01-12 PC Literature related to Michelson [84]:

Carmona et al. [21] Noose structure and bifurcations of periodic orbits in re-
versible three-dimensional piecewise linear differential systems

Barker et al. [3] Stability of periodic Kuramoto-Sivashinsky waves

Aderogba, A. A. and Chapwanya, M. and Djoko [1] Travelling wave solu-
tion of the Kuramoto-Sivashinsky equation: A computational study

Dumortier, Ibanez and Kokubu [38] Cocoon bifurcation in three-dimensional
reversible vector fields

Heidel and Zhang [51] Nonchaotic and chaotic behavior in three-dimensional
quadratic systems: Five-one conservative cases,

Nickel [89] Travelling wave solutions to the Kuramoto–Sivashinsky equation

Blomgren, Gasner, and Palacios [5] Hopping behavior in the Kuramoto–Sivashinsky
equation seems to be specific to 2D: “ numerical ‘hopping’ cellular flame
patterns are characterized by nonuniform rotations of a ring of cells, in
which individual cells make abrupt changes in their angular positions
while they rotate around the ring. Until now, these states have been ob-
served only in experiments but not in truly two-dimensional computer
simulations. A modal decomposition analysis of the simulated patterns,
via the proper orthogonal decomposition, reveals spatiotemporal behav-
ior in which the overall temporal dynamics is similar to that of equivalent
experimental states but the spatial dynamics exhibits a few more features
that are not seen in the experiments. ”

Dumortier, Ibanez and Kokubu [38] Cocoon bifurcation in three-dimensional
reversible vector fields

Rempel et al. [93] Analysis of chaotic saddles in high-dimensional dy-
namical systems: the Kuramoto-Sivashinsky equation: “ study the role
played by nonattracting chaotic sets called chaotic saddles in chaotic tran-
sitions of high-dimensional dynamical systems. Our methodology is ap-
plied to the Kuramoto-Sivashinsky equation. The paper describes a novel
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Figure 6.1: (xy) plot. The trajectory generated through a finite difference
scheme outlined in Michelson [84] for c = 1.266 and s = 1.369.

Figure 6.2: State space plot. The near-periodic orbit generated through a finite
difference scheme outlined in Michelson [84] for c = 1.266 and s = 1.369.

technique that uses the stable manifold of a chaotic saddle to characterize
the homoclinic tangency responsible for an interior crisis, a chaotic tran-
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sition that results in the enlargement of a chaotic attractor. The numerical
techniques explained here are important to improve the understanding of
the connection between low-dimensional chaotic systems and spatiotem-
poral systems which exhibit temporal chaos and spatial coherence.”

Wilczak [110] Chaos in the Kuramoto-Sivashinsky equations – a computer-
assisted proof

Strauss and Wang [100] Instability of traveling waves of the Kuramoto-Sivashinsky
equation

Ishimura [55] Remarks on third-order ODEs relevant to the Kuramoto-Sivashinsky
equation

Ishimura and Nakamura [56] Nonexistence of monotonic solutions of some
third-order ode relevant to the Kuramoto-Sivashinsky equation

Wittenberg and Holmes [111] Scale and space localization in the Kuramoto-
Sivashinsky equation: “ Using a wavelet basis, the spatiotemporally chaotic
regime of the KSe is explored where a good seperation of scales is ob-
served. In large scales, the dynamics is Gaussian. In the intermediate
scales, the dynamics is reminiscent of travelling waves and heteroclinic
cycles which is the typical behavior for small system size. In the small
scales, the dynamics is intermittent. Through investigation of the interac-
tion between different scales, we see the intermediate structures give the
defining shape of the cell and the large scales trigger the spatiotemporal
chaos. The small scales dissipate energy and modify the background in a
average sense.

Yang [113] On travelling-wave solutions of the Kuramoto-Sivashinsky equation

Lau [73] The cocoon bifurcations in three-dimensional systems with two fixed
points

Jones, Troy and MacGillivary [58] Steady solutions of the Kuramoto-Sivashinsky
equation for small wave speed

Grimshaw and Hooper [49] The non-existence of a certain class of travelling
wave solutions of the Kuramoto-Sivashinsky equation,

Troy [103] The existence of steady solutions of the Kuramoto-Sivashinsky equa-
tion

Hooper and Grimshaw [52] Travelling wave solutions of the Kuramoto-Sivashinsky
equation

Stanislavova and Stefanov [99] Asymptotic estimates and stability analysis of
Kuramoto-Sivashinsky type models

6.4.1 Dong and Lan / DoLa14

Dong and Lan [36] Organization of spatially periodic solutions of the steady Kuramoto-
Sivashinsky equation
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2017-07-17 Matt DoLa14 The goal of Dong and Lan [36] is to formulate a sys-
tematic way to locate periodic orbits with variational method developed
by Lan and Cvitanović [34, 68], as well as develop symbolic dynamics to
classify these periodic orbits.

2013-12-29 PC Dong and Lan [36] study equilibria of Kuramoto-Sivashinsky
at L = 43.5. Previous system sizes were was for antisymmetric subspace,
system size L̃ = 2.89109 in ref. [25], L = 38.5 in ref. [69], L = 40.95 in
Lan et al. [67], and full state space L = 22 in ref. [33]. Dong and Lan
continue the discussion of Lan’s thesis [66]. Only equilibria, no mention
of relative equilibria.

They credit Troy [58, 103] and Greene & Kim [48] with first studies of
Kuramoto-Sivashinsky equilibria.

2017-11-01 Andy DoLa14 Reading this paper’s introduction and background
tremendously helped me understand the Kuramoto-Sivashinsky equa-
tion more.

ut = (u2)x − uxx − νuxxxx (6.16)

The first derivative term is responsible for the interactions between spa-
tial modes at different scales (assuming this means length scales L) and
transfers energy from the low wavenumber modes to the higher ones.
The second term pumps energy into the system and makes it unstable at
large scales while the third term dissipates energy and damps at small
scales.

Matt has gone over the spectral decomposition of the solution many times,
but I will just repeat it here for reference: using the form

u(x, t) = i
+∞∑

k=−∞

ak(t)eikqx where q = 2π/L, (6.17)

we can obtain an infinite ladder of coupled ODEs

ȧk = [(kq)2 − ν(kq)4]ak − kq
+∞∑

m=−∞
amak−m. (6.18)

Since the dissipation term ν(kq)4 dominates for large wavenumber com-
ponents, these terms will not be excited enough significantly contribute
to the dynamics. Thus, we can truncate the set of ODEs such that ak = 0
for |k| > N . In most cases, we take N = 16. For small L, all Fourier
modes are linearly stable, but the system quickly becomes increasingly
turbulent once L increases by a significant amount.

From the video that Predrag recommended as well as the paper, the Ku-
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ramoto-Sivashinsky equation can be written as

u2 − ux − νuxxx = c (6.19)

=⇒

 ux = v
vx = w
wx = u2 − v − c

(6.20)

=⇒ (u+ w)x = u2 − c (6.21)

We can see that u+w increases without bound when c < u2. When c > u2

we can find attractors appear in the state space. However, something
weird happens when c = u2 such that the derivative on the left side of
Eqn 4.10 equals 0: both an attractor and repeller appear in the state space,
and it seems that trajectory enters the sink and reappears at the source (if
I’m understanding Predrag’s drawing in the video correctly).

I’m still working through the variational methods part of the paper to see
what they actually did with the numerical simulations. So far, it seems
that there exists four simple building blocks for creating allowable orbits.
This numbering notation reminds me of the billiard (or pinball) orbit ex-
ample that was covered in the Group Theory class.

2013-12-29 PC we still have to study Dong and Y. Lan [35] A variational ap-
proach to connecting orbits in nonlinear dynamical systems

“ At fixed system size L = 43.5, important equilibria are identified and
shown to organize the dynamics. The first integral of the steady KSe leads to a
3D dynamical system with an integration constant c. At a typical value of c =
0.40194, four simplest cycles are identified and used as basic building blocks to
construct longer cycles. The symbolic dynamics based on trajectory topology
are very effective in classifying all short periodic orbits. The the return map
on a chosen Poincaré section shows the complexity of the dynamics and the
bifurcation of building blocks provides a chart to look for possible cycles at
given periods. ”

The n cell state [45] is stable in finite windows for arbitrarily large system
sizes.

“ the antisymmetric heteroclinic orbit ∈ U+ connecting the two equilibria
in (9) is the only bounded nonconstant solution when the integration constant
c → ∞ [82]. For c large enough, the heteroclinic orbit remains the unique
bounded solution [84]. It continues to be numerically observable with c down
to 0.07 [52], and was computed analytically with normal form analysis for c�
1 [22]. When c decreases from large values, new connections with more zeroes
are born through saddle-node bifurcations until one periodic orbit emerges as
a limit of the connecting orbit with infinite number of zeros. Bifurcation anal-
ysis with spatial Fourier modes gives interesting features of spatially periodic
steady solutions in certain parameter regime [48]. ”
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Chapter 8

Kolmogorov flow

2018-12-07 Predrag Moved elton/blog/KFsymm.tex Mohammad and Predrag 2D
Kolmogorov flow discussions to here, current sect. 8.1.

2018-12-07 Matt Mhm

8.1 Notes on Kolmogorov flow

2017-07-10 Mohammad Read Smith and Wissink [23] Asymptotic analysis of the
attractors in two-dimensional Kolmogorov flow.

2015-06-24 Predrag I was careless. Looks much simpler than D4. The gen-
erator g of the vertical cyclic symmetry group Z2n = {e, g, g2, · · · , g2n−1} of
order 2n is a glide reflection [20]

g u(x, y) =

(
−u(−x, y + π/n)
v(−x, y + π/n)

)
, (8.1)

All 2n irreps are 1-dimensional, with characters χ(gk) = ωk, ω = exp(π/n).
For n = 4 the 8 irreps Frobenius character projection operators (8.22) are
the discrete Fourier transforms

e1 =
c1
8

(1 + ω−1g + ω−2g2 + · · ·+ ω1g2n−1)uEQ

e2 =
c2
8

(1 + ω−2g2 + ω−4g4 + · · ·+ ω2g2n−2)uEQ (8.2)

e3 =
c1
8

(1 + ω−3g3 + ω−6g6 + · · · )uEQ

e2n−1 =
c2
8

(1 + ωg2n−1 + · · · )uEQ ,

The invariant subgroups are the cyclic groups {e}, Z2 = {e, g4} (transla-
tions by π), Z4 = {e, g2, g4, g6} (translations by π/2), and Z8.
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Aside: Should also understand first the relation between a fundamental
domain for Z3 (3-disk in magnetic field) and these complex eigenvectors.

However, the rotation

Ru = [−u(−x,−y),−v(−x,−y)] (8.3)

does not commute with vertical Z2n, 1

Rg u = R[−u(−x, y+π/4), v(−x, y+π/4)] = [u(x,−y−π/4),−v(x,−y−π/4)]

gRu = g[−u(−x,−y),−v(−x,−y)] = [u(x,−y + π/4),−v(x,−y + π/4)] ,

so the full order 16 group is more complicated than Z8 × Z2 (for possible
groups click here). Instead, we have

g−1Ru = g[−u(−x,−y),−v(−x,−y)] = [u(x,−y−π/4),−v(x,−y−π/4)] ,

so the generator algebra is of D8:

R2 = e , g8 = e , Rg = g−1R . (8.4)

A presentation of Dn is

〈g,R | gn = R2 = e,Rg = g−1R〉 (8.5)

Dihedral group D8. The D8 group

D8 = {e, g, g2, g3, · · · , g7, R,Rg2, Rg3, · · · , Rg7}

has a 8 shift elements and 8 shift-reflect elements. There are 7 classes: {e},
{g4}, {g2, g6}, {R,Rg4} and {Rg2, Rg3/4}. There are four different one-
dimensional irreducible representations, whose characters are ±1 under
reflection R and shift-reflect operation Rg. There are three 2-dimensional
representations Ej . It has 3 subgroups: Z4, D2 and Z2. Life can be made
easier by defining the quarter-shift as g = g, with R2 = e, g8 = e, and
Rg = g−1R. The character table is given in table 8.1. 2

2015-06-24 Mohammad Lets define

(τu)(x1, x2) =

(
u1(x1, x2 + π/2)
u2(x1, x2 + π/2)

)
, (8.6)

and

(σu)(x1, x2) =

(
−u1(−x1, x2 + π/4)
u2(−x1, x2 + π/4)

)
. (8.7)

1Predrag 2015-06-24: please recheck
2Predrag 2015-06-25,2019-03-29: Table 8.1 not completed yet; needs 2 more E irreps to get the

sum of (dim)2 to 16. I started with Xiong’s thesis Dn, not yet cross-checked with tables on the web.
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D8 A1 A2 B1 B2 E1 E2 E3

{e} 1 1 1 1 2 2 2
{g2} 1 1 1 1 -2
{g, g−1} 1 1 -1 -1 0
{R,Rg2} 1 -1 1 -1 0
{Rg,Rg−1} 1 -1 -1 1 0
{g2, g−2} ? ? -? -? ?
{g3, g−3} ? ? -? -? ?

Table 8.1: Character table of dihedral group D8.

Then all elements of the glide reflection symmetry can be written as

D4 = {e, τ1/4, τ1/2, τ3/4, σ, στ1/4, στ1/2, στ3/4}.
However,

στ 6= τ−1σ, σ2 6= e.

Instead we have
στ = τσ, σ2 = τ.

Do formulas (8.23) still work?
2015-07-07 Now need sum over 16 elements, otherwise the same.

2015-06-21 Predrag Reading Platt, Sirovich, and Fitzmaurice [20]:
For Kolmogorov flow they credit V. I. Arnold and L. D. Meshalkin, Usp.
Mat. Nauk 15, 247 (1960), an article that I have not had a look at.
Stability was studied in the above article, as well as by Green [9]. Green
studies various stable solutions, and does not cite Kolmogorov.
A stationary cellular pattern that appears beyond the first bifurcation was
discussed G. I. Sivashinsky, Physica D 17, 243 (1985).
G. I. Sivashinsky and V. Yakhot, Phys. Fluids 28, 1040 (1985); V. Yakhot
and G. I. Sivashinsky, Phys. Rev. A 35, 815 ( 1987) interpret long-wavelength
instabilities as ‘negative viscosity’.
One needs to also look at N. F. Bondarenko,. M. Z. Gak, and F. V. Dolzhan-
sky, Atmos. Ocean. Phys. 15, 711 (1979).
This system has equilibrium solution

u(x, y) =
Re

n2
sin(ny), v(x, y) = 0, (8.8)

A Reynolds number Re for the flow may be naturally based on the max-
imum speed of this solution, and the forcing length scale. This equilib-
rium goes unstable at Re = n

√
2. Sufficiently high wavenumber eigen-

vectors are always stable. They define doubly-periodic rectangular do-
main

(x, y) ∈ [0, 2π]× [0, 2π]
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They use a spectral basis that is automatically divergence free, and com-
pute for the n = 4 case. All runs are initiated as random perturbations
off the ustable equilibrium (8.8). 5000 + time units were integrated before
before any data were recorded. [16 × 16] spatial grid gave rise to under-
resolved flows that were drastically different in nature, so their compu-
tations are for [32 × 32] (i.e., 1024 ordinary differential equations). This
was found adequate for the parameter range Ω/Ωc < 12.5.

A stable relative equilibrium bifurcates of an equilibrium up at Ω/Ωc =
2.2, with phase velocity starting with 0.

For 1.97 < Ω/Ωc < 2.2 one is in regime where stable equilibrium with
horizontal Z2 (or D2 or some other symmetry?) rules. This symmetry is
also noted by Green [9]. Apparently all stable equilibria up to and includ-
ing this one are invariant under the full 16-element discrete symmetries.

They find it remarkable that narrow stability windows in Ω/Ωc appear
interspersed between chaotic episodes. Looks sensible to me.

Of all the chaotic states they observed, fig. 14 is the only state that they
dare chaotic both spatially and temporally and hence turbulent, accord-
ing to common convention.

Their Kaplan-Yorke (‘Lyapunov’) dimension is accurate to the first digit
only. By the time they get to Ω/Ωc = 12.5 it is about 11.

Poincaré sections were computed following Keefe [14]. They realize that
the Poincaré section planes should be invariant under the symmetry (both
discrete and continuous). They find it a good practice to choose as a sec-
tion a plane for which the flow projections maximize the energy with
respect to the L2 norm.

Their discussion of symmetries is clear and succinct. Will have to use all of
it. The generator of the vertical cyclic symmetry group of order 2n is a
glide reflection (here eq. (13)). In eqs. (31), (32) they give explicit action of
symmetries on the Fourier basis.

Rotation through π in is another group generator, i.e., if u is a Kolmogorov
flow then

Ru→ [−u(−x,−y),−v(−x,−y)]

is one also. In all there are 4n discrete symmetries group elements.

The remaining symmetry group is the continuous group of translations
in the x direction.

2015-06-24 Predrag Even though Sirovich [22] cites Birkhoff and MacLane [2]
for glide reflection, I did not find it in that book. However, glide reflec-
tion is standard, described many places. Perhaps these would be good
references, if a citation is needed (I have not looked at them):

H.S.M. Coxeter. Introduction to Geometry. John Wiley and Sons, Inc.
1969.

03/29/2019 siminos/spatiotemp/chapter/KFsymm.tex150 7451 (predrag–6822)



CHAPTER 8. KOLMOGOROV FLOW

Figure 8.1: The four isometries in the plane.

Figure 8.2: A wallpaper pattern of pgg type, invariant under glide reflections
(represented by dotted lines) in two perpendicular directions.

Heinrich W. Guggenheimer. Plane Geometry and its Groups. Holden-
Day. 1967.
Killingbeck [15] might be a potentially useful reference (maybe too chem-
ical?)

There are four isometries in the plane: translation, rotation, reflection,
and glide reflection, see figure 8.1. A reflection flips points over an invari-
ant axis or line. A glide reflection combines a reflection with a translation
along the direction of the mirror line.

Glide reflections commute with each other, which is not generally the
case for any two given isometries. Given two congruent sets on the plane,
it is in general either a rotation or a glide reflection – depending on the
orientation between them – that maps one to the other. Reflections and
non-trivial glide reflections are mutually exclusive.

The isometry group of a polygon may only consist of rotations and reflec-
tions. In fact only 2 types of such groups are possible, the cyclic groups
Zn and the dihedral groups Dn (Leonardo (da Vinci)’s Theorem). Trans-
lations and glide reflections may leave an infinite set invariant (and pre-
sumably a finite set defined on a periodic domain), see for example fig-
ure 8.2, taken from notes by George Baloglou.
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The lattice unit is always a generating region, but a generating region (fun-
damental domains) may be smaller than the lattice units.

2015-06-21 Predrag In ref. [22], Sirovich discusses how to incorporate symme-
tries of flows in computation of a correlation matrix from data, for

• Plane Poiseuille (channel) flow

• Poiseuille flow in a rectangular channel

• Bénard problem (convection).

• Flow past bodies of revolution

• Flow in a circular pipe

• Plane Couette flow

• Taylor-Couette flow

• Flow past a circular cylinder

However, he does not mention Kolmogorov flow.

V. I. Arnold [1]

Chandler, Lucas & Kerswell [4, 16, 17]

R. Mitchell [19] PhD thesis (in ChaosBook.org/library), Transition
to turbulence and mixing in a quasi-two-dimensional Lorentz force-driven Kol-
mogorov flow.

2012-11-07 Predrag In systems with continuous symmetries there are impor-
tant classes of invariant solutions referred to as ‘relative’ or ‘equivari-
ant’ [13, 21].

8.2 Symmetries and isotropy subgroups

On an infinite domain and in the absence of boundary conditions, the Navier-
Stokes equations are equivariant under any 2D translation, 2D rotation, and
x → −x, u → −u inversion through the origin [5]. In 2D the inversion is the
same as rotation by π. In Kolmogorov flow, the parallel side walls restrict the
rotation symmetry to rotation by π about the z-axis. We denote this rotation by
σx and the inversion through the origin by σxy . The suffixes indicate which of
the homogeneous directions x, z change sign and simplify the notation for the
group algebra of rotation, inversion, and translations presented in sects. 8.2.1
and 8.2.2. The σxy and σx symmetries generate a discrete dihedral group D1 ×
D1 = {e, σx, σz, σxy} of order 4, where

σx [u, v](x, y) = [−u,−v, w](−x,−y, z)
σy [u, v](x, y) = [u, v,−w](x, y,−z) (8.9)
σxy [u, v](x, y) = [−u,−v](−x,−y) .
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The walls also restrict the translation symmetry to 1D streamwise transla-
tions. With periodic boundary condition, these translations become the SO(2)
continuous one-parameter group of streamwise translations

τ(d)[u, v](x, y) = [u, v](x+ d, y) . (8.10)

The equations of Kolmogorov flow are thus equivariant under the group Γ =
O(2)×D4 = D1,xn SO(2)×D4, where n stands for a semi-direct product, and
sign changes in x, and y subscripts indicate spanwise translations and sign
changes in y.

The solutions of an equivariant system can satisfy all of the system’s sym-
metries, a proper subgroup of them, or have no symmetry at all. For a given
solution u, the subgroup that contains all symmetries that fix u (that satisfy
su = u) is called the isotropy (or stabilizer) subgroup of u. [7, 8, 12, 18].
For example, a typical turbulent trajectory u(x, t) has no symmetry beyond
the identity, so its isotropy group is {e}. At the other extreme is the laminar
equilibrium, whose isotropy group is the full Kolmogorov symmetry group Γ.

In between, the isotropy subgroup of most of the equilibria reported here is
S = {e, s1, s2, s3}, where

s1 [u, v](x, y) = [u, v,−w](x+ Lx/2, y,−z)
s2 [u, v](x, y) = [−u,−v, w](−x+ Lx/2,−y, z + Ly/2) (8.11)
s3 [u, v](x, y) = [−u,−v,−w](−x,−y,−z + Ly/2) .

Flow-invariant subgroups might play an important role in the turbulent dy-
namics. In this section we provide a partial classification of the isotropy groups
of Γ, sufficient to classify all currently known invariant solutions and to guide
the search for new solutions with other symmetries.

8.2.1 Flips and half-shifts

A few observations will be useful in what follows. First, we note the key role
played by the rotation and reflection symmetries σx and σy (8.9) in the classifi-
cation of solutions and their isotropy groups. The equivariance of Kolmogorov
flow under continuous translations allows for relative equilibria solutions, i.e.,
solutions that are steady in a frame moving with a constant velocity in (x).
In state space, relative equilibria either trace out circles or wind around tori,
and these sets are both continuous-translation and time invariant. The sign
changes under σx and σy , however, imply particular centers of symmetry in x
and y, and thus fix the translational phase of fields that are fixed by these sym-
metries. Thus the presence of σx or σy in an isotropy group prohibits relative
equilibria in x or z, and the presence of σxy prohibits any form of relative equi-
librium. Guided by this observation, we will seek equilibria only for isotropy
subgroups that contain the σxy inversion symmetry.

Second, the periodic boundary conditions impose discrete translation sym-
metries of τ(Lx, 0) and τ(0, Ly) on velocity fields. In addition to this full-period
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translation symmetry, a solution can also be fixed under a rational translation,
such as τ(mLx/n, 0) or a continuous translation τ(`). If a field is fixed under
continuous translation, it is constant along the given spatial variable. If it is
fixed under rational translation τ(mLx/n, 0), it is fixed under τ(mLx/n, 0) for
m ∈ [1, n− 1] as well, provided that m and n are relatively prime. For this rea-
son the subgroups of the continuous translation SO(2) consist of the discrete
cyclic groups Zn for n = 2, 3, 4, . . . together with the trivial subgroup {e} and
the full group SO(2) itself. For rational shifts `x/Lx = m/n we simplify the
notation a bit by rewriting (8.10) as

τm/nx = τ(mLx/n, 0) . (8.12)

Since m/n = 1/2 will loom large in what follows, we omit exponents of 1/2:

τx = τ1/2
x , τz = τ1/2

z , τxz = τxτz . (8.13)

If a field u is fixed under a rational shift τ(Lx/n), it is periodic on the smaller
spatial domain x ∈ [0, Lx/n]. For this reason we can exclude from our searches
all equilibrium whose isotropy subgroups contain rational translations in fa-
vor of equilibria computed on smaller domains. However, as we need to study
bifurcations into states with wavelengths longer than the initial state, the linear
stability computations need to be carried out in the full [Lx, 2] cell. For exam-
ple, if EQ is an equilibrium solution in the Ω1/3 = [Lx/3, 2] cell, we refer to the
same solution repeated thrice in Ω = [Lx, 2] as “streamwise-tripled” or 3×EQ.
Such solution is by construction fixed under the Z3 = {e, τ1/3

x , τ
2/3
x } subgroup.

Third, some isotropy groups are conjugate to each other under symmetries
of the full group Γ. SubgroupH ′ is conjugate toH if there is an s ∈ Γ for which
H ′ = s−1Hs. In spatial terms, two conjugate isotropy groups are equivalent
to each other under a coordinate transformation. A set of conjugate isotropy
groups forms a conjugacy class. It is necessary to consider only a single rep-
resentative of each conjugacy class; solutions belonging to conjugate isotropy
groups can be generated by applying the symmetry operation of the conjugacy.

In the present case conjugacies under spatial translation symmetries are
particularly important. Note that O(2) is not an abelian group, since reflec-
tions σ and translations τ along the same axis do not commute [11]. Instead
we have στ = τ−1σ. Rewriting this relation as στ2 = τ−1στ , we note that

σxτx(`x, 0) = τ−1(`x/2, 0)σx τ(`x/2, 0) . (8.14)

The right-hand side of (8.14) is a similarity transformation that translates the
origin of coordinate system. For dx = Lx/2 we have

τ−1/4
x σx τ

1/4
x = σxτx , (8.15)

and similarly for the spanwise shifts / reflections. Thus for each isotropy
group containing the shift-reflect σxτx symmetry, there is a simpler conjugate
isotropy group in which σxτx is replaced by σx (and similarly for σyτy and σy).
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We choose as the representative of each conjugacy class the simplest isotropy
group, in which all such reductions have been made. However, if an isotropy
group contains both σx and σxτx, it cannot be simplified this way, since the
conjugacy simply interchanges the elements.

Fourth, for dx = Lx, we have τ−1
x σx τx = σx , so that, in the special case of

half-cell shifts, σx and τx commute. For the same reason, σy and τy commute,
so the order-16 isotropy subgroup

G = D1,x × Z2 ×D1,z × C2,z ⊂ Γ (8.16)

is abelian.

8.2.2 The 67-fold path

We now undertake a partial classification of the lattice of isotropy subgroups
of Kolmogorov flow. We focus on isotropy groups involving at most half-cell
shifts, with SO(2)×D4 translations restricted to order 4 subgroup of spanwise-
streamwise translations (8.13) of half the cell length,

T = Z2 × C2,z = {e, τx, τz, τxz} . (8.17)

All such isotropy subgroups of Γ are contained in the subgroupG (8.16). Within
G, we look for the simplest representative of each conjugacy class, as described
above.

Let us first enumerate all subgroups H ⊂ G. The subgroups can be of
order |H| = {1, 2, 4, 8, 16}. A subgroup is generated by multiplication of a set
of generator elements, with the choice of generator elements unique up to a
permutation of subgroup elements. A subgroup of order |H| = 2 has only
one generator, since every group element is its own inverse. There are 15 non-
identity elements in G to choose from, so there are 15 subgroups of order 2.
Subgroups of order 4 are generated by multiplication of two group elements.
There are 15 choices for the first and 14 choices for the second. However, each
order-4 subgroup can be generated by 3 · 2 different choices of generators. For
example, any two of τx, τy, τxz in any order generate the same group T . Thus
there are (15 · 14)/(3 · 2) = 35 subgroups of order 4.

Subgroups of order 8 have three generators. There are 15 choices for the
first generator, 14 for the second, and 12 for the third. There are 12 choices
for the third generator and not 13, since if it were chosen to be the product of
the first two generators, we would get a subgroup of order 4. Each order-8
subgroup can be generated by 7 · 6 · 4 different choices of three generators, so
there are (15 · 14 · 12)/(7 · 6 · 4) = 15 subgroups of order 8. In summary: there
is the group G itself, of order 16, 15 subgroups of order 8, 35 of order 4, 15 of
order 2, and 1 (the identity) of order 1, or 67 subgroups in all [10]. This is whole
lot of isotropy subgroups to juggle; fortunately, the observations of sect. 8.2.1
show that there are only 5 distinct conjugacy classes in which we can expect to
find equilibria.
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The 15 order-2 groups fall into 8 distinct conjugacy classes, under conjuga-
cies between σxτx and σx and σyτy and σy . These conjugacy classes are rep-
resented by the 8 isotropy groups generated individually by the 8 generators
σx, σy, σxy, σxτy, σyτx, τx, τy, and τxz . Of these, the latter three imply peri-
odicity on smaller domains. Of the remaining five, σx and σxτy allow relative
equilibria in z, σy and σyτx allow relative equilibria in x. Only a single conju-
gacy class, represented by the isotropy group

{e, σxy} , (8.18)

breaks both continuous translation symmetries. Thus, of all order-2 isotropy
groups, we expect only this group to have equilibria.

Of the 35 subgroups of order 4, we need to identify those that contain σxy
and thus support equilibria. We choose as the simplest representative of each
conjugacy class the isotropy group in which σxy appears in isolation. Four
isotropy subgroups of order 4 are generated by picking σxy as the first genera-
tor, and σz, σzτx, σzτz, or σzτxz as the second generator (R for reflect-rotate):

R = {e, σx, σy, σxy} = {e, σxy} × {e, σz}
Rx = {e, σxτx, σyτx, σxy} = {e, σxy} × {e, σxτx} (8.19)
Ry = {e, σxτz, σyτz, σxy} = {e, σxy} × {e, σzτz}
Rxz = {e, σxτxz, σyτxz, σxy} = {e, σxy} × {e, σzτxz} ' S .

These are the only isotropy groups of order 4 containing σxy and no isolated
translation elements. Together with {e, σxy}, these 5 isotropy subgroups repre-
sent the 5 conjugacy classes in which expect to find equilibria.

8.3 State-space visualization

Ref. [6] presents a method for visualizing low-dimensional projections of tra-
jectories in the infinite-dimensional state space of the Navier-Stokes equations.
Briefly, we construct an orthonormal basis {e1, e2, · · · , en} that spans a set of
physically important fluid states uA, uB , . . . , such as equilibrium states and
their eigenvectors, and we project the evolving fluid state u(t) onto this basis
using the L2 inner product (??). This produces a low-dimensional projection

a(t) = (a1, a2, · · · , an, · · · )(t) , an(t) = (u(t), en) , (8.20)

which can be viewed in 2d planes {em, en} or in 3d perspective views {e`, em, en}.
The state-space portraits are dynamically intrinsic, since the projections are de-
fined in terms of intrinsic solutions of the equations of motion, and representa-
tion independent. Such bases are effective because moderate-Re turbulence ex-
plores a small repertoire of unstable coherent structures, so that the trajectory
a(t) does not stray far from the subspace spanned by the key structures.

There is no a priori prescription for picking a ‘good’ set of basis fluid states,
and construction of {en} set requires some experimentation. As shown in

03/29/2019 siminos/spatiotemp/chapter/KFsymm.tex156 7451 (predrag–6822)



CHAPTER 8. KOLMOGOROV FLOW

ref. [6], the dynamics of different regions of state space can be elucidated by
projections onto basis sets constructed from combinations of equilibria and
their eigenvectors.

A group element g ∈ G acts on a function ρ(a) defined on state spaceM by
its operator representation

U(g) ρ(a) = ρ(D(g)−1a) . (8.21)

This is the conventional, Wigner definition of the effect of transformations.
The Frobenius ‘character orthogonality’ theory of irreps (irreducible repre-

sentations) of finite groups says that all invariant subspaces are obtained by
weighted averages (‘projections’)

ρ(µ)(a) =
dµ
|G|

∑
g

χ(µ)(g)U(g) ρ(a) =
dµ
|G|

∑
g

χ(µ)(g) ρ(D(g−1)a) (8.22)

The simplest example is afforded by the 1-dimensional subspace (irrep)
given by the fully symmetrized average of components of the regular basis
function ρreg(a)

ρ(A1)(a) =
1

|G|
G∑
g

ρ(D(g) a) .

By construction, ρ(A1) is invariant under all actions of the group,U(g) ρ(A1)(a) =
ρ(A1)(a) . This ρ(A1)(a) invariant subspace is a special case of (8.22), with all
χ(A1)(g) = 1. In other words, for every g this is an eigenvector of the regular
representation Dreg(g) with eigenvalue 1.

By now the group acts in many different ways, so let us recapitulate:
g abstract group element, multiplies other elements

D(g) [d×d] state space transformation matrix, multiplies a ∈M
U(g) operator, acts on functions ρ(a) defined over state spaceM

D(µ)(g) [dµ×dµ] irrep, acts on invariant subspace ρ(µ)(â)

Note that the state space transformation D(g) 6= D(e) can leave sets of
‘boundary’ points invariant (or ‘invariant points’); for example, under reflection
σ across a symmetry plane, the plane itself remains invariant.

Dihedral group D4. The D4 group

D4 = {e, τ1/4, τ1/2, τ3/4, σ, στ1/4, στ1/2, στ3/4}

has a 4 shift elements and 4 shift-reflect elementS. There are 5 classes: {e},
{τ1/2}, {τ1/4, τ3/4}, {σ, στ1/2} and {στ1/4, στ3/4}. There are four different
one-dimensional irreducible representations, whose characters are ±1 under
reflection σ and shift-reflect operation στ1/4. There is one 2-dimensional rep-
resentation e. It has 3 subgroups: Z4, D2 and Z2. Life can be made easier by
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D4 A1 A2 B1 B2 E
{e} 1 1 1 1 2
{τ2} 1 1 1 1 -2
{τ , τ−1} 1 1 -1 -1 0
{σ, στ2} 1 -1 1 -1 0
{στ , στ−1} 1 -1 -1 1 0

Table 8.2: Character table of dihedral group D4.

defining the quarter-shift as τ = τ1/4, with σ2 = e, τ4 = e, and στ = τ−1σ. The
character table is given in table 8.2. 3

In this paper we present global views of all invariant solutions in terms
of the orthonormal ‘translational basis’ constructed in ref. [6] from the eight
translated or translated/reflected copies of any state, for example uEQ, pro-
jected using the Frobenius character projection operators (8.22) on the 4 one-
dimensional representations: 4

eA1
=

cA1

8
(1 + τ + τ2 + τ−1 + σ + στ + στ2 + στ−1)uEQ

eA2
=

cA2

8
(1 + τ + τ2 + τ−1 − σ − στ − στ2 − στ−1)uEQ (8.23)

eB1
=

cB1

8
(1− τ + τ2 − τ−1 + σ − στ + στ2 − στ−1)uEQ

eB2 =
cB2

8
(1− τ + τ2 − τ−1 + σ + στ − στ2 + στ−1)uEQ ,

where cn is a normalization constant determined by ‖en‖ = 1, and a group
element is a shorthand for (8.21), action of the group on function uEQ,

g uEQ(a) = U(g−1)uEQ(a) = uEQ(D(g)a) . (8.24)

for example τuEQ(a) = uEQ(D(τ )a).
This is a low-dimensional projection intended for visualization. The dimen-

sionality is lower than the full state space, so trajectories can appear to cross in
such projections. We emphasize again that this is one of many possible projec-
tions that can be constructed from linear combinations of exact solutions, their
spatial translations, and their stability eigenfunctions.

3Predrag 2015-06-21: I started with Xiong’s thesis Dn, cross-checked with tables on the web.
Hopefully correct. :

4Predrag 2015-06-20: I have not thought through yet how to use the two copies of the two-
dimensional representation E, bringing the number of group-theoretically orthonormal coordi-
nates to 8; no Gram-Schmidt orthogonalizations required. Presumably the fundamental domain is
the 1/8-space, with all e1 > 0.
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Figure 8.3: (a) Equilibrium E1 found by Chandler & Kerswell, JFM 722 (2013)
(b) The same equilibrium found by adjoint equation integrated for 4×104 time
units (takes approximately 3 minutes) plus 7 iterations of Newton-GMRES to
decrease the L2 error to 5× 10−13. Here, Re = 40. Note that panels (a) and (b)
appear to be related by a shift-and-reflect symmetry.

8.4 Kolmogorov flow blog

2015-04-21 Mohammad The Kolmogorov flow

∂tu = −u · ∇u−∇p+
1

Re
∆u + sin(4y)e1, ∇ · u = 0, (8.25)

is solved with periodic boundary conditions in x and y on the domain
(x, y) ∈ [0, 2π]× [0, 2π].

2015-06-20 Predrag The Kolmogorov flow domain (x, y) ∈ [0, 2π] × [0, 2π] in
(8.25) really bugs me. The Rayleigh number controls the viscosity legth
scale, as compared to the strip width. Experimentally one fixes the num-
ber n of spanwise strips, and can chose any streamwise length, so the do-
main should be a rectangle, such that for given n and Re if one doubles
the streamwise length, on doubles the number of vortices, while keeping
their shape intact. Forcing them into a square domain would squash the
vortices. 3rd floor people must have thought all this through...

2015-06-19 Mohammad Define the projection operator

Pu =
1

4n

2n−1∑
m=0

Sm [u +Ru] , (8.26)

as the average over all discrete symmetries of the Kolmogorov flow in the
slice. Let I[u] denote the energy input for the state u. For Kolmogorov
flow, the energy input I[u] is linear in u. Due to its linearity and since the
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energy input is conserved under any symmetry action, we have I[Pu] =
I[u]. Therefore,

I[u− Pu] = 0,

that is all the contribution to the energy input comes solely from the pro-
jection Pu!

2018-12-07 Predrag Blah blah.

8.4.1 Kolmogorov Flow doubly periodic formulation

The equations governing two dimensional Kolmogorov flow can be writ-
ten in terms of velocity field u(eliminated later) and vorticity ω in the fol-
lowing manner. For now I will just write the homogeneous equations,
with forcing easily added afterwards

ωt − ẑ · (∇× (u× ωẑ))− 1

Re
∇2ω = 0 (8.27)

The only difficult part of rewriting this equation in terms of (2 + 1) spa-
tiotemporal Fourier coefficients (assuming periodic boundary conditions)
is the nonlinear term, not only due to the cross products but the necessity
to express the velocity field in terms of the streamfunction, and conse-
quently the vorticity field as u = ∇ × (∇−2ω) which is possible due to
the two dimensional approximation. The operator ∇−2 is the inverse
of the Laplacian, which is technically singular; I asked around and the
standard practice is to essentially define it in fourier space as 1

|k|2 , where
|k|2 = k2

x + k2
y . For numerical purposes its apparently common practice

to say that the inverse of the kx = ky = 0 term equals 1. In other words,
1/0 = 1. It’s just a means of approximating the operator in spectral space.

Although [4] give nice formula that is almost entirely of Fourier coef-
ficients, I find it more useful to completely eliminate the velocity field
components u = (u, v) from the equation.

Therefore, the pseudospectral (homogeneous) spatiotemporal equation
takes the form,

iωΩ + ikxF [F−1(
iky
|k|2 Ω) ∗ F−1(Ω)]

− ikyF [F−1(
ikx
|k|2 Ω) ∗ F−1(Ω)]

− |k|2
Re

Ω = G(Ω, T, Lx, Ly) = 0 (8.28)

Likewise, if allowed to write differentiation operators via Dt, Dx, Dy , etc,
then the jacobian takes on the form in pseudospectral representation,
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J = Dt +DxF [diag(Dy∇−2ω)F−1 + diag(ω)Dy∇−2F−1]

− DyF [diag(Dx∇−2ω)F−1 + diag(ω)Dx∇−2F−1]

− ∇2

Re
(8.29)

By taking the complex conjugate and multiplying by the Feynman equa-
tion (16.101), the expression for the adjoint descent direction, −J†G.

−J†G = [Dt + Fdiag(Dy∇−2ω)F−1Dx

− F∇−2Dydiag(ω)F−1Dx

− Fdiag(Dx∇−2ω)F−1Dy

+ F∇−2Dxdiag(ω)F−1Dy

− ∇2

Re
] ·G (8.30)

8.4.2 Kolmogorov Flow non periodic boundary conditions

Mike Schatz and I had a conversation today via Hangouts because he
wanted to follow up on our presentation and discuss how this could pos-
sibly be relevant to his group. The main goal we discussed was to pursue
a spatiotemporal numerical formulation for a experimentally compara-
ble setting, namely Kolmogorov flow without doubly periodic boundary
conditions and incorporating Rayleigh friction. I explained that the key
difference would be to change to a Chebyshev polynomial basis due to
the boundary conditions but work with the vorticity field as is common
practice.

For starters, I’ll describe the basic formulation for equilibria in a Chebyshev-
Chebyshev basis. The key details is that to have accurate or viable nu-
merics the spatial grid would have to be defined not on an equidistant,
rectangular grid but rather defined at (this is a specific choice, but a com-
mon one) what are known as the Chebyshev-Gauss Lobatto quadrature
nodes. In other words, any initial condition would either have to be ei-
ther initialized in spectral space (very very preferable), or initialized on
the discretized grid defined by the set of points in physical space,

(xm, yn) = (cos(
πm

M
), cos(

πn

N
) . (8.31)

It is this discretization that allows us to use a (Chebyshev) polynomial ba-
sis in a collocation method, as an equally spaced grid would induce error
from the Runge phenomenon (like the Gibbs phenomenon for Fourier
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modes but for polynomial bases). One benefit (I believe?) is that the
discretization has a higher resolution near the walls. Another benefit of
this specific choice of quadrature nodes is that by definition they are the
points at which the derivative of the Chebyshev polynomials are zero,
i.e.T ′(xm) = 0. Other choices, such as the Chebyshev-Gauss nodes would
instead provide the condition T (xm) = 0.

With a two-dimensional spatial grid defined on the Chebyshev-Gauss-
Lobatto nodes, we can use a discrete cosine transform to determine the
spectral coefficients of the Chebyshev polynomial basis [3].

For a scalar vorticity field, ω(xm, yn), the corresponding Chebyshev modes
are calculated with the following formula

Ωjk =
2

M ∗N
1

c̄j c̄k

∑
n,m

ωnm
c̄nc̄m

cos(
πmj

M
) cos(

πnk

N
) (8.32)

and the corresponding inverse transformation given by

ωnmΩjk =
∑
j,k

Ωjk cos(
πmj

M
) cos(

πnk

N
) . (8.33)

In this context there are no continuous translation symmetries, nor does
the shit-reflect exist. The only remaining symmetry is in fact the rota-
tional symmetry, defined by action on the vorticity field R · ω(x, y) →
ω(−x,−y).

Via the invariance condition,

ω −R · ω = 0 , (8.34)

one can derive selection rules for the Chebyshev modes with spatial rota-
tion symmetry. The rotation action is equivalent to the coordinate trans-
formation x→ −x, y → y. Via the Chebyshev-Gauss-Lobatto relation,

xm = cos(πm/M)

−xm = − cos(πm/M)

−xm = cos(π) cos(πm/M)

−xm = cos(πm/M + π)

cos−1(xm) = πm/M + π

(8.35)

which after substitution into the invariance condition (in terms of Cheby-
shev modes),
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∑
j,k

Ωjk cos(
πmj

M
) cos(

πnk

N
) =

∑
j,k

Ωjk cos(
πmj

M
+ jπ) cos(

πnk

N
+ kπ) ,

(8.36)

in turn implies the following,

Ωjk = (−1)j+kΩjkfor allj, k. (8.37)

Therefore the subset of modes (Ωjk : j + k = odd) are forced to be zero
by discrete symmetry.

These selection rules hold only for solutions in the rotationally invariant
subspace, naturally.
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Chapter 11

Persistent homology

2018-07-05 Burak A possible method to systematically classifying the patterns
could be the persistent homology. Matt, If you could generate a large
spatiotemporal plot along and a corresponding peak-detected version,
then I can take them to Herbert Edelsbrunner and ask for his advice on
how to go about extracting a finite library of patterns.

2018-09-11 Matt [Persistent homology] Spent the morning searching through
literature on persistent homology in conjunction with pattern detection,
partial differential equations. I have about ten papers that I need to add
them to the bib but I need to skim them to pick out the good ones first.

Set-up a meeting for tomorrow at 3:00 pm. with Brett Tregoning from
the Schatz’ group to discuss their ref. [1] Analysis of Kolmogorov Flow and
Rayleigh-Bénard Convection using Persistent Homology and to get a general
introduction on the subject.

2018-09-12 Matt Happy Birthday to me. Now back to work.

Konstantin Mischaikow Seminar on Persistent Homology Youtube The
audio cuts in and out so be warned its annoying to listen to.

Talked to Brett Tregoning Went through the idea of persistent homol-
ogy. He recommends (as do I) watching the videos to get an idea on
persistent diagrams in the supplementary materials at 1

PHAT I can’t believe that I have to say this again but I spent an incredibly
frustrating amount of time trying to install a different package to
be able to run persistent homology code in Python, as opposed to
writing my own code.
Little did I know that the developers have not updated the descrip-
tion of their package on their webpage since circa 2013, but it’s a
fools errand to attempt to install it on a Windows machine. It’s

1Predrag 2018-09-25: “at” what? Ref. [1]?
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almost comical because their installation instructions literally in-
clude only one command line, pip install phat. Only after five
hours did I realize that they did not update the dependencies re-
quired for the Windows version, but perhaps I should have known
what it meant for the “Python Bindings” to only work on linux and
MacOS.
Maybe I’m stupid for not exclusively working in Linux land but the
documentation for packages written without an installer is really
terrible.
Going to attempt to install a different package named Perseus next,
or just only run phat from Light terminal.

2018-09-14 Matt Persistent Homology Testing implementations on Linux run-
ning Ubuntu to see what persistent homology code will be easiest
to implement. Out of Rachel Levanger’s (tda-persistent-homology)
package, Perseus (perseus) and the barebones PHAT package (PHAT)
(the framework that Rachel Levanger’s code is built upon.
I think the easiest is going to be Rachel Levanger’s code because its
setup to take a folder of greyscale images and create the correspond-
ing persistence diagrams. Therefore it should be somewhat easy to
reproduce figures for families of solutions and pass them to these
Python functions. The downside for me is that my main machines
are Windows based and this is only active on Linux, so I will have
to see if there are any permission issues in regards to the installation
process; I think I should be fine but I had to find work arounds for
channelflow 2.0.
The other two might are not nearly as expedient but if something
comes out of Rachel Levanger’s codes then it might be worthwhile
to learn the PHAT framework and write my own codes.

09-18-2018 Matt Persistent Homology Went through testing of Rachel Levanger’s
Python module. While I can get the persistent homology code to
run it seems that in the documentation that periodic boundary con-
ditions haven’t been implemented yet; although this seemingly con-
tradicts the data that I saw for two dimensional Kolmogorov flow in
the supplemental materials for the ref. [1].
The whole idea is that it is supposed to be picking out topologi-
cal information, specifically, for a scalar field u(x, t) and its image
under a homeomorphism g ◦ u(x, t) should have the same “Per-
sistence Diagrams” but figure 11.1 shows otherwise. Attempting
this with relative periodic invariant 2-torus solutions in the mean-
velocity frame and full state space leads to two different persistence
diagrams, thereby somehow encoding the quantitative difference of
the doubly periodic nature in the mean velocity frame.
I am going to attempt to establish contact with the author of the code
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(a) (b)

Figure 11.1: (a) Persistence diagrams for hook family in mean velocity frame
(doubly-periodic representation) (b) Persistence diagrams for hook family of
solutions in full state-space. Evidence that code doesn’t support periodic
boundary conditions or else these two plots would be the same.

to see if there is any way to adapt my images to be able to utilize the
code properly.

Explanation of persistence diagrams The general concept regard persis-
tence diagrams is fairly straightforward; its only the details of the
algorithmic implementation when it gets tricky.
If we imagine a two dimensional scalar field u(x, t) as a topograph-
ical height map, and then we imagine scanning through the land-
scape with a constant valued plane f(θ) (which is easiest to visual-
ize as the “sea-level”) that defines sublevel sets {u(x, t) : u(x, t) ≤
f(θ)}, then we can count the number of topologically distinct com-
ponents, labeled by the nth Betti number, βn. The first three Betti
numbers can be described by the following: β0 counts the number
of connected components, β1 counts the number of one-dimensional
holes, and β2 counts number of voids or “cavities” (not applicable
with two dimensional scalar fields). In this case, these components
are defined with respect to the sub-level sets or “sea-level”. Con-
nected regions above sea-level define 2

To get an intuition for these quantities it is probably easiest to watch
the supplementary videos (click here) for Schatz group’s persistent
homology paper [1].
What one sees in figure 11.1 are the compilation of persistence dia-
grams for the family of solutions of the Kuramoto-Sivashinsky equa-

2Predrag 2018-09-25: “define” what?
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tion associated with the “hook” or “defect” pattern, in the (a) mean
velocity frame and in the (b) full state space. Because these are con-
tinuous families of solutions, there should be continuity in the space
of persistence diagrams.
The troubling evidence shown in figure 11.1 is that the data dis-
played is supposed to be invariant under homeomorphisms. I be-
lieve that this Python package is not taking the periodic boundary
conditions into account and therefore cannot be fully utilized at this
point.
Confirmed by Rachel Levanger, does not support periodic boundary
conditions

2018-09-24 Matt Persistent Homology Schatz’ group forgot to bring it up in
their weekly meeting but they believe that Miroslav Kramár per-
haps produced a persistent homology calculation with the doubly
periodic 2-D Kolmogorov flow numerical data (as opposed to ex-
perimental data).
Michael Schatz made a comment about a small difference between
persistent homology of two dimensional scalar fields with and with-
out periodic boundary conditions. Coding-wise there are distinc-
tions because one needs to make sure to not overcount the connected
sub-level sets or else the persistence diagram will not be mathemat-
ically consistent between different images, i.e., the technique is use-
less if not written specifically to take periodic boundary conditions
into consideration. I believe the point he was trying to make is that
because we are working with a topological torus there is the emer-
gence of a single birth-death event on the β2 (Betti number equals
two) diagram, which counts the number of “cavities” (think of iso-
vorticity surfaces) of the torus. I believe for him that this is just a
trivial piece of information due to the topology of tori; there is an
“inside” to the two dimensional surface, therefore a β2 birth-death
event occurs.
I reached out to Dr. Kramár, asked him that he share his algorithms
with me.
He replied and pointed me towards a library named GUDHI (it’s al-
most like its saying “Hi Gudorf!” so maybe its a sign) that uses
cubical complexes (fancy words to say that it tracks the level sets
where scalar field u(x, t) < θ) on a lattice to produce the persistence
diagrams. I’m hoping to get this up and running soon.

2018-09-25 Matt All of the documentation is laid out so much better than some
other libraries that I’ve recently dealt with and it seems that its a rela-
tively widely used library, see (GUDHI code website).

While the only thing I need to do is “make install” and then test with
“make test,” the input file needs to be of a very specific format and the

7451 (predrag–6836) 19504/18/2019 siminos/spatiotemp/chapter/homology.tex

http://gudhi.gforge.inria.fr/


CHAPTER 11. PERSISTENT HOMOLOGY

output seems to be of a very specific format so it looks like I will be writ-
ing some python scripts to be able to use the library. First, I need to
use the same algorithm (either custom or built-in) that takes a greyscale
bitmap image and converts it to numbers n ∈ [0, 255] to represent the
invariant 2-torus in the correct way.

The input file must list the following, the first line lists the dimension
d = 2 of the array to be input. Next the negative of the number of rows
and columns negative for periodic boundary conditions −N and −M
are listed on successive lines.

Lastly the bitmap data of the scalar field (in my case a matrix) is flattened
into a vector, starting at the bottom left of the field.

So, for example, the following “data”

U =

7 8 9
4 5 6
1 2 3

 (11.1)

would be represented by a text file written exactly as such,

2 (number of dimensions)
-3 (number of rows, periodic boundary conditions imply negative)
-3 (number of rows, periodic boundary conditions imply negative)
1
2
3
4
5
6
7
8
9

The output is a text file containing the lists of births and deaths of dif-
ferent Betti number components. I do not believe that this has plotting
functionality so I’ll take the output and run it through a python script
that processes the data and plots the persistence diagrams of the invari-
ant 2-torus. I kind of wished that 3 4

2018-09-25 Matt Including a figure of the persistence diagrams for the contin-
uous family of solutions produced by numerical continuation of the hook
tile in domain size. The heat map represents the energy of the solution;
one can see that the coloring is not a nice continuous gradient therefore
the family is not parameterized by energy, nor is it parameterized by T
or L.

3Predrag 2018-09-26: ‘wished that” what?
4Predrag 2018-09-26: Is figure 11.2 really tracking the hook family figure 16.25 (d-f)?
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(a)

Figure 11.2: Persistence diagrams of the hook family of solutions fig-
ure 16.25 (d-f) for zeroth and first Betti numbers. The heat map represents
energy; the same qualitative coloring is producing if you track the period of
solutions or the spatial domain size. In other words the continuity of the per-
sistence diagrams cannot be described by system parameters.

While I got the code running on light (it runs really quickly) I’m still
learning the details, specifically about the use of cubical complexes, which
I believe is just a way of approximating the infinitely dimensional scalar
field after it has been discretized, i.e., think of the scalar field as a height
map of rectangular prisms analogous to Riemann integration.

The horizontal lines of figure 11.2 represent “infinity,” i.e., there are fea-
tures that are born at a finite “time” (threshold value for level sets of
cubes arranged in grid) and persist as the threshold passes the maximum
of the function.

The Betti number zero point at infinity makes sense and can be explained.
For mathematical consistency whenever two simply connected regions
are merged the younger one dies; therefore the global minimum lives
from the beginning until the end.

The Betti number one points along the infinity boundary make absolutely
no sense to me and have convinced me that I’m missing a small detail in
the calculation thats giving me errant data. What these points imply is
that there are holes that persist past the maximum of the function, but at
that point everything would be beneath the “sea level” leaving only one
Betti number zero region (as previously described). Yet despite this I get
lots of points at infinite for Betti number one persistence diagrams.

I believe that the code that produces correctly formatted text files is cor-
rect. What I believe I needed to do (and therefore implemented this)
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is to first map the values of the scalar field u(x, t) to the 8 bit integers
(z ∈ (0, 1, 2, · · · , 255)) as these numbers are sufficient (and necessary in
certain formats) to represent a grayscale image.

The transformation that I apply is to add the absolute value of the mini-
mum value of the scalar field across the scalar field such that the global
minimum has a value of zero. Then, the scalar field is rescaled by di-
viding the values of the field by the sum of the old minimum plus old
maximum, which after the first transformation is the new global maxi-
mum value. This leaves us with a scalar field valued between zero and
one; multiplying by 255 and then casting the field from floats to integers
leaves us with the correctly valued field.

The lexicographical ordering that is mentioned in my previous post is
relatively straightforward, we just need a vector whose elements are or-
dered such that they represent the values of the field going from left to
right x = 0 → L starting at the bottom t = 0 and ending at the top
t = Tp. This is easily accomplished by rearranging the array with built in
functions in Python (numpy, scipy).

I thought that perhaps the errors were occurring because I had to man-
ually make the field periodic as opposed to the normal representation
where the leftmost values x = 0 do not equal the right most values x = L
but the connect is assumed; this is generally how discrete Fourier trans-
forms format the data. I tested this and the results made even less sense,
so I’m going to attempt to see if I can get Brett Tregoning or Michael
Schatz to join us next week (this week is likely too short notice).

2018-09-26 Predrag I do not think anyone of us can make sense of figure 11.2
without seeing the corresponding black-white diagram of the hook fam-
ily figure 16.25 (d-f), in the spirit of video 1 (click here) from Schatz
group’s persistent homology paper [1].

Chose one constituent member of the family of solution to produce such
an animation, located in figs titled animated_PDhook0 which can be
viewed via google chrome.

2018-09-27 Matt [Numerical Continuation] Still working on the visualization
for persistent homology calculations, data management. The plan for
tomorrow is likely to numerical continue some solutions and then try to
compute persistence diagrams of the entire family and see if any useful
information comes out.

2018-09-27 Matt [Persistent Homology] Spent a lot of time playing with per-
sistent homology tools today.I went through a variety of tests to gain intu-
ition on persistence diagrams and ensure I understand what they mean,
and they are correct. I’m much more confident than I was before today
about what is actually going on with persistence diagrams, especially the
difference between components with different Betti numbers. I searched
for good examples of what the different numbers actually mean but I
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(a)

Figure 11.3: Persistence diagrams of the hook family of solutions for ze-
roth,first, and second Betti numbers β0, β1, β2. The persistent homology calcu-
lation was performed by concatenating the family of solutions to form a scalar
field in three dimensions.

found only the basic description of zero being simply connected regions,
one meaning “one-dimensional holes”, and two being cavities.

I didn’t really have an intuition for what constitutes a one dimensional
hole, but now I understand it is just a hole that you can draw a one di-
mensional curve around, much like how a cavity is a hole that is enclosed
by a two dimensional surface. This explains the two points at infinity for
tori, which are equivalent to the direct product of two circles. Its these
two circles that give rise to the two infinitely persistent holes. The other,
transient, holes on the persistence diagram correspond to the torus not
being completely filled in during the thresholding process. An easy way
to explain this is to think of the thresholding process applied to the scalar
field as coloring in the surface of the torus. Now imagine this coloring
process continues until almost all of the torus is filled in except a small
patch of the surface. This small patch would lead to a point on the β1 per-
sistence diagram because you can draw a curve around it, and the point
at which the point dies is when this patch gets filled in.

These comments might seem obvious after the fact but I feel like there
aren’t many people that attempt to explain it in an easy manner so I am
going to do it for myself. Many of the tests were sanity checks like, can
I input the scalar field information as real numbers?(yes). Does the data
have to be periodic or is periodicity assumed(has to be periodic)? Why
are there births on the β1 diagram when it appears as though nothing is
happening? (It turns out that merely sharing a vertex is sufficient to be
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connected in the “cubical complex” scheme).

I agree that figure 11.2 is terrible to look at, especially because the color
coding isn’t labeled. After today’s training I thought of something that
might be a good idea. figure 11.2 is a superposition of an entire family of
solutions’ persistence diagrams which is hard to analyze. Normally the
scalar fields that are being used to produce persistence diagrams are tem-
poral snapshots and so the natural means of visualizing this is a movie
of persistence diagrams. I don’t know why this hasn’t been done for the
time series case, but instead of attempting to parameterize the “family”
of persistence diagrams, or make a movie, why not just compute the per-
sistent homology of the entire set of snapshots at once; in other words
my idea is to think of families of solutions as a scalar field in three di-
mensions;two of which have periodic boundary conditions.

This thought is what produced figure 11.3, which is the persistence di-
agram computed for the entire family of numerically continued hook
solutions at different domain sizes at once. I am unsure as to whether
the different spatiotemporal domain sizes matters in this case, as I know
(due to Konstantin Mischaikow) that persistence diagrams are invariant
under homeomorphism, so if the rescaling transformation is a homeo-
morphism (which I think is the case?) then it would not matter if the
“total” transformation comprised on individual two dimensional home-
omorphisms is itself a homeomorphism. One other problem is that in
order to visualize the thresholding in this case (The type of movie that
makes the diagrams easy to understand as Predrag and I both believe) it
needs to be drawn in three dimensions which isn’t easy and likely not as
enlightening. I believe this is an idea worth thinking through but I am
unsure if it is worth pursuing unless some interesting information comes
out of the consequent persistence diagrams.

[Numerical Continuation and other codes] Still working on the initial
condition generation for glueing together solutions and symbolic dynam-
ics, as well as numerical continuation, visualization for persistent homol-
ogy calculations, data management. The plan for tomorrow is likely to
numerical continue some solutions and then try to compute persistence
diagrams of the entire family and see if any useful information comes out.

[Persistent homology calculations] The main takeaway seems to be nu-
merical continuation of relatively large solutions does not change the
main features that much and so solutions (subdomains, really) could pos-
sibly be identified by their persistence diagrams.

Although I put a decent amount of work into the three-dimensional fam-
ily versions of this code I think the single two-dimensional snap shot cap-
tures all of the important information. The three dimensional representa-
tion just shows that familes of solutions are continuous deformations of
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one another, which we really already knew.

Figure 11.4: Persistence diagram for a large spatiotemporal trajectory (not pe-
riodic in time) disaplying a particular thresholding value for the scalar field
immediately before and β1 events are born occur (right figure).

2018-10-05 Matt Trying to make up for lost time by working overtime during
the week and completely crashing on weekends. I’m hoping I can keep
it up

Persistent Homology I’m only including one figure I produced from a
persistent homology calculation on segments of an ergodic trajec-
tory, t ∈ [0, 20],t ∈ [0, 40], etc. as the temporal extent of the time
series was increased the Betti number zero events seemingly get
squashed into the bottom of the persistence diagram and vice versa
for the Betti number one events. In other words I guess as one sam-
ples more and more of the attractor the persistence diagram asymp-
totically approaches some regularized distribution. This could just
be a red herring because as one takes in more data the more regular-
ized it will be. It’s essentially the bottom third of the range of values
that the scalar field can take on is dominated by spots. Around the
two thirds point (as measured from the bottom of [−umin, umax])
all of the black spots become connected, which I find kind of sur-
prising, due to the fact that it just seems to be at some arbitrary
value that long time series approach asymptotically. Likewise, for
the one-dimensional holes, Betti number one events, none exist un-
til a certain threshold point. It could be meaningly less but perhaps
after accounting for noise one could derive a relation between per-
sistence diagrams and solution, or characterize the attractor as an
asymptotic state in persistence diagram space. Something to pon-
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der.

2018-10-10 Matt Persistent homology of large ergodic segments In this post
I will report on the recent results from applying the theory of persis-
tent homology to solutions of the Kuramoto-Sivashinsky equation.
Persistent homology calculations with small spatiotemporal solu-
tions has not yet provided anything fruitful, at least in my interpre-
tation. Because the solutions are defined on small domains there
is no room for very complex features and therefore the persistence
diagrams have very few features.
I had the idea that perhaps the persistent homology of a long ergodic
segment might prove enlightening, as this is the opposite of the
small spatiotemporal area limit. I was unsure if the results were triv-
ial so I reported them to Predrag after the weekly plumbers meeting.
Both of us found the results interesting but couldn’t really explain
them.
(Side Note: I’m only going to provide the static persistence diagrams
for the ergodic trajectories because the spatiotemporal solution is
too large to make any sense out of the black and white spatiotempo-
ral field being animated.)
An interesting observation is that there seems to be two transitions.
The first is where all thresholded regions become connected, the sec-
ond is a minimum value for loops to be born. This is slightly surpris-
ing to me. It makes sense that there would be a maximum value after
which everything is connected, but I would have expected it to be
much closer to the global maximum of the solution. More surprising
is that no β1 events exist before a certain threshold; this is strange to
me. It says that there is nowhere on the solution where thresholded
region make a “loop” until a certain minimum value. Perhaps this
is not supposed to be surprising, as the general behavior in time is
of pairs of streaks, where successive minima are generally separated
by maxima spatially.
Something that I found really interesting is that there appears to be
a symmetry relation between the Betti number zero and Betti num-
ber one diagrams. By reflecting the Betti zero β0 events across the
line y = −x (technically Death = −Birth using correct axis labels)
maps the Betti zero events to the approximate region of the persis-
tence diagram that Betti one events populate. I don’t know what
this “approximate symmetry” means, but if I had to bet I believe
the most likely explanation is that it is a manifestation of reflec-
tion equivariance of the Kuramoto-Sivashinsky equation and noth-
ing more. Also, this is technically ignoring the infinite persistence
points, I think this is valid as these point are special and need to be
considered separately.
The observations (without proof) that I believe are important are
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(a)

(b)

Figure 11.5: (a) Persistence diagram of ergodic segment with temporal extent
T = 200. (b) Persistence diagram of ergodic segment with temporal extent
T = 4800, (includes (a) as the first 200 time units)
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(a)

(b)

Figure 11.6: (a) Filtered persistence diagram (lifetime ≤ 1.5 eliminated arbi-
trarily) of ergodic segment with temporal extent T = 200 (b) Filtered persis-
tence diagram of ergodic segment with temporal extent T = 4800 ( includes (a)
as the first 200 time units)
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(a)

(b)

Figure 11.7: Demonstrations of apparent reflection symmetry that relates re-
flections of the β0 (simply connected regions persistence diagram) to the β1

(one-dimensional holes) persistence diagram. (a) Persistence diagrams show-
ing (left) reflected β0, (middle) β1 and (right) colored comparison. (b) Filtered
persistence diagrams showing (left) Reflected β0, (middle) β1 and (right) col-
ored comparison. Both (a) and (b) were computed for ergodic segment with
temporal extent T = 4800.
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• As T →∞ the region on the persistence diagrams where events
exist becomes smaller. A mathy way of saying this is something
along the lines of for a sequence of increasing Tk, the induced
sequences of “areas” (as measured by, the convex hull of the set
of points for instance)Ak of the persistence diagrams follow the
approximate rule Ak + 1 ⊆ Ak and as k → ∞, Ak → Ā, where
Ā appears to be some statistically steady state. It could be that
there is more going on under the multiple layers of data but the
general idea that there is some asymptotic behavior I think is
well merited. This convergence of the occupied regions in the
persistence diagrams is demonstrated by computing multiple
persistence diagrams for ergodic trajectory segments of varying
temporal extents. In figure 11.5 (a) is the persistence diagram
computed for the first T = 200 time units of the ergodic seg-
ment and (b) is the first T = 4800 units. This asymptotic be-
havior perhaps implies that some statistical information can be
retrieved from persistence diagrams in the large T limit.

• The persistence diagrams looked like they had reflection sym-
metry over the line y = −x, and so I produced figures demon-
strating this approximately. This is demonstrated for the unfil-
tered data and filtered data in of figure 11.7 (a) and (b) , respec-
tively. The two regions overlap but it isn’t an exact mapping as
I had hoped. I’m still thinking through this but as I previously
stated I believe that it is reflection equivariance shining through
the data. I think I might test this by seeing what pops out when
I perform the persistent homology computation on a trajectory
in the antisymmetric subspace.

• If events with lifetimes (death minus birth) less than a certain
threshold are removed(i.e. require a minimum distance away
from diagonal) the picture becomes more clear, especially the
symmetry claim. This lifetime threshold was a guess to attempt
to eliminate the least persistence information (near-diagonal eve-
nts). The filtering for two different time segments can be seen in
figure 11.6.

2018-10-24 Matt [Plumbers] We discussed the interesting information that seems
to arise from performing persistent homology calculations on large spa-
tiotemporal domains (pieces of ergodic trajectory). While currently in its
early stages, we believe that the asymptotic behavior captures statistical
information about the inertial manifolds; I’m going to produce a compar-
ison between the large ergodic trajectory and all invariant 2-tori in the
libraries I’ve formed to see if any interesting comparisons can be made.

2018-10-29 Predrag Curious - is it possible that there is only one reference on
the whole field of persistent homology, the Kramár, Levanger, Tithof,
Suri, Paul, Schatz and Mischaikow [1] paper? Or is that the only paper
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you have looked at?

The only other paper we have in siminos.bib is Krishan, Kurtuldu,
Schatz, Gameiro, Mischaikow and Madruga [2] Homology and symmetry
breaking in Rayleigh-Bénard convection: Experiments and simulations.

2019-04-05 Predrag Just to keep track of the activities in the field - Jean-Philippe
Lessard (McGill University), Jason D. Mireles James (Florida Atlantic Uni-
versity) and Jan Bouwe van den Berg (Vrije Universiteit Amsterdam)
gave an April 1, 2019 tutorial on A Computer-Assisted Constructive Ap-
proach to Nonlinear Dynamical Systems.

This was followed by a workshop Rigorous Computational Dynamics in In-
finite Dimensions, a tutorial A Topological-Combinatorial Framework for Dy-
namics, and a workshop Data Driven Dynamics: Algebraic Topology, Com-
binatorics and Analysis.

Snippets:

“Some early successful applications of these methods for infinite dimen-
sional problems have been: [...] proving spatio-temporal behaviour in
the Kuramoto-Sivashinsky PDE; [...] and proving spontaneous periodic
orbits in the Navier-Stokes flow. ”

“Connecting orbits in ill-posed PDEs. Ill-posed PDEs (with no suitable
initial value problem) that come with a variational structure allow for the
construction of a Floer homology. Connecting orbits are essential ingre-
dients of this construction. If we can rigorously compute such connecting
orbits, they yield specific local information, which when combined with
generic global analytic arguments, will lead to powerful forcing results.”

“explores the computational challenges of rigorously identifying and ex-
tracting fundamental dynamical features such as equilibria, periodic or-
bits, connecting orbits and invariant manifolds in infinite-dimensional
dynamical systems.”

Mike Schatz is representing us this meeting:

1. Dimension reduction. Data sets often have extremely high extrinsic
dimension, but the information content is much lower dimensional.
As an example, using Navier-Stokes as a model makes an infinite
dimensional problem. Numerical simulations and experimentally
collected data can easily involve million dimensional approxima-
tions. However, for many problems of interest the dimension of the
attractor is on the order of 100 or less.

2. State space reconstruction from data. Typically only a subset of the
relevant variables are observed. Therefore to capture the full dy-
namics requires some form of reconstruction of a model of state
space.

3. Information extraction. Typically the information of interest involves
identification of dynamic structures or the possibility of prediction
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of dynamic behavior. Given that the input data is noisy and that
steps 1 and 2 involve processing the data, one needs robust tech-
niques for extracting information.
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Chapter 12

Space-time investigation of
Kuramoto-Sivashinsky
system

Matthew N. Gudorf <matthew.gudorf@gatech.edu>

12.1 Turbulence? An overview

Fluid flows are well described by the Navier-Stokes equation. Instead of begin-
ning research with a partial differential equation with three spatial dimensions,
it is wiser to begin with simpler partial differential equation, e.g. “Navier-
Stokes” in one spatial dimension, in order to gain some intuition about the
larger picture.

12.1.1 Kuramoto-Sivashinsky system

One of the simplest partial differential equations that exhibits spatiotemporal
chaotic behavior is the Kuramoto-Sivashinsky [henceforth KS] system [9, 13],
which is used to model a number of different phenomena, such as unstable
flame fronts. The equation for the velocity of such a flame front u(x, t) on a
periodic domain, u(x, t) = u(x+ L, t).

ut +
1

2
(u2)x + uxx + νuxxxx = 0 x ∈ [0, L] (12.1)

The terms each contribute differently to the dynamics: uxx contributes to in-
stability, uxxxx provides damping, and u2

x transfers energy between large and
small scales (e.g. between Fourier modes with small and large wavenumbers).
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The equations can be made dimensionless by scaling out the ’viscosity’ ν
with transformations x → xν1/2, t → tν, u → uν−1/2. Hence the Kuramoto-
Sivashinsky equation takes the non-dimensionalized form:

ut +
1

2
(u2)x + uxx + uxxxx = 0 x ∈ [0, Lν−1/2] = [0, 2πL̃] (12.2)

In these dimensionless units, periods of periodic solutions are also rescaled
following the relation: Tp =

T∗p
ν .

Possible avenues of study of the equation and its behavior include varying
L while keeping ν = 1, or varying ν while keeping L = 1 or 2π.

The Kuramoto-Sivashinsky equation have a number of different symme-
tries, namely: spatial translational invariance, temporal translation invariance,
reflection invariance, and Galilean invariance. In order to exploit the periodic-
ity of the equations, we recast the field in its Fourier representation

u(x, t) =
∞∑

k=−∞

ûke
iqkx where qk =

2π

L
. (12.3)

The Kuramoto-Sivashinsky equation’s representation in terms of spatial Fourier
modes is then:

˙̃uk = (q2
k − q4

k)ûk − i
qk
2

∞∑
m=−∞

ûmûk−m . (12.4)

The hyper-viscosity term −q4
k term, damps the higher modes such that a trun-

cation of Fourier modes still yields accurate results, however different numbers
of modes can inherently change the nature of the solution in the asymptotic
limit.

One can also look at the antisymmetric subspace of the full state space de-
fined by u(x, t) = −u(−x, t) ∈ U+. The subspace U+ can be described with the
case of purely imaginary Fourier coefficients ûk → iûk, such that the evolution
equation becomes:

˙̃uk = (q2
k − q4

k)ûk −
qk
2

∞∑
m=−∞

ûmûk−m . (12.5)

By doing so, one eliminates the continuous translational symmetry that is present
in the full state space formulation.

12.1.2 Visualizations

There are plenty of ways to visualize the evolution of solutions to the Kura-
moto-Sivashinsky equation, however not all visualizations are equal in terms
of insight or usefulness. In our applications, pretty plots of the spatiotemporal
dynamics of u(x, t) are usually not the most useful for further analysis; projec-
tions of trajectories in∞-dimensional state spaces are often more useful. Fur-
thermore, Poincaré return maps often offer more information than the full state
space pictures, specifically about the fractal structure of strange attractors.
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12.1.3 Equilibria

By setting ut = 0 and integrating over (12.2) once, one arrives at

1

2
u2 + ux + uxxx = c , (12.6)

which we can write as 3 ODEs in x,

ux = v, vx = w, wx = u2 − v − c . (12.7)

This equation exhibits a reversal symmetry, x→ −x, u→ −u, v → v, w → −w.
The third equation can be rewritten as

(u+ w)x = u2 − c . (12.8)

For us the interesting dynamics occurs for c > 0. The sets of bounded solu-
tions are complex and fractal in nature. The equilibria in this regime are given
by c+ = (

√
c, 0, 0) and c− = (−√c, 0, 0). One can acquire the Floquet multipli-

ers by linearizing the flow around one of the equilibria; the opposite equilibria
will exhibit a reversed stability profile due to the ’time’ reversal symmetry pre-
viously mentioned.

For fixed system size L, the only surviving equilibria have periodicity equal
to L. The corresponding equilibrium condition is then:

q2
k(1− q2

k)ûk + i
qk
2

∞∑
m=−∞

ûmûk−m = 0 . (12.9)

On a finite periodic domain, the spatially periodic equilibria have periods which
are multiples ofL. There is a bifurcation every time L̃ crosses and integer value,
i.e. when L̃ = n, n-cell states are generated through pitchfork bifurcations.

In the full state space they form an invariant circle due to translational in-
variance.

In the antisymmetric subspace U+ the aforementioned equilibria correspond
to two points, which are half-period translations of each other:

u(x, t) = −2
∑
k

ûkn sin (knx) where, ûkn ∈ R

The spatially periodic solutions is finite, due to the finite allowance of zeros of
analytic functions on a finite-dimensional compact manifold.

12.1.4 Time-stability analysis: why flame fronts flutter?

The time-evolution stability matrix evaluated at an equilibrium xq is constant,
therefore the Jacobian follows by exponentiation:

Jt (xq) = eAt where, A = A(xq) .
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For small L̃ < 1, u(x, t) = 0 is a globally attractive stable equilibrium. As L̃
increases, there is a sequence of bifurcations that affects the dynamics in an
unstable and ‘turbulent’ manner.

Long wavelength perturbations are linearly unstable, while short wave-
length perturbations are strongly contractive. For example, an equilibrium so-
lution can be very unstable in 5 eigen-directions, but with strong contraction
in higher, stable eigen-directions. In particular, the equilibrium u(x, t) = 0 has
Fourier modes as linear stability eigenvectors. The Fourier modes who satisfy
|k| < L̃ are unstable. The most unstable mode has k closest to L̃√

2
.

Truncation of higher Fourier modes can by justified through the follow-
ing analysis: If the initial ûk are small then the bilinear term ûmûk−m can be
neglected. Then the equations become decoupled linear equations whose so-
lutions are exponentials. There are then a finite number of modes growing
with time. These unstable modes excite the higher modes through the bilinear
term. However, higher modes are highly damped. Therefore the intermedi-
ate wavelengths play an important role in maintaining a dynamic, on-average
equilibrium, but truncation can be employed so long as all important modes
are kept. A consequence of this is that an infinite-dimensional problem has
become finite dimensional.

There is no chance of reversing the evolution because of the high (in princi-
ple infinite) number of highly-contracting modes. The time reversal turns these
into highly unstable modes.

Equilibria are important because they play two different roles:

• More unstable directions implies less time spent by an orbit in its neigh-
borhood.

• Orbits spend large fractions of time in neighborhoods of equilibria with
only a few unstable directions.

Intrinsic parameterization

The best coordinate system to use are generated by the stable/unstable mani-
folds. It would be best to find a coordinate transformation to new, curvilinear
coordinates where the dynamics take place but it’s not known if this can be
done, let alone if it can be done globally.

12.1.5 Energy budget

The space average of a function a(x, t) periodic on the interval L is given by

〈a〉 = 〈a〉 (t) =
1

L

∮
a(x, t) dx (12.10)

Total derivatives vanish via spatial periodicity, and integration by parts yields

〈fx〉 = 0, 〈fxg〉 = −〈fgx〉
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The mean value of time dependent 〈a〉 (t) is given by

ā = lim
t→∞

1

t

∫ t

0

dτ 〈a〉 (12.11)

The average value of a function on a periodic orbit only requires the integration
over one period. For an equilibrium the time average is equal to the space
average, which is in turn equal to the value of the function evaluated at the
equilibrium.

For the Kuramoto-Sivashinsky equation the local velocity square, u2/2, can
be interpreted as the kinetic energy density when used in the spatial average
equation.

Because the Fourier modes are eigenvectors of the translation operator, the
energy is a diagonalized quadratic norm in Fourier space.

E =

∞∑
k=1

Ek, Ek =
1

2
|ak|2 (12.12)

By applying a time derivative, a substitution of variables and integration by
parts, one arrives at

Ė = P −D, P =
〈
u2
x

〉
, D =

〈
u2
xx

〉
(12.13)

As the time averaged energy density on a generic orbit is expected to go to a
constant, on average the power-in P and the dissipation rateD balance each
other.

In the Fourier basis the conservation of energy can be written
∞∑

k=−∞

(q2
k − q4

k)Ek (12.14)

Therefore Ek have to decrease faster than q−4
k . 1

12.1.6 Numerical methods

There are three main methods by which one can attempt to integrate a PDE:

• Discretize the configuration space by means of a grid of N points and
approximate the derivatives ux, uxx, and uxxxx with a finite difference
scheme of appropriate order.

• Integrate the equations for a finite number of (truncated) Fourier modes,
paying attention to the stability of the integrator and stiffness of the equa-
tions.

• Pseudo-spectral integration of the equations: at each step calculate the
nonlinear term in configuration space and then bring the result back to
Fourier space.

1Predrag 2016-08-15: I disagree (asymptotic bound says nothing about small k), so I have re-
moved this: “The active Fourier modes can be determined by whether they deviate from this
bound.”
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12.2 Summer 2016 Report

In this report I will describe my efforts towards implementing MATLAB code
that allows for spatial integration of the Kuramoto-Sivashinsky equation. The
big caveat is that I have still not been able to accomplish this, at least as of the
time of the current version of this report.

Kuramoto-Sivashinsky equation

The one spatial dimension Kuramoto-Sivashinsky equation is given by

ut + uux + uxx + νuxxxx = 0 , (12.15)

The terms of this equation all play different roles: uxx is an “anti-diffusion”
term, that pumps energy into the system and feeds instabilities on large length
scales, uxxxx which provides damping on small length scales, and the non-
linear, inertial term uux which transfers energy between large and small scales.
The “hyper-viscosity" ν plays through the dimensionless parameter L̃ = L/(2π

√
ν)

a role analogous to the role that the Reynolds number Re plays in the Navier-
Stokes equation.

When the Kuramoto-Sivashinsky equation is taken with spatially periodic
boundary conditions u(x+L, t) = u(x, t), u(x, t) can be interpreted as the verti-
cal velocity field of a “ring of fire”, produced by a Bunsen burner, for example.
A number of studies [4–6, 12, 14] explore the steady solutions of this system,
i.e., where ut = 0. These solutions are important when viewed from a topo-
logical perspective, as the equilibria play a role in the organization of the state
space.

12.2.1 Time integration

In order to get into spatial integration of a time-strip, one must first generate
the time strip. Because of the spatial periodicity of u(x, t), the time evolution
of solutions is best done in Fourier space. The Kuramoto-Sivashinsky equation
in Fourier space takes the form,

˙̃uk = (q2
k − q4

k)ûk − i
qk
2

∞∑
m=−∞

ûmûk−m (12.16)

The term with −q4
k serves to damp higher Fourier modes, which allows

accurate and stable results even when truncating the infinite number of Fourier
modes, a notion that makes numerical implementation feasible. Also, because
u(x, t) is a physical and hence, a real quantity, there also exists the relation
between Fourier coefficients u−k = u∗k. Therefore for a truncation that keeps N
Fourier modes, we can rewrite the Fourier space equation as,

˙̃uk = (q2
k − q4

k)ûk − i
qk
2

N/2−1∑
m=0

ûmûk−m (12.17)
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To integrate this equation numerically, we first start with spatially discretiz-
ing the Kuramoto-Sivashinsky system by Fourier expanding the field u(xn, t) =
un(t) over N points of a periodic spatial lattice xn = nL/N ,

ûk(t) =
1

N

N−1∑
0

un(t)e−iqkxn =
1

N

N−1∑
0

un(t)e−i2πkn/N , qk =
2πk

L

un(t) =

N/2∑
k=−N/2+1

ûk(t)eiqkxn =

N/2∑
k=−N/2+1

ûk(t)ei2πkn/N , (12.18)

where k ranges from −N/2 + 1 to N/2 due to how MATLAB’s Fast Fourier
Transform (FFT) handles an even number of configuration space points. In
order to have a completely symmetric spectrum, one would need to have an
odd number of configuration space points, which depending on the number
and size of prime factors, would increase the computation time.

Following in the footsteps of others, MATLAB code kursiv.m originat-
ing from Kassam and Trefethen [7], is adapted in order to provide accurate
time-evolution data of un(t). The scheme used in this implementation is a
combination of two different methods, Exponential Time Differencing (ETD)
and Fourth Order Runge-Kutta (RK4) to form a new schema aptly abbreviated
ETDRK4. All of this is applied in ksint.m which was written by Xiong and
Ruslan. This generates the time evolution data for spatial Fourier modes with
k = ±1,±2, . . . ,±15. The amplitudes for the k = 0 and k = −N/2 (N even),
are taken to be zero.

In order to get the correct fields u, ux, uxx, and uxxx, one must reorder the
values produced by ksint.m, this is because the real and imaginary compo-
nents of ûk are stored separately in the array returned by the function. In order
to comply with MATLAB’s Inverse Fast Fourier Transform (IFFT), the correct
way to order the coefficients, ûk, based on mode number k is,

k : 0 1 ... N/2 -N/2+1 -N/2+2 ... -1
The velocity field u(x, t) is retrieved via application of MATLAB’s Inverse

Fast Fourier Transform (IFFT) on each column of time-evolution data, which
correspond to different times. The first three spatial derivatives of the velocity
field are retrieved through the spectral method known as spectral differentia-
tion via the equations 2

ux(x, t) = F−1 {iqkûk} , uxx(x, t) = F−1
{

(iqk)2ûk
}
,

uxxx(x, t) = F−1
{

(iqk)3ûk
}
, (12.19)

A as we shall see in sect. 12.2.2, the values of the spatial derivatives on a time
strip are required for spatial integration.

The initial conditions for the time evolution of ppo10.2 were provided by
Xiong Ding’s ks22h02t100E.mat.

2Predrag 2016-08-15: Shouldn’t uk be ûk in (12.19)?
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12.2.2 Spatial integration

Fourier expansions

In order to begin spatial integration, we will expand the time periodic data
generated from time integration into its discretized temporal Fourier modes.
First we will start with the expansion of a time periodic function u(t) = u(t+T ),
in terms of its temporal Fourier modes.

u(t) =
∞∑

k=−∞

ûke
iωkt , where ωk = 2πk/T . (12.20)

The Fourier coefficients ûk can be retrieved by inverting (12.20),

ûk =
1

T

∫ T

0

dt u(t)e−iωkt (12.21)

The discrete version of these relations can be obtained with the approxima-
tion

∫ T
0
dt→∑N−1

n=0 ∆t, ∆t = T/N , namely for the discrete Fourier transform,

ûk =
1

N

N−1∑
n=0

u(tn)e−iωktn ,where tn = nT/N

=
1

N

N−1∑
n=0

u(tn)e−i2πnk/N ,

=
1

N
F{u(tn)} , (12.22)

and likewise for the inverse discrete Fourier transform,

u(tn) =

N/2∑
k=−N/2+1

ûke
iωktn

=

N/2∑
k=−N/2+1

ûke
i2πkn/N (12.23)

The next step is to derive the form that Kuramoto-Sivashinsky equation takes
in terms of spatial Fourier modes. First we define,

u(0) ≡ u , u(1) ≡ ux , u(2) ≡ uxx , u(3) ≡ uxxx (12.24)

which allows us to write the Kuramoto-Sivashinsky equation as a system of
equations,

u(0)
x = u(1)

u(1)
x = u(2)

u(2)
x = u(3) (12.25)

u(3)
x = −u(0)

t − u(2) − u(0)u(1) .
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Now we write the equivalent expression in its Fourier representation, taking
into consideration a truncated number of Fourier modes N .

∂

∂x
û

(3)
k = −iωkû(0)

k − û(2)
k −

N/2−1∑
m=0

û(0)
m û

(1)
k−m

∂

∂x
û

(2)
k = û

(3)
k ,

∂

∂x
û

(1)
k = û

(2)
k , (12.26)

∂

∂x
û

(0)
k = û

(1)
k ,

The rationale behind the truncation in this context is currently not as solid
as opposed to the time-integration of a (spatial Fourier mode discretization).
There is no longer a term in our equations that damps the higher modes. There
isn’t any term that provides energy either, but the damping was a good control
of numerical accuracy. Burak has proposed to introduce an artificial diffusion
term of form εu

(3)
tt into the fourth equation in (12.25). In the Fourier space

this would take the form −ew2
kû

(3)
k , where e is known as an artificial diffusion

constant. In our numerics, implementing this with e = 10−4 produced no sig-
nificant effect. According to Burak, a value e = 10−4 is still a very large value
for the artificial diffusion constant. Therefore, I did not include this term in
most of my computations.

Handling nonlinearity

The nonlinear term can be handled in a couple of different ways. The first is to
directly calculate the convolution sum; this is undesired as it is slow and more
importantly does not treat floating-point truncation errors well. The second
method is to calculate it via pseudo-spectral method,

N/2−1∑
m=0

û(0)
m û

(1)
k−m =

1

N
F
{
u(0)u(1)

}
. (12.27)

The third option is to calculate it in a fully spectral manner via the circular
convolution function included in MATLAB, cconv. It’s hard to tell which is
the best from looking at the values produced because they are all similar up
to numerical accuracy, but I would believe the pseudo-spectral method is the
best because of how the circular convolution function works, the lack of speed
of the convolution sum.

Aliasing errors and dealiasing

An additional procedure can be applied to the pseudo-spectral method in order
to combat what is known as aliasing. Aliasing is byproduct of discretization,
wherein the amplitude of higher frequency (or similarly high wavenumber)
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modes can affect the amplitudes of lower modes. The happens when higher
modes are misrepresented as lower modes. For k = −N/2 + 1, . . . , N/2 and
j ∈ Z ,

e
i2π(k+jN)

N = e
i2πk
N ∗ ei2πj (12.28)

= ei2πk.

In order to account for this, one must apply a dealiasing formula to the
computation of the pseudo-spectral term. One way of accomplishing this is
to zero-pad the corresponding Fourier mode data before computing the IFFT
which results in u(0) and u(1). For example, the number of Fourier mode coeffi-
cients is increased from N to 2N by including N zero-valued coefficients. The
IFFT is then applied which produces u(0) and u(1) arrays each of length 2N .
Element wise multiplication is used with these new arrays of length 2N to pro-
duce an array equal to the product u(0)u(1). The product is then brought back
to Fourier space via FFT. The final step is taking the new Fourier mode data,
an array of 2N Fourier Coefficients, and extracting the coefficients belonging
to modes k = −N/2 + 1, . . . , N/2.

Numerical integration

The actual implementation concerning the integration of these equations was
to use the MATLAB’s stiff-ODE integrator ode15s. This integrator has higher
accuracy than some of its counterparts, such as ode23s and ode23tb. The
integrator is designed to be used with its own variable step size algorithms in
order to deal with the stiffness of equations, however, linearly space steps can
be used if so desired. The error tolerances can also be controlled using ode15s
while using a variable step size.

so that the relative tolerance is much more useful when dealing with small
numbers. If the relative tolerance is set to be too low, accumulated round off
errors will dominate the inaccuracy, while if it is set too high the local dis-
cretization errors will dominate.

The integrator requires a separate MATLAB file, velocityfunction.m
whose input is û(i)

k , for i = 0, 1, 2, 3 according to (12.24) and whose output is
∂
∂x û

(i)
k i.e. it is the implementation of (12.26).
Once the integrator has finished running, my current MATLAB code

timeperiodic.m converts the spatial evolution of the Fourier coefficients û(i)
k

i = 0, 1, 2, 3 into the four (discretized) spatial fields (u, ux, uxx, uxxx) via the use
of MATLAB’s IFFT.

Spatial integration results

In its current form, my code is only able to give somewhat sensible results for
short spatial integrations x = [0, L], L =≈ 1, where the period of the desired
spatially periodic solution is known to be L = 22.
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(a) (b)

(c) (d)

Figure 12.1: Spatial integration x = [0, 5] of temporal Fourier mode amplitudes
plotted on a log10 scale. (a) û(0)

k , (b) û(1)
k , (c) û(2)

k , and (d) û(3)
k .

This can be seen by looking at the Fourier coefficient amplitudes over the
course of spatial integration, see figure 12.1. The spectrum seems to flatten, i.e.
the amplitudes of the higher modes grow dramatically as the spatial extent of
the integration is increased.

Considering these limitations I work around the fact that there is a limited
spatial extent on which my integrator seems to work. The way that I decided to
deploy my code was the take increase the number of configuration space points
to 64 in order to increase the resolution and then integrate the 64 correspond-
ing time-periodic strips over x = [0, 22/64] = [0, 0.34375]. I then combine the
results such that the resulting figure attempts to represent spatial integration
for x = [0, 22]. This technique is not able to exploit the variable step size of the
integrator, as the strips would be of varying sizes and hence the compilation
would not be a very meaningful visualization.

The figure 12.2 is a comparison between the spatial integration of (12.26)
using the compilation method I employed in timeperiodic.m and the time
integration of (12.17) using the ETDRK4 numerical scheme implementation of
MATLAB file ksint.m. The behavior of these figures seem to exhibit similar
patterns up to a what appears to be a reflection in the time direction, implying
that there is some unaccounted symmetry. This can be seen by what I call the
“tails" of the pattern in the middle being pointed in opposite directions for time
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(a) (b)

Figure 12.2: Comparison of (a)compilation of 64 spatial integration strips inte-
grated over x = [0, 0.34375] and (b) time integration of ppo10.2 integrated over
time T = [0, 4Tppo10.2 , for system size L = 22

and space integration. 3

Future work and comments

The hope for my code is to be capable of spatial integration of infinite extent.
My results are disappointing to me to say the least, having been thrown for
loops by what should have been insignificant details, but I hope to use what
I’ve learned in terms of coding in the future.

Some possible means of improving the equations is to look for better ways
to dealias the pseudo-spectral term or to use the same method but require it to
be more rigorous (e.g. more zero-padding).

Second would be to write an integration scheme that could produce more
accurate results. My first thought is to apply the ETDRK4 schema to spatial in-
tegration, however, I’m not sure if this would work with a system of equations
rather than a single PDE.

Another possible, yet dubious and not warranted, course of action is to find
a different way to apply damping in the equations, as the steady growth of the

3Predrag 2016-08-15: in your 2016-08-11 Matt blog entry you seem to say that you have now
corrected this, and replaced figures by the correct ones?
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Fourier amplitudes is the main cause of all of my problems.

12.3 Spatiotemporal solutions of Kuramoto-Sivashin-
sky

To find doubly-periodic spatiotemporal solutions to the Kuramoto-Sivashin-
sky equationwhile allowing the domain size, period, and any extra parameters
(e.g. shift due to SO(2) rotations) to change, we use a Fourier-Fourier basis
due to the expected exponential convergence behavior of the (spatiotemporal)
Fourier coefficients to zero if a sufficient number of discretization points is used
as the spatiotemporal functions are smooth in space and time.

12.3.1 Kuramoto-Sivashinsky in spacetime

The Kuramoto-Sivashinsky equation is a dissipative partial differential equa-
tion in one spatial dimension. In a dimensionless form, it can be written as,

ut(x, t) = −uxxxx,t − uxx,t − uux,t (12.29)

The explorations into the geometry of its state space [2], the dimension of a
possible inertial manifold [3], and many other studies have been done on it
as it proves itself an interesting case study of chaotic dynamical systems in
continuous variables. The steady solutions were studied by Michelson [12] as
well as Dong and Lan [4] in attempts to categorize the geometry and symbolic
dynamics of solutions on the T = 0 line. Generally, most studies have been
spatiotemporal, with the time being a continuous parameter that induces a
dissipative semi-flow t ≥ 0. In this case study, we pose the problem of finding
spatiotemporal invariant solutions by assuming doubly periodic initial condi-
tions, transforming to a Fourier-Fourier basis, and then solving the truncated
set of nonlinear algebraic equations

(−iωj + (−q2
k + q4

k))âkj +
iqk
2

inf,inf∑
k′,j′=− inf,− inf

âkjak−k′,j−j′ = 0 (12.30)

The numerical details of the solving this equation are explained in sect. ??,
where we elect to use a real valued equivalent form of (12.30). Before the nu-
merical procedure of solving these equations is tractable, we need to inquire
into the nature of the symmetries of the Kuramoto-Sivashinsky equationand
how they affect the spatiotemporal spectrum of Fourier coefficients first.

12.3.2 Spatiotemporal symmetries of the Kuramoto-Sivashin-
sky equation

The Kuramoto-Sivashinsky equation (18.1) is equivariant under spatial trans-
lations, spatial reflections and temporal translations and Galilean transforma-
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tions. The Galilean symmetry u(x, t) is a solution, then u(x − ct, t) − c, with
c an arbitrary constant speed, is also a solution. Without loss of generality, in
our calculations we shall set the mean velocity of the front to zero,

〈u〉(t) =

∫ L

0

dxu(x, t) = 0 . (12.31)

If the system is compactified on a 2-torus, with periodic boundary condi-
tions u(x, t) = u(x+ L, t+ T), the symmetry group is

G = O(2)x × SO(2)t = D1,x n SO(2)x × SO(2)t . (12.32)

The elements of the 1-parameter group of spatial shifts and reflections are
O(2)x : {τd/L , σ}, and the elements of the 1-parameter group of temporal shifts
are SO(2)t : {τd/T}. If u(x, t) is a solution, then τd/L u(x, t) = u(x + d, t) is
an equivalent solution for any shift 0 ≤ d < L, as is the reflection (‘parity’ or
‘inversion’)

σ u(x, t) = −u(−x, t) . (12.33)

Consider a cyclic group

Cm = {e, τ, τ2, · · · , τm−1} , τm = e .

where τ is an SO(2) rotation by 2π/m. Cm is a discrete subgroup of SO(2) for
any m = 2, 3, · · · .

A field u on the 2π/m domain is now a tile whosem copies tile the entire do-
main. It is periodic on the 2π/m domain, and thus has Fourier expansion with
Fourier modes exp(2πimjx). This means that SO(2) always has an infinity of
discrete subgroups C2,C3, · · · ,Cm, · · · ; for each the non-vanishing coefficients
are only for Fourier modes whose wave numbers are multiples of m.

If we take discrete subgroups in C2,x in place of both SO(2) groups then
the order of the discrete group G̃ = D1,x n C2,x × C2,t is of order 8. All spa-
tiotemporal symmetries of discussion can be described by isotropy subgroups,
which are symmetry subgroups which leave solutions invariant. Specifically
the discrete symmetries, spatial reflection symmetry and spatiotemporal shift-
reflection symmetry. These particular symmetries have isotropy subgroups
G = D1,x and G = C2,t respectively. To cover the discrete spatiotemporal sym-
metries that are realized by invariant 2-tori we need to investigate the group
G = D1,x ×C2,t , because its description includes reflection and shift-reflection
symmetries. The term shift-reflection denotes solutions which are left invari-
ant only after spatial reflection and a time translation by half a period. We
have disregarded C2,x for the discussion of discrete symmetries. This is per-
mitted because spatial half-cell shifts, even in combination with other group
elements only permit equivariant solutions, not invariant. Solutions invariant
under half-cell shifts in space would have to be doubly periodic in space. For
combination with the cyclic group in time it would be a yet undiscovered in-
variant 2-toruswhich is invariant after a half-cell shifts in space and then time.
The general CM,x×CN,t case is harder to describe; if M = N then one example
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of a way to construct an invariant solution would be to construct a solution
which would be invariant after N total rotations. For instance, a solution with
the form

u(x, t) =

 1 2 3
3 1 2
2 3 1

 (12.34)

would be invariant after a cycle consisting of one space rotation and two time
rotations or two space rotations and one time rotation (each by one third of the
domain in the respective, positive directions). This seems incredibly unlikely
as it requires the solution to be comprised of permutations of three patterns
which are all equivalent in domain size. This unlikelihood only gets worse
for higher order cyclic groups We return from our tangent by getting into the
meat of the discussion by analyzing the group D1,x × C2,t. We demonstrate
some standard group theoretic calculations such as looking at the character
table table 12.1 and projection operators (12.35).

Table 12.1: Because the direct product group is abelian we only have one di-
mensional representations and as such the character table follows directly.

e σx τt σxτt
E 1 1 1 1
Γ1 1 1 -1 -1
Γ2 1 -1 1 -1
Γ3 1 -1 -1 1

The character table table 12.1, leads to the construction of four linear pro-
jection operators

P++ =
1

4
(1 + σx + τt + σxτt)

P+− =
1

4
(1 + σx − τt − σxτt)

P−+ =
1

4
(1− σx + τt − σxτt)

P−− =
1

4
(1− σx − τt + σxτt) , (12.35)

where σx,τt denote spatial reflection about the x = 0 line and time transla-
tion by half a period, respectively. The solution space can be decomposed
into the irreducible subspaces produced by these projection operators U =
U++ ⊕ U+− ⊕ U−+ ⊕ U−−. In the context of a real valued spatiotemporal
Fourier basis each of these subspaces corresponds to a subset of coefficients
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in the expansion (??)

u−+(x, t) =
∑
k

∑
j

âkj cos(ωjtn) cos(qkxm)

u−−(x, t) =
∑
k

∑
j

b̂kj sin(ωjtn) cos(qkxm)

u++(x, t) =
∑
k

∑
j

ĉkj sin(qkxm) cos(ωjtn)

u+−(x, t) =
∑
k

∑
j

d̂kj sin(qkxm) sin(ωjtn) . (12.36)

We won’t use these equations just yet but they are good for classifying what
each projection operator corresponds to. This classification comes naturally
from the parity (odd, even) of the trigonometric functions therein. They can
later be used to derive constraints on the spatiotemporal Fourier coefficients
pertaining to invariance under certain symmetry operations.

Before we continue, it will first be convenient to calculate the relationships
between the projection operators (12.35) and the spatial differentiation opera-
tor. The utility comes later when we apply these projection operators to the
Kuramoto-Sivashinsky equation, specifically when considering the nonlinear
term.

DxP
++ =

1

4
Dx(1 + σx + τt + σxτt)

=
1

4
(1− σx + τt − σxτt)Dx

= P−+Dx

DxP
+− =

1

4
Dx(1 + σx − τt − σxτt)

=
1

4
(1− σx − τt + σxτt)Dx

= P−−Dx

DxP
−+ =

1

4
Dx(1− σx + τt − σxτt)

=
1

4
(1 + σx + τt + σxτt)Dx

= P++Dx

DxP
−− =

1

4
Dx(1− σx − τt + σxτt)

=
1

4
(1 + σx − τt − σxτt)Dx

= P+−Dx . (12.37)

These identities allow us to rewrite the nonlinear terms present in each projec-
tion of the Kuramoto-Sivashinsky equation as derivatives of projection compo-
nents as opposed to projections of derivatives, which we believe leads to less
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confusing analysis. Note that the effect can be summarized by flipping the first
±, pertaining to the coefficient of the spatial reflection terms in (12.35) The sur-
viving nonlinear terms after the application of each projection operator are as
follows

P++(u∂xu) = u±±∂x(u±±)

P+−(u∂xu) = u±±∂x(u±∓)

P−+(u∂xu) = u±±∂x(u∓±)

P−−(u∂xu) = u±±∂x(u∓∓) . (12.38)

Using these relations (12.38) we can produce the projections of the Kuramoto-
Sivashinsky equation onto the different irreducible subspaces, noting that the
projection operator commutes with the linear terms such that

P++F (u) = u++
t + u++

xx + u++
xxxx

+ (u++∂x(u++) + u+−∂x(u+−)

+ u−+∂x(u−+) + u−−∂x(u−−))

P+−F (u) = u+−
t + u+−

xx + u+−
xxxx

+ (u++∂x(u+−) + u+−∂x(u++)

+ u−+∂x(u−−) + u−−∂x(u−+))

P−+F (u) = u−+
t + u−+

xx + u−+
xxxx

+ (u++∂x(u−+) + u+−∂x(u−−)

+ u−+∂x(u++) + u−−∂x(u+−))

P−−F (u) = u−−t + u−−xx + u−−xxxx

+ (u++∂x(u−−) + u+−∂x(u−+)

+ u−+∂x(u+−) + u−−∂x(u++)) . (12.39)

Solutions to (18.1) satisfy F = 0 by definition so by extension solutions must
also satisfy P±±F = 0. With this we can determine the combinations of pro-
jection operators whose equations are “self contained”. This is similar to the
notion of flow invariant subspaces but because we do not have dynamics we can’t
really use this term. Instead, these subspaces correspond to a constrained set
of equations that solutions with particular discrete symmetries must adhere to.
For example, assume that the only nonzero component u is u = u++. Substitu-
tion of (12.39) yields

P++F (u++) = u++
t + u++

xx + u++
xxxx + u++∂x(u++)

P+−F (u++) = 0

P−+F (u++) = 0

P−−F (u++) = 0 , (12.40)

so U++ is an invariant subspace. In fact, this subspace corresponds to equilib-
ria solutions which live on the T = 0 line. The meaning of self contained in
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this example is that we assumed that u = u++ and the only nonzero part of
(12.40) is the P++F (u++) component. Perhaps a more elucidating example is
generated by the assumption that u = u−− 6= 0. Substitution yields

P++F (u−−) = u−−∂x(u−−)

P+−F (u−−) = 0

P−+F (u−−) = 0

P−−F (u−−) = u−−t + u−−xx + u−−xxxx (12.41)

which indicates that the equations are not self contained as components other
than P−−F (u−−) are non-zero. Recall that each of these components is equiv-
alently equal to zero. Because these equations represent scalar field values
defined at every x, t this implies that in order to satisfy u−−∂x(u)−− = 0 either
u−−, its derivative ∂x(u)−−, or both must equal to zero at every point on the
spatiotemporal domain. The only nontrivial possibility is if there are (at least)
two disjoint regions such that Ωu = {(x, t) : u(x, t) = 0} and Ωux = {(x, t) :
ux(x, t) = 0}. By smoothness, if u = 0 then ux = 0. This implies that ux = 0
for all (x, t); if ux = 0 everywhere and u = 0 for some (x, t) then it must be
the case that u = 0 everywhere which contradicts our original assumption that
u = u−− 6= 0. The rest of the symmetry invariant subspaces follow from a sim-
ilar substitutions. To expedite the derivation process, note that the equation
for P++F contains all of the symmetric terms u±±∂x(u±±) such that there is
no possibility of an invariant subspaces which does not intersect U++. Follow-
ing a process of elimination we can show that the possible symmetry invariant
subspaces are U++, U++⊕U−−, U++⊕U+− and U++⊕U−+ and of course the
full space U. There are no triplet subspaces (comprised of three components)
which can be shown using the parity of the different subspaces. We can in-
terpret these subspaces by addition of the corresponding projection operators
(12.35)

P0 ≡ P++ =
1

4
(1 + σx + τt + σxτt)

Pσx ≡ P++ + P+− =
1

2
(1 + σx)

Pτt ≡ P++ + P−+ =
1

2
(1 + τt)

Pσxτt ≡ P++ + P−− =
1

2
(1 + σxτt) . (12.42)

With these projection operators we can interpret the symmetry invariant sub-
spaces as follows: U++ represents the fixed point (T = 0) subspace, U++⊕U+−

the spatial reflection invariant subspace, U++⊕U−− the shift-reflection invari-
ant subspace, and lastly U++⊕U−+ which contains solutions that are invariant
after a half period shift in time. This subspace of “twice repeating” solutions is
trivial and not useful; doubly periodic solutions can always be made to repeat
twice in time by definition. The interpretation of the corresponding subspace
is therefore not very intuitive.
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The next question to answer is how continuous spatial translation symme-
try manifests itself in this spatiotemporal context. How do these subspaces
relate to the continuous spatial translation symmetry? The three subspaces
U0,Uσx ,Uσxτt share an interesting property in a real valued (SO(2)) represen-
tation. Specifically, the subspaces of spatiotemporal Fourier coefficients corre-
sponding to invariance under these discrete symmetries are all orthogonal to
the space of spatial translations. This can be seen by acting on the different or-
bits with the spatial derivative operator which is the generator of infinitesimal
translations. The subgroup H = CM,x represents continuous spatial transla-
tion symmetry after discretization. We utilize a co-moving frame ansatz to
handle this symmetry, which we will now develop. As previously mentioned,
we use a real valued (SO(2)) representation for the spatiotemporal Fourier co-
efficients. This choice makes the matrix representations of the group elements
slightly more complicated as they will be block diagonal as opposed to exactly
diagonal. Note that because of doubly periodic boundary conditions, transla-
tions are the same as rotation. The matrix representation of the group element
which spatially rotatesM Fourier modes by a value θ is a block diagonal matrix
with M blocks; each block being a representation of two dimensional rotations
for the corresponding wavenumber k

g̃(θ) ≡
[
cos qkθ − sin qkθ
sin qkθ cos qkθ

]
. (12.43)

This block diagonal matrix acts on M Fourier modes; the corresponding ex-
tension to the set of spatiotemporal Fourier coefficients is simply N copies of
(12.43). In other words we haveN blocks of (12.43). This form lends itself to the
matrix representation for the co-moving reference frame transformation. The
co-moving reference frame is the reference frame which makes relative peri-
odic orbits periodic by applying a time-dependent spatial translation to every
point of the invariant 2-torus. Using (12.43) the matrix representation of the
co-moving frame transformation is as follows

g(
σtn
T

) ≡


g̃(σt1T ) 0 · · · 0

0 g̃(σt2T ) · · · 0
...

...
. . .

...
0 0 0 g̃(σtNT )

 . (12.44)

Transformations of the type (12.44) will be used in our ansatz for doubly peri-
odic solutions of the Kuramoto-Sivashinsky equation which are relatively pe-
riodic.

12.3.3 OLD: Symmetries of Kuramoto-Sivashinsky equation

G, the group of actions g ∈ G on a state space (reflections, translations, etc.) is
a symmetry of the KS flow (18.1) if g ut = F (g u). The Kuramoto-Sivashinsky
equation is time translationally invariant, and space translationally invariant
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on a periodic domain under the 1-parameter group of O(2) : {τd/L , σ}. If u(x, t)
is a solution, then τd/L u(x, t) = u(x+d, t) is an equivalent solution for any shift
−L/2 < d ≤ L/2, as is the reflection (‘parity’ or ‘inversion’)

σ u(x) = −u(−x) . (12.45)

The translation operator action on the Fourier coefficients (1.23), represented
here by a complex valued vector a = {ak ∈ C | k = 1, 2, . . .}, is given by

τd/L a = g(d) a , (12.46)

where g(d) = diag(eiqk d) is a complex valued diagonal matrix, which amounts
to the k-th mode complex plane rotation by an angle k d/L̃. The reflection acts
on the Fourier coefficients by complex conjugation,

σ a = −a∗ . (12.47)

Reflection generates the dihedral subgroup D1 = {1, σ} of O(2). Let U be the
space of real-valued velocity fields periodic and square integrable on the inter-
val Ω = [−L/2, L/2],

U = {u ∈ L2(Ω) | u(x) = u(x+ L)} . (12.48)

A continuous symmetry maps each state u ∈ U to a manifold of functions with
identical dynamic behavior. Relation σ2 = 1 induces linear decomposition
u(x) = u+(x) + u−(x), u±(x) = P±u(x) ∈ U±, into irreducible subspaces
U = U+ ⊕ U−, where

P+ = (1 + σ)/2 , P− = (1− σ)/2 , (12.49)

are the antisymmetric/symmetric projection operators. Applying P+, P− on
the Kuramoto-Sivashinsky equation (18.1) we have [8]

u+
t = −(u+u+

x + u−u−x )− u+
xx − u+

xxxx

u−t = −(u+u−x + u−u+
x )− u−xx − u−xxxx . (12.50)

If u− = 0, Kuramoto-Sivashinsky flow is confined to the antisymmetric U+

subspace,
u+
t = −u+u+

x − u+
xx − u+

xxxx , (12.51)

but otherwise the nonlinear terms in (12.50) mix the two subspaces.
Any rational shift τ1/mu(x) = u(x + L/m) generates a discrete cyclic sub-

group Cm of O(2), also a symmetry of Kuramoto-Sivashinsky equation. Reflec-
tion together with Cm generates another symmetry of Kuramoto-Sivashinsky
equation, the dihedral subgroup Dm of O(2). The only non-zero Fourier com-
ponents of a solution invariant under Cm are ajm 6= 0, j = 1, 2, · · · , while for a
solution invariant under Dm we also have the condition Re aj = 0 for all j. Dm
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reduces the dimensionality of state space and aids computation of equilibria
and periodic orbits within it. For example, the 1/2-cell translations

τ1/2 u(x) = u(x+ L/2) (12.52)

and reflections generate O(2) subgroup D2 = {1, σ, τ, τσ}, which reduces the
state space into four irreducible subspaces (for brevity, here τ = τ1/2):

τ σ τσ

P (1) =
1

4
(1 + τ + σ + τσ) S S S

P (2) =
1

4
(1 + τ − σ − τσ) S A A

P (3) =
1

4
(1− τ + σ − τσ) A S A (12.53)

P (4) =
1

4
(1− τ − σ + τσ) A A S .

P (j) is the projection operator onto u(j) irreducible subspace, and the last 3
columns refer to the symmetry (or antisymmetry) of u(j) functions under re-
flection and 1/2-cell shift. By the same argument that identified (12.51), the
Kuramoto-Sivashinsky flow stays within the US = U(1) + U(2) irreducible in-
variant D1 subspace of u profiles symmetric under 1/2-cell shifts.

While in general the bilinear term (u2)x mixes the irreducible subspaces of
Dn, for D2 there are four subspaces invariant under the flow [8]:

• {0}: the u(x) = 0 equilibrium

• U+ = U(1) + U(3):
the reflection D1 irreducible space of antisymmetric u(x)

• US = U(1) + U(2):
the shift D1 irreducible space of L/2 shift symmetric u(x)

• U(1):
the D2 irreducible space of u(x) invariant under x 7→ L/2− x, u 7→ −u.

With the continuous translational symmetry eliminated within each subspace,
there are no relative equilibria and relative periodic orbits, and one can focus
on the equilibria and periodic orbits only, as was done for U+ in refs. [1, 10,
11]. In the Fourier representation, the u ∈ U+ antisymmetry amounts to hav-
ing purely imaginary coefficients, since a−k = a∗k = −ak. The 1/2 cell-size
shift τ1/2 generated 2-element discrete subgroup {1, τ1/2} is of particular inter-
est because in the U+ subspace the translational invariance of the full system
reduces to invariance under discrete translation (12.52) by half a spatial period
L/2.

Each of the above dynamically invariant subspaces is unstable under small
perturbations, and generic solutions of Kuramoto-Sivashinsky equation belong
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to the full space. Nevertheless, since all equilibria of the KS flow studied in
ref. [2] lie in the U+ subspace, U+ plays important role for the global geometry
of the flow. However, linear stability of these equilibria has eigenvectors both
in and outside of U+, and needs to be computed in the full state space.
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[2] P. Cvitanović, R. L. Davidchack, and E. Siminos, “On the state space ge-
ometry of the Kuramoto-Sivashinsky flow in a periodic domain”, SIAM
J. Appl. Dyn. Syst. 9, 1–33 (2010).
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The latest entry at the bottom for this blog

13.1 Summer 2016 project description

2016-05-22 Predrag [x ] 2016-05-22 went through plane Couette tutorial
[x ] numerically reproduce Kuramoto-Sivashinsky evolution forward in

time for several finite L periodic domains (use Xiong Ding codes)
[ ] read ChaosBook.org chapter Turbulence?, very critically! It aims

to explain the relation between L and the hyperviscosity ν, and it
should be the fastest introduction to Kuramoto-Sivashinsky equa-
tion, for our purposes, so blog about what is unclear and what is
missing.

[ ] summarize Kuramoto-Sivashinsky in sect. 1.5 Course 2, week 16
might also be helpful.

[ ] derive Michelson [34] ODEs and reproduce numerically some equi-
libria and relative equilibria for the T = 0, spatially infinite domain

[ ] Reading part of the project: The best papers on T = 0 seem to be
[ ] Michelson [34]
[ ] Lan and Cvitanović [30], summarize it here in sect. 1.6
[ ] Lan [27] thesis, summarize it here in sect. 1.6
[ ] understand Dong and Lan [12] Organization of spatially periodic

solutions of the steady Kuramoto–Sivashinsky equation in detail, sum-
marize it here in sect. 6.4.1.

check off the boxes once you have read the above sources and en-
tered material learned from them either here, or in separate sections
(one for each source, as, for example, sect. 6.4.1)
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[ ] summarize T = 0 in sect. 1.6
[ ] write a code that solves Kuramoto-Sivashinsky evolution forward in

space for finite T periodic, spatially infinite domain (see sect. 1.6;
ask Burak for help)

[ ] discuss the patterns that you see
[ ] describe at length the T 6= 0 results in sect. 1.6

Matt, check off the boxes, with the date, as you complete them. That,
written up in your blog (this blogMNG16.tex file), is good enough for the
completion of the Summer 2016 term project.

2016-05-22 Predrag If, in addition, you

[ ] reproduce some periodic orbits and Poincaré sections for L = 22 pe-
riodic domain (use Xiong Ding codes)

[ ] write up a literature survey, sect. 6.4
[ ] compute any (by definition, new) periodic orbits and/or relative pe-

riodic orbits for a fixed finite T time-periodic spatial strip
[ ] reduce the O(2) symmetry of the equilibrium equations (my impres-

sion is that no one in the literature has done that)
[ ] there should be also solutions that belong to invariant subspaces,

much group-theoretical analysis not done yet (that would mean that
there are all kinds of important relative equilibria that the literature
has missed)

That is most likely worth a publication.

13.2 Matt’s blog

2016-05-26 Matt Here is an example of text edit by me, and here one of a foot-
note by me1.

2016-05-22 Matt my SVN repo is svn://zero.physics.gatech.edu/siminos
userID is mgudorf3, the password is rather aspirational

2016-05-22 Matt Discussion with Predrag, Kuramoto-Sivashinsky equilibria and
relative equilibria project Summer 2016:

• blog the project progress here
• blog whatever I’m reading and learning about dynamical systems

here

2016-05-23 Matt I’ve been working on reading the ChaosBook, so far chapts. 1
and 2.

Considering doing the online Course 1.
1Matt 2016-05-26: test footnote
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2016-05-22 Matt • Installed Anaconda, Latex, Visual Studio to multiple ma-
chines.

• Studied Movies of Plane Couette Tutorial

2016-05-23 Matt • Read Chapters 1,2 of Chaosbook

• Read Nagata [37] Three-dimensional finite-amplitude solutions in plane
Couette flow: bifurcation from infinity. Describes the calculation of the
Nagata lower/upper branches pair of equilibrium solutions to plane
Couette flow. 2

2016-05-24 Matt • Video lectures for Chaosbook chap 1-2

• Read Chapter 3

• Gathered papers and resources for Computational Fluid Dynamics
and Kuramoto-Sivashinsky system

2016-05-25 Matt • Video Lectures for Chaosbook Chapter 3

• Began Working through Chaos Book HW1.

2016-05-26 Matt • Finished Chaosbook: Homework 1 (server error couldn’t
submit)

• Read Chapters 4, 5 Chaosbook

• Read Dong and Lan [12], summarize it here in sect. 6.4.1

• Watched video lectures for Python learning via 1

• Began reading Newman [38] Computational Physics (a python book)
3

2016-05-26 Skype screen-sharing session Predrag Showed how to use SVN-
tortioise (svn up, commit, log, diff), WinEdt (master file, locate errors) and
JabRef.

2016-05-26 Matt Still figuring out if I’m referring to articles properly.

2016-05-27 Xiong For 1d Kuramoto-Sivashinsky system, you can start with
Kassam and Trefethen [24] Fourth-Order Time-Stepping for Stiff PDEs. This
has a sample code to integrate Kuramoto-Sivashinsky. You probably also
need to understand the pseudo-spectral method - a good introduction is
(you can look at my copy): Trefethen [52] Spectral Methods in MATLAB.

Cvitanović, Davidchack and Siminos [8] On the state space geometry of the
Kuramoto-Sivashinsky flow in a periodic domain discusses Kuramoto-Siva-
shinsky dynamics. You may have a look at it and try to find the 2 relative
equilibria by yourself.

2Predrag 2016-06-29: A very technical paper, not (yet) relevant to your project. Do not worry if
you do not understand parts of it

3Predrag 2016-06-29: ask Xiong for what he likes as an introduction to python
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2016-05-31 Burak I agree with Xiong in that Matt should learn the essentials of
the pseudo-spectral methods as he will need to write his own integrator
at some point.

Kassam–Trefethen time-stepping scheme is elegant, also the paper [24] is
a good read, but it is not crucial since a generic ode integrator does the
job once the velocity function is correctly defined.

For a fast start, Matt can run my (fortran + python and matlab), Xiong’s
(cpp + matlab), and Ruslan’s (matlab) codes in the siminos repository,
and pick one that suits his taste.

My matlab codes

siminos/ksConnected/ksETDRK4.m (integrator, 73 lines)

and

siminos/ksConnected/vel.m (velocity function, 26 lines)

might be easier to read because I calculate linear and nonlinear terms in
separate lines and calculation of nonlinear term is really all Matt needs to
understand.

As always, I’m available for skype/hangout whenever Matt might have
a question.

2016-05-31 Predrag Please try to keep Matt’s workload within realistic bounds.
Matt will have to first write forward ODEs integration code for the time-
periodic,∞-space Kuramoto-Sivashinsky. Finding equilibria, relative equi-
libria, and periodic orbits is another level, with a Newton code. Let’s
postpone that (see the project outline in the beginning of this chapter,
edit as you see fit).

2016-05-30 Matt .

Review Took notes on ChaosBook.org Chapters 2-5 and Dong and Lan [12]
Watched video lectures for chapters 4-6. Edit: For week two of
ChaosBook.org

Learning Read chapter 6, began reading chapter 14 of ChaosBook.org,
began video lectures for chapter 14. I’m trying to get to chapter 30
but I’m not sure if this is skipping too much but the book recom-
mends only 2-5, 14, 15 to get to Chapter 30.

Reading Read and took notes (per Xiong’s recommendation) on Kassam
and Trefethen [24]; planning on doing the same with Cvitanović,
Davidchack and Siminos [8] tomorrow.

2016-05-31 Matt .

Tangent Went off on a tangent on materials way beyond the scope of my
project (and most likely unrelated) before I brought myself back to
Earth. Ranged from C∗-Algebras to KK-Theory to Bézier Curves.
(I.E. Brownian Motion through Wikipedia)
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Reading Began thorough reading of Cvitanović, Davidchack and Simi-
nos [8]

Review Went over Kassam and Trefethen [24] notes

2016-06-01 Predrag C∗-Algebras? Strongly unrecommended.

2016-06-02 Matt Matlab Downloaded and installed Matlab, spent time learn-
ing syntax and tried for some time to implement Matlab codes for
Kuramoto-Sivashinsky that Burak mentioned in Burak 2016-05-31,
with an addition of a surface plot similar to Figure 6 of Kassam and
Trefethen [24]. Produced a nonsensical plot; I believe it’s because I
don’t know what to use for x0.

Learning Reviewed some materials and completed ChaosBook.org/course1
homework 2.

Reading Took some more notes on Cvitanović, Davidchack and Simi-
nos [8]

2016-06-03 Matt Matlab Reproduced Figure 6 of Kassam and Trefethen [24].
Took a long time to debug a simple mistake but it was a good learn-
ing experience.

Reading Finished thorough notes on Cvitanović, Davidchack and Simi-
nos [8]

Comments Am I writing these posts too often and/or should I reserve
this space for more important messages? I don’t want to make it a
personal diary but I find it helpful for organizing what I’ve done so
far.

2016-06-04 Predrag That’s great - more detail, rather than less, especially if you
run into something that you feel you do not understand well enough -
there Burak, Xiong and I can be of help.

Looks like you are moving right along - if your code produces something
that is qualitatively like Fig. 2.1 of Cvitanović, Davidchack and Simi-
nos [8], then you are ready to start coding equations of sect. 1.6. However,
there is still much theory to read before you feel confident about the re-
sults, see the project outline above, chapter 13.

2016-06-06 Matt Learning Watched ChaosBook.org/course1 video lectures for
weeks 3, 4. Read and took notes on ChaosBook.org chapters 7, 10,
11.
Went over notes on Cvitanović, Davidchack and Siminos [8] and
met with Predrag to talk about the bases with which visualizations
are produced. What I learned was it’s better to get into the ac-
tion by going to points of interest (e.g. equilibria) and then look at
their unstable manifolds directly by projecting onto the respective
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eigenvectors. For 2 − D unstable manifolds this includes also us-
ing a third eigenvector corresponding to the least contracting eigen-
value/Floquet exponent, or eigenvector with sufficient symmetry
properties and contracting eigenvalue.

KS Played with the ETDRK4 code for Kuramoto-Sivashinsky a bit more;
varying parameters, size of spatial domain, number of modes/spatial
resolution, timestep. Was able to reproduce for different spatially
periodic domains.
I want to get a better idea of what I’m looking at. I believe I grasped
a better idea of what transient behavior looks like, because after a
certain time, there were no more distinguishable patterns no matter
how many modes I included, but the patterns after this critical time
change depending on the number of modes.

2016-06-06 Burak I found this wikibook a very practical introduction to the
spectral methods for the solution of PDEs. It starts with fundamentals
and simple examples and goes all the way to the parallel integration of
Navier-Stokes equations in a 3D box. Lectures also have accompany-
ing Matlab/Python codes with them, and the advanced parts have For-
tran/MPI examples.

2016-06-07 Predrag :

1. The goal right now is to develop some intuition about spatiotem-
poral turbulence, but not (as yet) write Newton codes for finding
equilibria, relative equilibria, and periodic orbits.

2. The goal of the project is to start simulating Kuramoto-Sivashinsky
on a finite time-periodic, infinite configuration space domain. (you
would be the first to do it, Burak and I believe). That would be a
successful summer project.

3. The ultimate goal of the large research project is to take both time
and configuration space coordinates to infinity, and incorporate into
this PDE (for the first time for any PDE) Gutkin and Osipov [21] 2D
discrete time, discrete space symbolic dynamics ideas.

4. The dream is to then port this to the infinite-length exact turbulent
Navier-Stokes pipe flow.

2016-06-09 Matt Review Reviewed Chapters 7, 10, 11 of ChaosBook.org
Meeting Met and discussed projects with Rana and Adrien. Decided to

meet up and discuss Ch. 14 of ChaosBook.org together on Monday.
Reading Read and took notes on ref. [34].
Exercises Completed Assignments 3 and 4 for ChaosBook.org/course1
Additional Stumbled across some ways one could possibly improve Newton-

Raphson method such that it isn’t as reliant on initial value. A quote
from: Abbasbandy et al. [1]:
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“When the initial value x0 is not good, comparing with the results
given by other methods, much fewer iterations are needed by HAM;
even if a bad initial approximation is chosen, which leads to diver-
gent results by other method, we can still find the root efficiently"
Similar applications are discussed by Wu and Chueng [57]

2016-06-10 Matt Spent a lot of time messing around with matlab code on pro-
gressively larger spatial domains to see if anything similar to Michel-
son [34] popped up. For instance, when L = 256π what appears to be
a discontinuity in u(x, t) develops at x ≈ 200 and then at x ≈ 200 and
x ≈ 600, a distance L/2 away, turbulent patterns emerge. I was trying to
see if this had anything to do with the discussion about bifurcations in
Michelson [34] but I don’t think I know enough about bifurcations.

2016-06-13 Predrag Instead of reading Michelson, it is probably easier to read
the later references I gave above (Lan, our papers, ChaosBook). There
is no chance now that you can see anything Michelson-related by inte-
grating PDEs in time - it applies only to t = 0. However, it should be
important for study of the time-periodic PDE.

There can be no discontinuity in Kuramoto-Sivashinsky evolution - hy-
perviscosity term in the equation prohibits that. Presumably you are us-
ing too few Fourier modes. Roughly speaking, if you double the domain
lengh L, you should double the number of Fourier modes in order to
attain the same accuracy...

2016-06-13 Matt I don’t know what I’m seeing then, as I made sure to be overzeal-
ous with the number of modes. For L = 256π I used 20000 modes; it
wasn’t really a discontinuity but just a region of sharp change in u. I
probably overlooked something else.

Learning Read and took notes on chapters 12, 13, 14 ChaosBook.org
Watched video lectures for weeks 5, 6 ChaosBook.org

2016-06-17 Predrag When in doubt whether a calculation returns a sensible
answer, include your plot / figure here, in the blog. Then Xiong, Burak
and I can have a look at it...

2016-06-13 Matt Read ChaosBook.org Chapter 15
Had a spatiotemp meeting

2016-06-13 Matt Began my attempt to code space integration of Kuramoto-
Sivashinsky but quickly got confused; The section sect. 1.6 presumes that
we know u(x, t) and its derivatives for t ∈ [0, T ) ; Does this imply that
we know the initial conditions/analytic form of these functions, and then
evolve them at time at fixed x to initiate the grid of time values, and then
commence the space integration?
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2016-06-17 Predrag By construction, any temporal Fourier modes initial con-
dition is time-periodic with the fixed time period T . We have no very
good idea what the attractor looks like, so you can start with a first few
Fourier modes of order 1, rest 0. Or perhaps you can pick T to be the
shortest (relative) periodic orbit Tp for L = 22, take the time sequence at
some fixed x as the initial condition (Xiong will tell you where it is in this
repository). We do not know what’s a good starting guess. My hope is
that for T < Tp, the time domain is too small to accommodate spatiotem-
poral turbulence, and the attractor converges to a Michelson-type T = 0
spatially chaotic strange set (no interesting time dynamics).

2016-06-13 Matt KSspaceint Spent most of the day trying to code spatial in-
tegration. I have the part that takes in data for the velocity func-
tion u(x, t) and its derivatives down. Trying to apply fourth order
Runge-Kutta on the rest; It likes to blow up to infinity, when I put in
even dumber initial conditions it still likes to blow up. I believe this
is due to one of three things:

1. Runge-Kutta is insufficient in it’s accuracy.
2. Not handling the non-linear term correctly.
3. Not handling time derivative term correctly.

Will attempt to reach Burak soon.

Spatiotemp Meeting: I came in late due to real life but the gist of what
I gathered was the procedure on how to get inequalities to generate
lines in order to describe the certain fixed symbols in a sequence.
When a symbol is fixed, the area bounded by these lines describes
the frequencies of that symbol. Longer chains of symbols generate
more lines, and more conditions/rules on which pieces of area are
of interest. The general formulae involve Chebyshev polynomials.
Adrien and Rana are going to look for [2× 2] squares next I believe.

Sidenote I’m getting some sort of error with siminos.bib that won’t al-
low me to compile the blog. I would try to fix it myself but I’m
unsure what the error message means.

2016-06-21 Predrag “some sort of error” does not cut it as an explanation to
the IT squad. If it is a comma that Xiong forgot, I fixed it now. You can fix
such errors yourself, the error message tells you what line of the *.bib file
to fix. But, if you have not edited siminos.bib and are getting such errors,
try going to siminos/bibtex/, remove all siminos.bib* files, svn up. Should
fix it.

2016-06-17 Burak The numerical instability was something that I was expect-
ing. While the points you mentioned can definitely cause it (especially
make sure that you treat all terms correctly), there is an obvious diffi-
culty with (1.34), that is the absence of the diffusion term. Let us have a
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look at the original Kuramoto-Sivashinsky equation in the Fourier space

˙̂uk = (q2
k−q4

k)ûk−
iqk
2
F{u2}k where, qk = 2πk/L , ûk = F{u}k . (13.1)

Now pay attention to the coefficient of the linear term:

q2
k − q4

k =
(2π)2k2

L2
− (2π)4k4

L4
(13.2)

If we set (13.2) to 0, we find k = L/2π; for k smaller than this value,
(13.2) is positive and negative if k > L/2π. For large enough k, this term
falls down as k4, dominating everything and strongly damping the high
Fourier modes. This is the main justification of using a finite Fourier
mode truncation for the numerical study of Kuramoto-Sivashinsky equa-
tion. In many PDEs with diffusion (second order space derivatives), this
damping goes like k2, however, in Kuramoto-Sivashinsky equation (18.1)
, the second-order space derivative has negative sign, thus it supplies en-
ergy to the low wave numbers (negative diffusion), while the energy is
dissipated like k4 (hyper diffusion) at higher ones. Another consequence
of this fact is time-irreversibility: In principle, we have a deterministic
PDE at hand, present (an initial condition) describes future perfectly well,
so we may expect to recover the initial condition if we know the final one.
However, this is may not be the simple task of backwards-integrating
(13.1) in time. The reason is once we reverse the arrow of time, the neg-
ative diffusion vs. hyper diffusion story becomes the opposite and we
supply energy to the system at higher and higher Fourier modes which
are all unstable, hence no finite-truncation can be justifiable.

With this in mind, let us look back at (1.34) and (1.36). You can see that
there is no (hyper)diffusion term that damps Fourier modes correspond-
ing to high frequencies. There is no obvious production term (energy
supply) either, but still control of numerical accuracy in this case is not as
obvious as it was for the spectral discretization in space. The similar sit-
uation appears for advection equations in fluid mechanics and one way
to deal with that is adding an “artificial diffusion” term, such as εu(3)

tt to
the RHS of the first equation in (1.34), which would show up as −εω2

kû
(3)
k

in Fourier space. Once you do that, of course, there is a new parameter to
experiment with. You should make sure that ε is small enough so that it’s
effect for long time scales (low frequencies) are negligible and it effects
only very-high frequency modes, that corresponds to the time scales you
don’t really care.

Once you make sure all your terms are correct, please try adding an arti-
ficial diffusion term to the equation and see if it stabilizes the numerics.
We can then check if it gives a numerically correct result by comparing it
to time-integrated results. Also please commit your code.

Another potential problem we might have is so-called “aliasing”, that
is generation of artificial sub-harmonics from the finite-truncation of the
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nonlinear term (you can learn about it from any pseudospectral methods
for PDEs book, see for instance ref. [5]). This may or may not cause nu-
merical instability issues but certainly has an effect on the accuracy. But
hopefully is secondary at this level.

This, by the way, was my main concern about insisting on having an ini-
tial condition from a time-integrated simulation, because in time-evolution,
we know that high Fourier modes damp and the flow is driven towards
an energy-balanced (on average) chaotic attractor. We don’t have such a
guarantee in space-integration, and that’s why I was thinking we should
start with a point on the attractor.

2016-06-21 Predrag email to Lan Yueheng <lanyh@bupt.edu.cn>, Skype yue-
heng_lan :

Matt, a graduate student here, is reading your Kuramoto-Sivashinsky pa-
pers (with me and Dong) and your thesis, parts on the Michelson strange
attractor that describes T = 0 equilibria for infinite spatial domain. Bu-
rak and I have not decided to whether to first look at it in the reflection
antisymmetric invariant subspace U+ (as we did - probably preferable, as
there are no relative equilibria, no relative periodic orbits and no contin-
uous symmetry to quotient), or study the full O(2)-equivariant problem.

I’m going away for a few weeks, a real vacation - do you mind helping
Matt by Skype (matthew.gudorf) or whatever is convenient? It’s a lot of
material to master, and he has no background in nonlinear dynamics.

2016-06-21 Matt :

KSSpaceInt After shedding much sweat and many tears I think I made
a little bit of headway into the integration process. There are still many
problems but I can at least generate a plot for very limited sizes of spatial
integration i.e. L = 2 with step size .01. I’m going to include my matlab
files, that include many comments on what I’m attempting to do. the
main Matlab file is timeperiodic.m so if you have the other two files
around and plug in the initial conditions indicated at the top you’ll be
able to see what I see; I’m not sure how to include figures directly into
the blog.

2016-06-23 Matt :

Meeting with Burak and Predrag Talked about the progress so far, ex-
plained my Matlab code timeperiodic.m for the spatial integra-
tion of Kuramoto-Sivashinsky a fixed finite T time-periodic spatial
strip.
My strategy, in order to initialize the x integration of (1.34), was to
time-integrate L = 22 Kuramoto-Sivashinsky for t ∈ {0, 1000}, store
this as a large matrix, decide by eyeballing that transients have died
out by t = tin = 400, take t ∈ {tin, tin + T} column of values of
u(x0, t), where x0 = 250, arbitrarily picked, and T =??, all in my
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own units. Fourier transform u(x0, t) to ũ(x0, k), assuming period-
icity in T , construct from it ũx(x0, k), ũxx(x0, k) and ũxxx(x0, k), then
Fourier transform these back to discretized time-vector

(u(x0, t), ux(x0, t), uxx(x0, t), uxxx(x0, t)) (13.3)

t ∈ {0, T} time-periodic strip. These 4 spatiotemporal fields are then
integrated forward in x using (1.34) and my own Runge-Kutta rou-
tine (no FFTs).
Burak was cool with all of this. Still, the time Fourier modes seem
to explode. Some of the talking points:

1. Use real time and space units instead of the number of dis-
cretization steps.

2. Improve the notation for the variables.
3. For a space integrator, use a built-in Matlab integrator such as

“ODE45" as opposed to my manually coded fourth-order Runge-
Kutta.

4. My ergodic segment u(x0, t) is discontinuous (a Heaviside func-
tion discontinuity) at T → 0 point, and so are ux(x0, t), uxx(x0, t)
and uxxx(x0, t). That means that Fourier spectrum will be essen-
tially flat to arbitrarily high frequencies, and useless as an initial
condition. Burak’s diffusion regulator might mitigate some of
that, but in any case, regularized initial condition will be off the
strange attractor.

5. Perhaps pick tin by requiring that it corresponds to a close recur-
rence in time direction, u(x0, tin) ≈ u(x0, tin + T ), as a possible
initial condition on a time-strip? Probably continuity in u(x0, t)
alone does not help, as ut(x0, T ) and higher derivatives in t are
still discontinuous, Fourier transform does not like that either.

6. Use a cubic spline through a range of points spanning across
the point of discontinuity u(x0, T ). This, however, would nec-
essarily lift us off of the attractor, which was the whole point of
waiting that time-transients die, etc.

7. Taking into account all of the above problems of picking good
initial t = 0 time-vector (13.3), we gave up on initialization by a
time-segment of an ergodic trajectory, and decided to use Xiong
periodic orbit data for one of the shortest Tp relative periodic
orbits or pre-periodic orbits on the L = 22 spatial strip as an
initial condition.

8. Will have to time-reintegrate Xiong periodic orbit using ∆t =
Tp/2

M time-step to set up time-discretization needed for a spa-
tial direction pseudo-spectral FFT integrator.

9. How do we know that the integrator in space is working? It pre-
sumably has to reproduce the initial u(x0, t) and its derivatives
at u(x0 + L, t) and its repeats u(x0 + mL, t). If this is correct, it
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should also give us some sense of the stability of the u(x0 +x, t)
orbit in the x-evolution.

10. Boris says that in a secret document he has shown that for a spa-
tiotemporaly periodic solution (a torus that tiles the spacetime)

det (1− J) = det (1−K) , (13.4)

where the Jacobian matrix K is computed for the linearization
of the evolution in the x, spatial direction. That would be an
additional check on the integrator.

11. Will have to think what does it mean to start with an relative
periodic orbit? The tiling is by parallelepiped rather than by
rectangles. Can cheat by starting with a periodic orbit obtained
by a repeat of an pre-periodic orbit. That’s considered good
enough for government work.

Exercise Derive (13.4). You get Lenin Medal for that.

Discussion with Xiong Xiong showed me where the codes for his time
integration are and how to retrieve the data for periodic orbits from
a file. I’ll need to install a linux virtual machine image to run the
time integration code.

2016-06-24 Matt : KSSpaceInt Worked all day to try and get ksint.m to run.
With some help from my brother (who is also a code guru) I created a
virtual image that runs 64 bit Ubuntu as well as a shared folder between
my current Windows operating system and my Ubuntu virtual image.

I believe that I need Ubuntu to run MEXksint.mexa64which is called in
previously mentioned MATLAB function, but there seems to be a prob-
lem with some missing libraries which I was unable to locate; due to how
they are imported it looks like they are some custom made files and not
MATLAB libraries. I e-mailed Xiong about this and hope to clarify this
issue so that I will have some results come Monday.

2016-06-24 Predrag It would be easier (and faster in the long run) to do this on
the CNS linux cluster. Your userID is gudorf, I emailed you the password
separately.

You can use the linux box in the second bay to the left in the grad stu-
dents office W503 (if Kinsey is not there), or linux terminal in the com-
puter cubicle W508E (Xiong has the key), or Boris Gutkin’s linux box (he
is never there before 4-5 pm :) in W501B. Login as gudorf. Then ssh -X gu-
dorf@hard.physics.gatech.edu; that puts you into Xiong’s linux box which
has all the packages you need already installed.

If you start generating lots of data, store it locally, somewhere in

/usr/local/home/gudorf/
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(a) (b)

Figure 13.1: Spatiotemporal plots of u(11, t); for the spatial integration of (1.36)
for time periodic-domains (a) T = 2Tppo10.2 = 20.5058 and (b) T = 4Tppo10.2 =
41.0116, from x = 0 to x = 6 (starting at the top). The initial u(11, t) are given
by the ppo10.2 time profile at x = 11. This is a reproduction (PC what is “re-
production?”) of Xiong’s code ksint.m along with application of fast Fourier
transforms and their inverses.

You can get there by cd localHard. That is needed because your home di-
rectory is backed up every night, and if there are Mr. Rump-self-perception
size files in it, it will break the backup for everyone.

If not using a CNS linux box, VPN to get past the firewall. Then
ssh -X gudorf@zero.physics.gatech.edu
From there,
ssh -X gudorf@hard.physics.gatech.edu
This -X enables you to open the hard.physics.gatech.edu Matlab etc. on
your own laptop, provided ... (simpler you talk to Xiong about it).

2016-06-24 Matt KSspaceint Revamped my code over the weekend and de-
bugged today with help of Xiong. Solutions still blow up past L =
12 and are not very descriptive past L ≈ 8. In figure 13.1 I show
u(x, t) resulting from my curreent spatial integration of u(`)(x0, t) for
the periodic domains T = 2Tppo10.2 = 20.5058 and T = 4Tppo10.2 =
41.0116 = 2 ∗Ta and x0 = 11 (by random choice of spatial grid coor-
dinate xi = 16, 1 ≤ xi ≤ 32). Fourier modes are my next objective,
which will be easier.

Concerns 1. I don’t know what the order of magnitude is considered
large for the artificial diffusion constant e so I went with e = 0.1,
will talk to Burak to get a better idea.

2. Even with using ode45.m in MATLAB, the solutions still di-
verge at L ≈ 12. Past L ≈ 6 the plots of u(11, t) became very
undescriptive as the magnitude begins to diverge. Will try im-
plementing ode15s.m which deals with stiff differential equa-
tions better than (ode45.m unless there is a better suggestion.

2016-06-24 Matt Meeting with Burak Burak and I discussed the current prob-
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Figure 13.2: Initial amplitudes of Fourier coefficients of temporal Fourier
modes (512 positive frequency modes) for two periods of the shortest pre-
periodic orbit ppo10.2, plotted on a logarithmic (base 10) scale.

lems I am having and also questions I had regarding Kuramoto-
Sivashinsky spatial integration. The main pieces of advice were as
follows:

• Should verify that the truncation of Fourier modes is reason-
able, i.e. the amplitudes decrease towards zero. Recommended
that I plot the logarithm of the Fourier mode amplitudes to look
at their initial values.

• An implicit integration method might need to be deployed be-
cause explicit methods can be unstable. Burak suggested to look
at both the “Implicit Midpoint Method" and “Fixed Point Itera-
tion Method". 4

• Also mentioned Symplectic Integrators because they are energy-
preserving. Noted that I should probably start with the artificial
diffusion term should be zero when I begin these implicit meth-
ods, although that will probably be inaccurate when integrating
over large spatial domains.

Initial Fourier mode amplitudes The following is the initial Fourier mode
amplitudes plotted against their frequencies on a logarithmic scale.
The zero-frequency mode dominates and I’m not sure if that is prob-
lematic or not.

KSspaceint More attempts at trying to get my spatial integration code to

4Burak 2016-06-25: Implicit midpoint method is a symplectic integrator, which is appropriate
for Hamiltonian dynamics. When you implement it, you get an algebraic equation for the next
step in integration, one way of solving for the next step is “Fixed point iteration”. There might be
better methods.
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work so that the temporal Fourier amplitudes do not diverge/blow
up.
Switching from ode45 to ode15s had little to no effect. Attempting
to correct for aliasing by zero-padding when calculating the nonlin-
ear term via pseudo spectral method. That is, when calculating:

∞∑
m=−∞

û
(0)
k−mû

(1)
m = F

{
F−1

{
û(0)

}
F−1

{
û(1)

}}
, (13.5)

The "zero-padding" process can be described as the following: Firstly
we add extra elements, which are equal to zero, to each array repre-
senting u(0) and u(1) (the length of each array is determined by the
temporal resolution, let’s call it N ). Typically, the number of zeros
we add is equal to (or greater than) the original number of elements
in each array. After "padding" with zeros, each array now contains
2N elements. The inverse FFT’s are then applied is the equation
above, as well as the convolution. The next step is to apply the FFT
to the convolution, leaving us with an array that still has 2N num-
ber of elements. The final step is to prune N elements away so that
the final result has N elements. This is done to eliminate artificial
sub-harmonics produced by finite truncation of Fourier modes.
Sadly, this did not seem to help the lack of damping and divergence
was still present.

2016-07-02 Burak Zero-frequency mode is the average value of the initial sig-
nal. I don’t see a problem with it having a large value. Please give us
more detail about what is on figure 13.2, does the initial condition cor-
respond to two periods of the shortest pre-periodic orbit ppo10.2? How
many Fourier modes are there? Does it go below 5 orders of magnitude
drop-off if you include more modes?

2016-07-04 Matt KSspaceint Spent the day trying to figure out the best way
to compute the convoluted sum on the left hand side of following
equation:

∞∑
m=−∞

û
(0)
k−mû

(1)
m = F

{
F−1

{
û(0)

}
F−1

{
û(1)

}}
, (13.6)

and keep my code consistent. Wrote this in convolutionsum.m.
Sort of worried about how trying to evaluate an infinite sum with a
truncated number of modes.
In order to keep the code consistent I also edited timeperiodic.m
by reordering the Fourier mode from negative frequencies to posi-
tive frequencies. Hopefully this will solve once and for all the prob-
lem of whether my Fourier modes are normalized correctly. I keep
finding conflicting notation, no doubt due to the difference in con-
ventions between engineers and everyone else.
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Misc. Edited the caption for the figure 13.2, will try adding more Fourier
modes to see how the amplitudes behave.

2016-07-05 Predrag I am a bit worried about figure 13.2, where the modes flat-
ten out to about 10−4.7. That presumably means that the initial condi-
tion -should have been on the domain T = 2Tppo10.2 = 20.5058- is not
smoothly periodic, but it someplace has either a δ-function singularity, or
- more likely, a Heaviside θ-function step? A good initial time-periodic
u(x0, t) should fall off at least exponentially, with Fourier modes leveling
off only at the machine precision. And I doubt one needs 512 modes (I
assume that means 256 complex Fourier modes?). I would have guessed
that 64 would have been plenty...

Consult with Xiong about the quality of your initial u(x0, t) “periodic”
profile? You have to be much more explicit about what you and Xiong
did to ppo10.2 to obtain your initial u(x0, ·) for Burak and me to ponder
what went wrong. While you are at it, perhaps do not pick arbitrary
x0 = 11 initial u(x0, ·). When you look at the time evolution of ppo10.2 on
the L = 22 domain, pick initial x0 such that u(x0, t) looks as smooth as
possible (not sure that what I recommend here really matters).

2016-07-05 Predrag Your T = 2Tppo10.2 = 20.5058 in figure 13.1 (a) initial should
be strictly periodic, I agree. But there is no need to yet again double the
size of the periodic domain, as in figure 13.1 (b). That is asking for more
trouble than needed right now.

The good news is that your evolution of the two domains is consistent.

2016-07-05 Predrag Why from x = 0 to x = 6, when the initial u(x0, t) are
given by the ppo10.2 time profile at x0 = 11?

You sure that it is u(x0, t) “starting at the top?”. Judging by the color
scale on the right, the initial u(0, ·) is essentially flat, and it is still rather
small by u(6, ·): I do not remember u to be so small in magnitude, but
my memory can be wrong. You can crosscheck with plots in Cvitanović,
Davidchack and Siminos [8] whether your u magnitudes are what they
typically see.

2016-07-05 Xiong Matthew had a question about FFT used in my code.

Hey Xiong,
I know we discussed the matlab file ksint.m in detail, and

it is working well, but I have a question that you might be able
to help me with.

The inverse fast Fourier transform implemented by MAT-
LAB divides the result by N where N is the number of modes.
I am applying this inverse transformation to values returned
by ksint.m, and I’m unsure how the normalization should be
treated in order to recover the correct values for u(x,t).
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I have a suspicion that I need to multiply the results by N
in order to cancel out the division by N from IFFT, this is be-
cause otherwise the initial values seem too small, on the order
of hundredths.

If you have any idea I would be very thankful!
-Matt

The truth is that the normalization convention of discrete Fourier trans-
form I am using is different from the standard one. The reason is that
I need to keep my code consistent with the code and data provided in
folder siminos/matlab/ruslan, which is also the convention used in
ref. [8]. I almost forget this difference after identifying it 3 years ago.
Please search 2013-08-01 in siminos/lyapunov/blog.pdf to see
the details.

PS Compile it first. cd sinimos/lyapunov && pdflatex blog.tex.

(a) (b)

Figure 13.3: (a) Preperiodic orbit pp10.25 and (b) relative periodic orbit rp16.31

for total evolution time 4Tpp and 2Trp, respectively. The spatial shift for rp16.31

after one prime period ' −2.863. From Ding and Cvitanović [11].

2016-07-05 Predrag The first test is to see whether your time integration repro-
duces figure 13.3 over the t ∈ [0, 2Tppo10.2 ] time interval, starting with
Xiong’s data set for ppo10.2. If that is working, a vertical line for some
x0 ∈ [0, 22] is used for initial u(x0, ·) for space integration. If the integrator
is working, the updated version of figure 13.1 (a) should coincide with
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figure 13.3 (a) over the x ∈ [0, 22] space interval. That would be enough
to declare victory for this summer project.

2016-07-05 Predrag Figure 13.3 from Cvitanović, Davidchack and Siminos [8]
gives you some indication of what are typical sizes of (u, ux, uxx) for the
L = 22 spatial domain.

2016-07-06 Matt BurakTalks Burak believes that the easiest way for me to pick
up a spurious divergence is there is someplace, (most likely calculat-
ing the nonlinear term via pseudospectral method) where the nor-
malizations of fft and ifft are incorrect.
In order to verify this, he suggested calculating the nonlinear term
via both methods in (13.6), i.e. a convolution sum and the other
via the pseudo spectral method. The following is how I formulated
convolutionsum.m for future reference.

Step Zero: Original ordering of Fourier modes (N = 2p), mode numbers
range from−N/2 to N/2− 1 in increments of 1, based on fft function in
MATLAB

Mode-numbered ordering of û(0): -N/2 -N/2+1 ... -1 0 1 ... N/2-1 N/2-1
Mode-Numbered Ordering of û(1): -N/2 -N/2+1 ... -1 0 1 ... N/2-1 N/2-1

Step One: Cyclically permute û(0) by k − 1, reverse the ordering of û(1),
(Note: extra shift by 1 to get into the right position due to reversing û(1))

Mode-numbered o of û(0): N/2+k+1 ... k-2 k-1 k k+1 ... N/2+k-1 N/2+k
Mode-numbered ordering of û(1): N/2-1 ... 2 1 0 -1 ... -N/2+1 -N/2

Final Step: Element-wise multiplication and summation of allowed com-
binations

Depending on whether we shift to the right(k < 0) or left(k ≥ 0), the
admissible combinations to the convolution sum are either the last N − k
elements (for k < 0) or the first N − k elements(for k ≥ 0). The admiss-
ability is a condition that arises from truncating the infinite sum to a sum
from −N/2 to N/2− 1

Although Burak predicted that I would need to multiply by a factor of
1/N in order to get my pseudo-spectral calculation to agree with the con-
volution sum calculation, I found the terrifying result that they matched
when I multiplied the pseudo-spectral calculation by N , which would
cause my equations to be even more unpredictable and has me question-
ing all of the different FFT’s and IFFT’s normalizations in my code.

XiongTalks Asked Xiong about how the spatial Fourier mode data pro-
duced by ksint.m is normalized and the correct procedure to ac-
quire the correct amplitudes for u(x0, t) and its derivatives. He pointed
me in the direction of siminos/lyapunov/blog.pdf which even
though he claims is normalized unconventionally, I believe it fits
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with the MATLAB convention of including 1/N with the inverse
FFT. This is a problem because this is what lead to the small values
of u(x0, t) in the first place, more reasonable values (relative to the
scale of figures in ref. [8]).

KSspaceint Still trying to find what I’m missing when it comes to whether
the reason for numerical instability in my code is due to Fourier
transform normalizations, the integration method I’m using, etc.
Compared initial and final values produced by time integration of
ksint.m of spatial Fourier modes, and the corresponding values
of u(x0, 0) and u(x0, 20.5058) and found u(x0, 0) − u(x0, 20.5058) ≈
10−9 for x0 = 1.375 (point 2 out of 32 on spatial grid). I found this
value of x0 to yield somewhat smoother results than x0 = 11, that’s
the reason for the change.

2016-07-08 Predrag When you write “20.5058” you mean not 20.5058, but T =
2Tppo10.2 to all 11 digits (or however many Xiong gives you) of precision,
not a 6-digit number, right?

2016-07-07 Matt Still trying to figure out why the temporal Fourier modes do
not drop off exponentially, as I believe this is one of the factors for the
numerical instability I am faced with. Like I mentioned in my previous
post, the order of the difference between the initial value u(x0, 0) and
u(x0, 20.5058) for x0 = 1.375 is ≈ 10−9, just to make sure this small dis-
crepancy wasn’t the problem, I forced the initial value and final value to
be identical but this yielded no fruitful results.

I have been scouring documentation and testing new editions of my code
timeperiodic.m. I tried to see if varying the amount of steps and
amounts of temporal modes affected the amplitudes in a beneficial way
but they did not.

2016-07-07 Matt From Xiong’s blog in siminos/lyapunov/blog.pdf eq. (7.97) (la-
bel xfft2): he seems to show that when converting from a convolution
sum of continuous Fourier modes, as in (13.6), to a discrete Fourier trans-
form representation, there is an additional factor of 1/N (N = number of
modes) that I hadn’t accounted for. The importance behind this is that I
believe this factor cancels the multiplication of the pseudospectral term
by N that Burak and I had discussed, which incidentally was creating
bad results.
Edited 2016-07-08
Another development: I was not defining the frequencies for temporal
Fourier modes correctly. For continuous Fourier transforms, i.e. ωk =
2πk/T , but for the discrete transforms wk = 2πk/Nt , where Nt is the
number of data points input into the FFT.

This did not fix the code completely, but when I had, by accident, input
wk = 2πk/TNt, I got somewhat stable (able to integrate from x = 0
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to x ≈ 40) results; will include a figure later. I believe I am close to
meaningful results.

2016-07-08 Xiong Discrete FFT in matlab is

ak =
N−1∑

0

u(xn)e−iqkxn , u(xn) =
1

N

N−1∑
k=0

ake
iqkxn

But we are using

ak =
1

N

N−1∑
0

u(xn)e−iqkxn , u(xn) =
N−1∑
k=0

ake
iqkxn

So the normalization is different. ksint.m uses the C++ implementation
of siminos/matlab/ruslan/ksfmetd2.m. In this file, you can find
the nonlinear term coefficient is g = 0.5i k N , not 0.5i k. This is how Rus-
lan took care of the normalization difference. If you follow this rule, your
code should be fine. Embarrassingly, I forgot this difference when pro-
ducing figure 13.3, and Predrag did not catch error in time, so the wrong
scale is in the published Ding and Cvitanović [11]. The scale in figure 13.3
is about 0.03. Multiplying it with 64 (I use 64 modes in ref. [11]), you
should get the scale in figure 16.18.

2016-07-09 Predrag to Xiong: Wow, that’s painful - is it too late to fix figure 13.3
in Ding and Cvitanović [11]? The paper is not on line yet. And can you
fix this in all current codes that you are using for Kuramoto-Sivashinsky
Poincaré section calculations, so this error does not seep into the coming
Kuramoto-Sivashinsky symbolic dynamics paper?

2016-07-09 Matt Results from ref. [11] reproduced in figure 13.4 (a). Vertical
line from this data is used as initial condition for space-integration. Still
can’t get numerically stable results after more testing and editing.

According to Wikipedia Discrete-time Fourier transform, the correct for-
mulation for the frequencies is

ωk =
2πk

NT
(13.7)

(N is the number of modes). 5

2016-07-09 Predrag Your code is an integrator. A suggestion, for testing pur-
poses:

Why don’t you test it as a time integrator (instead of Kassam and Tre-
fethen [24] code - your code should be good enough for short times inte-
grations), start with Xiong’s u(x, 0)ppo10.2 , integrate Kuramoto-Sivashin-
sky to u(x, 2T)ppo10.2 , see how well you reproduce figure 13.4 (a). When
that works, return back to testing it as an integrator in space.

5Matt : Edited the 2016-07-09 post to abide by this.
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(a) (b)

Figure 13.4: Pre-periodic orbit ppo10.2 of L = 22 system integrated over (a)
t ∈ [0, 4Tppo10.2 ] in order to compare to figure 13.3. Produced by Kassam and
Trefethen [24] ksint.m, but now correctly scaled, following Xiong. (b) t =
[0, 6Tppo10.2 ]. Produced by MATLAB function ode23s.
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2016-07-11 Matt Realized after more testing that the stiffness of equations (1.34)
was not being addressed by the integrator I was implementing. I used
MATLAB integrator ode23s to test time integration and produced fig-
ure 13.4 (b). As anyone can see this does not reproduce results from
ref. [11]. Even with that in mind, I attempted to apply ode23s to spa-
tial integration and was left waiting for code to compile that never com-
pleted. I now beginning to believe that in order to get quick and ac-
curate results from integration of these stiff PDE’s that I will have to
adapt a different scheme for my code, possibly the code from Kassam
and Trefethen [24] in order to properly integrate. This would involve
using Chebyshev Differentiation Matrices as mentioned in Kassam and
Trefethen [24] or a similar method to represent the linear terms because
I don’t believe the linear part of the equation can be represented by a
diagonal matrix.

2016-07-12 Predrag At least visually, the two integrators in figure 13.4 agree
pretty well. Have you maybe committed the wrong figure 13.4 (b)? If
not, why don’t you show us the plot of the spatial integrator, if not for
L = 22, at least for x ∈ {0, 1} with very small space-step integration, so
we can see that you are starting with u(0, t) that agrees with figure 13.3.

At this time, it is more important to get qualitatively right space integra-
tion. We can worry about improving the integrator later. Perhaps it is
not the problem of a numerical integrator. Our starting (1.36) might be
wrong in some deep and profound way...

2016-07-12 Xiong to Matt ode23s has options to set the accuracy of each inte-
gration step, and you can print out the integration statics. This implicit
integrator has order 2, so you should not expect your result to be very
accurate. Other choice maybe ode15s.

You observed that ode23s halted forever for spatial integration. It means
that it is reducing the time step to an extremely small value so as to match
the local error tolerance. Probably, you can increase this tolerance to get
a qualitative picture. As you know, implicit scheme like ode23s are al-
ways stable.

2016-07-05 Predrag I order to match up with our temporal evolution of Ku-
ramoto-Sivashinsky plots, in u(x, t) spacetime heat maps plots always
plot the spatial x coordinate along the x-axis, increasing from the left to
the right, and the temporal t coordinate along the y axis, increasing from
t = 0 upwards. Label axes x and t, not using words. Try to use the same
units, i.e., if one plot is time-periodic on T = 7 and the other on T = 14,
the strip representing the second plot should be twice as wide.

Makes it easier to eyeball different plots...

2016-07-08 Predrag In preparing the initial condition for the space integration,
when you write “20.5058” you mean not the 6-digit number 20.5058, but
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T = 2Tppo10.2 to all 11 digits (or however many Xiong gives you) of pre-
cision, right?

2016-07-13 Matt Comments I am indeed using T = 2Tppo10.2 .
On the comments about the graphical conventions, I will adhere to
this from now on; I think it will be easier to scale in LaTeX, rather
than scaling the MATLAB output as I have been doing.
Found another resource MATLAB forum that uses ωk = 2π k

N for the
frequencies. Using this in latest formulation.

MattToXiong I think I have experienced what you have mentioned in
the past, in regards to error tolerances; when my code was incorrect
it was reducing the step size to ∆x ≈ 10−14. I will definitely look
into the error tolerances tomorrow.

QuestionForBurak I think I might have misinterpreted what Burak wrote
down some time ago, in reference to his statement:

εu
(3)
tt to the RHS of the first equation in (1.34), which would show

up as −εω2
kûk in Fourier space.

Does this mean that I should have a term that looks like −εω2
kû

(3)
k ?

or −εω2
kû

(0)
k ? (Note: The only difference is the superscripts) I have

been using −εω2
kû

(3)
k and now I am full of doubts.

2016-07-13 Burak to Matt: Your original interpretation was right, I corrected
my previous post.

2016-07-13 Matt I have included plots figure 13.5, 13.6, 13.7, and 13.8 of spatial
integration of (1.36) using my code timeperiodic.m and velocityfunction
(which I really should rename).

I varied the definitions of ωk because I still find conflicting sources. I be-
lieve figure 13.8 is evidence showing that indeed ωk = 2πk

N T is the correct
formulation because I could not produce similar results for integration
over x = [0, 44] with the alternative definition: ωk = 2πk

N .

The specific value of e = 0.1 was initially random. After some testing, it
seemed to have no effect for ωk = 2πk

N T plots. Its effect on the ωk = 2πk
N

plots was such that for e ≤ 0.05 the values of u(x, t) would diverge faster.
For values e ≥ 0.1 there were diminishing returns, as the results for e = 1,
e = 10 and e = 100 were almost identical.

2016-7-14 Matt Spent today with more testing and investigation into why the
values of u(x, t) seem to increase as the integration range is increased. In
figure 13.8 I show that after some initial length x the derivatives appear
periodic. I am hesitant to say there is “transient" behavior because this
happens in a finite spatial interval, not time, but the fact remains that
the spatial derivatives ux(x, t), uxx(x, t) and uxxx(x, t) seem to be well-
behaved while u(x, t) itself is not.
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ωk = 2πk
N T

e = 0.1 ωk = 2πk
N

e = 0 ωk = 2πk
N

e = 0.1

Figure 13.5: Spatial integration of initial temporal strip of uppo10.2 , (T =
4Tppo10.2 ) for x = [0, 2] with varying the conflicting definitions for the frequen-
cies ωk and varying the artificial diffusion constant e. I believe that the reason
why there is no difference between the first and second panel is because both
were poorly formulated due to the misstep I had with the frequencies men-
tioned in my post of 2016-07-21. I also changed the −iωkû(0)

k to both iωkû
(0)
k

and ωkû
(0)
k , with no effect on the spatial integrations displayed here. In retro-

spect, the plots displayed here are quite meaningless.

I believe this is due to the first equation of (1.36) being dominated by the
term û

(2)
k .

2016-07-22 Predrag According to (4.29) the correct definition for a continuous
time Fourier transform is is ωk = 2πk/T. You say that figure 13.8 shows
that ωk = 2πk

N T is the correct definition. Maybe you can add some further
text to the discretization approximation (4.32) and show that the contin-
uous time Fourier transform (4.29) indeed leads to (13.7).
Matt 2016-07-25 Because ωk is coming from term −u(0)

t when written in
terms of continuous time Fourier modes, I believe the correct definition
to use is the expression ωk = 2πk

T . It is then that the terms ûk are replaced
by their discretized versions, namely
ûk = 1

N

∑N−1
n=0 u(tn)e−i2πnk/N = 1

NF{u(tn)} U̇nless there is something I
didn’t understand from what Burak has told me (and written in sect. 4.2),
I believe I have done this correctly.
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ωk = 2πk
N T

e = 0.1 ωk = 2πk
N

e = 0 ωk = 2πk
N

e = 0.1

Figure 13.6: Spatial integration of initial temporal strip of uppo10.2 , (T =
4Tppo10.2 ) for x = [0, 16] with varying the conflicting definitions for the fre-
quencies ωk and varying the artificial diffusion constant e

2016-07-13 Burak In sect. 4.2 I go through the derivation of (1.36) in order to
clarify all possible normalization related issues in Fourier transforms.
Please go through sect. 4.2, make sure each step is correct, both on pa-
per and in your code.

2016-07-18 Matt Went through calculations as Burak requested. I was in agree-
ment with the results but would like to hear whether there is a reason for
the pseudospectral term to be written as 1

NF{u(0)u(1)} versus an expres-
sion that is completely in terms of Fourier modes. There might be a sub-
tlety I’m not picking up on, but my derivations implied that it could be
written instead as a convolution between û(0)

k and û
(1)
k . The reason why

I would want to keep everything in terms of Fourier modes is because I
feel like it would make the integrator more efficiently.
Predrag 2016-07-23 I think the general strategy of pseudospectral codes
is to evaluate nonlinear terms in the configuration space, then do integra-
tion stepping in the Fourier representation.
Xiong 2016-07-24 Using 1

NF{u(0)u(1)} instead an expansion in Fourier
modes because of their different computational complexity: O(N logN)
versus O(N2).

Thanks a lot for the help Burak! I really do appreciate it.
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ωk = 2πk
N T

e = 0.1 ωk = 2πk
N

e = 0 ωk = 2πk
N

e = 0.1

Figure 13.7: Spatial integration of initial temporal strip of uppo10.2 , (T =
4Tppo10.2 ) for x = [0, 22] with varying the conflicting definitions for the fre-
quencies ωk and varying the artificial diffusion constant e.

2016-07-19 Matt I finished applying changes to my code that Burak helped me
with.

After more testing and still having diverging results, but having seem-
ingly good results for small spatial integration x ∈ [0,≈ 1] I decided
that the best test for my code in its current state was to glue a bunch of
spatial integration results together and see if they agreed with the time-
integrated results. Specifically, there were a total of 64 strips integrated
over intervals [xn, xn+1] with xn = 22 n

64 , n = 0, ..., 63 . The main inte-
grator used was ode15s from MATLAB, with step sizes of ∆x = 0.01375
(each strip had 25 steps for the spatial integration).

The results look better than I expected because my code hasn’t been able
to produce results from a single time periodic strip, integrated over x =
[0, 22]. Although I made a small mistake when producing this figure, it
should not be the cause of why it seems to be evolving backwards in time
when compared to the time evolution of ppo10.2 seen in figure 13.3 from
Ding and Cvitanović [11].

Although it turned out better than expected, I’m unsure if these results
are meaningful in the long run because of the small spatial extent of each
spatially integrated strip, they may not be large enough to truly demon-
strate spatial evolution; but I am still hopeful about the result.
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ωk = 2πk
N T

e = 0.1

Figure 13.8: Spatial integration of initial temporal strip of uppo10.2 , (T =
4Tppo10.2 ) for x = [0, 44].

2016-07-20 Burak Figure 13.10 looks nice and I think it is a meaningful test.
Although I can see a discontinuity around x = L/2, that is probably a
minor error. I wonder if you can reproduce this figure with ε = 0; 10−4

is still very high. Moreover, if your spatial integration works for ∆x ≈ 1,
then why don’t you use 22 different strips rather than 64 so that we can
see more clearly if something went wrong.

I had a quick look at your code to check one thing: When you are taking
initial time strip data from time-integration, I think you are taking an
interval t = [0, 4T], including t = 4T, if this is the case, you should change
it to t = [0, 4T) excluding the final point in time, see definitions of Fourier
transforms above. I’m not sure how much change this would cause but
this might be the reason why figure 13.2 does not drop off as it should,
because including final point messes up the smoothness.

2016-07-20 Matt MattToBurak Fixed the the time interval to be t = [0, 4Tppo10.2)
as opposed to t = [0, 4Tppo10.2 ], and set e = 0. Both had no effect
on the solutions. I believe that I just messed up the indices on the
loop I am running, which fixed the discontinuity that was apparent
in figure 13.10, and no longer in the respective figure, (d), in fig-
ure 13.11. The intricacies are hard to notice but I attempted to keep
them scaled the same as figure 13.10. The qualitative behavior for
8 strips is wildly different from the others. Although hard to see,
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(a)

ωk = 2πk
N T

e = 0.1

(b)

ωk = 2πk
N T

e = 0.1

(c)

ωk = 2πk
N T

e = 0.1

Figure 13.9: Spatial integration of initial temporal strip derivatives of uppo10.2 ,
(T = 4Tppo10.2 ) for x = [0, 44]. (a) ux(x, t), (b) uxx(x, t), and (c) uxxx(x, t). In
retrospect, the plots here are not correct, due to the confusion I was having
with frequencies. In the spirit of the experimenter’s notebook, we keep here
the record of all results, good and bad.

there are a number of discontinuities for 16 strips, and the behavior
for 32 and 64 seem identical.
Predrag 2016-07-22 I interpret figure 13.11 (a) as indication that the
spatial integration is not working, the remaining plots as indication
that the spatial transient is longer than L/16 or so... Do you agree?
Matt I agree. It seems the best my code can do in its current form is
spatial integration to about x ≈ 1 if there are to be no discontinuities.

Based on Predrag’s recommendation I changed the time interval
from t = [0, 4Tppo10.2) to t = [0, 2Tppo10.2) as it might help the so-
lutions be more stable.

KSspaceint Attempted again to find the cause of the divergence by play-
ing with equations (1.36) by introducing scaling factors on the dif-
ferent terms and proceeding with spatial integration. So far the
only definitive result is that making the nonlinear term larger makes
the equations blow up faster, which is not very surprising. I also
changed the −iωkû(0)

k to be both iωkû
(0)
k and ωkû

(0)
k with no effect

on the spatial integrations for figure 13.11. My main motivation was
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ωk = 2πk
T

e = 0.0001

Figure 13.10: Spatial integration results for 64 time periodic strips T = 4Tppo10.2
from the time evolution of ppo10.2 compiled into one image. The time periodic
strips were generated by Xiong’s MATLAB code ksint.m. The initial time
periodic strips were integrated over spatial intervals [xn, xn+1] with xn = 22 n

64 ,
n = 0, ..., 63.

to try simple things which could possibly have an effect. I thought
the main problem was the nonlinear term, but if I recall correctly
I removed it from the equation in an albeit ridiculous procedure,
and I still had the divergence problem. I’ll verify this tomorrow be-
cause I’m having trouble recalling if that’s actually what I did, but I
wanted to write it down to remind myself.

2016-07-21 Matt :

PowerSpectrumFigures The first set of figures in figure 13.12 are the
power spectra for initial time-periodic conditions for t = [0, 2Tppo10.2 ]
and t = [0, 2Tppo10.2) in order to compare whether there are any dif-
ferences. Because the interesting details are hard to see, I’ve also
included figure 13.13 which are merely magnified versions of fig-
ure 13.12. There seems to be no difference between the two, when
taking my poor windowing into consideration.
Some key things to note about the plots in figure 13.14 is that this is
the power spectrum on a logarithmic scale, log10 |û(0)

k |2, as opposed
to the amplitude spectrum in figure 13.2. The other key difference
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(a) (b)

(c) (d)

Figure 13.11: Spatial integration x = [0, 22] with zero artificial diffusion (e =
0). Initial conditions are time periodic strips t = [0, 2Tppo10.2) provided by
ksint.m. The number of integration strips, (i.e., the number of time-periodic
initial conditions from ksint.m used for spatial integration) are: (a) 8, (b) 16,
(c) 32, and (d) 64.

is that I am using the normalization convention ûk = 1
NF{u(tn)}.

Previously I was dividing by N on application of the inverse FFT.
When the number of modes is smaller than the number of time
steps, the amplitudes are much larger in magnitude. When the num-
ber of modes is taken to be greater than the number of time steps,
the amplitudes resemble the Fourier transform of a rectangular win-
dow function. The optimal (smallest amplitudes) number of modes
seems to be equal to the number of time steps.

FourierSpaceInt Also included in this blog post are plots of the spatially
integrated Fourier mode amplitudes |û(0)

k |, plotted on a log10 scale,
in an attempt to see why the equations are still unstable. I thought
that this might be useful in identifying any peculiar behavior, but all
of the plots in figure 13.14 are very similar to each other. û(3)

k seems
to blow up first which drags the rest û(0)

k , û(1)
k , û(2)

k , with it. This
interpretation is based on the scales included in the figures.

2016-07-23 Predrag I do not understand the difference between (a) and (b) in
figure 13.12 and figure 13.13. Presumably they are time-power spectra
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(a) (b)

Figure 13.12: Double-sided power spectrum: log10 |û(0)
k |2 for initial time-

periodic strips (a) t = [0, 2Tppo10.2 ] and (b) t = [0, 2Tppo10.2) where the number
of modes is N = 520

for time-periodic u(x0, t) at different fixed x0?
Matt The difference in (a) and (b) is the figure 13.12 and figure 13.13 was
based on Burak’s recommendation to check and see whether having t =
[0, 4T] vs. t = [0, 4T), (the latter being correct) had an impact on the
amplitude spectrum / power spectrum. I was using MATLAB’s absolute
value feature abs() so I’m certain they are being calculated the correct
way.

Why are they oscillating wildly? Are you really looking at complex am-
plitudes when you write |û(0)

k |2, or are you squaring the imaginary and
real part separately? It looks like your even modes mean something, and
all odd modes are vanishing. That is probably not good, as do not see off
hand why û0 should be vanishing, for example.
Matt 2016-07-25 I’m still confused as to this oscillation as well.
Matt 2016-07-26 The rapid oscillation of figure 13.12 seems to only occur
for the Fourier Coefficients of temporal FFT of 1st, and 16th configura-
tion space points when a resolution of 32 points is used. The other sets of
Fourier Coefficients seem to be better behaved, i.e. much less oscillatory
but not completely monotonic.
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(a) (b)

Figure 13.13: Double-sided power spectrum: log10 |û(0)
k |2 for initial time-

periodic strips (a) t ∈ [0, 2Tppo10.2 ] and (b) t ∈ [0, 2Tppo10.2). This is the same as
figure 13.12 except zoomed in to show ≈ 100 modes. Note: The windowing is
slightly off between the two as I did this by hand.

Then again, it might be a peculiarity of the orbit being pre-periodic orbit,
though I do not see how symmetry under a spatial reflection transfers
into vanishing temporal Fourier modes...

No matter, figure 13.12 tells you that N = 520 is vastly too many modes,
something like N = 20 should suffice.
Matt 2016-07-25 I tookN to be different from the number of configuration
space points was mainly for testing to see if the amplitudes behaved as
expected, i.e., decaying exponentially.

2016-07-23 Predrag So the problem with your integrand is elsewhere, perhaps
in the normalization of the nonlinear-linear term?
Matt I’m still trying to figure out the problem, but I don’t believe it has
to do with the normalization of the nonlinear term. The evidence for
this is that I can compute the nonlinear term using multiple methods:
MATLAB’s built-in convolution function, a convolution sum, and man-
ual fully-spectral calculation and they all yielded the same results.

2016-07-23 Predrag Above, on 2016-7-14, you write that u(x, t) is not well-
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(a) (b)

(c) (d)

Figure 13.14: Spatial integration x = [0, 5] of temporal Fourier mode ampli-
tudes plotted on a log10 scale. Each vertical strip is a fast Fourier transform of
a time periodic strip t = [0, 2Tppo10.2) provided by ksint.m. (a) û(0)

k , (b) û(1)
k ,

(c) û(2)
k , and (d) û(3)

k .

behaved “due to the first equation of (1.36) being dominated by the term
û

(2)
k .” I do not see that.

2016-07-23 Predrag ux(x, t), (b) uxx(x, t), and (c) uxxx(x, t) of figure 13.9 seem
to go to a spatial limit cycle of fixed spatial frequency, except u(x, t) is
drifting off in amplitude. Cannot be right...

2016-07-23 Predrag I do not see why would you use N different from T/∆t,
where ∆t is your (Xiong’s?) time discretization? It is a discrete Fourier
transform of a discrete periodic lattice, so the number of Fourier modes
should strictly equal the number of configuration space points, right?
As in sect. 4.2, and confirming your observation: “The optimal (small-
est amplitudes) number of modes seems to be equal to the number of
time steps.”
Matt 2016-07-25 If the configuration space has 520 discretized time points,
would it not be correct to take N = 520? I don’t believe fewer time steps
suffice for Xiong’s integrator. When I tried in the past to take 128 steps,
for example, it would produce poor results (not periodic in time).
Predrag 2016-07-26 That is true of the integration - the orbit is unstable.
However, once you have the point on the orbit, which is quite smooth, a
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smaller number of Fourier modes might do the job to the machine accu-
racy (as you see in your power plots). Try using every second point, ie
N = 260, see what it’s power spectrum looks like.

BTW, you should redo Xiong’s integrations by using N = 2m, to be able
to exploit FFT. Best to discuss this with Xiong.

2016-07-23 Predrag To me the plots in figure 13.14 all blow up at the same time,
not û(3)

k blowing up first. More worrisome is that high frequencies all
grow, meaning the spectrum is flattening out, so there is some singularity
(a step?) growing in u(·, x) with increasing x. That should not happen,
the correct u(·, x) is smooth for all x.

2016-07-23 Predrag I am stumped, I cannot think of a good test of your spatial
integrator. You could try to reproduce equilibria of refs. [12, 27, 30, 34]
- that would only have the zeroth Fourier mode in your integration of
û

(i)
0 (x), i.e., you would test your PDE integrator on time-independent

initial condition.

I do not see anything wrong with the spatial evolution (1.34), except I’m
puzzled that I do not remember ever having read that one can trade in a
temporal evolution for spatial evolution on a spatiotemporally periodic
domain (a 2-torus).

I suspect there are still errors in the way (1.34) has been coded...

2016-07-25 Matt : Still trying to figure out any fixes I can apply to my code.
Began outlining/drafting for report due next week.

2016-07-26 Matt ErrorHunting Started looking at parts of the code that I may
have been taking for granted. I thought most of the problems were
arising from normalization issues, error tolerances, frequencies, spec-
tral methods, and the actual integrator, ode15s, so that’s where
most of my time has been spent. Having still not achieved spatial
integration for x ∈ [0, 22], I’ve been picking through everything for
a while now to see if there’s something I might have been taking for
granted or overlooked.
Previously, I had checked the results from the time integrator by
reproducing figure 13.3 in figure 13.4. Also, as an secondary check of
periodicity, I plotted orbits in u(x, t), ux(x, t), uxx(x, t) coordinates,
and other combinations such as ux(x, t), uxx(x, t), uxxx(x, t) just to
see if the time-integrated data formed a closed orbit, which they
appeared to.
This being said, it seems I was unaware that checking the periodic-
ity of derivatives calculated by spectral differentiation in (4.28) was
insufficient. The derivatives don’t seem to demonstrate the actual
rates of change of u(x, t), which might be why the spatial integra-
tion could be blowing up. As one can see in figure 13.15. (Apologies
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(a) (b)

(c) (d)

Figure 13.15: Results from Spectral Differentiation method (4.28) and compar-
ison to u(x, t). (a) u(x, t), (b) ux(x, t), (c) uxx(x, t), and (d) uxxx(x, t).

for the custom paint job on the figures, I realized that the titles were
incorrect after leaving the office.)
I found in fftderiv that one needs to treat the even and odd numbers
of derivatives differently in terms of the form the wave numbers
need to take, c.f. Algorithm 1 Algorithm 2. When applying this to
my code it didn’t change the results from the spectral differentiation.
Burak pointed out I was making a mistake. Updated the figures in
response.

RegardingPCpost (I will also put these comments in the appropriate
place in regards to the correspondence of the previous couple days.)
The rapid oscillation of figure 13.12 seems to only occur for the FFT
corresponding to the 1st, and 16th configuration space points when
a resolution of 32 points is used.

2016-08-08 Matt Was Ill for the majority of last week so I didn’t accomplish
much outside of my report, hence the lack of blog posts.

Dealiasing Instead of the so called "3/2 rule" delaliasing method (where
the nonlinear term is computed on a larger grid created by zero-
padding arrays), I applied the so-called "2/3 rule" where the values
of the highest 1/3 of Fourier coefficients are set to zero when calcu-
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lating the nonlinear term of (1.36). Got the idea from arXiv. This
did not seem to help in any way after testing.

Equilibrium test Tested spatial integration for initial condition that was
constant in time (i.e. only nonzero Fourier coefficient was the 0th
mode. I wasn’t completely sure what to do for the initial conditions
of the spatial derivatives so I assumed they fell under the same con-
dition. I tested with multiple sets initial values for the derivatives
(the zeroth modes ûi0 i = 1, 2, 3). When all of the derivatives were
set to zero, there was no change in u(x, t) (done as a sanity check).
When the initial conditions for the spatial derivatives were taken
from the time integration the values of u(x, t) (constant in time but
not space) oscillate between negative and positive values before es-
caping to −∞. The amplitude of the Fourier coefficient û0

0 was the
only nonconstant value.

FutureWork I’m unsure where I should proceed from here. I am still
searching for further improvements to my code but I am really run-
ning out of ideas, other than scrapping the integration routine I
am running and trying to apply the ETDRK4 schema from ref. [24];
which I’m not sure can even be applied.

MeetingRocklin Made plans to talk to Prof. Rocklin this Wednesday.

2016-08-10 Matt MeetingWithZeb I met with Professor Rocklin as was planned.
We discussed topological transformable materials and their implica-
tions and properties. The primary topic of this discussion was floppy
modes. Which are soft deformations of the system with small en-
ergy costs. This is done in order to create materials whose mechan-
ical properties can change by means of such a transformation. We
touched on other topics as well such as elasticity theory and amor-
phous materials. Papers read/skimmed: arXiv:1512.06839v1 [cond-
mat.soft], arXiv:1510.04970v1 [cond.mat.mes-hall], arXiv:1403.0936v1
[cond-mat.soft].

KSspaceint I’ve been looking for more ways to change my code/find
methods that are of use in spatial integration, looking for different
ideas across the internet and in ref. [52].
Tested whether or not the higher modes are corrupting the lower
modes by doing different tests; namely forcing higher modes to be
equal to zero. This had no effect on the evolution of the lower modes
who are so dominant the behavior of u(x, t) was also unchanged.
Did more testing on the 2/3− rule dealiasing scheme. This showed
marginal improvements over no aliasing, but it is better than the
3/2− rule because it’s cheaper computationally.

2016-08-11 Matt KSspaceint Looked at the spatial evolution of u(x, t) in a new
way today in hope to get some new idea on how to make some
progress. I made the integrator plot u(x, t) = NF−1

(
û0
k

)
at every
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step and watched it like an animation. What I observed was that
u(x, t) is seemingly unchanged until some critical point where the
field seems to destabilize, at which point the field inverts itself, and
then at (usually one or two) a few points diverges towards infinity. I
investigated this further by introducing some parameters into equa-
tion (1.36). The most notable result from this experimentation was
that the equations became more stable after making the contribution
of û2

k larger in comparison to the other terms in,

∂

∂x
û

(3)
` = −iω`û(0)

` − û(2)
` −

∞∑
`′=−∞

û
(0)
`−`′ û

(1)
`′ ,

which I was not expecting due to how the terms behave in time in-
tegration.

Windowing Looked into applying a windowing function in order to deal
with spectral leakage and any discontinuities present; had little ef-
fect on the integration process but completely corrupted u(x, t). At
least I learned something I suppose.

ErrorCorrection I realized through my animation method described above
that the integrator was mishandling the initial conditions which caused
a couple of figures to display backwards time-behavior over spatial
integration, e.g. figure 13.10. I have uploaded new figures which
should be correct.

2016-08-15 Predrag I do not quite understand “until some critical point” (you
mean a value of the integration coordinate x?) and “at (usually one or
two) a few points diverges towards infinity” (you mean values of time t?)
while looking at u(x, t) = NF−1

(
û0
k

)
, but that might be a hint that there

is something seriously wrong with the concept of integration of these
equations along the spatial coordinate. But why then can one integrate it
for the T = 0, i.e., equilibria?

I have not yet put together sect. 1.5 and sect. 1.6, and recast the problem of
finding a periodically repeating spatio-domain as a fixed point condition,
like Boris likes to do (allegedly - I have not seen the formulas for the fixed
point Jacobian matrix yet), but:

There are two ways of solving differential equations. One is as integrate-
forward problem, with given initial conditions - that is what we are trying
to do now.

The other is as a variational problem, where one makes a guess loop [9,
29] (for a periodic orbit) or a guess torus [28] (for an invariant torus, such
as we search for here), and then defines an error function that measures
the integral squared of the local deviation of the tangent space to the
guess from the tangent space as defined by the equations of motion at the
point. That is guaranteed to converge by Newton descent, for a decent
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enough initial guess (and our guess is the numerically exact solution).
The stability is 1 − J , and Boris says that its determinant does not care
whether one integrates time or space. Still not obvious to me, but feels
right.
What I am saying is that I still worry that your code has an error, such
that locally the tangent fields are not as given by the (instantaneous)
equations of motion. If there is any error in that, the integration must
go awry. Concretely, if tangents to surface your integrator sweeps out by
integrating the initial time-periodic state do not agree with the tangents
to the exact solution (the instantaneos equations of motion), the code has
an error. That is a local test, it requires no integration.

2016-08-16 Matt Testing Did more code testing yesterday and today, but no
progress to report.

Report Small additions and edits to reportMNG.tex.
Reading Began parsing through the literature on (variational) Newton

descent, specifically refs. [9, 29] and for invariant tori ref. [28].
MattToPC The derivatives at this stage are be calculated by spectral dif-

ferentiation method, if I’m understanding you correctly you’re say-
ing if my tangent fields are wrong then the integration cannot pro-
ceed correctly, which I agree with. Do we know of a way to check
this outside of something like finite difference methods?
Predrag 2016-08-19 Wish I knew. Whatever goes into the integration
subroutine as the equations to integrate must (instantaneously, or in
one integration step) satisfy (12.2) and (12.25).

2016-08-18 Burak to Matt:
If I’m not mistaken, you have been trying to use Matlab’s built-in inte-
grators most of the time. My suggestion for you is to look for implicit
integrators used for Hamiltonian systems, which are symmetric under
time-reversal. We have an analogous situation here since we have space-
reversal symmetry. You can start with the implicit midpoint method.

2016-08-18 Predrag I would not use much time on improving integrators at
this stage (the flow is not Hamiltonian, but there is lots of literature on
time-reversal invariant dynamical systems - ref. [3, 25, 26] are a few ex-
amples). We either have a bug in the code, or there is something seriously
amiss about the whole idea. First we need to go step by step through the
code, then someone re-derives the equations and writes an independent
code from the scratch. If two independent codes produce the same tra-
jectories, then we need to rethink the whole idea.

2016-08-18 Matt :

MNGtoPC Would it be worthwhile to write up a step-by-step summary,
i.e. a walk-through, of my code and perhaps add it to my report?
Predrag 2016-08-19 Hope not - seems like too much work...
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(a) (b) (c)

Figure 13.16: Spatial integration x ∈ [0, 5] comparison of integrators (a)
ode15s and (b) implicit midpoint method. Initial condition was a time strip of
ppo10.2. (c) Spatial integration x ∈ [0, 22] using values for uxxxx(x, t) acquired
from spectral differentiation as opposed to evaluation of the Kuramoto-Siva-
shinsky equation. The implicit midpoint method was employed as the integra-
tor as I found it easier to control the step size.

ImplicitMidpointMethod According to figure 13.16 (a) and (b) my im-
plementation of the implicit midpoint method generates the same
results as ode15s, albeit at a slower pace. The figure includes spa-
tial integration data for x ∈ [0, 5] using the same initial condition as
usual, a time strip of ppo10.2.

AnotherTest I decided to test my integrator with one more (final?) method.
Instead of evaluating the Fourier coefficients û(3)

k corresponding to
uxxxx(x, t), during the integration process using the Kuramoto-Siva-
shinsky equation, I generated them by means of spectral differenti-
ation using the initial condition.
I acknowledge that I am bypassing the entire point of my project
but I just figured I might as well test this case as I thought it might
demonstrate whether the accuracy of the derivatives I have been us-
ing all along has been adequate. Sadly, not even this test will repro-
duce the ppo10.2 orbit, as can be seen in figure 13.16 (c). I believe that
this indeed shows that the inaccuracy is playing a larger role than
I might have initially anticipated, as even the values for the deriva-
tives taken directly from the time integration were inadequate in
reproducing the orbit. I used a spatial discretization of 1024 config-
uration space points in order to help smooth out the derivatives for
spatial integration, i.e. xn = n 22/1024, n = 0, 1, . . . , 1024.
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2016-08-19 Predrag Figure 13.16 (a) and (b) are sure going off the charts:
u(x, t)→ −65. Flummoxed.

2016-08-20 Matt : There are two different programs one can apply to regarding
working at UC Santa Barbara.

Graduate Fellowship Program According to Graduate Fellowship Pro-
gram the process of the applying to the graduate fellowship pro-
gram is as follows: the advisor is required to fill out a nomination
form consisting of the personal information of the student and a
short letter of recommendation for the program and acknowledge
the minimum five month stay at UC Santa Barbara. (The student
can also stay up to 6 months). They support up to four gradu-
ate students at a time, either in Summer (July-December) or Spring
(January-June).
The student is reimbursed up to 2100 dollars a month for housing
and food; there is also a rather ambiguous statement about round-
trip travel "some assistance can also be provided".
The deadline for nominations for the January-June stay is September
1st, while the deadline for the July-December stay is February 1st.

KITP Affiliate Program I couldn’t find a page describing this program
other than the actual form itself Affiliate Program Form; wherein
it requires the advisor’s information/stay information, information
about the student or postdoc, and the proposed stay for the student
or postdoc. This is supposed to be a minimum of three weeks. If
there is a plan for the student/postdoc to stay greater than or equal
to six weeks financial support can be requested.
The main requirement is that the advisor has already received an
invitation; I could not find deadline information pertaining to this
form; any questions are supposed to be sent to the director of the
program via Contact Director. I sent a message via this link re-
questing the deadline information.

2016-08-20 Matt : With help of Lan and Cvitanović [29] I rederived,

∂2x̃

∂s∂τ
− λA∂x̃

∂τ
− v ∂λ

∂τ
= λv − ṽ

in order to get a better understanding of all of the working pieces and
where the terms originate from.

From what I understand, a guess loop (which is required to be a relatively
good guess to a periodic orbit) is parameterized/discretized with vari-
ables sn (which has to be done carefully to avoid clumping, which would
destroy the numerical smoothness). The periodic orbit is discretized with
variable tn. Each point on this guess loop, L, has two important vector
quantities associated with it, namely, the loop tangent ṽ and the flow
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velocity v. A cost functional is minimized such that after a process of
continuous deformations parameterized by fictitious time variable τ the
two vectors converge in the limit of the loop L approaches the periodic
orbit. The magnitudes of these two vectors are matched with a scaling
coefficient λ = ∆tn

∆sn
.

If I am understanding this correctly, in the scope of my problem, if a time
periodic orbit is taken to be the initial guess loop, then the flow velocities
take over the role of loop tangents, and the flow velocities role is replaced
with the corresponding spatial derivatives.

While I haven’t begun the actual implementation of this I’m sure there
are some subtleties that I am missing out on, I especially have my doubts
about whether the form of variational equation should look the same as
the role of time is being replaced by a spatial variable, although perhaps
I’m supposed to merely view them as means by which the loop is param-
eterized.

The part that troubles me is that as far as I see this will not enable spatial
integration of infinite extent because the end result would be a spatially
periodic loop if functioning properly, but for my purposes this is better
than getting no results i.e., where my project currently stands with direct
spatial integration in Fourier space.

2016-08-22 Predrag The periodic orbit examples [9, 29] illustrate the Newton
descent idea. The power of the method is that arbitrarily long, arbitrar-
ily unstable long cycles can be found (see the long Kuramoto-Sivashin-
sky orbit in Fig. 6 (d) of ref. [30]; also T = 0 spatial periodic orbits of
Sect. III could not have been found without the Newton descent). In
our project we are interested in determining a doubly-periodic time- and
space- translation invariant torus from a guess torus. An example, ad-
mittedly a pretty mild one, is worked out in ref. [28].

2016-08-22 Matt :

MeetingWithPC Discussed the variational Newton descent in the case
of spacetime torus. Briefly mentioned the motivation in regards to
its benefits of stability versus integration procedures. The main idea
is that there are two tangent spaces defined at each spacetime point.
My goal is to formulate fictitious time integration that minimizes a
cost-functional between these two tangent spaces.
This process will be implemented by minimizing the angle of sepa-
ration between the tangent hyperplanes defined by the two tangent
spaces. In order to have computational progression and not stall out,
I must decide on a method of symmetry reduction in order to break
both continuous symmetries present in the problem at hand: time
and translational symmetries. By doing so I will force the system to
evolve in a "tranverse" direction, i.e. the direction of interest.
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Variational Newton Method for spacetime torus We begin with an ini-
tial condition that takes the form of a spacetime torus. In my case,
this will specifically be the short periodic orbit ppo10.2 of the L = 22
Kuramoto-Sivashinsky system. The state space points x will be pa-
rameterized by 6 s = (s1, s2, ..., sm) ∈ [0, 2π]m such that

x(s + 2πk) = x(s) for all k ∈ Zm.

The torus we are searching for will be an invariant set of the map-
ping

f(x(s)) = x(s + ω(s))

where ω is the parametrization dependent shift. With this initial
condition, a fictitious time parameter τ is to be defined such that it
parameterizes a continuous transformation between the initial guess
torus and the torus invariant under the mapping (homotopy?).
The fictitious time evolution will be defined by the minimization of
a cost functional 7

F(s, τ)2 = (x(s + ω(s, τ), τ)− f(x(s, τ)))
2 (13.8)

2016-08-23 Matt : Still trying to understand the variational Newton descent;

What I originally thought was that given the initial condition, the time
integrated solution ppo10.2 (thanks for the ghostbusting) defined on an
N×M grid. N is determined by the spatial resolution/discretization and
M is determined by the number of time steps in the integration process.
For computational speed, N and M should be taken to be powers of 2 to
exploit the speed of MATLAB’s FFT algorithm.

For simplicity it’s probably best to have N = M , but for the sake of un-
ambiguous subscripts I will keep it as M for the time being. 8 By doing
so, the parameterization / discretization of the initial condition becomes,
9

s = (s1, s2) = (xn, tm)

where xn = nL
N and tm = mT

M for n = 0, . . . , N − 1 and m = 0, . . . ,M − 1.

With this discretization, I believe the tangent space defined over the dis-
cretization and in terms of space and time Fourier modes becomes:

v(s, τ) =

[
i
∑
k qkak(τ)eiqkxn

i
∑
j wkbk(τ)eiwktm

]
where, qk =

2πk

L
,wj =

2πj

T
(13.9)

6Predrag 2016-08-22: that presupposes a very special parametrization, where all si sit on unit
circles. For example, the curvilinear length ds = (

∑
i(dxi)

2)1/2 is not normalized like that.
7Predrag 2016-08-22: Have not wrapped my head around (13.8) yet
8Predrag 2016-08-24: please keep N and M distinct. Ideally, use the same letters that Cats use

in the spatiotemporal cats project
9Predrag 2016-08-24: please use a different letter for space length s1
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with k = −N/2 + 1, . . . , N/2 and j = −M/2 + 1, . . . ,M/2.

There are a number of things I am getting very confused with. At first I
thought I was going to be performing fictitious time evolution such that a
cost functional involving the tangent space of the evolving torus and the
tangent space of an invariant torus would be minimized. In other words,
I thought I would use the definition for the tangent space in (13.9) and
evolve the torus until

v(s, τ) =

[ ∑
k ȧk(τ)eiqkxn

i
∑
j wjbj(τ)eiwjtm

]
(13.10)

where ȧk is calculated from the representation of Kuramoto-Sivashinsky
equation used for the time integration of the spatial Fourier modes (13.1).
This is what I thought at first, but by doing so I will be neglecting (1.36) in
this process, although I don’t see how to incorporate (1.36) as this would
introduce four independent variables for the temporal Fourier modes,
making my 2-torus into a 5-torus?

2016-08-24 Predrag It does not matter how many dimensions it is embedded
in, and how many first-order equations you have, the torus is 2-dimen-
sional, one dimension for each continuous symmetry. It’s tangent space
is a 2-dimensional plane embedded in your N × M dimensions. You
compute it by doing infinitesimal shifts in time and space, i.e., by taking
derivatives... I think.

2016-08-24 Matt Also by keeping the second component constant I believe I’m
ignoring parts of the dynamics. 10

One of the other reasons why I believe I don’t understand what’s going
on is because in Lan’s paper [28], his formulation of the cost functional
(13.8) includes the difference between the mapping f and the state space
representation of the torus x. I’m quite confused how to formulate the
mapping in this circumstance, unless this is exactly the point, meaning
that it’s numerically determined by the fictitious time evolution of the
Jacobian matrix.

In short, I still have a lot of work to do in order to understand this method.

2016-08-24 Matt : Spent the day reading Schilder et al. [48] and rereading ref. [9],
Lan and Cvitanović [29], as well as ref. [28] in hopes of better understand-
ing this method.

In regards to some of the statements in my blog post yesterday; for a torus
to be invariant after the application of f, which is the criterion that we’re
using to guide the fictitious time evolution according to ref. [28], the only
intepretation my brain can think of is that f represents the tangent space

10Matt 2016-08-24: I believe this is okay as the Fourier coefficients depend on the fictitious time
τ so it’s not holding anything constant in actuality.
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of the torus that results from this fictitious time evolution. If so I feel like
maybe I was a little hasty in my judgment of the equation I came up with
for the mapping f, namely (13.10).

For a little more investigation of (13.8), I believe the reason behind the ω
in the term x(s, ω(s, τ), τ) is that the orbit reached by fictitious time evo-
lution could be a relative periodic orbit as opposed to a pre-periodic orbit.
In this case the application of the f would not leave the orbit unchanged
after one period until the corresponding shift is taken into account? That
is of course if my interpretation of f is indeed the flow field. The only
other idea I’ve been able to think of is some sort of circle map that per-
mutes items around the discretization.

This is why I still don’t understand why x is in (13.8) as opposed to v.

On how one can handle this quantity, ω, it may or may not be fixed a
priori, and one can use the following rules: for a fixed shift equal to ω
one must require

0 =
∂ω

∂τ
(13.11)

while for searching for an torus of a "given topology", one must employ
what Lan refers to as the phase condition

0 =

∮
dsv · ∂x

∂τ
(13.12)

where v is a [d × 2] dimensional tensor, where d is the dimension of the
statespace. x incorporates both the spatial and temporal Fourier modes
so it is [2× d] in size.

2016-08-24 Predrag Sorry, I have to go to bed now, and might not be able to
help in days ahead. For specific questions, ask

Yueheng Lan
Home: yueheng_lan@yahoo.com
Work lanyh@bupt.edu.cn
Mobile +86861013520900575
School of Science, Beijing University of Posts and Telecommunications
Skype yueheng_lan

2016-08-29 Matt CodeFromLan Received some code from Lan, trying to in-
terpret it at the moment; I have no experience in Fortran so at best
I’m trying to get a sense of what he has done so that I can start to
produce my own code.

Readings Still trying to figure out the best way to implement variational
Newton descent code. Read Fox [16] A brief life and death of a torus,
computation of quasiperiodic solutions to the kuramoto-sivashinsky equa-
tion and skimmed through a number of papers, with the most time
spent on Rasmussen and Dieci [42], and Ge and Leung [19].
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2016-08-30 Predrag Thanks for checking the literature! Remember, our torus
is much easier than what most literature tries to find - it suffices to find
the relative periodic orbit in the time direction, with period L, the torus
is then swept out by a rigid rotation by L in the spatial direction. Finding
invariant tori not due to symmetries (like refs. [28, 39, 40] and the above
Fox manuscript [16]) is very interesting, but do not work too hard on that
right now - our spatiotemporal domain is “trivial” in the spatial direction.

Here, for completeness are some more torus papers: [6, 14, 15, 17, 18, 22,
31, 32, 46–48, 50, 54]. Just to glance at, not necessarily read in any depth.

2015-09-15 Predrag (reposted here from elton/blog/AdamBlog.tex)

Reading about robustness of invariant tori. Farazmand likes to refer to
Fenichel [13] (to read it, click here). My understanding is that if a sta-
bility exponent is purely imaginary, it can destroy a torus at an rational
resonance; but if it has a real part (hyperbolic case), there is no way for
the Floquet exponent to approach the purely imaginary winding number
of the torus, there can be no resonance, and the torus remains smooth and
robust for an open interval of the system parameter values.

Figueras and Haro [14] write: “it has been known for a long time that
persistence of invariant manifolds is closely related to the concept of nor-
mal hyperbolicity [13, 44]. We consider the analogous concept, tailored
for skew products over rotations. Roughly speaking, an invariant torus is
fiberwise hyperbolic if the linearized dynamics on the normal bundle is
exponentially dichotomous, that is, the normal bundle splits into stable
and unstable bundles on which the dynamics is uniformly contracting
and expanding, respectively. Notice that the tangent dynamics is domi-
nated by the normal dynamics, since the former presents zero Lyapunov
exponents. This implies that fiberwise hyperbolic invariant tori are ro-
bust and are as smooth as the system [ 28 ]. ”

Figueras’ thesis might be an easier read: click here.

2016-08-31 Matt Bib Skimming Dieci, Lorenz and Russell [10], but I get lost in
the mathematical formalism.

KSspaceInt Tried some new ideas but they didn’t accomplish anything
and weren’t very well founded anyway.

TalkWithBoris Had a preliminary meeting with Boris talking about some
of the spatial integration results. He said he would think on whether
the divergent results are fundamental to the equations and if there
is some method to keep the spatial integration bounded without
changing the nature of the equations. We scheduled a meeting at
3 pm Thursday September 1st.

Reason behind my confusion: I think the reason why I’ve been so con-
fused for the past week or so is due to Lan [28] and Fox [16], i.e. I
was mixing up two different methods.
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I’m going to include what I had already typed up for complete-
ness, but I want to reiterate that I was mistaken on what I needed
to do.

• Fox [16] evolution process for a 2-torus involves the use of Poincaré
sections to reduce it to a mapping of a 1-torus. The section is
taken, due to its simplicity, is normally a hyperplane of codi-
mension 1. This also reduces one of the two continuous symme-
tries inherent in the problem, i.e., invariance under time trans-
lations.

• The remaining SO(2) continuous symmetry can be handled by
an additional condition, for instance the “phase condition" in
(13.12), which ensures that the “average motion of points in the
loop equals zero" [28].

• The initial condition is then taken to be a loop on the Poincaré
section; How one decides on the points taken is still unknown
to me. I thought they might be generated by just evolving the
system in time or space via the equations (1.36) and (13.1) but
I’m not sure.

• Together with the initial condition and the Newton descent equa-
tion,

∂x

∂τ
(s+ω, τ)+

∂x

∂s
(s+ω, τ)

∂ω

∂τ
(τ)−J(x(s, τ))

∂x

∂τ
(s, τ) = f(x(s, τ))−x(s+ω, τ),

(13.13)
one performs fictitious time integration until the maximum of
the cost functional (13.8), evaluated over the loop points is less
than a certain cut-off threshold.

• The previous part takes a nontrivial inversion of the Jacobian
matrix due to it being so large. This was done with a combina-
tion of LU decomposition and using the LU-Decomposition to
approximate the inverse

Work In Progress/Comments

• Trying to understand why the Jacobian matrix in ref. [28] only
has one index, as it is supposed to represent a matrix. Also puz-
zling to me is how it can be represented as a single Fourier se-
ries.

• I’m working on trying to figure out if the Poincaré section for-
mulation will really work for me.

• In a discussion with PC I was told to work with the tangent
space in a manner that would involve two different systems of
autonomous ODEs. Namely, the spatial evolution equations of
(1.36) and the time evolution equations (13.1). I’m unsure if it
was meant to just use one of these systems for evolution and
then look at the tangent spaces or to use both in some combined
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manner. I imagine I would use one as the spatial and temporal
Fourier modes both depend on u(x, t) but I’m not sure if this
would just reproduce previous results or would take things a
step further.

• Fox [16] mentions that the the function f in (13.8) is actually the
Poincaré return map, so I’m trying to figure out how one can the
deduce the derivatives needed in order to compute the Jacobian
matrix.

2016-09-01 Matt : The following is a description of the meeting with Boris and
Predrag.

Boris said he hadn’t yet looked at my blog for results, but his main con-
cern is whether the problems I have are fundamental or numerical, as are
seemingly everyone’s feelings about my project.

One of Boris’ main suggestions were to check the spatial integration for
the zeroth mode, and see what the results are.

Another suggestion was to examine the stability of the u(x, t) = 0.

There was much discussion on (13.4) and whether or not there is actually
a constant term present that was not previously accounted for. For the
specific cat map example it seems that this constant is not present, which
is why it had previously eluded Boris. (I think?)

The idea was brought up that somehow the spatial direction reflection
symmetry (analogue of time reversal for time direction) was affecting the
spatial integration in a manner that has so far been unaccounted for. Also
was the idea that somehow the stability in the time-direction would cause
instability in the spatial direction; leading to the idea of perhaps taking
a smaller temporal domain as the initial condition, much like how one
would take a smaller spatial domain in the time-integration process in
order to provide stability. Noted in this discussion were the T = 0 do-
main from Lanet al. [12, 30] solutions, and the sequence of bifurcations
that occur (in time direction) as domain size L is increased.

2016-09-02 Matt Spatial integration of the zeroth Fourier mode Adapted the
code for spatial integration of the zeroth temporal Fourier mode. Be-
cause this is a purely real quantity, one can plot the amplitude versus
spatial variable x, as can be seen in figure 13.17. The integration blows
up (û(0)

0 → −∞) at x ≈ 12.292453, so in order to capture what happens
before this divergence the plot represents the value of the zeroth Fourier
coefficient for x ∈ [0, 11].

2016-09-02 Predrag To me your initial version of the spatial stability matrix
(13.14) looked too diagonal - it is all off-diagonal, I tried to rewrite it in
(1.40) (also, more logically, in the increasing order of û(J)). (has been fixed
since I wrote the above comment). However, Boris has a quick way to the
eigenvalues in terms of a quartic equation, he’ll show you how. Basically,

03/17/2019 siminos/spatiotemp/chapter/blogMNG16.tex278 7451 (predrag–6805)



CHAPTER 13. MATT’S 2016 BLOG

Figure 13.17: Value of the zeroth Fourier coefficient versus the spatial variable
x for spatial integration x ∈ [0, 11]. The initial time-periodic loop was retrieved
from time integration of Kuramoto-Sivashinsky equation using ksint.m over
T = [0, 2Tppo10.2 ] using 1024 steps.

in spatial evolution we seem to have a repeller, not a strange attractor,
and all spatial evolution will take off to infinity, unless we ensure it is
staying on the repelling set. We kind of know that already from the T = 0
spatial evolution.

2016-09-02 Matt Stability of u=0 equilibria By rearranging the system of ODEs
of (1.36), the velocity gradients matrix A evaluated with u = 0 takes the
form,

A(0) =


0 1 0 0
0 0 1 0
0 0 0 1

Diag{−iωk} 0 −1 0

 (13.14)

11 where each entry is of size N ×N where N is the number of temporal
Fourier modes kept in the truncation. (i.e. 1 = IN ) and ωk = 2πk

T for
k = −N/2 + 1, . . . , N/2.

The eigenvalues (stability exponents λ(j) = µ(j) + iω(j)) of this stability
matrix for a system of 32 Fourier modes (i.e. the size of A = [128× 128])
can be categorized in the following manner:

• 60 stability exponents with positive real parts, µ(j) > 0, with the
largest being the complex conjugate pair λ(±) ≈ 1.1985± i0.6154

• 60 stability exponents with negative real parts, µ(j) < 0,

• 2 stability exponents equal to zero (up to machine precision).

• 2 purely imaginary stability exponents, λ(j) = 0± i
11Matt 2016-09-05: Sleep deprivation : I had originally written this in the wrong order because it

looked pretty
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Figure 13.18: Stability eigenvalues spectrum for one of the plane Couette flow
equilibria studied by Halcrow, Gibson and Cvitanović (unpublished). Just an
example of the spectrum, not the one we are studying here.

2016-09-08 Predrag This numerical spectrum looks like what Boris would ex-
pect from his quick way to get the eigenvalues in terms of a quartic equa-
tion, I guess you two have not talked about it yet. You do not mention
it, but the negative exponents are the reflections of the positive ones, you
might want to arrange j range in such a way that µ(−j) = −µ(j). You
should get exact analytic formula for this spectrum as a solution of a
quartic equation.

The easiest way to survey the spectrum is to plot it the (µ, ω) plane; as an
example I take a random stability exponents plot from my plane Couette
flow work with Gibson and Halcrow, figure 13.18. That flow is dissipa-
tive (no “time”-reversal invariance), so you expect a few expanding (posi-
tive) exponents, few marginal due to symmetries, and infinity of negative
ones. In the case at hand, spectrum is symmetric under µ(−j) = −µ(j), so
it will suffice to plot the µ(j) ≥ 0 half-plane.

By the way, do not plot multipliers Λj for equilibrium solutions in the
complex plane like Marcotte and Grigoriev do. That is nonsensical for
equilibria; to get a multiplier, you have to pick a (totally arbitrary and
unnatural) T in the formula |Λj | = exp(Tµ(j)).

2016-09-02 Matt Predrag stopped in to see how I was doing and asked me to
also determine the eigenvalues of the stability matrix for the zero-mode
only system i.e. the eigenvalues of the [4×4] stability matrix, in order to
verify whether the spatial integration results of figure 13.17 are valid. My
question, is where the stability matrix should be evaluated, presumably
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near the point of divergence? i.e. (x ≈ 12.292453)?

2016-09-08 Predrag u(x, t) = 0 is an equilibrium both in the temporal and spa-
tial direction. So I would first look at stability eigenvalues (stability ex-
ponents) of the spatial stability matrix on the T = 0 temporal “strip”,
along the x axis. That is, first the zero with temporal strip, than a small T
temporal strip. Not sure about this...

2016-09-02 Predrag I guess I do not know what figure 13.17 means. I meant
that if you start with T = 0 spatially periodic profile (but not chang-
ing in the time direction) its evolution is given by 4 ODEs, uncoupled to
evolution for any other initial time. So you need it to initialize the four
u(I)(0, t) with precise values corresponding to one of our equilibrium or
relative equilibrium points, the same four numbers for every t. For that
you need to use one of our equilibrium or relative equilibrium solutions,
not the relative periodic orbit ppo10.2. After Fourier transform one still
has 4 precise numbers û(I)

0 , and the rest of Fourier components vanishes.

2016-09-06 Matt KsSpaceInt Performed spatial integration on a time-strip from
one of the equilibrium solutions of Kuramoto-Sivashinsky equation , re-
ceived from Xiong’s data file ksReqx32.h5. I believe that this corre-
sponds to E1 of ref. [8], due to the label in the data file. I can’t seem to
locate my flash drive that had the plot on it, but the general procedure
was familiar. I took a time-strip of values (now constant) and attempted
spatial integration.

The resulting behavior was a monotonic decrease of the zeroth mode
Fourier amplitude to negative infinity, seen in figure 13.19 differing from
the result of figure 13.17, where I integrated the zeroth Fourier mode data
retrieved from a time strip of ppo10.2; I think this is worth mentioning be-
cause it seems that by using an equilibrium as the initial condition for
spatial integration behaves much worse, however this could be idiosyn-
cratic property of the particular time strip used.

2016-09-10 Predrag To me figure 13.19 and figure 13.17 look comparable. Can
you replot figure 13.19 as log |u(x, 0)|? I expect that would give you a
straight line, whose slope is the leading spatial stability exponent.

2016-09-06 Matt TalkWithPC Discussed the apparent truth that we are deal-
ing with a strange repeller. As I grasp it, this is not necessarily con-
firmation that my code is performing its duties, there could still be
some numerical issues, but the repeller guarantees that these are the
death of any attempt to reproduce ppo10.2. The best way to handle
this problem seems to be the variational Newton descent. I currently
have Fortran95 code sent to me by Lan that produces invariant tori,
but I’m new to Fortran and don’t quite understand it. PC mentioned
I should talk to Lan and ask him about code that produces periodic
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Figure 13.19: Plot of the amplitude of the zeroth temporal Fourier mode coef-
ficient versus x for x ∈ [0, 8]. The initial condition is a time strip of (identical)
values taken from the first equilibrium E1, in the notation of ref. [8].

orbits as opposed to tori for the time being, and to learn Fortran via
by my own merits (and perhaps Xiong’s).

NewtonDescent Sent an e-mail to Lan asking for direction towards the
codes for finding periodic orbits using Newton method.

2016-09-07 Matt Fortran Spent most of the day so far learning how to code in
Fortran, trying to walk through some of Lan’s codes. I feel like I learned
quite a bit; I also ended up finding his Fourier transform code online, as
it was taken from Numerical Recipes.

I wonder if it would be worthwhile to re-do my spatial integration code
in a different language and see if the results are identical. I feel like this
wouldn’t be too taxing with enough help from Numerical Recipes [41].

(a) (b) (c)

Figure 13.20: (µ(j), ω(j)) complex plane plots of the stability exponents λ(j) =
µ(j) + iω(j) for the stability matrix from (13.14), 512 Fourier modes were kept in
each instance, meaning the stability matrix is of size 2048×2048. The temporal
extent for each plot is (a) T = [0, 1], (b) T = [0, 10], and (c) T = [0, 10000]

2016-09-09 Matt :
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Yesterday I was learning Python, gave up on Fortran due to suggestions.
I think I should be able to program a variational Newton descent
code with a little bit more Python practice.

Stability exponents I’m including three separate plots figure 13.20 of the
stability exponents λ(j) for the u(x, t) = 0. Equilibrium of a temporal
strip of differing T, but with the number of modes constant. The
only effect that the differing temporal extents have on (13.14) is on
wk = 2πk/T . In all three figures I’ve kept 512 temporal Fourier
modes, meaning that the stability matrix is of size: 2048× 2048.
The temporal extents of each, T = [0, 1], T = [0, 100], T = [0, 10000],
were chosen because they elucidate different patterns when plotted
on the complex plane; however, I’m not sure if this is meaningful
because, again, the different temporal extents only affects the fre-
quencies wk. Also, 10000 seemed absurdly large but I was curious
to what happened at an extreme range.

2016-09-10 Predrag Mhmmm - not sure what to make of ω(j) in the (µ, ω) plane
plots of figure 13.20. Anyway, Boris says assume that eigenvector of the
u(x, t) = 0 equilibrium is of form sin(ωt) exp(kx) (missing some 2π’s and
T ’s), stick it into the Kuramoto-Sivashinsky equation, you get a quartic
equation for λ(j). The eigenvalues plotted in figure 13.20, their symme-
tries and their multiplicities presumably follow.

2016-09-12 Predrag to Matt: Does (1.43) explain your figure 13.20? Happy
birthday!

2016-09-12 Matt There was a missing factor of −i in the ω` term in (1.43). It
comes from to the time derivative of the Fourier expression for ûk,`. I
corrected (1.43). I wasn’t getting equivalent scatter plots for the solutions
to the (initial, erroneous) quartic equation (1.43) and the stability expo-
nents of (13.14), which lead me to find the error.
12

2016-09-12 Matt : Thank you for the birthday wishes. It’s actually really timely
because I have quite good news today.

EqvaStbExp Even with the corrected (1.43), the spectra of figure 13.21
only agree up to an exchange of the real and imaginary parts. I
haven’t quite figured out why this is, but during my experimenta-
tions I found that modifying (13.14) in certain ways produces excit-
ing results.

ModifiedFksX If I introduce a sign change to the identity matrices on the
super-diagonal of (13.14), the two formulas for eigenvalues agree. 13

12Matt 2016-09-22: Copied the wrong plot to flash drive, will update MNGquareq8 tomorrow
13Predrag 2016-09-13: you do not mean “approximately agree,” you mean “exactly,” i.e., to the

numerical accuracy of whatever program you are using to compute the eigenvalues, right?
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(a) (b)

Figure 13.21: Plots of (a) the spatial stability exponents of (13.14), (b) solutions
to the (corrected) quartic equation (1.43). 8 temporal Fourier modes.

Likewise if I changed the sign of the diffusion term in the bottom
row of (13.14), the spectra agree.
The really interesting part comes when you apply both of these trans-
formations; it leaves the stability exponent spectrum invariant, leav-
ing me to believe I had stumbled upon some sort of symmetry. The
corresponding modified equations (13.15) after such a transforma-
tion are as follows (only sign changes),

∂

∂x
û

(0)
` = −û(1)

`

∂

∂x
û

(1)
` = −û(2)

`

∂

∂x
û

(2)
` = −û(3)

` (13.15)

∂

∂x
û

(3)
` = iω`û

(0)
` + û

(2)
`

∞∑
`′=−∞

û
(0)
`−`′ û

(1)
`′ .

I applied this transformation to my spatial integration equations,
and voila! They worked, for at least up to L = 22, when using a time
strip of E1 as an initial condition. Figure 13.22 are plots of both the
time and spatial integration of E1 from ref. [8]. The spatial integra-
tion uses (13.15), the temporal integration uses (1.26).
It should be noted that after the application of a FFT, the Fourier
coefficients except the zeroth mode were set to zero (i.e. equivalent
to taking a truncation of a single temporal Fourier mode). Failure to
do so lead to numerical catastrophe.
It seems that the symmetries are playing a much larger role than I
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(a) (b)

Figure 13.22: Integration of E1 from ref. [8], periodic on domain L = 22, (a)
in time, using (1.26), and (b) in space, using (13.15). The initial condition for
the spatial integration was the time strip u(x, t), x = L/2, t = [0, T ), where T
happened to be 2 ppo10.2, for no particular reason. Also, in order to produce
the spatial integration plot, a spatial shift equal to 68L

128 was employed.

might have believed. I also haven’t gotten to the bottom to which of
the spectra is the correct representation.
Now of course with every bit of good news comes bad news. I was
unable to extend the spatial integration of ppo10.2 for x = [0, 22].
The behavior of the spatial integration of ppo10.2 did change as can
be seen in figure 13.24, however, I believe we still do not have the
whole picture.
The initial Fourier transform included 1024 modes, of which all but
32 were truncated. The reason for this is that in order to ensure
accuracy in the production of the initial condition via time integra-
tion, one must take an adequate number of steps. However, there
are residual effects due to the non-zero values of the higher modes,
therefore another truncation was applied.
All in all, having a pretty good birthday.

2016-09-13 Predrag Nice birthday present to yourself. Congrats. Some of these
minus signs come from the Fourier transform conventions, i.e., whether
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Figure 13.23: Absolute error between time integrated and spatially integrated
solutions of Eq1.

you use exp(−iqkxn) or exp(+iqkxn). Please make sure that conventions
we use in chapter 1 and in this blog agree with ref. [8], fix everything
accordingly. û` are complex Fourier modes, so morally, there perhaps
should be a factor−i for every single ∂/∂x derivative in the definitions of
û

(J)
` in (12.26) (not sure that this suggestion makes sense). Fix all formulas

accordingly (if Burak or I do not like your redefinitons, we can always
revert them, be fearless).

2016-09-13 Predrag Please recheck (1.47). If correct, it agrees with figure 13.21 (b),
so there is a problem with the figure 13.21 (a) calculation. They must
agree.

2016-09-14 Matt Coding and Misc Rescaled figure 13.22 and figure 13.20 Still
working on calculations regarding the stability exponents. Worked
out code to reorder stability exponents of (13.14) in ascending order
with respect to the real part, likewise with solutions to (1.43) to make
sure they are within machine precision of each other, which they are
(as long as I swap the real and imaginary parts, which is still an issue
with (13.14) that I’m working on).

Fourier Conventions The conventions agree with ref. [8] as far as I can
tell, leading me to be somewhat confused. I’ll try to be more explicit
tomorrow when I get a chance to complete sorting things out.
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Figure 13.24: Spatial integration using a time-strip solution of ppo10.2 as an
initial condition, located at x = L/2. The extent of the integration is x = [0, 10].

2016-09-15 Matt KsSpaceInt There are three different ways to get my spatial
integration code to produce the result (b) figure 13.22, which are

1. Use (13.15) instead of (1.36)
2. Take the complex conjugate of initial conditions produced by

ksint.m

3. Use −iqk instead of iqk in the spectral differentiation for pro-
ducing initial conditions.

For spatial integration of a time strip of ppo10.2, the equations (13.15)
do not seem to be very helpful, meaning my choices are narrowed
down to items 2, 3 on the previous list.
I trust Xiong’s description of how to reorder the spatial Fourier mode
coefficients, but what I’m left with doesn’t work either; from the de-
scription of the FFT page the spectral differentiation should be iqk
by all accounts.

Quartic equation and stability exponents Realized I made a mistake, it
should be a positive factor of i not −i in (1.47) and the like. Even
with this correction I still cannot finger the problem behind all of
this, it’s like there is a missing factor of i that is somehow eluding
me, as this would switch the real and imaginary parts (and because
all complex stability exponents are coming in complex conjugate
pairs, this would fix everything, one need not worry about the sign
of the complex part).

2016-09-19 Matt :

ErrorHunting I found a possible reason behind poor spatial integration
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(a) (b)

Figure 13.25: Plots of (a) the spatial stability exponents of (13.14), (b) solutions
to the (again corrected?) quartic equation (1.43). 8 temporal Fourier modes.

results; While looking at ksfmetd2.m, Ruslan’s code for Kuramo-
to-Sivashinsky time-integration, on which ksint.m is supposedly
based, I noticed when he stores each step of the solver into an array,
he separates the Fourier coefficients into their real and imaginary
parts, and I believe he means to transpose this array but in fact per-
forms a conjugate transpose on accident. The notation in MATLAB
is an apostrophe for a conjugate transpose, and and a period fol-
lowed by an apostrophe for a transpose, so it’s an easy mistake to
make. I can’t think of any reason to conjugate the time-integrated
values of the Fourier coefficients; hence, why I believe this is a mis-
take.
That being said, I don’t know if this somehow carried over into
ksint.m, but if this is the case, then there is no need for one to use
the modified equations (13.15), or to use the different (and conflict-
ing) definition for spectral differentiation, (i.e. the definition would
then follow the conventions of (12.19).)

KSspaceInt In figure 13.26, I have plotted what I believe to be the correct
version of the time integration of Kuramoto-Sivashinsky, as I really
don’t see why Ruslan would conjugate the time-stepped Fourier co-
efficients unless there is something I missed in his code. Along with
this is a spatial integration of a time strip (Located at x0 = L/2 = 11
that is a compilation of two separate integrations, x ∈ [0, 11] and
x ∈ [−11, 0] relative to the location of the initial condition, x0 = 11.
Note, there is a small discontinuity where the two separate integra-
tions meet, which is due to even more numerical issues. To produce
the plots, I took a truncation of 32 Fourier modes and required that
1/3 of the spectrum was completely damped i.e. equal to zero. I also
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(a) (b)

Figure 13.26: Integration of ppo10.2 , (a) in time using (1.26), (b) in space using
(1.36). The initial condition for the spatial integration was the time strip u(x, t),
x = L/2, t = [0, 2 ppo10.2). The spatial integration was carried out in two
separate pieces, x ∈ [0, 11] and x ∈ [−11, 0] and then were conjoined to produce
(b). There is a discontinuity at L/2 due to numerical instability that has still not
been resolved. (I believe (a) here is correct, it differs from (a) in figure 13.3 by
conjugation of spatial Fourier coefficients).

used the MATLAB circular convolution function cconv to compute
the nonlinear term as it yielded less of a discontinuity.

VariationalNewtonDescent Began coding in Python.

FksSpatTemp Is it correct to solve for iqk and not qk in example (1.43)? I
tried to provide corrections because I believe that is the case but my
eyes are starting to give so I might have missed something.

PPOstbExp 14 Wrote MATLAB code that can compute the eigenvalues
of the spatial stability matrix at a given x instant. An example of
is plotted in figure 13.27. These are meaningful only for temporal
equilibria. They are not the spatial stability exponents of a spatially
evolving state, initialized at some x0. To compute spatial stability
exponents, i.e., the mean rates of expansion/contractions and rota-

14Predrag 2016-09-20: please recheck, correct all other relevant text and figure captions accord-
ingly, then remove PCedit.
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tions of infinitesimal trajectory deviations along the distinct eigendi-
rections of the spatial Jacobian matrix, I would need to integrate the
spatial Jacobian matrix from x0 to x, compute its eigenvalues (the
stability multipliers), take their logs, divide by x−x0 and make sure
that their phase has not slipped by 2π.
Talking about phase slips: I have to ask Xiong why he claims that
the “unwrapped phase” cannot be computed?

A(û)IJjk =


0 δjk 0 0
0 0 δjk 0
0 0 0 δjk

−iωk δjk − û(1)
k−j −û(0)

k−j −δjk 0

 (13.16)

Figure 13.27: Eigenvalues of the spatial stability matrix (13.16) for time-strip
initial condition x0 = 0 (?) from ppo10.2, evaluated at x = 9.6680 · · · . 32 tempo-
ral Fourier modes. These numbers have no dynamical meaning, I show here
just that I can plot them, with correctly scaled axes.

2016-09-08, 2016-09-20 Predrag I guess number 6= log(number) cannot be taught.
Λj is a stability multiplier. Its logarithm(magnitude) divided by time is the
real part of the stability exponent, denoted everyplace here by µ(j). That’s
why I use these clumsy macros - cannot confuse the number for its loga-
rithm if one uses the macros.

2016-09-13, 2016-09-20 Predrag Please plot all complex plane plots (such as fig-
ure 13.21) with fixed, same scale on both axes. You always want r exp(θ)
to trace out a circle, not an ellipse. Figure 13.27 is good, but probably
need only [−2, 2] range, or less. Label axes (µ, ω), not by words.

2016-09-20 Matt : In reference to (13.16), I was in the process of thinking about
whether it was meaningful or not, tending towards not... sometimes I
make dumb mistakes and interpretations of things at 2 a.m. apologies
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2016-09-20 Predrag Please plot all complex plane plots (such as ) with fixed,
same scale on both axes. You always want r exp(θ) to trace out a circle,
not an ellipse. Figure 13.27 is good, but probably need only [−2, 2] range,
or less. Note that the eight ` = 0 Fourier modes,

• 2 stability exponents equal to zero

• 2 purely imaginary stability exponents, λ(j) = ±i, each with multi-
plicity 2,

in the center of plots of figure 13.25 have vanished in figure 13.21. Ex-
cept for the λ(j) = ±i cases? Cannot tell from the microscopic plot.
Explain why? Usually marginal eigenvalues indicate that the solution
has continuous symmetries. u(x, t) = 0 presumably has all the sym-
metries Kuramoto-Sivashinsky equation can have, but an arbitrary state
u(9.6680 · · · , t) presumably has no symmetries. Also, I cannot tell from
the ellipses of figure 13.25 whether the remaining eigenvalues come in
octets, on circles of given radios, and phases rational fractions of 2π. That
would also need to be explained. The spatiotemporal evolution might be
Hamiltonian, not only time-reversal invariant (that is less restrictive than
the Hamiltonian symplectic volumes conservation).

2016-09-20 Matt :

PlumbersLocal0430 See pipes blog.

KsSpaceInt Worked towards improving the accuracy of spatial integra-
tion to no avail. Also worked towards producing a figure represent-
ing the error between the spatial integration and time integration
results in regards to Eq1.

DiffReview I plan to look over PC’s diffs so that I can stop repeating the
same mistakes over and over again. I’ll try to be better with this in
the days ahead.

2016-09-22 Predrag The ` = 0 roots of figure 13.25 (b) do not agree with my
(1.48), can you recheck both? To me figure 13.21 (b) seems correct. Maybe
also draw a few circles of radia (1.49), so we can see that all ` 6= 0 roots
are the correct distance from the origin, with 4 roots on each circle?

2016-09-22 Predrag Having stability eigenvalues paired with opposite real parts
µ(k) = −µ(k+1) is very standard, both for the time-reversal invariant and
the Hamiltonian ODEs and PDEs. Everything discussed in sect. 6.4 is
of that type, so they all are integrating hyperbolically unstable systems,
both forward and backward in time. How do they do it?

2016-09-22 Matt Errors Updated figure 13.22 to reflect what I believe is the
correct time-integration. Also included in figure 13.23 is the absolute
value of the difference between spatial integration and time integra-
tion results of figure 13.22. The accuracy of integration the ODEs of
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(a) (b)

Figure 13.28: Time-strip initial condition T = [0, 2Tppo10.2), located at x =
L/2 = 11 integrated in two parts over x = [0, 11] and x = [−11, 0]. The number
of undamped Fourier modes of each plot are (a) 21 and (b) 7.

(1.36), even with the more stringent MATLAB integrator ode113, is
not reliable past spatial extent x ≈ 18. The reason for the relatively
high error at the beginning of the integration is due to the

Spatial Integration Accuracy I was worried about the how a time strip
of ppo10.2 with T = [0, 2Tppo10.2) was less accurate than a strip of
temporal extent T = [0, 4Tppo10.2) so I did some more investigation.
For plot (b) from figure 13.26, one third of the Fourier spectrum was
damped to avoid aliasing errors (Damped in this context means the
Fourier coefficients were set to 0 at every integration step). After
some testing, I found that the error can be minimized further by
keeping fewer modes active, i.e. setting more modes to zero. This
discrepancy can be seen in figure 13.28, where the number of active
Fourier modes are (a) 21, and (b) 7. These specific values for the
number of modes were determined by (a)Damping one-third of the
spectrum as previously mentioned, and (b) keeping all modes with
frequency |ωk| ≤ 0.9192 . . . = 6π/Tppo10.2 active. The specific bound
on the frequencies was determined by numerical testing the error,
and looking for when it was minimized.
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(a) (b)

Figure 13.29: Absolute error between time-integrated solutions of ppo10.2

and spatially integrated solutions. A Time-periodic initial condition T =
[0, 2Tppo10.2) was taken from the time integrated solution. This initial time-
strip was integrated spatially in two parts, x = [0, 11] and x = [−11, 0]. The
number of active Fourier modes in each plot are (a) 21, and (b) 7.

This bound also held for the strip T = [0, 4Tppo10.2). This is be-
cause if |ωk| ≤ 0.9192 . . . < 1, then the following inequality holds,
|iωkû(0)

k | < |û
(0)
k |. While there is still a numerical error when damp-

ing this thoroughly,the major patterns of the time-integrated solu-
tion persist in the spatially integrated solution produced in figure 13.28,
so I thought this was worth noting.

StabilityExponents I went through the derivations of the equations mul-
tiple times but it only yielded the same results of (1.47) and (1.49).
The only way that I know of getting (a) and (b) from figure 13.21 to
match is to require qk → iqk, i.e. qk is purely imaginary. There are
ways to change the stability matrix to get the two to match but I feel
that this is ill-founded as the equations of (1.36) have recently been
providing reasonable yet inaccurate results in regards to reproduc-
ing ppo10.2. I’ve, however, fixed a couple of negative signs that were
remnants of changing the equations multiple times.
I’ve updated figure 13.21 and figure 13.25 by adding in circles that
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demonstrate that the λ(j) lie in quartets on circles of radii |λ(j)|, as
given by (1.49).
The discrepancy between 4 marginal λ(j) and 8 marginal values was
due to me copying the convention for ωk from the FFT frequencies,
a mistake on my part. It included the 0 frequency twice. The current
figure 13.21, figure 13.25 should reflect the frequency spectra ω` =
2π`
T , with ` symmetric about 0, i.e. ` = −N/2, . . . , 0, . . . , N/2.

2016-09-29 Matt KSspaceInt Tried to use finite differences as a way to com-
pute the time derivative term as a potential alternative to iω`û

(0)
` , in

hopes that it might enable keeping more modes but the results were
poor on my first attempt; I thought it still might be worth tweak-
ing because of the frequency bound condition that determines the
best results with integration in Fourier space. Just to recall, this was
keeping |ω`| < 1 modes.

MeetingWithDeLaLlave E-mailed Professor de la Llave from the Math-
ematics Department to have a meeting, no response as of posting.

VariationalMethod More coding... slower than I hoped due to the tran-
sition from Matlab to Python.

DDays2017 Began the application process for poster presentation.

2016-10-03 Matt : The day was spent working on variational method code.

2016-10-04 Matt NewtonMethod Continued working on coding while rewrit-
ing some of the previous code I had written. Trying to be extra care-
ful and take nothing for granted due to my previous frustrations.

CatsAndSpacetime Meeting with Boris, Predrag, Rana, Adrien and Li
Han. The cats were playing with yarn (for Adrien neither the old
Matlab code, nor the new Mathematica implementation works so
far, and Li Han Skyped infrom an M-theory modular domain) so
most of the discussion was regarding Aizenman’s analysis of the 2D
Ising model using the Ihara zeta function (see chapter ??). Predrag
mentioned that he had formulated a planar field theory and never
found physical problems to apply it to. Also, he feels that the zeta
function approach a much better way to look at the problem due to
the difficulties of interpreting Onsager’s previous solution. There
were some subtleties involving the admissability of certain graphs,
their symbolic dynamics, and the pruning rules therein.
Also mentioned was the Smale school and de la Llave’s work (see
sect. 19 posts starting with 2016-09-28), in which they treat multi-
ple ‘times’ simultaneously. Our work, with space and time being
treated on the same footing, is an example of that perspective. Pre-
drag, however, has found tracking down and understanding that
literature very difficult. So far he finds Politi et al.’s ‘chromotopic’
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papers (which we are reading and bloggin about in chapter ?? and
subsequent sections) closest in the spirit to our work.
Bunimovich and Sinai [4] (see sect. ??) was briefly discussed. It ap-
pears that nobody before Gutkin and Osipov [21] has studied the
strong coupling (ε = 1 case).

2016-10-06 Matt Getting closer to finishing Newton descent for loops code.
Still needs work on the "approximate iterative inversion" as denoted by
Lan in ref. [27], but as of right now most of the meat has been written.

2016-10-10 Matt : Still debugging Newton method code. I got it running but
there are still errors somewhere as it’s not performing well. Asked Chris
for advice on if I was handling the Differentiation matrix for the finite
difference scheme that approximates tangent to the loop properly; after
some changes the performance worsened. So as it stands I am still in the
debugging/rewriting phase.

2016-10-11 Matt : Uploading the working copies of previous MATLAB codes
for spatial integration of finite extent and Python codes for Newton method,
which is still giving me trouble. Still trying to get all the pieces working
together properly. After some preliminary results I feel like the biggest
problem currently is with approximation of the loop tangent. The initial
error seems to be too large considering the initial loop I am using as a
check is ppo10.2. However, I have found and fixed a couple parts of the
code MNGvnd.py, or more specifically the functions that it uses which
are located in MNGvndfunctions.py.

2016-10-13 Matt :Still no exciting results. Xiong told me to switch to Python
2.7 as opposed to the current build I was using due to the fact that the
majority of the Physics community uses this. I had to track down some
of the differences which took some time, spent some time discussing with
some of my colleagues in our hopes that sharing with others would lead
to not missing the bigger picture and we would be able to help each other.
It seems I was able to help them more than they could help me.

Currently still rewriting parts of the code trying to get used to Pythons
conventions...there are many silly things that are happening for unknown
reasons; such as taking the difference of two arrays is somehow changing
their shape.

Trying to also keep up with the Cat map postings made by PC in hopes I
can contribute next time the feline circus makes it into town.

2016-10-19 Matt :

Readings Still trying to find an adequate answer to PC’s question "How
do they do it?" in reference to reversible systems. I haven’t found
an adequate answer yet in sect. 6.4 but I am still trying to cover it.
The only peculiarity that I’ve found so far are that apparently was
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in ref. [2] they "split" the full Kuramoto-Sivashinsky equation into
two parts; I think might have been related to something specific in
ref. [20] but I haven’t looked at ref. [20] yet.

Python Trying to be more careful with every step to make sure I’m not
overlooking anything. I think I took the fact that MATLAB is more
of a tool and less of a language like Python for granted. Specifi-
cally I’ve found and corrected mistakes in the calling of functions
and broken broke them down into individual steps; there are other
changes regarding the handling of arrays but that was just a careless
error.
To improve the efficiency I also am in the process of changing the
code to take advantage of the real valued u(x, t), i.e. taking half of
the Fourier spectrum.
I’ve been doing the computation in Fourier space as when I worked
through Lan’s prescription I didn’t find any assumptions that would
preclude this but I had a moment of doubt today. Hopefully some
of the changes I’ve been making will help in this regard.

MATLAB I should have noted that while I’ve been mainly trying to learn
Python and create Newton descent code I’ve also been going back to
MATLAB every so often when I have an idea that I feel might help
the numerical accuracy. I suppose it’s a case of the first child being
the favorite.

2016-10-20 Matt Cats Adrien presented his verification efforts of some of his
results. It looked quite a bit like the partner orbits of Boris’ presenta-
tion, but I couldn’t confirm as Adrien was pressed for time and had
to get back to grading.
Rana also presented results regarding entropy and relative frequen-
cies. To be more specific I believe it was Measure-Theoretic Entropy
(according to wikipedia’s definition seemingly matching was Boris
had written down). There was much discussion about this entropy
between PC and BG, as well as log-log plots. There was then a
discussion about relative frequencies, which Boris claimed to look
parabolic; I rather felt like they were more trapezoidal, but I don’t
think the geometries of the histogram were important. Boris felt that
the way that Rana had ordered the trajectories was good and maybe
insightful? She plotted the frequencies in a sort of modulo arith-
metic way, using the symbolic dynamics as the base for the number
system. Also discussed was how inadmissable trajectories or prun-
ing rules could be accounted for by redefining the symbolic dynam-
ics. PC made reference to Smale horseshoes and how longer trajec-
tories typically have smaller "gaps" due to pruning rules but there
were be more of them.

Python Still just chugging along. PC stressed that I should test a much
simpler system, (e.g. Rössler) to get it working correctly to start; I
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believe this is useful advice, but I need to be careful as most of the
functions are written to be directly related to the spatial Kuramoto-
Sivashinsky system, perhaps this is a bad choice.

2016-10-22 Matt MeetingWithDeLaLlave I discussed my work with Profes-
sor de la Llave and a Mathematics post-doc Livia yesterday. I ran
them through the numerical schema and general procedure used to
produce spatial integrations such as figure 13.28. Professor de la
Llave expressed the difficulties with such an integration and really
stressed that it would be quite difficult, but he had some sugges-
tions as to possible ways to eliminate some of the instability. He
didn’t want to get into the proofs or the procedure but he suggested
some resources namely refs. [33, 35, 55] which I’ve been trying to
read through. His general comment was that I might be able to
eliminate certain unstable directions (which he believes I might have
been crudely doing via the damping of high frequency Fourier Co-
efficients in the spatial integration process)

Python Still wrestling with snakes. Professor de la Llave voiced his con-
cerns with the variational method but he also says that this has been
discussed with PC in the past and there have been agreements to
disagree.

2016-10-24 Matt MathColloquium Went to a colloquium titled ‘Estimations
on Diffusion Constants for Chaotic Billiards’ presented by Prof. Hong-
Kun Zhang of the University of Massachusetts Mathematics Depart-
ment; The topics discussed were Billiard maps, Motivations from
Fluid and Statistical Mechanics, Diffusion of Lorentz gas, Superdif-
fusion of Billiards. To get a flavor, in an “infinite horizon" Lorentz
gas, there exist channels where no deflections occur which leads to
superdiffusive properties. In the example given the Green-Kubo
Formula fails and the Central Limit Theorem doesn’t apply so Pro-
fessor Zhang and her Ph.D. student used Borel σ-algebras /(Stochas-
tic) Filtrations / Martingale Approximation to somehow get a su-
perdiffusion constant (I think?). The main question raised by Pro-
fessors de la Llave and Bonetto was if this had an analogous PDE
description but Professor Zhang said that it hadn’t been thought
through.

Python I was being stubborn and trying to get the spatial variational
method code to work. All I can really say at this point is that I
will continue to try hard. I currently had been working on trying
to reconfigure the problem such that I could perform the fictitious
time integration with only positive frequency ω` modes and exploit
the real valued field to decrease the dimension of the problem, but
realized this is more trouble than it’s worth for the time being. I
have also been working out an equivalent expression for a calcula-
tion that is completely entirely in configuration space; I realized that
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I had only undertaken the Fourier space expression out of habit al-
though it would most likely guarantee smoother results than finite
difference schemes in configuration space. To further remedy my
situation I spent the last part of my day writing code to enable me to
perform the variational method on the Rössler system before I waste
any more time.

Reading Read more of ref. [35] and ref. [33], while interesting I feel like
I should probably shelve these for the time being.

2016-10-25 Matt : Variational Newton code for the Rössler system has been
adapted from the code for spatial Kuramoto-Sivashinsky equation that I
have been working on previously. It behaves mostly how it should how-
ever it stalls out once the loop gets close to the periodic orbit. The final
result remains smooth and visually looks similar to the shortest periodic
orbit of Rössler flow but the period and numerical values are off; such
that trying to verify the trajectory via numerical integration proves that
it is indeed not periodic.

I made what I believe to be corrections/improvements to the iterative re-
finement of the corrections but it still only allowed for the final error to be
near 10−2, nowhere near the required machine precision to be reputable.
The period of the loop is within 10−1, again not near close enough.

Possible reasons for this are is that the initial condition I am using is not
refined enough to produce desired results or there are more errors lurk-
ing. Once I am confident that it is working properly I will move on to the
antisymmetric subspace U+ results that Lan has produced for Kuramo-
to-Sivashinsky equation.

2016-10-27 Matt : Spent the past two days gutting my variational method code
and rewriting most of it from scratch using what I’ve learned from de-
bugging. It seems to be working for the Rössler system under certain
conditions. The main condition is that the quantity being constrained in
order to break the translational invariance needs to be fairly close to its
true value or else the fictitious time integration stalls very quickly. The
order of error for this value also depends on how close the rest of the ini-
tial guess loop is. To be concrete, if x0 is the constrained coordinate then
δx0 < 10−4 seems to be a reasonable bound even if the rest of the loop is
relatively far away from the periodic orbit. My initial thoughts were that
so long as the periodic orbit didn’t miss the Poincaré section completely
then we were in business but seems to be much more delicate than that.

I plan to apply what I’ve learned to Kuramoto-Sivashinsky equation to-
morrow, if I can’t get anywhere then I will pursue the antisymmetric sub-
space U+. My biggest worry at the moment is whether the finite differ-
ences make sense in the scope of complex valued variables; I feel like I
might have to separate the real and imaginary parts or apply the differ-
entiation matrix in configuration space and then bring the results back
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to Fourier space, similar to how I computed the nonlinear term using a
pseudospectral method in the code I have written for numerical integra-
tion of (1.36).

2016-10-31 Matt :

NewtonDescent After waffling back and forth on which is the best way
to proceed I’ve written what I believe to be a correct version to my
code; I haven’t been able to get it to run yet however as the dis-
cretization I chose for accuracy seems to eat up too much memory
at the time being, I’ll try again when I get home to my desktop but
I might have to trim down the loop from 128 spatially discretized
points to 64 or even 32; however I feel like this might not be suffi-
cient. I found a few mistakes in my rewriting of the code for Ku-
ramoto-Sivashinsky since I completing my Rössler code. Another
problem was that the damping of the higher frequency temporal
modes that I thought would help the computations by making the
matrix of (13.18) sparse. This was actually making the matrix singu-
lar, which was the source of some of the numerical problems I had
been having.
My main concern at the moment is that in previous tests the neg-
ative, positive frequency pairs of Fourier coefficients are not main-
tained as complex conjugates of one another; this is what maintains
the inverse Fourier transform as real valued. I’ll hopefully be able
to fix this, but I might have to revert to taking the real fast Fourier
transform (RFFT) which only keeps the positive frequency compo-
nents thus eliminating the balancing act that I have been trying to
get to. I tried this before but it introduced further complications in
my head and in the coding procedure for the stability matrices. It
should not be hard to do, but I kept making mistakes and was un-
sure about my equations such that I decided to revert back to the full
FFT for my purposes. Perhaps there is a way to encode this condi-
tion into the constraint that is being used to break the translational
invariance, r̂ in (13.18), but I have not figured out if that is possible
either.
The main equation being employed in this process is that of fictitious
time flow from Lan’s thesis [27]

∂2x̃

∂s∂τ
− λA∂x̃

∂τ
− v ∂λ

∂τ
= λv − ṽ (13.17)

rewritten as the matrix equation[
Â −v̂
r̂ 0

] [
δx̃
δλ

]
= δτ

[
λv − ṽ

0

]
. (13.18)

The key definitions of this equation for a spatially discretized system
x̃ ofN points in d dimensions, with the parameterization variable sn
such that x̃n = x̃(sn):
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• Finite [Nd×Nd] difference matrix,

D̂ =
1

12h


0 8 −1 0 . . . 1 −8
−8 0 8 −1 0 . . . 1
1 −8 0 8 −1 0 . . .
...

...
...

...
...

...
...

 where, h =
L

N

• [Nd×Nd] matrix composed of finite difference matrix and sta-
bility matrices,

Â = D̂ −Diag(A(x(s1)), A(x(s2)), ..., A(x(sn)))

• Discretized loop langent

ṽ =
∂x̃

∂s
= (D̂x̃)

• [Nd×1] velocity field v vector given by (1.36)
• Constraint to break translational invariance, a [1×Nd] vector r̂,
• λ is a mean “tangential speed” that converts the parameteriza-

tion variable into the length (the parameter is time if using (13.1)
for the velocity and loop is parameterized by time) of the peri-
odic orbit.

λ∆sn = ∆xn (13.19)

2016-11-01 Matt :

PlumberMeeting See pipes blog.
SpacetimeCats Meeting regarding the cats paper and my current work.

Professor de la LLave joined in while I was attempting to discuss
what I had done so far. There was much discussion about the pa-
rameterization I had been using and whether it was better to use a
curvilinear parameterization rather than time.

NewtonDescent Wrote functions for the Newton descent for the time
equation (13.1). The only differences between the code I had cur-
rently written for the spatial Newton descent and this are the defini-
tions of the velocity field and therefore, the definition of the stability
matrix. The only other additions that would have to be taken into
account depend on how the initial conditions are produced and or
formatted.

FiniteDifferenceSchema The coefficients of the five-point stencil method
were called into question as to where they arise from. The general
idea is that for an equidistant grid of points one can define Lagrange
interpolating polynomials and then derive a recursion relation for
the correct weighting of the grid points which depends on the order
of accuracy and the order of the derivative being approximated.
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PseudoInverse After the suggestion from de la Llave, I investigated the
pseudoinverse formulation for the matrix equation (13.18). There
are many different ways to define a pseudoinverse but the most
common seems to be the Moore-Penrose pseudoinverse, see math-
world.wolfram.com pseudoinverse. The most important property
in my opinion is that for the non-square matrix equation,

Bx = y

the application of the pseudoinverse B+ (Wolfram notation) leads
to the shortest length least squares solution

x = B+y

If I understood professor de la Llave, the corresponding formula for
variational Newton descent using this formulation would be,[

Â −v̂
] [ δx̃

δλ

]
= δτ

[
λv − ṽ

]
, (13.20)

which neglects the constraint that was previously used to break the
translational invariance in order to get fictitious time flow that is
transverse to the direction of the velocity field, but still enforces
transversality, by selecting the shortest least squares solution.
After application of this to the Rössler system, I noticed that the
code runs slower due to the calculation of the pseudoinverse matrix.
However, there were fewer fictitious time steps required to reach the
desired error threshold of the cost functional. As long as the pseu-
doinverse isn’t required to be calculated too frequently, the method
might be preferable to the Newton with a constraint. In addition, it
avoids the somewhat arbitrary definition of a constraint.

2016-11-06 Matt VariationalNewtonMethod Taking hints from Lan’s thesis [27]
I’ve been trying to improve the code handling the fictitious time evo-
lution to improve the efficiency. The main idea that Lan provides is
repeatedly using the same matrix as an approximate to the true ma-
trix, in order to avoid recomputing it at every step. What I believe
he means by this is to reuse the matrix,

M =

[
Â −v̂
r̂ 0

]
or equivalently the non-square matrix,

M =
[
Â −v̂

]
for multiple fictitious time τ steps, as an approximation. This is
available to us because as long as the cost functional is being min-
imized, the fictitious time evolution is proceeding in the “correct"
direction.
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Currently in my code, once the matrix M , or equivalently, Mn =
M(τn) is defined, it is used in the calculation of corrections to the
loop, δx̃(τk) for as many steps k = n, n + 1, . . . ,m as possible until
the cost functional increases; at this point I apply an iterative im-
provement scheme, which is an iterative method used to improve
the numerical accuracy of solutions, defined by the process,

rm = b−Mxm

Mdm = rm

xm+1 = xm + dm (13.21)

The general idea is that by solving the same linear equation using
the remainder, rm of the original equation, one can find corrections
dm to the original solution xm.
I feel that this process is not so useful in practice, as the approximate
inversion of the matrix M is seemingly accurate enough to always
provide a close solution to matrix equations such as (13.20).
If this iterative method to improve the accuracy cannot enable fur-
ther fictitious time evolution, then the matrix Mn is recomputed at
the current location of the loop in state space.

Variational method for antisymmetric subspace U+ of KS Still trying to
find a systematic way of producing initial conditions for the use of
variational Newton descent. The main equation governing the ficti-
tious time evolution is again (13.18) or the non-square matrix vari-
ant, (13.20). The only differing components from that of the Rössler
system, or spatial Kuramoto-Sivashinsky is the definition of the ve-
locity field v and therefore the definition of the stability matrices A.
For a spatially periodic initial conditions, the (truncated) evolution
equations in time for the spatial Fourier coefficients ak are,

ȧk = (q2
k − q4

k)ak − qk/2
N/2−1∑
m=−N/2

a((k−m))am (13.22)

where the parentheses for the index in the sum indicates a modulo
N operation due to the truncation. Didn’t use this fact in practice,
much easier and faster to compute via FFT. Therefore the stability
matrix is defined by the sum of a diagonal matrix and circulant ma-
trix multiplied by a factor of qi, or in terms of the elements of the
stability matrix,

Aij =
∂ȧi
∂aj

= (q2
i − q4

i )δij − qi(a(i−j) − a(i+j)) (13.23)

Apparently forgot to finish writing this. Forever:)
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(a) (b)

Figure 13.30: u(x, t) for L = 22 spatial size (a) before and (b) after, application
of the variational Newton descent code to the first equilibrium plus periodic
deformations proportional to δak(t) = cos(2πkt/T ). The value of the cost func-
tional F 2 is decreased from ≈ 40 to ≈ 8. The time period of the final result is
T ≈ 39. (Poor formatting: time is vertical axis, space is the horizontal axis, will
fix that another time...)

2016-11-07 Matt Preliminary results for antisymmetric subspace U+ I finally
got the variational Newton descent to run for the antisymmetric
subspace U+ equations (13.22) and (13.22). The error is still not
being minimized to an acceptable level but there are many things
going on that could be the culprit. Namely, as it was preliminary
testing I was using 32 spatial Fourier modes and 32 time discretized
points; I believe that the testing will be further improved by sacrific-
ing Fourier modes and increasing the number of discretized points;
however, this might not necessarily be the case as the initial condi-
tions themselves may be flawed.
In their current construction I first took the spacetime data corre-
sponding to the first equilibrium and ppo10.2 integrated in time for
2Tppo10.2 (for arbitrary reason for the equilibrium) and reduced them
to the antisymmetric subspace U+ by taking the imaginary parts of
the spatial Fourier spectra. Then I (perhaps unwisely for a first test)
added periodic deformations to the spectra of the form (using the
convention of (13.22) where ak(t) denotes the kth spatial Fourier co-
efficient)

ãk(t) = ak(t) + ak(0) cos(2πkt/T ) (13.24)

Applying the variational Newton descent with these initial condi-
tions produced figure 13.30 and figure 13.31. It should be noted that
varying the initial fictitious time step δτ alters the final result of the
descent but I haven’t figured out if this is a major flaw as of yet.

Improvements and Ideas • Start with unaltered equilibrium and ppo10.2

with varying sizes of time domains.
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(a) (b)

Figure 13.31: u(x, t) L = 22 domain size (a) before and (b) after the application
of the variational Newton descent code to ppo10.2 plus periodic deformations
proportional to δak(t) = cos(2πkt/T ). The cost functional F 2 is reduced from
≈ 350 to ≈ 4.5. The time period of the final result is T ≈ 47. (Time is vertical
axis, space is the horizontal axis.)

• Use completely different and hopefully smarter initial condi-
tions

• Increase the size of the temporal discretization.
• Decrease the number of spatial Fourier modes.
• Incremental improvements to efficiency and accuracy

2016-11-08 Matt : Went to the PDE seminar hosted by the Mathematics de-
partment. It was titled "Global existence for quasilinear wave equations
close to Schwarzschild" presented by Mihai Tohaneunu from the Uni-
versity of Kentucky. He only had time to really sketch the proof but it
involved using harmonic coordinates, Klainerman vector field method,
Klainerman-Sobolev type bounds to prove the stability of exact solutions
with a metric that is semilinear in nature.

2016-11-08 Matt : Variational Newton method code still not performing to ex-
pectations. Varying the number of discretized points seemingly had no
effect on how well the initial conditions converged, just made the code
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run slower as the matrices involved are larger. I believe this is merely
a property of the initial conditions and not of the code itself, however,
I am still making changes to the code such as reordering the main time-
stepping loop and double checking the velocity and stability matrix func-
tions. I’ve been trying to find mention of the initial values for the cost
functional so that I can compare to how close my initial guess loops are
to a specific periodic orbit but the only mention so far has been in the
unpublished ref. [16], in which the initial value of the cost functional is
of order F 2(0) = 10−4. In comparison my initial conditions F 2(0) u 102

meaning that my guess loops are far from any periodic orbit and hence
will likely fall. They do however contract quite well, as the cost func-
tional appears to be decaying exponentially in τ however they tend to
get stuck.

I’ve been thinking that if the variational Newton descent shakes the or-
bit until the method stalls why not hit it with a hammer? My idea is to
first find the component of λv − ṽ that is contributing the most to the
cost functional and introduce some sort of perturbation that would in-
crease the cost functional before (hopefully) being minimized again. I’d
be curious to hear what others think about this as I haven’t really done
anything rigorously so it might be a fool’s errand but I just dislike how
in this method it seems like (at least from my interpretation of ref. [16])
that you need to be relatively close to any periodic orbit to get it to work
correctly.

2016-11-10 Matt :

General comments I’m trying to understand what I myself was thinking
about when I wrote my last blog post. I wasn’t really making sense
as the variational method is supposed to be smooth deformations
parameterized by tau. Also, I don’t know how the parameterization
in the loop would be affected...at least I didn’t put any real time or
effort into it. f Briefly chatted with PC after class. We discussed how
there might be continuous families of solutions that would imply the
need to derive a non trivial way to deal with the symmetries, which
might be handled by rescaling in a undisclosed manner. These sym-
metries would allow for sliding around any periodic orbits found
due to the marginal directions not accounted for. Asked about one
of the more general ideas behind using a pseudoinverse matrix as
opposed to a Poincaré section constraint. PC recommended looking
up some of the literature from neural networks and to work through
simple type problems to really get a feel for the method.
Also mentioned that I should have been working with a different
sized system in order to match Lan’s results, and that I should make
sure to check out the Levenberg-Marquardt methods mentioned in
ref. [8].
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(a) (b)

Figure 13.32: u(x, t) L = 22 spatial size (a) before and (b) after application of
the variational Newton descent code to the imaginary part of ppo10.2 over a full
state space period. The time “period" (b) is T ≈ 0, but has been blown up for
viewing pleasure. (Poor formatting, time is vertical axis, space is the horizontal
axis will fix.... still haven’t wrapped head around Python formatting)

Newton method I realized and fixed an error in regards to the varia-
tional Newton method code for the antisymmetric subspace U+ of
Kuramoto-Sivashinsky. The problem was that in the calculation of
the nonlinear term the Nyquist frequency mode was allowed to have
a nonzero value through my calculation of the nonlinear term in the
definition of the velocity, (13.22), which is a big problem as both the
zeroth mode and k = −N/2 mode need to be real, and hence zero in
the antisymmetric subspace U+. This fix resulted in a fast, but some-
what strange calculation; one of the initial conditions I had previ-
ously prepared that has very little variation in time, (a) figure 13.32
seemingly fell into an equilibrium, which cause the loop parameter-
ization to behave poorly; The "period" seemingly oscillated around
zero as if the loop was fluctuating around a T = 0 equilibrium. I
don’t even know if what I’m saying makes sense as this occurrence
is quite strange to me. My bug fixing might have opened doors for
other creatures to get in I suppose but I’m not sure as of right now.
It should be noted that I made these changes before changing the
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system size to correspond to previous work.

Reading Forgot to include that I also skimmed some relatively random
papers about symmetries and bifurcations near families of solutions
and Sobolev spaces (in regards to the latter it caught my eye because
it has to do with solutions to PDEs suppository and might be a better
definition for a norm instead of the current L2 norm being used?
I haven’t read enough to know the differences but I was trying to
expose myself).

2009-09-13 Predrag Previous computational domains for Kuramoto-Sivashin-
sky (clip & paste from siminos/lyapunov/KS.tex)

[...] We have stability of a periodic orbit from ref. [7], for Kuramoto-
Sivashinsky on the periodic b.c., antisymmetric subspace U+, system size
L̃ = 5.8 close to the onset of chaos, 16 real Fourier modes. As (perhaps?)
discussed in ref. [30], one has to be careful about defining the effective
system size L̃ for the antisymmetric subspace U+, so these computations
are done on L = 36.31 (or L = 18.155 if one considers the fundamental
[0, L/2] domain only). Going from (L, ν) = (2π, 0.029924) of ref. [7] to
(L, ν) = (L, 1) convention used here requires that the time be rescaled
as t → νt, and the Lyapunov exponents as λi → λi/ν = λi/0.029924,
which would mean that then we computed only the first pair of isolated
eigenvalues. The reason is that for periodic orbits we are computing Flo-
quet multipliers which underflow numerically very quickly, so we cannot
compute many Floquet exponents. The covariant vector methods are ap-
parently much smarter.

In ref. [30] computations are done at L = 38.5, but we listed only 4 eigen-
values per periodic orbit, and considering hopeless organizational skills
on the Lan astral plane, I doubt that the full spectra can be rescued from
Lan’s calculations.

2016-11-11 Predrag I do not know whether Helleman and Bountis [23] Periodic
solutions of arbitrary period, variational methods is any good, but you might
want to have a glance at it, not at least for the earlier literature on the
variational methods that Lan and I had most likely missed. The Poincaré
quotes are surely inspirational!

2016-11-15 Matt Plumbers Meeting See pipes blog.

Reading Finished reading through refs. [23, 43], I had access to both
refs. [43, 45] as of yesterday and although I can’t believe I’m this
unlucky it seems the accessibility to refs. [43, 45] has changed in the
past day. I have a copy of ref. [43] but not ref. [45].

KITP conference Trying to get lodging and other details figured out. Be-
gan writing abstract for application for poster presentation (Due De-
cember 9th). Hopefully will have better variational method results
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by the time the conference comes around, would welcome recom-
mendations on what to include, but I have a general idea in my
head of what I can include; namely time-integration equations and
previous results (with proper citations for Xiong’s initial conditions)
in comparison to spatial Kuramoto-Sivashinsky equation and inte-
gration procedures and results. Motivation for variational Newton
descent, the respective equations and results.

Random Had to spend a chunk of time catching up on TA duties; I usu-
ally grade papers over the weekend but was unable to this week due
to sickness.

2016-11-18 Matt :

Newton method I’ve been working on getting better initial conditions to
use for the Newton descent method for antisymmetric subspace U+

of Kuramoto-Sivashinsky, as everything so far either stalls out, goes
to the equilibrium as in figure 13.32.
Currently I was either just taking something familiar, such as ppo10.2

and taking only the imaginary components of the Fourier coeffi-
cients and ran my code to see what happens by shooting in the dark,
I found this adequate for debugging purposes but not for practical
application.
Next I chose just Fourier coefficients that are periodic in time and
smooth, such as ûk = Ak cos(kt).
The way to do this is to use a Poincaré section but I’ve had problems
implementing this due to the fact that the time integration that I’m
accustom to is written in MATLAB and I’m trying to work in Python
currently. That being said, I’ve been writing code that adapts the
time-integration of ksint.m to Python so that I can do exactly this.
For antisymmetric subspace U+ of Kuramoto-Sivashinsky I can in-
tegrate in time and then once I’ve found a close recurrence I will
be able to use Fourier smoothing (e.g. discarding higher Fourier
modes) and then try to learn Lan’s black magic of “manually de-
forming" the loop to be smooth as to avoid discontinuities in the
time direction [27].
There is a storm in the distance however, as this general procedure
is ruined for the spatial problem. As we know from the chronotopic
literature (see chapter 5), that iteration in space typically does not
converge to the same attractor as iteration in time, and generally
corresponds to a strange repeller. Therefore I cannot hope to form
an initial guess loop from using a Poincaré section in the spatial di-
rection, as typically all of my Fourier coefficients go off to infinity
before a recurrence is found.
My idea to remedy this is to actually use time integration to form a
initial guess loop for applying Newton descent in space. If I integrate
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a spatially periodic initial condition in time, by virtue of the spatial
periodicity there is a close recurrence in the spatial direction (close
and not exact only due to discretization I believe). If I’ve thought
about this the right way. It’s the smartest way I can think of to gen-
erate an initial condition for the spatial Newton descent (1.36) given
that my spatial integration code is ill-behaved. If my spatial code
was working and there is no lapse in my rationale then it might ac-
tually have been a way to produce smooth initial guess loops for the
time direction Newton descent code. 15

Reading In between coding sessions I’ve been trying to not lose sight of
the bigger picture which in my head is periodic orbit theory. I’ve
been trying to spend any downtime/breaks from Python by reread-
ing the Bible (Chaosbook)

misc A lot of time spent on random errands that come with being an
adult and preparing for trip to UCSB. Also students had a hard time
with their homework this week so I’ve had to put more work into
shepherding.
Prof. Grigoriev was able to remedy the issue with the computer I’m
working with on; Updating graphics drivers did not accomplish this
so he installed a new version of Linux Mint (v17.3), which resolved
my issues. I made sure to notify Burak as to disrupt his calculations
as little as possible.

2016-11-21 Matt : Spent all day and night trying to convert time integration
code to Python to no avail. I’m convinced there is a specific reason why
Kassam and Trefethen [24] use MATLAB. I have checked it in so many
different ways yet it just numerically fails around T ≈ 300. It makes no
sense to me as I can easily manipulate the code while working in MAT-
LAB....implying that I have an understanding of what it’s doing. The
only resources I found were that perhaps the matrix exponentiation that
takes place could possibly be less accurate; checking everything manu-
ally yields quantities that are within machine precision to the correspond-
ing MATLAB quantitites.

This puts a wrench in my plans of writing Python code to develop a pro-
cedural way to generate initial conditions for Newton descent using a
Poincaré section and elbow grease; I will try to do this using MATLAB
and ask around for solutions towards why I’m so bad at Python. I’m hon-
estly at a loss for words.That being said there ain’t no rest for the wicked
so I’ll try to implement this in MATLAB and see where it leads.

2016-11-22 Matt :
15Matt 2016-11-18: I kept thinking about the process of using time integration to produce loops

for spatial Newton descent. The newest thought concerns the fact that time and spatial directions
do not usually converge to the same attractor. Maybe this implies that my idea of using time
integration with spatially periodic boundary conditions to produce an initial guess loop for spatial
Newton descent could be the worst way of doing so...still haven’t thought it through enough.
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Rooftop Plunge Talked with Professor Molei Tao of the Mathematics de-
partment. We discussed methods other than the Newton descent
on how to find repelling (hyperbolic) periodic orbits. He suggested
that I apply a method which parameterizes an interval of points
which crosses a separatrix such that a point on this discrete interval
is guided to the orbit by means of using the dynamical system re-
defined with a fictitious time, and iterative reparameterization that
is applied repeatedly as points defined on this interval are swept
along the unstable directions.
Specifically if the original dynamical system is given by,

Ẋ = f(X )

Then an interval of points Φ(τ, α) parameterized by α which un-
dergo fictitious dynamics in a new variable τ obeys,

Φτ (τ, α) = f(Φ(τ, α)), (13.25)

with endpoints of the interval at any fictitious time are given by
α = 0, 1. Over the course of this fictitious time evolution the in-
terval will begin to shoot apart due to the unstable manifold of the
hyperbolic periodic orbit. As I understood it, after evolution of fi-
nite fictitious time τ0 a new interval In is interpolated between two
points that have yet to be completely swept away by the unstable
manifold in order to begin the procedure again. I must maintain the
original parameterization when defining these subintervals, e.g. if
the original interval I0 = [0, 1] then each subsequent interval is de-
cided by In = [α−n , α

+
n ] where α±n are the corresponding values of

the parameterization of points previously interior to the proceeding
interval that will define the endpoints of the newest interval itera-
tion.
Additionally, a forcing term may be included in order to balance the
expansion due to the unstable manifold. (Committed from memory,
but I believe it to be correct).

Φτ (τ, α) = f(Φ(τ, α)) + ΛαΦ(τ, α) (13.26)

Professor Tao also showed me a different way of defining the cost-
functional currently being used. In his notation of ref. [51], an action
functional of the form

S[X ] =
1

2

∫ T

0

||Ẋ − f(X )||2L2
dt (13.27)

can be rewritten if we expand out the norm,

S[X ] =
1

2

∫ T

0

||Ẋ ||2 + ||fX||2 − 2 < X , f(X ) > dt (13.28)
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and finally upon usage of the Cauchy-Schwarz Inequality, we see,

S[X ] ≥ Ŝ[X ] =

∫ T

0

||Ẋ || · ||f(X )|| − 2 < X , f(X ) > dt (13.29)

The benefit of rewriting this is that one can see that the equality
holds when X = f(X ) which can be guaranteed by rescaling time.
The main idea of this new equation is that it is maximizing how par-
allel the two vectors are by virtue of the inner product. By rescaling
the time the entire functional can be minimized. There was a subtle
point about how the two minimizers are not generally the same but
the time rescaling procedure guaranteeing the equality makes it so
that solving both problems are equivalent.

literature Began poking through the literature cited in ref. [51] to get
more feel for variational methods.

Newton Descent Abandoned Python in the hunt for initial conditions
for the time being. Began adapting time integration code from ref. [24]
to develop a Poincaré section to find a close recurrence in order to
begin manually deforming integrated results into a relatively closed
loop. I attempted today to produce such an orbit but I need to first
rearrange the time integration code for reflect time integration of
the antisymmetric subspace U+. I believe that otherwise I have a
good idea of how to create the Poincaré section and an idea of how
to smooth out the loop manually by using an interpolation and in-
troducing some sort of weighting function such as a sine curve that
will forcibly make the higher modes periodic in time.

2016-11-25 Matt :

Mostly done with matlab code to produce initial conditions for varia-
tional method using Poincaré section and Fourier smoothing to produce
initial guess loops that are smooth and generally better than what I had
previously been producing.

The code takes an arbitrary initial condition and integrates it for a long
enough time such that any transient behavior dies out. Then finds an
initial and first return points of intersection with a Poincaré section de-
scribed by the hyperplane a1 = 0.

After words this loop is processed by Fourier smoothing of the individual
coefficients in order to make them periodic. I couldn’t get a rewritten ver-
sion of the ETDRK4 code to work for the antisymmetric subspace U+ for
long times yet so I worked around this by taking the imaginary part of an
antisymmetric initial condition. I seem to have be having similar prob-
lems to what I encountered when trying to adapt the code to a python
implementation, it breaks down right when the transients are filtered
out. Naturally there shouldn’t be any issues as the code only requires
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(a) (b)

Figure 13.33: An initial guess loop projected onto the (a1, a2) Fourier coeffi-
cient coordinate axes, (a) before and (b) after application of Fourier smooth-
ing.)

a change of the definition of the nonlinear term and taking the imaginary
part of the initial condition, but even so, I’ve been able to produce some
loops with my jerry-rigged code namely figure 13.33

2016-11-29 Matt :

Staying up all night to code changed very little in regards to my status
sadly. I reworked the Poincaré section MATLAB code and I feel more
confident in it as I get trajectories that look like figure 1 (a) in ref. [30].

Plugging these new initial conditions into my Newton descent code changed
nothing however, so I reworked this as well to only evolve the Fourier
coefficients corresponding to positive frequencies, thereby reducing the
dimensionality of the problem. I had to rewrite the stability matrix and
velocity function to exploit this. In the current version the contributions
from the nonlinear term are calculated explicitly via the sum also used
by Rempel et al. [43],

−qk
2

m=N∑
m=−N

amak−m =
−qk

2

(
m=−1∑
m=k−N

a−mak−m −
m=k−1∑
m=1

amak−m +
m=N∑
m=k+1

amam−k

)
,

where the positive frequency modes are denoted by k = 1, . . . , N , and
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qk = 2πk
L . The corresponding equation of evolution is therefore

ȧk = (q2
k−q4

k)ak+
qk
2

(
m=−1∑
m=k−N

a−mak−m −
m=k−1∑
m=1

amak−m +
m=N∑
m=k+1

amam−k

)
(13.30)

(Before approximately halving the spectrum there were 2 N + 1 modes in
the notation of ref. [43]. I’m following their notation because having N/2
everywhere just serves to clutter the equation.) It’s possible that I made
a mistake in implementing the stability matrix in this form, the corre-
sponding equation that I derived was, I need to double check tomorrow.

Aij = (q2
i − q4

i )δij +
−qk

2
(ai+j + 2aj−i − ai−j), (13.31)

where i, j = 1, . . . , N and terms like ai−j = 0 for i < j. Implementing
these changes sped my code up considerably but I still was unable to
achieve good results. I believe this might have been due to using too
few discritized time points. I increased the number of points but was
unable to get the code to run in a timely manner, and due to the amount
of memory it was using I decided to leave it for tomorrow after double
checking.

Also still unable to determine why the ETDRK4 code works perfectly in
MATLAB but fails after finite time in Python. The problem is that the
intermediate modes seem to diverge which I thought was a sign that I
had possible defined the nonlinear term incorrectly but as far as I can tell
it yields results identical to MATLAB results early in the integration pro-
cess. I don’t know much about the discrepancies between the precision
of the built-in MATLAB functions vs. numpy. I read that there might
be a problem with matrix exponentiation that’s required due to differing
definitions of the Padé approximants but I haven’t been able to confirm.

All in all, walking the sad road of a wandering gunslinger in the Wild
West (In honor of HBO’s WestWorld).

2016-11-30 Matt : Past two days have been spent making changes to New-
ton descent and testing those changes. For any changes that I make that
translate generically to any system I try to test them with Rössler first
before applying them to antisymmetric subspace U+ of Kuramoto-Siva-
shinsky. The other changes that are unique to antisymmetric Kuramoto-
Sivashinsky must of course be tested in that realm. The changes are look-
ing promising, as I can find longer periodic orbits in the Rössler system
now, however the period seems to be slightly off (Integrating the solution
after application of Newton descent yields a solution that is periodic but
overlaps). This is my number one suspect for why the Newton descent
code continues to stall at the moment; however, for the Rössler system
although it is much slower for longer periodic orbits, it still converges
very quickly once F 2 < 1.
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(a) (b)

(c) (d)

Figure 13.34: Preliminary results of 2016-11-29 version of Newton descent
code. (a) Tailored initial guess loop for system size L = 38.5 with approxi-
mate period of T ≈ [0, 26) defined with 16 Fourier modes with 64 discretized
time points, (b) Resulting loop after application of Newton descent code.
The approximate values for the cost functional are (a) F 2

initial ≈ 200 and (b)
F 2
final ≈ 10. The (a) initial and (b) final spacetime plots of the values of u(x, t)

have also been included for comparison.
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After applying these changes to antisymmetric subspace U+ of Kuramo-
to-Sivashinsky I produced results in figure ?? that look much more like
[30] fig 1(a) (ergodic trajectory belonging to antisymmetric subspace) and
less like figure ??, figure ??, figure ??. I believe these results, although
comparable in their final values of cost functional F 2 ≈ 10, are much
more demonstrative and close to actual periodic solutions belonging to
the antisymmetric subspace U+ of Kuramoto-Sivashinsky. I’m using the
similarity as a gauge of how good the results are but I understand that
once I find periodic orbits I will use the quantitative approach of verifi-
cation which compares spectra of periodic orbits.

Applied Professor Tao’s definition of cost functional (13.29) with very
poor results (initial values of F 2 ≈ 106). I don’t think I handled the time
rescaling that is required correctly but I didn’t get much time working
through it yet.

2016-12-05 Matt Sanity check I went back through the calculations for keep-
ing only the positive Fourier modes for antisymmetric subspace U+

of Kuramoto-Sivashinsky, as I felt like that was the only place I could
have made a mistake at this point; I did indeed discover a mistake
in the definition for the stability matrix equation, and will lay the
derivation here as proof I am accomplishing something; albeit mi-
nor. I also rederived the equation for the velocities for the positive
Fourier modes but this was less interesting as it was just rewriting
sums (13.30). Therefore beginning with (13.30),

ȧk = (q2
k−q4

k)ak+qk

(
m=−1∑
m=k−N

a−mak−m −
m=k−1∑
m=1

amak−m +
m=N∑
m=k+1

amam−k

)

∂ȧk
∂aj

= (q2
k − q4

k)δkj

+ qk

(
0∑

m=k−N+1

a−mδ(k−j)m + ak−mδ−mj

)

− qk
(

k∑
m=0

ak−mδmj + amδ(k−j)m

)

+ qk

(
N−1∑
m=k

am−kδmj + amδm(k+j)

)

whereby using the bounds for the sums over m in conjunction with
the Kronecker delta functions leads to inequalities for j which de-
termine the contributions from each sum depending on the value of
j. Specifically there are three separate triangular matrices that can
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be calculated according to these recipes for Akj ,

0 ≤ j ≤ k −2ak−j
0 ≤ j ≤ N − 1− k 2ak+j

k ≤ j ≤ N − 1 2aj−k

, (13.32)

where all indices excluding the summation indices m range from
0, . . . , N − 1 in order to adhere to how Python indexes arrays.
I have triple checked this and spent the majority of the day testing
and debugging this, and yet it seems to completely destroy all of
the progress I have made; it destroys the smoothness of the initial
guess loop immediately and therefore ruins the entire fictitious in-
tegration process. This makes no sense to me as the motivation for
such endeavors were Rempel’s use of only the positive Fourier spec-
trum [43] and some of Lan’s old codes that I have looked at in order
to get some divine inspiration from the astral plane.
This is disheartening as I thought I finally figured out my problems
but I suppose its back to the drawing board.

2016-11-07 Matt :

variational methods for dummies Spent too much time figuring out why
explicitly calculating the sums seem to be so different than the pre-
vious ways of calculating the velocity and stability matrix elements.
I spent some time tracking down what I believed was an index-
ing error either in the derivation or how I have written the code,
I made some mistake when rewriting the equation to correspond
to Python’s indexing situation but I believe I know how to fix the
issues.
After testing I believe that the number of discretized point I have
been using is much too small in order to induce smooth fictitious
time dynamics (PC: believe what?) and noting that the number of
discretized points used in in ref. [30] are larger than what I have been
using. I have been trying to improve the efficiency of the code that
I already have, as previous efforts with discretizations larger than
N = 128 when using the first d = 16 positive Fourier modes tends
to run very very slowly due to the generation of pseudoinverses of
matrices of such large size,Nd×Nd+1. Lan usedN = 512 for in cer-
tain examples. I believe that the number of discretized point I have
been using is much too small in order to induce smooth fictitious
time dynamics.

KITP Almost done writing the abstract that I need to submit for poster
presentation. I’m definitely interested in feedback.

Navier Stokes Sent out a line of communication to Professor Gibson about
codes and Krylov subspace methods that he mentioned in the email
correspondence with PC. Tried to pick up a few texts but the end
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of the year ramp up and my own stupidity has left me desiring for
more hours in the day.

2016-12-13 Matt :

coding The coding struggles continue. I don’t know how Lan was able
to accurately sum the nonlinear term as whenever I do it explicitly
I get inaccurate results when compared to the FFT method of doing
so. I’ve only seen sources claiming that these sums are inaccurate
and so I am throwing out these sums which is disappointing because
I am so utterly frustrated at this problem and I thought it would be
my savior. proof?
I am trying a new way of calculating the stability matrices that I
will write up once I’ve confirmed that I haven’t gone insane/made
errors in how I wrote it down. Also found and removed a few small
errors that my eyes had somehow missed. This fixed the problem
I was having with the periods of the periodic orbits of the Rössler
system.
To speed up the code I starting using a different implementation of
the pseudoinverse that comes from the same Python library. This
implementation uses the matrix’s singular value decomposition as
opposed to a least squares solver and seems to speed up the process
by quite a bit; not enough however to really make an impace into
the exceedingly long times that come with finely discretized initial
guess loops (16 spatial modes, 512 time points).
I’m letting the code run overnight with these new definitions so I
might have a happy surprise in the morning.

reading Read a few chapters of Numerical Linear Algebra by Trefethen
and Bau [53]. If I had more time I would’ve also try to brush up on
my coupled-map

2016-12-15 Matt :

Code I’m making some strides in rewriting the code such that it is more
efficient by trying to use less memory; so now I get my bad results
even faster. I found out now that the smooth loops that I had been
generating for initial conditions only looked nice because the spe-
cific Fourier coefficient projections I was using (normally (a1, a2))
were not exhibiting the Gibbs Phenomena nearly as much as the
higher Fourier modes are. i.e. I didn’t consider how smoothing the
Fourier spectrum can actually take the initial guess loop quite far
away from the integrated results using the hyperplane Poincaré sec-
tion and therefore is probably the main reason why improvements
to my code seemingly have no effect. I need to treat these disconti-
nuities in the higher (k > 1) Fourier modes more carefully. The main
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idea that popped into my head is to use a cubic spline before initi-
ating the Fourier smoothing (discarding the higher Fourier mode
data). I’ve been trying to look for better methods or information as
splines have their own related Gibbs phenomenon [58] when uni-
form discretizations are used and I am trying to avoid rewriting the
code the generates my initial conditions to be defined on anything
but uniform meshes; Chebyshev point interpolation might be an op-
tion as I know that a good MATLAB package called chebfun writ-
ten by the One (Trefethen) exists for these purposes, but I haven’t
looked into it yet. Also added ref. [56] in case it proves useful.
Didn’t get around to implementing this as my day was cut in half
with exam grading.

Calculations Currently I am using only the positive part of the Fourier
spectrum but doing the calculations for the velocities/stability ma-
trices with the full spectrum as I cannot get the summation formulae
for the convolution sum (nonlinear) term to behave as well as Lan
did. I must say that this sideways motion of waffling between meth-
ods is disappointing but as I get more and more used to the method
I believe the more natural concepts are rising to the top.

The new equation for the elements of the stability matrix that I ar-
rived at, 16

∂ ˙̂uk
∂ûj

= (q2
k − q4

k)δkj − 2qkNF{F−1(δ`j)×F−1(û˜̀)}k , (13.33)

where qk = 2πk/L , ûk = F{u}k .

The factor of N (power of 2, size of spatial discretization) is to follow
the convention that the normalization of 1/N is applied upon the
forward transformation (but in Python and MATLAB it is applied
upon inverse FFT, therefore we need two factors of N to cancel the
built-in normalizations). The multiplication of the inverse FFTs is
carried out element-wise hence the explicit multiplication symbol.
Although the result looks completely obvious I wanted to make sure
that I didn’t mess anything up such that I don’t spend any more
time trying to define quantities I should have known so this is what
I arrived at after writing the nonlinear term explicitly in terms of the

16Predrag 2017-01-10: What’s `, ˜̀in (13.33)?
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discrete Fourier transform summations. I.e.,

N
∂

∂ûj

N−1∑
n=0

 N/2−1∑
`,˜̀=−N/2

û` û˜̀e
i(ql+q˜̀)xn


n

e−iqkxn

=
N−1∑
n=0

 N/2−1∑
`=−N/2

δ`je
iqlxn

N/2−1∑
˜̀=−N/2

û˜̀e
iq˜̀xn

+

N/2−1∑
˜̀=−N/2

δ˜̀je
iqlxn

N/2−1∑
`=−N/2

û`e
iq`xn


n

e−iqkxn

= 4NF{F−1(δ`j)×F−1(û˜̀)}k (13.34)

2016-12-17 Matt :

Coding Still getting the "falling into equilibrium" problem with changes
to initial condition generation, i.e. the loop is deformed to a very
small (in terms of temporal length) loop around the trivial equilib-
rium u = 0. Somehow this is the only local minimum that my code
sees and I haven’t been able to figure out why.

misc Downloaded and played with the chebfun package produced by
Trefethen and others but with the other changes I made I haven’t
implemented anything involving this. Also got my new laptop up
to task for programming/subversion needs.

KITPabstract Read through the changes PC made to abstract. I like them
especially the rephrasing for the motivation for variational method,
every way I wrote it made it seem tacked on and not a central con-
cept. (PC - thanks! every little bit of praise helps:)

2016-12-17 Predrag Can you offer to Boris (by email - he’s showing up on Sat-
urday, but I do not know for how long) to help him install whatever on
his laptop, teach him how to use subversion? It seems that he can edit
our article only if he is logged onto the linux machine in his office, which
really slows down everything...

2016-12-17 Predrag This might be a red herring, but Moser was very good (he
is the M in KAM-theory), and maybe there is something useful for you
in Moser [36] Minimal solutions of variational problems on a torus. Do not be
discouraged if it is hard to read - we might have to ask Prof. de la Llave
to translate it for us.

2016-12-20 Matt :

Coding Wrote MATLAB code using chebfun to trigonometrically inter-
polate time-integrated Fourier coefficient data as well as convolute
this interpolated data with a Gaussian mollifier to manually deform
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initial loop guesses into continuous curves. In conjunction with the
Fourier smoothing and paying attention to how the mollified data
behaves at the boundaries it works quite well.
Almost there. I can taste it. Initial Loops now have initial values
for the cost functional F2 ≈ 1 − 10 if I’m lucky. The only place I
believe that there could possibly be an error still is in the code for
the stability matrices, however, it could just be that the initial guess
loops as well. (Mostly tested with older initial conditions so far,
according to [27] 3/10 initial conditions failed, considering I don’t
know how he explicitly produced these my rates might just be much
higher).
Played around with implementing the Poincaré section constraint
on the more unstable modes but to not effect, went back to pseu-
doinverses in the end.

Misc Wrote a nearly exhaustive (I believe at least) tutorial for Boris on
how one uses subversion. I made sure to not leave any breathing
room for mistakes. I can be sure of this as I just recently had to go
through the entire procedure for my new laptop as of a couple days
ago.

Misc2 Submitted poster presentation abstract and began working on for-
matting/gathering plots that I intend to use. So far I have the time-
integrated and spatially integrated versions of ppo10.2, and the vari-
ational Newton descent applied to the Rössler system. I’m really
hoping I’ll have something for Kuramoto-Sivashinsky antisymmet-
ric subspace U+ by the time I need to print. I am hopeful.

2016-12-20 Matt :

Newton descent 99 percent of the way there, I believe. Very close to
reproducing center periodic orbit 01 from ref. [30] (without looking
at stability multipliers/exponents, basing this off of the period, as
well as figure 5 (b) of ref. [30] as crude guideline.) Currently I have
figure 13.35, which is close but there is a discrepancy as the period
is T ≈ 25.6768 which differs from the value T = 23.6356 from [30].
I’m thinking this might be due to the difference in the implemented
methods as he calculated everything explicitly using sums.
2017-01-10 Predrag It’s probably as good as you can expect it - we
do not know what was the dependence of Lan’s computation on
various truncations. Tthe answer could be reproducible in a given
setup to many digits, but systematic errors due to the truncations
might be much larger. The leading Channelflow stability eigenvalue
(let’s say) might be reproducible to machine precision, but when you
change the discretization, the answer changes in 6th digit.

poster The journey continues, happy with antisymmetric results for now
and will try to get spatial results on the poster if I’m lucky. I think I
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(a) (b)

(c) (d)

Figure 13.35: (a) Initial condition for variational Newton descent usingN = 15
positive spatial frequency Fourier modes discretized over 128 points in time.
(b) Final loop after application of Newton descent. (c) Initial and (d) final spa-
tiotemporal plots of u(x, t). The initial value and final cutoff value for the cost
functional were F2 = 0.61460192 and F2 = 10−10.

should be able to if I exploit ref. [49] properly and learned from my
mistakes. Setting the bar high as per usual.

2016-12-21 Matt Code I managed to get an alternate version of the Newton
method code working using previous mistakes as a guide. I now
have two versions, one that uses FFTs to calculate the velocities and
stability matrices and one that uses explicit sums like Lan’s. The re-
sults agree to within a certain precision, based on their periods. Also
included are the run times as a means of showing which version is
favorable, which of course is the FFT version as it requires fewer op-
erations. In all calculations I made it such that the cutoff value for
the cost functional was to machine precision.

T T comp.
FFT + pseudoinverse 25.6768522498 42 seconds

FFT + inverse 25.6768522713 36 seconds
Explicit sums + pseudoinverse 25.678522628 185 seconds

Explicit sums + inverse 25.6768522555 151 seconds
What I believe this means is that there are small differences in imple-
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mentation of the loop that controls fictitious time evolution between
Lan’s codes and mine that are causing the discrepancies. I’ve tried
redefining this in multiple ways but other than the obvious change
between pseudoinverses or inverses they all have been failures.

Poster I have most of the information that I believe should be on the
poster but its too much text.

spatial code Worked a little in making changes that helped me with an-
tisymmetric subspace U+ work, but mainly spent the day trying to
verify my results and figure out why they are different than Lan’s.

2016-12-22 Matt :

Code After more testing I found one of the discrepancies between Lan’s
code and my own; the number of Fourier modes used in computa-
tion. I don’t know why I didn’t think of it earlier as it seems obvious
now that including more modes changes the periodic orbit in a nu-
merical sense. By using N = 16 positive frequency modes my code
now yields the period to be T = 25.6355 vs. Lan’s T = 25.6356. I
wish he had included more digits as it’s hard to distinguish if this
is actually still a discrepancy or if it’s just a rounding issue. Regard-
less, I’m one step further.
2017-01-10 Predrag Lan’s numbers might be given to more digits in
the svn repository y-lan (alert me if your svn ID/password does
not let you check it out). Possibly you can find them by some linux
magic, like
>cat FileName | grep 25.63
Also, you can fish through y-lan directories on zero.physics.gatech,
but those are not tidy (to put it mildly:).
The only other difference that I know of between our codes is his
matrix inversion process. He does this using LU decomposition
for the banded diagonal matrix and the Woodbury formula for the
cyclic border terms [27].

Poster Almost done with draft. Having a hard time condensing impor-
tant information while sounding coherent.

2016-12-24 Matt : Mainly worked on getting poster to a presentable state. Mul-
tiple critics deemed there to be far too much text so I gutted the poster
and tried to focus on the visual elements and equations more. pdf up-
loaded to repository under /gudorf/presentations/KITPposter.

2016-12-24 Predrag Slowly re-reading the blog for the past few months - I re-
ally like how clearly Matt records step-by-step progress in the project.

A comment about calculations in the Kuramoto-Sivashinsky invariant
antisymmetric subspace U+. Your (13.22) unfamiliar at the first glance (I
have not rechecked it, as it is derived and discussed in ChaosBook.org),
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but the Fourier coefficients should all be real, and the calculation is car-
ried out only on 1/2 of the L-domain, with the correct antisymmetric
subspace U+ boundary conditions: they are not periodic. Morally, when
comparing the antisymmetric subspace U+ to the full state space dynam-
ics, on should say that its domain size is L/2. That is why there is so
little going on in this invariant subspace when L = 22; have to go much
higher in L to get chaotic dynamics. No matter what are initial guesses,
you only can find some equilibria in the invariant subspace for L = 22, so
your “solutions” are very unlikely to be solutions. You can see this clearly
in figure 13.30 - the left half is just the right half reflected and multiplied
by -1. So the cost function (if you define it on spatial mesh) is computed
only on the [0, L/2] domain. The b.c.’s are automatically enforced by the
form of the Fourier expansion, with coefficients beyond N/2 set equal to
zero, not moded as you do in defining a((k−m)). You might be right, I had
not used aliasing in my calculations, but maybe should have.

Taking the spacetime data corresponding to the first equilibrium and
ppo10.2 integrated in time for 2Tppo10.2 reducing them to the antisymmet-
ric subspace U+ by taking the imaginary parts of their spatial Fourier
spectra will land you a mile from any solution in the invariant subspace.
Not sure why you added the deformation (13.24). At lest I think it does
satisfy the b.c.’s. Anyway, you could have used a first few Fourier modes
for Feynman’s trousers belt, and it would have been as good initial guess.

The structure of the “solution” in figure 13.30 is unfamiliar to me, but the
scales of the features seem not too small (small rapidly varying shapes
would indicate that something is very wrong). The value of the cost func-
tional F 2 decreasing from ≈ 40 to ≈ 8 in figure 13.30 probably means
that the descent has gotten hung up in a false “minimum,” and it is not
converging to a true spatiotemporal solution. Figure 13.31 looks more
suspect (lots of unfamiliar small-size structures). Figure 13.32, however,
looks totally credible - is is one of the equilibria that we list in our papers?
As explained above, for L = 22 I agree with you: I expect everything to
either stall or go to a known equilibrium, as in figure 13.32.

2016-12-27 Predrag : Is the poster source file too big to commit? More fun if
one can tinker with it.
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Chapter 14

Matt’s KITP blog

2017-01-03 Matt Happy New Year!

KITP chats Chatted with Ismail Hameduddin about his project in lay-
men’s terms about defining non-zero mean velocity near the walls
in pipe flow and how he and his adviser’s model predicts this. Chat-
ted with Burak about puffs in pipe flow, I believe he’s going to run
his presentation by me as practice for himself and education for me.
Burak is also convinced beyond a reasonable doubt that the key to
spatial integration is symplectic integration, even though we have
discussed at length with Predrag that the formulation of the Kura-
moto-Sivashinsky equation is not of the symplectic form (i.e., does
not have the coordinate/momentum type structure). That being
said he wants me to look into this more.

KITP poster Made arrangements for the poster to be printed on campus
after some minor edits.

Numerical Linear Algebra Read through more of Trefethen and Bau [13]
in preparation of meeting with PC and JG. Arnoldi iteration, GM-
RES, Krylov subspaces were main topics covered. Trying to work
through some of the problems to gain a better intuition rather than
just reading.

Newton descent antisymmetric subspace U+ In response to PC’s com-
ments of December 24th. All of the figures prior to figure 13.35 were
either ill-conditioned initial conditions that did not converge to pe-
riodic orbits (figure 13.34) or completely numerically wrong code-
wise (figure 13.30, figure 13.31, figure 13.32). I was trying to show
any progress I was making in terms of quantitative pieces as op-
posed to me merely claiming “I’m making progress". I suppose I
should have gone back for the record and stated “avoid looking at
this" or “this is complete nonsense" to prevent confusion, as there
is no way anyone could know otherwise. Equations such as (13.24)
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should be avoided like the plague.
Predrag 2017-01-03 No need to revisit any of that, it’s just the log
of your work as it progresses. It’s my fault for having fallen so far
behind in reading your blog. Sorry...
Figure 13.35 (b) and (d) is the periodic orbit 01 as defined in ref. [11]
(the Newton descent applied in figure 13.35 is with L = 38.5).

Spatial Newton descent Made small contributions to the code, but needs
a quite a bit more work. Still working through how to properly han-
dle real and imaginary parts separately in an efficient manner.

2017-01-04 Matt :

Waleffe is trying to answer the question of “which solutions are fun-
damental in shear flows". In investigation he looked at optimum
transport solutions on a reduced length scale (relative to solutions
of Boussinesq equation) and looked at the scaling of solutions in re-
gards to Nusselt and Rayleigh numbers.
Main take-away: claims that 2-D sheet scaling being close to 3-D
data scaling implies that the dynamics can be described by sheets
alone(?)

Wesfreid gave an experimenter’s look into Bénard – von Kármán insta-
bilities and use of vortex generators as actuators for flow control as
well as Couette-Poiseuille puffs/spots.
Main take-aways: Vortex generators can be used to reduce total drag
in expense of local regions of higher drag. In Couette-Poiseuille
spots the Couette flow was generally antiparallel to the Poiseuille
flow.

John Gibson introduced me to Channelflow and we discussed some of
the methods that it uses, specifically Arnoldi iteration. Discussed
the general layout of Channelflow in terms of library and scripts
but ran out of time to do anything specific. I’m trying to get it up
and running (see Misc.) so that I can give the c++ a whirl.

Reading Reviewed some material from Trefethen & Bau [13], began pick-
ing out some Navier-Stokes papers to read [5, 9]. Gibson et al. refer
to Aubry et al. [1].

Spatial Newton descent In between all of the informal meetings and cookie
breaks I maybe some more small edits to this code, but minimal
progress from yesterday.

Misc Installing a virtual machine image of Linux mint in hopes that
I would be able to get Channelflow up and running so I can toy
around with it... I’m convinced that I should just reinstall Linux
mint to be the main operating system of my computer immediately,
I know I would have to do this eventually anyway as performance is
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otherwise split between the machine image and the Windows oper-
ating system. I’m going to try and do this early tomorrow in hopes
that I can look at channel flow before talking to John again.

2017-1-5 Matt :

Ati Sharma tries to answer the question of why Koopman modes look
like resolvent modes... a question I ask myself daily (just kidding...
I’m hoping the tutorial to be quite extensive). Previewed Koopman
operators and their use in rewriting nonlinearities into a different
form such that one can expand about the mean flow solution. Use
of Singular Value Decomposition (SVD) acts as a filter iff there is sep-
aration of the singular values σi. The main connection that popped
into my head was how Arnoldi iteration picks out dominant eigen-
values... I looked into DMD and wikipedia mentioned both Arnoldi
iteration and SVD methods so maybe the similarity is not entirely in
my head.

Dennice Gayme investigates “restricted nonlinear methods” (RNL). The
main question posed was "does momentum redistribution lead to
structure?". I.e. does a streamwise description of plane Couette
flow with unstructured noise, lead to similar structure present in
plane Couette flow. Dennice claims it does, although this was un-
dertaken with relatively low Reynolds number. I believe it was Prof.
Caulfield who suggested (and Prof. Gayme agreed completely) that
the next step is to undertake some sort of linear stability analy-
sis in order to see if this is somehow related to the transition of
streaks/rolls to self-sustained turbulence.

Reading Tried to familiarize myself with dynamic mode decomposition
methods in preparation for the Koopman mode tutorial tomorrow.
Borrowed Pope [12] from Ismail Hameduddin in order to prepare
for the second talk tomorrow per recommendation of Burak.

Channelflow Going through a C++ tutorial recommended by Ismail to
help with the transition towards Channelflow. Still trying to set it
up properly such that I can run some example files before starting
any of my own endeavors.

Misc. • Discussed the Lagrangian formulation of Kuramoto-Sivashin-
sky equation with Burak and Predrag.

• Briefly discussed machine learning to find inertial manifolds
with Genta Kawahara.

2017-1-7 Matt :

Koopman à la Mezić (video).

Koopman à la Clarence Rowley (video).

Mean flow tutorial à la Laurette Tuckerman (video).
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readings More Pope [12] and Channelflow documentation

spatial Newton descent Did a little bit more work towards completion
of code; specifically deriving matrix elements for stability matrices;
I want to rederive everything a second time before I upload it here
as small mistakes held me back in antisymmetric U+ of Kuramo-
to-Sivashinsky. I believe I will be reducing the number of modes
in numerical implementation as I have to keep track of 8 times the
number of coefficients (factor of two from real and imaginary parts
of Fourier coefficients, factor of four from system of four equations
for each mode number). The only tasks I have left are making sure
the velocity function, stability matrix elements, and differentiation
matrix used to approximate the loop tangent are defined correctly.
I guess there is one additional factor which is producing the initial
conditions for searches

Weekend Plans • Review literature posted to transturb wiki wikispace
• Familiarize myself with Channelflow by going through tutorial,

finish c++ review c++ resource
• Finish spatial Newton code hopefully

2017-01-09 Matt :

Channelflow Still learning how to manipulate things in c++ and linux.
I’m still getting errors when trying to compile the simple example
files, and it’s obvious from the output that the libraries paths aren’t
defined correctly but I’ve tried a number of different ways to change
this and they don’t work. I’ll be asking my office mates in hopes that
they will be kind enough to elucidate the matter. Trying to keep the
chin held high.

reading Read some of the literature from transturb, I am trying to focus
on the video feeds however as I find that these are better avenues
for review.

spatial Newton descent I suppose I was quite hopeful in trying to get
this done over the weekend.

2017-1-09 Matt :

R. Kerswell Talk (video).

G. Kawahara Talk (video).

R. Grigoriev Talk (video).

C. Cossu Talk (video). Near wall streak structures known since the six-
ties. Self-sustaining process is main source of turbulent kinetic en-
ergy at low to moderate Re. Increasing Re contributes to an emerg-
ing energy peak in terms of streamwise wavelength and wall dis-
tance. This emerging peak has to do with structures scaling with
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outer units, and is believed by some to be dominant at very large
Re.
Looking at linearized equation with turbulent mean flow and in-
clude eddy-viscosity associated with turbulent mean flow and look
at the most amplified perturbation as a function of the spanwise
scale. There are two peaks, one that does not change with Re and
the second peak which does scale with Re.
Showed that linear instability can be a source of energy, but asks if
large scale structures can self sustain in the absence of small scales.
The opposite case, showing small-scale structures can self-sustain,
was done by using minimal flow units to remove any large active
scales.
To do this with large scales there were two ideas, use a very coarse
discretization, or filter the small scales and take into account dissi-
pation such that there is no unphysical energy production peak at
the scale of the grid.
Using a local spatial filter, (spatial average around each point). This
yields and additional term which is the divergence of the Reynolds
stress. Reynolds stress modeled with eddy viscosity and Smagorin-
sky.
To damp more small scales, increase the Smagorinsky constant. Al-
though this produces unphysical solutions, want to see if large-scale
structures survive, which they do.
For intermediate sized structures, take a smaller sized box than that
which was used for large scaled structures, and then kill out the
small scale structures using the method that was used for large scale
structures.
The takeaway is that structures of all scales can self-sustain, contra-
dicting the hypothesis of multiple hairpin vortices being advected
by the mean flow contribute to large scale structures. These larger
structures extract energy from the mean flow via lift-up.
Using Newton’s Method to find invariant solutions, then do contin-
uation in the Smagorinsky constant, to find upper branch solutions.
The filtered steady solutions are connected to the branch of Navier-
stokes solutions found by many others.

M. Avila Talk (video).
A. Duran Talk (video).
S. Tobias Talk (video). The generalised quasilinear approximation: Appli-

cation to jets, HMRI, and rotating Couette flows. Quasilinear really
means to keep only certain interaction terms. Divide the quantity
of desired investigation and split it into a mean term, and fluctua-
tion term about that mean.
The quasilinear approximation is to discard interaction terms which
are contribute to fluctuations and are based on only fluctuation terms.
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I.e. mean and fluctuation interaction that effects the mean is kept,
fluctuation interactions that affect the mean are kept, but fluctuation-
fluctuation interactions that affect the fluctuations are discarded.
Effectiveness of this approximation in fluids is ofter measured by
Kubo number, but you need to do the full calculation in order to
find this number; it is not something one can know a priori.
In the Generalised quasilinear approximation (GQL) the terms are
separated into short-scale and large-scale interactions.
GQL consists of keeping interactions of large scale mean-mean inter-
actions (large scale determined by low wavenumber, for example),
large scale mean and small scale fluctuation interactions, and small
scale fluctuation-fluctuation interactions.
GQL with a wavenumber cutoff keeping only three spatial Fourier
modes outperforms the regular QL approach, as QL overempha-
sizes the role of waves. (Rossby wave can only reinforce Rossby
wave). GQL allows for scattering into different wave numbers.

2017-1-10 Matt :

Channelflow Practicing using Channelflow. Trying to learn all of the
command line switches and codes through practice, went through
the tutorial.

T. Mullin Talk The sensitivity of transition in a pipe (video).
Poiseuille flow, add perturbations. Measured the probability of tran-
sition to turbulence versus the normalized amplitude of perturba-
tion. A way to introduce these perturbations is to introduce a jet
with a small hole. At Re ≈ 3, 000 the transition probability is still
sharp (sigmoid like curve), but with Re ≈ 2000, you get a small
hump that proceeds the main transition. Two different amplitudes
of disturbance leads to two different behaviors even though the cen-
terline velocities behave in the same manner showing similar pat-
terns to Marc Avila’s slug profiles.
Velocity defect and variance seem to settle in same place for puffs.
For the amplitudes between these two large transition probability
areas (the region where you have small probability to transition) the
correlation does not not follow this behavior.

S. Rubenstein Talk Colliding vortex rings; Rapid breakup of coherent struc-
tures (video). How do coherent structures break up, how large
scales give energy to small scales. Basing off of Lim and Nickels
(1992). Small Reynolds number vortex ring collision produced a
tiara of (which looked self-similar) rings. Inviscid process of vor-
tex reconnection described by vortex filaments and sheets to explain
energy cascade.
Rodolfo introduced the numerical side of the vortex ring collisions.
Navier-Stokes fluids look like Biot-Savart equations vortex collision.
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Fatter cores in the numerics is able to reproduce the vortex reconnec-
tion.

R. Poole Talk Low-drag turbulent states in Newtonian and non-Newtonian
fluids (video).
Drag reduction is something that you can measure in non-Newtonian
fluids in any geometry In non-Newtonian fluids you have to talk
about different viscosities, extensional, biaxial, etc. Separation of
dynamics into active and hibernating turbulence, where hibernat-
ing is defined by Virk limit (away from Blasius) characterized with
low Reynolds shear stresses. Stereoscopic PIV (2D3C) results show
hibernating turbulence is not laminar flow, and mainly consists of a
spanwise motion of counter rotating vortices.

E. Wesfreid Talk New experiments on the subcritical transition to turbulence
in Couette-Poiseuille flow (video) Two types of Couette-Poiseuille
flow, depending on direction of pressure gradient. Can measure the
velocity profile to verify it is behaving correctly. Centrifugal insta-
bility in plane-Couette flow is the Taylor instability while in plane
Couette-Poiseuille flow is the Taylor-Dean instability.
Introduce pertubation with hole in stationary wall in Couette-Poiseuille
flow. Streamwise perturbations of spot due to transient forcing of
temporal extent "1". Can produce large scale structures with inho-
mogeneous friction. Self-sustatining iff the amplitude of the pertur-
bation is sufficiently large.

M. Schatz Forecasting turbulence using the geometry of invariant solutions:
Experiments, theory, and numerics (video). Talking about shadow-
ing invariant solutions in state space. Are there specific experiments
that can elucidate the unstable/stable manifolds of these invariant
solutions? Kolmogorov flow. Spatially sinusoidal forcing. Can’t
really do 2-d flows experimentally so do quasi 2-d flows instead.
Separation of variables to introduce vertical velocity profile, results
in modified Navier-Stokes equation with a parameter β on the ad-
vection term, and a linear friction (Rayleigh friction) term. Inertial
term (prefactor) introduced to delve into bifurcations of solutions in
more detail. Doubly periodic, singly-periodic + no slip, NPS bound-
ary conditions.
Modulated flow; rotation symmetry. Imperfect bif. from laminar.
Non-periodic simulation (NPS). recurrence diagram.
Using norm of flow fields to find times of slow "state space speed"
to initiate Newton-Krylov searches for periodic orbits.

C. Beaume Transitional shear flows: Computing exact coherent states in two
dimensions (video). Using asymptotic reductions as reduced order
modeling of nonlinear flows. Introduction to plane Couette flow.
Introduction to Waleffe flow. Free-slip boundary conditions, sinu-
soidal forcing. coexistance of laminar (attractive) and turbulent so-
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lutions. Constrain to the separatrix between laminar basin of attrac-
tion and these unstable manifolds of invariant solutions. Typically
the fixed points that organize the dynamics are upper branch solu-
tions.
Lower branch solution Wang, Gibson, Waleffe (2007). Fourier de-
composition for steady-state ECS, shows the coefficients of decom-
position scale with Re number.
Wants to solve for fluctuations (fast time scale) while keeping av-
eraged quantities (slow-time scale) fixed. This yields an eigenvalue
equation for the fluctuations.
Using his specific algorithm, he wants to bring the "leading" eigen-
value (discarding eigenvalues with larger real parts but also imag-
inary parts) to zero, as the marginality is an indicator of a steady
state.
Uses L. Tuckerman algorithm for preconditioning, semi-implicit Eu-
ler scheme to solve for linear term explicitly and nonlinear term im-
plicitly. Results in resolvent (I − ωL)−1.
Do not need same preconditioner for mean, fluctuation equations.
mean equation preconditioner P = I − L fluctuation equation pre-
conditioner P = (I −Re−1L)

Messy Bifurcation curves for modulated solutions, strange behav-
iors. They make Rich Kerswell nervous. Increasing resolution smoothes
them, has to do with low-dimensional representation.

B. Budanur Unstable manifolds of recurrent flows in pipe flow (video). Un-
stable manifolds shape the separatrix of the chaotic attractor. Un-
stable manifolds for Poiseuille flow/pressure driven flow Continu-
ous symmetries lead to relative invariant solutions. Reducing the
symmetry by removing the parameterization of translation, leads to
something much nicer topologically. Introducing time evolution as
mapping f. Listing symmetries. In group notation, flow mapping f
commutes with group element operation (group action). Each solu-
tion has infinitely many symmetry copies on its group orbit. Sym-
metry reduction is a coordinate transformation such that group orbit
is mapped to one orbit.
Intro to SO(2) reduction via first Fourier mode slice. Not geometry
dependent, can define coordinates as you see fit. Can use these pro-
jections to project neighbors onto slice. Therefore one can project the
tangent space onto the slice. which allows for numerical integration
that is completely contained in the symmetry reduced space if you
are careful.
Example, unstable manifolds of traveling waves. Create a small ball
(circle for 2d unstable manifold) and integrate to map out unstable
manifold. Use a PIM triple/bisection to increase resolution and cap-
ture more of the unstable manifold.

7451 (predrag–6807) 33503/19/2019 siminos/spatiotemp/chapter/blogKITP.tex

http://online.kitp.ucsb.edu/online/transturb-c17/budanur/


CHAPTER 14. MATT’S KITP BLOG

Using a recurrence based norm, can use small values of the norm to
begin Newton searches for invariant solutions. Then one can play
the game of mapping this invariant solution’s unstable manifold
Going over using higher energy solution as energy control that drives
system towards laminarisation. "too much turbulence kills turbu-
lence".
Talking about localized relative periodic orbits, M. Avila’s paper.
Can reduce dynamics/Floquet vectors of map of first Fourier mode
slice with Poincaré section.
Calculating unstable manifolds of traveling waves and relative peri-
odic orbits and generalizing so long as symmetries are of the SO(2)
class.
Puff formation in this subspace seems to be forming along hetero-
clinic connection between LB and UB solutions.
E. Knobloch Comments Bifurcations from a group orbit. Derived 25
years ago. Projections lose structure about the global structure of the
manifolds. Lose information of the vector field that is orthogonal to
the group orbit.

P. Cvitanović Turbulence: How fat is it? (video). Strange attractor stuffed
into a finite-dimensional body bag. Computation of covariant Lya-
punov vectors, covariant vectors are non-normal. Algorithmic ap-
proach to compute these. Physical dynamics is hyperbolically sepa-
rated from the infinity of transient modes.
Kuramoto-Sivashinsky equation spectrum of eigenvalues (Lyapunov
spectrum). The values of the Lyapunov exponents. Sharp shoulder
where you fall off the cliff.
Doubling the spatial length doubles the number of "physical" di-
mension. Increasing modes in same length just increases the num-
ber of "transient" modes.
Transient and "entangled" = "physical" perturbations. Entanglements
is between stable and unstable manifolds, where stable can win for
a short time until unstable takes back over. Inertial manifold locally
spanned by entangled covariant vectors.
Dimension of the inertial manifold. Distribution of angles between
eigenvectors. Need to take stable eigenvectors into account due
to nonlinearities. Kaplan-Yorke wrong by factor of two. Transient
eigenvectors cannot have angle of zero and in fact are likely to be
orthogonal to one another.
With these linearizations we are still embedded in higher dimen-
sions so where the blip are we.
Cartography. Cover the inertial manifold with a set of flat charts/tiles.
The tiles determine when you need to switch your maps.
Computing Floquet vectors of periodic orbits to machine precision.
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From periodic Schur decomposition, 8 modes are entangled, the rest
are transient.
Believed that this is only necessary to do for one periodic orbit, as
this computation done for 500 periodic orbits all provided the same
number of entangled modes.
The more honest answer to Laurette. Take the first n eigenvectors,
defines linear space, find complement to that space, find the angle
between those two spaces.
When you do not have enough eigenvectors to span the neighbor-
hood of periodic orbit then the angles of ergodic trajectories will not
be small as you will be "poking" out.
inertial manifold spanned locally by entangled covariant vectors,
tangent to unstable/stable manifolds. The rest is transient.

2017-1-11 Matt :

coding Small amount of work put into spatial Newton descent code but
most of the evening was used chatting with people over dinner at
KITP residence.

K. Julien Talk Quasigeostrophic investigations of non-hydrostatic, stably-stratified
and rapidly rotating flows (video). Motivations are strong system ro-
tation and stable density stratification characterize many geophysi-
cal flows. Rossby and Froude numbers much less than unity. Large
spatial size leads to normal mode analysis, eddy dynamics on dif-
ferent scale than gravity waves and coriolis terms(Related to Froude
and Rossby number respectively). Classical QG equations. Scale of
the forcing leads to either inverse energy cascade or direct enstrophy
cascade.
With Froude order unity get columnal waves. Try to get reduced
equations as these things are hard to resolve due to aspect ratio.
This leads to non-dimensional Boussinesq Equations, which in turn
with assumptions about scale lead to non-hydrostatic quasi-geostrophic
equations. Results simulation results in large scale barotropic modes.
To explain the layering of the solutions to some of the simulations.

N. Constantinou Talk Understanding self-organization in turbulent flows by
studying the statistical state dynamics (video). Long streaky structures
in boundary layer turbulence of the Earth. Claims. "Underlying dy-
namics of structure formation lies in the interaction of turbulent ed-
dies with mean flows" "Often structure formation only has analytic
expressions in statistical state dynamics" "Because of the first claim,
a second-order closure of SSD is often adequate"
Introduction to SSD.

1. Split into mean + eddy terms
2. Form hierarchy of same-time statistical moments/cumulants
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3. Find how each of the moments/cumulants evolve
4. Throw away everything above second order (S3T)

"By studying the dynamics of the statistics, new phenomena arise
that are not present or obscured in single flow realizations."
How does a state with no mean flow become unstable? Pertur-
bations produce Reynolds stresses that reinforces the perturbation.
Applies to 2d as well as 3d.
Find eigenvalues and eigenfunctions and then plug into dynamics.

K. Deguchi The high-Reynolds number limit of self-sustained magnetohydro-
dynamic dynamos (video). MHD dynamo introduction, exchange
kinetic and magnetic energy. Applying nonlinear analysis of sub-
critical shear flows to MHD dynamos. Zero net flux implies purely
driven by shear. Asymptotic expansion in inverse Reynolds num-
ber. Stretching coordinate and matching.
Self-consistent asymptotic analysis Many different ways to handle
the order the leading powers of asymptotic expansion.
Vortex-wave interaction, self-sustaining process theories for the driv-
ing mechanism of streamwise vortices. Explanation of these pro-
cesses.
Using MHD equations with Hall term. Derive a wave equation, pro-
duce Alfven wave.
Stress jump in roll component, Resonant Absorption Theory.
Lots of really long equations, with the effect of system rotation and
linear instability following as analysis.

J. Klewicki Talk Invariant representation of mean inertia provides a theoret-
ical basis for the log law in turbulent boundary layers (video). High
Reynolds number boundary layers. Logarithmic mean velocity pro-
file. Von Kàrmàn constant.
Open question for logarithmic dependence in boundary layers not
well understood.
Rationalizing the log law. Prandtl derivation (distance from the wall
scaling hypothesis).
Looking for invariant formulation (coordinate independent) version
of equation that we can solve to get log law.
Rescaling equations when viscous, pressure gradient, turbulent in-
ertial forces are all of same order leads to invariant representation in
this layer.
Taken equations of motion, used similarity for closure, rescaled them
in a way such that you get a nonlinear equation that you can inte-
grate to get a log-law.
Apply similar transformation for boundary layers after finding that
one of the terms is constant.
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2017-1-12 Matt :

spatial Newton descent Worked on code a slight bit more in between
talks.

B. Mckeon Talk Self-similarity in the resolvent model: Linear response and
nonlinear interactions (video). Summary of resolvent analysis, ex-
pansions around mean such that nonlinearity all contained in one
term. Resolvent operator transports, singular values. Randomized
scheme because resolvent operator is very low rank in regime of
turbulence, i.e. only few singular values from decomposition are
required. Low rank related to critical layers.
Discussion about the shapes of these resolvent modes, regions of
different behaviors based on wave speed. Wave speed localizes re-
ponse of resolvent operator. Low wave speed implies that all re-
solvent modes are "attached" to the wall, then an intermediate re-
gion, then a region of wave speed values such that all modes are
"detached".
Dynamics dictated by when wave speed is equal to local turbulent
mean, that is to say these are the values that result in physical be-
haviors.
In the inner regions the singular values "do all of the hard work".
Required that U-c should be scalable in y for geometric self-similarity,
shows after scaling that. Self similarity related to attached eddy
ideas of Townsend et al. Shows similar results for broadband forc-
ing.
Nonlinear interacting hierarchies, interaction of triatically consistent
modes allows for excitation of another set?
Everything seems predicated on knowing the mean, or giving a good
guess for the mean based on experiment rather than a priori knowl-
edge.

M. Jovanović Color of Turbulence (video). Spatiotemporal spectrum of
stochastic forcing. Using linear navier-stokes equations with stochas-
tic input, linearized around the turbulent mean.
"Can I choose stochastic input based on spectrum such that linear
dynamics produce correct statistical information"
Proposed approach: view second-order statistics as data for an in-
verse problem. His contribution is a principled way of turbulence
model as an inverse problem.
A good way of getting insight is to look at how quantities are scaled
into observable quantities that we care about.
Stochastic forcing that is white in time and y, harmonic in x, z.
Linear equations can capture coherent structures.
Using Lyapunov equation propagates white correlation of sources
into colored statistics of coordinates, using spatial covariance ma-
trix. AX + XA∗ = −BWB. If W positive definite, then X positive
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semi-definite, but converse not true. Colored in time AX + XA∗ =
−(BH +HB∗)
Convex optimization problem.
White-noise too restrictive, cannot reproduce dns with whit in time
forcing. Suprising: quality of completion of incomplete data, re-
trieving matrix structure. Without keeping physics in the mix, you
would get complete garbage.

A. Sharma Talk Resolvent Modes and invariant solutions (video) Using re-
solvent modes to find new invariant solutions of Navier-Stokes. Lin-
earization about the mean (w=0) mode. leads to equation relating
second order terms to u. Nonlinear terms are exciting the mean,invert
(explanation of resolvent operator equation) (wI − L)−1. Resolvent
is well approximated via projection, use SVD to give a basis.
To fix the coefficients properly is a quadratic optimisation problem
of an algebraic equation. Hopefully resolvent mode analysis is rep-
resentative of the effect of invariant solutions on state space and the
low dimensionality of said solutions.
Showing actual solutions to pipe flow and their projections onto
small number of modes and comparison.
using mean flow of solutions, "at that point in state space"....this isn’t
right is it?
Projection of upper branch solution looks like lower branch coun-
terpart. If you put upper branch projection and search for solution,
looks like equilibria.
Using a project-and-search algorithm (project onto resolvent modes,
then use Newton-Krylov). Dissipation continuations graphs.

Clancy Rowley (video). Data-driven methods for identifying nonlinear mod-
els of fluid flows Dynamic Mode Decomposition, Koopman Operator,
data approximating Koopman.
Eigenfunctions of the Koopman operator determine coordinates in
which a system evolves linearly.
If U has enough eigenfunctions so that we can reconstruct the state
x from the values of the eigenfunctions then there is a coordinate
change in which the dynamics is linear.
Data-driven inner product. Subspace S spanned by a set of observ-
ables Projection Theorem Approximate Koopman operator by pro-
jection onto the subspace S.
Numerical method that is obtained is the same as DMD, but will
be able to say more about correspondence about Koopman operator
and DMD.
The data driven inner product converges to normal L2 norm in limit
of large numbers. Create subspace spanned by n observables, define
projection operator.
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Theorem(Data-Driven Projetion) Let A = X+X then for any v ∈ Cn
then PU F(v)= F(Av), that is A is the matrix representation of the
projection of Koopman.
Turns out this matrix, A, is identical to matrix computed in EDMD.
(Extended Dynamic Mode Decomposition).
What if there is an eigenfunction that is in subspace S, then this
method is able to find it.
If subspace is invariant under U. If v is eigenfunction of A, then φ is
an eigenfunction of u, with φ = F (v).
Hard to actually check if S is invariant under U.
Choice of observables to determine the basis is nontrivial.
Using this model with POD modes and comparison to Galerkin trun-
cation of Fourier modes. Works much better than Galerkin when
white noise introduced.

M. Green Talk Tracking coherent structures in massive-separated and turbu-
lent flows (video). pFTLE and nFTLE: finite time Lyapunov expo-
nents. (positive and negative time). This is a field that is used to
differentiate between dynamically distinct regions. Negative time
FTLE is where fluid is attracted in forward time.
What can we do with this information about these ridges? Non-
parallel intersections interesting. Saddle-like behavior of these in-
tersections.
Intersection starts on cylinder and seems to track vortices. Extract-
ing physics from the distances of vortex core and cylinder, etc.
Can tie vortex shedding to the dynamics of the saddle point.
Can you track similar coherent structures in 3D turbulence? Subse-
quent vortex generation can be tracked by additional saddle gener-
ation.
Tracking material transport that will be involved in secondary hair-
pin generation, drawn up from the wall.
nFTLE, pFTLE surfaces calculated in channel flow. Projected onto
2-d plane, used PIV program to calculate average velocity of sad-
dle points correlations Comparison to velocity profiles, slower than
mean in bulk, faster than mean near walls. Similar to perturbation
profile of ...
Can we use these saddle tracking methods to follow coherent struc-
tures in 3d? not so simple because they actually live on 2d surfaces.
Large amounts of velocity data needed but it’s really hard to mess
up the general direction of unstable/stable manifolds of these struc-
tures.

Y. Hwang Talk Self-sustaining attached eddies in wall-bounded turbulence (video).
Attached Eddy Hypothesis, Townsend. Viscous layer, buffer layer,
Log region (scales with wall), wake region. Linear spanwise length
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scale growth is intimately related to the log region scaling. Isolating
motions at given spanwise length scale growth, filter out larger scal-
ing, damping out smaller structures. Smagorinsky scale damping.
Showing self-sustaining process of attached eddies with correlation
functions.
"real" part of the talk. Pressure fluctuation generated by nonlinear
feeding processes of vortices. Showing length scale of streamwise
vortices is the same as the length scale of pressure off of the wall.
Both rapid and slow pressure is generated in streamwise wavy struc-
tures. Rapid pressure is mediating the lift-up effects which controls
the generation of streaks from streamwise vortices.
Slow pressure generation is dominated by streamwise vortical struc-
ture.
Skin-friction generation. Not generated by singular structure at a
given length scale. Everyone is important at high Reynolds number.
Three methods for skin-friction, identifying size of structures re-
sponsible. Using Fukugata-Iwamoto-Kasagi identity. Only include
structures up to given length scale, artificial damping of large struc-
tures.
FIK say that large scale structures contribute the most to skin-friction.
Getting rid of largest structures doesn’t reduce drag that much, it’s
actually disposing of log-region scale structures that will reduce drag
the most.
Supressing the lift-up reduces drag.
Upper branch is more related to large scale structures.

E. Knobloch A nonlinear model of noise-sustained structure in subcritical sys-
tems (video). Lots of interesting things happen when you diverge
from periodic boundary conditions. Changes convective instability
to absolute instability. Convective instability is things that grow and
are then advected with the flow, other stability is things that grow
in place and fill the domain.
Complex-Ginzburg Landau. For range of bif. parameter things are
convectively unstable, and outside this region structures are abso-
lutely unstable.
Study the model problem that has the same dichotomy. Bifurcation
diagram with different amplitudes of disturbances.
Scale the equations in limit of large advection, use Liénard transfor-
mation to change the problem to a BVP. Spatial van der Pol oscilla-
tor.
The coincidence of the two manifolds results in an "orbit flip bifur-
cation".
Talking about the front location, originally "found" using phase di-
agrams, then looking at inlet perturbations eta and seeing how the
location of the front changes.
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"the observed sensitivity finds a natural explanation in the presence
of canard segments on solutions of the spatial BVP for the steady
states of the model. These results are obtained by recasting the mode
as a slow-fast system in space and focusing on its steady states sub-
ject to
Even very small changes to inlet boundary conditions have a huge
effect.

S. Zammert Coherent structures in boundary layers in the quasilinear ap-
proximation (video). Exact solutions with smaller scales or multi-
ple scales. Rescale coherent structure with factor λ and plug back
into Navier stokes and find that this is related to scale factor λ at
Reynolds/λ2. With this scaling, coherent structures of multiple scales
can coexist, creating a hierarchy of scaled solutions.
Lower branch solutions only. Wall normal localization gets lost.
Method also works for localized solutions. Apply rescaling pro-
cedure to axes of wall-normal localization leads to results that are
completely self-similar.
Linear stability analysis, stablity eigenvalues, have same self-similar
spectrum, therefore can use larger structures at lower reynolds num-
bers to do analysis at higher reynolds numbers.
Quasilinear approximation, split into spanwise and no-spanwise vari-
ation. Define projection operators s.t. you get either of these. Non-
linear term split into parts, some discarded others kept. (u2 ·∇)u1 +
p1(u2 · ∇)u2 discard part that effects mean flow.
Much simpler dynamics in quasilinear approximation, attracting state
in this approx is always steady. Qualitatively the profiles of the non-
linear, quasilinear cases are similar. Profiles scale in the same way
that solutions did.
How turbulent mean profiles are related to exact coherent solutions.
Bifurcations of quasilinear states, what’s going on?
The amplitudes of modes vs. reynolds number, decrease quite rapidly
at low re, but dip then plateau at higher Re. Whenever a new mode
becomes active, bifurcations of quasilinear.
Look at how new modes contribute to profile. Modes do not inter-
act, turn off certain modes as way of initializing initial condition for
ECS search. Low mode numbers lead to linear profiles in the bulk
and high contribute to boundary layer.
Continuation to nonlinear system. Homotopy introduced such that
the parameter equal to one are ECS in quasilinear, 0 equal to ECS in
nonlinear.
In order to synthesize turbulence, you need constant energy scaling.

2017-1-13 Matt :
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L. Tuckerman Talk Transition to turbulence in Waleffe and Kolmogorovian
flows (video). Taking quasi-turbulent (no kolmogorov scaling) and
quasi-laminar flow to larger scale domain.
Using coupled map lattice to analyze structures on this large do-
main.
Are results from coupled map lattice continuous? Turbulence frac-
tion graphs have same slope on log-log plot as directed percolation.
Shows how large domains are necessary to pick up on structures.
Waleffe Flow Reproduces interior of Plane-Couette well by having
sinusoidal body force and free-slip boundary conditions.
Truncated Waleffe flow results in system of seven PDEs.
Simulations find that transition is continuous, shares same critical
exponent.
Directed Percolation is the basis of these exponents, although never
truly realized in physical systems.
Can be classified by three independent exponents, turbulent frac-
tion, laminar gaps in time, laminar gaps in space.
(turbulent and laminar taking the role which is normally discussed
as excited and unexcited in directed percolation).
Streamwise spatial gaps do not agree.

B. Hof Talk Transition to turbulence in channel flow (video). Stripes present
in channel flow.
Edge-tracking of tilted domain (tilted so that stripes are perpendic-
ular to domain boundaries). Using Newton method to converge the
solution.
Lower branch bifurcates into RPO solution which becomes the new
edge state, followed to upper branch. Following shows more bi-
furacations and then a boundary crisis, this scenario gives rise to
transient striped patterns.
Might be able to find in experiment as it is a stable RPO, but would
need a localized version without periodic boundary conditions.
There is an angular dependence of the bifurcation diagram (angle of
tilted domain). 45 degrees seems optimal.
Transient stripes and puffs to sustained. Time scales are very long
and very important because turbulent fraction continues to climb as
system is evolved.
Memoryless process of pipe flow puffs lead to measuring character-
istic life time. Growing more than decay is being used as a indirect
method of characterizing the critical Reynolds number at which sus-
tained turbulence occurs (Rec ≈ 2040).
Re = 2020 the turbulent fraction goes the zero after a large number
of advective time units, while at Re = 2060 there appears to be a
statistical steady state w.r.t. turbulent fraction.
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Using a directed percolation analogy, discrete model based on life-
time and splitting statistics, but cannot get critical exponents be-
cause interactions are not taken into consideration in model. When
interactions are taken into account, the percolation exponent comes
out.

B. Eckhardt Talk Dynamical systems analysis of transition in boundary layer
flows (video). Looking at spatiotemporal development of flow down-
stream from a thin plate.
Five main spatial behaviors of flow, arranged in a streamwise fash-
ion:

• free-stream turbulence
• streak growth
• breakdown into turbulent spots or nucleation.
• spatio-temporal intermittency (spots spreading and merging)
• turbulent boundary layer

Localized edge-state that produces secondary structures. It’s diffi-
cult to access asymptotic dynamics because there is spatial develop-
ment.
This is complicated, so instead apply suction such that the devel-
oping boundary layer is translationally invariant. Then can look
at asymptotic suction boundary layer. It is linearly stable up to
Rec = 54370, but goes turbulent with bypass transition at much
smaller Re = 270.
In short-wide domains, edge states evolved in time go through a
process that results in spatial translation; can relate to self-sustaining
mechanism.
Can development multiple edge states the move left, right, oscillate,
and move erratically when tuning parameters.
Can compare edge states and nucleation events. When starting with
an initial random perturbation field, there is a transient period where
perturbations decay, leading to streak growth. Before the streaks
transition into turbulence via nucleation events, look at the streak
structure. These spatiotemporal structures are similar in width, strength,
and sinuous instability wavelength to the edge states found previ-
ously.
Looking at random initial conditions in a state space view. The ener-
gies of velocity components of initial conditions come close to those
of edge states and then are either ejected towards turbulent behav-
ior, or cross the edge states and decay.
Measuring "intermittency factor" which seems identical to Tucker-
man’s "turbulent fraction" from directed percolation.
The nucleation model in conjunction wth the probabilistic cellular
automaton gives a good description of bypass transition.
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2016-1-14 Matt : Looking at Lan’s directory, I was able to find what I believe
is the period of 01 orbit to six decimal digits, T01 = (25.6356)82 which
conflicts with my value of Tp = 25.635484

Spent some time learning c++. H

2017-1-16 Matt :

G. Falkovich Talk Interaction between mean flow and turbulence (video).
Isotropic homogeneous turbulence is basically nonsense because it
discards interactions.
Has a localized edge, so it leaves a wake, edge has asymptotic be-
havior. Drag coefficient goes to constant as Re goes to infinity. Fric-
tion factor for pipe flows scales like 1/Log(Re) as Re goes to infinity.
Cannot describe turbulence generated by a flow, so instead try to
describe a flow generated by turbulence. How to predict a glow
generated by an inverse cascade in two dimensions.
How? Set the small scale forcing, change the geometry to change
the flow.
Guiding principle to guess is to guess that it occupies the lowest
available wavenumber.
In a box with symmetry, expect dipole or large central vortex with
four small counter rotating vortices at the corners. If discarding
symmetry expect flow along long direction.
Two-dimensional turbulence, including forcing and friction. Condi-
tion for a strong mean flow estimated by kolmogorov factor. ε−1/3L2/3α <<
1. Epsilon is total net force.
This friction is not viscous friction, for example its set by the layer
of lubricant à la Schatz.
Two-dimensional vortex sustained by small-scale forcing. J Laurie et
al PRL 2014. Radial forcing generalization Frishman and Falkovich,
unpublished. Next step is describing correlation functions of tur-
bulence, long calculation, resulting in expression for pressure as a
function of radius.
Prediction that first harmonic is independent of radius. Graphs of
mean flow and momentum flux quantities vs. r showing valid re-
gion of theory.
Numerical modeling in a box with no-slip boundary Clear symme-
try breaking, vortices have direction. Takes many turnover times to
see behavior.
Inverse cascade on a sphere, non-rotating. Same procedure as be-
fore, argument for neglecting large velocity, pressure correlation terms,
leading to a new closed equation on the momentum flux.
Can we have a plane flow out of a two-dimensional turbulence with
forcing and friction? Aspect not equal to one, argument of lowest
wavenumber makes jets, not vortices.
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Inverse cascade on a torus. Starting with aspect ratio one, have vor-
tices, changing the aspect ratio produces jets, but vortices remain.
Long time means restore translational invariance that is broken on
small time scales.
Lowering friction increases the number of vortices. Radius of cur-
vature going to zero is very interesting limiting case.
Inverse cascade and vortices in compressible 2d turbulence. Com-
pression creates shock waves which dissipate energy on small scales.
Use of shallow water equations for the density fluctuations, density
equated to height. Viscosity is an irrelevant perturbation in regards
to large vortices and or inverse cascade.

D. Lecoanet: Introduction to Dedalus (video). Pseudo-spectral, open-
source, python code. Enter equations as strings. Hard to install,
otherwise easy to use.
Great for equations that do not have specific optimized implemen-
tations (e.g. asymptotic equations) and data analysis.
Can solve reduced model equations to verify their accuracy.
Example problems: Burgers equation, Kelvin-Helmholtz instability.
Initial value problem, need equations, domain, timestepping scheme.
Goes into Solver variable, which gives a state and integrator, and
fields.
Implicit, explicit time stepped. Implicit on LHS of equality, explicit
on RHS of equality. i.e. linear terms on LHS and nonlinear on RHS.
Restricted to Fourier and Chebyshev bases, only allowed one Cheby-
shev basis at the moment.
Can have non-constant coefficients for Chebyshev but not Fourier
bases.

Channelflow Got the basics of c++ down, going through Channelflow
scripts and documentation to understand what each of them do in
detail.

reading Reading and rereading ref. [7] to understand the process em-
ployed for Kuramoto-Sivashinsky equation. Filling in gaps with
ref. [13] as I see fit.

misc Rewatched S. Tobias’ talk as review and transcribed notes for it.

2017-1-17 Matt :

B. Marston Talk El niño as a topological insulator: A surprised connection be-
tween geophysical fluid dynamics and quantum physics (video). Kelvin
waves play key role. Intro to integer quantum hall effect and topo-
logical insulators.
Immunity to macroscopic messiness is due to topological robust-
ness. Leftward, Rightward bulk movement prevents back scattering

7451 (predrag–6807) 34703/19/2019 siminos/spatiotemp/chapter/blogKITP.tex

http://online.kitp.ucsb.edu/online/transturb17/lecoanet/
http://online.kitp.ucsb.edu/online/transturb17/marston/


CHAPTER 14. MATT’S KITP BLOG

due to inhomogeneities. This leads to quantum spin hall effect and
topological insulators. Special curves of dispersion relations are the
states that propagates along the edges of the physical object (surface
states). Spin-orbit interactions stratifies the spin states are produce
the quantum spin Hall effect.
Dispersion relation of shallow water waves on a spherical surface,
coriolis force switches direction at equator. Wave that propagates
along equator is trapped. Gravity waves, Yanai waves, Kelvin waves,
Rossby waves.
Two layer model, behaves very differently with and without rota-
tion. Need enough rotation for time-scale separation.
Numerical spectrum from shallow-water simulations. shallow means
wavelength of waves in relation to depth.
Topologically protected systems, i.e coupled gyros, acoustic modes.
Key factors of topologically insulation is gaps in dispersion relation
other than these edge modes. Can interpret equatorial divide as the
edge modes. Need to break time-reversal symmetry in part of the
system.
Shallow water equations on Lieb lattice. Leads to dispersion dia-
gram that has bulk states, and edge states (linearly dispersing modes),
which equal Kelvin, Yanai waves.
Linearized equations of motion, leads to Chern number and Bulk-
Edge correspondence. Parameterize eigenstates of frequency space
equations (linearized), kx, ky, f parameterized by trigonometric func-
tions. Multiply by phase factor to repair the ill-defined azimuthal
coordinate at the north-pole and south-pole.
Chern number comes from quantum analog, magnetic field being
applied to a sphere.
Plots verifying protection from obstacles, (analogous to inhomogeneities
in quantum systems).
Claims that Kelvin waves at ocean basin boundaries, Magneto-Rossby
waves, Fluids with mean flows are all topologically protected. This
is related to the lack of back scattering, but maybe this is related to
E. knobloch’s talk? only persists in convective instability regime?
Or is this back-scattering completely unrelated to upstream growth.
Protection from interactions/nonlinearities, Fractional Quantum Hall
effect arises from strong interactions.

Marie Farge and Kal Schneider Talk Energy dissipation caused by bound-
ary layer instability at vanishing viscosity d’Alembert’s paradox, dissi-
pative properties of vortices in wall bounded 2d flow, differences in
navier-stokes, euler, prandtl solutions.
Finite-time singularities are a candidate for explaining the dissapa-
tion rate at high reynolds number.
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Kato’s theorem, navier-stokes solutions converge toward Euler so-
lution iff the viscosity vanishes.
Volume-penalization (pseudo-spectral). Brickman term added to
Navier-Stokes equation that produces vorticity at the wall, and bound-
ary layers are detached from the wall. What happens at the wall that
makes boundary layers detach?
Vortex dipole produces many small scall vortices from lifting the
boundary layer off of the wall. Looking locally at the combined vor-
tex structure, the dissipation of the attached vorticity layer goes to
zero, but the detached vortex has constant dissipation. Detached
vortex scales like 1/Re term, while attached vorticity layer scales
like 1/Re1/2.
Wall assumed solid, but there is a porosity (1/ηwhere, η = permeability)
that induces the volume penalization term.
Comparison between Navier-Stokes and Euler, Prandtl solutions. Replac-
ing no-slip with this volume-penalization term. Replacing spectral
method (due to its order) with compact finite differences. The big
plus is that it is applicable at higher Re numbers because you can
take larger permeability values.
Reformulate Prandtl equations to be in terms of vorticity. Only have
viscous term in y-direction, but not in wall-normal direction. Cou-
pling between Prandtl and Euler is the pressure gradient. Scaling
argument saying that you can discard wall-normal terms, but keep
wall-normal derivatives. Non-uniform grid that depends on time,
before and after the boundary layer detachment.
Prandtl solution finite time singularity well known, expected due to
Kato’s theorem that navier stokes converges to euler.
Production of dissipative structures is the key feature of boundary
layer detachment.
In DNS the Prandtl boundary layer is used to justify the coarseness
of numerical grids, trying to show that one needs to be careful and
this thickness may not be the correct guiding factor. Results suggest
that new aymptotic description of flow beyond the breakdown of
the Prandtl regime is possible.
Prandtl is great for when the boundary layer remains attached "keep
it alive".
1/Re number scaling is wall-number scaling.
Reynolds number original definition is ratio of norm of nonlinear
term, to the norm of the linear term.

2017-1-19 Matt :

T. Schneider Computing Clouds: Why turbulent coherent structures are cru-
cial for predicting climate change (video).
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Shows that equilibrium climate sensitivity is a great tool for predict-
ing various quantities related to climate change. (carbon dioxide
concentration, amount of total reflectance).
Equilibrium climate sensitivity (ECS) vs. Low-cloud reflectance vari-
ations (normalized w.r.t. seasonal fluctuations in temperature).
Most atmospheric water is vapor not in clouds. Clouds form where
small residual of water condenses in coherent turbulent updrafts.
Difficulty in these limited area simulations is that they have typi-
cally have not respected the energy flux balances previously, such
that you get an exponential growth in atmospheric water vapor.
PyCLES code. Anelastic Navier-Stokes, discontinuity capturing (WENO)
advection schemes.
Every climate model has three subscale schemes. Deep convection,
shallow convection, boundary layer turbulence. Parametric and struc-
tual discontinuities for processes with common limits.
Reduce number of free parameters by using adiabatically conserved
variables. Let Coherent structures interact with the isotropic part
(mean flow)? But do not allow coherent structures to interact with
each other.
New EDMF scheme, have draft equations and grid-mean equations.

Koopman Coalition There is a connection between Koopman and using
periodic orbits to compute manifolds. How can we go beyond doing
simulations and looking at good modes?
Hyperbolic objects as opposed to attracting sets? Can we use this
for transient.
How to tame the continuous spectrum, in order to not just do point
spectrum, need Colm’s input and need functional space to be "cor-
rect" somehow.
Transition to turbulence: highway through the edge of chaos is charted by
Koopman modes Plane-couette flow: potential to be turbulent, what
is the minimal energy state and its structure that allows you to tran-
sition to turbulence. Shortest distance to the edge manifold (energy
norm). Follow edge state’s stable manifold and then get ejected to
turbulence by unstable manifold.
Can do Koopman analysis around plateau of energy of perturba-
tions, specifically around the GMRES residual minimum. The point
is to do the Koopman analysis around the edge state.
The structure at this instant can almost completely be described by
three modes.
Least-squares fitting of the amplitudes of modes that best reproduce
the structure of original structure.
The three modes that best describe the state are labeled "growth,
neutral and decaying". The neutral mode mataches the GMRES so-
lution of the edge state, the growing mode matches relatively well
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the evolution in time of DNS. The decaying mode matches simula-
tion backwards in time.
Minimal seeding accomplished by adjoint looping, look to Rich Ker-
swell papers for info. Can accomplish the same with edge tracking.
Pick up a lot of continuous spectrum in different time segments be-
cause you’re in the basin of attraction of something else.
Can use pullbacks to linearize anywhere on basin of attraction. How
do you expand about the edge state as it isn’t an attractor.
For saddles, define Koopman eigenfunctions about the saddle, can
continue it as a strip about the manifold via the dynamics. This
foliation produces a distribution. Can define bouncing between in-
variant solutions via the Koopman analysis.
Exponentials give rigorous expansion when dealing with autonomous
system. Koopman is non-normal in dissipative flows.

M. Farge Talk Introduction by L. Tuckerman: L’ économie 101, inelastic-
ity of journal prices.
Journals aren’t evil, well, some are. dessim.in

misc Almost done reviewing the more advanced concepts in c++ that
I’m not so familiar with.

2017-1-20 Matt :

I. Marusić Talk Modeling high Reynolds number wall turbulence using the
attached eddy hypothesis (video). Using data and recent discoveries
to test Townsend’s attached eddy hypothesis.
Description of different regions of wall bounded flow, viscous re-
gion close to wall and log-region and beyond where attached eddy
models are defined (viscous not leading order).
Demonstrating that log region dominates at high Re. Quotes from
Townsend 1976. Perry and Chong (1982) claim that hierarchy or
structures lead to equations and log dependence of mean flow.
Inviscid structures can be predicted by inviscid equations, of course
expect them to be invariant. Continuous hierarchy of scales. Geo-
metric progression of scales. Telephone poles and dead cats attached
to horizon. Flip, shear, and squint and it looks like boundary layer.
"Are attached eddies real or just a statistical construct?" Interpreta-
tion of eddies is energy contributing structures, organized motion
that contributes to kinetic energy. Contributions to vorticity from
attached eddies only give the mean, which is a very small contribu-
tion.
Thinks that instead of looking at energy and enstrophy should look
at instantaneous changes in velocity fields. Thinks of logarithmic
layer as stair case that jitters around a line. Organized velocity fields
that have vorticity associated with them but do not contribute to the
enstrophy.
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Count the number of realizations of momentum zones, average over
Reynolds number. The number of momentum zones follows loga-
rithmic growth.
Take hierarchical approach, keep dividing by scale factor and rescale
velocities of demarcated structure, randomly scatter them about and
look at mean velocity field. Get logarithmic scaling of the number of
momentum zones that agree with DNS, claim that the requirement
is that the objects are self-similar.
Looking at spatial statistics, central limit theorem, poisson statistics,
definitions of moments and cumulants.
Any statistic with a wall-normal part, no logarithm. No wall-normal
part means logarithm. Correlation statistics asymptotically approach
Gaussian distribution in limit of high Re, much like Poisson statis-
tics.
Problems arise from treating everything as point processes that have
no spatial exclusion with hierarchical structures of different scales.

J. Jimenez Can we see coherent structures in wall-bounded turbulence? (video).
Can we relate turbulence structures to coherent structures that peo-
ple have found? Structures to javier are autonomous identities that
determine their futures.
Even if most of the flow may be structureless, it’s important to iden-
tify key structures because they are useful. (Seeing a storm cloud,
even an isolated one, means you should bring an umbrella).
Javier’s requirements:

• Strength (Stronger than background)
• Observable
• Relevant
• Either: Energy production or sink, or energy repository.

Using joint pdf (pdf in two variables) can find important structures
by quadrant analysis. How does one look for these things? Need
to look at where things are of comparable scale. You do not want to
mix energy and vorticity. How do you separate energy and dissipa-
tion or vorticity.
Energy produced by eddies has to be coupled by the shear. Corrsin
parameter. There is a characteristic time, nonlinear eddy turnover
time, and shear deformation time. Corrsin parameter is the ratio of
turnover time to shear deformation time. Shear dominated, means
"linear" energy input. Corrsin parameter of order unity is "the play-
ground" and of very small means shear independence, nonlinear, no
energy input.
Near wall, reynolds stresses small so has to be carried by shear. By
looking at phase velocity of velocity field, minimizing a wave equa-
tion relation you can get phase velocity of individual Fourier com-
ponents which corresponds to different distances from the wall.
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Stratification of spectra of different components of phase velocity
are similar when subsets of scales are viewed. Can plot the scaled
derivatives with respect to distance to the wall to decompose into
structural regions, from regions of large and small scale structures
to transient areas.
Small scale structures have to do intimately with the near-wall vis-
cous region, large scales are linked to the bulk phase velocity, log
layer is the transient regions.
Looking down (spanwise streamwise representation) can get the en-
ergy contained in a small subsection that represents the energy con-
tained in the viscous spectral subregion, and then plotting vs. the
wall normal coordinate leads to a maximum velocity intensity of 11.
Doing the same with the large-scale region, agrees quite well with
highest POD mode of the velocity. i.e. the phase velocity.
Linear transient growth analysis of the flow yields the same result.
Doing the same with logarithmic layer gives good agreement with
the mean profile and the advection velocity, as well as the phase
velocity profile as a function of wall normal coordinate.
Things are similiar in the log layer but outside of this the large struc-
tures are not self-similar when you get to the scale of the channel.
Structures bursting. Measured by quick changes in energy produc-
tion and dissipation, has nothing to to with the wall.
A theory for tilting things, Linearised Orr-Sommerfeld equation (in-
viscid Orr). As the tilting angle changes continuously, get build up
of the wall-normal component of the velocity.
Video demonstrating the connection between tilting and growth of
wall normal velocity component.

2017-01-23 Matt :

G. Chini Talk An asymptotic theory for coupled uniform momentum zones
and vortical fissures in turbulent wall flows (video). What is the role
of invariant solutions in the limit of very large Reτ Lower branch
states seem to be important for transitional turbulence. Might be
able to explain near-wall coherence by these invariant solutions be-
cause they only see a moderate effective Reτ .
Far from the wall, quasi-coherent motions with streamwise length
scales approximately 5-15h are observed at high Reτ . Are these as-
sociated with ECS?
Hwang and Cossu say yes, with their Smagorinsky constant contin-
uation, others who claim that large scales come by via small scale
hairpin vortex trains advected by the flow.
Reference to instantaneous velocity profiles of Marusić, decomposi-
tion into uniform momentum zones and vortical fissures.
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Can invariant solutions explain these instantaneous velocity profiles
near the wall?
Implications of mean momentum balance analysis. Long-time aver-
aged x-momentum equation has mean viscous term, turbulent iner-
tia term (gradient of Reynolds stress), and pressure gradient term.
The claim is that the momentum zone jumps correspond to regions
of vorticity, or vortical fissures.
Want to construct invariant solutions that somehow explain these
momentum zones and velocity profiles.
Tracking the lower branch solution to high Reynolds number, and
it also converges to solution of Vortex-Wave Interaction equations.
Looking at Fourier analysis and scalings of different Fourier modes.
When looking at the streamwise averaged streamwise momentum
equation using VWI scalings you get an effective Reynolds number
felt by mean flow is order unity.
Asymptotic analyses of do not show sharp gradients of the rolls and
streaks.
Reynolds number continuation of upper branch states leads to con-
verges to lower branch scaling.
Wants an invariant solution whose mean flow looks like instanta-
neous profiles. They get more and more unstable directions but also
get more isolated. Reference to Clancy Rowley’s previous work into
scaling with symmetries involved, but cannot do this with mean val-
ues.
Do local analysis of vortical fissures, with periodic boundary con-
ditions. Does Navier-Stokes admit a solution like this? Decompose
into mean and fluctuation term. Two different time scales. Why not
two spatial scales? There could be but for here there is not.
Mean-flows are isolated points in state space that mean nothing in
terms of the dynamics. Streamwise fluctuations are not of order uτ ,
thinks that this implies that there should be discontinuities in the
mean flow.
Dennice: There’s a physical reason why it’s ok to do this, looking at
streamwise vortices, so it seems that it might be ok to average in the
streamwise direction to produce a mean because these vortices are
only z and y dependent??
Assume that the scaling of the average is s.t. the mean scales with
inverse Reynolds, but not as strongly as 1/Re. Employ two-timing,
Parse Navier-Stokes into mean and fluctuation equations.
Reduced PDE equations for the mean, fluctuations. Fluctuation equa-
tion is quasilinear. This implies they admit separable and single
mode (traveling wave) solutions in x. No direct coupling between
fundamental mode and higher harmonics. Gradients of mean val-
ued things are small, because of the assumption that they are smooth.
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Linear stability analysis of Orr-Sommerfeld to help deduce scaling
arguments for fluctuation terms. Can do this because this is a steady
state solution? It’s a local, steady state solution?
Reynolds stress not driving the mean-flow seen via the streamwise
Fourier transformed quantities, of rescaled velocity components.
Can restore three dimensional incompressibility because of how the
critical layer scales velocities. Insist spanwise fluctuations drive mean
flow?
Get critical layer variants of mean equations and fluctuation equa-
tions.

Turbulence à la D. Barkley A nice recap of the key concepts and ideas;
didn’t type down much because eating took priority. Key concepts:
Turbulence and scaling laws, dynamical systems approach, mani-
folds of invariant solutions, self-sustaining processes, transitional
turbulence, edge states, puffs, splitting of puffs and growth and de-
cay rates, directed percolation picture.

Reading Started through Blonigan, Wang et al. papers [2–4, 14]. Interest-
ing, I find ref. [14] similar to variational Newton descent. I’m not
really sure how the spatial evolution is included, and if you look at
their converged solutions they are seemingly on the same spatial do-
main size as the initial condition; I might just be missing something
that I need to reread. The ability to parallelize is of course a large
distinction, and the continuation through their advection velocity
parameter is distinct as well.

2017-1-24 Matt :

T. Schneider From turbulence transition to shell buckling (video). Look at
when prebuckled state loses linear stability, to see when buckling
occurs. Extreme sensitivity to inhomogeneity, imperfections.
See this via thin shell structures. Studied in reality via axially loaded
cylinders and sphere under uniform pressure.
Classical approach of understanding, bifurcation diagram of short-
ening versus load parameter. Linear instability of the imperfect sys-
tem, given imperfections can predict buckling load. Of course, typ-
ically imperfections are not known a priori.
Instead of looking at linear instability of the imperfect system, look
at the nonlinear finite amplitude instability of the perfect system.
Characterize basin of attraction as a function of load, get unstable
equilibria edge states in some norm, etc.
Geometric nonlinearity in elastic systems. Displacement fields in
terms of Lagrangian(fixed in material) coordinates. get change in
distance between material points, Green-Lagrange strain tensor, typ-
ically nonlinear function of displacement field, usually linearized.
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Relation for cauchy stress tensor for isotropic Hookean material, re-
lation to original coordinates?
Donnell-Mushtari-Vlassov theory, for deformations of thin elastic
shell. Find in-plane stress of mid-plane to get the nonlinear term that
matters, which is the one who only depends on normal direction of
midplane.
Leads to DMV equations. Nonlinear and nonlocal equations like
Navier-Stokes. Want to construct nonlinear equilibria on the basin
boundary of the unbuckled state.
Use edge-tracking. the edge state equilibrium is localized dimple
on the surface. Do continuation in axial load parameter. Leads to
shrink of depth of dimple, at zero the eigenmodes are not localized.
Dimple pattern grows and wraps around shell.
Azimuthal symmetry, impose reflection invariance, could have also
imposed translational invariance.
Very high number of modes that become unstable at the same pa-
rameter value. Increasing axial length induces snaking along axial
direction.
Finite amplitude perturbations of a shell in fluids. Taking a perfect
solution and use perturbations that are known, much like in elastic
materials.
Finding edge state with claim that the force should increase, and
then return to zero as you reach the edge-state equilibrium.

S. Bagheri Talk Flow of non-smooth surfaces (video). Outline:

• Find favorable fluid-structure interaction mechanisms
• Effective boundary conditions induces by non-smooth surfaces
• Fabrication of surfaces and experiments

Fiber in cylinder wake breaks symmetry, induces lift and reduces
drag. Filament in oscillating flow, symmetry breaking in intermedi-
ate pulsation range.
Look at collection of filaments. Need to do coarse grained effective
representation, such that the average interactions are the same.
Take effective boundary conditions generated by poroelastic surface
or reduce to porous surface. Leads to two second order tensor rela-
tions for boundary conditions on the velocity components taking the
place of no-slip.
Streamwise velocity profiles shifted up or down based on the rough-
ness in the form of slip-lengths.
Wall tangential velocity condition If structures are small, only con-
tributions to flow are linear shear in the viscous layer. If the struc-
tures extended into the buffer layer, this would not be the case.
Related to drag reduction via a skin friction coefficient equation,
looks like dispersion relation?
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Wall normal velocity condition Permeability of interior related to
boundary conditions on the interface, not completely intuitive.
In this porous version of the equations, need to solve continuity
equation inside the coating to account for permeability.
How does one generate the two different tensors, M and K.
DNS of two dimensional model, with porous media. Look at stream-
wise velocity close to the interface to identify the slip. FreeFEM plus
to do DNS.
Use coarse grained representation to derive the same quantities. Take
unit cell, with multiscale expansion of microscale equations. Solv-
ing leading order equations in unit cell, slip-length comes out. Get
similar slip-length as DNS.
Coupling porous wall boundary conditions to turbulent channel flow,
seeing how it affects near-wall structures.
Experimentally, use UV lithography on polymers to induce rough-
ness.
Inclined water table experiments. PIV measurements and compar-
ison to smooth wall setup leads to a smaller velocity near the wall
and higher velocity away from the wall (log-layer).
There is a decision that needs to be made of where to decide where
the "wall" is. Currently being taken to be the top of the filaments.
Would like to use filaments as actuators and sensors once studied.

Channelflow Began writing some code and chipping away at the check-
list I wrote for myself. Currently trying to figure out how I’m go-
ing to numerically obtain small-time Jacobian matrices in a reason-
able amount of time. I’ve been looking through the Channelflow
documentation as to use the resources at hand to the fullest extent.
The main problem is that the top-level machinery is all relatively
easy but getting into the guts is somewhat daunting considering the
sheer number of amounts of parts. One step at a time is the name
of the game. Thinking of fine-grained additions I can make to the
checklist previously written, again, hopefully the organization will
help in this effort.

2017-1-25 Matt :

M. Kiewat Brown Bag talk Looking to some how get more yield out of
currently unused data created by their simulations. Using Large
eddy simulation and some other methods for DNS.
Pressure induced drag accounts for most of the drag, but still look
at vortex induced drag.
DMD used but due to intense memory requirements. Discussion
from much of Clancy’s talk, streaming DMD missed out.
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A. Willis Brown bag talk Have relative equilibria , have dynamics so
therefore have trajectory. Compose group orbit with shifts. Inter-
ested in association of group orbit members?
Begin with template point on the group orbit via symmetry reduced
point. Looking at minimal distance between subsequent time snap-
snots of template? Slice condition< ā−a′|t′ >= 0, locally ||g(θ)ā|| =
constant s.t. < ā|t′ >= 0. this leads to slice condition < ā|t′ >=
0. Temporal evolution equivalent to shifting in space for traveling
wave, so can relate.
dynamics within slice using defintions of ā and symmetry invariant
velocity, ˙̄a = v(ā) − θ̇t̄, slice condition < ā|t̄′ >= 0 get condition for
θ̇ =< v(ā)|t̄′ > / < t̄|t̄′ >
Complicated group orbit, get lifting out of the slice which makes the
denominator equal to zero, which is a problem.
Method of connections (not slicing) put t̄′ = t̄ = t Projecting out mo-
tion along the group orbit. Dynamics from a0 to a1, project. dynam-
ics back to a0, means different tangent vector so projection leads to
a phase change such that you aren’t brought back to original point,
phase change is known as geometric phase.
Principle component analysis. Reducing shift and reflect symmetry.
Two clouds which are related to shift and reflect. Zooming in on
one of the clouds and using Poincaré sections. Get ergodic clouds
on Poincaré section, zooming in around dense areas get connection
between period doubling by looking at manifold.

Excitable Media Discussion (video). R. Grigoriev beginning. Spiral wave
chaos: tiling, local symmetries, and asymptotic freedom. Phase sin-
gularity at spiral core.
Model of cardiac dynamics, reaction-diffusion system. Karma model.
Forget about diffusion initially by ignoring spatial properties con-
nections between cells.
Looking at nullclines and equilibria. Apply dynamical systems views
to the problem, have varieties of solutions, look for periodic/relative
equilibria on chaotic attractor. Use recurrence plot to initiate search
for invariant solutions (exact coherence structures). Double peri-
odicity includes symmetry operations (translation, finite rotation).
Use minima as initial guesses for Newton-Krylov solver. Notes on
symmetry and symmetry breaking, two dimensional planar model
is better model of atria as opposed to ventricles.
Some intial conditions converge to small residuals but not non-zero
residuals. Why? THere is structure that does not disappear after
certain time.
Complex Ginzburg-Landau equation discussion. Split into ampli-
tude and phase (its complex so easily done). The amplitude has
very long time dynamics that slows down over time. Real part is
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fast dynamics. In amplitude diagram there are boundaries where
the interiors each support one spiral.
Use enclosed area of trajectories instead of amplitude, Can find the
elapsed time from crossing a Poincare section instead of phase.
Complex Ginzburg-Landau equation is general form for any system
that goes through oscillatory instability, i.e. hopf bifurcation with
zero wavenumber.
Can describe tile boundaries analytically. Can describe dynamics
by imposing Neumann boundary conditions at the edges of tiles.
Boundaries meander after time evolution.
Meandering of spiral cores is possible but not necessary. Mean-
dering, stable, alternans type cores depending on parameter. in
Complex Ginzburg-Landau equation the cores all have the same fre-
quency and you would have periodic orbit.
Break-up, drift, and collapse. Looking at the Floquet multipliers
of spiral wave. Multipliers are mostly inside the unit circle in the
complex plane but there are a few multipliers that corresponds to
absolute instability. Pair of multipliers near the boundary of the unit
circle correspond to convective instability.
Anternans instability, action potential with multiple length scales.
Refractory (relaxation period where it can not be excited). Breaking
up of a plane wave into spiral waves.
Looking at Stroboscopic map (time measured in periods). Get core
drifting, tile deformation. In order to understand this, can show that
periods are exponentially decaying functions of linear scale. Match-
ing phase at tile boundaries, moving boundaries depending on spi-
ral frequencies. Small tiles become larger, large tile become smaller.
Unless tiles are all the same size, cannot have periodic solutions.
Imposing boundaries break global symmetry, right eigenfunctions
(goldstone modes), adjoint eigenfunctions are exponentially local-
ized. Symmetry is perfect on the interior but gets fuzzy near the
boundary.
Midway conclusion: do not expect to find periodic solutions. On a
small enough domain there is an amount of spatiotemporal coher-
ence. You will never find solutions on large domains because of the
lack of coherent.
Dwight’s work of applying oscillating field with near resonant fre-
quency that makes them synchronize.

Channelflow Looking through the programs to see what I can incorpo-
rate from what John has already written. I’m going to see if he has
time tomorrow to talk through things.

2017-01-26 Matt :
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M. Graham Talk (video). Model turbulent drag reduction in polymer
solutions. Polymers reduce drag. Maxiumum drag reduction asymp-
tote. Asymptotic curve between poiseuille limit and Prandtl-von
Karman limit. Log-law for polymers, Virk law.
Long linear polymers work best, when dissolved in water they turn
into a long brownian motion like path. Relaxation time, time it
takes to approximately diffuse its own length. Weissenberg num-
ber, which describes: Polymer chains tumble in shear flows such
that they have little effect on viscosity. In extensional flows, polymer
chains stretch, "Lagrangian chaotic velocity fields are extensional".
Hyperbolic flows = extensional?
Intermittent dynamics for Newtonian and moderate Weissenberg
number, active and hibernating turbulence. Area averaged veloc-
ity profile switches between quiescent periods near Virk limit and
von Karman limit.
Polymer stretching generates torque which works to undo stream-
wise vortices. Estimate on polymer stress using Lyapunov expo-
nents. Believes that active turbulence is amount of time that the
polymer stress remains below a critical threshold.
There is a family of solutions that have the property that within a
certain parameter range, the upper branch solution is near von Kar-
man and the lower branch is near Virk.
Could do Newton searches for viscoelastic solutions but hasn’t been
done yet, edge-tracking viscoelastic has been done.
At this Re the hypothesis is that polymer effect is to increase the
Weissenberg number, which brings the states closer to the edge state
in some sense.
Looking at spatial variation of drag, Detector functions vs. cluster-
ing methods, k-means clustering or Otsu’s method. Once you have
the regions you can do conditional averaging to get mean profiles.
Mean profiles of these low drag regions, low-speed streaks are sim-
ilar to lower branch coherent states.

Y. Duguet Turbulent bifurcations in intermittent shear flows: From puffs to
stripes (video). Shear flows with linearly stable laminar base flows
implies a possibility of sustained laminar turbulent coexistence. Ex-
position of D. Barkley’s work on expanding slugs.
Exposition of laminar, intermittent and turbulent regions ofRe scales
for a variety of geometries.
In 2D plane Couette solutions, look at 2D spectrum, there appears
to be a gap in the spectrum so they used two Gaussian filters to look
at large length scale and small length scales separately.
Investigation of overhang regions (preference towards one of two
channel flows at edges of puffs). By mass conservation, there is a
constraint includes streamwise velocity deviation and spanwise ve-
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locity deviation w.r.t spanwise. Therefore because there is stream-
wise velocity variation, there must be spanwise velocity variation.
Interfaces must have oblique growth.
Why do spots organize into stripes, they also conserve mass.
Homotopy with a new parameter which is the aspect ratio of span-
wise to wall normal length scale, in this case things die out near the
walls so it doensn’t really help show puffs to stripes.
New homotopy, based on annular pipe flow. New homotopy pa-
rameter which is the radius ratio in pipeflow. Relevant length unit
is the cylinder gap, the difference between radii. The dynamical pa-
rameter is frictional Reynolds number. Even though the asymptotic
limit is not Hagen-Poiseuille flow, want to show that the same phe-
nomenology exists.
Showing results of simulations at various values of new homotopy
parameter. Changing from helical (oblique on unwrapped cylinder)
structures to spatially localized puffs.
Same mass budgeting as before but now in cylindrical coordinates.
Looking at spectra of each direction. Graphs of length scales as func-
tions of the homotopy parameter. Get regions of different behaviors
of confinement. The regions are strong confinement at both walls,
confinement only at inner wall, and no confinement.
Statistics, generate PDFs after filtering. PDFs of azimuthal velocities
and angles. Bifurcation diagrams of statistical modes (maximum of
PDF).
Goldenfeld hypothesized that it is crucial to think about zonal flows
in a pipe, but Yohann thinks that they are of no statistical importance
due to the lack of peaks in his PDFs.

P. Cvitanović Math Colloquium

periodic eigendecomposition Plan to meet to with J. Gibson tomorrow,
undisclosed time based on his schedule.

Misc. Listened to C. Rowley, S. Bagheri, P. Cvitanović talk about Koop-
man, singular eigenfunctions of Koopman operator.

2017-1-29 Matt Physics of puffs and slugs

(video). Main mechanism that extracts energy from mean flow is
nonlinear interactions with velocity profile. −uv < u >. Produc-
tion exceeds dissipation at interfacial upstream edge, slightly down-
stream dissipation exceeds production, and later there is a region in
equilibrium.
In comoving frame, the interfacial edge moves upstream (source of
confusion). Turning down Reynolds number serves to eliminate
the region of energy equilibrium. Describing the puffs as flame
fronts, making the analogy that the "flame" is moving upstream,
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but because it is also being advected by the flow it leads to con-
fusion. Fluid parcels are constantly flowing through the interfacial
upstream edge, and are being "entrained" by the structure of the
puff. Likewise for the downstream front, fluid is constantly leaving
the downstream interface and relaminarizing. Can get entrainment
at both edges.

D. BarkleyM. Avila Movies of various slugs, much discussion on the up-
stream and downstream edges and why you should treat them the
same. Dwight claims that this is because of the entrainment that
occurs at both ends. Roman Grigoriev bringing up the transport of
momentum at the interfaces.
Investigations using Lagrangian frame moving with a patch of isoen-
stropy surface.

J. Gibson Discussed periodic eigendecomposition with John, first ques-
tion that was brought up was whether periodic Schur decomposi-
tion is required, as opposed to performing Arnoldi iteration of peri-
odic orbits to get Floquet vectors.
Most of the discussion was both of us trying to reconcile our opin-
ions and how we both are thinking of the problem in the context of
ref. [6].

2017-1-31 Matt P. Hall Canonical exact coherent structures: The emergence of dis-
tributed states and the Law of the Wall (video).
Looking at structures asRe goes to infinity gives insight on finiteRe
solutions.
Looking at two non-localized states for arbitrary shear flows, they
are the foundation for producing families of solutions. Type 1: (Self
sustained processes) Vortex-wave interactions. Type 2: Freestream
coherent structures. Relevant to transition induced by free-stream
turbulence.
VWI reduction applied to asymptotics. 3D time dependent navier
stokes transformed to 2d steady navier stokes, convection diffusion,
eigenvalue problem.
Logarithmic jump in pressure when you cross the critical layer, un-
less the critical layer is flat.
Three time scales for VWI. 1. slow roll-streak diffusion timescale t 2.
fast inviscid wave timescale Re ∗ t 3. birth death timescale for vwi
states Re1/2 ∗ t
Drag vs. alpha bifurcation diagram. Looking at VWI solutions and
their Reynolds stresses, which for lower branch solutions concen-
trate in critical region. For upper branch solutions they begin in the
critical layer but after continuation they begin to become exotic, but
this can be explained by asymptotics.
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Looking at bifurcations of upper and lower branch solutions show
why upperbranch is so much more unstable than lower branch. In-
stabilities on three different time scales.
Rescaling by taking streamwise and spanwise wavenumbers
Generate new solution by introducing spatial periodicity, by stack-
ing solutions on top of each other. where interactions depend on the
spatial period.
Get a time periodic solution from this stacking procedure due to
single mode waves?
Defining the infinite array computational problem.
Starting with spatially periodic solution in Couette flow, generalizes
to arbitrary shear flow, but only in flows that have a logarithmic
profile.
Locally looks like Couette flow locally, but phase speeds slowly changes
similar to WKB, eikonal equation.

R. Monaco Convection: from small plumes to large coherent structures (video).
Taylor-Couette and Rayleigh-Benard. Transition turbulence of Taylor-
Couette flow. Conflicting evidence of Taylor-Couette flows, show-
ing large scale structures can persist conflicting with previous ex-
periments.
Azimuthal and time averaging. Aspect ratios are different but can
explain apparently.
Streamwise velocity behavior in large variety of flows follows Virk
log-law.
Adding riblets doesn’t really change structure in bulk.
Turning off rotation, rolls persist for relatively large times. Chang-
ing behavior of rotation, corotating, outer rotating, etc.
Rayleigh benard flow, boundary conditions changing the nature of
solutions dramatically.
mixed temperature boundary conditions seemingly have no effect,
by means of different geometries of adiabatic and conducting re-
gions at boundaries.

Spatial KS Had the idea to involve Galilean invariance in spatial inte-
gration, i.e. somehow formulate 0 =

∫
u(x, t)dx into a local con-

straint that can be used to constrain the integration to the repeller.
Burak thinks is is definitely something worth pursuing.

Shadowing Lemma Read some papers, had short discussion with PC, I
agree it isn’t too informative and takes too much time to get any-
thing worthwhile out.

Variational methods Discussion about the general practice, Why didn’t
we use Fourier instead of finite differences, using fourier would be
diagonal, instead of having cyclic border terms. How to deal with
continuous families of tori still needs to be explained. Roman gave
me contact of another GT student working on such methods.
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Num Lin Alg Review of QR, arnoldi iteration, GMRES. Will begin using
arnoldi iteration on periodic orbits from J. Gibson’s repository and
then comparing angles tomorrow.

2017-02-01 Matt Inertial Manifold Used Channelflow’s arnoldi iteration on
two periodic orbits of plane couette, I am a little confused as to
how the eigenfunctions are represented as output so I wasn’t able
to produce any pairwise angles or norms yet. I spent too much time
digging through the code with little benefit; although I hate bugging
John with these types of questions it’s probably best to just ask.

Lagrangian Formulation of KS Poked through literature on Lagrangian
formulations of partial differential equations tt seems that it is rela-
tively common to formulate these things for KdV equation but not
really any other equations.

KS spatial integration Looked around for a way to follow up on the idea
of using Galilean invariance as a constraint condition for spatial in-
tegration, haven’t found or come up with any local condition that
could be applied as of yet.

Avila meeting Shared current projects and work with Marc Avila whom
was curious since he saw my poster. Discussed spatial integration,
variational methods, invariant spatiotemporal tori and the benefits
of variational methods versus shooting methods.
He was interested in using spatial integration to reconstruct bound-
ary layer information from PIV data. He also suggested using a test
case of applying the spatiotemporal variational method that we are
trying to deploy to a case where a stable torus exists and then see if
one could track tori and the breakdown of tori.

Li Xi viscoelastic flow, Weissenberg number better than Deborah num-
ber because it’s more physical. Comparison of relaxation time vs.
deformation time (shear rate).
If time scale of polymer contraction is slow relative to flow, then can
introduce new nonlinearity that consists of how the polymer reacts
to the "new" dynamically evolved flow.
In general Re and weissenberg number Wi are changed via chang-
ing the flow rate, which simultaneously changes both.
In channel flow, there tends to be a proportionality of Wi and the
transition to turbulence. "above" this transition, only get drag re-
duction above a critical Wi number.
Velocity of FENE p models is the same as experimental data, but
otherwise results are qualitative. depiction of parameter space.
Description of "phase transition" between LDR and HDR regime. In
LDR the velocity profile in the buffer layer increases in magnitude,
until the HDR regime where the slope of the velocity profile in the
log layer increases, so there are obviously two different processes
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occuring. He thinks that vortices burst/break up less such that the
flow is more coherent.
Wants to identify the time-scale that identifies the transition.

Ismail Hameduddin Continuation of viscoelastic talks. Mathematics of
viscoelastic modeling. Get a linear equation for the elements of the
conformation tensor under some assumptions.

2017-02-02 Matt :

J. Gibson Julia: the future of scientific computing (video). Combines best
properties of Python, Matlab, LISP, and C. Demonstration of Julia
through notebooks via jupyter. c

N. Goldenfeld Statistical mechanics of the phase transition to turbulence: zonal
flows, ecological collapse and extreme value statistics (video). Statisti-
cal approach to turbulence. Going from finite number of particles
in a box, use statistical mechanics to explain equilibrium behavior.
Claim is that the same is true for an infinite number of particles in a
box (fluid)
Comparison of puff splitting decay mean time plot to predator-prey
model as a function of prey birth rate. Does extinction equal turbu-
lence?
There is a possibility that turbulence is a long lived transient, changed
after Hof’s experiment that measured the survival probability of
puffs.
Believes that superexponential scaling is the correct interpretation.
Relating metastable puffs to directed percolation. Four fundamental
processes.
Phase transition characterized by universal exponents, as functions
of parameter p, the probability of continuing.
Directed percolation done spatiotemporally, using correlation length
as a means of generating scales in the problem. Do statistics on these
simulations.
Reasoning behind super exponential scaling and extreme statistics.
Mean follows central limit theorem, maximum follows three types
of distributions. Probability the largest fluctuation exceedsRe thresh-
old then decay superexponentially. Looking at statistics
The reason you expect super exponential decay, is the means by
which decay is measured.
Once correlation length gets to the order of the spatial extent, the
statistics switch from superexponential to power law.
Logic of modeling phase transitions

• Magnets
• Electronic structure
• Ising Model
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• Landau Theory
• Renormalization group universality class
• Turbulence
• Kinetic Theory
• Navier Stokes equation
• ?
• ?

Identification of collective modes at the laminar-turbulent transi-
tion, similar to Landau theory only look at important structures near
the transition.
Zonal Flows. Computing instantaneous reynolds stress is anisotropic,
which flows into the walls, which drives the zonal flow. Zonal flow
inhibits reynolds stress (makes it more isotropic). Zonal flow isn’t
driven by the mean flow because there is orthogonal to mean flow.
Comparison of zonal mode-turbulence and predator-prey models.
Predator prey models driven stochastically. Lotka-Volterra. Oscilla-
tory effects from satiation model. Fluctuations and oscillations pro-
duced by demographic stochasticity.
Predator-prey path integrals and quantum field theory. Try to write
down a Landau theory for this.
Allowed field theoretical processes look like the same four funda-
mental processes of directed percolation.
Demonstrated turbulence to directed percolation via predator prey
and field theory.
Superexponential vs. critical scaling.
Crutchfield and Kaneko

B. Eckhardt Secret The transition to turbulence in shear flows: a dynamical
systems perspective
No video because it was held in South hall. Sort of recap of pre-
vious presentation. How fat is turbulence? Apparently as fat as an
elephant. Nikuradse in 1930s shows the frictional factor dependence
on Re.
Intermittent case is defined by linear stability of laminar profile. Ex-
pect smooth transition when you have subcritical bifurcation. Co-
herent structures and state space. Create a new basin of attraction
via homoclinic bifurcation. Transition from attracting closed state to
fractal open set.
Crises for attracting set of one coherent structure isn’t really enough
to explain statespace. Conglomerate of crises is sufficiently stable
such that it is possible to never return to laminar.

Arnoldi Producing eigenfunctions and Floquet exponents and multipli-
ers for a range of periodic orbits from John’s repository, pinned
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down John for a quick talk on whether I’m getting reasonable values
for exponents, etc. I was also confused on how the eigenfunctions
were being represent, he somewhat cleared it up and directed me
towards matlab scripts to use to reproduce fields as to begin taking
norms and computing angles. Looking through matlab scripts.

Readings The first part of Farrell et al. on generalized stability theory.
Horseshoes and blenders via

KAM Even though I’m not employed by Rafael de la Llave I found my-
self sidetracked by KAM theory to gain some insight into what is
generally done with tori.

2017-02-03 Matt Jörg Schumacher Boundary layer dynamics and large-scale struc-
ture in turbulent convection Announcement of Euromech colloquium.
Intro to thermal convection. What are dynamics at bottom and side-
wall boundary layer. Going from laminar boundary layers to turbu-
lent boundary layers, can see that bulk is turbulent via Kolmogorov
spectrum.
Always work with Boussinesq approximation, boundary layers for
low and high Pr, changes thickness of thermal boundary layer.
Numerical simulations for liquid mercury required to be paralleliz-
able.
Skin friction field at bottom is complex even in the laminar bound-
ary layer regime. Seems like avoiding calling it turbulent. Looks
turbulent to me.
One can remove the precession of "impact" and "ejection" zones (con-
vection cells component on bottom plate) by proposed coordinate
transformation.
Pure fluid turbulent cascade is extended with Prandtl number. Try-
ing to understand velocity profile in boundary layers, no answers
for now?
Large-scale order in convection. Large aspect ratios.
Time averaging at a higher Reynolds number makes results look like
lower Re.
Koopman analysis projected back into state space, grouped around
these modes.
Don’t lose structure from lower Prandtl numbers under continua-
tion.

P. Arratia Talk Flow of polymeric solutions. High shear serves to un-
wrap polymers. Reduced navier stokes equations, introduce new
nonlinearity with terms that describe the polymers interaction with
the fluid. FENE-p models.
Flows that stretch polymers really well, high velocity gradients. Role
of curvature, curved streamlines lead to "hoop stresses". Taylor Cou-
ette flow is linearly unstable even at zero Re.
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Schematic for transition in viscoelastic similar to Newtonian fluids.
Is there a nonlinear instability to laminar viscoelastic flow at lowRe?
Discussion of global instability, once you have finite perturbations,
no longer talking about linear stability.
Experimental setup, cylinders, subcritical instability demonstrated
by graphs of velocity fluctuations vs Wi for different numbers of
cylinders. Saturation implies subcritical instability, hysteresis in Wi
continuation seems to confirm this.
Little bit of discussion of velocity profile in the middle of the chan-
nel, as there was confusion on how one of the graphs was being
produced.

2017-02-06 Matt Channelflow Learning how to write bash shell scripts to au-
tomate the process of using Channelflow commands to compute
generate time discretization of periodic orbits, arnoldi iterations for
eigenfunctions, and pairwise angles of eigenfunctions.

Spatial integration Spent more time trying to figure out if I can use galilean
invariance as an integration constraint.

Spatiotemporal parallelization debriefing Debriefing of ref. [14] with Ash-
ley Willis taking the lead. Discussion over coffee he said that he
would work through some calculations and then let me compare it
to variational Newton descent.

What would Koopman do Listened to Igor Mezić discuss Koopmanism
and answer questions from Mohammad Farazmand, R. Grigoriev,
M. Schatz.

2016-2-7 Matt C. Caulfield Telling the time, using the clockwork of turbulence to
answer open questions in fluid dynamics What is shortest distance be-
tween edge manifold in energy norm, therefore could find the small-
est perturbation to transition to turbulence.
Linear optimal perturbation is not sufficient as it is streamwise in-
variant? Therefore use a localized nonlinear perturbation.
Using variational methods that maximizes energy, makes sure that
navier-stokes is imposed for all space and time, imcompressibility,
initial energy c of perturbation.
Finding adjoint equations via integration by parts, can use New-
ton solver to solve adjoint equation. It’s like a backwards in time
Newton-solver which doesn’t blow up due to using the adjoint vari-
able.
Identify transition by the energy gain and optimal time.
Localization of initial condition has nothing to do with edge state
it’s only to exploit the Orr mechanism. Edge state is a streamwise
structure due to the box size?
Use DNS results as initial condition for GMRES algorithm. Use
Koopman/DMD modes applied to snapshots. Looking at spectrum,

03/19/2019 siminos/spatiotemp/chapter/blogKITP.tex368 7451 (predrag–6807)



CHAPTER 14. MATT’S KITP BLOG

relatively well peaked. Three Koopman modes is enough to capture
the DNS results near the energy plateau region of time, otherwise
known as the edge-state.
Discussion about whether this is linear or nonlinear.
Using adjoint somehow requires converge on arbitrarily long time,
so adjoint methods.
Stratified flows. Get spontaneous layers that aren’t taylor vortices,
i.e. structures that don’t scale with the gap width.
Most linearly unstable mode connection to nonlinear interactions.
Recurrent structures in stratified flows.

Rama Govindarajan Talk Droplet Dynamics in model vortices Heavy par-
ticles converge to regions of high strain and leave regions of high
vorticity, bubbles would do the opposite.
Behavior dependent on spatial position of particles relative to the
vortex. Polar coordinate equations that arise are parameter free,
they would normally take into account time dependence of length
scale which is associated with both the particles and the vortex core.
The particles do not interact, do not affect the flow.
Dynamical simulations show that vortices appear to behave as solid
objects that experience the Magnus effect. Can create vorticity through
baroclinic torque.
Buoyancy definitely affects the size of structures that appear in 2-D
DNS simulations.
Looking towards clouds, general description of a self-sustaining pro-
cess, equations that now involve the vapor pressures and saturation
and Stokes number.

Solving Turbulence Debrief Relation between fictitious time and time,
seems to become blended Discussions of variational Newton de-
scent and how it’s really crude. Discussions about parallelization,
no longer doing time integrations, Parameterizing the space of curves
in "fictitious time" isn’t obvious in this method.
How second order equation is sufficient for parallelization. Look-
ing at secord order equation that Ashley has written down, the RHS
looks like the current formulation of the variational Newton de-
scent.
John seems to be implying that instead of the normal variational
Newton descent matrix equation that arises from the fictitious time
PDE, one can use Krylov methods, PC doesn’t see how to incorpo-
rate small steps into this.
Is cost function always the L2 norm? The issue has to do with
the area where localization is valid, higher norms reduces this size.
Mathematicians like to use a 1 + ε norm, which bypasses the kinky
structure of the one norm.
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Cost functional version of multishooting Ashley wants me to attempt
to implement the minimization of the cost functional (??) which leads
to the variational equations (under the assumption that there is no
symmetry operation g(φ), which is the simplest case to take), (??).
The general procedure indicated by Ashley is that you shoot the ref-
erence points i.e. the set of xii = 0...M − 1 to retrieve yi = f t(xi)
and then set the second of these variation equations equal to zero to
get wi(Ti). You use an adjoint equation for w to pull back wi(Ti) to
wi(0), and then use the variations in Ti and xi to update your refer-
ence state in order to proceed until the cost functional described by
(??) is minimized to desired cut off.
I’m going to apply this to antisymmetric subspace U+ of Kuramo-
to-Sivashinsky equation and then work with Ashley to hopefully
parallelize it.
I wrote a crude version by repurposing function definitions from
variational Newton descent, as well as the numerical time-stepping
algorithm from ref. [10].
The main part that is left is to derive the adjoint equation and decide
on how to evaluate it, and then include that in the crude version I
have currently.

2017-02-08 Matt M. Gudorf Brown Bag Talked about spatial integration and
variational methods. B. Eckhardt brought up similarities to Burg-
ers equation and was concerned with how Kuramoto-Sivashinsky
equation deals with shocks.
J. Jimenez was concerned about how well-posed the spatial integra-
tion problem is and what we hope to get out of it Shortly after the
talk in the cafe next door, B. Eckhardt brought up ideas very similar
described T = 0 steady state equation from ref. [8] about how the
solutions to the steady state equation (equilibria in time) form a very
coarse way to partition the time dynamics. He also mentioned that
the talk was good, he cited Divakar Viswanath and his approach of
thinking about the problem and adapting methods, and how this
was crucially important for results in Plane-Couette
J. Gibson thinks that the variational Newton descent is bad method
due to its number of steps and formulation as essentially a gradient
descent method. He thinks an alternative description with
He also brought up that although there are continuous symmetries
in the Plane-Couette problem, Newton-Krylov methods are well suited
to picking out solutions without “sliding" around due to the contin-
uous symmetries.
Other suggestions were to use Krylov methods in combination with
variational Newton descent.

R. Grigoriev Excitability talk, review of spirals using Karma model. Square
boundary (no periodic boundary conditions) , three marginal eigen-
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values on square domain. Discussion of relative equilibria on square
domain. As long as spiral is in center of domain it doesn’t drift but
when offset it begins to drift.
Rotation and translation of square domains, don’t overlap, so take
smaller circular domain in the interior of the intersection of rotated
square domains has some property? Sort of confused here, Roman
said people taking circular domains were lazy, but ends up having
to do that in some respect. Once spirals are far from the walls, or
far from each other, exponential decay of response functions tell
you that they spiral-wall or spiral-spiral pairs do not really inter-
act anymore. The converse statement is that small domain sizes will
strongly impact the spiral core.
Spiral chaos and excitable systems can be decomposed into slow
dynamics of tiles and fast dynamics of spirals.
Implications for fluid turbulence, need to look at adjoint and the role
of pressure on localized solutions. The adjoint in detail means the
adjoint eigenfunctions about the linearization of localized solutions.
Dwight Barkley explains that perturbations along the adjoint of a
certain eigenvector is what leads to perturbations along the eigen-
vector desired. This is due to the fact that the adjoint is orthogonal
to the complement of the desired eigenvector.

Variational multishooting I rederived the equations (??) and (??) in or-
der to solidify the thought process. Ashley was kind enough to pro-
duce the equation for the adjoint (??) which I also went through.

A. Willis Coffee discussion Discussed variational methods with Ashley,
and in detail discussed how I implemented the variational Newton
descent. I personally feel there is much room for optimization, and
that automation of generating initial conditions would be a much
sought after device for many people interested in exact coherent so-
lutions. One of his methods that differed from mine was using the
angle between successive descent directions as a means to control
the step size.

2017-02-09 Matt M. Farazmand Talk Extreme events in turbulent flows: A varia-
tional approach Trying to explain intermittent bursts in energy dissi-
pation by explaining it away by saying there is an ECS that is visited
albeit rarely. The solution wasn’t find by Newton-Krylov methods,
so needed another method. Chose to work with Adjoint method.
Lots of discussion on gradient methods, John really would like to see
comparisions with these variational methods with modified New-
ton.
Looking at nonlinear energy transfers through by using a graph
with Fourier modes as the vertices.
Needs a new variational method,
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• Classical case of these types of bursts is a symmetry breaking
bifurcation. (Near-equilibrium systems)

• Multi-scale methods, requires separation of slow and fast de-
grees of freedom

• Theory of large deviations (multi-equilibrium driven by stochas-
tic force)

• Optimally time-dependent modes (Using Lyapunov exponents,
predictive, not physics)

Looking for initial states that trigger extreme growth of observable.
The idea is that the solutions are in some submanifold of state space,
and try to find states that shoot you away from the submanifold.
Look for states that maximize a time delayed supremum of observ-
able.

Modified Newton’s Method Talked with John and Ashley about the method
that John always likes to bring up when the topic of the variational
Newton descent is brought up. The only way to know which is the
best is to do testing it seems.

Tower room Discussions about the program and where do we go from
here. Javier Jimenez thinks it is time to formulate interactions be-
tween different scales, i.e. multiscale theory. Shell models, exam-
ples, and the history of turbulence were discussed.
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[5] P. Cvitanović and J. F. Gibson, “Geometry of turbulence in wall-bounded
shear flows: Periodic orbits”, Phys. Scr. T 142, 014007 (2010).
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Matt’s 2017 blog

2017-02-13 Matt Inertial manifold dimension Installed Channelflow to termi-
nal in Howey, wrote and currently running scripts to automatically
compute Floquet vectors generated via Arnoldi iteration at 256 points
around the shortest periodic orbit of the HKW (Hamilton, Kim, Wal-
effe) minimal flow unit. Split into four tasks and hopefully my crude
script writing hasn’t overlooked anything. Will probably run for a
couple of days.
More details: Using 100 arnoldi iterations to produce all unstable
and marginal eigenvectors, in addition to 50 stable eigenvectors. I’m
hoping 100 iterations is enough for convergence, seems to be from
preliminary tests in Cali.

Fritz John PDE book On order from library, should arrive tomorrow.

Variational multishooting Still trying to implement adjoint equation.

2017-02-15 Matt :

Variational multishooting I have implemented all of the pieces, but it
seems to share some of the bad behavior that I encountered when
implementing the variational Newton descent, the problem is that
I do not know how to compensate for this unlike the other time, as
there isn’t much wiggle room other than increasing the discretiza-
tion or the number of integrations steps in the shooting process. I
think the problem is due to the ability of allowing the shooting times
to vary independently of one another. Either way, it seems to run
much slower than what I already have so I think I will shelve this
idea for now, as it is much more important to use what I am com-
fortable with to produce tori than discuss and investigate the differ-
ences between numerical methods. (The other investigation would
be modified Newton with trust region that John Gibson talked to
Ashley Willis and I about). I personally think conjoining Krylov
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subspace methods with the variational Newton descent is the way
to go.

Fritz PDE Read the first chapter (of four total) of the partial differential
equations book. It went over the method of characteristics for first
order equations. It seems to pick up in the next chapter so I’m ex-
cited to see where this leads.

Guckenheimer and Holmes Picked up this book via suggestion of Bu-
rak

2017-02-16 Matt Pairwise angles Spent most of the day trying to figure how
to correctly write bash scripts in linux, and how to apply them to
Channelflow. Uploading first results from pairwise angle calcula-
tions of Floquet vectors for Channelflow. Rereading about how to
move onto principal angles between linear subspaces as was done
in ref. [11]

2017-02-21 Matt Spatial Newton descent Debugging and changing spatial New-
ton descent code. I think I’ve pinned down the main problem to be
an error in trying to use Fourier transforms rather than explicit sums
in my definition for the stability matrix elements, or initial condition
generation. I’m currently using the shortest periodic orbit in time as
an initial guess; Therefore, I would expect the value of the cost func-
tional to be small relative to something that isn’t already doubly-
periodic in time and space. While the value of the cost functional is
relatively small, it still may be too large for an initial guess.
That being said I can at least list what I believe to be the most likely
cause of errors.

• Error in definition of stability matrix elements; this can be seen
from the inability of the fictitious time evolution to lower the
value of the cost functional.

• Poor initial conditions, in a specific sense. I think a periodic or-
bit is a good start, but the number of Fourier modes kept or dis-
cretization in space might be impeding progress; One problem
is memory requirements due to having a system of equations for
spatial derivatives as opposed to a single ODE prevents large
discretizations.

Fritz PDE It’s taking a while to digest; There are a lot of geometrical no-
tions about solutions to PDEs that I have never really considered
before. Apparently cones are much more abundant that I would
have previously believed.

2017-02-21 Matt spatial Newton descent Put a lot of time into debugging spa-
tial Newton descent code. Due to size of the system it takes much
longer to run than antisymmetric subspace U+ calculations making
it more time consuming to check to see if its running properly. Cur-
rently I am able to take initial conditions with initial value of cost
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functional F2 ≈ 150 to a final value of F2 ≈ 10−5. This leads me to
believe I have caught most of the small errors and only have a little
bit more work into finding what I am overlooking before it will be
fully operational (if I may be so bold as to sound like an engineer).
One of the main problems I have been having is that the fictitious
time evolution is much more temperamental; increasing step sizes
seems to be much more "unstable" in the sense that even when close
to (spatially) periodic solutions it is still possible to overshoot and
therefore ruin the run. In order to combat this I am going to make
a run on Light with much smaller step sizes than I would normally
use, and let it run overnight.

Fourier differentiation for later use I also have been playing around with
using Fourier series (spectral differentiation) as a means to calculate
the approximate tangent space. As one would expect, it is much
faster than multiplying a large matrix (finite differencing scheme)
with a large vector (Approximately 100 times faster), but there I am
somewhat confused on how to include this into the matrix equation
(13.18) that is the meat of the computation process, without com-
pletely rewriting my code.
The reason for this is such: Spectral differentiation with respect to
a parameterization variable, s, can be rewritten as multiplication by
a diagonal matrix with elements is, but this requires the vector that
is representing the entire loop to be ordered in a very specific way.
If the loop was ordered in this specific way it would reduce to mul-
tiplication of a large diagonal matrix which would be repeating the
(small) diagonal matrices with elements is. If one wants to do it
this way I believe the easiest way, in order to avoid reordering the
stability matrix elements, would be to formulate it this way mathe-
matically: The matrix DF , which produces the approximate tangent
space after multiplication with the "loop vector" x, could be repre-
sented in such a way,

DF = P−1F−1Diag(is)FP where,

F = Block diagonal matrix composed of Fourier transform matrices
(i.e. to Fourier transform each of the Fourier coefficient series with
respect to parameterization variable), P = Permutation matrix to re-
order in specific way to enable easy Fourier transforms.
This is probably too convoluted as it is somewhat hard to explain,
but keeping a record for future possible implementations.

2017-02-22 Matt Checklist Modifying and relocating checklist from before to
correctly denote what is currently being accomplished for finding
principal angles of subspaces for channel flow.

[x ] 1-24-2017 Generate time discretized periodic orbit using Channelflow.
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[x ] 2-2-2017 Use Arnoldi iteration to find eigenfunctions of periodic or-
bits

[x ] 2-13-2017Produce eigenfunctions around periodic orbit in an auto-
matic rather than manual fashion

[x ] 2-16-2017Compute L2 pairwise norms of eigenfunctions as first mea-
sure of angles.

[ ] Compute principal angles between subspaces of eigenfunctions.

Principal angles Here is a description that I am trying to implement in
c++ in order to work with Channelflow, this corresponds to the last
step in the checklist, but has multiple steps itself.
Procedure taken from ref. [1]:

[ ] For the nth subspace, form two matrices A, B such that Range(A) =
spane1, ..., en, Range(B) = spanen+1, ..., eN , ek = ktheigenvector

[ ] Use Eigen c++ package to perform Householder triangularization to
produce QR decompositions of A and B.

[ ] Form matrix M = QA†QB and apply c++ JacobiSVD on it to get prin-
cipal values σk

[ ] σk from previous step = cos θk where θ is the principal angle between
the kth subspace of A,B. (only care about the first principal angles,
not orthogonal complements).

spatial Newton descent Bad results from overnight trial; stalls out around
cost functional value F2 ≈ 10−8. Final configuration space veloc-
ity field is a highly oscillating very non-physical type solution that
looks like the result of aliasing; I believe I need to incorporate more
Fourier modes as a first step to fix the issue, or the number of dis-
cretization points, although doing so leads me to run out of memory
After talking to PC today he pointed out that this is likely due
to forgetting to slice the orbit; Need to do this with first Fourier
mode slice.

Reading Read a little bit more of Fritz, linear subspace angles [1], sym-
metry reduction [5]

Xiong’s comments Xiong really thinks that in order to get anything mean-
ingful I need to find Floquet vectors along all possible periodic or-
bits, as well as orbits that shadow these orbits.

updates Updated codes to svn, updated pairwise angle figure from feb
16th.

arnoldi iteration Getting more Floquet vectors from periodic orbits from
Channelflow database; there seems to be a problem this time around.
Background of the problem: before arnoldi iteration proceeds, the
arnoldi program of Channelflow computes the L2 norm of σfT (u)−
u and warns if it is greater than 10−8; for the first point on the orbit
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this time around this error is 10−10 but for other points it’s ≈ 10−1.
Need to figure out what is causing this discrepancy. The first thing
that this points to is that the DNS of the periodic orbit is unstable
and I need to go back and decrease the step size, but the step size
was already smaller than the default when I generated the data in
the first place.

Xiong to Matt 2017-02-23 With only a few periodic orbits, I think it may be
easier to check the local Floquet exponents first. They are defined as

λj(x) = ej(x)>D(x) ej(x) = lim
τ→0

1

τ
ln ||Jτ (x)ej(x)|| . (15.1)

D is the strain tensor D = (A + A>)/2 with A the stability matrix. It
may be hard to obtain the transpose of A, but we can evolve the Floquet
vectors ej(x) (of the full cycle) by the Jacobian matrix for a short time to
get the instantaneous expansion/contraction rates. figure ?? shows the
local Floquet exponents for rpo16.31 in Kuramoto-Sivashinsky equation.
There is a clearly separation between the leading 8 modes and the rest.
Maybe you can observe similar phenomenon in the channel flow. That
will give an estimate of the dimension.

2017-02-23 Predrag “Local Floquet exponents” are back? This is like calling
function f(x) “local integral”

lim
x′′→x

1

x′′ − x

∫ x′′

x

dx′f(x′) .

A(x) is d-dimensional generalization of dv(x)/dx, and that is an object
that is not invariant under general nonlinear coordinate transformations.
The value of such derivative could be anything - the only meaningful
quantity is the spectrum of the Floquet matrix, which is invariant. There
is no reason to give any particular significance to

ej(x)>D(x) ej(x) = ej(x)>A(x) ej(x)

and one does not need to evaluateA>, as the transpose of a scalar is itself,

(ej
>A ej)

> = ej
>A> ej .

We put up with this nonsense in ref. [11] only in order to finally get the
paper submitted - it is not my job to teach adult collaborators nonlinear
dynamics, if they are unwilling to learn. Grad students - that’s different.
Oscillations in (15.1) happen to be mild, but we have no argument that
they should be mild. That’s fortuitous.

Xiong to Predrag 2017-02-23 Yes, you are right. We do not need A> get the
instantaneous expansion/contraction rate. But it is required in the def-
inition because ej

>A> ej is a complex number for complex vectors. I
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do not think that such an instantaneous rate is nonsense. The idea is
backed by the domination of Oseledec splitting. Experiments with com-
plex Ginzburg-Landau equation with covariant vectors also use this idea.
For now, if we do not have enough orbits to study the principle angles
statistically, why not try to have a look at local Floquet exponents? Maybe
it gives us some intuition.

2017-02-23 Matt :

J. Demmel talk Communication-Avoiding Algorithms for Linear Algebra and
Beyond (Link with Slides) (Additional Info)
Motivation is that algorithms have two costs, flops and moving data.
Counting costs, flops measured in time per flop, "words moved"
measured in bandwidth, messages (described as groups of "words")
measured by latency.
Minimize communications to save energy.
Redesign algorithms to avoid communication, between all memory
hierarchy levels. Obtain lower bounds if possible.
Some Numbers: 12 times faster matrix multiplication (on 64 thou-
sand cores) (doesn’t scale too well, larger matrices achieve only some-
thing like 2.7 times) 3 times faster tensor contractions
Outline of Communication-Avoiding (CA) algorithms.
Survey of CA Linear Algebra Direct Linear algebra, lower bounds
on communication on Ax = b, Ax = λx, least squares, svd. being
added to LAPACK, PLASMA, MAGMA.
Lower bound on Bandwidth cost for all n3 like (three nested loops)
linear algebra. Let M = fast memory size per processor Lower bound
Words_moved(per processor) = O( flops(per proc) / M1/2)

“When can you obtain this lower bound in sparse case?" (not con-
sidering things like diagonal matrix multiplication which is highly
optimized)
Lower bound on the Latency cost
words_moved(per processor) = flops(per processor)/ M3/2

Naive intro to linear algebra, matrix multiplication with three loops.
Split matrices into b× b How big should b, be? Need b sized blocks
to fit into fast memory, lower bound of flops/M1/2

Parallel matrix multiplication, Break matrix into small submatrices.
Summary of dense parallel algorithms attaining communication lower
bounds. obtain lower bounds with lower bounds of messages and
words. (with b constant).
Algorithms have been optimized to follow, but there is an additional
step of optimization with regards to the memory size M. "Can we
always hit the lower bound no matter how much memory there is?"
yes.
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12 times factor of speeding up is due to a 95 percent reduction in
communication time Algorithm was sold to company that was later
acquired by intel.
Same thing with Tall-skinny QR. Break into blocks, do local QR de-
composition. break into smaller and smaller blocks via repeated QR.
(MPI reduce).
"how does this affect the stability?" QR: only use multiplication by
orthogonal matrices, still works. When abandoning partial pivoting
had to prove stability (which was proved in an unreferenced paper).
Where do M1/2 come from in the lower bounds: generalization of
lower bounds General case of matrix multiplication, as many indices
as you want. only really need the indices.
Access locations indexed by group homomorphisms, maps list of
indices to specific matrix element?
Ongoing: Implement and improve algorithms to generate lower bounds,
optimal algorithms. Extend speedups by using extra memory (n +
1/2) dimension algorithms
Krylov subspace methods (Arnoldi, Lanczos, CG, GMRES) Assume
matrix well-partitioned. Serial implementation: (k sparse matrix
multiples. moves slow to fast memory) New case: read from slow
memory to fast memory once parallel implementation on p proces-
sors: price we pay is some redundant computation (flops are cheap).
Challenges: Poor partition, preconditioning, num. stability.
Instead of using monomial basis, use a "Newton basis" for CA-GMRES
to achieve same convergence properties of GMRES.

2017-02-24 Matt :

S. Berman Math Colloquium A classical Hamiltonian model for HHG High
Harmonic Generation, send in intense laser pulse into gas, focused
in directions transverse to propagation.
Measured the transmitted light, the spectrum typically is composed
of three distinct behaviors for intensity as a function of frequency,
monotonic decrease, plateau, and then convergence to zero. Inter-
ested in plateau region in a classical sense.
Introducing an electric field description for the incident light. Radi-
ation from incident light interacting with gas. Main goal is to try to
describe plateau region classically.
The basis for the classical model is to assume there are N single elec-
tron atoms indexed by position. Assume ions do not interact with
each other, and therefore there is only potential due to the interac-
tions between atoms and their electrons. Therefore, the different
ions will interact indirectly through the electric and magnetic fields.
Have a set of ODEs that come from Lorentz force law and Maxwell’s
equations. Has a Hamiltonian structure, want to try and preserve
this structure.
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Defines a Hamiltonian and the derived Poisson Bracket. Need a
finite discrete implementation that captures all of the Physics.
Reduction of the Hamiltonian by defining a periodic box such that
one can Fourier transform in all three spatial coordinates. Find ex-
pressions for Functional derivatives that were present in Poisson
Bracket, i.e. trying to get expressions for dynamical equations in
Fourier space.
Make linear transformations that eliminate trivial time dependence,
changes the Hamiltonian to look like harmonic oscillator, and mod-
ifies the poisson bracket but still satisfies Jacobi identity.
This transformed system still isn’t tractable due to its size. Doesn’t
take into consideration ionization, but theory predicts comoving elec-
tric fields so that you only care about electric field in a small box.

2017-02-27 Matt :

spatial Newton descent Further changes to spatial code, yielding equi-
libria in time. Previously when I was working with antisymmetric
subspace U+ in time, this typically indicated that there was some
mistake with a numerical factor somewhere, but here I am not so
sure as it is still a periodic orbit in space. Although, if I had to wa-
ger, it would be a mistake that I’m looking over somewhere.
Another main challenge is how to implement a slice condition to
deal with translational invariance. Typically this is dealt with when
the spatial Fourier series is being used, and therefore it is easier to
represent a hypersurface that eliminates this marginal direction; in
the spatial Newton descent code (this is what I call using (1.36) with
variational Newton descent) I am trying to eliminate the transla-
tional freedom but it’s not as straightforward as the first Fourier
mode slice; as the first Fourier mode slice in this case would elimi-
nate time translations. I’ve been looking towards some of the papers
about invariant tori and their "phase conditions" as a possible means
of escape.

Floquet vectors I’ve been having a problem with computing the Floquet
vectors associated with relative periodic orbits.
I produce a discretized periodic orbit by using Channelflow’s DNS,
while restricting solutions to remain in their symmetry subspace as
dictated by the symmetries listed in the data base at (Channelflow).
Then at each of these discretized points along the periodic orbit, I be-
gin arnoldi iteration. One of the first checks of the arnoldi iteration
verifies whether σfT (u) − u ≈ 0, as this is what dictates a relative
periodic solution. Now, the problem is that for the first point of the
discretization (i.e. the initial condition taken from the database, u0

), σfT (u0) − u0 ≈ 10−8, but for any other point of the discretiza-
tion, the error is more like 10−1, which is unacceptable as it means
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we’ve somehow been set off course. At first I thought this doesn’t
seem unreasonable as we are dealing with unstable solutions, but if
the relative periodic orbit is so unstable, then why does the initial
condition yield a reasonable result after time integration?
The only thing left is the fact that the discretized points of the pe-
riodic orbit are being generated by me, meaning that there is room
for human error; I must be not properly using the symmetries in
when generating the time discretization of the relative periodic or-
bits. This is the only thing I can think of as everything works well
when there are no symmetry group elements other than the identity.
That being said, until I figure out what is going on I will be produc-
ing Floquet vectors of periodic orbits that have this trivial symmetry
group.

2017-03-01 Predrag I think of slices and Poincaré on the same footing, in the
spirit of spacetime democracy. That’s why I reformulated the invariant
invariant 2-torus as an algebraic fixed point condition, for a set of MN
algebraic equations for the spatiotemporal Fourier coefficients (1.43).

I believe that the Jacobian matrix that linearizes (1.43) has three marginal
directions.

Two are for the exact continuous spatial and temporal symmetries. I have
left to you and our other collaborators is to decide how to section (in time
direction) and slice (in the spatial direction) these equations. I believe
if you use a version of Newton method that uses a pseudeinverse (Ap-
pendix of ref. [9], Gibson’s person-to-person advice to you), you do not
have to impose the section/slice constraints. If you do, try first to use first
Fourier mode slice (rotate both time and space modes, separately, to set
the cos(φx) = 0, cos(φt) = 0 for both Fourier series, thus decreasing the
dimensionality to (M − 1)(N − 1)-dimensional symmetry-reduced state
space, and hope that we are safely away from the slice border. We also
have to quotient the spatial reflection symmetry, but let’s wait with that
one...

Then there is one marginal direction (I believe) for the continuous family
of physically different solutions (what we usually call “adiabatic contin-
uation” while varying a continuous parameter, let’s say the domain size
L in the old-fashioned fixed spatial domain calculations). For T = 0 spa-
tial equilibria case, this is the “energy” E, the integration constant in the
integral of (1.37), see Sect. 2.2 of ref. [9] and Sect. 5.3 of Lan’s thesis [22].
I have not thought through what that is for T > 0, but I cannot see how
it can be ignored - there will be finite curves in the LT plane where such
continuous families exist between their birth and their destruction. In
the spacetime they will look like a rubber-sheet deformations of a given
geometrical pattern.

If we are lucky, a version of Newton method that uses a pseudeinverse
might be able to find one solution in a family, which then we can continue
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into the whole family. In any case, you have the 60 000 periodic orbits to
play with atL = 22 value. And then sit and think about what does this’all
mean :)

2017-03-02 Matt :

Floquet Vectors Was able to find the error of why I couldn’t get good
results for relative periodic orbits of Channelflow. It turns out that
instead of taking the symmetry information from the Channelflow
website I should have been using the Channelflow command “find-
symmetries" to produce the generators of the symmetry group for
particular solutions. John’s input from our correspondence defi-
nitely helped out; that being said, I am now be able to produce Flo-
quet vectors for all of the periodic orbits in the Channelflow reposi-
tory. Although after noting the convergence properties I have dou-
bled the number of Arnoldi iterations as a precaution.

Xiong’s Thesis Finished proofreading Xiong’s thesis. My main focus in
corrections was to improve some grammatical errors and offer sug-
gestions on how to reword things. If I was a revolutionary I prob-
ably would have gone through and rewritten entire paragraphs, as
I still find the sections on periodic eigendecomposition to be rela-
tively convoluted; my main focus was that if its good enough to be
published than I probably should just leave it be. Regardless, he
seemed very pleased with the comments that I left, and said that
they were very helpful.

spatial Newton descent I realized that I should not have to worry about
implementing a slicing condition in the spatial version of variational
Newton descent; All that was required in the time case was to re-
duce the symmetry associated with the marginal direction parallel
to velocity, i.e. a Poincaré section. I didn’t worry about the spatial
translational invariance and it was able to converge to a solution just
fine in the time case.
In this line of thought, because space and time have their roles re-
versed, I should only have to take into consideration the transla-
tional invariance in the spatial direction and not the SO(2) symme-
try in the (now periodic) time direction.
I also changed the definition of the stability matrix elements that
arise due to the nonlinearity in hopes this will fix my problems; All
in all, things are working much better than they were even when
compared to yesterday, although the convergence properties are still
not where they need to be in order to say I "found" an new solution
yet (For an initial condition whose initial cost functional value is
F2

0 ≈ 5 my code is able to reduce it to F2
τ ≈ 10−1). I’m currently

testing my code with discretized versions of ppo10.2, but I am going
to try to see what happens to an more general initial condition next.
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There also might be a smarter way of choosing a constraint that en-
ables better convergence, as opposed to the “first coordinate" hy-
perplane (i.e. the first Fourier mode in most systems). I’m currently
playing around with using a hyperplane condition on the “more dy-
namical" variables which is a hasty and crude name not to be taken
seriously. What I mean by this is that in (1.36) the spatial derivatives
of the Fourier coefficients of u(3), which represents the third deriva-
tive, are much more complex than the other derivatives, so perhaps
using a hyperplane condition on one of these coordinates would be
better; this hasn’t seemed to be the case yet.

2017-03-06 Matt :

Variational Newton Descent (General) Realized I made a small mistake
when thinking about using Fourier transforms along the parame-
terization direction in order to approximate the loop tangent space
(15.1).
I thought that I would have to somehow permute the elements (15.1)
of the "Loop Vector" (vector that encodes the parameterization of
initial condition for periodic orbit search). The reasoning behind this
was in order to use differentiate with respect to a parameterization
variable s, I would need the elements to be in sequential order with
respect in parameterization variable s, in order to multiply by vector
i~m, where m is the conjugate variable (in a Fourier transform sense)
to s. This is not the case, as I can merely exploit the Kronecker outer
product to produce a diagonal matrix such that along the diagonal
there are M duplicates of each element of ~m
I should have realized this sooner but I’m still not convinced this
will enable faster calculations.
We are essentially diagonalizing a sparse matrix forO(M (nlog(n)))
flops from taking M Fourier transforms of length n = power of 2.
This is all well and good, but I think that there might be complica-
tions from the stability matrices; I need to go through the calcula-
tion, but the naive way to write the stability matrices in their new
representation is: Ã = FAF∗, where F is a unitary matrix represent-
ing the discrete Fourier transform. 1

When you include the amount of flops needed to produce the prod-
uct of these matrices, I don’t think the benefits outweigh the costs
unless a much smaller discretization can be used due to the conver-
gence of Fourier coefficients (i.e. a truncation in the parameteriza-
tion variable).
Next is the representation of the fictitious time evolution as a sys-
tem of linear equations, similar to (13.20), which is restated here for
comparison to the new system of equations.

1Matt : Note that Kronecker product again makes matrices sparse, such that previously full
DFT matrix is now sparse
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The old linear system is given by,

[
M −v

] [ δx̃
δλ

]
= δτ

[
λv − ṽ

]
, (15.2)

whereM = D−λDiag(An) withD being the finite difference matrix,
and An a block diagonal matrix containing stability matrices.
Now, the equations the same form, with new variables described by
over-bars [

M̄ −v̄
] [ δ ˜̄x

δλ̄

]
= δτ

[
λˆ̄v − ˜̄v

]
, (15.3)

where M̄ = FDiag(i~m)F∗ ⊗ Id − λDiag(An) and v̄ = F(v), ˜̄v =
(Diag(i~m) ∗ ˜̄x. 2

Spatial Newton Descent Rewrote the main body of the fictitious time
evolution loop to hopefully deal with memory management a bit
better, but still getting memory issues. Waiting on latest Arnoldi
iteration to finish before using terminal to do calculations.
Waffling between implementation of least squares solver for pseu-
doinverse variational Newton descent.
GMRES seems to be locked by memory. Also tried to implement
QR decomposition as in TrefethenT̊refethen97 but trying to stick to
pseudoinverse and least squares solvers as they typically work bet-
ter; also keeping track of large matrices is a downside.
The best results, (i.e. better than square matrix problem, but still not
good enough) was with SciPy’s LSQR algorithm, which, in the pa-
per that it is based on ref. [29], describes it as a “conjugate-gradient-
like" algorithm, with better stability. I haven’t gotten into the nitty
gritty as of yet.

Floquet vectors Spent some time checking results to make sure I’m do-
ing everything correctly before proceeding. Began writing c++ code
that will calculate principal angles between subspaces; I think I might
be able to get away with writing this in Python and I might try to do
so as I think it would take less time than writing in c++.
Still just running arnoldi iterations on light to produce data for fu-
ture use.

Physics Colloquium: Vadim Roytershteyn Turbulence and Magnetic Res-
onance in Space and Astrophysical Plasmas Large range of scales by
astrophysical nature.
Variety of models and approximations used to tackle range of scales.
Hope to answer: How dynamics of small scales affect the large scales.

2Matt : I changed this such that the only difference between my current code and this formula-
tion is the calculation of approximate tangent space via Fourier methods.
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Magnetic reconnection; rapid change in magnetic field topology. Movie
that demonstrates reconnection of field lines; important process be-
cause plasma transport is essentially determined by these field lines,
with transport in the transverse direction being quite slow.
The amount of plasma transported to Earth from solar wind is de-
pendent on two boundary layers of the Earth’s magnetic field.
Mesoscale simulation; Hybrid particle in cell calculation, this is a
Monte-Carlo Technique. These are easily parallelizable, and are there-
fore well-suited for large scale computing.
Quasi-Parallel vs Quasi perpendicular Shock; interaction between
shock waves and turbulence.
How do results generalize to three dimensions?
Large-scale Reconnection: Sweet-Parker Model. Has a peculiar scal-
ing law that can be explained by transition to turbulence, or the fact
that at a certain point you reach the kinetic scale of the plasma.
Flux conservation is hard because there is separation of magnetic
field lines due to turbulence.
Plasma Turbulence: Three scales, f−1 range, inertial range, sub-ion
range.
Incredible simulation of a Kelvin-Helmholtz instability.

2017-03-09 Predrag Roytershteyn was so kind to find out who I was, and send
me a copy of Riley [34] On the probability of occurrence of extreme space
weather events. The historically important is the Carrington extreme space
weather event of 1859. With all the caveats, his estimate of the probability
of another Carrington event occurring within the next decade is ∼ 12%,
which worries me much more in the short term than the climate change, a
slowly rolling chronic accumulation of relatively localized disasters, with
more time for adaptation. And in 2012 we seem to have had a close call.

2017-03-07 Matt :

Plumbers’ hangout See pipes blog.

March Meeting practice talks Was invited by Sabetta Matsumoto to par-
ticipate in listening to talks and providing feedback in exchange for
free food.
I thought it would be good to experience short 10 minute talks to
see the general practices.

S. Markande A chiral minimal surface from space group symmetries.
Principal curvatures, gaussian curvature, mean curvature; minimal
surfaces. appearance in nature.
Use discrete symmetry groups to represent minimal surfaces as a
prime patch. Three commuting symmetries due to lattice.
Weierstrass-Ennepper representation and Gauss Map.
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Keep succinct paraphrase on the slides. Describe his role better and
accomplishments better.

Jon Michel System viewed as connections and nodes, key property is
connectivity. In d dimensions, 2 d is necessary to be stiff.
Spending too much time on "Our system slide". Hard to see what
you’re talking about, be more demonstrative with multiple slides.

Perry Ellis Nematics on a Torus Defining defects by (Conley Index of
nematics?). Poincaré Hopf Theorem.
Tracking defects with inherent topological charge, similar to spiral
cores of Grigoriev et al.
No flux of defects across boundary? Locally everywhere zero as you
increase the velocity, which is a measure of the activity.

Michael Tennenbaum Reconfigurable mechanical properties of fire ant aggre-
gations Collections of fire ants are active in terms of stress and rhe-
ology as opposed to a simple liquid. Research on how to model the
activity of these ants as well as measure physical quantities associ-
ated with the aggregation.

Variational multishooting After talking to Ashley, who told me to start
the multishooting effort with only a few number of points rather
than the large discretization used as if it was a Newton descent, I
looked back into the variational multishooting technique that he de-
scribed back in Santa Barbara. I took four point on the original orbit,
while my code is minimizing the cost functional (??) I am yet again
getting the “equilibrium descent" for an antisymmetric initial condi-
tion ∈ U+ that converges with my variational Newton descent code.
This resulting equilibrium "solution" is a typical result when some-
thing is ill-defined. I would speculate that the manner in which I
am handling the adjoint equations is the culprit, as I tried to modify
the ETDRK4 of ref. [19] to be the numerical integration routine to
integrate the equations.

Kuramoto-Sivashinsky on a torus While waiting for Arnoldi iteration
to finish so that I could begin testing the spatial variational New-
ton descent without fear of memory problems I was trying to think
about the best way to use (1.43), which I will restate here:

[
iω` − (q2

k − q4
k)
]
ûk,` + i

qk
2

N−1∑
k′=0

M−1∑
m′=0

ûk′,m′ ûk−k′,m−m′ = 0 . (15.4)

PC elaborated that in order to find the fixed point associated with
this, “The Newton method then requires inversion of 1 − J , i.e.,
det (1 − J), where J is the 2-torus Jacobian matrix, yet to be elu-
cidated."
I was hoping to work towards this goal today, by rewriting (1.43) in
manner that fits the form f(x)− x = 0.
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First, ûk,` represents matrix elements, so it makes sense to rewrite
the equation as a matrix equation. Define matrices Q1 ≡ Diag(−q2

k+
q4
k), W ≡ Diag(iω`), Q2 ≡ Diag( iqk2 ), and let the two dimensional

FFT be represented by matrix multiplication U = FMuFN , where
the matrix elements Uk,` = ûk,`.
With these definitions the equation can be rewritten as:

Q1UW + Q2FM(u⊗ u)FN = 0 (15.5)

where the nonlinear term is calculated in configuration space as to
avoid the two dimensional convolution.
Because Q1 and W are diagonal, their inverses are easily found, and
the equation (15.5) can be rewritten

Q1
−1Q2FM(u⊗ u)FNW−1 + U = 0 (15.6)

Now we can redefine U→ −U, and remember to convert back after
finding the fixed point.
Define

fk,`(ûk,`) ≡ Q1
−1Q2FM(u⊗ u)FNW−1 (15.7)

and therefore we have an equation of the form: fk,`(ûk,`)− ûk,` = 0,
where the Jacobian matrix is given by the fourth rank tensor that
arises from taking partial derivatives with respect to ûk,` More to
be derived in the future, hoping to make headway into finding tori;
I can’t tell if this equation is going to be useful or if I should re-
ally be working towards deriving and learning variational Newton
descent equations for finding tori similar to Lan, Chandre and Cvi-
tanović [23].

2017-03-08 Matt :

Xiong’s Last Stand Attended Xiong’s thesis defense. I thought it went
well overall;

spatial Newton descent Fixed memory issue by making it such that the
"Newton descent matrix" i.e. the matrix in (15.3) is not evaluated
before each least squares evaluation; rather, we keep this matrix
constant as an approximation and then when the cost functional
can no longer decrease, i.e. we have left the local neighborhood of
the stability matrices that define the matrix, we redefine the matrix
and then restart the search; this is similar to what is implemented
in other variational Newton descent code; forgot this fact when I
rewrote the spatial Newton descent code to use LSQR to solve the
least squares problem as opposed to using matrix inversion.
Application of the spatial Newton descent code to ergodic trajecto-
ries that have been deformed to be periodic in time were resulting in

05/09/2019 siminos/spatiotemp/chapter/blogMNG17.tex388 7451 (predrag–6859)



CHAPTER 15. MATT’S 2017 BLOG

the "falling into equilibrium" problem, this was due to a bug where
the wrong temporal system sizes were being used.
Application of spatial Newton descent on ppo10.2 results in a re-
duced cost functional but seems rather obstinate in regards to con-
vergence. Luckily, the approximate loop seems to fluctuate around
spatial extent L = 22. I think this is a good indication as it means the
spatial Newton descent is capturing the spatial geometry of ppo10.2.
That is to say, even while reducing the cost functional the solution
doesn’t want to betray itself, as it originates from the spatial system
size L = 22.
I implemented (15.3) and am currently testing whether or not this
makes a difference. Fourier methods are only slightly different than
finite difference methods when calculating the approximate tangent
spaces (usually determined by the initial value of cost functional)
but it might help the convergence capabilities, currently running a
test on an ergodic trajectory from L = 88 initial domain size.
I think part of the problem is due to how I am solving the least
squares problem at this point. I want to avoid actually taking a
pseudoinverse, as this can take an enormous time and end up be-
ing a futile effort.
I’ve been toying around with some ideas of maybe somehow con-
verting the currently underdetermined system into an overdeter-
mined one by looking to maybe constrain the least changing coordi-
nates, as this is an indication that they are close to being converged
to the orbit. Regardless, I am looking towards more ways and hope-
fully better ways of solving the least squares equations.

initial condition production rewrote some parts of the matlab code I am
using to generate the initial conditions, in order to get a more exact
period in time.

2017-03-10 Matt : Spent all of my time today trying to figure out ways to get
spatial Newton descent to work properly. but alas all that I tried whether
it be the error tolerances, step sizes (variable or constant), initial condition
discretizations, least squares solvers, pseudoinverse or regular inverse
methods, hypersurface constraints, matrix preconditioners, etc, did not
help the converge properties.

By examining the corrections being applied to deform the loop, specifi-
cally the maximum correction applied in each step it seems most of the
steps are modifying the "period" i.e. the spatial extent of the initial con-
dition the most. There might be some way to discourage this with an ad-
ditional condition on the rescaling factor λ that matches the magnitudes
of the approximate tangent space to the actual tangent space.

The majority of modifications being put into changing this rescaling fac-
tor seem to be the cause of the critical slow down of the algorithms, which
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might be indication of the presence of a continuous symmetry that needs
to be dealt with that isn’t currently being dealt with.
The one thing that I’ve learned is that there must be some crucial fact that
I have overlooked that I took for granted in searching for periodic orbits
in time.

2017-03-13 Matt :

Floquet vectors and principal angles Finished code that will allow for
computation of principal angles between linear subspaces of Flo-
quet vectors. Should have plots soon, specifically the angles be-
tween subspaces of Floquet vectors at 64 points along the orbit ti-
tled p19p06 on the channelflow database. Need to figure out a way
to make it presentable as opposed to just a bunch of lines on a figure.
I think I need more evidence before any claims are made, but from
this particular periodic orbit, the angles between subspaces decreases
until n = 13, afterwards it increases. I do not see the distinction of
being bounded away from zero only for n > nc as of yet. More
investigation required.

spatial Newton descent Still haven’t been able to get this to work, after
some thought over the weekend I have been trying to implement
a major change to the code. The general idea is this, the first three
equations of (1.36) will by definition match the approximate loop
tangents as they are generated via spectral differentiation, which is
now how I am computing the approximate loop tangents. I have
been trying to work out how this can be exploited as to greatly re-
duce the dimensionality of the system. I.e. instead of keeping track
of the real and imaginary components of the Fourier coefficients of
u, ux, uxx, uxxx, I should be able to only keep track of u, and then
match the last equation of (1.36) to the fourth derivative of u com-
puted by spectral differentiation. The main problem with this for-
mulation is that I haven’t been able to rewrite figure out the best
way to rewrite the stability matrix elements, other than they should
only depend on the real and imaginary components of the temporal
Fourier modes of u.
If I am successful in this endeavor, I should be able to reduce the
dimensionality by a factor of four, i.e. reducing the size of matrices
involved by a factor of sixteen, which should also eliminate "redun-
dant degrees of freedom" as I have denoted them in my head, as the
derivatives ux, uxx, uxxx are (obviously) coupled to u; so by reduc-
ing the dimensionality and making it such that only corrections are
made to u, we inherently are correcting the derivative fields as well.

Arnoldi Iteration Still just chugging along, using about 32 points per or-
bit for calculations of Floquet vectors. I haven’t decided on a stan-
dard as of yet but this will allow for relatively speedy calculations
as opposed to higher discretizations.
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2017-03-14 Matt :

Floquet vectors More principal angle calculations and arnoldi iterations.
Still producing data;

Spatial Newton descent Went through my overhaul ideas with Xiong,
before implementing anything. He said he needed some time to
think about what I was trying to do. I found some matrix element
equations that might be useful in the near future; the problem is that
I am confused on how to compute (local) stability matrix elements
if I use spectral differentiation (global) to produce spatial derivative
fields in (1.36). I need more time to work through it but if it’s as I
think it might be it could drastically simplify calculations.
After discussing this with Xiong he seemed to imply it might be
better to just work on solving the fixed point condition for invariant
tori; which I have been doing.

tori While running other codes, I’ve been writing code that will solve the
fixed point, i.e. algebraic nonlinear equation that determines invari-
ant tori. Xiong lead me to look at López et al. [25], which I took the
time today to read. I feel like it covers a lot of useful ideas and con-
cepts that I will be able to directly apply to my own problem. They
use a numerical least squares solver lmder to find fixed points, but
I think it might be good to invest time into implementing Newton-
Krylov hookstep since J. Gibson holds it in such high esteem. The
general idea is to use a nonlinear solver to solve (15.5) augmented
with a number of conditions for shifts and periods such that the sys-
tem is not underdetermined.

2017-03-18 Matt :

KS tori More work on torus fixed point codes; uploaded current version
to svn. Took time today to redefine functions to be in terms of new
class variables.
I was sort of confused on how to use the Matrix-vector product
approximation to the Jacobian matrix in order to use the Newton-
Krylov method in conjunction with SciPy’s implementation of GM-
RES. I want to use their version as opposed to creating my own ver-
sion as is optimal considering it is optimized outstanding code, and
will leave less room for error on my behalf; but there’s the problem
that it only works if you provide A and b in order to solver Ax = b.
I’m currently working on something that I believe should work,
which is to split the Jacobian matrix into nonlinear and linear con-
tributions; The normal equation that arises is Jδu = −F (u). Due to
the fact that I am looking for fixed points this reduces to figuring out
the kernel of the linear map defined by the Jacobian matrix.
There might be much more specifics in for this endeavor, but what I
am planning on doing is abusing the fixed point condition, splitting
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the Jacobian matrix into an explicitly defined linear contribution,
and an approximately defined (via matrix-vector product approx-
imation: JNLδu = F (u+ δu)−F (u)/ε , where epsilon is a small (but
not too small, as stated in López et al. [25]), it should probably be
around

√
εmachine and O(ε) ≈ Oδu.

Then I would have a system of the form (L stands for linear, NL
stands for nonlinear) JLδu ≈ −JNLδu, where I would be able to
plug this system into SciPy’s GMRES function with JL = A,−JNLδu =
b and solve for x.
I haven’t come across any reason why this shouldn’t work, the things
I know I still have to include are the generators of symmetry opera-
tions σ, which should be present in the Matrix-vector approximant
equation, and in the definitions of the mapping F .
On these comments, the main references I have been studying are
refs. [4, 6, 21, 25]. 3

Floquet Vectors Still producing more sets of Floquet vectors and run-
ning principal angle codes on them.

K. Krishan Talk Listening to Mike Schatz’ former student, Kapil Kris-
han, talk about the differences between industry and academia, his
experiences at Proctor and Gamble, what he thinks could be done
better (communication of research between private sector and sci-
entific communities mainly), networking, CV building and many
other real world necessities for success.

2017-03-23 Matt :

Floquet Vectors Still doing arnoldi iterations; 200 iterations per point on
every orbit is too time consuming so I reduced the number of arnoldi
iterations back to 100.

Tori hunting Rewrote lots of MNGkstorifunc.py as I’ve decided to
abandon computing any Jacobian matrix explicitly as the Matrix-
vector approximation seems to be quite ubiquitous, and employed
with Newton-Krylov methods it is also known as Inexact Newton-
Krylov as well as Jacobian matrix-free Newton Krylov. This was
somewhat hard of a decision to make as it meant I wasted some
time deriving explicit forms for the matrix elements of the Jacobian
matrices, but such is life.
Therefore, I began writing my own Newton-Krylov (i.e. Arnoldi it-
eration, GMRES) code as opposed to using the SciPy package imple-
mentation. The idea is that even though I previously claimed that I
wanted to avoid this as their GMRES implementation is optimized,
it will probably benefit me to avoid explicitly defining any Jacobian
matrix.

3Predrag 2019-05-08: what is bibitem KK04jfnk? Different from KK04?

05/09/2019 siminos/spatiotemp/chapter/blogMNG17.tex392 7451 (predrag–6859)



CHAPTER 15. MATT’S 2017 BLOG

I was hung up on how to actually compute these “matrix-vector ap-
proximations" in my context, after some exploring ref. [2, 15, 36].
I think I’ve figured them out but I plan on talking to J. F. Gibson
to confirm. The other things I am trying to reconcile between the
different notations is how López et al. [25] handles symmetries of
solutions as it’s slightly different than when one has a forward time
mapping, I believe. These things and working in the class objects
I’ve defined in python turned out to be somewhat trickier than I
had first intended but I hope to get things up and running by the
weekend.
As a first test of this code I’ll be using time integrations of rpo’s from
the svn repository, as they are well converged solutions that have all
of the information attached.
Also a note on symmetry, the way that J. Gibson (channelflow) han-
dles the spatial and temporal translation symmetry is to constrain
the Newton steps to only progress in directions transverse to the
spatial and temporal equivariance directions; the idea is to use addi-
tional equations of the currently underdetermined system of equa-
tions (because we are keeping track of “extra" variables: time and
spatial periods, spatial phase shifts from relative periodic orbit).
The additional equations that are tacked onto the Matrix-vector prod-
uct approximation of the Jacobian matrix are the inner products
(du, dudx ), (du, dudL ), (du, dudT ) in this case. I am slightly worried that
the galilean invariance will also make this more complicated; The
reduction of the galilean invariance in usually handled by setting
the zeroth spatial Fourier coefficient equal to zero, but in this two
dimensional spectrum of Fourier coefficients this corresponds to a
whole row of coefficients in the matrix of coefficients equal to zero.
In other words if the time series of these zeroth modes is always
zero, then the time Fourier transform of this information will also
be identically zero.
Also, I still need to implement the Viswanath [40] hookstep algo-
rithm.

2017-03-28 Matt :somehow this didnt save before I submitted it and I acciden-
tally closed out so the description of the talk I went to and the web meet-
ing might be a little rough. need to commit more often.

plumbers meeting Burak showed the two dimensional unstable mani-
fold and displayed the size in comparision to an original neighbor-
hood in order to show the size of the domain in which the lineariza-
tion is valid.
Ashley showed a traveling wave solution in pipeflow that was ac-
quired via his feedback-mechanism (variable Reynolds number).
I described what I am doing with the torus search Newton-Krylov
code and Floquet vectors.
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Predrag commented on how Xiong did statistics of Floquet vectors
using 400 periodic orbits, and how he used orbits that shadow peri-
odic orbits and showed how the displacement vector (in state space)
lays in the subspace spanned by a finite number of Floquet vectors
of the shadowed orbit.

PDE seminar: Xukai Yan -1 homogeneous solutions of stationary incompress-
ible Navier-Stokes equation with singular rays I went to the PDE sem-
inar hoping to learn more about continuous families of solutions,
and see how Mathematicians deal with Navier-Stokes. The work
that was done was for incompressible navier stokes solutions that
are axisymmetric and swirless (uφ = 0 in spherical coordinates).
Description and proof that even when there is a singularity at the
south pole, there exist families of solutions with different proper-
ties (bounded, finite, etc.) in certain parameter ranges. I think I
should do some secret mathematics training in order to get more
out of these talks because at the end of the day it’s interesting but
extremely hard to take anything away from these talks for me.

ks tori Spent the remainder of the day working on my Newton-Krylov
code to find tori of Kuramoto-Sivashinsky . I believe everything is
ready for testing after preparation of an initial condition. I have a
number of ideas of what could go wrong due to the fact that I still
get confused over this specific formulation of GMRES.
The way I have it formulated right now is order to find rootsF (u, T, L) =
0, I begin with the general formulation of Newton’s method for fixed
points which (due to F (x∗) equaling zero, with x∗ being the fixed
point of this mapping, including variations to period and spatial
length of the system and any parameters that control other contin-
uous symmetries.). takes the form J(xN )δxN = −F (xN ). Just to
specify if the dimension of the state space (i.e. the number of two
dimensional Fourier coefficients) is 2MN , where the factor of two is
due to splitting the coefficients into real and imaginary parts, then
the vector x∗ is 2MN + 3 (I think), due to freedom to change the
period, length and spatial phase. This is different than dealing with
a symmetry reduced equations (which I feel like I should know is
what I have to do, but evidence in channelflow makes it seem like it
is not necessary to find solutions).
To begin the hunt with Newton-Krylov Methods we need to pro-
duce a test vector for the power iteration that will produce the Krylov
subspace. This is taken to be the vector whose norm is the residual
to be minimized, i.e. r0 = −b−Aδx(0) where b is a vector containing
F (x) with a finite number of zeros concatenated at the end to make
b a 2MN + 3 dimensional vector. Likewise, constraints formed by
inner products are appended to the vector Jδx (a 2MN dimensional
vector) in order to make the corrections unique, and not solutions to
an underdetermined system. These conditions constrain the correc-
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tions to be orthogonal to directions of equivariance.
This “residual vector" is sent to Arnoldi iteration in order to pro-
duce the regular Hessenberg and Orthonormal matrices of this iter-
ative procedure. In between Arnoldi iterations, we check the new
value of the residual, i.e. ||b − Aδx(k)||. If this meets a specific tol-
erance, it is then passed to the least squares problem that defines
GMRES [39], find y that minimizes ||Hny − ||b||e1||, this solution to
the least squares problem y is then converted to Newton correction
via multiplication of orthonormal matrix x = Qny. If this New-
ton correction does not minimize the residual sufficiently, GMRES
is restarted. Until either a maximum iteration number is met, or the
relative differences between residuals stalls out.
GMRES specific problems to take into consideration, breakdown of
the arnoldi iteration, if the test vector lies in the Krylov subspace,
then there will be a subdiagonal element of the Hessenberg ma-
trix equal to zero (due to linear dependence and orthogonalization
with respect to the Krylov subspace). If this occurs then GMRES is
restarted with another random test vector. Numerically, this should
be a condition on the value of the norm of the vector being iterated
upon.
In order to evaluate the matrix vector product Jδx, the matrix-vector
approximation previously discussed is used, where we use Jδx ≈
F (x+ δx)− F (x)/ε, where ε = ||δx||.

Floquet vectors Still doing arnoldi iterations in order to do statistics of
Floquet vectors

2017-03-29 Matt :

PDE talk Yue Liu Asymptotic analysis on the modeling of the shallow-water
waves with the Coriolis effect Rotation-Camassa-Holm equation Rotation-
Green-Naghdi equation Rigorous justification wave-breaking phe-
nomena Solitary wves Camassa-Holm in two dimensions.
Wants to focus on cammassa-holm and quadratic nonlinearities. Com-
parison with euler equation to justify mathematical model Do we
still get wave breaking phenomena
Key defining features of Camassa-Holm, higher order nonlinearities
that quadratic, (cubic and quartic terms). These are the terms that
deal with rotation, so it makes sense to have a constant (wave speed)
term such that if the rotation defined by another constant is zero,
these terms disappear. I.e. in the limit of no coriolis force we retrieve
the Korteger de-vries equation.
Another way of saying this is that there is a parameter range in
which the model returns to KdV, sometimes need to investigate the
transition between two regimes.
Camassa-HOlm models the existence of permanent and breaking
waves. Breaking waves similar to burgers equation, the wave form
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is bounded but the spatial derivative blows up in finite time. Soli-
tary waves are peaked solitons "peakons".
Derivation of RCH equations from euler equation + coriolis force.
Use asymptotic expansions to find relationship between constant
and part of the velocity field, doing so allows for substitution and
will lead to CH equation after derivation.
H1 energy norm,

∫
u2 + βux2u

In order to justify this equation or model first do a comparison to
KdV.
In the KdV regime: Throwing away highing order terms, compar-
isons between Ch equation and RKdV equation via the sobolev norm
between solutions that start with the same initial velocity field data,
remains bounded a constant to second order for a finite time.
In the CH regime, do similar comparision between green-naghdi
and camassa-holm equations.

torus code Mostly debugging the code that I’ve been writing. There is
a big problem with the class objects that I wrote most of the code
to revolve around, I’m fixing it I think as we speak but they are
behaving as I thought they would so it doesn’t look like I will be
able to do much testing today.

2017-03-30 Matt :

torus code I think I’ve fixed the problems I was getting yesterday from
passing of class objects around from function to function, it had to
do with using a variable named after the class instance itself, which
made the code really screwy. Currently I’m just ironing out the small
errors but the thing that seems the most problematic is the Matrix-
vector approximation for the Jacobian matrix.
Currently it is returning a vector whose norm is way too large to be
correct. I haven’t been able to figure out why yet.

2017-04-02 Matt :

Floquet vectors Another batch of arnoldi iterations started.

torus code Finding bugs in GMRES code and elsewhere. Matrix vector
products were too large because I forgot square root when defining
a norm method for my class objects.
I’m trying to work out the kinks and get some results by Tuesday
so I can show and get comments from the plumbers during the web
meeting. There’s yet another bug in the GMRES portion of the code
that I haven’t found yet, but I suspect it has something to do with
the matrix-vector approximation. I wasn’t able to figure it out today
but will hopefully get it done tomorrow.
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pdes Went to the library to try and read a little on PDEs in a formal math-
ematical way. Fritz is too esoteric for my taste, so I’ve started read-
ing Lawrence Evan’s intro book on suggestion.

2017-04-03 Matt :

torus code Still just trying to get this code to work. Doesn’t look like
I’ll have results to show at the meeting today. Hate to share a lack
of progress but I still haven’t figured out what’s wrong with my
GMRES code.
I generated some new initial conditions and after much debugging I
found that it is indeed the matrix vector approximation of the action
of the Jacobian matrix that is messing things up. Numerically, this
amounts to Jδxj ≈ F (u+ εδxj)− F (u)/ε producing a vector whose
norm monotonically increases regardless of the orthonormalization
process of arnoldi iteration. I haven’t been able to find any issues
in how I’ve coded the arnoldi iteration after debugging so I’m con-
vinced that it is how the mapping function has been coded, but I
haven’t had much luck in finding errors there either.
Still hoping to get it running soon, maybe I’ll get lucky and find the
mistake in time for the meeting.

2017-04-06 Matt :

torus code Still do not have results but put a lot of work into the past two
days into rewriting and debugging. Added more pieces of code to
act as contigencies in case GMRES fails, but currently there is a type
of stalling that I am attributing to the factor that my matrix-vector
approximations are still baffling me.
With what I have all reason to believe is a reasonable initial condi-
tion, a 64 by 64 discretization of the first pre-periodic orbit of Ku-
ramoto-Sivashinsky the initial value of the norm of the value of the
mapping ||F (u, T, L)||2 ≈ 10−3. I take this to be a good initial condi-
tion as the other values of norms I have seen have had much higher
initial values of this norm. The problem arises when I approximate
Jδx. With almost any randomly generated δx, the norm of the vec-
tor ||Jδx||2 ≈ F (u+δu, T+δT, L+δL)−F (u, T, L)/εwith ||δx||2 = ε.
yields a value that is dramatically larger than ||F (u, T, L)||2, and
as such it does not allow for a convergent Newton-Krylov search.
The fact that the norm of the mapping of the spatiotemporal field
is small, leads me to believe that the code involving the mapping
is correct, but if this is the case then the matrix-vector approxima-
tion should be well written as well, as all it involves is this mapping
function. It’s this circular logic with a hole in it that has been frus-
trating me to no end.
Something I can try is to use a second order approximation as op-
posed to a first order. This would replace the approximate with
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||Jδx||2 ≈ F (u+ δu, T + δT, L+ δL)− F (u− δu, T − δT, L− δL)/ε

I thought it might be the form of the randomly generated pertur-
bations that was possibly making things go awry, as I believe it’s
logically justified to restrict perturbations such that the perturbed
field would yield a real field if transformed back into configuration
space. I wasn’t doing this before, but it seemed to help my woes to
a small extent, at least in terms of GMRES convergence; but again,
in the scheme of things it is a negligible benefit as the residual of the
matrix-vector approximate far outstrips any change I have made.
I reworked the GMRES code and validated that the arnoldi itera-
tion portions were working properly by testing the orthonormality
of the Krylov subspace matrices (matrix whose columns are Krylov
subspace basis vectors) and rewrote the portion when it comes to
updating residuals and verifying that the GMRES is actually reduc-
ing the residuals.
Also added more update messages and warning messages in order
to help the debugging process.

Floquet vectors Another set of arnoldi iterations started. There are a
couple of orbits from the database that are not periodic after DNS.
I’ve been trying to figure them out as to why what I am doing works
for other orbits but not these. Running a Newton-Krylov search to
perhaps converge the orbits to a higher precision. In hopes that will
help. Not really worried about it right now as I still have a number
of other orbits to run before I deplete the database.

2017-04-10 Matt :

torus code Tried a number of new ideas (well...new to me) in order to
get convergence of my Newton-Krylov code.
The second order finite difference approximation didn’t really help
the values I was getting from approximating the Jacobian matrix so
instead I tried to look for why the approximation seems so poor;
I hadn’t looked at the contributions from the nonlinear and linear
parts separately (I actually thought I did this a while ago but I think
I had poor initial conditions before). It turns out that the stiff compo-
nents of the spatiotemporal mapping (i.e. high wavenumber modes
due to the fourth power of qk) are what are contributing to the (what
I consider too large) magnitude of the approximation the most.
I tried playing around with the perturbation magnitudes again, since
it is mostly the high wavenumber modes contributing to the magni-
tude of the approximate matrix-vector product I played around with
having the perturbations to these modes be smaller in magnitude
than the rest, (i.e. some subset of the perturbations of the matrix of
spatiotemporal Fourier coefficients is smaller in magnitude than the
lower (wavenumber, frequency number) modes). This didn’t have
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enough of an effect so I instead started trying to think of a way to
justify a 2/3 rule dealiasing (i.e. damping by setting equal to zero) of
these contributions. This is usually done during time-stepping, and
is justified via an energy input argument. There is usually a contri-
bution to the energy of a solution due to aliasing and as such the
higher modes are damped in any calculations in order to maintain
energy-balance.
Also, the GMRES procedure is stalling out, so I have been looking
towards ways to fix this. It seems that this is a relatively well stud-
ied problem and the answer is to introduce preconditioning matri-
ces into the GMRES scheme. This is done in a number of ways and I
have to find the best one for my problem, but I am also trying to find
one that fits into my code already. I think I will implement FGMRES,
where the F stands for “Flexible" [35]. It is called this because it en-
courages the preconditioner to change at every outer-loop (Newton)
step, while remaining the "same" for the inner-loop (arnoldi or GM-
RES) steps. (same in quotes because at every iteration the rule to
generate the preconditioner stays the same, but the matrix techni-
cally changes in size).
Yet another condition that I have been investigating is the effect of
changes to the period and spatial size in expressions such as F (u +
δu, T + δT, L + δL). I’m trying to wrap my head around why it
makes sense to take difference between two solutions where I am
essentially changing the domain size while keeping the discretiza-
tion the same. What I mean by this is that traditionally the (spatial)
domain remains constant, and the mapping time T is changed, but
I think this only makes sense when the time-dependence is implicit.
What I would be attempting to do is, for instance, change the box
size in a Navier-Stokes solution and then subtract it from a minimal
unit cell solution, which I am pretty sure doesn’t make sense, or at
least not to me. This might just be due to my inability to abstractify
the solution space of an equation; it could possibly make sense as
the solutions would still be close in continuation parameters, time
and space.

Floquet vectors More arnoldi iterations. Trying to think of a proper way
to generate shadowing orbits in a procedural manner by adding a
point on periodic orbit to a perturbation, maybe in the direction of a
weakly unstable mode.

2017-04-14 Matt :

torus code I was being dumb with how I was creating the random per-
turbation vectors for my GMRES procedure. After thinking about it
a little more I realized I should just create a random field of initial
conditions in configuration space and then perform a spatiotempo-
ral Fourier transform to get the correct form of field. I can’t explain
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how much easier this is than what I was doing before. With this the
stiff parts of the linear portion of the mapping and as such I have
returned the previous damping of higher modes back to undamped
status.
This helps the GMRES steps converge to a reasonable amount but
with all coding there is still something else wrong as the Newton
step that would be generated from GMRES still does not reduce the
residual, meaning that even though I’m solving the linear system,
there is something wrong in the piece of my code that produces cor-
rections.
I’ve also been reading a bunch of papers [6, 14, 18, 27, 32, 35, 38] on
preconditioning methods; and specifically for GMRES algorithm. It
seems to be a heuristic science much like taking Poincaré sections
so I might have to try a number of different preconditioners before I
get one that works, or use a combination of multiple different ones
with different properties.

evans pde Some more reading for my formal pde education.

Floquet vectors Still producing arnoldi iterations, figure out the problem
with the few solutions I couldn’t get to converge so all I need is time
to run iterations to produce sets of Floquet vectors now.

2017-04-14 Matt :

torus code Talked to xiong to get some new ideas; He thinks that what I
was trying to do with the initial perturbation is somewhat of a mis-
leading idea as it is reasonable to take the zero vector to be the initial
perturbation and begin arnoldi iteration with the vector −F (u) = b,
such that the Krylov subspace being generated through GMRES is
Kn =< b,Ab,A2b, ... >.
Also I think I should be only using GMRES on half of the spectrum
and such that there are fewer variables in memory, and this way the
structure of the Fourier coefficients remains representative of a real
valued velocity field when inverse Fourier transforms are applied. I
didn’t do this until now because I didn’t think it would be necessary
as I didn’t see any mention of it in John’s code but I think I should
have known better as this is what I have done in the variational
codes at least.
While they aren’t the most original ideas this gives me some new
things to try over the weekend, if they don’t work I’ll return to the
preconditioner ideas.

Floquet vectors Another round of arnoldi iterations.

physics forum Listen to Chris Crowley talk about his work on localized
solutions in Taylor-Couette flow

misc Helped Kimberly with channelflow for a bit.
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2017-04-17 Matt :

Floquet Still performing arnoldi iterations.
torus code Was hoping to push through the changes and have them work

in order to have some results by the time the invariant solutions
meeting happens in a couple hours but they don’t seem to be af-
fecting the resulting Newton corrections that much. I rewrote large
chunks of the code in order to only perform arnoldi iteration on half
of the spatiotemporal Fourier coefficients, those independent from
the other (negative) half of the spectrum. I thought this would en-
able good Newton corrections due the fact that the full spectrum
could be reproduced by some matrix operations, and now I would
have a determined system rather than keeping track of a number of
redundant variables.
Going to move on to preconditioners next, and I added (I believe up
to the standards of a decent human being modifying the bib file )
two more papers, ref. [17, 33] in this effort.

2017-04-19 Matt : Not too much on the docket today, just trying some new
methods and rewriting torus code. One of the things I tried to get the
Newton steps in my Newton-Krylov to reduce the residual adequately.
One of the things I implemented was to break up the mapping into lin-
ear and nonlinear parts, and in the calculation of matrix-vector products,
compute the linear Jacobian matrix explicitly while keeping the nonlin-
ear matrix-vector product as an approximation via finite differences. This
is due the the fact that the matrix-vector product approximation for both
was producing vectors that were very large in magnitude. I haven’t seen
this method mixed in this way and as such it might be beneficial to com-
pute the nonlinear Jacobian matrix as well, but this seemed like some-
thing I can try to get more accurate results for Jδx.
Still trying to implement preconditioners for the GMRES problem as well,
but haven’t been successful in that regard, and even with the explicit for-
mulation for the linear Jacobian matrix the GMRES still stalls, and pro-
duces Newton steps that reduce the residual very little, on a relative ba-
sis.

2017-04-26 Matt :

torus code Realized I haven’t posted in a while which I regret but I haven’t
had much to say as not much progress has been made since I posted
last anyway.
I’m attempting to rewrite and use a new combination of techniques
to solve for invariant tori. This is predicated on the fact that the
linear portion of the spatiotemporal mapping seems to be causing
the problems with my GMRES code.
I haven’t been able to determine for a fact if varying both the tem-
poral and spatial lengths of solutions at the same time is the correct
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way of going about things but I’m going to try this new combination
in hopes that it helps my issues.
The basis of my thought is this, iterative methods work best when
eigenvalues of the matrix in the linear equation one is trying to solve
are gathered; This is why preconditioners work so well in conjunc-
tion, with say, GMRES. The best preconditioners resemble the in-
verse of the matrix in question and are easily computed.
With this in mind, it is the convenience of matrix vector products,
i.e. never forming the Jacobian matrix explicitly in this case that are
the basis of my computations. The problem I have is that without
forming the Jacobian matrix explicitly I am confused on how to get
the information required to construct a preconditioner; although I
have seen mention that even the matrix-vector products with the
preconditioning matrix and the vector in question may be approxi-
mated.
I am hoping to bridge the gap between these two with a hybrid
method that uses the convenience of matrix-vector products, the
easily formed Jacobian matrix corresponding to the linear portion
of the spatiotemporal mapping, and preconditioning.
Because I believe it is the linear portion of the mapping that is dom-
inating the spectrum of the full (without treating linear, nonlinear
portions of the mapping as separate entities), I am going to attempt
computing the nonlinear portion of Jδx with a finite difference ap-
proximation, while computing the linear portion explicitly. I will
then use a preconditioner that is solely based on the linear portion
of the mapping in order to hopefully have a clustered spectrum of
eigenvalues, which will in turn hopefully enable my GMRES code’s
functionality to improve.
I am hopeful that this will work and I will cite these things better
after I get the 20 plus GMRES papers I’ve been looking at sorted
out. They’re all similar so it’s hard to disseminate the knowledge
when writing blog posts.

Floquet vectors Three more periodic orbits to compute Floquet vectors
for; trying to keep the number of sample points per time constant so
the longer orbits get more points. I’m not sure if this is necessary but
it seems a valid precaution; unfortunately more points means more
time to complete.

2017-04-27 Matt :

torus code Rewrote functions in Newton-Krylov code to run with right-
preconditioning JM(M−1δx) = −F (x) with a Jacobi (approximate
inverse of Jacobian matrix based on diagonal elements) as a precon-
ditioner, using the hybrid finite-difference and explicit linear Jaco-
bian matrix method I am trying and mentioned in yesterday’s blog
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post. Still have more testing to do and the Jacobi preconditioner is
usually not the best preconditioner from what I have seen. Another
common precondition uses the incomplete LU factorization which I
think I will try if it doesn’t work. Still have a couple more things to
do before I can test properly but given the prior difficulties I don’t
see things magically working out.
Sadly most of my time rewriting everything is because I tried to be
fancy when I should have kept everything as arrays. I’m basically
converting it back to simpleton code because it just makes changing
things way too involved when it should be a few lines.

reading Read some fluid dynamics texts [31] in between coding sprees.

2017-05-01 Matt : More work on torus code; After implementing my idea of
defining the nonlinear Jacobian matrix via finite-differences and the lin-
ear Jacobian matrix explicitly didn’t work too well, I moved on to trying
to see if doing everything explicitly with use of SciPy’s implementation
of GMRES does the trick.

I didn’t attempt this before because I was trying to explicit define Jaco-
bian matrices due to the memory usage but now considering I couldn’t
get the finite-difference approximation to work (or maybe it’s better to
say that I don’t think it’s suited for this problem) I decided to try doing
everything explicitly, or at least without using finite-differences

Xiong recommended using a Jacobi preconditioner (taking the inverse of
the diagonal elements of the Jacobian matrix) but I haven’t had good re-
sults with this yet. I implemented an ILU (incomplete LU factorization)
preconditioner which approximates the inverse of the entire Jacobian ma-
trix, as opposed to only the diagonal elements. This worked better, with
Newton steps that actually reduced the residual and didn’t send the pe-
riod or length to zero and or negative values. The only problem is that
after a few steps it would then fail to decrease the residual. I have a feel-
ing this is an indication I am on the right track but there are still some
bugs to work out.

2017-05-03 Predrag :

Matt 2017-04-10 “the effect of changes to the period and spatial size in
expressions such as F (u + δu, T + δT, L + δL): [...] why does it make
sense to take difference between two solutions where I am essentially
changing the domain size while keeping the discretization the same?”

Predrag I do not think of it as subtracting domains of different sizes: as
far as the discretization is concerned, it is always the same (N,M) dis-
crete lattice, only the values of the field u(x, t) on the lattice sites are
changing as you vary parameters (L, T).

Look at the Fourier-discretized torus (1.43). The discretizations (N,M)
are the numbers of spatial, temporal Fourier modes kept in the calcu-
lation. Clearly you can keep (N,M) constant while you vary (L, T) to
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(L′, T′) = (L + δL, T + δT). Spatiotemporal domain size (L, T) enters
only through the parametrization qk = 2πk/L , ω` = 2π`/T .

You can think of the way it was traditionally done in continuing solu-
tions. First we fixed the spatial domain to a constant L, varied T to T+δT
in order to find a spatiotemporally periodic solution u(1)(x, t). Then we
increased the spatial domain size L to L + δL, and used u(1)(x, t) (the
same N Fourier modes) as a starting guess, varied T to T + δT and deter-
mines the spatiotemporally periodic solution u(2)(x, t), parametrized by
(L+ δL, T + δT).

But this traditional continuation is like having a function F (x1, x2, x3)
which happens to have zeros lying on a curve in 3-space, fixing (x2, x3),
using 1D Newton to determine x1, then changing x2 to x2 + δx2, using
1D Newton to determine the new x1, etc.. Clearly not smart, you want
to use the 3D Newton instead. As solutions are not isolated –they lie
on a curve– you need some extra condition to parametrize them along
the curve. Could be L or T , but we should probably think of something
smarter, like the energy of the solution.

2017-05-03 Matt :

R.I. Sujith Talk Synchronization transition in a thermoacoustic system A talk
given organized by the aerodynamic engineering department.
Known for his work on non-normal systems. Sound makes flame
fluctuate, fluctuation causes oscillations when tend to break things
into pieces.
This talk looks at the onset of thermoacoustic instability. Combus-
tion noise is a stable operation, instability has a sharp frequency.
There is also an intermittent state, it is not a transient phenomena.
Spatiotemporally, there are no large scale structures present in the
"stable operation". In the "unstable operation" there is a large scale
structure.
Look at acoustic energy production, and phases between pressure
and heat "instantaneous hilbert phase between pressure and heat
produces oscillations".
Intermittency can be described by intermittent synchronization of
the phases of heat release and pressure.
Use recurrence plot to describe probability to return to set in state
space.
Desynchronized (generic turbulence) have low prob, phase synch
has intermediate prob, general synch are essentially periodic orbits.
(Invariant solutions return to themselves. amazing)
Modeling combustion oscillator using a kicked rotor model. There
is a progression of the type of turbulence one sees: chaos, inter-
mittent phase synchronization, phase synchronization, general syn-
chronization (phase and amplitude).
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using a spatiotemporal kicked rotor with kicks that are localized in
time and space, along with a galerkin truncation to develop ODEs
for the model.
phenomenological model shows the transition from desynchonized
chaos to generalized synchronization.
spatiotemporal dynamics!
They have a large spatial grid, with a lot of different snapshots.
Looking at the instantaneous phase of the snap shots. In different
stages of synchronization, different structures are present, in desyn-
chronized chaos there are no large scale structures.
"Chimera state" where there is a coexistence of synchrony and asyn-
chrony is found in the network of coupled identical osciallators.
Sounds like the close pass to a periodic orbit to me.
characterization of global synchrony through the kuramoto order
parameter. Close to zero implies desynch. close to unity implies
synch.
on the importance of being nonlinear.
"using a term like nonlinear science is like describing the study of
zoology is the study of non-elephant animals".
acoustics can also cause coherence much like hydrodynamics.

torus code Working on a test case where I do not allow for any changes
to period and length to see if just trying to solve for Fourier coeffi-
cients on a spatiotemporal spectral grid enables convergence of GM-
RES algorithms.
If this doesn’t work I think I will attempt an even simpler prob-
lem, i.e. the two modes problem as per Burak’s recommendation;
much like how I started with the Rössler system for the variational
method.

two mode Eliminating variations in period and spatial size didn’t enable
GMRES code to work. Thinking about how to Lower the difficulty
by going to two-modes system without variations to parameters.
Taking initial parameter values from Chaosbook sect. 12.4.2.
I’m sort of confused as to how to generalize the results to a fixed
point of a spatiotemporal mapping but I’m thinking maybe I should
just test my GMRES algorithm to find periodic orbits first. I could
also do this with Kuramoto-Sivashinsky so I’m thinking maybe I
should just do that.

2017-05-04 Matt :

De Le Llave Talk Talking about tori whose dynamics given by rotation.
Need a condition number to describe whether you have a bad pa-
rameterization/embedding. Can tell whether or not what you are
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calculating is "garbage" using condition number. Example of ro-
tating henon map (henon map with cubic term and trigonometric
coupling) and standard map.
“Lyapunov multipliers constant but the angles (I wish I knew which
ones) are changing." Seemed somewhat relevant to the crossing of
Floquet vectors in inertial manifold calculations.

Molei Tao Hyperbolic periodic orbits in nongradient systems and small-noise-
induced metastable transition By adding a small amount of noise to a
deterministic system anything is possible. The concrete example of
this would be having three fixed points on a line. In a deterministic
system, one cannot go from the left-most fixed point to right-most
fixed point due to the middle fixed point. When there is noise, how-
ever, one can transition from “van’t Hoff-Arrhenius law”: transition
rate α exp−2∆V/ε.
Rare event dynamics, running the dynamics would be an exponen-
tial cost, instead use Freidlin-Wentzell large deviation theory.
Minimum Energy Path (MEP) coincides with maximal likelihood
path (MLP) in a gradient system, therefore can find these transitions
by using "string method".
MLPs need not go through saddle points, as they may or may not
exist, but by introducing a fictional rotation, a periodic orbit whose
stable manifold is the rotated seperatrix, and whose unstable direc-
tions separate the attracting fixed points.
Deal with unstable periodic orbits by reparameterizing the equa-
tions such that the points on the line of discretized points remains
uniformly spaced. This is a way to deal with ill-conditioned problems.

Angel Jorba Computational of power expansions of Poincaré maps Talking
about automatic differentiation Given an example, make a variable
substitution,
General idea is we have a program where you input data and out-
puts a certain result. Replace operations with corresponding power
series operations to produce the power series of the result with re-
spect to initial data.
I.e. by having a program that does "something" it is relatively easy
to get derivatives to any order.
MPFR is a package for extended levels of precision.
Taylor method need not reduce step size to increase accuracy. Mod-
ify Taylor’s method to work on jets (polynomials from automatic
differentiation) as opposed to numbers.

Marc Jorba-Cusco Computation of invariant manifolds related to hyperbolic
fixed points of Poincaré maps (Battery died)

torus code After listening to Rafael De Le Llave’s talk I am going to
write some code to check the condition number associated with the
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spatiotemporal Kuramoto-Sivashinsky system. I thought condition
numbers had to do with the accuracy of numerical integration only
and had overlooked this. I imagine from all of my previous work
that it will turn out that the problem is ill-conditioned, but I think
it is worthwhile to calculate this for future reference and in order to
describe whatever special and or custom method I will eventually
come up with.

2017-05-05 Matt :

torus code A quick computation of the condition number of the explic-
itly defined Jacobian matrix using singular value decomposition re-
veals that it’s in the tens of millions, which I believe proves that I am
dealing with a highly ill-conditioned system of equations.
By disabling changes to the period and length of the system this
is lowered by an order of magnitude, however, I believe this still
implies that the system is highly ill-conditioned even when trying
to find fixed points of the spatiotemporal mapping on a fixed spa-
tiotemporal domain.
Xiong suggested that perhaps I can use the singular values to pro-
duce a preconditioner that might help, I’m looking into this as well
as some other papers [26]

readings Looking for better was to deal with ill conditioned systems
within the realm of GMRES as noted above.

2017-05-08 Matt :

angel jorba conversation and torus code Angel Jorba explicitly stiffness
and extrapolation in terms of linear finite difference operators, and
then recommended using LAPACK solver routines as opposed to
GMRES to see if that’s where some errors lie.
He also recommended an interesting way to "get out of a hole" which
is to tack on extra terms to the equation being studied such that is
permits a (imposed) known simple solution. Usually this method
does not require anything fancy and it can be used to figure out if
anything funny is going on, i.e. a symmetry that is unaccounted for.
Still trying to find a simple test case for the spatiotemporal prob-
lem. As a sanity check I had the solve routine implemented by SciPy
(which I believe uses LAPACK, will look into wrappers in the near
future), solve the linear system. As expected it finds the ukl = 0
solution within machine precision in exactly one Newton step; that
being said it seems it might be better to avoid GMRES for the time
being.
I still think the problem lies in the accuracy of the calculation of
the nonlinear contributions to the jacobian and think that I might
need to talk to Angel again about automatic differentiation before
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he leaves on Friday (I believe). The problem with this is from what
I’ve seen it’s a relatively large time commitment, and if there are
easier errors to fix in the code then this method might not produce
better results.

2017-05-11 Matt : Spent the entire day going about coding a new way; I felt
like I might have slipped into some of my old habits of jumping in too
quickly so I felt I should write down derivations and pseudo-code before
even touching my python code in order to make sure everything makes
sense.

Today’s dealings mainly involved working through the "direct matrix
method" in ref. [8]. The reasons why I opted to rewrite my code in this
way are: I feel like it is less prone to errors than index notation, it agrees
with how I think about things, as it very much resembles (15.5), some-
thing that I worked through myself.

The basis of the method is to rewrite everything into either component-
wise products (also known as, entrywise product, hadamard product,
schur product) or matrix multiplications. In this form, the spatiotempo-
ral mapping is given explicitly by the following equation. Note that ?
implies component wise products (saves computing time versus matrix-
vector products with diagonal matrices and a vector) and ()̇ implies ma-
trix multiplication. û from here on is going to be a vector ∈ RMN where
M is number of discretized points in time and N is the number of dis-
cretized points in space. In practice, due to the symmetries of the prob-
lem, (galilean invariance, real valued velocity field implies a symmetry
in the spatiotemporal Fourier coefficients), û ∈ Rmn where m = M − 1
and n = N/2 − 1. (I could have likewise chosen m = M/2 − 1 and
n = N − 1 if so desired.) In this formulation, the Fourier coefficients
kept (ũk`) pertain to values of indices k = 1, 2, . . . , N/2 − 1 and ` =
0, 1, ...M/2−1,−M/2+1, . . . ,−1 (Nyquist frequency removed, l = M/2).

As will be seen, this makes the formulation of the matrices correspond-
ing to Fourier transforms, also known as "DFT matrices", rectangular;
but I made sure the matrix multiplications are well defined if defined
correctly. One might argue that making this change is undesirable due to
the number of operations of matrix multiplication, but I feel like it will
be competitive once I do the calculations on how many operations are
gained or lost.

For the time being I formulating this method to fix T and L; this should
be an easy addition afterwards.

(Q1 ? û) + (W ˙̂u) +Q2Ḟ (̇(F−1 ˙̂u) ? (F−1 ˙̂u)) (15.8)

2017-05-12 Matt : With the definition of the spatiotemporal mapping in place,
it is convenient to now describe the "direct-matrix calculus" operations as
defined in ref. [8]
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For arbitrary matrices A, functions of û, F (û), G(û), the rules for differ-
entiation are as follows, (note asterisks indicate component wise multi-
plication and dots indicate matrix multiplication.)

∂

∂û
(A · û) = A (15.9)

∂

∂û
(F (û) ∗G(û)) = diag(G(û)) ∗ ∂F (û)

∂û
+ diag(F (û)) ∗ ∂G(û)

∂û
(15.10)

∂

∂û
= A · ∂F (û)

∂û
(15.11)

With the use of these identities, I find the the form of the Jacobian matrix
as,

J = W +Q1 +Q22 · F · diag(F−1 ∗ û) · F−1 (15.12)

In order to exploit the matrix vector notation, I construct matrices that
would apply element-wise multiplication of powers of qk and ω` to the
spectral grid at fixed k and ranging ` (or vice-versa) and then exploit
Kronecker products to form a matrix that applies this multiplication over
all indices.

For a quick example, a diagonal matrix whose diagonal elements equal
−q2

k + q4
k is made, and then a right-hand Kronecker product is taken such

that the final matrix is of size (mn)2 (note: small letters represent reduced
dimensionality due to symmetry of Fourier coefficients). I.e. it is a matrix
whose diagonal contains m copies of the elements of the vector of length
n whose elements equal −q2

k + q4
k.

Because we also want to split into real and imaginary parts, this is actu-
ally done twice, such that the final matrix diagonal is two copies of the
diagonal of the matrix of size (mn)2. In this manner, we can correctly
apply the operation of multiplication by −q2

k + q4
k to a vector whose el-

ements equal akl, bkl where akl, bkl = Real[ûkl], Imag[ûkl]. Note, due to
the how python arranges indices upon reshaping of arrays, the second
index ` is the "inner" index, what I mean by this is that all values of ` are
cycled through, at which time the "outer" index k is cycled once. Also,
the vector is formatted such that all real parts of the coefficients are cy-
cled through before reaching the imaginary parts of the coefficients.

The definitions of the matrices are as follows,[
W = 0 −ω`
ω` 0

]
(15.13)
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[
Q1 = −q2

k + q4
k 0

0 −q2
k + q4

k

]
(15.14)

[
Q2 = 0 −qk/2
qk/2 0

]
(15.15)

The matrices governing the forward and backward inverse transforms
are confusing and I don’t think will be well elucidated when written in
equation form, therefore, I will try to explain them. With the forward two
dimensional discrete Fourier transform defined as F = FT · FX .

FX is a matrix of shape 2M n ×M N , which is produced by taking the
real-valued FFT of the identity IN , and deleting the first and last rows
(this is due to symmetries in the Fourier coefficients), after some reorder-
ing of the rows (due to discrepancies of scipy convention and how I
would like to order my state space vectors), a right-hand Kronecker prod-
uct is taken with the identity IM .

FT is a matrix of shape 2 ∗m ∗ n × 2 ∗M ∗ n which is produced by tak-
ing the regular(complex) FFT on the identity IM , at which point the row
corresponding to ` = M/2 is removed. Because the state space vector is
split into real and imaginary parts at this point (due to the real valued fft
applied by FX , we must split the real and imaginary components of the
current matrix into blocks, such that this matrix is also real valued.

The inverse to these matrices are computed in a similar manner, only
with columns removed instead of rows, and inverse fft’s being applied.

Therefore once finished, I should be able to define these matrices only
once per Newton-Krylov search (or linear solver whichever I settle on)
when I am not allowing for variations to either the period or system size.

That being said, this is almost the entire code so I still haven’t completed
it. The trickiest part is the matrices representing Fourier transforms.
Note: I am only deleting rows and columns that would correspond to
zero-valued Fourier coefficients, so I should not be losing any informa-
tion in the process. That being said, there is a small error somewhere that
I haven’t been able to find that is preventing the operation of F−1 ·F from
equalling the identity.

2017-05-12 Matt :

Floquet vectors Only one more iteration to go, then analysis will be able
to be performed.

torus code Some encouraging results after implementing the changes de-
scribed over the past two days. My code is performing the best it has
so far, although with results up to interpretation as of now.
After applying Newton’s method to spatiotemporal mapping de-
scribed by the matrix vector equation (15.8) on a fixed domain size
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and period (only a temporary measure to provide an intermediate
step between the full problem and where I was), with a discretiza-
tion (fishnet stocking) of 16-by-64 x×t points of ppo10.2, the mapping
was minimized to within machine precision. BUT!
The only problem is that the resulting solution is essentially the u =
0 equilibrium within machine precision. My thought is that it is at
least minimizing a fully nonlinear mapping as opposed to all of my
other efforts, and usually when applied to periodic orbit hunting the
period is allowed to vary. So it might just be that fixing both space
and time is so unnatural that the only direction left for the Newton
corrections is towards the equilibrium.
The reason the discretization of 16-by-64 x × t points was chosen
is due to the condition number of the initial Jacobian matrix J(u0)
(index denotes Newton step).
The condition number of the initial Jacobian matrix for my 64-by-64
x× t points was a whopping ≈ 1.4 ∗ 108, while in the 16-by-64 case
it was a more manageable ≈ 6.7 ∗ 103.
I think this is very encouraging considering how much I have been
struggling. I also really like this method as I do not have to really
think about indices one-by-one. The only downside is that I must
calculate Jacobian matrices explicitly, but with a discretization of
approximately this size, the code runs and finishes in less than a
second (literally 0.84 seconds using the time feature in python.)
The problems I had with implementing the matrices governing the
Fourier transforms was resultant of applying the Kronecker prod-
ucts in the wrong order, leading to nonsensical transforms. (The
reason I was so confused is that I was consistent in my error, FḞ−1

was equalling the identity, so I thought the error must have been
elsewhere.
Now I need to add on the parameter (period and spatial domain
size) dependence to the Jacobian matrix with the equivariance con-
ditions as the additional constraints for Newton steps. I think I am
just going to write this part from scratch as well as it seems coming
from a different angle is helping quite a bit.

2017-05-16 Matt :

torus code Added code to enables varying period and spatial dimension
of the spatiotemporal Newton’s method code. It converges to within
machine precision, however, there is a slight problem that I’ve been
trying to hunt down. For the initial condition that I described in the
prior posts, my spatiotemporal fishnet stocking (or two dimensional
spectral grid), the period ends up being stretched by a large factor,
the spatial size shrinks, and the spatiotemporal Fourier coefficients
shrink to the equilibrium solution u = 0.
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In the past with my variational code this usually implied bad con-
straint equations, or a small numerical error somewhere in the code.
(i.e. a factor of two as was the case for the variational code.) I spent
the remainder of the day hunting for errors but haven’t found any so
far. To be honest, I am again encouraged just by the fact that the full
problem is at least converging to something, even if it is a horrible
numerical result.
I’m looking into other constraints that I could possibly implement
to hope to settle this once and for all. It might just be that these
constraints work better for GMRES versus linear solvers based on
LAPACK, I’m not sure right now.

2017-05-16 Matt :

Floquet vectors It turns out I was mistaken, there is one more arnoldi
iteration to perform. Analysis will begin once it finishes.

Torus Code In order to avoid headaches with constraints, I chose the
easy road which was to use a least squares (pseudoinverse) solver
as opposed to the solver I was using.
This dramatically changed the behavior of corrections to the period
and spatial size of the system, but sadly, the initial condition I used
still went to the trivial equilibrium. I am going to try to improve
the initial condition I am using as the initial residual is relatively
large, so it could just be a mistake in the initial condition generation.
Going to test on other equilibria and see what comes out from the
black box.
As a test I think it is prudent to rewriting my variational codes using
these new methods and compare them with the old codes.

Cristel Chandre Talk Driving the formation of the RbCs dimer using a laser
pulse An in-depth explanation of a formulation of a model of how
dimers are formed in a composite Rubidium, Cesium mixture. Hamil-
tonian system, Poincaré section, Numerical modeling, lasers, inter-
action potential.

2017-05-17 Matt : Spent the entire day rewriting old codes to follow the new
conventions that I find useful. Specifically spent the entire day on vari-
ational Newton descent code that will in theory find periodic orbits of
(1.36), the system of spatial equations of Kuramoto-Sivashinsky.

Still need to try new initial conditions for both torus code and this new
formulation of the spatial Newton descent code; Almost done rewriting
the spatial Newton descent code. Amazing to me that experience can
change the time scale of a project that took weeks and or months on the
first go-around into a project that takes days, of course, there is now guar-
antee that it will work but one has to be optimistic.

The key idea is that because the initial conditions for the spatial system,
u, ux, uxx, uxxx were all being generated through spectral differentiation,
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it made matching the tangent spaces redundant in three variables, as the
approximate tangent spaces were being generated with spectral differ-
entiation as well. Therefore, the idea is to turn only the last equation
in (1.36) into a “direct-matrix" [8] equation similar to the spatiotemporal
mapping, and match it to the velocity field’s fourth derivative.

By proceeding in this manner, the equation for the fourth derivative,
(which I will refer to from here on as the tangent space) takes the fol-
lowing “direct-matrix" [8] form. Note, that I am attempting to devise an
equation that is only dependent on the Fourier coefficient of the velocity
field and not any of the spatial derivatives. This is acceptable because the
spatial derivatives are derived from the original velocity field anyway.
What appears now in the equations are linear operators that produce the
derivatives accordingly. Therefore, û will refer to û0 in accordance with
notation previously used. Finally, the velocity equation (fourth spatial
derivative) now appears as follows,

v = −W ˙̂u−Q2
˙̂u− F (̇(F−1 ˙̂u) ? ((F−1Q̇1û)), (15.16)

Using the direct-matrix differentiation rules noted above (15.9), the sta-
bility matrix takes on the following form,

A = −W −Q2 − F (̇diag(F−1Q̇1 ˙̂u)Ḟ−1 + diag(F−1 ˙̂u)Ḟ−1Q̇1) (15.17)

For a quick description of the operators, W is the operator that produces
the time derivative of a given field û, Q2 produces the second spatial
derivative, F performs a forward FFT of a time-series, Q1 produces the
first spatial derivative. In this notation, the approximate tangent space
would be the fourth spatial derivative as produced by spectral differenti-
ation, i.e. ṽ = Q4

˙̂u. Everything else from the variational Newton descent
is left untouched.

I’m hoping that this will enable convergence of the spatial system of
equations to find periodic orbits in space, the main motivation for per-
forming these changes were firstly, the code wasn’t working probably
due to some inaccuracies or errors, secondly, by keeping everything de-
fined in terms of only the original velocity field u(x, t) I dramatically re-
duce the memory requirements and degrees of freedom of the system.

2017-05-22 Matt : Spent the day debugging the spatial Newton descent code,
found a negative sign error in the expression for matrices governing Fourier
transforms, converted from taking real(cosine and sine) fft’s in one vari-
able (time) to complex fft’s as I was having some trouble reproducing
the time derivative term otherwise. Took a while to figure out what was
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(a) (b)

Figure 15.1: (a) Initial condition of the 16-by-16 space-by-time discretiza-
tion of ppo10.2 (L = 22) for spatial variational Newton descent of the Kura-
moto-Sivashinsky equation (b) Resulting spatiotemporal periodic orbit (per-
haps badly converged temporal equilibrium), with final spatial extent of L =
19.9324743429

wrong until I looked at matrix-product results piece by piece and com-
pared to expected results in MATLAB. Rewrote how matrices (deriva-
tive operators) are formulated in terms of the Fourier transform opera-
tors. Also found a peculiarity when it came to the accuracy of matrix
multiplcation depending on the order in which the matrices were multi-
plied...haven’t figured that one out yet but nonetheless I corrected it.

I believe I got it working finally, however, the results so far aren’t as in-
teresting as I had dreamed. I finished this at the end of the day so I didn’t
get to test it too much, but so far there are two resulting possibilities.
First, with a time periodic initial condition, i.e. one of the periodic or-
bits in time of Kuramoto-Sivashinsky, when allowing for spatial domain
changes and changes to the temporal Fourier coefficients, the solution
(only tested one so far) converged to one of the temporal equilibria of
the Kuramoto-Sivashinsky system. This I believe is an indication that my
code is indeed working, even though this was usually a sign of numeri-
cal issues when searching for periodic orbits in time using the variational
methods, (i.e. the only way to reduce the cost functional F2 = λv− ṽ is to
send v and ṽ to 0. The reason I believe this is still valid is because the spa-
tial derivatives of the equilibrium state found are nonzero; i.e. one of the
"spatial periodic orbits" I have found is indeed the temporal equilibrium
of the system.

When using a coarse discretization of 16-by-16 space-by-time points the
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spatial domain size that the solution settled to was L = 19.9324743429,
with the value of cost functional being within machine precision of 0.

When the spatial discretization was doubled, i.e. a 32-by-16 space-by-
time grid, the resulting domain size was 23.7360639824.

Likewise, when using a 16-by-32 space-by-time discretization, the result-
ing domain size was L = 19.9398768032, which indicates that the do-
main size of the converged solution is highly dependent on the (spa-
tial)discretization being using.

The second possibility is a convergence to a zero domain size solution,
which in my variational method for time usually indicated an equilib-
rium of the system. I.e. the two possibilities were either an equilibrium
in time (but still a periodic orbit in space), or a spatial equilibrium.

2017-05-24 Matt :

spatial variational After more investigation it turns out that the spatial
variational code is indeed not working yet. Tried to put resulting
orbits into time integrator in order to reproduce the result and got
an unmatching solution. figure 15.2 is my newest "results". It uses a
rpo16.31 of the Kuramoto-Sivashinsky equation as the initial condi-
tion. I think I was deceived by how nice it looks I suppose...couldn’t
find any errors today that could enable reproduction via time inte-
gration.
As an additional test I put the solutions into Burak’s symmetry re-
duced time integrator to verify whether the "solution" in figure 15.2
was a relative periodic orbit but alas there was no luck; there is some
other error that I haven’t been able to identify as of yet.
Found another negative sign error, updating figure 15.1.

torus code Applied changes based on implementation from spatial vari-
ational method to my torus finding code but it seems I jumped the
gun as I cannot reproduce any orbits found by spatial Newton de-
scent via time integration.

2016-05-27 Matt :

updated figures updated figure 15.2, figure 15.1, and uploaded figure 15.3
to display current results.

spatial variational Found some errors, corrected some bugs, and made
some changes that I believe improve my codes. Included a con-
straint to the variational equations that constrains the sum of the
zeroth temporal modes to be 0. This was done after noticing that
the sum of the zeroth temporal modes over the spatial extent of the
loop were within machine precision of 0; I don’t really know what
it is a manifestation of just yet but I wouldn’t be surprised if this is
how the galilean invariance presents itself in the spatial system.
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(a) (b)

Figure 15.2: (a) Initial condition of the 16-by-16 space-by-time discretization of
rpo16.31 (L = 22) for spatial variational Newton descent of the Kuramoto-Siva-
shinsky equation (b)Resulting "spatial periodic orbit" (temporal equilibrium),
with final spatial extent of L = 21.9394614064

Still haven’t been able to reproduce results from figure 15.2, fig-
ure 15.1,figure 15.3 via time integration but I also haven’t been able
to figure out how to use Burak’s symmetry reduced integrator ap-
propriately despite my best efforts.

Floquet vectors Arnoldi iterations are complete, starting analysis after
checking principal angle codes and automating it. Preliminary cal-
culations from a single orbit are giving me weird results, in fact, the
exact opposite of what I would expect.

2017-05-30 Matt : Found some bugs and errors in the spatiotemporal fixed
point code. With spatiotemporal initial conditions generated by time in-
tegrating ppo10.2, ppo14.3 with initial residuals of≈ 0.0013 and≈ 0.000226
respectively, the residual is reduced to ≈ 10−9. Including figures. Still
trying to figure out how to set up the mapping for relative periodic so-
lutions, i.e. how to include a parameter that controls the drift associated
with the group orbit.

Still can’t figure out why the spatial variational converges to within ma-
chine precision but cannot reproduce results via time-integration.

2017-06-06 Matt :

vnd time part two As a means of cross-checking results I wrote varia-
tional Newton descent code for time, debugged, and got it working.
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(a) (b)

Figure 15.3: (a) Initial condition of the 32-by-16 space-by-time discretization of
a piece of an ergodic trajectory that has been deformed to be periodic in time.
L = 44. (b) Resulting spatiotemporal periodic orbit, with final spatial extent of
L = 44.3937151766.

It follows the "direct-matrix" approach that I have been finding use-
ful. The velocity equation takes the form

v = Q1 · û−Q2 · F · ((F−1û) ? (F−1û)) (15.18)

and the stability matrix is therefore

A = Q1 − 2 ∗Q2 ∗ ·F · diag(F−1û) · F−1 (15.19)

I am hoping to use this as a launchpad for other tests for the spa-
tiotemporal fixed point code.

principal angles of Floquet subspaces Finished automating code that pro-
duces angles between linear subspaces of Floquet vectors. It is run-
ning as I type this and I am hoping that it will be finished by tomor-
row morning.

misc figure 15.5 is a comparison between resulting orbits from both space
and time variational Newton descent. The general structure of the
resulting orbit is preserved even though the periods are quite dif-
ferent. At first I believed that these were supporting evidence that
something is going right but now I am confused. The spatial domain
resulting from the spatial Newton descent is largely unchanged, mean-
ing that the orbit that results should be a unique solution with a
unique period; but the time variational Newton descent changes the
period somewhat drastically, and because the spatial domain size
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(a) (b)

Figure 15.4: (a) Initial condition of the 32-by-32 space-by-time discretization of
ppo10.2: (L0, T0) = (L0, 2Tp0) = (22, 20.5057459345). (b) Resulting spatiotem-
poral fixed point (Lp, 2Tp) = (22.0000104401, 20.5057499188)

is fixed this might mean that I am finding the same solution but
this is contradictory because the periods are so different. Also good
evidence that there is something wrong is that the time Newton de-
scent is taking a relative periodic orbit initial condition and seem-
ingly changing it into a periodic orbit? I don’t know what to think
of it but I am glad that I rewrote the time Newton descent code as
it’ll be a good stepping stone into whether or not I need to rewrite
the equations in a symmetry reduced form in order to find relative
periodic orbits or not. I think that’s where I’m headed at least.

2017-06-08 Matt :

torus code and symmetry reduction After more debugging and anecdotal ev-
idence from preliminary results of the spatiotemporal fixed point code
I’ve decided that I should implement a symmetry reduced form of the
fixed point finder because it seems to only work for pre-periodic orbits
and I think this if anything a good practice to implement symmetry re-
duction.

I debated with myself over how I should implement this; the main two
methods that waffled between were 1. introducing a parameter that gov-
erns the symmetry operation of the SO(2) symmetry that would be al-
lowed to change and or be corrected as the Newton’s method imple-
mentation runs its course, or, 2. formulate a “direct-matrix" [8] for the
symmetry reduced equations as to treat relative periodic orbit as an in-
variant 1-torus. I elected for option two, as I am sort of confused as to
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(a)

(b) (c)

Figure 15.5: (a) Initial condition of the 16-by-16 space-by-time discretization of
rpo16.31. L0 = 22. (b) Resulting periodic orbit after variational Newton descent
in time L = 22, T = 15.7444884386, (c) resulting periodic orbit after variational
Newton descent in space.
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how I would implement the parameter from option one in a spatiotem-
poral setting as opposed to a setting where the action of time is still in the
setting of a one-parameter flow.

That being said, and taking much from Chaosbook and ref. [5], this is
how I am trying to implement a symmetry reduced version of my current
spatiotemporal code.

Firstly, we must generate symmetry reduced spatiotemporal initial con-
ditions, this, plainly, is done by using a symmetry reduced time integra-
tor such as Burak’s ksETDRK4red.m to generate a spatiotemporal dis-
cretization that will be used for the hunt.

Next, I rewrite the direct-matrix equations in a symmetry reduced form. I
find it easiest to first look at the symmetry reduced velocity equations for
Kuramoto-Sivashinsky equation and then figure out what is necessary to
take the leap into turning them into a spatiotemporal mapping such as
(1.43).

Taking equations (8),(9) from ref. [5], the symmetry reduced flow takes
the form

v̂(â) = v(â)− θ̇(â)t(â) , θ̇(â) =
〈v(â)|t′(â)〉
〈t(â)|t′(â)〉 t(â) , (15.20)

Now, in order to put this symmetry reduced flow into a spatiotemporal
setting, where the entire orbit is then treated as a vector in the domain
the spatiotemporal mapping, we must make note that for the N − by −
M discretizations that we are going to use in the fixed point finder we
need to expand these formulae to account for the fact that we need M
copies of the template vector t(â) for every point in time; likewise in order
to evaluate the group tangent of at for the 2NM dimensional vector (2
because of Fourier) we need to take a Kronecker product between the
identity and the SO(2) generator in order to have a [2NM×by − 2NM ]
matrix that will produce the correct group tangent after multiplication
with the spatiotemporal vector.

Now once we have all of these things in place we can produce an equa-
tion similar to (15.5) for the symmetry reduced flow. Substituting v from
(15.18), (the transparency) the symmetry reduced flow can be written as

v̂(â) =
∂a

∂τ
= f(a), (15.21)

where τ is the in-slice time.

Then applying an operator Ft that takes the temporal Fourier transform
around the orbit, and rewriting the time-derivative by exploiting the Fourier
transform we are left with

Wτ ∗ û− Fτ · f(â) = 0 (15.22)
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Now, for the record, I write the equation in its complete direct-matrix,
symmetry reduced form.

0 = Wτ ∗ û− Ft(Q1 · û−Q2 · F · ((F−1û) ? (F−1û))

−〈Q1 · û−Q2 · F · ((F−1û) ? (F−1û))|t′(â)〉
〈t(â)|t′(â)〉 t(â)) (15.23)

where û is now the vector quantity that completely describes the spa-
tiotemporal symmetry reduced orbit in question.

Note: the definitions of the operators before taking Kronecker products
are from (15.13), (15.14), (15.15).

2017-06-08 Matt :

symmetry reduction implementation Spent the second half of my ad-
venture writing components to reduce spatial translational symme-
try in the codes I wrote earlier this week for Newton descent in time
for the full-state space. I should be able to plug this right into the
spatiotemporal fixed point code once I get it working and I feel that
this is a good test-bed. This essentially covers what I wrote earlier
this morning.
I can’t seem to figure out why currently but the resulting symmetry
reduced velocity isn’t of the proper form i.e. it has a component out
of the first Fourier mode slice still. I wasn’t able to pin down the
error but I’m hopeful I’ll figure it out by tomorrow.

floquet small error in automation procedure means I have to run angle
producing code again. graphs of angle distributions for each sub-
space by tomorrow most likely.

2017-06-09 Matt : Finished producing preliminary angle data and figures and
codes that allow for plotting.

Went over preliminary data from angle figures with Predrag.

1. Taking a cue from the Lorenz system (see the series of ChaosBook
examples on Lorenz):
the Lorenz invariant subspace –the z axis– has a very simple dy-
namics, with the single equilibrium the attracting equilibrium at the
origin. However, if its stability is computed in the full 3D state space
(as it always must be), the invariant subspace turns out to be unsta-
ble, with a strongly repelling full state space Floquet eigenvector
that makes the subspace isolated from the full state space; you can
exit it with any small generic perturbation, but there is no probabil-
ity of coming back - indeed, all the ergodic density is concentrated
on Lorenz ears, one never approaches the z axis.
Conclusion: the Lorenz chaotic dynamics, is far away from, and
nothing like the invariant subspace dynamics.
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2. Taking a cue from the Kuramoto-Sivashinsky system:
The dimension of the Kuramoto-Sivashinsky (antisymmetric) invari-
ant subspace U+ (imaginary parts of Fourier modes only) is half of
the dimension of the full state space. To approach it, one would
need half of the coordinates to tend to zero. That is possible if the
invariant subspace had all eigenvectors that point out of it stable,
but that is not the situation for chaotic dynamics cases studied. To
approach the invariant subspace, 30 out of 60 (let’s say) coordinates
would have to be zero or close to it - very unlikely...

3. The invariant subspace U+ is the subspace of antisymmetric func-
tions; functions that repeat themselves twice over domain L (up to
a reflection). In other words, the size of the domain is L/2. As we
expect the number of physical degrees of freedom to scale linearly
with L, the physical dimension of the subspace is half of the full
state space; it is much less chaotic than the full state space.
Conclusion: the Kuramoto-Sivashinsky chaotic dynamics, is far away
from, and nothing like the invariant subspace dynamics. So why
in so many problems (Kuramoto-Sivashinsky, complex Ginzburg-
Landau, Navier-Stokes ...) people study dynamics in invariant sub-
spaces. For convenience only; they are easier (almost no one knows
how to reduced continuous symmetries), they have periodic orbits
rather than relative periodic orbits embedded in the ergodic sea, etc.
That’s what we are doing with Gibson’s periodic orbits data set; un-
physical, but available.

4. other periodic orbits on the attractor in the full state space. I.e. Make
sure that Floquet vectors themselves are in the invariant subspace,
otherwise will not really get good information as once one leaves an
invariant subspace there is no

5. Only want Floquet vectors that lie in invariant subspace, as taking
cues from Lorenz system, the invariant system is isolated from other
periodic orbits on the attractor in the full state space. I.e. Make
sure that Floquet vectors themselves are in the invariant subspace,
otherwise will not really get good information as once one leaves an
invariant subspace there is no

6. Making sure to use only prime period due to stability and that infor-
mation isn’t being repeated. Might have to redo arnoldi iterations
such that perturbations are contained within the same invariant sub-
space as the solution. If not, I should definitely check if Floquet vec-
tors of solutions of the invariant subspace lie in the invariant sub-
space to get good angle infromation. I can test this by whether or
not the Floquet vector is invariant after application of discrete sym-
metry operation.

7. For Floquet multipliers that come in a complex conjugate pairs I
need to treat the plane spanned by the two vectors as a single ge-
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ometrical object when computing the principal angles arising from
subspaces.

8. To harken back to invariant subspaces, inertial manifold described
by invariant solutions on the attractor and not necessarily solutions
that lie in invariant subspaces due to isolation, i.e. the solutions are
"far-away" when taken in the context of the dynamics. I.e. need or-
bits that are part of the attractor; it is believed that solutions in chan-
nelflow database indeed are taken from the attractor due to finding
initial conditions for Newton-Krylov search from ergodic trajectory
and recurrence plots.

9. Need to go over an document how the statistics were produced.
how the angles were produced.

10. Whether one must constrain perturbations to invariant subspace in
order to guarantee the Floquet vectors all remain in the invariant
subspace. (small number of orbits that I would need to redo arnoldi
iteration for in this case.

2017-06-13 Matt :

symmetry reducing Still rewriting code to be able to find relative pe-
riodic orbits in hope that it will improve the spatiotemporal fixed
point code. I thought it wasn’t working because there were prob-
lems with how I implemented the combination of template point
of the slice and symmetry reduced velocity equations but I forgot
I needed to also change the stability matrix definition to pertain to
symmetry reduced velocity equations.

floquet vectors Trying to figure out the best implementation for what I
discussed with PC on Friday. I think I’ll have to import the values
of the Floquet multipliers via the text file generated by arnoldi iter-
ation, and for each nth subspace calculation, check if the imaginary
part of the Floquet multiplier is zero or not, and then either calculate
the angle of the nth subspace or skip to n+ 1 as to include the plane
spanned by the two Floquet vectors instead of splitting them into
two different complementary subspaces.

2017-06-13 Matt :

starting over arnoldi iterations J. Gibson, PC and I realized that in my
calculation neither the orbits nor the Floquet vectors were constrained
to the flow-invariant subspace. The periodic orbits stay (up to small
numerical errors) in the subspace, but one should not include the
Floquet vectors that point into the full state space; the dynamics
within the invariant subspace has little to do with the dynamics on
the full state space chaotic attractor, an object that is distant from the
invariant subspace (see the 2017-06-09 discussion above) and there-
fore the principal angles for these Floquet vectors describe neither
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the subspace inertial manifold nor the full state space inertial mani-
fold.
In other words the procedure that I need to enact as soon as possible
includes

1. Get additional periodic solutions of the Hamilton, Kim, Waleffe
cell from J.Gibson mentioned in hangouts meeting.

2. Make sure that the solutions are highly accurate by running
them through Newton-Krylov code.

3. Confirm with J. Gibson that I am handling the symmetry oper-
ations correctly as to not do this again.

4. Integrate in time while constrained to invariant subspace.
5. Arnoldi iterations with constraint on the velocity field and the

perturbations to invariant subspace to get Floquet vectors that
also lie in invariant subspace.

6. Check to see if Floquet vectors are invariant under symmetry
operation (checks and balances).

7. Principal angle calculation with geometric properties (no split-
ting between complex conjugate pairs) taken into consideration

8. Check to see if trajectories shadowing periodic orbits lie in the
span of the Floquet vectors

9. Produce plots of principal angles between complementary sub-
spaces of Floquet vectors.

Most of these things are automated already, but the arnoldi iter-
ations and Newton-Krylov codes will take time to run. I think I
should elect for smaller discretizations by not saving as many time-
integrated points, as it would take less time, but have some thoughts
and comments about the discretizations.
I might want to take into consideration the varying importance of
different orbits. The premise for this idea is that shorter orbits have
a more pronounced effect on the dynamics. In this vein, weighing
the shorter periodic orbits higher, through a larger discretization,
might be more beneficial in elucidating the geometric structure of
the inertial manifold.
On the other hand, if the goal is to capture the geometrical informa-
tion without redundant information, a smaller discretization might
be favorable. I am using the L2 distance between the initial condi-
tion and the successive points of the orbit’s discretization to give me
an idea of how close the points are in the invariant subspace and
perhaps use this as the crudest of measure to avoid repetition. Cur-
rently running the Newton-Krylov convergence in an automated
fashion on the previous orbits that I had. Just to make sure that the
information we are getting is as accurate as possible, considering I
have to redo the entire process anyway.
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symmetry reducing Made some changes for the variational Newton de-
scent routine to take keyword arguments such that one can choose
between the symmetry reduced routine for trying to find relative pe-
riodic orbits and the full state space routine for pre-periodic orbits.

Added definition of symmetry reduced stability matrix following
equation 13.24 from Chaosbook, edited some other changes to quan-
tities involved in symmetry reduction to fit with taking real valued
FFTs. Preliminary tests still show bad results. Need to do more de-
bugging and testing tomorrow.

2017-06-15 Matt :

floquet After finding some errors in filenames and symmetry files I have
the solutions from John’s database rerun in the Newton-Krylov solver.

Also produced the discretizations through DNS for the orbits. I am
opting to have 32 points per orbit. This is a compromise to have
fewer points per orbit but as the periods differ by up to a factor of 6
I feel that this still weighs the shorter periodic orbits more as there
are more sample points per unit of DNS time. Again, the main mo-
tivation is time, if I could compute in infinitesimal time I would like
to have more points per orbit; secondly, it’s a compromise between
treating different periodic orbits the same or differently.

By using a smaller number of arnoldi iterations and number of points
on each orbit it will dramatically speed up the process (not to men-
tion not making mistakes).

Arnoldi iterations are currently running such that the floquet vec-
tors are constrained to the same invariant subspace as the solutions
that they are being produced by; I’m not sure if I should run four
different calculations for the possible antisymmetry and symmetry
pairs or if I need to just include all of the symmetry generators for
all possibilities in one run.

In more detail, the complete symmetry group of solutions that I am
working with is described by the ascii representation of symmetry
group elements

e = 1, 1, 1, 1, 0, 0

sxyztz = 1, −1, −1, −1, 0, 0.5,

sztx = 1, 1, 1, −1, 0.5, 0

syztxz = 1, −1, −1, 1, 0.5, 0.5 (15.24)

where, the symbols follow the following order, and have the respec-
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tive effects on solutions

(c, sx, sy, sz, ax, az)[u, v, w](x, y, z)

→
c[sxu, syv, szw](sxx+ axLx, syy, szz + azLz)

J. Gibson seems to agree that I have the symmetry files in order
for constraining the periodic orbits to this symmetry subspace de-
scribed above. Now all I am wondering if it is only this symme-
try subspace that is of interest to constrain Floquet vectors to, or if
the "antisymmetry" combinations denoted by a value of c = −1 for
combinations of two of the symmetry group elements (i.e. given the
above set, the "antisymmetries" would be given by maintaining the
same symmetry group but including negative signs on the follow-
ing pairs, leaving the other elements unchanged.
(−sztx,−syztxz), (−sxyztz,−syztxz), (−sxyztz,−sztx) needs to also
be taken into consideration.

symmetry reduction Still can’t get the routine to work for finding relati-
ve periodic orbits of the time system. The initial residual is a little
high than what I would expect so I think I need to go over the def-
inition of symmetry reduced velocity again. A rework might be in
order for all of the symmetry reduction parts but only time will tell
based on work put in tomorrow, now that I believe I have all of the
arnoldi iterations running for my other project I think (as long as I
got the symmetry groups for the floquet vectors correct then I can
focus solely on this again).

2017-06-16 Matt :

floquet I was worried about some preliminary results from arnoldi itera-
tions so I stopped them and try to think about the problem a little bit
more. It seems that by constraining the floquet vectors to the same
invariant subspace as the solution I was losing out on information
and needed to also calculate the floquet vectors that lie in the "anti-
symmetry" subspaces as well. These subspaces are categorized by a
negative sign assigned to one of the generators.
What tipped me off was that during the current iterations there is a
lack of the three marginal floquet vectors, and from as far as I can
tell by restricting to the same invariant subspace as the solution, the
arnoldi iteration only includes one of the three.
By writing out the multiplication table of the group I am attempting
to solve this problem by changing the list of generators from

sxyztz = 1, −1, −1, −1, 0, 0.5,

sztx = 1, 1, 1, −1, 0.5, 0 (15.25)
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to the following:

sxyztz = 1, −1, −1, −1, 0, 0.5,

sztx = 1, 1, 1, −1, 0.5, 0

−1 ∗ syztxz = −1, −1, −1, 1, 0.5, 0.5 (15.26)

where as before, the lists of numbers follow the notation c, sx, sy, sz, tx, tz
where s stands for shift-reflect and t stands for shift-rotate in the ap-
propriate variable as denoted by the subscript.
This seems to be incorrect however, as all of the floquet vectors be-
longing to this space are stable.

floquet after PC meeting After talking to PC about the concerns noted
above it it appears that I was computing the iterations correctly, and
that all my worries were for nought. This is good in a way as the
communication between us gave us a better mutual understand-
ing of what I am actually computing; however, it also means that
I wasted half of my day chasing ghosts. I think it was for the best as
it gave me a better understanding of the problem and will prevent
confusion in the future however.

symmetry reduced variational method Finding some better numerical
results with the alternate definitions for (15.20) which are, (xi im-
plying real part of ith Fourier mode, yi is the imaginary part, where
i = 1, ..., N/2− 1

∂â

∂τ
= x̂1v(â)− ẏ1(â)t(â) ,

∂θ(â)

∂τ
= ẏ1(â) , (15.27)

Currently trying to figure out the correct way of reconciling this new
definition with direct matrix implementation.
I believe that the stability matrix with take the following form,

Â = diag(x1) ·A− diag(ẏ1(â)) · T (15.28)

2017-06-19 Matt :

floquet vectors Based on the current progress, I estimate that the arnoldi
iterations will be done by next weekend.
I am currently writing some new portions of code that will take in
the files storing the floquet multipliers as to make sure that vectors
corresponding to complex conjugate multipliers are not separated
into different subspaces during angle calculations.
I am currently only going to take 32 points per orbit to see if I can
get a rough idea for the angles. If need be I can always procure
more points on orbits and do the arnoldi iterations for the additional
points.
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symmetry reduction variational method Finished implementing the newer
version of symmetry reduction variational method (15.27). Still hav-
ing issues as initial condition for the value of the cost-functional,
which is the best indication I have that I am still somehow mess-
ing up the symmetry reduced equations; the only other contribu-
tor could be the approximate loop tangent, which I realized today
should also be symmetry reduced, i.e. it doesn’t make sense to com-
pare the in-slice velocity to an approximations of element in the full
state space tangent bundle.
I know it isn’t any of the definitions that I would be using for pre-
periodic orbits because, for example, an initial loop defined on 32
points in space and 128 points in time for ppo10.2 starts with an initial
value of the cost functional of F 2 ≈ 10−10 which is far better than
anything that I have ever had before, and of course as a sign of it’s
working it reduces the residual to within machine precision with the
correct period.
When I try this type of discretization with rpo16.3 I have no luck,
and I get the "converging to equilibrium" problem that usually indi-
cates I have contradictory definitions or something else the matter.
So there must be something else that I am either forgetting or not
paying correct attention to.
I did find a bug, however, where in the computation of the cost func-
tional, sometimes the wrong definition of velocity would be used;
this helped reduce the initial cost functional value for relative peri-
odic orbits to order ≈ 10. I think it might be time to talk to Burak
and see if he agrees with the definitions I’m using as I am running
out of ideas.

2017-06-20 Matt :

symmetry reduced variational Including a checklist of possible faults of
my symmetry reduced variational method code, ranked in terms of
likeliness. I’ve already checked these definitions a number of times
but until I can verify with one-hundred percent certainty that they
are correct I will leave them here unmarked. In other words they are
possibly the outstanding issues.

1. function definition of symmetry reduced velocity equation
2. function definition of symmetry reduced stability matrix
3. Whether approximate tangent field operator needs to be sym-

metry reduced. (I believe so).
4. Generation of symmetry reduced Newton descent matrix (based

on velocity and stability matrix being reduced)
5. Slice template vector
6. Infinitesimal generator of rotations T
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(a) (b)

Figure 15.6: (a) 32-by-128 space-by-time discretization of ppo10.2 resulting from
temporal variational method. (b) Fourier-mode projection of (a) on the first two
real parts of spatial Fourier coefficients a1, a2.

Next are the things I know have no problem as they work perfectly
with pre-periodic orbits.

1. Operators that produce spatial, temporal derivatives.
2. Operators that perform forwards and backwards Fourier trans-

forms
3. full state space velocity
4. full state space stability matrices
5. fictitious time stepping routine
6. Operator that produces full state space approximation to tan-

gent field.

meeting with burak Planning on talking to Burak tomorrow if I can’t get
the symmetry reduced variational code to work by tomorrow.

additional figs Included the figures of results from full state space vari-
ational method to find ppo10.2 for completeness. These include a
two-dimensional Fourier mode projection and the full spatiotempo-
ral velocity field.

Microextensive chaos of a spatially extended system Wanted to read ref. [37]
as it was referenced in ref. [42] but ran out of time.

2017-06-23 Matt : After being frustrated for a while I finally realized the dumb
mistake I have been making when it comes to symmetry reduction. I have
been trying to compute the symmetry reduced velocity at every point
of the discretized symmetry reduced relative periodic orbits all at once.
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This was the wrong choice because the equations rely on inner products
of vectors specific to each point along the discretization (namely the full
state space velocity and the group tangents at the slice template point
and each time discretization point).

I don’t know why I didn’t realize this before (I guess I’m learning?) but
something clicked when I noticed that the wrong elements were being set
to zero in my previous formulation, in other words the in-slice symmetry
reduced velocity wasn’t tangent to the slice. I tested out the formulae I
have been using for a single point along the discretization in time and
everything resolved.

In more detail, previously I was using a template point that was the same
dimension as the entire discretized orbit, i.e. for an N − by−M space-by-
time discretization of an relative periodic orbit I was using M copies of
the same template vector expecting it to work but this is fundamentally
flawed because when I use the equations (15.20) all this does is mix all
of the information of the orbit together in a jumbled fashion that makes
absolutely no sense.

It probably doesn’t need to be said, as I have been doing this for about a
week but again I reiterate that I am working on a way of reconciling the
formulae with the direct-matrix implementation that I have been using.

If I can’t figure out a way then there is the back-up plan of performing
operations one at a time (as opposed to using linear operators that act on
the entire discretized orbit at once) by computing the symmetry reduced
velocity of each state space point and each symmetry reduced stability
matrix one by one and then compiling them respectively into the vec-
tor, matrix that I need: A vector containing the in-slice velocities at every
point along the orbit and a block diagonal matrix whose blocks are com-
prised of in-slice stability matrices evaluated as the respective point along
the orbit.

Before rewriting this portion I am still going through the list of other
possible defects. So far I can verify that the group tangent of the template
point and the generator of infinitesimal rotations is valid. I am getting
wrong results for the full state space velocity as compared to Burak’s
MATLAB codes which I can’t explain at the moment, considering those
definitions worked fine for pre-periodic orbits.

All in all tomorrow will hopefully be a good day for my research.

2017-06-27 Matt : Found a negative sign compatibility error in Burak’s sym-
metry reduction code that I was using to produce initial conditions. I be-
lieve this goes back to other MATLAB codes for Kuramoto-Sivashinsky
that contained conjugation where it wasn’t correct, similar to compatibil-
ity issues I had with my spatial integration code.

Wrote code that computes the symmetry reduced velocities each tempo-
ral discretization point at a time and likewise for the symmetry reduced
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stability matrices.

These two combinations dramatically reduced the initial values for cost
functionals in the variational Newton code, however I am still getting
problems with convergence likely due to a small error somewhere, or
some problems with how I am trying to circumvent the issues.

This workaround also rises concerns for how I am going to implement
the symmetry reduction in the spatiotemporal fixed point codes, as I try
to treat the solution to the spatiotemporal fixed point equation as one
object, as I believe it should be. That being said I am still trying to find a
way to work with entire orbits instead of this way because it doesn’t feel
too intuitive. I am working through another way which I will write up
once I am confident in its accuracy.

2017-06-27 Matt :

inertial manifold Arnoldi iterations are taking longer than I had remem-
bered. Will probably been done by next weekend.

symmetry reduced variational methods After I posted yesterday I almost
immediately figured out the issue with the current formulation and
why it won’t work. It’s a matter of the ordering of the variables; the
way I have the code currently written the variables are ordered in
a spatiotemporal vector that cycles through the time first and then
space. I.e. if k and ` were indices that take values from 0, · · · , N − 1
and 0, · · · ,M − 1 respectively representing the the space and time
discretization, for every unit change to k, the index ` would have
cycled through M values.

Now, this isn’t important it’s just a clerical part of coding but the
problem I am now facing is that this specific ordering is going to
make it much harder to finish the symmetry reduction variational
code. I’ve tried to work things out in a number of ways but they are
require some very unintuitive measures that I feel would be best to
avoid. So, for now, I am going to rewrite everything such that the
ordering of the state space vector cycles through spatial indices first,
in other words switching to a different standard.

With this in mind, I believe I have a way to rewrite (15.20) such that
it will serve my purposes of symmetry reduction. Like I’ve said be-
fore the problem I had from a lack of practice was that I was trying
to symmetry reduce the entire orbit at once not taking into consid-
eration that the group tangent direction (amongst other things) is a
time-dependent quantity.

Here is how I believe I can fix things once I change the ordering of
the spatiotemporal vector i.e. the orbit in vector form. It basically
relies on computing M copies of (15.20) while keeping all of the in-
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formation at different times separate. Starting with,

v̂(â) = v(â)− θ̇(â)t(â) , θ̇(â) =
〈v(â)|t′(â)〉
〈t(â)|t′(â)〉 t(â) ,

Let v now be matrix whose rows (instead of columns as to reshape
the matrix into a vector properly) are the full state space velocity
evaluated along the time discretization of a symmetry reduced rela-
tive periodic orbit. Likewise, define â as a matrix whose rows are the
current (in fictitious time) representation of the symmetry reduced
state space points that comprise the relative periodic orbit. Then,
we can change the inner product notation to a matrix-vector prod-
uct notation by virtue of the group tangent template vector being
constant. For example, the velocity will now be concatenated in a
matrix in the following manner.

v(â)→ V ≡ [v(â(τ0))|v(â(τ1))| · · · |v(â(τM−1))] (15.29)

following this notation the equation for evaluating the symmetry
reduced velocity at every point along our discretization will be

V̂T (â) = VT (â)− θ̇(â)tT (â) , θ̇(â) = (VT (â) · t′(â) ∗ /tT (â) · t′(â))tT (â) ,

Now the onto the stability matrix; as opposed to the symmetry re-
duced velocity where I can just concatenate vectors into matrix and
perform element-wise operations and matrix-vector products, with
the stability matrices I needed to rewrite definitions of all of the ma-
trices involved in the direct-matrix derivation which I am still in the
process of. Some of them are easy, where the effect of the reordering
merely results in the opposite order kronecker product.
Hoping to be testing by tomorrow to settle this once and for all.
Submitting the different version of the functions implemented today
in different file for versioning purposes. Will delete once finished.

chats Going to chat with Ravi on Thursday at some undisclosed time
and place, probably the office on the fifth floor.

2017-06-29 Matt :

symmetry reduction Wrote code to produce more general initial condi-
tions for symmetry reduced variational methods. Alright. I have
mostly figured out the issues. I guess I was confused on how to use
the in-slice time symmetry reduced velocity in conjunction with the
direct-matrix formulation before. I was attempting to use equations
(15.20) in place of something similar to (15.27) and this was a tragic
mistake that took me a week to figure out.
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The following are what I believe to be the correct implementation
of symmetry reduction for the variational method when applied to
a relative periodic orbit that has been generated with a symmetry
reduced integrator. In other words, when the initial condition is a
spatiotemporal discretization embedded in the slice
With this new formulation the initial value of the cost functional is
F 2 ≈ 10−8 for a symmetry reduced reproduction of rpo16.3. This is
comparable with an excellent initial condition with all of the correct
formulae in previous works.
The new equation I am using for calculation of the symmetry re-
duced velocities (w.r.t. in-slice time) in the direct-matrix formulation
is,

v̂ = (diag(x1(t))⊗IN−2)·v−(diag(ẏ1(t))⊗IN−2)·(IM⊗T )·û (15.30)

This is relatively simple to explain when using (15.27) as a refer-
ence. diag(a1(t)) is a diagonal matrix that when multiplied with
the full state space velocity vector produces a vector whose entries
are equal to x1(ti) ∗ v(ti) where x1 is the real component of the first
Fourier mode. likewise for diag(ẏ1(t)) except ẏ1 is the velocity of
the imaginary component of the first Fourier mode. the ⊗ symbol
here denotes a Kronecker product (outer product) whose purpose is
to copy the values x1 and y1 as to create a diagonal matrix whose
dimension equals the dimension of the velocity vector v. i.e. I need
an outer product with a N − 2 identity matrix to ensure that I have
N − 2 copies of x1 and y1 so that each of the N − 2 Fourier modes
gets multiplied by the correct factor.
To simplify the notation and make it more apparent how to de-
rive the stability matrix in direct-matrix notation, I rewrite X1 =
diag(x1(t))⊗ IN−2 and Y1 = diag(ẏ1(t))⊗ IN−2.
The equation for the stability matrix for the entire orbit is therefore.

∂v̂

∂û
= Â = X1 ·A− Y1 · T (15.31)

There is still a small error lurking because despite of the small initial
value for the cost functional I still have not achieved convergence
within machine precision.
I believe it might be that I have treated X1 and Y1 as constant ma-
trices as opposed to functions of û. This is the only place that I find
room for errors so far.

chats Chatted with Ravi about his method of finding heteroclinic con-
nections. Specifically, we talked about the method of using cotan-
gent inverse as a mapping such that the curve is reparameterized
on a finite interval of real numbers so that Chebyshev functions can
be deployed. Also went over the current issues that he is facing
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namely the oscillations that occur around equilibrium (which ap-
parently upon a certain choice can be made to occur in the middle of
the connection). Also went over the adjoint method that he learned
from that Chebyshev functions

arnoldi iterations Arnoldi iterations are still going strong.

2017-07-03 Matt : Small progress on symmetry reduced variational methods
front. With some small changes to how I implemented . and playing
around with different discretizations of rpo16.3 I was able to get a final
result whose value of the cost functional is F 2 ≈ 10−12. This is four
orders of magnitude of improvement from the initial value of F 2 ≈ 10−8

but it’s still not good enough.

The new formulations of (15.30) and (15.31) are written in the following
ways, to more explicitly represent the dependence of the matrices X and
Y on the underlying quantities, namely the orbit vector (vector represent-
ing the time discretizations of the spatial Fourier series) and the full state
space velocity vector.

v̂ = (X · û) ∗ v − (Ẏ · v) ∗ (IM ⊗ T ) · û (15.32)

with this (more) correct direct-matrix velocity equation we can then de-
rive the corresponding stability matrix, using the rules of calculus de-
scribed in ref. [8]

∂v̂

∂û
= Â = diag(v) ·X+diag(X · û) ·A−diag(T · û) ·(Y ·A)−diag(Y ·v) ·T

(15.33)

The new formulation helped me find an error in how I was deriving the
stability matrix as there was dependence on both the orbit vector û and
velocity vector v in the matrices X1 and Y1 in (15.31) that I was not ac-
counting for.

As I previously mentioned this did help a little bit but it did not com-
pletely solve the problem as I still do not have convergence although I
have a really good initial condition (as evidenced by the initial condi-
tion’s cost functional value).

I don’t see any more room for errors in the stability matrix definitions,
so I think it might be something more idiosyncratic of relative periodic
orbits, namely, how the time discretization using in-slice time might be
more unevenly distributed as opposed to the full state space dynamical
time.

2017-07-06 Matt : After trying numerous small modifications to the variational
method’s system of equations from ref. [22] including implementing fac-
tors involving the coordinate involved in defining the in-slice time and
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other quantities involving the slice tangents I didn’t get any improve-
ments over what I already had. I still think the problem has to do with
the slice time so I went over the derivation of the equations and I believe
I found a correction that can be made.

The derivation of the system of equations used to find the fictitious time
corrections to the initial guess loop involves substitution of the partial
derivative of the rescaling factor with respect to fictitious time. The way
that this is done is via the definition

λn =
∆tn
∆sn

, (15.34)

where, s is the parameterization variable, here defined with a subscript
n to indicate that the parameterization need not be uniform around the
initial guess loop (although this is what I work worth as it makes things
much easier to program). t in this instance stands for the real dynamical
time of the orbit.

If we substitute the definition for the in-slice time, this equation takes the
form

λn =
∆(̂t)n(x1)n

∆sn
(15.35)

Going through the almost identical derivation for the system of equa-
tions there is one place where I believe they differ. Normally, there is the
substitution

δtn =
∂λn
∂τ

∆snδτ (15.36)

Normally this is easily generalized in order to produce a uniform rescal-
ing of the period around the orbit, but if the coordinate x1 is involved I
believe that this should take the form

δtn = (
∂λn
∂τ

(x1)n +
∂(x1)n
∂τ

λn)∆snδτ (15.37)

As the in-slice time rescaling is coordinate dependent, this formula seems
to beg for a description of the general equation that has a coordinate de-
pendent rescaling. This is kind of what I have been stuck on as this is
quite different from what I am used to.

For a orbit that is described byM points in time we would need λi where
i = 0, ...,M − 1.

I’m currently working on implementing this into my current code but it’s
gotten the best of me so far.
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2017-7-10 Matt : The way I am attempting to solve the problem I am having
with in-slice time is as such, for M discretized points representing an
in-slice time description of a relative periodic orbit I am introducing M
different time rescaling quantities λm. In this way the original variational
method equation changes from[

D − λdiag(A0, ..., AM−1), −v
] [ δx̃

δλ

]
= δτ

[
λv − ṽ

]
, (15.38)

to [
D − diag(λ0 ∗A0, ..., λM−1 ∗AM−1), −diag(v0, ..., vM−1)

] [ δx̃
δλm

]
= δτ

[
diag(λm)v − ṽ

]
, (15.39)

In this way the correction mentioned in (15.37) is not being resolved but
I want to try to see if more flexibility in the rescaling of in-slice time
with respect to fictitious time evolution is sufficient before getting into
an equation I derived; it’s also a simpler step whose changes could be
carried over to the full in-slice time description I probably will need.

2017-07-12 Matt : Making the single change of a non-uniform parameteriza-
tion rescaling did not help the variational Newton descent for relative
periodic orbits so I moved onto the modified formulation (15.37) in hopes
this would solve my problem.

It was a little tricky to figure out the best way to implement but I got it
running with unfortunately no better performance than the original sym-
metry reduced variational Newton descent that I had about a week ago.
It could be my derivation of the modified descent equations is off but I
am testing some other avenues currently. Namely, with a non-uniform
parameterization with in-slice time I am testing a non-uniform finite dif-
ference scheme to approximate the loop tangent as opposed to a Fourier
description. I feel the non-uniformity of the discretization is probably
something to be avoided but I am testing this as a last stand.

With a 32×128 space-by-time discretization of rpo16.3 the initial cost func-
tional value is still F 2 ≈ 10−8 so it has some legs to move in the right
direction, i.e. I am not losing too much accuracy by switching the numer-
ical method approximating the loop tangent. After some testing this did
not help the convergence either and took much longer.

I’m going to recheck the derivation I went through and see if there’s any-
thing I can change while also taking some of the improvements I have
learned and put them to work on the spatiotemporal fixed point codes.

2017-07-20 Matt : Wrote some new code for symmetry reduced spatiotemporal
fixed point finding; currently it seems a little strange to me because I only
know how to quotient the spatial translation symmetry in spatial Fourier
space as opposed to spatiotemporal (double) Fourier space.
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The way that this I am attempting this, are with the equations, in direct-
matrix notation:

Using the definition of the reduced velocity in time, (15.32), restated here
for reference,

v̂ = (X · û) ∗ v − (Ẏ · v) ∗ (IM ⊗ T ) · û, (15.40)

We then find the equivalent spatiotemporal system by Fourier transform-
ing in time by means of application of Ft linear operator denoting the
transform and moving everything to one side. Here, the û stands for a
description of the initial solution that is only Fourier in space.

W · Ft · û− Ft · ((X · û) ∗ v − (Ẏ · v) ∗ (IM ⊗ T ) · û) = 0 (15.41)

The stability matrix resulting from this symmetry reduced mapping is
therefore,

where Â is in reference to the equation previously defined (15.33).

J = W · Ft − Ft · Â (15.42)

Even though the changes to the system of equations aren’t too complex,
the previous incarnation of the code used pretty different set of order-
ings and other small nuisances that have made it a debugging nightmare
due to my confusion between other variants of my codes, I realize now
that I shouldn’t have prepared different initial conditions for every code I
write and should have made everything complementary so that all initial
conditions of Kuramoto-Sivashinsky equation could be used in any vari-
ant of the the variational codes (albeit still being split between symmetry
reduced versions or not) as well as the Newton’s method codes.

The part that troubled me for a while was how to implement symmetry
reduction of the spatial translation symmetry in a spatiotemporal way
as opposed to what I have now. I haven’t been able to come up with
anything good yet but it just seems like a little bit of a hack job to reduce
the symmetry before taking things to the spatiotemporal stage. Because
I am trying to find fixed points after symmetry reduction I imagined that
this case should be exactly be like symmetry reduction of a relative equi-
libria but I haven’t found a good way of treating the equations yet.

2017-07-24 Matt : Almost finished with symmetry reduced spatiotemporal fixed
point code, all that remains is redefining the partial derivatives of the spa-
tiotemporal mapping with respect to time and domain size parameters in
order to get corrections to the spatial domain size and period.

Made some changes that make the problem seem more natural, namely, I
included some terms such that everything is in terms of linear operators
acting on vectors of spatiotemporal Fourier coefficients as opposed to a
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weird mixture I had before. The upside is that everything is defined spa-
tiotemporally, but it might look a little odd at first glance because there
are certain terms which only have one type of Fourier transform operator
being applied.

I also elected to change the temporal Fourier transform to a RFFT based
description as opposed to a FFT based description (FFT produces both
sides of the spectrum, negative and positive Fourier modes based on in-
dex where RFFT just produces half of the spectrum). I avoided this ear-
lier because it was easier at first but now that I have some experience this
RFFT based description is definitely desired as it minimizes the number
of variables in the system. (It is possible, of course to take a FFT and then
keep half of the terms but this would be hard to implement given my
direct-matrix implementation). The problem isn’t completely symmetric
in terms of space and time however, as the Galilean invariance eliminates
the need to keep track of the terms corresponding to zeroth and Nyquist
(N/2) modes of the spatial spectrum; The easiest way to describe this is
that the discretization in spatiotemporal Fourier space isN−2byM where
N is the spatial discretization and M is the temporal discretization.

With this description the new equation for the spatiotemporal mapping
takes a similar form to what I was implementing the last time I posted,
with a few changes.

The mapping now takes the form,

W · û− Ft · ((X · F−1
t û) ∗ v − (Ẏ · v) ∗ (IM ⊗ T ) · F−1

t · û) = 0 (15.43)

where, û denotes a vector of spatiotemporal Fourier coefficients.

The symmetry reduced stability matrix needed for Newton’s method
then takes the form

M = W − Ft[diag(X · F−1
t · û) ·A− diag(v) · (X · F−1

t )

+diag(Y · v) · (T · F−1
t ) + diag(T · F−1

t · û) · (Y ·A)](15.44)

This is in addition to the partial derivatives with respect to in-slice time
and domain size that have yet to be elucidated.

Once this is finished I will be fully capable of finding spatiotemporal
fixed points corresponding to pre-periodic orbits and relative periodic
orbits whence I will hope to be able to make a dent in the real project.

2017-7-31 Matt : Put lots of work into the symmetry reduced spatiotemporal
fixed point code trying to make up for my lack of productivity when I
was back home.

Finished implementing the partial derivatives of the new equation (15.43)
but had to figure out how to rewrite them because of differing definitions
than previous versions, namely, the ordering of the Fourier coefficients.
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Rewrote definitions for the operators pertaining to differentiation in time,
space, the spatiotemporal mapping, Jacobian matrix, symmetry reduced
Jacobian matrix. In other words, most of the code, to correspond to the
differing Fourier transforms.
I still haven’t figured out another way to do the symmetry reduction in
a spatiotemporal manner, if it is even possible, so I am left with debug-
ging what I have worked on so far; Still having issues so I have some
more slogging through the trenches before getting symmetry reduced
spatiotemporal fixed point to work.
I have been thinking for a while when this works how I will begin to
apply it to glue different orbits together, but finding relative periodic or-
bits in a symmetry reduced space and pre-periodic orbits in full state
space can’t really be stuck together in my mind so I think the correct way
would be to find the relative periodic orbits in reduced state space, re-
produce them in full state space through numerical integration and then
try to glue them together. This wouldn’t warrant a further attempt to
find another spatiotemporal fixed point however because the relative pe-
riodic orbit in full state space through one prime period would not be
periodic in time, but it would be periodic in space. There a couple of
thoughts I have had about this, one being that perhaps maybe when
looking at the problem spatiotemporally this means that rpo’s must be
maintained within the interior of a spatiotemporal domain in order to
ensure the tiling is a fixed point, this might point towards pruning rules
of the underlying spatiotemporal dynamics but it is kind of a cheap trick
and isn’t really what I had imagined, which was just to treat pre-periodic
orbits and relative periodic orbits on the same footing in a symmetry re-
duced space; even though it isn’t meaningful (or possible?) to bring a pre-
periodic orbit to a slice, but I was hoping to be able to get a point where
the different types of periodic orbits would be building blocks treated as
equal in a spatiotemporal setting.
In this vein, although I know the main goal is to work towards a spa-
tiotemporal symbolic dynamics, I was thinking about perhaps looking
at time and space separately and trying to reconcile the two. These are
more of dreams than reality and my thoughts on this aren’t really clear
even to me at this point, but perhaps it would be beneficial to look at dif-
ferent combinations of allowed orbits in time and space separately before
looking at a full spatiotemporal setting.
In the spatial system, with periodic boundary conditions in time, i.e. a
slightly different problem than Dong and Lan [12], I am curious as to
whether it would be easier to develop symbolic dynamics there, as I
believe all spatial “periodic orbits" are either temporal equilibria, pre-
periodic orbits in time or relative periodic orbits in time, due to the spa-
tial boundary conditions imposed when looking at the time system. My
main idea is that because the existence of these different types of “orbits"
in the spatial system depend on the spatial size of the system, which is
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ostensibly the parameter controlling the onset of turbulence, perhaps it
would be easier to designate symbolic dynamics because there is some-
what clear hierarchy as to when the corresponding objects appear; equi-
libria appear first, then pre-periodic orbits and relative periodic orbits.

These ideas might come off as rambling at this point because I have noth-
ing to back it up, but I felt it was worth expounding upon.

2017-08-01 Matt :

plumbers meeting When I came in Burak was talking about symme-
try reduction of multiple commuting continuous symmetries cor-
responding to pipe flow, showing the derived equations.
After this description, he shows a local coordinate plot of perturba-
tions around a solution and shows that some laminarize and some
go turbulent, suggesting an edge-state type idea.
He then presented a new traveling wave solution that had some in-
teresting properties, including a large number of unstable modes;
Perturbations in the ± direction of the 11th eigenmode and showed
that they either laminarized or went turbulent.
John had a question quite relevant to my endeavors into princi-
pal angles, which was "how did you determine the accuracy of the
eigenvalues" to which Burak expounded that he increased the reso-
lution until the eigenvalues converged.
Uses an initial condition that was originally at Re = 104 and use
it for a simulation at Re = 3 ∗ 103. The higher Reynolds number
turbulence cannot be sustained and proceeds to laminarize. Scaling
the turbulence down by multiplying by a small coefficient
New trajectory and new traveling wave comparison, using L2 dis-
tance between new and old traveling wave and new traveling wave.
State space projection of trajectories with high energy that laminar-
ize (putting high reynolds number solution into low reynolds num-
ber simulation).
Showing solution that is spanwise localized while turbulence is not,
i.e. implying it is far away from turbulence.
In full-state space people only found the one traveling wave solu-
tion, however by working in the symmetry reduced state space he
found another traveling wave solution that can be found by follow-
ing the unstable manifold of the other traveling wave solution.
PC recommends a paper on rigorous bounds on observables in chaotic
in turbulent flows by D. Goluskin, Tobasco, Doering, showing for
instance in the Lorenz system that the energy for points with a cer-
tain bound on the z coordinate is saturated by the equilibria, and
then when z increases then the energy is saturated by the shortest
periodic orbit.
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John discusses his results with different computing languages, show-
ing off Julia and its speed.
Ravi implemented M. Farazmand’s adjoint method for the Lorenz
system. He was only getting convergence to the trivial solution of 0
but then made some changes that converged to a periodic orbit. Set
up adjoint equation, used stiff integrator (implicit), did not work
with explicit integrator. Used the "momentum method" and explicit
integration and got it to work. It seems to have good convergence
properties but needs to use some time of forcing factor to keep it
away from the trivial solution. Is trying it on 2 − D Navier stokes,
might run into a problem when state space dimension gets too high.

debugging Going through a checklist of possible errors in symmetry re-
duced spatiotemporal fixed point code. Might have to reformulate
if everything checks out.

2017-08-08 Matt :

reading Read new Jimenez paper in anticipation for discussion today.
sym reduced Still debugging, I have found a number of bugs, but I’m

disappointed at how long it is taking me to find small mistakes, I’ve
been inclined to define everything in two different ways based on
the ordering of the spatiotemporal Fourier coefficients and compar-
ing almost every matrix vector product by means of plotting the
resulting spatiotemporal field in order to iron out everything. It’s
been a very time consuming procedure considering I rewrote the
code for the symmetry reduction purposes and so far it has found
me a negative sign error and a pair of switched variables.
I was having some weird issues when using two real-valued fft’s
(half-spectrum), so I have also reverted to using a half-spectrum fft
in space, and a full-spetrum fft in time. I tried rewriting this portion
of the code in probably five different ways but I reverted it due to
the weird issues, which were the spatiotemporal Fourier coefficients
had the property that for ûkl, Re[ûkl] = 0 for l = even, Im[ûkl] = 0
for l = odd. I don’t know why this is but I’ve reverted back to the
previous definitions, modified for different ordering.
Now that I have gotten rid of all of the nagging little bugs in all
of my definitions, I’m hoping to have the symmetry reduced fixed
point code done by the end of the day, if there are no numerical
issues with applying a least-squares Newton to the problem.

2017-08-09 Matt : Mostly done with the core of symmetry reduced spatiotem-
poral fixed point code. There are some issues with the in-slice parame-
terization being maintained which I believe can be chalked up to using a
least squares solver.

The residual by using a least-squares solver on a 32 by 32 space-by-time
parameterization of rpo16.3 can currently be reduced to 10−9. Most of
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this reduction is obtained with the first few Newton steps, where after
the fourth step or so the residual is reduced to 10−8. Even after the ap-
plication of a total of 50 Newton steps the residual only reduces min-
imally (to the level previous stated). The slice condition of the phase
of the first Fourier mode to be zero is not being maintained, and I be-
lieve this is why the residual does not fall to within machine precision.
In my experience for variables that are constrained to zero (i.e. the first
Fourier mode phase) it is best to leave them out of the calculation of the
least-squares solver, like what is done for the zeroth spatial mode terms
(which equal zero due to Galilean invariance), such that no erroneous
changes can be made, i.e. if they aren’t a part of the calculation due to
their values equaling zero, they really should not be carried along by the
numerical method, it should be implied that they are always zero, and
not kept track of.

2017-08-15 Matt :

spatiotemp code Been spending a lot of time trying to improve the con-
vergence of the spatiotemporal symmetry reduced code, as the New-
ton iterations don’t make the large improvements one would expect.
Still only reaching a threshold of 10−9.

First attempt at new constraints The first attempt to improve the algo-
rithm was simply to include constraints that make sure the Newton
steps are orthogonal to the directions of time and spatial equivari-
ance by requiring the corresponding inner products to be zero. This
was done by including two additional rows to the previously over-
determined system that correspond to ∂û

∂x and ∂û
∂t such that the fol-

lowing relations hold < ∂û
∂x , δû >= 0, < ∂û

∂t , δû >= 0 I believe this is
what was meant by Burak and PC in last week’s meeting when they
mentioned the hyperplane formed by time and spatial equivariance.
This offered no improvement over the least-squares solver solving
the under-determined system (i.e. the system without constraints).

Second attempt at new constraints The second constraint that I tried was
to hold certain spatiotemporal Fourier coefficients fixed, by fixing
their real and imaginary components separately to yield two con-
straints. This also offered no improvements to the convergence, but
I need to see if whether this is due to the particular choice of Fourier
coefficient still.

More efficient code I finally got the rewrite working (to the same nu-
merical accuracy) as its predecessor. This version uses only the real-
valued FFTs (i.e. the positive halves of the spectrum for time and
space, which halves the number of variables in the system as op-
posed to the full spectrum FFTs. While this did not improve the
accuracy much if at all, it did decrease the amount of time required
for computation.
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Another attempt at improving convergence Another tactic that I tried
to employ was to remove the symmetry reduced variables (the spa-
tiotemporal spectrum corresponding to the symmetry reduced first
spatial modes) from the computation of Newton step corrections us-
ing the least squares solver. Because the slice condition is to hold
these components to be equal to zero, I removed the corresponding
rows and columns from the spatiotemporal Jacobian matrix to see
whether the least-squares solver was using them as extra degrees of
freedom used to minimize the residual of the mapping, F 2.
What I noticed is that by removing them from the system, the resid-
ual increases, in other words the convergence to a spatiotemporal
fixed point is worse. While it is hard for me to currently quan-
tify, the extra degrees of freedom seem to give extra leeway to the
least-squares solver, which includes "corrections" to the symmetry
reduced variables of order 10−7 even though the computation of the
mapping has zero magnitude as it should. In other words, through
computation of the spatiotemporal fixed point using Newton’s method
in conjunction with a least-squares solver, a non-zero phase is picked
up that, although relatively small, breaks the slice constraint.

Lorenz system gmres As I never got my Newton-Krylov hookstep code
to work previously, I am now attempting it again now that I have
most of the definitions of the spatiotemporal mapping correct. To
begin, instead of starting with a GMRES implementation of the spa-
tiotemporal code I have begun an implementation for the Lorenz
system.

2017-08-16 Matt :

symmetry reduced spatiotemp code Made some small changes that went
a long way, found a small error in the equivariance constraint related
to spatial translation. (Even though the spatial translation symme-
try has been dealt with a slice, my code requires these constraints to
ensure that the Newton steps don’t bring the spatiotemporal fixed
point out of the slice.
Also changed from a least-squares solver to a linear-system solver
for when the constraints are in-place. This is one of the things I tend
to forget to do when I put constraints in place, if I am solving a
square linear system I need to do it exactly.
With these changes, the in-slice spatiotemporal representation of
rpo16.3 in conjunction with the constraints to be orthogonal to the di-
rections of time and space equivariance brought the Newton resid-
ual to within machine precision in two steps, when using an 32-by-
32 space-by-time discretization (spatiotemporal Fourier modes) of
the relative periodic orbit.

numerical experiment I am curious to see how robust my spatiotempo-
ral code is so I am going to perform a numerical experiment that
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compares three different codes I have written.
I will first pass the same initial condition, pre-periodic orbit or relati-
ve periodic orbit, through the spatial and temporal variational New-
ton descent separately. I will then take the results from both of these
efforts and pass them through the spatiotemporal Newton code. My
goal is to hopefully show that while the initial conditions will have
distinct changes when trying to fit them to a spatial or temporal peri-
odic orbit, they will both converge to the same spatiotemporal fixed
point.
I appreciate any comments that deem this a irrelevant or worthwhile
effort.
First I think there might be some small errors in the spatial varia-
tional Newton descent that I have to clean up but I don’t think this
should take too much time now that I have been through the ringer.

2017-08-21 Matt : Ran into a problem when I began the search for new peri-
odic orbits of Kuramoto-Sivashinsky . While the symmetry reduced spa-
tiotemporal code runs fine its full x portions don’t work at all with the
changes that were made.

Fixed these problems mostly but still have poor results, this is mind-
boggling considering this is a much easier portion of code to figure out
than the symmetry reduced variant.

It works alright (final Newton residual ≈ 10−10) if I elect to use a least
squares solver while removing the constraints that prevent Newton steps
from moving in directions of time, and space equivariance so I thought
that’s where the problem must lie.

After looking at the initial condition I was using there was a very strange
and currently unexplained phenomenon with the spatiotemporal Fourier
coefficients, where the half corresponding to real components of the spa-
tial spectrum, are only nonzero for even modes in time and the half cor-
responding to imaginary components of the spatial spectrum are only
nonzero for odd modes in time, in other words half of the spatiotempo-
ral spectrum of Fourier coefficients is zero.

I am using the same definitions for the linear operators that perform the
Fourier transforms for both the symmetry reduced code and the full state
space code and the symmetry reduced initial condition looks how one
would expect, for ûk,l as you increase the value of the index in either
space or time, for a periodic function the value of the corresponding co-
efficient decreases, i.e. higher modes contribute less.

This is due to the preperiodic nature of the solution, in other words I
don’t think I am handling the reflection symmetry properly in my New-
ton calculations. This is probably the reason why it didn’t converge to
within machine precision in the former calculations.
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I think the most obvious choice here is to test whether rewriting the coe
to not carry along any extraneous variables is the easiest choice. The
later would be to find a way to reconcile my method with only using the
prime period and then merely applying the reflection symmetry if one
wants the entire orbit. The problem with this is that the method relies
heavily on spectral methods and it only works when the solution is truly
periodic, i.e. not a prime period.

Lan handled this in the variational method by using a finite difference
scheme [22] that applied symmetry operations to the boundary terms,
I’ll attempt to check this out to see if there is something I can take from it.

The relative periodic orbit portion of the code is great, on the other hand.
I thought there were some issues because the second shortest relative
periodic orbit didn’t converge, but this was merely a matter of discretiza-
tion. The 32-by-32 space-by-time discretization would not work but a
32-by-128 discretization will converge to within machine precision. This
makes sense due to the fact the orbit is nearly four times as long when
parameterized using in-slice time.

The increasing nee for larger discretizations is really telling me I need
to develop a method that can handle huge dimensionality i.e. John’s
Newton-Krylov hookstep for the problem.

I have a lot more work to do it seems!

2017-08-22 Matt : While rolling in bed I realized that there should be two dif-
ferent ways I can possibly handle the reflection symmetry issue,

The first would be to not have the spatiotemporal system be Fourier-
Fourier in spacetime but keep the time direction in physical space. This
would enable me to modify the spatiotemporal fixed point equation for
pre-periodic orbits to be reduced to solving for the corresponding spa-
tiotemporal fixed point using only prime periods if I used the finite dif-
ference scheme in conjunction with the reflection symmetry operator to
evaluate the time derivative.

The modified equation would be,

D · u+Q1 · u+Q2 · FFTx · (IFFTx · u)2 = 0, (15.45)

Where the only difference is that the spatiotemporal vector would now
represent uk(tm) instead of ûk,l.

The second option would be to remove the extraneous (zero valued) vari-
ables from the system of equations, which would require a bit of effort as
I would have to modify all of the operators I am using in direct-matrix
notation.

The easier of the two by-far is the finite difference method in time so that
is what I am going to run through today.
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2017-08-22 Matt : The finite difference scheme with the reflection symmetry
operation isn’t working too well for me so I am going to move on to the
second method which uses spatiotemporal Fourier coefficients and then
discards the variables that are zero.

I guess it makes sense that half of the spatiotemporal variables are dis-
carded because only half of them are truly unique due to the prime period
being the irreducible representation of the full orbit, and the prime period
is exactly half of the full orbit. A curious manifestation of the reflection
symmetry that I didn’t realize.

When its finished I will be able to find spatiotemporal fixed points associ-
ated with pre-periodic orbits and relative periodic orbits but not periodic
orbits in the antisymmetric subspace U+.

2017-08-24 Matt spatiotemp More work into pre-periodic orbit code. I fig-
ured out the best way to formulate the FFTs such that only the nonzero
spatiotemporal Fourier coefficients are kept. This corresponds to
keeping the odd numbered temporal modes of the real components
of the spatial spectrum and even numbered temporal modes for the
imaginary components of the spatial spectrum.
The way I am handling this is to formulate a matrix that performs
two FFTs at the same time for the two different types of time series.
The normal real-valued FFT matrix is staggered with zeros such that
the real components of the spatial spectrum only are multiplied by
the columns corresponding to odd modes and likewise for the imag-
inary spatial components. In order to ensure that the real and imag-
inary components aren’t mixing it is important to enlarge the matrix
by staggering the non-zero elements with zeros.
The matrix has been confusing to put together to say the least but
the benefit of this method is that I will have a spatiotemporal vector
that only consists of non-zero elements and is ordered in such a way
that I believe only minor changes will been required in the other
operators that produce the spatial, temporal derivatives. Also the
added benefit is the reduced dimensionality in solving the linear
system as only half of the spatiotemporal variables are "active".
The forward transform is working but I am having some difficulty
finding an error in the inverse transform.

hoping for new invariant solutions After some testing and getting bad
results of trying to find new solutions I believe I will have to switch
to Newton-Krylov hookstep method as the dimensionality required
for the longer (in-slice time) relative periodic orbits are hard to eval-
uate given memory restrictions.
By taking a recurrence from ergodic trajectories using a crude Poincaré
section formulation, and then using convolution with a Gaussian
mollifier yields bad spatiotemporal results. Due to the discrepancy
between the few steps of convergence it takes for known orbits and
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the complete lack of convergence for the few new orbits tried it
seems to indicate that either the initial Newton residual for conver-
gence has to be smaller than what I am starting with. 10−3 seems to
be the maximum for the initial residual value.
In short, it could be the size of the discretizations limiting conver-
gence, generating initial conditions in a bad way, or just Newton’s
method failing.

clean up and commentation Cleaned up and annotated some of the codes
that Andy will need to help the spatiotemp process.

2017-08-28 Matt Spatiotemporal pre-periodic orbit code finished I believe.

The pre-periodic orbit specific formulation of most of the differentiation
operators and Fourier transform operators are finished. They are hard to
explain due to their very specific natures but I will try my best.

The current formulation for the spatiotemporal mapping for pre-periodic
orbits is

W · û+Q1 · û+ F · ((F−1 · û) ∗ (F−1
x ·Q2 · F−1

t · û)) = 0 (15.46)

The spatiotemporal Fourier transform operators are produced by taking
the non-commutative products F = Ft · Fx and F−1 = F−1

x · F−1
t . Note,

they are only non-commutative due to the very specific way in which
non-zero spatiotemporal Fourier coefficients are produced in order to
have a numerically advantageous linear system to solve later down the
line. One could, if so desired, flip the order but the matrices would have
to change accordingly.

In their current formulation, Fx is the operator the enacts the spatial
Fourier transform on the configuration space spatiotemporal velocity field
defined on a M-by-N discretization. The output of the transformation
is a vector consisting of the real and imaginary components of the spa-
tial Fourier spectrum for positive half of the spectrum, i.e. ũk for k =
1, 2, 3, . . . N/2− 1, as this is all the information required to reproduce the
original spatiotemporal velocity field. The k = 0 mode is dropped due to
Galilean invariance and the k = N/2 mode is dropped from requiring it
to be zero because we begin with a real-valued field.

The operator that performs a forwards Fourier transform in time, Ft is
an unusual operator that will not work outside of the context of pre-
periodic orbits . It produces the nonzero portion of the spatiotempo-
ral Fourier spectrum which consists of the odd modes in time for the
real components of the spatial spectrum and the even modes in time for
the imaginary component of the spatial spectrum. Another way of de-
scribing this is to say it really is performing two different Fourier trans-
forms in time at once, one which keeps the odd numbered time modes
ûk,`,where,` = odd and one which produces the even numbered time
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modes ûk,`,where,` = even. The benefit of such a transformation is that
we can solve for only the variables that are relevant to the spatiotemporal
fixed point system of equations, and the dimensionality of the problem is
halved.

Due to the very specific structure of the spatiotemporal Fourier coef-
ficients kept after the spatiotemporal Fourier transformation, all of the
other operators needed to change as well.

The one tricky part of the new formulation is that the nonlinear term
needs to be evaluated in a specific manner given these new definitions.
It’s a subtle difference, described by evaluating the nonlinear term with
either − 1

2 (u2)x or −uux. Although they represent the same quantity, the
order in which the operations are applied when using my specific selec-
tion of spatiotemporal Fourier coefficients (i.e. choice of Fourier trans-
form operators) will drastically change to result.

The quantity −uux will produce the correct values while − 1
2 (u2)x will

produce a vector of zeros. This has to do with the underlying spectrum
and the computation of the nonlinear term pseudospectrally, something
that is hard for me to quantify without sounding convoluted but here
is my best attempt. The reflection symmetry will make it such that the
real component of the spatial spectrum always goes through one period,
while the imaginary part of the spatial spectrum goes through two. If
you are using a very specific formulation of the Fourier transform (like I
am) and you attempt to square the function before applying the spectral
differentiation operator,you will get a null vector because the product lies
in the same subspace, but the square alone does not.

Now that the core code is written it should be noted that there are still
many improvements that can be made to the actual numerical scheme
solving the equations. I am using the Python equivalent of LAPACK’s
linear solver which is ok to work with with small discretizations.

Also to be noted, normally for Newton-Krylov methods, the action of the
Jacobian matrix on elements of the tangent space in a dynamical system
is approximated by finite-differences of integrated equations. I might be
able to just employ Python’s (SciPy’s technically) GMRES implementa-
tion because I am explicitly forming the stability matrix of the spatiotem-
poral fixed points. (There is no mapping forward in "time" so I am trying
to avoid using the term ‘Jacobian matrix’. I believe this is consistent with
other notation but I will probably be told otherwise).

2017-08-29 Matt :

spatiotemp Talked to P.C. briefly about finding new solutions and the
best way to go about it. Predrag mentioned that he was worried
about the coordinate dependent in-slice time parameterization so I
will work towards the normal dimensionless time parameterization.
There might be a need to redefine the slice condition for the spatial
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coordinate as this change will introduce sharp changes in the veloc-
ity field with respect to time if the orbit comes near the singular slice
boundary.
Another topic I haven’t really pursued is that there is some quantifi-
cation of the spatiotemporal area as entropy that I need to read up
on.
For trying to find new solutions the couple of ideas shared were
using the fact that we have been working on the same sized do-
main L = 22 forever so it might work to take advantage of how the
number of orbits grows in time and space by looking at the limits
of skinny rectangular orbits. The ideal is to grow the domain "di-
agonally" i.e. finding orbits that have a large spatiotemporal area
but there are unique challenges, such as attracting orbits that might
prove to be pitfalls.

janitorial duties Began the process of translating matlab codes still in
use to python. I’ve been meaning to do this for a while so I can
focus on working in one coding environment but it’s always fallen
to the bottom of the list.
This way I can annotate the codes Andy will use while rewriting
and cleaning them up.

2017-09-01 Matt :

spatiotemp code Still writing code to find spatiotemporal fixed points of
relative periodic orbits that are parameterized in time with the dy-
namical time instead of rescaled in-slice time. It’s taking some time
given the current formulation of my codes because the equations
that primary equations that govern the in-slice velocity and stabil-
ity matrices are hard to reconcile with the direct-matrix formulation
using a vector that tracks the spatiotemporal Fourier coefficients.
I ran into this problem a little before and ended up switching to the
in-slice time formulation because it was easier to implement; the
key problem is that the inner products in the equations cannot mix
time-dependent quantities, such as the velocity and group tangents.
This can be alleviated by converting the M ∗ N dimensional spa-
tiotemporal velocity vector into a M − by − N matrix such that the
matrix-vector product of this "velocity matrix" and group tangent
template which defines the first Fourier mode slice V · t′ equals a
vector whose elements each represent an inner product. It isn’t the
prettiest method but it gets the job done.
The main challenge is the stability matrix equation, as the spatiotem-
poral direct-matrix formulation the spatiotemporal stability matrix
is calculated as a single large object. In this alternate formulation,
in order to calculate the symmetry reduced stability matrices ev-
erything needs to be calculated separately, what I mean by this is
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that the coordinate (time) dependant terms cannot be mixed and
are at odds with the spatiotemporal descriptors in place currently. I
will have to either figure out a new way to produce the terms all at
once or figure out a way to put separate matrices together. The first
outlook seems more enticing merely because the secondary method
would constitute a new set of function definitions that would most
likely take some time to test and implement.

other spatiotemp Uploaded the beginnings of the python translations of
the initial condition generation codes in order to enable andy and
myself to work completely in Python. The idea is to have a script
that depending on the user’s choice will integrate in time, either in a
symmetry reduced subspace or not, with a random or user provided
initial condition, integrate out the transient parts, set up a Poincaré
section and find a close recurrence mainly by itself, prepare the ini-
tial condition by removing higher frequency Fourier mode compo-
nents and saving the file so that it may be used to test the spatiotem-
poral code. It’s taking a while because what plan for is an amalga-
mation of approximately five different codes in one. The main goal
is to put ease-of-use at the forefront to the user by changing function
arguments rather than changing the code manually.

2017-09-05 Matt : Mainly worked on the initial condition preparation code
that I will explain to Andy how to use on Wednesday at a secret meet-
ing.
Implemented most of the function definitions needed in Python, just need
to do a little clean up work and annotate for Andy’s future use.
Put a little work into the dynamical time spatiotemp code, still haven’t
figured out how to reconcile the equation for the stability matrices.

2017-09-07 Matt invariant solns Went through Elena’s progress with minimal
seeds, and Burak’s work with Akshunna.
The general idea insofar as I know is that the minimal seed is a
perturbation that places you on the stable manifold of edge state
to either attempt to send to turbulence or laminar solutions. The
minimal seed that Burak shared was a perturbation localized in the
spatial directions of the problem (and I suppose time as well,even
though its produces a global solution later on); in the given example
there were two examples, one which laminarized the solution and
one that sent things to turbulence.
I didn’t ask anything out loud because I tend to dwell on my thoughts
rather than share but I was curious as to why the perturbation with
minimal energy should be localized, but this was answered in part
by Elena’s attempts to filter the higher frequency components, and
Predrag’s comments that one would like something to be global.
In regards to Burak’s work with Akshunna, alas the melatonin is
fogging my memory, but I remember it had to do with homoclinic
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orbits that go off from some type of invariant solution, transition to
turbulence, and return.

Andy Meeting Ran through the current implementation of the initial
condition generation code and the main points and ways to play
around with it with Andy

spatiotemp initial condition code Finished most of the code, but in or-
der to become functional I need to figure out one last piece which
involves converting a real-valued integrator to complex-valued. I
believe there are built in functions and methods to do so. Note: that
I use this only to find the first intersection with the Poincaré section
exactly, i.e. I use it to find the time between the last step of the ET-
DRK4 integrator and the Poincaré section. So the other 99.9 percent
of the integration is enacted by the ETDRK4 integrator.

2017-09-07 Matt : Still fixing all of the errors in the initial condition production
code, as not all cases are producing reliable results.

I had to rewrite the "fine" time integration procedure because I am find-
ing that using a built-in SciPy integrator requires too many redefinitions
of Kuramoto-Sivashinsky equation quantities and I felt that it detracted
from the simplicity and transparency of the code, so currently I rewrote
it so that once one gets near a close-recurrence to the Poincaré section it
uses a recursive function call with different keyword arguments to find
the final value of time needed to land on the section.

There are still some bugs that I need to get through, namely i need to ver-
ify that the poincare search is doing it’s job and I think I need to include
a function that enforces the reflection symmetry of the problem because
otherwise I am going to pick up initial conditions that are unfit for the
spatiotemporal code.

2017-09-12 Matt :

symmetry reduced spatiotemp code Still ironing out bugs in the code
meant to find spatiotemporal fixed points corresponding to solu-
tions of relative periodic orbits parameterized with respect to dy-
namical time as opposed to in-slice time. I realized today I was dras-
tically over complicating the operations needed to be done; The cur-
rent formulation is definitely on the right track as the resulting equa-
tions for the direct-matrix expressions for the symmetry reduced
spatiotemporal mapping and symmetry reduced stability matrices
are essentially matrix formulations of equation (13.24), which is the
symmetry reduced stability matrix.
There are still a few bugs however, but I will probably have them
ironed out shortly.
The definitions that I am using for the following equations are as
such, Y denotes a matrix that picks out the first imaginary spatial
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mode component, such that a matrix-vector product Y · v is equiv-
alent to the inner product < v|tp > where tp is the group tangent
template vector, and v is the velocity. Note that the construction
of Y is completely dependent on the fact that the inner product only
has one non-zero term (namely, the imaginary component of the first
mode) due to the specific nature of the group tangent template tp.
Likewise, X is a matrix that will pick out the first real component,
such that the expression X · F−1

t · û is equivalent to the inner prod-
uct < t|tp >. Again, this is predicated on the group tangent tem-
plate having such a specific form. The general idea is that the group
tangent row vectors < t| are coordinate dependent, so in order to
calculate them, we need to be in a Fourier-Time representation, and
not Fourier-Fourier.
With these definitions in mind, the dynamical time representation
of the symmetry reduced equations takes the form

v̂ = v − Y · v
X · F−1

t û
. ∗ (T · F−1

t · û) (15.47)

One can see that substitution of the spatiotemporal terms with their
"equivalent" inner product notations makes this equation equal to
equations (13.7) and (13.8). I put "equivalent" in quotes because the
inner products in the equations just listed are coordinate dependent
quantities, while this notation calculates everything at once.
The spatiotemporal mapping (applying Fourier transform of time of
the symmetry reduced flow field) the takes the form,

W · û− Ft · (v −
Y · v

X · F−1
t û

. ∗ (T · F−1
t · û)) = 0 (15.48)

The symmetry reduced stability matrix then takes the form,

Â = A−diag(
Y · v

X · F−1
t · û )·T ·F−1

t −diag(T ·F−1
t ·û)·diag(X · F−1

t · û) · (Y ·A)− diag(Y · v) ·X · F−1
t

(X · F−1
t · û)2

(15.49)
Again with the substitutions X · F−1

t · û ≡< t|tp > and Y · v ≡<
v|tp > the equation is reminiscent of the corresponding equation in
equation (13.24).
The full spatiotemporal stability matrix then takes the form,

∂G

∂û
= W + Ft · Â (15.50)

So far the mapping is correct in the sense that the initial Newton
residual of the mapping is relatively small, 10−5, so I believe the
bug to be how I am implementing the division in the terms in the
stability matrix.
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initial condition generation code After more debugging I realize I was
just expecting the initial condition generation code to know whether
something was a pre-periodic orbit without programming it that
way, made corrections to the recurrence plot formulation to be com-
puted with ||σu(t + τ) − u(t)|| and for the best guess to be plucked
from that array of values. This, in conjuction with modifying the
Poincaré condition, will hopefully only allow pre-periodic orbits to
be found if that is what is desired. The modification of the Poincaré
condition is that the Poincaré section is now determined by the re-
flection of the initial starting point, meaning that the procedure should
now pick out the prime period of any pre-periodic orbit. The entire
periodic orbit will then be produced by applying the reflection sym-
metry on the prime period, glueing them together, and smoothing
out any high Fourier mode components that exist.
Need to be more thorough with my changes however as I am still
picking up on orbits that seem to be relative periodic orbits.

reading In order to spread my horizon of thought outside of what is just
easiest to program I’ve put myself on a reading schedule of some of
the texts I find easier to read and useful, approximately 30 minutes
per text per day. I’ve found it helps motivate my brain to wake up
and start to engage in the right way.

2017-09-13 Matt Mark Paul Building a Physical Understanding of High Dimen-
sional Dynamics using a Lyapunov Analysis Beginning with linear al-
gebra foundation and the Oseledecs multiplicative ergodic theorem.
"There exists in the long time limit, the operator M whose eigenval-
ues are the Lyapunov exponents, and eigenvectors are the Lyapunov
vectors"
Backwards Lyapunov vector = using information from the past, i.e.
evolving Lyapunov vectors forward in time. Using future vectors
and bringing them back, i.e. lose information by bringing either of
these sets forward or backward in time.
This is the motivation of Covariant Lyapunov vectors, invariant set
of vectors that are non-normal that represent growth in different
perturbation directions. Ginelli, Wolfe et al. Tellus 2007, Pazo et
al.
Leads to the degree of hyperbolicity, dimensions (fractal, physical,
inertial manifold), Physics and spurious modes, Spatiotemporal dy-
namics.
Lorenz equation example.
Coupled map lattices using diffusively coupled tent-maps, work of
Takeuchi et al. Angle between Lyapunov vectors gives the decom-
position between physical and spurious modes, principal angle cal-
culations.
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They use the pairwise angles between Lyapunov vectors instead of
principal angles between subspaces.
"Shoulder" seems to be dependent on the diffusivity constant, but
not the case in Rayleigh-Bénard?
How to visualize a Lyapunov vector? In rayleigh-benard the tem-
perature field is a good indication of the dynamics, so look at the
perturbation temperature field sliced through the mid-plane. Look
at the difference between the whole vector, versus the temperature
component of the leading Lyapunov vector.
Rayleigh-Benard, local defects imply large magnitude of leading
Lyapunov vector.
When they calculated the principal angle they chose to use the angle
between stable and unstable manifold, not the approximate physi-
cal, spurious modes.
The more local the more likely you are to land in the span of the
physical modes? Ironic because the higher wave numbers are dissi-
pated faster than the lower wavenumbers. How are global, coherent
structures reconcile with the fact that the leading Lyapunov vectors
seem to be the most local?
Ah, They only appear to be local because they are taking the mid-
plane slice, in the most dynamically relevant direction, z, they are
probably global.

2017-09-15 Matt : The day was mainly preoccupied with listening to the pre-
sentation of data assimilation by Elizabeth Cherry, giving another crash
course to Andy and then listening to Andy and Predrag’s conversation.
The remainder of time was split between writing additions to the ini-
tial condition code that will be used by Andy and investigating imple-
mentation of Mohammad’s adjoint method [16] in its application to the
spatiotemporal version of the Kuramoto-Sivashinsky equation. I inves-
tigated this before but comments by Lenard van Veen have inspired this
approach yet anew.
His method was worked out in ref. [16] for equilibrium and relative equi-
librium solutions in more Navier-Stokes type flows, and used to find
new equilibria in 2 − D Kolmogorov flow. I am investigating because
if one looks at the problem spatiotemporally then perhaps larger invari-
ant structures can be found. I.e. if the problem can find fixed points of an
equation, then perhaps in the spatiotemporal formulation where periodic
orbits are represented by fixed points of the nonlinear mapping, they can
be found with the same method.
Another motivation is because these adjoint methods seem ubiquitous
whether it be in Physics or Engineering so I figure that learning them is
probably a good idea.
My main problem is that I only ever see the adjoint formulation for PDEs
which are first order in time; I only have a nonlinear mapping so I am
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trying to figure out if I can find the adjoint of the mapping directly or
perhaps if I can do something neat like figure out the adjoint equations
for in time, and then treat them on a spatiotemporal level in order to get
an adjoint mapping, much like how the mapping was formulated from
the Kuramoto-Sivashinsky equation .

I don’t know if what I am postulating is idiotic but we’ll see after I talk to
Mohammad

2017-09-15 Matt Uploading some changes to the initial condition preparation
code. Generic starting point is now based on random initial condition,
shaped to be periodic in space as the old formulation was a little hard
to work around if trying to do a long search. This way there’s no worry
about the starting point, as long as transients are integrated out.

Changed the Poincaré constraint for pre-periodic orbits so that it finds
the prime period, and added code to produce the full orbit by applying
reflection symmetry to the prime period and gluing the two together.

09-18-2017 Matt : Talked to Mohammad about the adjoint method; I confirmed
some of my beliefs on it but in regards to practically implementing it I
think I was slightly off or misunderstood Mohammad. What I recall him
saying was "if you system is already discretized then the form should
take ...." after which he referenced the equation

G(u) = −[∇F (u)]>F (u) (15.51)

in his 2016 paper [16], while wishing to minimize the cost functional
||F (u)||2 that the way to implement it was to integrate (in fictitious time)
in the direction provided by G(u) in (??), using a (adaptive) Runge-Kutta
scheme or something similar for best results.

I tried implementing this for the spatiotemporal version of Kuramoto-
Sivashinsky equation but it doesn’t work for my implementation when
F (u) is defined by the spatiotemporal mapping Fk,`(ûk,`).

Predrag stepped in and said I should start with a much easier system
and so after trying and failing to get the adjoint method to work for Ku-
ramoto-Sivashinsky equation I started a version that employs adjoints to
minimize a cost functional for the Rössler system; Namely I tried em-
ploying it to find equilibria by taking ||F (x)||2 ≡ ||v(x)||2; due to the fact
that v(x?) = 0 for an equilibrium point. The form that the adjoint should
take on is then G(u) = −[∇v(x)]>v(x), or so I thought. I couldn’t get this
to work either so I must have drastically misunderstood Mohammad’s
explanation.

I went through a derivation of the adjoint operator L†(u;u′′) and what I
have matched the result produced by Mohammad as a practice on how to
generally produce adjoints, so I’m slowly learning something. Still trying
to figure everything out.
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The motivation behind implementing the adjoint method is that New-
ton’s method radius of convergence seems to be obstructively small for
the spatiotemporal system. The other issue is that it doesn’t make sense
to me to use close recurrences and time integration to produce initial con-
ditions for the spatiotemporal system; We are trying to work without dy-
namics, so why let dynamics dictate the initial condition?

Hopefully implementing the adjoint in conjunction with Newton’s method
once the residual of the spatiotemporal system is sufficiently minimized
will allow for production of initial conditions spatiotemporally, since the
adjoint methods do well until they slow down near the local minima it
seems.

2017-09-20 Matt adjoint code Got the Rössler code working to find equilibria;
I can already see in this simple system why a hybrid Newton-adjoint
code is worthwhile, as even for this system as the residual of one of
the fixed points is reduced to within machine precision while the
other only goes to 10−8 in the same amount of fictitious time;
Some more optimization into the actual values of the fictitious time
steps can and needs to be investigated by me but I think the general
idea is down pat.
Now I move on to attempting to implement these newly learned
ideas in conjunction with fourth-order Runge-Kutta for Kuramoto-
Sivashinsky equation , and then producing a hybrid method that
allows good convergence.
The procedure I will be following can be outlined as follows: Firstly
for the system that we want to solve for the roots, namely F (û) =
0, instead of solving for the Newton corrections directly via a lin-
earized equation ∇F (û)δûn = −F (ûn) we want to step in fictitious
time in the “adjoint direction" given by G(û) = −[∇F (û)]>F (û).
(My early formulation requires explicit construction of the matrix
∇F (û) but this is the easiest extension of the spatiotemporal code
that I currently have so it is what I will begin with). Once the direc-
tion is known, we can use a fictitious time-stepping algorithm such
as Runge-Kutta fourth order to produce the system of equations

k1 = G(ûN )

k2 = G(ûN + (h/2) ∗ k1)

k3 = G(ûN + (h/2) ∗ k2)

k4 = G(ûN + h ∗ k3)

un+1 = un + (h/6) ∗ (k1 + 2 ∗ k2 + 2 ∗ k3 + k4)

As we are looking for an efficient scheme, most likely to be imple-
mented in a hybrid method, with the adjoint portion just getting us
to within the radius of convergence of a Newton or Newton-Krylov
Method, G(ûN ) will be reused for multiple fictitious time steps as
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the approximate updates aren’t important in the grand scheme of
eventual convergence with Newton. The form that this condition is
likely to take is that we step in the direction given byG(ûN ) until we
can no longer reduce the residual. If the residual is small enough we
then pass the approximate solution to Newton or Newton-Krylov. If
it isn’t small enough, we redefine G(ûN+1) and then continue.
I am attempting to use notation here such that the lower-case letters
define each step in the fictitious time-stepping procedure, while the
upper-case letters indicate a redefinition of the underlying adjoint
quantities.

additional investigations Lots of reading about adjoint methods, Zahr,
Persson and Wilkening [44] being an interesting example, although
they seem to be more interested in steady solutions (stable limit cy-
cles). It seems that the main use of adjoint methods is to produce
gradients with respect to parameters in a similar effort to how ma-
trix vector products are used to approximate derivatives.
As an exercise I derived the adjoint operator for the Kuramoto-Siva-
shinsky equation , L†(u;u

′′
) which dramatically increased my un-

derstanding of the what that expression even means, at least in the
small context I am applying it. An example of what I mean by this
is that I now understand that "the adjoint direction" in this context
is specific to the quantity one wishes to minimize but "the adjoint
equation" is a general expression that is based on the underlying
PDE or operator. This also helped me understand in more detail
about why Mohammad derives the analytic expression for “the ad-
joint direction" corresponding to multiple cases in his paper [16].

2017-09-25 Matt Decided it would be best to implement a spatiotemporal ver-
sion of Mohammad’s adjoint method for Rössler before moving back to
Kuramoto-Sivashinsky equation . I’m trying to allow for the computa-
tion to take the same form as it will for Kuramoto-Sivashinsky , which
means taking the Fourier transform with respect to time of the velocity
equations and thereby devising a mapping whose zeros correspond to
periodic orbits of the system.

After application of the Fourier transform, the equations take the form,

0 = iwkxk + yk + zk

0 = −xk + iwkyk − ayk
0 = −b0 + czk + (x · z)k

Where the nonlinear term is computed via the standard pseudospectral
method for computing convolution sums that we are used to by now.

2017-09-26 Matt From the plumbers meeting:
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Burak wanted to know Predrag’s opinion on the figure that Burak and his
intern Akshunna produced. He believes it satisfies shows there is a Smale
horseshoe due to the homoclinic connection and therefore the three solu-
tions they have are really a subset of infinite solutions that necessarily
exist.

John thinks I should look at the condition number of the Hessenberg ma-
trix and that my woes may just be completely numerical. The condition
number being too large is an indication that the matrix is becoming rank
deficient and as such is the source of a loss of orthogonality of the Floquet
vectors with respect to each other.

Went to Edgar Knobloch’s talk on geostrophic turbulence. Thought it
was quite amazing with how far he can get with just asymptotic analysis;
Was curious to find out whether he thought the reason behind lack of
inverse cascade but didn’t get a chance to ask before class.

All in all just chugging along with codes and readings, starting with the
papers recommended by Edgar Knobloch.

2017-09-27 Matt Today was spent either at talks, David Krejčiřík’s talk on the
spectral geometry of quantum waveguides and Yannis Kevrikedis’ talk
on a smart way to go from micro-scale to macro-scale without a equation.

The first looks at the effect of twisting and bending of tubes and how
that effects the spectrum of the Laplacian, namely whether there are any
discrete eigenvalues in addition to the essential (continuous) part of the
spectrum. Before moving onto the quasi-cylindrical domains (can define
a sequence of identically sized balls (open sets) through the entire non-
compact domain), he first showed results for quasi-conical (can define
an arbitrarily sized ball somewhere in the domain) and quasi-bounded
domains (neither quasi-conical nor quasi-cylindrical).

The quasi-cylindrical surfaces (codimension one) that were investigated
were constant (non-circular) cross section surfaces, and the transforma-
tions that were investigated were twisting and bending. The formulation
relied on using the Fermi coordinate parameterization. The results were
that bending can produce bound states (discrete part of spectrum) while
twisting did not but rather a Hardy inequality arises.

Dirichlet boundary conditions were always used but there was an inter-
esting comment that if you had a bent non-compact quasi-cylindrical sur-
face, where half had Neumann boundary conditions and the other half
had Dirichlet boundary conditions then bound states would only exist
for the Dirichlet half.

Kevrikedis’ Talk was about how when one only has microscale laws of
nature (equations) there is a way to extract out useful macroscale infor-
mation, granted that one either is told the important observable or has
some sort of intuition. The microscale simulations are run with certain
initial conditions, and then a euler step is taken in the direction of the
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gradient of the macroscale observable. In this way, the very long time
microscale simulations can be reduced to bursts of simulation the explore
locally, while large steps in some observable are taken to explore globally.
The process uses machine learning and a number of other techniques not
really elucidated but the general idea is when the macroscale equation is
not known, this is a way to avoid microscale computation time.

Kirchgässner I’m really trying to understand ref. [20] in depth but my
lack of training in mathematical formalism is failing me. So far what
I see is that for elliptic equations the best place to look for solutions
that are bounded on an infinite domain is to look near the center
manifold (which I believe is equivalent to the manifold spanned by
marginal directions) of the trivial equilibrium. This sort of makes
sense as there is no exponential blow-up in state space along this
manifold but the specifics are still not clear to me, other than the fact
that the "center manifold reduction" seems to play a key role. Again,
the specifics are not clear to me but the general idea is to derive a
new differential equation (ODE in his case) that is a reduction of the
original equation and is applicable when the norm of the solution is
small. In other words, there is a specific equation for solutions that
are small in some norm.

coding Still working on the spatiotemporal implementation of Moham-
mad’s adjoint descent to the Rössler system.

2017-10-02 Matt Rossler adjoint Still working out the kinks of the spatiotem-
poral adjoint implementation for Rössler system.
Wasted a lot of time trying to work around the built-in ode integra-
tor that SciPy has to offer as they are more efficient in integrating
equations and choosing the different integration methods alotted
to it, but there’s just too many open bugs with them (a surprising
amount if you stray away from real-valued ode’s where the only
parameters are of the scalar type).
So after wasting this chunk of time I decided to go back to my orig-
inal plan which was to use Runge-Kutta 4th order to integrate in
the adjoint direction. After messing about with this I realized that
my idea of sparingly updating the operators involved; i.e. step in a
constant direction until the residual of the cost functional (which is
in this case the square of the semi-norm of the spatiotemporal map-
ping F ) no longer decreases is a bad idea as the integrator returns
garbage; I think I was conflating this method with my experience
with the Newton descent. Because I am using a fourth order inte-
grator that relies on function evaluations, one can’t be so cheap with
the computations being put into it.

spatiotemporal initial conditions Implemented a spatiotemporal way of
producing initial conditions for the Rössler system that utilizes ran-
dom number generation and products of the Fourier spectrum with
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Gaussian distributions. With this I can produce (non-physical) ini-
tial conditions whose spatial complexity varies with the standard
deviation of the gaussian distribution. The general idea is that be-
cause we have time periodicity for the spatiotemporal fixed points,
as long as the Fourier (power) spectrum (in time) exhibits a geomet-
ric convergence to zero it should converge towards a spatiotemporal
fixed point when utilizing the adjoint methods employed.
The next leap is to go from completely non-physical to reshaping
the initial condition according to the spatiotemporal mapping. In
my experience the mapping is highly unstable, and any application
needs to be treated with care. The general idea I have is to first
produce a non-physical initial condition and then apply the map-
ping and rescale so that the initial condition is deformed into some-
thing slightly more relevant to the system of equations we wish to
solve. This might not work out well as there is no intuitive manner
in which to rescale the Fourier spectrum other than repeated appli-
cation of the Gaussian smoothings.

Newton-Krylov hookstep I’ve also begun a Newton-Krylov hookstep
algorithm for understanding and comparison purposes, but there
isn’t anything to the code as of yet.

2017-10-04 Matt : Finished up testing of Mohammad’s adjoint method with
lackluster sub-par results. Spent way too long optimizing the method
and trying to improve its speed. While the adjoint method when applied
to the spatiotemporal fixed point problem of the Rössler equations does
decrease the residual of the cost functional with the semi-norm of the
mapping defined by taking the discrete Fourier transform of the Rössler
equation in time, the decrease in the residual in minimal. This is my claim
after double and triple checking everything and comparing to straight-up
Newton.
I think there is a use for it as a very crude preconditioner for Newton, or
better yet Newton-Krylov hookstep.
When producing an initial condition based on close recurrences and us-
ing a Poincaré section, all but one coordinate are likely to not be periodic;
By taking a Fourier transform in time and setting the high frequency
(some cut off in mode number) the initial condition is smoothed out,
but at the price of making the parameterized (now-smooth) loop non-
representative of the equations. By applying this adjoint method in con-
junction with a crude tolerance, it can be used to deform the initial con-
dition into something more likely to converge with Newton.
Added quite a bit of functionality to the Rössler code but I’m just going to
develop my own Newton-Krylov hookstep code for Rössler now, unless
there is some drastic change in my opinion about the adjoint method.

2017-10-08 Predrag I do not understand “Krylov" in “Newton-Krylov hook-
step” as applied to Rössler: If you are in 3 dimensions, what can Krylov
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(a)

(b) (c)

Figure 15.7: (a) Initial condition for hybrid adjoint-Newton descent initial
residual of the spatiotemporal mapping F 2

0 = 4.14084684359. (b) Output of
the spatiotemporal adjoint method F 2

adj = 0.0992808956991, (c) resulting spa-
tiotemporal fixed point after applying Newton’s method , F 2 ≈ 10−15.
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do? Is the idea that you are using numerical derivatives instead of using
the exact

The idea was to get the algorithms worked out for Rössler as even though
there are only 3-dimensions, the spatiotemporal system of equations one
must solve to find Newton updates will have dimensionality 3M where
M is the number of time discretized points, therefore for a long peri-
odic orbit even in a small dimension system the dimensionality of the
spatiotemporal system can be as large as in Kuramoto-Sivashinsky equa-
tion if searching for very long orbits in Rössler, i.e. upwards of twenty
Poincaré section returns.

2017-10-06 Matt : Some thoughts about numerical difficulties I have been fac-
ing. Predrag indicated that perhaps I should look towards collocation
methods as a numerical remedy for my situation. I don’t mean to be
picky but I have been confused about this statement as Fourier (spectral)
methods are collocation methods. The goal is to find coefficients s.t. the
solution can be written as an expansion in some basis, (i.e. a Galerkin
method is a collocation method with imaginary exponentials as the ba-
sis, Chebyshev Collocation is the same but with Chebyshev polynomials
as the basis.)

I think I have realized the difficulty with application of collocation meth-
ods with finding spatiotemporal fixed points. The main problem in using
spectral methods for this problem is that not only are we trying to find
the coefficients that minimize some residual such that the discretized so-
lution exactly satisfies the underlying equations, but when changing the
domain size L and period T the basis functions (Imaginary exponentials
etc.) are ALSO changing. One might be able to get around this by cre-
ating a numerical procedure that fixes the domain sizes, finds the best
coefficients for that domain size, then allow the domain size to change
but this really isn’t in the spirit of finding a spatiotemporal solution, we
would not like to constrain anything to change.

Therefore, I believe what perhaps Predrag is referring to is a method of re-
laxation, where all derivatives are rewritten as finite differences between
grid points.

I am going to see if adjoint method works better in Rössler with using
finite differences to approximate the time derivatives now

2017-10-06 Matt Reading my last post and realizing that I was conflating two
different things; the way the what I was talking about i.e. trying to match
coefficients of a collocation method whilst changing the basis functions
as well is essentially is represented numerically by changing the values
of a solution while also changing the domain size. I realized that this is
independent of the type of methods being used because numerically the
affect of changing the domain size is necessarily present in both types of
methods. In other words I didn’t think through it enough earlier.
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Figure 15.8: Spectrum of spatiotemporal multipliers associated with the lin-
earization about the trivial solution to the spatiotemporal mapping F . Plot is
in the complex plane. Vertical lines indicate the position of the values−q2

k+q4
k,

horizontal lines indicate the position of ±w`, dots indicate multipliers corre-
sponding to this linearization.

Finite difference code adjoint code stalls just like Fourier code. I let an
idea get to my head too quickly.

Ravi was kind enough to share a draft of his thesis which includes ways
to speed up and improve adjoint descent, which I am currently reading
through.

2017-10-10 Matt : The equations that I will describe are the spatiotemporal
mapping described by discretizing the Kuramoto-Sivashinsky equation
in space and time, and then taking a spacetime Fourier transform that
transforms the equations into a set of nonlinear algebraic equations de-
pendent on the spatiotemporal Fourier coefficients.

The next part of my formulation is to represent the indexed equations as
matrix-vector products where the vector is a M ∗ N dimensional vector
(before taking care of continuous and discrete symmetries). of spatiotem-
poral Fourier coefficients ordered in a a specific manner to be further
elaborated on.

The matrices will be matrix representations of differential operators (time,
space derivatives applied to the spatiotemporal field of coefficients) or
spatiotemporal discrete Fourier transforms.

If I may be so bold as to begin with the equations written in terms of the
Galerkin truncation in space and time of spatiotemporal Fourier coeffi-
cients;
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I will denote the components of the mapping F which is dependent on
all of the spatiotemporal Fourier coefficients ûk,l as such:

F (û)k,` = (iω` − q2
k + q4

k)ûk,l + iqk/2
∑
′k,′`

ûk−′k,`−′`ûk,` (15.52)

Personally, I find it much easier in avoiding to mistakes to represent this
mapping as matrix representations acting upon a spatiotemporal vector,
AND I have elected to represent the spatiotemporal Fourier coefficients
by their real valued representations. The reason behind the real-valued
representations is that there are some underlying conjugacy conditions
due to symmetries in the spectrum such that the number of independent
variables is far fewer than the total number of complex spatiotemporal
Fourier coefficients, and I find it easier to deal with these conditions in
a real-valued representation. If one doesn’t handle these conjugacy con-
ditions then the linear system of equations we desire to solve later will
be singular and yield nonsense. In the words of Viswanath, "Determin-
ing the exact dimension of the vector x can be a little tricky because one
needs to eliminate Fourier coefficients that are conjugates of certain oth-
ers and so on" [41], I elect for simplicity which will hopefully be agreed
upon after reading this.

Due to the ordering of the Fourier coefficients previously not elucidated
upon, the structure of the spatiotemporal vector will cycle through all
values of spatial index k before changing the temporal index `. In a visual
example this corresponds to

[ûk,l]
> = [ûk,0, ûk,1, . . . , ûk,M/2]> (15.53)

This notation can be somewhat confusing,especially more so when dis-
crete symmetries are taken into account, but hopefully I can clarify in this
manner: When I take a spatial Fourier transform with real-valued nota-
tion, then only half of the spectrum k > 0 is independent information.
This is because the configuration space field is real valued, the spatial
Fourier coefficients take follow the conjugacy rule uk(t) = u∗−k(t).

In order to have a real valued representation these must be split between
real and imaginary components, i.e. uk(t) = ak(t) + ibk(t).

Now, ak(t) and bk(t) again constitute real valued series in time, so one
follows the same procedure but in time (different ordering).

By doing so we can formulate differential operators to act on vectors with
such an ordering, in an absence of knowledge about naming conventions,

I will denote W as the differential operator that, using spectral differen-
tiation, produces the time derivative of our spatiotemporal field; equiva-
lent to multiplication of the respective spatiotemporal Fourier coefficients
by iω`.
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Q1 will denote the differential operator that produces the second and
fourth spatial derivatives, equivalent to multiplication by −q2

k + q4
k

Q2 will denote the differential operator that produces the first spatial
derivative divided by two, equivalent to multiplication by iqk/2.

F and F−1 will denote the matrix representations of forward, and back-
ward spatiotemporal Fourier transforms.

As to the explicit structures of these matrix representations, look further
down. With these definitions the nonlinear algebraic equation takes the
following form.

F (û) = (W+Q1)û+Q2F((F−1û)∗(F−1û))where ∗ ≡ entrywise multiplication
(15.54)

For starters let us survey what linearizing about the trivial equilibrium
ûk, ` = 0 yields.

∂F (û)

∂û
|û=0 = W +Q1 ≡ L (15.55)

The structure of L = W + Q1 is copies of −q2
k + q4

k along the diagonal,
and −wk on a superdiagonal and wk on a subdiagonal.

The structure of L is such that the multipliers take the form Λk,l = (−q2
k+

q4
k) ± iw`, in addition to two marginal modes which should are due to

temporal and spatial translations. These two modes are dealt with by
imposing two constraints.

In this regard. If we apply a perturbation to the trivial equilibrium, δû =
δûk=4,`=0 whose L2 norm is reasonably small, then the spatiotemporal
mapping yields F (δû) = (−q2

4 + q4
4)δûk=4,`=0

This is relatively interesting as the spectrum of figure 15.8, if I am in-
terpreting it correctly, seems to indicate that somehow time is related to
rotation while space is related to stretching.

A similar spectrum can be obtained for spatiotemporal fixed points cor-
responding to pre-periodic orbits, except with some modulation in space
due to the nonlinear contribution. for relative periodic orbits most of the
structure is seemingly lost. I don’t have any results from antisymmetric
orbits ∈ U+ but I will try to provide an example of each tomorrow.

2017-10-11 Matt Proofreading Ravi’s Thesis. Learning about his accelerated
adjoint methods, Tried a bunch of silly things that I thought would help
the method converge but upon thinking about them I found myself want-
ing.

Plumbers meeting with more discussion about Burak and Akshunna’s
homoclinic orbits, accidentally muting people, Sadly I can’t remember
the rest right now.
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Talked with P.C. about the notion of spatiotemporal stability, Fuzzy Win-
dows, Cat Maps, Invariants that everyone must be able to reproduce.

2017-10-11 Matt Dynamical sampling talk Talk was hard to understand for
someone without Mathematical training. I didn’t really understand
what was going on for the most part because of the precise language
he used.
What I got out of it is that in the context of viewing a Krylov sub-
space (he never referred to it as such but that’s what it was) as a "sys-
tem" in some sense you can show that certain properties of the oper-
ator are required in order to show the Krylov subspace has proper-
ties such as being "complete" or being a "frame" or its "Bessel-ness".
The most interesting part was him using spectral decomposition of
the operator to show that the Krylov subspace is a "system" only if
the eigenvalues are bounded away from zero and near one. This is
the general condition for when arnoldi iteration (more specifically
GMRES) will be a useful numerical method. Kind of interesting to
see such different language applied to something I have seen so of-
ten. The problem is I don’t understand what "system" means, I think
it might be a linearly dependent basis?

Cynthia Reichhardt Jamming and Clogging of Passive and Active Particles
in Disordered Media Looking at the effect of density on clogging and
jamming. Clogging is dependent on some sort of geometry, Jam-
ming isn’t. Jamming is a phase transition described by a diverging
length scale, i.e. in a solid in order to move one particle you would
have to move them all.
Mentioning of some professor named Barringer whose experiments
set the precedent for the scaling ratios of binary mixtures of disks.
Assumption that motion of disks is overdamped is related to an as-
sumption of friction, but otherwise it is neglected.
Push a disk through 2-d nonhomogenous array of disks, look at how
large its neighborhood of interactions are. As density increase the
neighborhood becomes global.
Now look at density of immobile disks. (previous example was one
fixed disk limit). Number of immobile disks decreases the jamming
density. Corresponds to diverging length scale, once length scales
are equal they should cause jamming, but it turns out there is a crit-
ical density of immobile disks that will cause jamming regardless of
free moving disk density.
Takes a very long time to organize into a clogged state. I.e. an at-
tractive fixed point with very long transient times.
Clogged state described by anisotropy of the arrangement of free-
moving disks and the transient time it takes. Also there is a void
that is typically normal to the direction of the motion.
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Clogging states have a memory because the anisotropic voids cre-
ated by one direction of forcing will become pathways for move-
ment if the direction of the forcing is changed due to the lack of
disks in that region.
To conclude, Jamming is a critical phase transition while clogging is
a non-equilibrium phase transtion.
Now moving on to active matter. Active in the regard that propul-
sion is an internal mechanism. Specifically looked at run and rumble
dynamics of bacteria such as ecoli.
Clustering of steric active particles, are velocities identical?

2017-10-13 Matt :

While it’s not lost on me that I spend too much time learning numerical
methods and not enough Physics, this is what I have to do to get any-
where it seems.

ravi thesis Finished proofreading Ravi’s thesis and learning the material
within.

Adjoint improvements Implemented changes to adjoint code that in-
clude the following combinations

• Ravi’s iterative method
• Ravi’s "rotation" method. (It’s preconditioning)
• Momentum term from Nesterov
• (still crude) adaptive time stepping for RK4

I’m still tinkering with different combinations and definitions for all
of these that maximize speed. The improvements are relatively dif-
ferent from Ravi’s at this point, in about the same computation time
as before I only manage to get an order of magnitude improvement
over my previous methods when applied to the Rössler system. In
the scope of the larger problem which is spatiotemporal Kuramoto-
Sivashinsky equation this might do fine because most of the work
should be done by Newton, we only need to get within a region
where Newton will converge.
The general idea behind Ravi’s "rotation" method is that there are
some Fourier modes that are slowly changing in fictious time, so we
want to maximize the change of these modes in any numerical algo-
rithm we implement. His explanation of the method he decides to
use and the justification falls in line with most justifications I have
read for using preconditioning in any iterative or descent method,
which is, namely, that it varies from problem to problem and unless
the structure of the matrix from the linear system has a specific struc-
ture, then the choice of preconditioner falls to intuition and other
dark arts.
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Yurii Nesterov is a Russian Mathematician who has made great strides
in convex optimization and some of his papers have thousands of ci-
tations due to their impact on numerical algorithms corresponding
to improvements in speed [28]. The classical text on the subject how-
ever seems to be Boyd and Vandenberghe ’s Convex Optimization [3].
If anyone is interested there are also video lectures on Convex Opti-
mization done by Stanford with Stephen Boyd as the lecturer, He’s
a very enthusiastic and insightful lecturer so it’s good to put on in
the background while doing menial tasks. video lectures. Also the
book is available for free on his personal website book.

spatiotemp Spent some time trying to think of a way to exploit symme-
tries in the spectrum of spatiotemporal (Floquet in this case?) mul-
tipliers. I haven’t come up with anything as of yet.

Julia Began reading the documentation of Julia as a means to increase
the speed of Python code.

2017-10-17 Matt : Implemented the accelerated adjoint method for Kuramoto-
Sivashinsky. The initial performance on test cases was very good but for
general initial conditions generated by close recurrence the performance
still needs to be improved.

The general description of the adjoint method is that we are stepping in
fictitious time determined by −J(û)>F (û) as this ensures that the cost
functional will monotonically decrease to 0. The description of the im-
provements can be summed up by the following.

The linear component of the spatiotemporal mapping, and thus the con-
tribution to the Jacobian matrix is dominated by the contribution by the
Laplacian and Laplacian squared terms of the Kuramoto-Sivashinsky equa-
tion. The way it presents itself in the contribution to the Jacobian matrix
of the mapping is to have a dominant diagonal. This is one of the in-
stances where use of a diagonal (Jacobi) preconditioner is motivated.

This is implemented by introducing the preconditioning matrix M such
that the new adjoint direction is given by ∂τ û = −MJ>(û)F (û)

This has its benefits for this system but there may be an even smarter
choice hiding out somewhere.

The other advancement is described in (its a secret Russian paper that
only few may read apparently) [28] that proves that by including a ’mo-
mentum’ term in the iterative process, then the descent process can be
sped up by including a contribution from the previous fictitious time di-
rection. The algorithm that this manifests in is given by
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µ0 = 1

µk =
1 +

√
1 + 4 ∗ µ2

k

2

δûk+1 = δûk +
µk − 1

µk + 1
δûk−1 (15.56)

If the residual increases then the momentum is restarted at µ = 1 and the
iterative procedure begins again.

Just to reiterate, I have implemented these methods for spatiotemporal
Kuramoto-Sivashinsky equation and it can take a (relatively) arbitrary
initial condition and descend it to reduced the residual.

Now specifically, I haven’t found an initial condition that the full hybrid
process in conjunction with Newton works yet. So the next steps are to
implement Newton-Krylov hookstep methods (finally getting to it after
everything else) and clean up the initial condition generation code (which
I started today).

If both of these changes does nothing then the last resort will be to pass
close recurrence initial conditions to a Newton-descent in time in order
to give one of the tangent spaces the correct shape before starting the
spatiotemporal hybrid descent.

The other option is to let the adjoint descent run for arbitrarily long times,
but I’m not convinced this is helpful. We shall see.

2017-10-21 Matt :

spatiotemp Almost finished with the Newton-Krylov hookstep method, read-
ing Dennis and Schnable [10] for the best way to calculate the trust region
among other things.

The first implementation worked with Givens rotations such that the
Hessenberg matrix produced via arnoldi iteration was transformed into
an upper triangular matrix, thereby making the nonlinear optimization
part of GMRES easy to solve, or so the resources say.

I have opted to just use a least squares solver on this part, and a blackbox
nonlinear solver to calculate the optimal hookstep direction, as they tend
to be easier to code.

Mohammad Conversation Mohammad posed the idea at the last plumbers
meeting that I should just derive the spatiotemporal adjoint equations
and then use these to compute the adjoint direction instead of explicitly
forming the Jacobian matrix and computing G(û) = −1 [∇F (û)]>F (û).
We shared ideas back and forth, all of my ideas ended up in required that
we had already discretized the equations, which is what we were trying
to avoid; He mentioned that when he made the statement he thought it
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shouldn’t be too hard but in our conversation it was non-trivial and more
complicated then he had anticipated. To this end, no real progress was
made on my end after thinking about this for a while.

adjoint misc Tried playing around with some other numerical procedures that
I thought would help the adjoint, but I was either not careful enough
when implementing them or there is something else at play. For instance,
I tried implementing dealiasing the nonlinear computation to make them
more accurate but this really wasn’t well received by my spatiotemporal
adjoint descent code.

2017-10-24 Matt

numerics Almost done with the hybrid methods, will be posting statistics
hopefully before tomorrow’s meeting.

The spatiotemporal fixed point code now has the ability to run the fol-
lowing numerical methods in searches.

• Hybrid Preconditioned Adjoint-Momentum-Descent Newton-Krylov
hookstep (Main method)

• Newton-Krylov hookstep

• Damped Newton (For really good initial conditions)

• Undamped Newton (For really good initial conditions)

• Preconditioned Adjoint Descent

• Raw Adjoint Descent

• Momentum accelerated Adjoint Descent.

Standalone Adjoint Descent code, (Preconditioned, accelerated) should
be used if the numerical residual isn’t too important and one just wants
a fuzzy window/smoothing out an close recurrence guess.

Standalone Newton Method Type procedures should only be used if the
initial condition is exceedingly close to a spatiotemporal fixed point (at
least in the case of damped, raw Newton, still need to test the hookstep).

A little work needs to be done on the following before I can proclaim Ta
da!.

• Automated Initial condition generator is still a little rough around
the edges.

• The focus on numerical methods has lead me astray from the time
parameterization for relative periodic orbit fixed points

• The trust-region calculation and general comments in the hookstep
code need to be improved.

• Numerical statistics need to be introduced to determine the efficacy
of the various methods versus each other.
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• Another constraint needs to be implemented for pre-periodic or-
bit fixed points, the current code utilizes constraints on the New-
ton steps such that they are orthogonal to time,space equivariance,
however in the pre-periodic orbit case the direction of spatial equiv-
ariance is an impossibility due to the peculiar form of the Fourier
transforms used that exploit the discrete symmetry. ( I just realized
this today, it turns out that by keeping the terms I did I believe I
might have ’accidentally’ quotiented the SO(2) symmetry, when I
thought I was getting rid of the reflection symmetry. Still looking
into maybe this is close to quotienting O(2). Currently as a work
around I am using something ill-advised (constraining the steps to
be orthogonal to the 2nd and 4th spatial derivatives with no moti-
vation to do so except it improved performance.

• Preconditioning for the arnoldi iteration portion of the hookstep
code should probably be implemented, as it helps a lot for the ad-
joint descent.

In regards to the comments about quotienting O(2) for pre-periodic or-
bits. I’ve been thinking a lot about it today and trying to utilize some of
the teachings of my adviser (Gasp) to try to think about symmetries spa-
tiotemporally. I’m trying to reconcile the fact that the reflection symmetry
present in pre-periodic orbit fixed points can be inverted by translating
by the period of the fundamental domain. (i.e. Ru(x, t) = u(x, t+ Tp)

2017-10-26 Matt automated initial condition generation Still debugging the rela-
tive periodic orbit part of this code, might include the ability to pass
the initial condition to a Newton descent in time just to smooth out
and or correct the tangent space before sending it to spatiotemporal
problem (My last resort if I can’t get it to work for spatiotemporal
initial conditions produced by close recurrence).

janitorial duties The spatiotemporal fixed point code has grown to an
extent that it is becoming far too unwieldy and some of the functions
defined by me were done without a thought as to what to call them.
Most of my time today was spent splitting the file with all of the
function declarations into a number of pieces, and keeping the nu-
merical methods separate. This isn’t exactly progress but I’m hoping
it will speed things up in the future. As it was previously written,
for each numerical method I needed a separate function depend-
ing on the symmetry (isotropy subgroup, stabiliser, etc) of the initial
condition. Now that most of the numerical methods are working I
am trying to rewriting them to be independent of the symmetry of
the solution other than a keyword argument ((switch,flag) for those
who use command prompt to run scripts.) The reason it was written
this way is because I had to formulate it in terms of test-cases and so
usually I choose a certain subgroup to work in at first.
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hookstep Reading Dennis and Schnable [10] to improve the trust-region
calculations for hookstep, it all seems sort of heuristic to me but I’m
sure there are rigorous proofs elsewhere that I wouldn’t understand.
Confusing as well. The general idea is that because of the specific
form of an equation to calculate the optimal hookstep, Newton’s
method in the free parameter is suboptimal, so they introduce lower
and upper bounds on the trust region and a modified linesearch and
also a quadratic model to test the accuracy of the hookstep. Seems
to be needed as John did it as well.

failed attempt I thought perhaps that perhaps applying the adjoint de-
scent on a fixed spatiotemporal area would help poor initial condi-
tions converge, but the adjoint descent really doesn’t seem to agree
with a fixed ’window’. The idea is that before approaching the full
spatiotemporal problem, we should really correct the tangent space
first.

other spatiotemp implementations Still improving functionality of the
code and some small numerical procedures. During the rewrite I
wrote pieces of code to apply least squares to the Newton method
procedures to avoid constraints that seem to vary in there efficacy.
Here’s a short list of things I am trying to get done:

• Dealiasing using 3/2 rule, via prolongation and contraction ma-
trices (spatiotemporal zero-padding)

• Constraint-type keyword arguments
• Preconditioned GMRES
• Statistics on the numerical procedure (i.e. Residual of Cost Func-

tional versus computation time, iterations, function calls, etc.
• Statistics and or plots of spectra and eigenvectors of spatiotem-

poral Jacobian matrix
• Trying to think of spatiotemporal invariants to perhaps use as

axes in plots

2017-10-30 Matt spatiotemp code Finished the reorganization, added some func-
tionality by means of being able to plot residual versus iteration
number for different methods. Included preconditioning matrices
for relative periodic orbit and antisymmetric orbits ∈ U+.

spatiotemp initial conditions Still debugging this. Narrowed down the
problems to taking too large of steps in the integrator and something
ill defined in the Poincaré section piece of code.

Schatz and Grigoriev Group By request of Ravi, I presented some re-
sults of the adjoint method and discussed how it was implemented
for my spatiotemporal problem. Most of the questions came from
Roman G., Mike Schatz, Kimberly S. Roman was concerned about
the marginal directions and whether or not solutions exist.
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(a)

(b) (c)

Figure 15.9: (a) Spatiotemporal multiplier spectrum for ppo10.2, (b) Spatiotem-
poral multiplier spectrum for ppo14.3, (c) Spatiotemporal multiplier spectrum
for ppo32.3. Intersections between horizontal and vertical lines indicate where
the multipliers would be for the u(x, t) = 0. In other words, changes from
this grid indicate differences between the linearized spatiotemporal spectrum
and the full spatiotemporal spectrum. All three solutions converged to within
machine precision when defined on a 32-by-32 spacetime grid; Fourier calcu-
lations done with 15× 31 spatiotemporal Fourier coefficients.
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2017-10-31 Matt spatiotemp Fixed some bugs related to keyword arguments.
All numerical methods are now independent of the particular type
(isotropy subgroup) of solutions other than keyword argument "sym-
metry". Included default values for tolerances, dimension of Krylov
subspaces, adjoint fictitious time, and etc. so that other users don’t
have to think worry about specifics if they just want black box nu-
merical algorithms to work with.
Still working on improving the hookstep algorithm, as well as initial
condition generation code, the initial conditions specifically need
to be pretty precise or else the spatiotemporal convergence will not
work. The hookstep improvements are just confusing as all hell to
me.
The general procedure is to use a modified Newton search for the
optimal hookstep; Using John’s code as a guide I’ve realized there
are quite a few more additions than I orginally thought that need to
be made before I can say it’s "done".

initial conditions Still trying to figure out the bug regarding Poincaré
sections, will hopefully find by the end of the day. For pre-periodic
orbit I am constructing Poincaré sections based on the reflected part-
ner of the initial point returned by close recurrence. I.e. for an ini-
tial condition u(x, 0) I am attempting to produce initial conditions
that shadow pre-periodic orbits by constructing a hyperplane whose
template point is the reflection operation (performed in Fourier space)
Ru(x, 0). and then defining tangent and normal vectors to the plane
based on the first Fourier mode.

misc Realized that my damped Newton is actually equivalent to back-
tracking line-search type Newton due to the fact that I keep reduc-
ing the step size until I find a correction that reduces the residual,
instead of just using a reduced step-size Newton.

2017-10-31 Matt Trying to see if there are any way to use the initial spatiotem-
poral spectra that would determine if a solution will converge or not. For
instance, for the tenth shortest pre-periodic orbit I needed to use a 32-by-
64 space by time discretization to get it to converge. I.e. I had to increase
it by a factor of two.

It should be noted that this factor of two is what I chose not because it
was the smallest increase but rather its the convention I’m used to due to
the fact it improves the performance of FFTs. Now, because I was more
focused on accuracy rather than performance, I have implemented these
so-called direct-matrix methods. I.e. I am explicitly forming everything
in terms of matrices and vectors, so I believe that as long as I retain even
numbers my code will run, meaning that I do not have to sacrifice much
performance to improve the discretization, because I only have to per-
form the FFTs (forwards and backwards, space and time) once.
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I’m going to be testing this in the future, something along the lines of: If
convergence fails, increase the time discretization by two, four, etc. For
the spatial discretization there doesn’t seem to be such an issue due the
fourth spatial derivative, but when I get to large domains I will likely
have to make some adjustments there as well.

Still improving hooksteps, can’t really get this optimization using La-
grange constraints via ref. [10] to work.

2017-11-02 Matt : Reading about trace formulas and zeta functions makes me
think I should rewrite my equations such that everything is a fixed point
with period one. Right now I guess you could say that everything is
represented by fixed points of period two, because F (û) = 0, not F (û) =
û.

In this case then the general formulae I have been using would only need
to be tweaked in a relatively small manner. In order to formulate a func-
tion that follows G(û) = û, we need to do some rearrangement in the
spatiotemporal equations I have been utilizing. (Also, I’m going to switch
up the conventions I have been using for almost a year now to something
more recognizable by the reader).

In what follows Di are differential operators with respect to the index,
and F are spatiotemporal Fourier transform operators.

(Dt −Dxx +Dxxxx)û+DxF ((F−1û)2) = 0 (15.57)

Noting that the operator that equates to the difference of the second and
fourth spatial differentiation operators is diagonal, and not singular by
construction, we can easily take the inverse of the operator (because it’s
diagonal), and we arrive at the equation

G(û) = (Dxx −Dxxxx)−1(Dtû+DxF ((F−1û)2)) = û (15.58)

This might be the “proper" way of doing things, even numerically, be-
cause this essentially scales out the large spatial components due to the
fourth order term.

I’m still learning (slowly) the methodology and intuition behind trace
formulas and zeta functions but this might be the proper way of viewing
things because then all doubly periodic orbits are in fact spatiotemporal
fixed points as opposed to period two orbits. (in other words instead
of a string of symbols N̄ 0̄0̄ . . . in the fictitious dynamics introduced by
applying the mapping function, I am instead identifying the orbit by just
N̄ , where N is a label given to spatiotemporal fixed points.)

2017-11-07 Matt In reference to the post of 2017-03-14, on page 787 in chap-
ter 19 Space-time, blogged I would argue that what I have done is quite
similar to López et al. [25].
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By using the spacetime Fourier-Fourier basis representation of the spa-
tiotemporal field with Galerkin truncations in space and time

am(t) =
∑
n∈Z

âkje
iωjt , (15.59)

The nonlinear algebraic equations in this basis are (1.43). I will restate the
equations here for completeness and comparison to López et al. [25]. In
the spacetime Fourier-Fourier basis, the Kuramoto-Sivashinsky equation
takes the form,[

iωj − (q2
k − q4

k)
]
âkj +

iqk
2

∑
k′

∑
j′

âkjak−k′,j−j′ = 0 . (15.60)

while in López et al. [25], with the ansatz for relative periodic orbit solu-
tions (19.24) the complex Ginzburg-Landau take the form

i

(
2πn

T
− ϕ

T
−mS

T

)
âkj = Râkj −m2(1 + iν)âkj(15.61)

−(1 + iµ)
∑
m′

∑
n′

ak1,j1ak2,j2a
∗
k3,j3 ,

where m1 +m2 −m3 = m′ and n1 + n2 − n3 = n′.

The differences between our methods arise when setting up the equation
as a root solving procedure. In López et al. [25] the numerics is handled
by solving for the roots of the function F (âkj, ϕ, S, T ) = 0 where F is the
function described by (15.61) if one moved all of the terms to one side of
the equation.

In my current procedure, I solve (1.43), or for comparison, F (âkj, T, L) =
0, where T, L are in the factors ωj, qk respectively.

I do not explicitly include variables that control the spatial translations of
the system and, up until now, have elected to search for relative periodic
orbit solutions pertaining to (1.43) by finding them in the first Fourier
mode slice. Part of the reason of this was I didn’t understand the reason-
ing behind parameterizing the spatial translations by t by means of the
factor in the ansatz e−iqk

S
T t. I thought the shift factor had to be explicitly

calculated by the coordinates, and not assumed through this type of time
dependence.

My comments of 2017-11-02 on page 475 were mainly predicated by the
fact that once we find these roots, I don’t think we can apply the same
type of reasoning as Politi and Torcini [30] as they aren’t truly fixed points
of a fictitious dynamical system, like so, F (âkj, T, L) = âkj, T, L. But
rather, like I have already described, they are the roots of a system of
nonlinear algebraic equations, F (âkj, T, L) = 0.

If I am so inclined to change how I search for relative periodic orbits in
the same manner as López et al. [25] I believe all I would have to actually
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implement is this e−iqk
S
T t factor in my ansatz, such that the new equations

for solutions with SO(2) symmetry would be,[
iωj −m

S

T
− (q2

k − q4
k)

]
âkj +

iqk
2

∑
n′

∑
m′

âkjak−k′,j−j′ = 0 . (15.62)

such that the spatiotemporal solutions would now be roots of the nonlin-
ear system of equations, F (âkj, S, T, L) = 0

2017-11-08 Matt plumbers Second part of plumbers meeting was about dis-
cussing why averaging over a line in the infinite spatiotemporal
case is fundamentally different than looking at a finite rectangle or
strip. The latter imposes both length and time scales likely differ-
ent than how nature would impose them and hence any statistics
gained would be necessarily different.

conversation with Andy Discussed variational methods, Jianke Yang’s
code, and applications to Graduate school at length with Andy.

Jianke Yang Read through the code and ran it, the hybrid Newton and
conjugate gradient descent can reach a tolerance value of 10−10 pretty
easily, taking only seconds to run; but when the tolerance is made
more strict then after experimentation with it, it doesn’t converge
even after running for hours; I might be missing something numer-
ically but I guess I’m trying to test his algorithm against the same
standards I’m holding my algorithms.

2017-11-13 Matt Jianke Yang spatiotemp I’ll try to outline Jianke Yang’s pa-
per [43]

He begins with an exposition about the previous work specifically Lan
and Cvitanović [24] and López et al. [25], which are two of the main pa-
pers I work around so there’s likely something I can take from this paper.

Jianke Yang has the following to say about working with an infinite tower
of ODEs versus PDEs.

In this article, we develop a new numerical method for com-
puting time-periodic solutions in dissipative wave equations.
This work is motivated by several reason. First, our view is
that the best way to compute such solutions in PDEs is to do
so in the PDE framework, rather than converting PDEs to large
systems of ODEs or algebraic equations. The advantage of the
PDE framework is that the structure of the PDE is retained, and
important quantities such as the linearization operator of the
PDE can be calculated analytically. Second, almost all numer-
ical methods for time-periodic solutions in PDEs involve solv-
ing lare systems of linear equations. Since conjugate-gradiate
methods are widely recognized as probably the fastest numeri-
cal method for solving linear algebraic and operator equations,
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we are motivated to incorporate conjugate- gradient methods
into our algorithm.

He says that he prefers to work in the "PDE framework" but he uses spec-
tral code to compute all derivatives (due to the accuracy of spectral meth-
ods versus finite differences). I don’t buy the comment about working in
the "PDE framework". He is making it sound like he doesn’t use the
ODEs in Fourier space but this is exactly what he is doing when he uses
them to compute spatial and temporal derivatives. In other words the
basis for his claim for working in the "PDE framework" is that he solves
the resultant linear system (via a combination of Newton and conjugate-
gradient) in physical space versus Fourier space.

If I had to rephrase these comments I would say that he finds it advan-
tageous to compute all terms pseudospectrally; the derivatives are com-
puted in spectral space but the linear system of equations that arise are
solved in physical space. His claim that "no truncation to ODEs or alge-
braic equations is necessary" is nonsense. That’s exactly what is necessary
in order to compute the derivatives spectrally.

Another difference between his code and my own is to use "quasi Rayleigh
quotients" to determine free parameters. (e.g. the period of the solution).

For example, to determine the period of periodic solutions of the Kura-
moto-Sivashinsky equation he rescales time τ = ωt such that 0 ≤ τ ≤ 2π,
such that the PDE can be rewritten as,

ωuτ = F (x, ∂x, u)where, τ = ωt

and then rewrite ω in terms of the solution itself via the so called quasi
Rayleigh quotient,

ω =
< uτ , F >

< uτ , uτ >

such that the original equation now takes the form,

< uτ , F >

< uτ , uτ >
uτ − F (x, ∂x, u) = 0 (15.63)

Due to the inner products (defined as the spatiotemporal L2 inner prod-
uct) the equation to solve now takes an integro differential form, but he
says that this price is worth paying for.

He then derives analytic equations for the linearization of (15.63), which
is going to be the linear system that is going to be solved to yield the
Newton corrections.

In order to apply his Newton conjugate gradient method, he needs to
transform the system such that it becomes self-adjoint, but I feel that any
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exposition into this likely would not be helpful for discussion as its all
numerics at this point. He does however mention the practicality of pre-
conditioning the linear system, which is something that I have been de-
bating.

Further derivations

Due to the fact that J. Yang is writing the spatiotemporal equations as a
root finding procedure, a linear expansion will be required to set up the
system of equations that need to be solved in order to step in the correc-
tion direction (If one thinks about it in the scope of Newton’s method, we
need to be able to linearize about the root such that we derive a linear
system of equations whose solution is the Newton correction).

Due to the presence of this time-rescaling factor ω and its explicit defini-
tion in terms of the so called quasi Rayleigh quotient, in order to linearize
the equation (15.63) about a root, we need to derive the expression for the
linearization of ω(u) = <uτ ,F>

<uτ ,uτ>
.

In other words, we need an expression for ω(u+δu). To get a useful form
of this equation, we first use the fact that we know the linearization for
the function F .

ω(u+ δu) ≈ < (u+ δu)τ , F (x, ∂x, u+ δu) >

< (u+ δu)τ , (u+ δu)τ >

ω(u+ δu) ≈ < (u+ δu)τ , F (x, ∂x, u) + F1δu >

< (u+ δu)τ , (u+ δu)τ >
, (15.64)

where F1 is what Yang calls the “linearization operator" but others would
recognize it as the Jacobian matrix.

We can simplify this expression by substituting the equality given by
(15.63),

ω(u+ δu) ≈ < (u+ δu)τ , ωuτ + F1δu >

< (u+ δu)τ , (u+ δu)τ >
(15.65)

And then just for add and subtract ωδuτ in order to separate into two
terms,

ω(u+ δu) ≈ < (u+ δu)τ , ω(u+ δu)τ + (F1 − ω∂τ )δu >

< (u+ δu)τ , (u+ δu)τ >
(15.66)

After keeping only first order terms in δu we get,

ω(u+ δu) ≈ ω − < uτ , (ω∂τ − F1)δu >

< uτ , u+ δu)τ >
(15.67)
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The whole point of this exercise was to describe the linearization of the
equation whose roots will result in doubly periodic solutions, namely
(15.63).

To derive the expression for the Jacobian matrix of (15.63) we will use
the decomposition elucidated in (15.67). This can be explained by the
following equations,

L0(u) =
< uτ , F >

< uτ , uτ >
uτ − F (x, ∂x, u)

L1 ≡ ∂L0

∂u
= (ω∂τ −

∂F

∂u
) +

∂ω

∂u
uτ

L1 = (ω∂τ − F1)− < uτ , (ω∂τ − F1) >

< uτ , uτ >
uτ

P ≡ (ω∂τ − F1)⇒

L1δu = Pδu− < uτ , P δu >

< uτ , uτ >
uτ (15.68)

With this definition we can then solve by iterative methods the system of
equations given by,

L1δu = −L0 , (15.69)

such that when when L0 = 0 we have found the solution.

This is the general derivation for one extra parameter (in this case ω,
which is a taking the place of period), the general derivation for a two
parameter case (which is necessary to allow period and domain size to
vary) is the next undertaking.

2017-11-13 Matt initial condition generation In order to reduce the number
of garbage initial conditions, we first pass through a close-recurrence
problem that sifts through en ergodic trajectory for a possible place
that we can set up a Poincaré constraint. This is done by time-
integration followed up by computing ||u(x, t0)−σu(x, t0+τ)||where
σ is the relevant symmetry operation for the type of orbit we are
searching for.
The current Poincaré procedure can be defined by the following:
For an example point defined by its spatial Fourier coefficient repre-
sentation u(xn, 0) =

∑
k(ak + ibk)eiqkxn ,

For pre-periodic orbit solutions, I define a Poincaré section whose
template point is the reflection of the real component of the first
Fourier mode. Namely,
ûtemplate = [0− a100 · · · − a1]>

Note: a1 = a−1 by conjugacy symmetry of Fourier coefficients of
real valued function.
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Then the Poincaré section constraint is defined by this template point,
as well as the transverse component of the velocity evaluated at the
spatial reflection of our starting point, or written as an equation,

U(û) =< ûtemplate − û|n̂ > where, n̂ =
v(Rû)− < v(Rû)|t̂ > t̂

||v(Rû)− < v(Rû)|t̂ > t̂||
(15.70)

In order to ensure that the transversality condition is always to find
U(û) = 0 between the two points U(ûn−1) < 0, U(ûn) > 0, we in-
clude the orientation of the velocity in the definition of n̂.

2017-11-14 Matt Spatiotemp reformulation continued Working my way to-
wards an implementation of the reposed spatiotemporal problem
that involves inverting a differential operator (the sum of second
and fourth spatial derivative operators) defined by equation (15.58),
restated here for completeness.

G(û, T, L) ≡ D−1
X (Dtû+DxF (F−1û)2)− û = 0

DX ≡ Dxx −Dxxxx (15.71)

Such that the reposed problem is truly a fixed point problem,G(x)−
x = 0, instead of the similar root finding problem F (x) = 0. I believe
that this can be motivated theoretically in terms the desire to have
some spatiotemporal notion of stability of these solutions as well as
cycle expansions.
When treated as the true fixed point problem, the action of G(x) on
doubly periodic solutions is an involution, meaning that points get
mapped to themselves. Although this last statement is obvious, I
am stating it because it demonstrates the (what I consider to be) un-
natural behavior of the alternative problem, where, no matter where
you are in this spatiotemporal state space, every doubly periodic so-
lution gets mapped to zero under the action of F . I believe this to be
unnatural because if you’re looking at the linearization of this spa-
tiotemporal function F you are looking at the linear neighborhood
at a point in spatiotemporal state space that is necessarily far away
from the original doubly periodic solution. Also, the other part I
find unnatural about this is that because every doubly periodic so-
lution is being mapped to zero, all of the solutions are in a sense
being identified to one another no matter where they really exist.
There is probably a smarter and or more precise way of rephrasing
that last sentence but its the best I could come up with.
The other perspective on why being mapped to zero seems unnat-
ural is in terms of the symbolic dynamics, intuitively each doubly
periodic solution (tile, rectangle, etc.) should be able to be identified
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by a symbol; In the root-solving formulation it is impossible to for-
mulate a fictitious discrete time with the spatiotemporal mapping
because the itinerary would look something like N̄ 0̄0̄0̄ . . . .
On the other hand, this is also well motivated in a numerical sense
because the reformulation inverts an operator who is comprised of
numbers ranging from order unity to numbers orders of magnitude
larger. This is poor for iterative methods unless one introduces a
preconditioning, because these large diagonal elements will a large
range of eigenvalues. The reason this is poor, for say, Newton-
Krylov method is that for an example when there is one dominant
eigenvalue, the power iteration that produces the Krylov subspace,
Kn = b, Ab,A2b, . . . will tend to converge to the most dominant
eigenvector, and hence its known that such methods work best when
the eigenvalues are clustered near unity.
So effectively, by reposing the problem by inverting the diagonal
operator I am effectively rescaling space as one might do by either
preconditioning or by defining a Sobolev norm to use instead of the
usual L2 norm.

misc Also now that I am more comfortable with the fundamentals I am
moving away from the direct matrix notation in favor of code that
only uses function calls in order to evaluate the linearization of the
spatiotemporal problem through finite differences rather than ex-
plicitly forming the spatiotemporal Jacobian matrix. This will take
time, PC will probably argue that I have been wasting my time and
or doing the wrong thing all along because this is what Newton
Krylov methods really calls for but that would be wrong; a Krylov
subspace need not be generated by repeatedly evaluating finite dif-
ference approximation of the Jacobian matrix, it can instead by gen-
erated by power series of the Jacobian matrix if it is formed explic-
itly. The main problem with form this matrix explicitly is that it can
be impossible due to memory constraints but so far I haven’t hit that
threshold. Regardless of this disagreement it will be better to rewrite
a different version of the code.

spatiotemp continueds Running current hybrid method formulation on
a batch of initial conditions to see if I can get anything to converge.

known bugs The initial condition generation code still needs to be im-
proved for pre-periodic orbit type spatiotemporal solutions as a false
discontinuity is forming when I conjoin the fundamental domain
and its reflection together to form spatiotemporal initial conditions.
Getting some unnatural results in the GMRES portion of the Newton-
Krylov code where increasing the size of the Krylov subspace gives
worse corrections, should not be possible; I think a debugging pro-
cedure using Rossler is in order; The function definitions are all writ-
ten generally so it shouldn’t take a lot of time.

05/09/2019 siminos/spatiotemp/chapter/blogMNG17.tex482 7451 (predrag–6859)



CHAPTER 15. MATT’S 2017 BLOG

2016-11-29 Matt :

Coding I added code that works in physical space after computing deriva-
tives in Fourier-Fourier space, the main incentive was to try and see
if Jianke Yang’s claim that it’s better to work in the "PDE frame-
work" agrees with me. Sadly it doesn’t seem to be the case for me. I
didn’t do things exactly like he did, and I guess what I in fact imple-
mented could be described by saying "everything is the same except
the linear system of equations that I need to solve are in terms of the
physical velocity field u and not its spatiotemporal Fourier compo-
nents."
During this process I find it rather confusing and intriguing that the
code I have written that compute hooksteps minimizing the quadratic
residual |Adx−b|2 with the constraint |dx|2 ≤ δ2 where delta is some
trust region seems to only work in physical space for me. The main cul-
prit is that when trying to minimize the quadratic form |Adx − b|2
we rewrite this to exploit the fact that GMRES calculations have al-
ready been performed; Namely using the arnoldi iteration recursion
relation between the matrices

AQn = Qn+1Hn where

Qk refers to a matrix whose columns span the kth Krylov subspace,
to rewrite the quadratic residual as,

|Hns− b|2 where ,

dx = Qns. Performing a singular value decomposition onHn allows
us to simplify the problem such that linear system becomes diago-
nal. i.e. with Hn = UDV >, and performing some algebra, we are
left with

|Dŝ− b̂|2

In the above equation ŝ = V >s and b̂ = U>Q>n+1b, with ŝ being
constrained to be within a trust region described by delta. |ŝ|2 ≤ δ2.
The main way that this problem is tackled by Dennis and Schnable
[10] is to assume the dependence on a new parameter µ such that

ŝi =
b̂i

di + µ
,

and then use a modified Newton method to find zeros of the func-
tion

Φ(µ) = |ŝ(µ)|2 − δ2 .

The reason why they use a modified Newton (one that seems to be
very specific to the problem) is that due to the form of the presumed
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dependence on µ the regular Newton is found to be suboptimal in
the sense that it always undershoots when making correction. The
form of the modified Newton to optimize this µ is the following

∆µ =
|ŝ(µ)|Φ(µ)

δ′Φ(µ)
(15.72)

which can be seen that the modification is in the form of the prefac-
tor ŝ/δ
Now the main problem (with unknown reasons) is that the for the
spatiotemporal problem in Fourier-Fourier space, the residual vec-
tor is much smaller in magnitude, such that ′Φ(µ) is near zero; and
as such the process essentially contains a division by zero. This is
discomforting as it makes it seem like perhaps the hookstep isn’t so
well suited for whatever reason. GMRES still works fine, although
the dimension of the Krylov subspace for adequate reasons reaches
the hundreds per Newton iteration.
GMRES with the reformulated problem does indeed work better
than in the original problem it seems. As strange as it sounds, ba-
sic Newton works for the original formulation of the spatiotempo-
ral equations but not for the reformulated equations that have bene
rescaled by the laplacian like terms; for GMRES its the exact oppo-
site.

mohammad spatiotemporal adjoint The first iteration of this doesn’t seem
to work too well; I’m unsure if this is due to some parameters in the
integrator (i.e., do I need more spatial Fourier modes?) or a bug
elsewhere.

4

2017-12-12 Matt hookstep Added in sophistication that John Gibson uses, but
frankly I am getting much better results by just using GMRES and
little the dimension of the Krylov subspace go higher.
The sophistication compares the reduction in residual of the spa-
tiotemporal mapping between a linear model, quadratic model, and
the hookstep correction. Either I am not optimizing the parameter
that determines the hookstep correctly or the trust region isn’t being
determined well; The change I made was to have the radius of the
trust region start with a value equal to the L2 norm squared of the
residual, as an arbitrary larger number makes it so the optimization
process fails; which is to be expected I suppose.

4Matt 2017-12-06: The problem seems to be one of different scales, the magnitude of the typical
element of b̂ is of order 10−6 while the order of the typical element of D, the diagonal matrix that
arises is of order 102; this large discrepancy ensures that the modified Newton is ill-defined as the
values for ′Φ will be very close to zero.

05/09/2019 siminos/spatiotemp/chapter/blogMNG17.tex484 7451 (predrag–6859)



CHAPTER 15. MATT’S 2017 BLOG

Lopez reformulation Trying to rewrite the relative periodic orbit code so
that I can avoid using slices for two main reasons, in order to rescale
the equations to better work with GMRES and to avoid the in-slice
parameterization. This will instead of quotienting the SO(2) sym-
metry but instead keep track of it via a shift parameter. The way the
López et al. [25] discusses this is that it reduces the two-frequency
problem on a torus to a one frequency problem. The main reason is
that when using slices it makes it hard to rescale the equations by the
Laplacian squared term like I have done for pre-periodic orbit solu-
tions. The reason I want to do this is because GMRES seems to work
much better with the rescaled equations as it’s preconditioning in a
way. The general interpretation is that it’s a choice of moving frame
where the parameter determining the what??

2017-12-13 Matt .

initial condition generation Testing more stringent conditions to hope-
fully produce better initial conditions for spatiotemporal code, they’re
crude bounds such that during the close recurrence searching pro-
cedure there is now a maximum allowed value for the L2 norm, and
after a Poincaré intersection has been obtained there is now a trial to
compute what the L2 norm would be for the resultant spatiotempo-
ral mapping. This is helping produce some better initial conditions
which will be passed to the hybrid adjoint Newton-Krylov code I
have currently. I’m also trying to be less brash by choosing a value
for the initial domain size that is closer to the L = 22 domain size,
currently I am trying to find pre-periodic orbits for a L = 24 domain
size.
Also instead of the whole save point routine I have elected to go
for random initial conditions and integrating out the transients each
time as sometimes I would end up on the stable manifold of an equi-
librium for a long time which would waste a lot of computing time.

relative periodic orbit reformulation Realized that reformulating the rela-
tive periodic orbit spatiotemporal code to encode the SO(2) shift
with a parameter is a larger undertaking then I thought, due to all
of the different dependencies of the code I have currently; The gen-
eral idea is that the shift can be parameterized by time, although I
still feel like this is somehow only incorporating a specific time of
translation; In other words I can’t shake the feeling that
The general idea is to produce an ansatz for the relation between
endpoints (initial point and the endpoint i.e. point after one prime
period) on a relative periodic orbit in such a fashion (described in
terms of spatial Fourier modes to make the representation of the
translation easier),

ûk(0) = eikSt/Tp ûk(T ) , (15.73)
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where the spatial drift, shift, etc. is parameterized by time and a
shift parameter S. The form of the rescaled spatiotemporal mapping
would then take the following form.

x = (û, T, L, S)

G(x) ≡ D−1
X ((Dt +DS)û+DxF (F−1û)2)− û

DX ≡ Dxx −Dxxxx (15.74)

where x is a vector representing all of the varying quantities (û, Tp, L, S),
and DS is an operator representing the time derivative of the expo-
nential prefactor in (15.73)
Then the spatiotemporal fixed points would be the zeros to this
functionG(x) = 0 otherwise referred to by me as the spatiotemporal
mapping.

2017-12-13 Matt I think most of my problems might be solved by developing a
little bit more patience; By producing finer time integrations in the initial
condition generation procedure and allowing the hybrid adjoint descent
to run for longer I am getting closer to convergence, as opposed to have
things quickly be produced and quickly converge.

The implementation of the bounds and other associated quantities for
hooksteps and double doglegs in refs. [7, 13] are what ??.

2017-12-14 Matt spatiotemp Finally got a machine precision convergence for
an arbitrary initial condition (i.e. not one of the solutions provided
by someone else). I believe if I run the adjoint hybrid method long
enough and have an accurate enough initial condition then the con-
vergence is global.
The method uses the adjoint descent and then is followed up with
Newton-Krylov hookstep where if the GMRES solution does not re-
duce the residual significantly enough then the hookstep is calcu-
lated with the conditions provided by ref. [7]. The trust region ra-
dius is determined by if the first hookstep in each Newton iteration
is successful in reducing the residual then the radius is doubled, and
every time it fails it is reduced by half.
The main issue now is to try to trawl state space for the best possible
initial conditions for the method.
The solution that was found was initialized by finding minima of
the L2 norm of a close recurrence procedure and then the entire spa-
tiotemporal representation was produced by time integration. This
next point is probably going to be the most contentious point I’m
going to make, but in order to get a better initial condition for the
full spatiotemporal problem I passed it to the variational Newton
descent I had in time to correct the tangent in time first. I don’t
think this is being too restrictive because the residual (L2 norm of
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(a)

(b) (c)

Figure 15.10: (a) The very rough initial condition produced by close recur-
rence and intersection of a Poincaré hyperplane determined by a state space
point’s reflection L = 24, T = 23.8125. (b) Where the spatiotemporal ini-
tial condition ends up after variational Newton-descent in time L = 24, T =
31.997939649161918. (c) The final spatiotemporal fixed point after hybrid ad-
joint descent with the reformulation of the preperiodic spatiotemporal map-
ping, with final domain size and periodL = 24.0714310445, T = 31.8597201649
.
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the spatiotemporal mapping) only changes by one order of magni-
tude in the original formulation or two orders of magnitude in the
rescaled formulation (15.58). So, even though it has been converged
in the time-dynamical system sense, it is still many orders of mag-
nitude away from machine precision residual in the spatiotemporal
residual sense.
For comparison, a periodic orbit that is reproduced with known co-
ordinates and time integration would have a spatiotemporal resid-
ual would most likely start around 10−6 if has been produced well.
The reason I did this was merely to improve the initial conditions. I
don’t find it to be somehow cheating because when I pass it to the
spatiotemporal problem everything is still allowed to change just in
the way that it was if I had passed the original initial condition to
the spatiotemporal problem. This can likely be conquered by merely
producing better initial conditions, which I think can be achieved
with more patience in the process.
Something else I could do is try the adjoint descent in physical space
as opposed to Fourier-Fourier space.

2017-12-20 Matt : Tried to trawl state space for initial conditions for my spa-
tiotemporal code and realized that it ran really slowly for small step sizes
(large number of steps). Figured out how to speed it up by rewriting
some key parts of the close recurrence calculations; realized I was sloppy
when it came with the actual optimization previously. Essentially by un-
rolling some ’for’-loops and rewriting some key portions I was able to
dramatically speed it up.

Instead of the Poincaré constraint in addition to close recurrence calcu-
lations, which are in my mind somewhat redundant because I’m trying
to compute approximations I instead played around with a number of
different procedures that only relied on close recurrence calculations, i.e.
minimizing the L2 norm of the difference between two state space points.

Something that I experimented with numerically was a procedure that
computed a coarse time-integration and then if the L2 norm was within
a certain tolerance, it would be recomputed with an increased number of
time steps. This would produce great initial conditions in a small number
of cases, where the local minima in the close recurrence diagram actually
corresponded to a recurrence, as it would rightly increase the accuracy of
both the starting point of the orbit, the ending point, and the period. I’m
sort of deciding between this and just running one close recurrence trawl
with fine integration, because in the majority of cases the local minima of
the L2 norm is just happenstance and not related to a useful recurrence.
One of the symptoms of this is that in certain instances the finer time-
integration would actually increase the minimum of the L2 norm. This
didn’t make sense to me, and could be due to the exact way I had the
procedure implemented, i.e. taking the minimum from the coarse close
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recurrence procedure and then using it as the starting point for the fine
close recurrence procedure might be too hopeful, and it might be best to
just start at the same point with the same time range.

So, essentially I sped up the routines to give at least better performance
in terms of number of initial conditions, but the accuracy of such initial
conditions could use a little tweaking in terms of bounds and implemen-
tation.
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Chapter 16

Matt’s 2018 blog

2018-01-08 Matt initial conditions I believe all but one issue are ironed out
now, the only problem that still arises is when an orbit gets stuck
near an equilibrium for the entire length of time integration of a
close recurrence will the initial condition generation produce some-
thing not worthwhile.
The way that this was accomplished was by tuning the restart proce-
dure as well as tuning time integration in the close recurrence pro-
cedure, as well as the total time being integrated, number of time
steps. I have abandoned the Poincaré hyperplane in favor of this
fine time integration. I also abandoned playing around with run-
ning a coarse time integration and then refining it as this produced
strange results. I thought that it would merely produce a larger re-
gion around the local minimum (region of the close recurrence plot)
by tuning the amount of time integrated of the second time integra-
tion as well as increasing the number of time steps but sometimes
this procedure would either restart in the wrong spot or miss the
local minimum returning a larger (in terms of the residual of the L2

norm of the difference between starting and final points.) Therefore,
I decided it was wrothwhile due to other speed-ups to just perform
the finer close recurrence and if nothing is found then just restart.

spatiotemp code In between testing these new initial conditions I have
decided to rewrite and add some different ways that the hookstep is
calculated. This is due to there being a lack of safety nets for when
the hookstep code previously would fail and the code would have
to abort. This seems to be due to trying to optimize a hookstep for
too large of a trust region. While normally you would just check
the residual and then if it isn’t reduced, one would reduce the trust
region and continue. But, in my case this would lead to numer-
ical overflow and the code would abort. Therefore, a safer, more
constrained optimization protocol had to be adopted. Now, the pa-
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rameter that computes the size of the corrections is always bounded
and if it fails to lie in these bounds, a value is chosen based on the
iteration.
In other words when asked to find a vector ŝ that minimizes ||Dŝ−
b̂||2 subject to ŝ ≤ δ, the general solution is given by [5, 16],

ŝ =
b̂di

d2
i + µ

(no summation) , (16.1)

i.e., this is the solution that minimizes Φ(µ) = ||s(µ)||2 − δ2.
Now I will elect to follow the procedure in ref. [16] that instills bounds
on the parameter µ. The lower bound will be chosen by the “normal"
Newton procedure instead of the one that is adapted to solve for µ
for this problem.
During each iteration to update µ, we calculate lower(`) and upper
(u) bounds by

Initializing them at first by `0 = − Φ(0)
Φ′(0) and u0 = |∇F (xc)|/δc.

Then at each step for the lower bound we increase the lower bound
by taking the maximum between

`N+ = µc −
Φ(µc)

Φ′(µc)
(16.2)

and the current lower bound.
To update the upper bound we decrease it by taking the minimum
between the current upper bound and the current value of mu,

u+ = min(uc, µc) (16.3)

where + indicates the next value of the parameters, and “c" indicates
the current value (following [16] notation as to not confuse myself).
The next iterate µ+ is calculated by the ’adapted’ Newton method.

µ+ = µc −
s(µc)

δc

Φ(µc)

Φ′(µc)
(16.4)

and then tested to see if it lies in our trusted region [`+, u+]. If it
doesn’t, then the next iterate µ+ is taken to be max((`+u+)1/2, 10−3u+)
which Dennis and Schnable claim is most often used to calculate the
initial value µ0.
We then let the iteration run until the norm of the hookstep lies in
our trust region. (I might change this to be until the residual of the
function Φ(µ) is minimized sufficiently).
After these changes, we then need to decide to do with the trust
region and our current hookstep. If the hookstep does not mini-
mize the residual sufficiently when compared to the linear model,
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we need to decrease the trust region radius (which they say they just
do by halving it but also give details on calculating a multiplier be-
tween one tenth and one half). If the residual compares favorably to
the quadratic residual then we can keep this as a backup step before
increasing the trust region radius by a factor of two and attempting
to try again.

2018-01-10 Matt Finished the implementation of most of the changes to hook-
step and initial condition generation, whether they need any changes is
up to testing that is proceeding now.

Used new initial condition generation code to generate a few hundred
guesses for spatial domains that take integer values in the rangeL∃[22, 43].
Now I just need a little time to run code and see if anything converges

2018-01-12 Matt invariant 2-tori Fixed errors in the blog. Uploaded Figures,
now to expand on them.
The first set of figures figure ?? is an example of using variational
Newton descent in time to improve an arbitrarily poor initial condi-
tion such that it converges under application of my spatiotemporal
fixed point code after the Newton Descent.
The second set of figures in figure 16.1 is an example of conver-
gence without using any modfication beforehand via Newton De-
scent. The solution was converges to within machine precision by
using a hybrid method. Namely, the initial condition was first run
through Mohammad’s adjoint descent and then once a certain num-
ber of steps had been taken (In practice this is set to a fixed num-
ber of steps but it is usually a sufficient number to reach a region
where the adjoint descent only provides marginal improvement).
Secondly, it was sent to an adaptive Newton method, that decreases
the residual of the cost functional by decreasing the step length until
this is ensured. I elected to try this method because even though I
completely changed the hookstep code it still doesn’t seem to be up
to snuff when it comes to efficiency.
The perplexing part about the spatiotemporal fixed point in figure 16.1
is that while the initial condition represents one period of a pre-
periodic orbit, the final, resulting spatiotemporal fixed point is seem-
ingly five copies of a shorter orbit (in time). As there is little differ-
ence between (b) and (c) in figure 16.1 it seems this is due to the ad-
joint descent. It could just be an inaccurate initial condition, or per-
haps the adjoint descent is missing the longer orbit for its shadow.

initial conditions It turns out the vast majority of initial conditions were
equilibria; I instilled a lower bound that should prevent these from
being generated, but it’s a very heuristic process.

2018-01-16 Matt Robust modes in hydrodynamic flows Read Professor Gunaratne’s
paper that is the focus of his planned talk here. I was going to
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(a)

(b) (c)

Figure 16.1: (a) Initial spatiotemporal initial condition, whose dimensions are
(L, T) = (22.0, 103.125). (b) Approximate spatiotemporal fixed point after ad-
joint descent, (L, T) = (22.026, 103.13). (c) Converged spatiotemporal fixed
point after hybrid method, (L, T) = (22.232, 102.94).
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ask whether partitioning simulations in space and comparing their
spectra would also be a valid or worthwhile endeavor as currently
he takes a series of snapshots of the flow in a computational cell,
uses subsets to compare spectra in time. (I believe the subsets were
the full series, the first half, the second half, even numbered snap-
shots and odd numbered snapshots). Dynamic mode decomposi-
tion is then performed on these subsets and robust modes are de-
fined by modes that are common to all subsets.

spatiotemp Almost done with the automation procedure to find spa-
tiotemporal fixed points associated with pre-periodic orbits. I com-
bined the initial condition generation code and the solution converg-
ing code into one Python script. What it will do is work through
different domain sizes one-by-one, produce initial conditions for
the convergence code, and if the initial conditions satisfy certain re-
quirements on the residual of the cost functional, run the conver-
gence code on it. Currently have it setup so that long trawls of state
space are performed as opposed to shorter more accurate trawls,
getting some weird results so it could be the step size is too large,
however.

hookstep Fixed the bugs regarding trust region being too large; in which
case the optimization procedure would fail or give nonsensical re-
sults because the parameter involved would diverge towards nega-
tive infinity. In other words, it seems to work when the approximate
solution first evaluted at µ = 0 in (16.1) is larger than the trust re-
gion. I.e. it works when |ŝ(µ = 0)| > δ. Then, by the effect of increas-
ing µ ensures that the solution’s norm is being scaled back to within
the trust region. If the norm of s(µ = 0) < δ then the optimization
tries to enlarge the approximate solution by making the denomina-
tor smaller via cancellation. I find no mention of the in ref. [16] but
they do have a chapter on rescaling. The reason why this is so con-
fusing to me is that I thought by using my reformulated, rescaled
equations I would have already dealt with any scaling issues but it
seems it isn’t so easy. I’m going to test if whether the original for-
mulation shares this property or not, meaning that it could be the
case that the original equations are more useful in using the hook-
step method and the rescaled equations are better for descent and
regular Newton methods. I find this hard to be the case because I
know a properly scaled matrix is almost required for GMRES to be
useful, as it includes power iteration of matrix vector products so
maybe there is still yet another problem with the hookstep code that
hasn’t been found as of yet.

slides Uploaded some crude slides with the basic ideas of what I’m work-
ing towards. Hopefully will be able to discuss with Professor Gu-
naratne.

2018-01-18 Matt tori finder Have the automated code up and running on my
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terminal, still need to learn how to tweak its priority, strangely the
CPU usage during the close recurrence procedure is seemingly soft
limited to one core but the convergence code is jumping to all eight
cores. Going to keep an eye on it for the time being.
I might elect to do a different residual criterion that just uses norms,
right now it calculates a time integration series, and its reflection.
Then the close recurrence criterion is based on the L2 norm between
the reflected series and the physical one; the rational being that if
we pass through one prime period of a pre-periodic orbit, then the
endpoint should be the reflected partner of the initial point. The
problem with this is for every time t the L2 norm of the difference
with every reflected future point must be computed. A more effi-
cient solution might be to just compute all of the L2 norms once and
then trust that if an initial point has a similar norm of a reflected end-
point, then they are symmetric under reflection. This seems hopeful,
and I feel like I’m almost being academically dishonest at this point
because this is yet another idea from López et al. [43].

rpo reformulation Reformulating the relative periodic orbit portion of
the code to use a co-moving frame. This is the only option I believe
if I would like to rescale the equations, as the first Fourier mode slice
would be very nasty. This method also avoid rescaling time.
The general idea is akin to López et al. [43] where the approximate
solution or initial condition is shifted into the co-moving frame to
first make the initial condition truly periodic and then the inverse
shift is kept track of so that the “true" solution (the one in the initial
frame) can be recomputed after convergence. If I’ve understood ev-
erything this should allow for the following equations, note the very
similar rescaling by the inverse of the diagonal operator containing
the second and fourth powers of the wavenumber.
The one trade-off of this method is increasing the dimensionality of
the problem by one, this is because of the extra parameter keeping
track of the shift.

G(û, T, L) ≡ D−1
X ((Dt + S)û+DxF (F−1û)2)− û = 0

DX ≡ Dxx −Dxxxx

S ≡ diag(
−im`
T

) (16.5)

where, the definition of the operator S comes naturally from the def-
inition of the shift required to transform from the co-moving frame
to the initial frame, ˆ̂u = e

−im`pt
T û. I’m cheating for the sake of sim-

plicity in typing the equations because I’m actually using the real-
valued representation where the operator is actually an off diagonal
SO(2) type matrix.
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2018-01-21 Matt automated code Automated code snagged over the weekend
due to an error in the minimum allowed trust region length. Easy
fix, restarted, It had found only the trivial equilibrium solution be-
fore this restart. On a more optimistic note, limiting the cpu us-
age and other related matters are much easier than I anticipated.
For some reason I had it in my head I had to do this in Python
which makes me laugh now because I run my scripts on the ter-
minal through the command prompt. For reference using the ’nice’
command sets priority and ’cpulimit’ is pretty self explanatory.

rpo reformulation I think I have the way I need to implement the co-
moving frame code down, but there are some intricacies that I need
to decide on before I try to assimilate the new code into the old,
like when and how I solve for the initial shift factor, whether this
is done after the initial condition is generated or after its passed to
convergence code. The functions that are required are well on their
way. Before implementing these things spatiotemporally I’m mak-
ing sure I understand the shifting procedure in Fourier ×t so that I
don’t flounder around like I have in the past. Also going to be do-
ing my testing with the shortest relative periodic orbit from Xiong’s
library.

2018-01-22 Matt Picking some of the low hanging fruit with adjoint Newton
method, uploading some more figures and converged data. Still working
on the co-moving frame implementation for relative periodic orbit code.
Taking longer than I thought, finished the implementation for the shifting
parameter now just need to redefine the spatiotemporal mapping, and
some partial derivatives.

Went to an interesting talk on the dynamics and input-response analysis
of worms and fruit flies. Apparently the locomotion of worms can be
described by only four eigenmodes.

2018-01-23 Matt Torus Jacobian matrix In a ChaosBook course lecture, Pre-
drag asked me to formalize the T 2 Jacobian matrix, the Jacobian
matrix of the torus that has semi-flow properties in space and time.
I believe one would say this is a specific case of a Jacobian matrix for
manifolds with two compact continuous directions. It must obey pe-
riodicity in space and time, as opposed to just time in the dynamical
systems point of view.

coding Still writing the new relative periodic orbit code, and my treatise
on why I believe it will work. Need to talk to Predrag as he be-
lieves that a comoving frame representation is just the wrong way
of handling things. I agree that this is by no means quotienting any
symmetries, but I figured that the main benefits (No slicing, no time
rescaling,easily recovering the full state space representation of the
torus) outweighed the downside of having to keep track of a shift-
ing parameter, marginal direction. I believe Predrag would say that
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I merely need to extend the idea of slicing and Poincaré sections to
the spatiotemporal world view but this has always confused me,
hopefully for good reason.

spatiotemporal fixed points The automated code running on my termi-
nal has only acquired equilibria (trivial and nontrivial) so I need
to make some changes. I dramatically increase the time integra-
tion lengths in order to hopefully acquire more accurate guesses,
but have yet to see if this is improving things or just slowing things
down. Will report tomorrow hopefully.

2018-01-30 Matt Co-moving frame write-up and motivation

Spatiotemporal Jacobian matrix on the torus

Miscellaneous Tried to define a CFL type condition for the initial condi-
tion generation code, also improved the approximate period.
Main problem is getting stuck at equilibria because time steps are
too large and the time integration cannot resolve

2018-01-31 Matt plumbers Christian Hafner gave us a presentation about the
elastica problem and how the basins of attraction for the conver-
gence of Newton’s method to find solutions that minimize a bend-
ing energy cost functional are fractal.

comoving frame write up large write up coming soon

2 torus Jacobian matrix write up Here are some templates from the tem-
poral stability discussions:

example 1.1
p. 30

example 1.2
p. 30

example 1.3
p. 31

2018-02-12 Matt My writing has turned into a greater endeavor than I realized,
due to the fact that when it’s out of context it’s hard to follow. I’ve added
what I currently have to
siminos/spatiotemp/chapter/reportMNG.tex, it’s amazing how
hard it is to write coherently in a scientific paper type style rather than a
blog.

That’s how I’m approaching this, as the beginning of a paper or my thesis
proposal.

Also updating a bunch of codes. For more scientific writing refer to
changes in MNGReport.tex

2018-02-12 Predrag Thanks for taking the initiative, I’ve been thinking along
the same lines. Remember, your thesis proposal and thesis templates are
in siminos/gudorf/, so start moving science parts of the blog rather
than siminos/spatiotemp/chapter/reportMNG.tex (this currently
has one macros to fix) there - we need this also for papers, once we are
ready to write them...
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2018-02-16 Matt Floquet Theory for PDEs Requested the text, Floquet The-
ory for Partial Differential Equations (1949) by Peter Kuchment [39]
to help with spatiotemporal Jacobian matrix. On this note, I went to
the math talk A Newton-like Method for Computing Normally
Hyperbolic Invariant Tori but didn’t learn much as it was
de la Llave’s new student’s first talk. They basically discussed re-
sults from [28].
Afterwards, I questioned Prof. de la Llave and he said that what
I was trying to do was basically Bloch’s theorem, because Floquet
Theory is a linear theory. I’m going to wait to get the book by Kuch-
ment [39] until I make a verdict. Also he recommended the work
of a poor man who was sent to a Siberian work camp and led a sad
life afterwards, Serguei Kozlov, and his work on the reducibility of
quasiperiodic differential operators. Sadly, I have yet to find this
work in a language other than Russian. Other searches of the same
topic led to multiple papers but I can’t tell whether they’ll be of any
use. I did find one that seemed somewhat promising but I’ll have to
read it before I can really tell.

Introduction to Ergodic Theory The following are collections of notes
from Leonid Bunimovich’s talk on Introduction to Ergodic
theory

Ergodic Theory began with Boltzmann when trying to describe the
statistical behaviors of many body systems in a classical sense.
For a state space with associated σ-algebra and measure. The major
questions were whether invariant measures that are consistent with
dynamics exist. The definition of invariant measure was built with
the notion of preimages, because even in the simplest example of
a non-injective function, the image of a subset will increase in size
but the pre-image of a non-injective function will remain invariant.
Example given was the tent map. The length of the image of any
interval will double in length, but the preimage maintains the same
length, therefore length (Lebesque measure)is an invariant measure
of the tent map when described with respect to preimages. Formally,
this is written,

µ(T−1A) = µ(A) ,

where, A is a subset of the state spaceM.
For a generic system there can be numerous invariant measures, so
the next question that arises is what are the natures of invariant mea-
sures?
If we know an invariant measure of a system, what can we say about
the time average of a system (discrete or continuous time). I.e. given
an invariant measure, does
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limN → inf
1

N

N−1∑
m=0

f(Tmx),

exist? Is it finite? (T is the operation associated with mapping in
discrete time, m).
What follows are known as Ergodic Theorems. The more important
example, due to Birkhoff, proved that for f∃L1 then the aforemen-
tioned limit converges to another function denoted f̂(x), and the
other more important result that,∫

M
f̂(x)dµ =

∫
M
f(x)dµ

From this integral relation, between f̂ and f it follows that the time
average (the previously mentioned limit) equals the space average
(integral over state space) for any measureable (invariant) function.
This, stated in a slightly different context via the Poincaré Theorem
on Recurrences states that for a subset, A, and invariant measure µ.
If µ(A) > 0 then almost all points of A return to A infinitely many
times. This tells us explicitly that dynamics are recurrent, but tells
us not about the nature of the recurrences (the times between recur-
rences of two distinct points in A are essentially random).
The next point I did not fully grasp when spoke about, but suppose
B is a subset of points in A such that

B = x∃A : ∀k > 0, T kx∃A (16.6)

The follow point was that none of the preimages of B intersect B,
T−mB ∩B = , and because of the invariant measure, µ(B) = 0.
The next topic, was the work of Gibbs. Define the correlation func-
tion ∫

M
f(Tnx)g(x)dµ(x)

With invariant measure µ this converges in the infinite time limit
to the product of integrals of f and g over the state space with re-
spect to this measure. Physically, this is a statement that a non-
equilibrium system converges to a equilibrium state due to the sys-
tem being ergodic?

Finite Time Dynamics I was slightly late to this talk so the discussion I
heard began with discussion of so-called "open systems" where you
have a statespace, then cut a non-measure zero hole in it such that
there is a non-zero "escape" from the system.
My favorite Bunimovich quote arose early in the discussion. "Escape
rate was introduced by Physicists so even if it is a natural thing to
ask about, it might not be reasonable."
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He lead an introduction to the topic by introducing correlation func-
tions between sequences (denoted "words") of a coin-tossing game,
where the correlation function measured the likeness of words in
such a manner. Given the word "abracadabra", the (auto)correlation
of it with itself is measured by seeing if the words match, if so, we
count a value of one. If not, zero. Then we shift the second word
(not periodically) and then count how many times the words match.
So for abracadabra the (auto)correlation would be equal to a binary
sequence whose length is equal to the length of the word, with corre-
sponding ones and zeros. (10000001001) in this case. This can easily
be seen by the presence of only one letter "c" in the word, so until
the shift rids us of the "c", we will not have a match. Once the "c" is
gone, we match again with "abra" and the final "a".
Prof. Bunimovich then led a discussion on some of the counter-
intuitive results that follow from this definition of correlation func-
tion, namely that shorter words implied faster "escape" from the
open system (as defined by the measure I believe)??
The second half of the talk really took me for a spin, when he started
discussing the "first hitting probability" or "first passage probabil-
ity". I really did not understand this but the main take away was
that for finite time interval (discrete graph that was represented by
a curve) before an intersection in the first hitting probability before
one word ultimately wins out. Like I previously mentioned, I really
didn’t grasp this but I think the general idea was that there is a fi-
nite time interval where things can be predicted, but in dynamical
systems we are always studying the behavior after such behavior
ends?

Spatiotemporal Navier Stokes With the concept of a very small number
of active spatiotemporal modes, usually due to discrete symmetries
I applied this in a very rough way to test the number of active modes
in one of the shortest orbits (in time) of the HKW computation cell,
also known to channelflow users as "p19p02".
I first took M = 16 points in time (16 snapshots) of the shortest pe-
riodic orbit whose spatial discretization requires Nx = 32 × Ny =
49 × Nz = 32 × 3 = 150528 ≡ dim(Mxyz) physical space variables
to describe. The total number of variables in the spatiotemporal dis-
cretization is then 150528 ∗ 16 = 2408448.
To test the number of "active modes" spatiotemporally, I used real-
valued FFTs in the spanwise and streamwise direction, and the dis-
crete cosine transform (which I think is equivalent to the Cheby-
shev coordinates but I could be drastically wrong) in the wall nor-
mal direction. To describe the number of active modes I counted the
number of spatiotemporal coefficients, now (Fourier × Fourier ×
Chebyshev)× Fourier in three directions, had a absolute value (not
the square) that was greater than 10−14.
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I claim that in the shortest periodic orbit ’p19p02’ isNactive = 564477.
In other words, approximately seventy-five percent of the spatiotem-
poral information is redundant/not used. Therefore, for a full spa-
tiotemporal description using 16 points in time in this basis, the
number of variables used to describe it only increases by a factor
of 3.74998007015. This is a nontrivial increase in dimensionality, but
much less than the expected multiple of 16.
For M = 32 the reduction percentage increases, but so do the num-
ber of modes corresponding to time. The multiple for M = 32 was
7.26536591199, which is slightly less than two times the M = 16
multiple. I believe that this is due to extra modes in time which
themselves are non-active.
I still need to test this on a case that has non-zero shift, but in order to
exploit these methods I need a truly periodic orbit not a fundamen-
tal domain, so the number of points in time would have to increase
by two, and I am unclear whether it would be as beneficial or even
better.

2018-02-19 Matt Reading The Floquet Theory of Partial Differential Equations,
Kuchment [39] was a large waste of time for me. Try as I might I
don’t have enough formal mathematics training to understand the
complexity nor the depth of such things.
Been looking for more mentions of Normal Linear stability of Tori,
which in mathematics lingo is the stability pertaining to transverse
directions of tori. Seems to be the right direction to go.
Added Broer, Hoo and Naudot [1] to siminos.bib, seems promising
but I need to induce solitary confinement and read it 20 times to
truly understand it.

code Found an error in the initial condition generation code, fixed, play-
ing around with finite difference approximations for Jacobian matri-
ces, which I seem to have trouble with. Spent too much time on this
as I understand exactly what should happen but it seems to have
a lot of difficulties when dealing with spatiotemporal equations for
whatever reason.
Tried for the longest time to get it to work for the Rössler system
which seems to give me more difficulty than Kuramoto-Sivashinsky
for whatever reason, probably experience. My comment towards
Rössler is that the variational Newton method works so well that
it’s the only numerical method that should ever be applied to it to
find periodic orbits.

Writing Moved scientific writing to thesis proposal section, tried to get
more done but it’s a slow endeavor so far. Nothing is sacred in those
tex files so feel free to comment.

2018-02-22 Matt Most of my day Either listened, discussed, or talked about
Physics all day. Had the plumbers meeting followed up by the
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talk Particle induced viscous fingering (which I found
very accessible and overall a great talk). After lunch I had an af-
ternoon discussion with Predrag about the spatiotemporal cat-map,
the tiling used and the symbolic dynamics and the differences be-
tween Percival-Vivaldi linear code and the new linear code using
Adler-Weiss coordinates. This began with a treatise on what being
symplectic means in terms of the symplectic group, and its action
on the normal bundle and conservation of pairwise areas, and the
implications therein.
After an enjoyable mid afternoon coffee Noah DeTal began a dis-
cussion with me about working through the method of slices of the
wave equation with spatially periodic boundary conditions. After
some thought I came to the conclusion there was no need for such
machinery really because any relative equilibrium solution could be
made into an equilibrium by the appropriate Galilean coordinate
transformation, and the fact that the equations are linear reinforced
this idea, because we know any solution can be represented as a su-
perposition of complex exponentials with the correct wavenumbers.
My intuition might be wrong but it seems that its really the nonlin-
earity that makes the requirement of fancier methods to deal with
symmetry. I’m no expert in PDEs but this seemed good enough to
me.
Likewise, after my discussion with Noah, another one of my grad-
uate student colleagues, Zack Jackson; Professor Wiesenfeld’s stu-
dent discussed his simplified model that he created and is using to
describe the motion of a ring which contains so-called "smarticles"
(tiny robots with a prescriptive behavior). This went on for about
an hour at which point I began to describe my work to him again
because, in his words, "Every time you explain what you are trying
to do I feel like I understand it less." and "I don’t see a clear goal in
mind". This took two hours to sort out and the conversation ended
with him becoming even more pessimistic due to the numerical dif-
ficulties, although I tried to end it on an upbeat note. He believes
there’s no way that this is going to work, but then again this isn’t
really his type of problem, i.e. one that’s well suited with his skill
set. He’s great and picking out the important processes and taking
averages thereby creating simple models for certain processes. The
comparison between my work and many-body Quantum Mechan-
ics was made which was slightly disheartening but I am hopeful
that my research will lead to something, although it could be like the
most recent Plumbers paper whose importance seems to me to be
left to the winds of Fate.

actual work Otherwise the actual work was to compute the Jacobian ma-
trix of the spatially periodic orbit resultant from one of the temporal
equilibrium. It’s either a numerical issue due to the dramatic digres-
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sion between the orders of magnitude of Floquet Multipliers but I
was unable to show prove the equality Jv = v, which is likely due
to the lack of precision of the marginal Multiplier. This is not making
me very hopeful for the spatiotemporal periodicity but there might
be some issue that I didn’t account for as of yet.

Readings Still chipping away at ref. [25], [4] and [1]

2018-02-25 Matt Reading Reading and really trying to understand ref. [1] as
I think that there are good things there once one passes over no-
tions such as "versal unfolding" (no prefix on versal, although they
seemingly add "trans" or "uni" in front depending on very specific
circumstances unknown to the reader).
It’s opening my eyes because they describe a Tn symmetric Torus,
one that is equivariant in n dimensions as being an underlying ob-
ject upon which a vector field is laid onto. This isn’t a revolutionary
notion but it does help a bit in the abstractification. The interesting
part is how they describe tori as living in a higher dimensional space
(N + 1) due to the varying of a parameter µ.

The nondegeneracy condition means that the normal linear,
leading part

NXµ(x, y) = ω(µ)
∂

∂x
+ Ω(µ)y

∂

∂y
(16.7)

of X is transversal to the conjugacy class of NX0 in the
space of normally affine vector fields. Such a generic con-
dition plays a role in persistence results in the following
sense. At the level of affine conjugacies and affine vector
fields, the transversality condition provides the persistence
of the tori (y = 0) by the unfolding theorem... Without the
invertibility of Ω(0), this transversality property in general
will be lost. As a result, the persistence of invariant tori is
not guaranteed.

Piecing this together is a little tough for me, especially thinking of
an entire vector field X as transversal to the conjugacy class of the
normal bundle. I believe the next statement is the reason why they
assume µ = 0 in most examples.

By the Inverse Function Theorem, the invertibility of Ω0

implies that, for each µ in a neighborhood of 0, the vec-
tor field X(µ) locally has exactly one single invariant torus
Tµ. Again by the Inverse Function Theorem, up to a µ-
dependent translation, we have Tµ ∼= Tn × 0. From now
on we shall assume this simplification to have taken place.

numerical experiments While fixing inconsistencies introduced by im-
plementing mean velocity frame code, I experimented with how
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(a)

(b) (c)

Figure 16.2: (a) Converged rpo22×16.3, in the mean velocity frame. (b) Identical
to (a), except for L0 = 22−π

√
2. (c) Likewise to (b), except L0 = 22+π

√
2−1/8.

Exact details (numbers) in 2018-02-25 blog post.
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much I could change the domain size parameter L for the test case,
the shortest (time) relative periodic orbit at L = 22. When only
varying the domain size I found that there was a wider range of
convergence than I had thought.
I thought this was a result perhaps of using a least squares Newton-
type method, but when I was able to create a new constraint now
I have a square linear system (I tried to implement some constraint
on the tranversality to shifting, but found that I have to subtract out
the spatial translation direction to get this specific linear system to
work). In other words, my three additional constraints that I add to
make the linear system square are

<
∂u

∂t
, du > = 0

<
∂u

∂x
, du > = 0

< (φ̇− 1) · T, du > = 0 (16.8)

The in-depth details on φ̇ are in done.tex, in my thesis proposal
section, but simply put φ(t) · T ∈ so(2), such that the corresponding
Lie group element g = exp (φ(t) · T) ,φ(t) = σt

Tp
transforms the rela-

tive periodic orbit into the mean velocity frame. The reason for the
subtraction of one is to remove any component in the spatial trans-
lation direction, otherwise it is nearly linearly dependent with the
second constraint.

New figures So, I produce a square linear system, solve it, and solutions
are unique right? Not quite it seems. I am able to very (seemingly)
continuously the domain size until approximately ±pi

√
2 (Half of

the most unstable wavelength), wherein convergence is no longer
guaranteed. Therefore, the new figures depict converged solutions
that start with identical quantities other than domain size. It gets
even stranger, one might notice the upper bound being slightly less
than half of the most unstable wavelength, this is in fact due to not
being able converge at exactly half; however if I go to pi

√
2 + 1/64 it

does converge spatiotemporally. I suppose a fuzzy boundary is to be
expected, but it seems counterintuitive to me at least
The exact data for figure 16.2
(a) T0, L0, σ0 = 16.314805095414, 22,−2.87478470726,
Tf , Lf , σf = 16.05715597431866, 21.976838394845288,−2.9005450692620047.

(b) T0, L0, σ0 = 16.314805095414, 22− π
√

2,−2.87478470726
Tf , Lf , σf = 17.210152777052322, 22.085913422049373,−2.9162371552096955
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(c) T0, L0, σ0 = 16.314805095414, 22 + π
√

2− 1/8,−2.87478470726
Tf , Lf , σf = 14.46304615768534, 21.79212000706519,−2.897881739121017

Jupyter Finally sat down and looked into how to use jupyter code note-
books. I’m not sure it’ll be that useful because of how I have seg-
mented my code but I’ll probably be using it for faster calculations
from now on.

2018-02-27 Matt math talk Went to how to make a black hole in a vaccum
with gravity waves. Apparently the requirement is that all of the
papers on this topic are 600 page monoliths where mathematicians
play with bounds of objects in order to globally the metric tensor (in
terms of a finite region of spacetime) in order to prove that the result
is a trapped region, claiming that Penrose showed that a trapped
region implies a singularity. This was done by using the Einstein’s
equations in Vaccuum and then implying bounds on different quan-
tities to remove all lower order terms. In six dimensions (five space
plus one time) he said he can prove that unstable naked singularities
exist, unstable in the sense that if you poke them they get shy and
cover up.

lunch talk Listened to Jim Gates and ate my fill of (free) pizza. Listened
to his story about how he became a Physicist, started a life in public
policy as well as making documentaries. When I personally asked if
he had any advice for graduate students today he really thinks that
one must be very intentional in their plans in terms of setting a goal,
then really breaking down how to achieve that goal. I think this is
generally good advice for how to live a good life.

searching for answers Spent most of the research portion of the day try-
ing to scour literature about whether collocation methods (Galerkin,
etc.) are valid in the presence of changes of domain size. Found
nothing similar. The idea I was having is that most of the time pseu-
dospectral and spectral methods are used is when they discretize
equations such that each discrete point is a fixed node on some grid
with equidistance spacing. The spatiotemporal code might behave
so poorly because although there is periodicity in time and space,
changing the period and system size L is equivalent to changing the
spacing of the rectangular spacetime grid. I couldn’t find any exam-
ples where this is done other than continuation, where the domain
size, period, or likewise any other scalar parameter is treated as a
knob that remains fixed during the search for minima of the cost
function.

2018-03-06 Matt Notes on rotation number talk The following are from the notes
taken from the talk given by Evelyn Sander in her presentation.
About half of the talk was about numerics and how well things con-
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verge given certain criteria. I’ll try to stick to the topics as best as I
can.
The following are references she mentioned at the end of the talk
refs. [13–15]
The first is of letter-style, the second is longer and actually a paper
that was published in Nonlinearity, and the third is a prepublished
paper on arXiv.
She also cited Levnajić and Mezić but without a specific paper.
Professor Sander first introduced the notion of rotation with the
mapping of a torus,

Tp : θ → θ + ρ(mod1) ,

where ρ is defined as the "rotation vector" with irrationally related
components (no rigid rotation).
There is a choice of coordinates such that we can define,

F (θ) = θ + ρ(mod1) , (16.9)

such that we can then use the trajectory of θ with respect to the map
F ,which is denoted {θn}, to compute the rotation vector ρ.
The next part is an example calculation of how to get ρ with a one
dimensional map on a circle and a trajectory of points {θn}. Let p
be a point that lies in the circle’s interior (not necessarily the center).
Then with the trajectory of points, let ∆n = θn−θn−1. They calculate
ρ using,

ρ = limN → inf
1

N

N∑
n=1

∆nmod1 (16.10)

In other words, they are using averaging to calculate the irrational
rotation vector. This is slow, and she admits it, that’s why most
of the talk was broken into two subsections, which are additional
methods employed to help with convergence. The first is called the
"Birkhoff weighting method", and the second is called the "Takens
embedding method".
Side Note: She also wanted to be explicit about the problem be-
ing solved so there was a side note about calculating such things
in higher dimensions.
Given A, a unimodular(det = ±1) d× d matrix, let,

θ̄ = Aθ

θ̄n+1 = θ̄n +Aρ

d > 1 ⇒ Aρ(mod1) is dense in the torus, (16.11)
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In such a case, she says to restrict to a submanifold M , being one or
two dimensional and with the projection map from the torus to M ,

Φ : T →M , (16.12)

to then compute ρΦ from {Φn}.
The remainder of the talk were examples and explanations of the
two methods used to speed to convergence of the averaging method
to find ρ
The first of which was the Birkhoff weighted averaging. For a se-
quence of points of an iterative map xn ≡ Fn(x0). Define the Birkhoff
average as„

BN (f) =
1

N

∑
f(xn)→large N

∫
f(x)dµ(x) (16.13)

This quantity can be shown to haveO(1/N) convergence, Prof. Sander
claims this is because we’re taking an inherently infinite object (non
periodic trajectory) and cutting off a piece of it. To account for this
she and collaborators weighted the Birkhoff sum with the following
factor.

ωp(t) = exp−[t(1− t)]−p (16.14)

Numerical evidence suggests that the speed of convergence depends
on how flat it is at the endpoints, where she showed graphs of vary-
ing smoothing procedures. Paraphrasing: Because the exponential
has infinitely many derivatives equal to zero at the endpoints, we
get this better behavior.
The rest of the talk is much more easily explained using figures
rather than words, So I’ll point them to the papers if anyone is inter-
ested.
In conclusion what I learned is that you can measure angles of quasiperi-
odic structures but in all of the cases where one actually sits down
can averages how the angles change on a given trajectory you seem-
ingly need to be able to pick a point inside of the quasiperiodic struc-
ture in a region where the "winding number" is equal to plus or mi-
nus one.

2018-03-07 Matt Defense of is spacetime? For today’s plumbers meeting the
only people who attended were Burak, Roman, Elena and I. For all inten-
sive purposes it turned into a thesis defense for our spacetime project.

My main idea that pushed the conversation into a discussion that I feel
turned into a ’thesis defense’ type conversation was that for invariant
2-tori with Z2 isotropy subgroup, I have not found a way to calculate
corrections to the system size L, or in other words ways to define a con-
straint for the underdetermined linear system due to allowing changes
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to the period and domain size T ,L. The ubiquitous constraint that is im-
posed in almost all Newton-Krylov methods are constraints that prevent
corrections (solutions) to the linear system from having components in
the spatial, time translational directions. In mathematical terms, for a
Newton correction, the following constraints are imposed by the first two
equations in (16.8).

The problem is that the spatial translation direction is an invalid con-
straint for pre-periodic orbits due to the reflection symmetry.

I described the benefits of going into Fourier-Fourier space and the result-
ing subspaces that occur for solutions with discrete symmetries but the
main point that both Burak and Roman stressed were that because these
solutions constitute a one-parameter continuous families of solutions in
the parameter L, that no matter the result of convergence of my code, the
solution that is chosen from this family is going to be dependent on the
solver. I really had to stress that I’m allowing the domain size to vary as
a parameter of the calculation and the way to view it is a scaling factor
that corrects the magnitude of the spatial tangent space, much like how
the period will rescale the magnitude of the tangent space in time.

They still were not convinced. Burak says I should only look for periodic
orbits at different domain sizes and then use pseudo arc-length contin-
uation to get the solution at different L values. I suppose this issue will
not be resolved until I introduce a constraint such that the solution that is
retrieved by my code is, for instance, the particular member of the family
of solutions that has minimal area, or some other constraint. This might
be what would make my code special; it says "A’ha! you see there is a
special representative of this one parameter family of solutions, and not
only that but this is the one that appears in large spacetime calculations."

Burak says he is worried because I’ve been focused too much on numer-
ical methods which I agree with, and am missing out on the general idea
of the project. I agreed with Burak that even though the appearance of
doubly periodic solutions in a large space time simulation is impossi-
ble, that likely there would be an interior region of such solutions that
would be (hopefully) shadowing my tiles well; in an exponential sense
much like the spatiotemporal cat map. We agreed that the manifestation
of a small spacetime solution need not be a particular representative of
the one parameter family of solutions, so how will any comparison be
made? Again I tried to argue that there will be a subset of the interior
that should satisfy shadowing exponentially well but I’m not sure if this
will be the case.

• The problem arises with the domain size changing: Burak and Ro-
man remain unconvinced that allowing the domain size to vary through
the calculation is necessary or even a good idea.

• Roman claims that whichever solution I converge to is more likely a
property of the solver than something special.
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• Burak thinks it’s much better to calculate periodic orbits in time and
then use pseudo arc length continuation to get them at different
sizes.

• It seems until I can find some special criterion (minimal area, en-
ergy, etc.) that picks out a representative of the continuous family of
solutions, they will not be on board.

2018-03-07 Predrag Do not worry about professor’s opinions, it’s hard for them
to digest new ideas, but that Burak does not get it is worrisome. Preco-
cious professoritis?

The main point of going spatiotemporally infinite in both time and space
is to let dynamics set both spatial and temporal scales (in our way of
thinking, the spatial and temporal periods of the shortest invariant 2-
tori), not impose them by hand. It works for short times, infinite space
- see Michelson [44]. It is pretty and not at all mysterious. The gen-
tlemen have not studied it, but Lan and I have, it is described in Lan’s
thesis [40]. We have a clean theory (“equilibria of equilibria”) of why
equilibria and relative equilibria have the spatial wavelengths they have,
a theory that mashes well with the web of periodic orbits for Kuramoto-
Sivashinsky [12].

The gentlemen just happen to be the right age to have been indoctrinated
to accept that for chaotic temporal dynamics, the periods of periodic or-
bits are intrinsic to solutions, it would never occur anyone use a pseudo
arc length continuation to find them for a given system (i.e., a system
with all parameters and b.c.’s fixed). Were they born 30 years earlier,
they would think deterministic chaos could not arise. Whether they can
digest the idea that spatial periods are also intrinsic to the system at hand,
i.e., that “space is time,” I cannot predict. Not your problem.

We have conceptual and computational problems, but not on this level.
Revolution will not, will not, will not be televised, but it will be on YouTube.
You’ll come on top:)

2018-03-07 Matt Transpose vector product. I’m indebted to Roman because
even though I’ve scoured the literature for a matrix free representation
of the product J>x, he pointed out that Ravi did this, and after some
thought I realized that if I can explicitly form the Jacobian matrix, then
reverse engineering what this matrix vector product might be possible.
The problem lies in the fact that Ravi used finite differences to define
derivatives so that the product with the transpose is much more straight-
forward.

In my Fourier-Fourier description this is going to be harder, but I believe
that the only difficulty will be the reverse engineering of how to compute
the nonlinear component, as the linear component is fairly straightfor-
ward.
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In more depth, the action of the linear component for Z2 type solutions
can be represented by matrix multiplication by a tridiagonal matrix, with
the main diagonal being filled with −q2

n + q4
n, and the two off diagonals

filled with terms±ωm (no i because in real-valued representation). There-
fore action of the transpose only affects these off diagonal terms by swap-
ping the signs of them ±ωm → ∓ωm. This is exactly the action produced
by sending T → −T .

Therefore, the linear component of the matrix vector product (here lin
subscript denotes ‘linear’),

J>lin(εdx) =
1

ε
(Flin(u+εdu,−T +εdT, L+εdL)−Flin(u,−T, L)) , (16.15)

where dx = {du, dT, dL}. Because the transposition only affects the com-
ponent of the Jacobian matrix that is constituted by swapping the sign of
the time derivative, we can make the substitution in the function call.

The nonlinear term is much less straightforward and will take a little
work, if its possible at all.

The main goal is to be able to write the matrix-vector product in terms
of function calls so that no matrices are explicitly formed. This would
dramatically increase the speed at which my adjoint descent code runs
and due to the global convergence of the method, and the speed when
used in a hybrid method, this might be exactly the robustness that we
need to find large doubly-periodic spacetime solutions at least.

(a) (b)

Figure 16.3: (a) Spatiotemporally converged ppo22×10.2 given "wrong" initial
domain size L0 = 20. (b) Spatiotemporally converged ppo22×10.2.

2018-10-29 Predrag What is the difference between figure 16.3 (a) and (b)?
The initial condition for (a) was identical for (b) (shortest pre-periodic
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orbit from L = 22, except the initial domain size of (a) was purposefully
chosen to be the (“wrong”) value La = 20. This was just a test to see if
the solution would still converge given relative error of domain size.

2018-03-09 Matt coding More work into relative periodic orbit matrix-vector
product formulation of the spatiotemp code.
Still trying to figure out what I can use as extra constraints. For pre-
periodic orbits I can still constrain to be transverse to time transla-
tions to give me corrections but because of the reflection symme-
try I cannot impose tranversality to the spatial translation direction,
which is what is used to complete the underdetermined linear sys-
tem. Maybe I’m thinking about it the wrong way as usually these
are just implemented as constraints to prevent the Newton correc-
tion from pointing in symmetry directions, and so I might be able to
use the
I sort of went down a rabbit hole as to test what extra constraints are
possible I tested a constraint the prevents changes in area. This was
easy enough to implement, and it worked, but its the exact opposite
of what I would like to accomplish. The tangent space(s) are what
should be telling me the correct scales for L and T . Because of this
I tried to impose a constraint such that the area is minimized but I
can’t currently think of a way that doesn’t do this too well. What I
mean by this is that if you say that you want to minimize T ∗L then
it will just send one of those parameters to 0, naturally.
One interesting thing that came about from the area constraint is
that if you tell my code the wrong area. If for instance I changed L0

to L0−2 = 20 then it had to change the characteristic wavelength in
time to fit in my box. Including figures for scientific curiousity.
The main idea I’m trying to flush out here is that if I cannot use
tranversality constraints to complete the linear system then perhaps
I need to complete the linear system by creating constraints on the
parameters themselves.

pseudo arc-length constraint Investigated this method in hopes that maybe
I could prove Burak wrong by including "pseudo arc-length contin-
uation" in the actual spatiotemporal code at the same, but sadly it
doesn’t look like one can have cake and eat it too.

matrix free adjoint descent Calculating the nonlinear term in a matrix
free way is harder than even I thought it would be. More write up
on this coming soon.

pipeflow Kimberly gave me a nice introduction into pipeflow as well as
personally typed notes and explanations. We did not however run
anything as the PACE credentials had not come through as of our
discussion, but she walked me through the structure of pipeflow
and its utilities from her copy on hard. It’s a lot to take in but I think
with a little practice it shouldn’t be too bad. If I ever decide I need
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to do anything extra I will likely find ways of converting the data
files to something that Python can handle just because I’ve become
so accustom to it.

2018-03-09 Predrag Back to cranky fessors. You look at slide 12 of my APS
March Meeting 2018 slides, and you can see spatial periodicity of about√

2. I doubt that there are continuous families in the spatially infinite case
- it looks like solutions come in continuous families, as we impose arti-
ficial spatial periodicity of L (the Fourier space is a subspace of the full,
continuous Fourier space) and our solutions can be continued to nearby
systems with slightly different L’s. That does not necessarily mean the
wildly unstable spatially infinite system has continued families of solu-
tions. Though it might.

2018-03-10 Predrag Not sure why are we looking exclusively at pre-periodic
orbit ppo22×10.2, other than that is what we had started with it (figure 13.28
and earlier). Figures 16.3 and 15.6 and the earlier such figures are equiv-
ariant under rotation by π around the appropriately chosen origin, and
u → −u, so one is working too hard - a fundamental domain would be
easier to compute on. But I agree if the code is supposed to find a doubly-
periodic orbit, it should find this one as well.

2018-03-14 Matt : Reponse to Predrag. I don’t mean to look exclusively at pre-
periodic orbit it just happened to be that for the longest time I only had
the slicing spatiotemporal code and not the mean velocity frame code
that I thought would work better. It does work better in the case where
I derive explicit matrices but the additional parameter makes it slightly
more complex in the matrix-free case, which is what I’m working on now:
specifically matrix free Newton-Krylov hookstep (with left precondition-
ing) and matrix-free adjoint descent.

My main position on the fundamental domain for pre-periodic orbit is
that it is unwise if you want to go to Fourier × Fourier, but is much bet-
ter for using finite differences in Fourier × time. I tried to explain that
using Fourier × Fourier presents us with a type of fundamental domain
in done.tex, where only half of the spatiotemporal modes are non-zero.
The analogy I tried to apply here is that we use the fundamental domain
in configuration space because half of the flow field information is redun-
dant due to symmetry. With using spatiotemporal Fourier modes half
of the information is unnecessary due to symmetry. There aren’t many
hills that I will defend but one of them is that you want to use Fourier
× Fourier without using a fundamental domain, because you get the ad-
vantage of exponential convergence of the Fourier coefficients in both
(wavenumber,frequency number) indices, you get the reduced dimen-
sionality due to the symmetry, and you get much better approximations
to the derivatives due to spectral differentiation: multiplying by iqn is
much more accurate than using finite differences.
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(a) (b)

(c) (d)

Figure 16.4: Logarithm of condition number versus iteration number for (1.43)
with initial conditions (a)ppo22×10.2, (b) Initial condition from figure ??(b). (c)
and (d) are the same initial conditions but use (15.58).

2018-03-15 Matt : Trying to view the spatiotemporal equations in a more ob-
jective manner. Relearning some of the stuff I learned from Brown and
Walker [2] on GMRES and ill-conditioned systems (output very sensitive
to perturbations to input), determined by the condition number κ(A) =
max(σA)/min(σA).

As per usual1 the engineers are more grounded in reality with these kinds
of problems: A quote from some random lecture notes on condition num-
bers: "Usually, bad condition numbers, in engineering contexts, result
from poor design. So, the engineering solution to bad conditioning is to
redesign".

This is partly what I attempted to achieve by rescaling the equations in a
way that I didn’t realize was similar to Laurette Tuckerman’s methods.

So currently this is what I’m faced with. For the matrix-free code I need
constraints that do not make the approximation to the system nearly sin-
gular so what I’ve been doing is constructing constraints and checking
the condition number of the resulting Newton-equation matrix.

This is then compared to the condition number of the underdetermined,

1Predrag 2018-03-15: Rechecked what the phrase “as per usual” means: “used for describing
something annoying that often happens”
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(a) (b)

Figure 16.5: Logarithm of condition number versus Newton iteration with
right preconditioning (a) ppo22×10.2 (b) Unnamed spatiotemporal initial condi-
tion from figure ??

Constraint Types κ0

Least-Squares 172377.687831
∂u
∂t , F 103963203.961

∂u
∂t ,zeroth-time 227405.009895

∂u
∂t ,area 178091.066076

least-squares system which seemingly acts as a lower bound as far as
I can tell. This is sort-of motivated by Brown and Walker [2] because
they test GMRES on nearly singular systems by comparing the GMRES
solution to what they would have received by using a pseudo-inverse.

Absolutely terrible constraints will make the solution singular. Bad con-
straints make the system nearly singular, meaning that accuracy of say,
explicitly evaluating the inverse of the Newton-equation matrix would
result in very inaccurate results.

Here is an example of the effect of constraints on the condition number
κA0 ≡ κ0 of the Newton-equation matrix.

The same computation but for (15.58) version of spatiotemporal fixed
point code.

This investigation made me question whether "our condition improves"
over the course of running my convergence code. figure 16.4 seems to
indicate that (of course) the opposite is true! As you approach the in-
variant 2-torus the matrix becomes more ill-conditioned. This is mainly
presented as a piece of evidence that the linear system that arises from
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Constraint Types κ0

Least-Squares 10292.9974962
∂u
∂t , F 26706141.6672

∂u
∂t ,zeroth-time 21901.7560002

∂u
∂t ,area 10631.6286184

equations (1.43) and (15.58) are hard to solve to within machine preci-
sion. Well, no mystery there. What this really indicates to me is that
without having a good preconditioner we might be lost in solving it in
the more general (more complex spatiotemporal geometries) case.

Right preconditioning where the preconditioner is formed by rescaling
by the linear portion of the equation (1.43), i.e., multiplying by

1/(q2
n + q4

n + ωm) .

Comparison of figure 16.4 (c,d) and figure 16.5 (a,b) (respectively) we can
see that reformulation of the equations has about the same effect as right
preconditioning. I think preconditioning is going to be much easier for
others to digest because technically the rescaling would make the corre-
sponding inverse operator singular if L = j π, with j as any integer, but
it has the advantage of being able to think of the converged solution as
an actually fixed point of the reformulated equations (15.58), rather than
as merely a root of (1.43).

2018-03-20 Matt spatiotemporal adjoint approximation Still trying to figure
out if I can approximate the nonlinear matrix vector product −J>f ,
where the cost function is defined by F = 1/2f>f . I thought this
would be easy given that I have code that explicitly defines matrices
so I thought it would be easy to reverse engineer what I need but
it doesn’t seem that easy unless I’m making some mistakes some-
where.

spatiotemp code Wrote the “reformulated" (rescaled) version of the mean
velocity frame code for relative periodic orbit invariant 2-tori. As ex-
pected, it works a lot better with iterative methods such as GMRES.
I’m only able to get away with this reformulation because the di-
agonal terms corresponding to laplacian and laplacian squared op-
erators dominate. For the mean velocity frame representation of
rpo22×16.3, the condition number is reduced to around κ ≈ 2000
which is about an order of magnitude better than pre-periodic or-
bit invariant 2-tori.
It seems that these reformulations will be necessary as the matrix
free code relies on approximations to iterative methods. When the
iterative methods fail for the exact problem (explicitly formed ma-
trices) I know I’m in danger. Luckily the test cases I’ve run through
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where, for instance, GMRES fails for the original equation but suc-
ceeds with the reformulated equations. Like I have mentioned be-
fore the reformulation is sort of a cheap trick I am using that could
essentially be accomplished by preconditioning but I came up with
some kooky ideas I want to try out to see if the reformulation of in-
variant 2-tori actually induces an iterative map or if I just think it
does. Maybe I’m in fantasy land but because I am essentially rewrit-
ing (1.43), which can be drastically simplified as F (u, T, L, σ) = 0,
as another equation F̃ − û = 0. I think the physical interpretation of
the second equation is much clearer than the first, but it has its own
issues as it demands for inversion of an operator that can technically
become singular. The reformulated equations for the mean velocity
frame invariant 2-tori can be stated as, 2

G(û) = (Dxx −Dxxxx)−1((Dt + S)û+DxF ((F−1û)2))− û = 0,
(16.16)

where S is the derivative of the Lie algebra element, φ̇·T = 2πnσ/TL,
such that 2πσ/L = θ is the parameter needed to perform SO(2)
group action.

G(û) = (Dt + S +Dxx −Dxxxx)û+DxF ((F−1û)2)) = 0, (16.17)

where S is the derivative of the Lie algebra element, φ̇·T = 2πnσ/TL,
such that 2πσ/L = θ is the parameter needed to perform SO(2)
group action.

rabbit hole Was rereading sections about Chaosbook topics and went
down the rabbit hole of Youtube lectures on modular forms,L-functions,
asymptotics....etc. It opened my eyes on some things. I did find my-
self thinking about the trace formulas from today’s class in ways
that I might not have if I hadn’t watched these lectures, and overall
I said it went well other than attendance. Rasmus was afraid ev-
eryone was asleep so I tried to lead a discussion for the last thirty
minutes or so about some random notions I recently learned which
devolved into statistical mechanics and other topics.

grateful Rasmus I think Rasmus setup is such that as he writes, he does
not see the screen with people faces, so he is talking into a grand
void. You were great help to him, and stimulated a discussion about
things he cares about. Rasmus writes :)
“Nå, så fik vi diskuteret sporformlen, jeg holdt mig til diskrete af-
bildninger, som du foreslog, og diskuterede PF og trace for Ulam-
afbildningen, altså det tent map som er gennemgående eksempel.
Til sidst fik jeg engageret nogle af de andre (2!) lidt i samtalen, og så
gik det meget bedre, især Matt var god til at sparke ind. Ellers var

2Matt 2018-06-28: This was not the equation I put in practice as the inversion of the Laplacian
and Laplacian squared term turned out to not be useful.
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det et spørgsmål om at forklare, hvordan brugen af en gen. funk-
tion ikke “bare" er et smart trick, men at det både i det diskrete til-
fælde (Z-transform) og kontinuerte (Laplace) fordrer, at man tænker
på konvergensen. Det vil man jo også se, når man går lidt i dyb-
den i forhold til hvor vi er nu. Jeg synes det er sjovt og det helt
rigtige at starte arbejdet "the plumber way" uden at folk skal bruge
et semester eller tre på at fare vild i Sobolev, Banach og Hilbert
rum, men derfor tror jeg også man skal stoppe op en gang i mellem
og sige, OK, her skal vi så lige passe på, vi har faktisk en konver-
gensradius, etc. Det gør du jo også i bogen, men jeg tror det er
vigtigt at tage det op i diskutionerne, for der sidder en del og er
lidt forvirrede...
Vi fik også talt lidt stat. mek. og termodynamik og at i stat. mek.
er vores gen. funkt. af en funktionel form, der er fastlagt igennem
et variationsprincip, og derfor ikke frit opfundet. Vi diskuterede
også brugen af tilstandssummen, og jeg understregede dens fysiske
betydning, hvilket er noget jeg ofte finder, at studerende har svært
ved eller aldrig har hørt om!
Det er klart for mig, at jeg må forberede mig på en lidt anden måde
til torsdag, hvor jeg går ud fra at jeg er på igen?
Jeg tror jeg skal opfordre folk fra starten til at bryde ind.
Tak for et super godt kursus, som er vildt inspirerende! For 26 år
siden sad jeg til dit seminar i CATS og havde ørerne slået helt ud, og
det er jo dejligt, at man kan komme tilbage efter så mange år og bare
samle tråden op som om der nærmest ingen tid er gået. Det skyldes
jo især det HELT ENORME arbejde der må været lagt i ChaosBook.
Ganske enkelt fantastisk imponerende! ”

balance I think it should be noted that I feel like my productivity has
gone down over the past semester, but I’ve begun sleeping every
day, exercising 5-6 days a week and actively participating in science
outreach related volunteer work (Basically repeat volunteer of the
Atlanta Science Festival). I think I’m putting this here because of
the guilt that I feel when it comes to the opportunity costs of doing
these activities. My mood is basically determined by how I think my
research is going and its definitely been worse than it is right now,
so I think I’m on the right track.

mens sana in corpore sano One cannot do twat without balance, and to
me this hysterical social media era (that too will pass) seems to be a
distraction that interferes with continued, calm concentration needed
to solve hard problems. You are the right age to do it.
Sometimes the fastest way to get there is to go slow

2018-03-28 Matt spatiotemp I think I understand why the reformulated (rescaled)
equations works so well with iterative methods even though the
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pseudospectrum of eigenvalues of the Newton system is more local-
ized. The most unstable eigenvalues correspond to the highest spa-
tial wavenumber modes from looking at their spatiotemporal field
representations. I think that the geometric convergence (i.e.small
absolute value) of the spatiotemporal Fourier with high index num-
bers doesn’t allow for the "dominant" eigenvalue to "dominate", per
se. Meanwhile, the effect of the rescaling switches the roles in the
pseudospectrum of the Newton system, where the small index spa-
tiotemporal modes (who typically have the largest absolute value)
get magnified, allowing the most contributing (pseudo)eigenvectors
(generalized?) to dominate the iterative methods. In short, the rescal-
ing changes the pseudospectrum so that the most dominate pseudo
eigenvalues now correspond to the spatiotemporal modes with the
largest magnitude.

automated spacetime convergence Now that I am comfortable with say-
ing the the direct-matrix (forming matrices explicitly) methods will
work for both Z2 and SO(2) isotropy subgroup (relative periodic or-
bit in its mean velocity frame) solutions I have been working on the
matrix-free methods. This was done in a poor order however be-
cause I should have made the changes to the automated invariant
2-torus finder to run on light while figuring this out.
That being said, I am making some slight tweaks to the automated
code such that the isotropy subgroup is not chosen a priori, but
rather I just find the absolute minimum of the recurrence plot and
then determine which isotropy subgroup is exhibited by this solu-
tion. In order to do this I need a more general comparison so that I
don’t accidentally filter out one or the other type, this is done by just
looking at the absolute values of the spatial mode spectrum during
the close recurrence integration, then passing the invariant 2-torus
to a custom function to see if the solution has a smaller cost function
residual as an relative periodic orbit or pre-periodic orbit. This is
just a more general approach that I’m hoping will work in the long
run. Because I am using the explicit matrix code I believe I won’t
be able to go further than discretizations that are much larger than
M ∗N = 642, so I will be trawling for relatively less complex invari-
ant 2-tori than I will hopefully achieve with the matrix free code.

matrix free code I believe the main source of error (due to the fact that
I am using the same exact gmres code) for certain test cases is that
the matrix-vector approximation is just too inaccurate to produce a
reliable Krylov subspace to find solutions in. I’m attempting to work
around this with higher order finite difference approximations for
the matrix-vector approximations, but the difference upon the first
iteration between the first order (O(∆x)2 error) and the higher order
(O(∆x)4 error) is approximately 10−10. I need to compare the finite
difference approximation to the explicit matrix computation still.
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plumbers Burak and Predrag led a discussion about torus breakdown
because of Burak’s plots of unstable manifolds and some symmetry
breaking bifurcations. I forgot my notes that I wrote down at the
office but I recall refs. [21, 51] being the overarching reference along
with two others I cannot recall.
Torus breakdown and Arnol’d tongues (that Arnol’d) were explained
by Predrag in terms of circle maps with a weak nonlinearity, internal
frequencies and external (forcing) frequencies. I never really under-
stood what Arnol’d tongues were but the explanation of the over-
lapping and the width having to do with rational frequencies and
resonances was enlightening.

Cilia by Eva Kanso Went to the nonlinear dynamics lecture presented
by Eva Kanso of University of Southern California. I thought the
physics was quite interesting and hoping that the "capturing" of par-
ticles can eventually be engineered to capture all of the crap that we
humans put into the air.

EM spacetime Ref. [54] interests me and I’m hoping it might lead me to
a notion of local Galilean invariance that I could use in Kuramoto-
Sivashinsky equation. The dream is that it would help with spatial
integration which is still in the dark recesses of my mind.

(a) (b)

Figure 16.6: Everyone’s favorite test-case invariant 2-torus is back but with
a good amount of noise. (a) ppo22×10.2 with random noise added to the spa-
tiotemporal spectrum of the same order as the solution, initial invariant 2-torus
(L0, T0) = (22.0, 20.5057459345). (b) The resulting machine-precision con-
verged invariant 2-torus; the method used was a hybrid of adjoint descent and
least-squares Newton, (Lf , Tf ) = (21.95034935834641, 20.47026321555662).

2018-03-30 Matt Figure 16.6 (a) is the resultant of adding random noise η to
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the spatiotemporal Fourier coefficients of ppo22×10.2, such that |η|2 = 0.5,
while the spatiotemporal Fourier coefficients of ppo22×10.2 themselves have
an approximate norm |âkj| ≈ 0.76. The initial condition (with noise) is
then passed first the adjoint descent algorithm for discretized equations
from Farazmand [20]. Using Runge-Kutta fourth order to integrate in
the fictitious time direction provided by the adjoint descent equations
∂τ âkj = −J>F , and taking one thousand steps of size ∆τ = 0.0025, I
then pass the corrected initial condition to least-squares Newton, as it
has worked better for me in the past than GMRES or Newton-Krylov-
hookstep.

I almost never see a case where the adjoint descent doesn’t stall out, and
because the residual of the initial cost functional was so high due to the
noise, the tolerance on the residual was never met, so I introduced a step
number limit. I find the step number limit to be much more reliable than
say, a specific amount of fictitious time, because the step sizes that reduce
the residual seem to vary over a relatively large range depending on the
particular solutions. (I tend to start at ∆τ = 0.01 and then divide by two
until the Runge-Kutta step provides a decrease to the residual; sometimes
this starting point proves to be too large and the entire scheme fails due
to numerical overflow, i.e. if you take steps too large things can go very
poorly instantaneously). The other additions of the adjoint descent equa-
tions were due to Ravi; although he performed the descent method in
physical space and not Fourier space, there were two additional proce-
dures that he added:

• Preconditioning

• "Momentum" factor from ref. [48]

The description of the momentum factor intuitively is that if we are able
to find a sequence of fictitious time integration points that reduce the
residual, then we should take larger steps. This is unwise because we are
using an explicit integration algorithm and can lead to inaccurate results.
Apparently one way around this is to add in a prefactor that represents
"momentum" in the sense as long as we are making good steps we add
the previous step weighted by this prefactor as described in (15.56). If
we’re going in the ’right’ direction, we want to go further in that direc-
tion. Using the adaptive stepsize Runge-Kutta (RK45) never worked for
me, but this seemed to work like magic. By using the correct rational
function of a new parameter µ which tends to one as we make an infinite
number of "correct" steps, it improves the reduction of the residual in the
same amount of steps.

Most of the computational time was taken up by the adjoint descent, for
figure 16.6 the adjoint descent took about 1111 seconds (≈ 18 minutes),
and 4.1 seconds for the damped Least-Squares Newton.

7451 (predrag–6859) 52305/09/2019 siminos/spatiotemp/chapter/blogMNG18.tex



CHAPTER 16. MATT’S 2018 BLOG

The vast majority of the computational time (81 percent) is spent redefin-
ing the explicitly formed Jacobian transpose required to compute −J>F ,
otherwise known as the adjoint direction.

I think this is great news if I can get matrix-free version of adjoint descent
I can at least hope to greatly improve the speed of the computation, initial
error tolerance, and efficiency of finding invariant 2-tori at large (L, T).

(a) (b)

Figure 16.7: (a) Random numbers on a discretization of a spacetime area of
(L, T) = (500, 500). (b) As far as adjoint descent takes me the cost functional is
no where near machine precision but one can see that scales are appearing. The
spatiotemporal grid has a discretization of 64 points in time and 256 in space

2018-04-02 Matt spatiotemp Realized that perhaps adjoint descent would be
better applied to full state space as opposed to spatiotemporal sym-
metry subspaces because its an integration(descent) type method.
I wrote new codes that apply adjoint descent to the complex rep-
resentation of the spatiotemporal Kuramoto-Sivashinsky equation,
i.e. (1.43). The main benefit of doing so is that in the real-valued rep-
resentation that I use for everything it isn’t straight forward how to
calculate the transpose of the Fourier transform and inverse trans-
form operations, but when I use a complex representation the trans-
formation is unitary; meaning that the conjugate transposes that
arise are easily replaced using the unitarity property of the Fourier
transform (with proper normalization).
Therefore, it is much faster to use adjoint descent in a complex rep-
resentation than in my real-valued, symmetry dependent represen-
tations. The reason why I avoided the complex representation in the
past is that there are numerous conjugacy relations between spa-
tiotemporal modes that make the corresponding Newton system
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singular if not taken care of; The trick here is that we aren’t solving
a linear system, but rather integrating in fictitious time direction.
If one wants to write this in terms of the adjoint operator notation
that Mohammad uses; I believe the spatiotemporal adjoint operator
is defined as such,

∂u

∂τ
= −L†(u(x, t), f(x, t)) = (∂xx + ∂xxxx + ∂t)f + u∂xf (16.18)

This opposes Mohammad’s definition, which was the adjoint op-
erator derived for the time dynamical system, where the "adjoint
variable" was an integral over the motion.

∂u

∂τ
= −L†(u,

∫ T

0

F (s)ds), (16.19)

He’s smart so he’s probably correct but I’m trying to avoid time in-
tegration in all circumstances, even initial condition generation.
Currently running tests on spatiotemporal domains initiated from
random noise, large scale domains, and seeing what comes out.
Random noise on a T, L = 500, 500 domain ran long enough starts
to pick out the length scales of the Kuramoto-Sivashinsky equation,
and its the matrix-free computation that allows it to run fast enough
to do anything.
One problem is that when computing corrections to the period and
length the system attempts to make them complex so I’ve just be
taking the real part to make sure they remain physics constants
Figure 16.7 is an example of the limits of the method so far. Taking
(pseudo) white noise on a large space-time domain and then run-
ning the adjoint descent reproduces structures that look similar to
those seen within simulations of the Kuramoto-Sivashinsky equa-
tion.
I’m still hoping to use this as a way of reverse engineering the right
way to implement matrix-free adjoint descent with my real repre-
sentation code.
Another idea is to “mix the representations". I.e. use the complex
representation with the fast, matrix-free adjoint descent code and
then switch to the real representation when I get close enough to
use Newton or GMRES. This would be the most efficient as opposed
to rewriting all of my other codes to be in complex representations,
especially because I had problems with it in the past.
Another topic I need to breach is whether I can constrain the ad-
joint descent to preserve the symmetry subgroup of any solutions
found. If I can get the matrix-free method to work in the real rep-
resentations this will automatically hold but not so in the complex
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representation as I’m abusing the extra variables and unitarity of the
Fourier transform so that everything is unconstrained.

2018-04-04 Matt : Everyone seemed excited at my results from figure 16.7 in
the plumbers meeting; I will try to write up what I had in more depth
to enable discussion. Also due to popular demand I added the ability
to keep the length fixed and initiated a trial at L = 22, discretized over
(N,M) = (64, 64) (space,time) points starting from white noise. Will post
results tomorrow after the run finishes. Limiting the adjoint descent to
ten million steps (about eight hours computation time).

I’m worried that there is no notion of symmetry currently built into the
code (although the equations are different between relative periodic or-
bitin the mean velocity frame, and pre-periodic orbitso it will hopefully
be taken care of due to that fact) and therefore am still working towards
making my real valued code matrix-free.

Spent way too long figuring out the complex variables that I need to keep,
it turns out its half of the spatiotemporal spectrum, I thought I could
figure out a subset of non-redundant information that would be smaller
for pre-periodic orbittype solutions but that doesn’t seem to be the case.
The conjugacy identities only apply to the first transform (either space
or time) because the first transformation is from a real valued field to
a complex valued field. Regardless, the code is now running without
redundant information with fixed length; I agree with Predrag this isn’t
the way to go about things but it is worth trying to see how versatile the
code can be. The only problem with the matrix-free methods is now the
second half of the hybrid algorithm, meaning getting GMRES or Newton-
Krylov-hookstep to converge once the adjoint desecent, which is now
fast, gets close enough to a solution.

My (discrete) symmetry woes might also be alleviated by imposing the
discrete symmetry in the beginning, because then the adjoint descent
will go towards the closest minimum, hopefully being a solution with Z2

symmetry. I’m doubtful that my code is this much of an oracle, however.

So that being said, I can now initialize essentially white noise which is
no where a solution to the Kuramoto-Sivashinsky equation locally and
get close to the attractor without any time integration, but I need to play
around with the size of the discretizations as it might be necessary to
overfit if starting from a terrible (random noise) guess. I’m hoping what
I’ve done this week helps Predrag with his talk later this week, I’m sure I
can help write out something about the numerics using Farazmand [20]
as a guide.

2018-04-09 Matt Finally back to the office after four days of one-armed moving
apartments. The L = 22 run that I started last Wednesday failed due
to a coding error so I’m currently running two different runs of L = 50
sized domain, one with the length fixed and one with nothing fixed. Both
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are being put through ten million adjoint descent steps, so it’ll take until
tomorrow to finish.

Talked to Noah as he says that he figured out the spatiotemporal Jacobian
matrix. I disagree with some of his points, namely that you can elect
to choose a single point of the scalar field u(x, t), and transport a scalar
perturbation. The reason I don’t think this is what we desire is that the
spatiotemporal Jacobian matrix in this case is just a scalar because the
tangent space perturbation is a scalar. After a small amount of math he
arrives at a partial differential equation that the spatiotemporal Jacobian
matrix must obey

∂A(x, t)

∂t
+
∂2A(x, t)

∂x2
+
∂4A(x, t)

∂x4
+u

∂A(x, t)

∂x
+(∂xu)A(x, t) = 0 , (16.20)

which he says is then something you need to solve with appropriate
boundary conditions on A(x, t). (I claim that A(x, t)0,0 = 1 and if it
truly is a scalar then JT,L = Λ is enforced I believe) so that it becomes
a boundary value problem. But I think this is too simple as,

• this only produces one Floquet multiplier

• the Jacobian matrix being a scalar doesn’t capture tangent space di-
mension

I was able to identify that if you look at equation (16.20), and rearrange
it such that everything but the time derivative is on the right-hand side
then it is exactly equivalent to the standard time-evolution equation for
the Jacobian matrix,

∂J t

∂t
= AJ t , (16.21)

where J t → J t,x. This can be seen by writing the stability matrixA(u(x, t))
in operator form,

A(u(x, t)) = −∂xx − ∂xxxx − diag(u(x, t)x)− diag(u(x, t))∂x . (16.22)

This is the type of equation, one in terms of spatiotemporal operators
(matrices that act on the spatiotemporal vector u(x, t) through matrix
multiplication), that I arrive at when calculating the explicit matrix for
Newton’s method, namely the matrix block defined by ∂F

∂u , where F ≡
Kuramoto-Sivashinsky equation (18.1). Some people [8, 36] 3 refer to this
as the Jacobian matrix of a function F , though Viswanath [52] refers to the
equation involving Jacobian matrix as a constituent as the “Newton ma-
trix,” or, more precisely, as “Newton system" as well as “Newton equa-
tions".

3Predrag 2019-05-08: what is bibitem KK04jfnk? Different from KK04?
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2018-04-09 Matt Writing code that is sort of dependent on results from today’s
trials. I’m going to go even further in the hybrid direction which takes
the best elements from all of my codes and throw them at the problem;
the only issue is that the code whose results I showed last week do not
specify any symmetries, but I need to specify the subgroup for my other
codes.
I plan on writing code that uses matrix free adjoint descent in the complex
representation, and if the trials show emergence of a symmetry subgroup
I will pair this with the explicit matrix methods least squares Newton.
This gives me the best chance of convergence to within machine precision
from noise to invariant 2-tori I believe, but its dependent on whether the
complex adjoint descent is picking out solutions with symmetries or not.

2018-04-09 Predrag Matt’s (16.21), (16.22) refer to the evolution in time only,
they are not the full spatiotemporal stability matrix. Noah’s (16.20) is
the Kuramoto-Sivashinsky (18.1) linearized u(x, t) = u∗(x, t) + δu(x, t),
about a given state space point, i.e., in our approach a given field u∗(x, t)
specified over a invariant 2-torus. This is what Matt and I have been
discussing frequently over the last year. The matrix (generalization of
the time-evolution stability matrix or the matrix of velocity gradients) of
functional derivatives

A ≡ δF

δu

∣∣∣∣
u=u∗

(16.23)

which describes the tangent space at u∗, was initially called J t,x in (16.20),
a notation which I changed to A(x, t). This is still not right, as A is a ma-
trix, something like A(x′, t′;x, t), but we do it correctly in the Fourier
mode expansions. One presumably integrates over the invariant 2-torus
to get the Jacobian matrix JTL. As the boundary conditions are dou-
bly periodic, the perturbation δu(x, t), and the two matrices should be
expanded in terms of discrete Fourier modes (as we already do). The
spectrum of JTL is not one “Floquet” multiplier, JTL is a variation of a
function u(x, t) under variation of function δu(x, t), there are infinitely
many multipliers.

2018-04-10 Matt I agree that (16.21) is the time evolution Jacobian, I suppose
I was trying to claim that that (16.20) makes sense in the limit A(x, t) →
A(0, t) as being the time evolution Jacobian only. My main issue with
(16.20) is something we will have to discuss in person; Noah claims be-
cause we are starting with a scalar representative point on a two torus,
then (16.20) is a scalar equation not a matrix equation, because A(x,t) is a
scalar acting on a scalar perturbation through arithmetic multiplication. I
claim that if we throw out this notion and instead view (16.20) as a matrix
equation then it makes sense.

2018-04-10 Predrag I do not understand Noah. Maybe you can show him that
the Fourier expansion of u(x, t) is infinite-dimensional, i.e., a scalar func-
tion lives in an infinite-dimensional state space?
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(a) (b)

Figure 16.8: (a) Noise initialized on a spacetime domain T = 100, L = 50.
(b) Resultant field after ten million steps of adjoint descent with fixed L = 50;
T ≈ 108.43.

2018-04-10 Matt Results from first run from yesterday are in. This was the ad-
joint descent applied to a spactiotemporal domain initialized with noise
with T = 100, L = 50; keeping L = 50 fixed. The result is an appar-
ent non-solution that looks like an equilibrium plus some high frequency
numerical artifacts in time. I am inclined to believe these poor results
are due to fixing the spatial domain size, but technically I used different
codes to produce figure 16.7 and figure 16.8, so there could be a small
error somewhere. Small in this instance means the adjoint descent code
can still run until it hits the maximum number of steps but qualitatively
wrong results. We shall see if fixing the domain size (or perhaps the ini-
tial condition was the issue).

2018-04-10 Predrag To me, figure 16.8 seems to be saying that you are comput-
ing the u(x, t) = 0 equilibrium, but not very accurately. It seems not to be
a high frequency problem - the dominant spatial mode is k = 8.

2018-04-11 Matt Figure 16.9 (b) is the main result for this blog post.

Here is how I construct the initial condition (a):

I start by initializing a spatiotemporal domain with noise, and then I
smooth the Fourier spatial coefficients (whose number is known only to
me) by multiplying the spatial spectrum by exponentially decay (not us-
ing Gaussians but perhaps this is better) whose maximum is centered on
the most unstable wavenumber L̄ = 2π

√
2 ' 8.886. I’m using spatial

domain sizes L which are integer multiples of L̄ so this requires no inter-
polations.
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(a) (b)

Figure 16.9: (a) Smoothed and L̄ = 2π
√

2 modulated “noise” initialized
on a spacetime domain (L0, T0) = (5L̄, 100) = (44.4, 100). Initial residual
F 2 = 1808. (b) Resultant invariant 2-torus after meeting tolerance F (τ)2 =
1.86 < 10−3F (0)2. (Lf , Tf ) = (43.066, 105.08) = (L0 − 1.363, T0 + 5.08). The
computation took only 7 CPU seconds on my laptop.

I then take the temporal Fourier transform and truncate the higher (time)
frequency modes (at only to me known truncation number).

The key to getting solutions that are not u(x, t) = 0 equilibrium is to
start with an initial guess whose maximum (minimum) values are greater
(less) than what a non-trivial doubly periodic solution would have.

The previous problem of finding equilibria is due to the fact that the ad-
joint descent must descend in a direction which decreases the square of
the L2 norm cost function, which in this case is the square of the Kuramo-
to-Sivashinsky equation (1.43). Therefore, in order to find interesting so-
lutions one must start with a spatiotemporal scalar field that has maxima
(minima) that are larger (smaller) than what doubly periodic solutions
would have, otherwise the only descent direction left to the method is to-
wards doubly periodic solutions whose maxima and minima are smaller
than the initial condition’s; namely, the trivial equilibrium u(x, t) = 0. 4

For those just skimming the TL;DR version of this statement is that one
should give more room for the descent methods to work by starting with
initial conditions whose maxima and minima are larger than what a non-
trivial spatiotemporal equilibrium would have, and one has the freedom
to do so as the initial state in these cases are mere guesses that we can
mold as we wish.

4Predrag 2018-04-12: That is not quite right.
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The only other comment I wish to make is that with the other improve-
ments, and heuristically guessing a discretization size that would work,
the error tolerance was met in a mere seven seconds.

2018-04-11 Matt Added figure 16.10 to demonstrate that the structure of the
Kuramoto-Sivashinsky equation is present in the large spatiotemporal
domain results but is obscured by localized maxima and minima that
distort the scale of the resultant spatiotemporal field. The computation
was done on a 256-by-256 discretized spatiotemporal grid. Because of
conjugacy conditions, the code uses a truncation of 126 (two less that half
because of Galilean invariance) in the spatial wavenumber index and no
truncation in the temporal index, resulting in âkj for n = 1, . . . , 127 and
−128 ≤ m ≤ 128. I figured that as long as I contained the most unstable
wavelength and something sufficient for time then it would be ok, but as
PC says it is likely nonsense. This is one of likely many ways I can take
advantage of conjugacy condition âkj = (a−k,−j)

?.

2018-04-11 Predrag This is great news!

To me figure 16.9 seems initialized withL0 = 6L̄, even though your labels
sayL0 = 44.43. This is close to, but not exactly the double of the historical
L = 22 domain.

2018-04-11 Predrag I doubt figure 16.10 means anything; at least, it is worri-
some, as it has large u ≈ 0 regions that one never sees in large L, forward
in time simulations. You would need at least twenty as many spatial
Fourier modes as for figure 16.9 , but you do not specify the spatial and
temporal Fourier mode truncations anywhere.

2018-04-11 Predrag Anyway, keep it simple, and forget insanely large spa-
tiotemporal domains for now. Instead, start (always!) with your noisy
but modulated initial guesses, with

1. (L0, T0) picked from sizes for which you already have exact solu-
tions, such as figure 13.3, figure 15.5, figure 15.4, figure 13.35, fig-
ure 13.26, figure 15.3, figure ??, figure 16.1, and some longer (Tp, 22)
from Xiong’s library. Even though your noisy initial conditions have
no symmetries, some of the solutions should converge to known pe-
riodic orbits with symmetries. If you get no known solutions, start
worrying.

2. halve T0’s and see if you get anything (hopefully not, one can proba-
bly prove that the trivial equilibrium u(x, t) = 0 is the only solution).

3. halveL0’s and see if you get anything (hopefully not, one can proba-
bly prove that the trivial equilibrium u(x, t) = 0 is the only solution).

4. double T0’s and see what you get.

5. double L0’s and see what you get.
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(a)

(b) (c)

Figure 16.10: (a) Smoothed noise initialized on a spacetime domain T = 500,
L = 100 L̄ ≈ 889, where L̄ = 2π

√
2. Initial residual F 2 = 16635 (b) Resultant

spatiotemporal field after one-hundred thousand adjoint descent steps F 2
f =

3.66, Tf = 682.62, Lf = 828.31. (c) The same u(x, t) as in (b), except with the
displayed values constrained between −2.4 ≤ u(x, t) ≤ 2.4. Computation time
was approximately an hour and ten minutes.
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6. play with T0’s to develop a feeling for what the time scale of the
problem is.

7. If all this works, start thinking again (your current setup cannot find
relative periodic orbits, etc)

2018-04-12 Matt I handle relative periodic orbits by solving the spatiotemporal
equation in the mean velocity frame, as there is an added term that tracks
any SO(2) shift with a parameter. I think that trying to make a sliced
code matrix free would be even harder than what I am attempting for
real-valued pre-periodic orbitcode. In order to fulfill these ideas in an
expedient way it seems that I need do some more automation.

2018-04-11 Predrag Do not implement a sliced matrix free code, adding a spa-
tial phase translation parameter is the right way to go.

2018-04-11 Matt The cost functional used above is

G ≡ 1

2
|F (u, T, L)|2 , (16.24)

where F is the Kuramoto-Sivashinsky equation (15.60) in spatiotemporal
Fourier space.

2018-04-12 Matt Finished automation of initializing spatiotemporal domains
whose dimensions are the periods given by either relative periodic or-
bits or pre-periodic orbits and domain starts at L = 22. The results are
currently mixed and needed a few new tricks to even get to fair results.

Namely, it seems that with the tools I developed earlier this week that
the adjoint descent method will drastically enlarge the spatial domain
(drastic being anywhere from a factor of three to factors of thousands) or
go towards solutions that look like time equilibria. I believe this is likely
due to the trick I am using that takes advantage of the initial condition
being a non-solution. By increasing the magnitude of the scalar field I
am more likely to find “better" solutions, but when on a small domain
the adjoint descent seems to be predisposed to fix the discrepancy in the
tangent space by elongating the tile due to the inverse proportionality of
the derivatives to T, L.

Also didn’t see good results with the specific temporal wavenumber trun-
cation I was using yesterday.

To circumvent both of these issues I made sure that the temporal scale
was on the order of the spatiotemporal domain (by keeping only the first
and zeroth temporal wavenumbers, m = 0, 1,−1) and by fixing the do-
main size. These changes and playing around with the normalization of
the scalar field led to figure 16.11. The time period is still being stretched
quite a bit (more than a factor of two) but I think fixing the tile completely
is too strict of a constraint for the method to work, and it is the opposite
direction I want to take the functionality of the code.
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(a)

(b) (c)

Figure 16.11: (a) Smoothed noise initialized on a spacetime domain T =
2Tppo22×10.2 , L = 22. (b) Resulting spatiotemporal field after 105 adjoint de-
scent steps with L = 22 fixed, Tf = 50.1981. It bears no relation to ppo22×10.2 of
figure 16.11 (a). (c) rpo22×52.6, the orbit whose period was closest to the result
of adjoint descent (b), included purely for comparison.
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2018-04-12 Predrag The code you are currently using searches only for peri-
odic orbits. They are of two kinds: periodic (generically those exist only
in the reflection antisymmetric invariant subspace U+, you will recognize
it immediately), and even repeats of pre-periodic orbits.

If you have really found a pre-periodic orbit of period T = 2Tppo?? =
50.1981, that one should be in Davidchack, Siminos and Xiang tables?
They are supposed to be compete for short orbits.

What happens with the example of figure 16.11 if you replace the initial
guess figure 16.11 (a) (for which the resulting periodic orbit has a longer
time period, but pretty much the same spatiotemporal shape) with the
known, but noise-perturbed (L, T) = (22, 2Tppo22×10.2) pre-periodic orbit
of figure 13.3 (a)? Your initial figure 16.11 (a) guess has 3 spatial wiggles,
but ppo22×10.2 has only 2, so maybe it is not surprising that it does not
converge to ppo22×10.2.

2018-04-13 Matt I’m running more stringent trials on light right now with fixed
L to see what I get. I guess I wasn’t thinking and assumed that I could
also find relative periodic orbits but thats exactly what the explicit equa-
tion that contains SO(2) shift parameter is for. I think the error in the
number of wiggles is a small mistake due to trying to pick out a wavenum-
ber that is not represented in the discretization, i.e.if the domain isn’t an
integer wavenumber than without increasing the discretization in space
I’m not exactly determining the scale of the most unstable wavelength
because it no longer corresponds to an integer wavenumber.

I’m running more stringent (in terms of tolerance) runs on a fixed domain
so if anything good pops out I’ll be sure to add it.

2018-04-13 Matt Longer trials don’t seem to be producing pre-periodic orbits
but because of the fixed domain size the rate of convergence of the adjoint
descent is slowing down much faster than usual.

I think I need to play around with switching the preconditioning on and
off and figure out the correct time scale before any great achievements
can be made.

And just to sound like a broken record I still need I’ll need impose sym-
metries in the long run as its too big of a constraint to not use.

2018-04-17 Matt Can’t sleep. Not good. Or is it?

While laying in bed for hours I had what I at the time thought was a good
idea which begged the question “If I can add a term to (16.16) so that it
knows its working with solutions with SO(2) symmetry. Why cannot do
the same for solutions with Z2 symmetry?"

The general idea is this. I know how to act the reflection symmetry onto
the equations, can I not create an ansatz or modify the cost functional that
mimics the way López et al. [43] deal with rotational symmetry?
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The first idea was borne from the fact that the Kuramoto-Sivashinsky
equation under reflection are still equal to zero by equivariance,

− ut(−x, t)− uxx(−x, t)− uxx(−x, t)− u(−x, t)ux(−x, t) = 0, (16.25)

So is there not a way to use this to reformulate (yet again) my problem in
such a way that I achieve a complex representation for solutions with Z2

symmetry?

The reflection operator R acts on coordinate x as Rx = −x, and on the
velocity field u (dimensionally [x]/[t]) as Ru(x, t) = −u(−x, t). Relation
R2 = 1 induces [11] linear decomposition u(x) = u+(x)+u−(x), u±(x) =
P±u(x) ∈ U±, into irreducible subspaces U = U+ ⊕ U−, where

P+ = (1 +R)/2 , P− = (1−R)/2 , (16.26)

are the antisymmetric/symmetric projection operators. ApplyingP+, P−

on the Kuramoto-Sivashinsky equation (18.1) we have [35]

u+
t = −(u+u+

x + u−u−x )− u+
xx − u+

xxxx

u−t = −(u+u−x + u−u+
x )− u−xx − u−xxxx . (16.27)

If u− = 0, Kuramoto-Sivashinsky flow is confined to the antisymmetric
U+ subspace,

u+
t = −u+u+

x − u+
xx − u+

xxxx , (16.28)

but otherwise the nonlinear terms in (16.27) mix the two subspaces.

Let’s first write (16.25) in a more suggestive form:

exp iπ(F (u(−x, t))) = R ◦ F (u(−x, t)) (16.29)

The first idea was okay, well 0 + 0 = 0 so let’s see what that yields in
terms of the cost functional, let R denote the operation of reflection, then

F̃ ≡ F +R ◦ F, (16.30)

leads to a completely wrong, just elaborating on my though process cost
functional,

G =
1

2
F̃ †F̃ =

1

2
((1 + eiπ)F )†((1 + eiπ)F ) (16.31)

but carrying out this calculation leads to the trivial result G = 0 due to
cancellation. Likewise, a definition

F̃ ≡ F +R ◦ F, (16.32)
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just leads to an extra factor of 4 in the original cost functional equation,
but would technically alter the adjoint direction, explicitly

G =
1

2
F̃ †F̃

=
1

2
((1− eiπ)F )†((1− eiπ)F )

=
1

2
F †(1− e−iπ)(1− eiπ)F

= 2F †F (16.33)

therefore there would be no change in the adjoint direction−J†F outside
of a scalar multiple.

I haven’t given up hope yet however, as these formulations forgot the
implicit flipping x → −x that is contained within the scalar field itself
u(−x, t). I think that we can exploit this.

When not using the fundamental domain, a reflection applied to a pre-
periodic orbit produces an equivalent solution but not an invariant solu-
tion. This is because in terms of a spatiotemporal tile, the "top" and "bot-
tom" (fundamental domains) get switched. Therefore in order to have
an invariant representation of the solution, we need to translate in time
by Tp. In other words, this is how the reflection operation acts on a pre-
periodic orbitwhen viewed as a periodic orbit, and not from the funda-
mental domain perspective.

R ◦
[
−u(−x, t)
u(x, t)

]
=

[
u(x, t)
−u(−x, t)

]
(16.34)

As we can see, the "bottom" 0 ≤ t ≤ Tp has been switched with the "top"
Tp ≤ t ≤ 2Tp, therefore in order to enforce invariance under Z2 symmetry
we also need to impose a time translation.

T ◦R ◦
[
−u(−x, t)
u(x, t)

]
= T ◦

[
u(x, t)
−u(−x, t)

]
=

[
−u(−x, t)
u(x, t)

]
(16.35)

So what if we compose a function, that enforces this? Will it enable a sym-
metry constrained calculation much like the mean velocity frame equa-
tion? With

F̃ = (1 + T ◦R ◦)F , (16.36)

the cost functional becomes

G =
1

2
F̃ †F̃ =

1

2
((1 + T ◦R◦)F )†((1 + T ◦R◦)F ) (16.37)

which I do not think can be simplified. However, this affects the adjoint
descent in a non-trivial way. It requires F̃ be equal to zero, not only that
F = 0.
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2018-04-17 Matt response to Predrag I agree with Predrag on the following:
I understand that the antisymmetric subspace U+ has its own de-
composition, as odd functions with respect to the spatial have only
imaginary components of spatial Fourier coefficients. If I was look-
ing for solutions in this subspace I would use the equations for the
antisymmetric subspace in terms of spatiotemporal Fourier modes.
I disagree with Predrag on the following point, periodic orbits in the
antisymmetric subspace U+ are invariant under reflection while pre-
periodic orbit’s are equivariant. The way to make a pre-periodic or-
bitinvariant is the action defined by spatial reflection plus time trans-
lation. Periodic orbits in the antisymmetric subspace U+ would also
fall into this category but the reverse is not true. Therefore, I believe
I should be able to modify the equation (1.43) to enforce this reflec-
tion and translation property much like how I modified the equation
(1.43) to incorporate a parameter that tracks the SO(2) shift.

Luca Dieci Meeting I ran Professor Dieci through my thesis proposal
and the things he pointed out were to call the method I’m using
Fourier collocation. He really insisted on using M for space and N
for time; just because of mathematical conventions.
The parts he found lacking were lack of constraints in the adjoint
descent and Gauss-Newton (the apparent official name for least-
squares Newton method) method. He recommended finding solu-
tions to the nonlinear algebraic equations F (x) = 0 such that ||x||2
is minimized for instance. There are some heuristic things one must
include that I pointed out because x = 0 is a solution. I believe Molei
Tao has papers on fictitious forces one can introduce such that the
trivial solution is avoided so I’ll look there for insight.
His main worry was whether the method works with tiling the same
solution in time and space, because we’re claiming they’re doubly
periodic therefore copies of each tile should also be valid. If they
aren’t he said he would start to worry (and so would I).
Appealing to his own experience he really stressed numerical con-
tinuation in the parameter L. I’m unsure if this is just an unfamiliar-
ity with what we are trying to accomplish but he says (and I agree)
this is done rather ubiquitously but I guess one has to go against the
grain in some places to have a new idea.
His last question was a rather broad one, he asked what the main
goal was. I told him to compute a library of invariant 2-tori to be
able to be able to find them in large general invariant 2-tori in order
to build predictions for infinite space and time. He seemed to me to
really like and understand the idea.
The only other comment was my worry that symmetries are too
important to not use, hence my post from yesterday, to which he
agreed. Note: I did not show him what I wrote yesterday so do not
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confuse his agreement with "symmetry is important" with "Matt is
right" in this context.
Addendum: He also mentioned that because we are doing (inher-
ently global) collocation in time and space we might be able to get
away with using a coarse number of modes and then refine the
guesses as we get closer to solutions

Talk with PC Had a discussion with Predrag on whether pre-periodic
orbitsolutions live in an invariant subspace because if one looks at
the full state space orbit corresponding to a pre-periodic orbit, then
like I previously mentioned, it is equivariant under reflection but
invariant under reflection and a time shift equal to the prime period.
I believe that if there is a subspace in which pre-periodic orbits live,
then the antisymmetric subspace U+ must be contained as yet an-
other subspace; the logic behind this is that reflection already leaves
the antisymmetric orbit ∈ U+ invariant, and so time translation by
half of the period leaves it invariant as well? Or would the inclusion
of this translation just be an equivariant transformation? Perhaps
the two spaces are something like the following:

spatiotemporal symmetries These ideas arose due to the nature of han-
dling how to keep pre-periodic orbit type invariant 2-tori invariant
under symmetry. For a generic solution of the Kuramoto-Sivashin-
sky equation that has not been compactified in time, the general
symmetry group would be O(2)×R, as any time translation is valid
as the equations are autonomous. Once we compactify time and
assume doubly periodic solutions, then we should compactify time
as well such that the general symmetry group of doubly periodic
solutions is G ≡ O(2)× SO(2).
When viewed from this context we can identify the isotropy sub-
groups of G for each type of solution. These are not symmetry ac-
tions which the solutions are equivariant under but rather the sym-
metry actions that the solutions are invariant under.

Gx = {g ∈ G : gx = x} (16.38)

With this definition, the isotropy groups of the different types of so-
lutions have the following isotropy groups: where σ represents the

RPO {e, e}
PPO {e, e} ∪ {σ, π}

ANTI {e, e} ∪ {σ, e}

reflection operation of Z2 and π is the proper rotation by π, or equiv-
alently the non-identity element of C2. Therefore, for pre-periodic
orbit type solutions we cannot write the isotropy group as Z2×C2 as
we need an even smaller subgroup. For the antisymmetric periodic
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orbits ∈ U+ the isotropy group is Z2 × e, and for relative periodic
orbit ’s there is only the trivial isotropy group.
This is sort of backwards in the way that we usually view symme-
tries of solutions, but I believe its because we usually list the sym-
metries that a solution is equivariant under and not invariant under.
The logic behind this is that any infinitesimal transformation (spa-
tial or time translation) will not leave the solution invariant; there-
fore, the only possible isotropy subgroups are discrete subgroups of
O(2)× SO(2).
With this in mind, I believe the correct formulation for the pre-periodic
orbitinvariant subspace version of the spatiotemporal function (1.43)
should be the following. Let I,R be the labels for the elements of the
pre-periodic orbitisotropy subgroup. Because we can either reflec-
tion and rotations are space, and then time, they commute in this
case; this is why we can just label the transformation byR.
By defining

1

2
(I +R)F(x) = PF(x) (16.39)

The modified cost functional for pre-periodic orbits is then,

H =
1

2
(PF(x))†(PF(x)) (16.40)

2018-04-24 Predrag The Summit, summarized:

1) All plane Couette flow equilibria and relative equilibria classified in
Gibson, Halcrow and Cvitanović [23] are (ignoring the wall normal, phys-
ically compactified y direction) are doubly-periodic solutions of 2D PDE
in (x, z) = (streamwise, spanwise) infinite directions. Matt will under-
stand the ref. [23] and then, by clip & paste from it, summarize the rel-
evant parts of that paper in sect. 12.3.2, and illustrate the shift & reflect
equilibrium solutions by their uj(x, 1/2, z) plots (to belabor the obvious:
there is not time in the plane Couette flow equilibrium setting, and the
compact y interval is there only to accommodate vortex structures and
burn energy).

2) The spacetime doubly-periodic solutions of 2D Kuramoto-Sivashinsky
PDE that we study are compactifications of u(x, t) = (spanwise, timewise)
infinite directions. The well known and understood classification of sym-
metries and invariant subspaces of plane Couette flow applies -as is- to
the Kuramoto-Sivashinsky problem.

In particular, the much beloved shift & reflect subspace of small domain
plane Couette flow is the pre-periodic subspace of small spatiotempral
tile Kuramoto-Sivashinsky.

QED - Matt had a wonderful insight, and explained this way, the plumbers
will follow.
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(a) (b)

(c) (d)

Figure 16.12: (a) Plot of the z component of the vector velocity field w(z, x)
at the wall-normal midplane y = 0, y ∈ [−1, 1] from “newbie" equilibrium of
plane Couette flow. (b) The shortest preperiodic orbit Kuramoto-Sivashinsky
ppo22×10.2. (c) Shift and reflected −w(−z, x + Lx

2 ) version of (a). (d) Shift and
reflected −u(−x, t+ T

2 ) version of (b).
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2018-04-24 Matt Talks with Predrag, part one Had a discussion about the stuff
I had written up about projection operators and how I can derive in-
variant subspaces of "preperiodic solutions" for plane Couette flow
and then Predrag wondered whether I can relate the shift-reflect
symmetry of plane Couette flow to the spatiotemporal symmetry
operation for preperiodic orbits in the Kuramoto-Sivashinsky equa-
tion.
It turns out that the subgroups are identical and they provide a great
chance for an analogy between plane Couette flow and the Kura-
moto-Sivashinsky equation. In figure 16.12 we take the wall normal
midpoint y = 0 of the newbie equilibrium, and then plot the z com-
ponent of the velocity vector, w(z, x) (the order of the variables has a
purpose). We also plot the spatiotemporal scalar field of the shortest
preperiodic orbit u(x, t).
Then in (c) we the apply shift-reflect symmetry from the plane Cou-
ette, and in (d) we apply the spatial reflection and time translation
symmetry on the Kuramoto-Sivashinsky solution.
Because both solutions are invariant under these symmetries (c) and
(d) are exact copies of (a) and (b) respectively, but if we compare the
equations for the symmmetry transformation we can see the anal-
ogy take shape.

s1w(z, x) = −w(−z, x+
Lx
2

)

στu(x, t) = = −u(−x, t+
T

2
) (16.41)

Therefore, the two dimensional spatial cross section (z, x) of the z
component of the velocity field of plane Couette flow has the same
symmetry as the two dimensional space-time preperiodic orbit of the
Kuramoto-Sivashinsky equation.
The implication of this is that there is now a very precise definition
of what we mean by preperiodic orbit. It is a invariant 2-torus that
satisfies shift(in time) and reflect(in space) symmetry equivalent to
two spatial dimensional plane Couette cross-section.
Therefore not only do we believe all of the machinery available to us
from refs. [12, 23] is applicable to spatiotemporal discrete symme-
try subgroups in the Kuramoto-Sivashinsky equation, but also we
believe this fact to be a bridge to the gap between spatiotemporal
Kuramoto-Sivashinsky equation and plane Couette flow.

Talks with Predrag, part two The next topic of discussion was about how
to approximate the time scale for large invariant 2-tori, as the spatial
scale is already pretty well understood as being the most unstable
wavelength of the Kuramoto-Sivashinsky equation. We’ve been us-
ing an approximation of the temporal scale of about ten to twenty
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dimensionless time units but we discussed and thought of a number
of ways we can approximate the time scale.

• Count and average the number of maxima and minima in time
strips of the scalar field originating from a large invariant 2-tori
to give an average wavelength

• Count the number of maxima and minima in space, and see if
and when this number changes. Numerically, this would be
tracking when the spatial waveform has a "birth or death" event.

• Combine or compare the previous two methods to see if if what?
• Use the "slope" of traveling wave solutions, exponents of EQ2

(dynamically relevant) equilibrium.
• Use Lyapunov time

2018-04-24 Matt Figured out how shift and reflect subspace for complex Fourier
representation (pre-periodic orbit subspace). It’s much easier than I pre-
viously thought and was doing this morning, which was taking the real-
valued expression and substituting complex exponentials for sines and
cosines.

First the complex spatiotemporal Fourier transform, m is the spatial in-
dex, n is the time index

u(x, t) =

m=N/2−1,n=N/2−1∑
m=−M/2,n=−N/2

ûnme
i(qmx+ωjt), (16.42)

which we then perform shift and reflect symmetry operation on,

τσu(x, t) =

m=N/2−1,n=N/2−1∑
m=−M/2,n=−N/2

−ûnmei(qm(−x)+ωj(t+
T
2 )), (16.43)

which after some simplification can be written,

m=N/2−1,n=N/2−1∑
m=−M/2,n=−N/2

(−1)n+1ûnme
i(qm(−x)+ωjt) (16.44)

We can’t equate them just yet, but I found it most useful to make the
transformationm→ −m in the original sum rather than the sum after the
symmetry operation, this transformation yields the following equation,

(−1)n+1ûnm = ûn,−m . (16.45)

Now using this, in combination with the two-dimensional conjugacy re-
lation for the two dimensional Fourier transform of a real valued field

7451 (predrag–6859) 54305/09/2019 siminos/spatiotemp/chapter/blogMNG18.tex



CHAPTER 16. MATT’S 2018 BLOG

ûnm = û†−n,−m, we can figure out the invariant subspace, or at least
the non redundant set of Fourier coefficients that we need to reproduce
u(x, t).

In order to explain this, I will do it pictorially, as the spatiotemporal
Fourier transform is easiest to represent in two dimensions (i.e. a ma-
trix).

n \ m 0 1, . . . ,M/2− 1 −M2 −M/2 + 1, . . . ,−1
0 0 û0m 0 −û0,m

1, . . . , N/2− 1 0 ûnm 0 (−1)n+1ûnm
−N

2 0 0 0 0
−N/2 + 1, . . . ,−1 0 (−1)n+1û†nm 0 û†nm

where the coefficients ûnm in this table only imply positive indices, n > 0
and m > 0. So in order to reconstruct the original field u(x, t) we only
need the spatiotemporal modes consisting of indices n ≥ 0 and m > 0.
The rest of the table is purely instructions on how to recreate the spa-
tiotemporal spectrum so that the inverse Fourier transform can be ap-
plied.

2018-04-30 Matt - coding efforts Almost done implementing the new complex
valued codes for the shift-reflect subspace and spatiotemporal relative
periodic orbit codes, or so I thought before the previously described in-
vestigation.

For the shift-reflect complex-valued code it seems that the L2 norm is a
much better measure that it was in any of the previous codes. My favorite
test case, ppo22×10.2 on L = 22 domain starts with an initial cost function
residual of 1

2 |F |2 ≈ 10−9 and is able to converge to within machine pre-
cision using adjoint descent alone in under one second. This result uses
a 32-by-32 discretization in space and time which corresponds to the set
of Fourier modes n ≥ 0,m > 0; which corresponds to a set of 16-by-15
spatiotemporal modes.

There is a slight problem however because now generic smooth fields
u(x, t) with imposed shift-reflect symmetry, time and spatial scales, are
generally terrible. There cost function residuals typically start off in up-
per atmosphere, i.e. the thousands. The noticeable difference between
the modulated initial conditions and known preperiodic solutions is that
typically there are very long nonlinear streaks in the time direction for
pre-periodic orbit ’s that I’ll need to reliably reproduce. One attempt at
this is to limit the time scale to be the entire domain i.e. start with only
the n = 0, 1 modes on a spatiotemporal domain, but its not working too
well.

2018-05-01 Matt Trying to see how robust the shift-reflect subspace is through
testing.
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(a) (b)

(c) (d)

Figure 16.13: (a) Spatiotemporal u(x, t) generated via time integration of
ppo22×43.6. (b) The difference between (a) and its shift-reflection (c) The result-
ing spatiotemporal fixed point after passing (a) through direct-matrix code,
Lf = 22.0004274064, Tf = 87.2203435133. (d) The difference between (c) and
its shift-reflection.
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(a) (b)

Figure 16.14: (a) Linear combination 1
2 (ppo22×10.2 + ppo22×32.3) used

as the initial guess, with starting domain size, time period (L0, T0) =
(22, 42.6097031254), where 42.6097031254 = Tppo22×10.2 + Tppo22×32.3 . (b) Result-
ing invariant 2-torus with (Lp, 2Tp) = (31.5056, 25.2461).

Linear combinations of shift-reflect subspace solutions providing better
results than spatiotemporal initial conditions who start as modulated
noise in the shift-reflect subspace. figure 16.14 (a) shows the linear combi-
nation of the shortest and third shortest pre-periodic orbit on the L = 22
domain. The resultant solution has a drastically (more than order one)
different domain size and period than the original guess. I am surprised
this worked, but it might show how powerful spatiotemporal invariance
can be.

2018-05-01 Predrag Now figure 16.14 seems to have wandered out of the shift-
reflect subspace; it is just a r = 2 repeat of what seems to be an inaccurate
invariant 2-torus (Lp, Tp) = (31.5056, 12.6230) in the antisymmetric sub-
space U+. You have to make sure you cannot float from Us into U+ - they
should be two distinct, orthonormal flow invariant subspaces. Or if you
can flow from one into the other, explain in sect. ?? how that happens.

2018-05-02 Predrag Further thoughts about figure 16.14 - interrupted, might
continue later:)

2018-05-02 Predrag Remarks on notation: we use curly brackets when listing
group elements, as in S = {e, τx, τt, τxt}. I understand why you write
{σ, 1}, {1, τ}, · · · (in order to explicitly indicate the distinction between
acting in space and acting in time, but this is not how it is conventionally
done, so I’ll replace such by the standard subscript notation {σ, 1} → σx,
{1, τ} → τt, · · · .
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2018-05-11 Matt Projection operators Played around with projection opera-
tors with the mistake of not thinking about what I was doing sadly.
I need to be able catch myself more readily when going down these
rabbit holes as they affect my productivity.
I was naïvely hoping that because relative periodic orbitand pre-
periodic orbit’s appear in pairs that there would be some sort of
relation between the shift-reflect subspace and relative periodic or-
bit’s. I investigated angles between relative periodic orbit’s and
their projections onto the shift reflect subspace but everything lead
to a garbled mess with no useful information. There seems to be no
organization in the manner I had hoped in all combinations of plot-
ting shift, period, angles between orbit and subspace, and any other
dumb idea I could come up with.

Subspaces After thinking a little bit and writing it up in discsymm.tex,
the symmetry invariant subspaces are the shift-reflect, antisymmet-
ric U+ subspace, and then the “twice-repeating" in time subspace
(invariant under τt. The quandary I have with this subspace is that I
think it is completely unimportant, as a “twice-repeating" antisym-
metric solution would still be in the antisymmetric subspace U+.
Therefore, the twice repeating subspace or U++⊕U−+ in the current
notation is only twice repeating solutions without shift-reflect sym-
metry or reflection symmetry. So what are they? Projection onto the
subspace leads to symmetric doubly periodic structures but there
is no symmetric flow-invariant subspace so I’m confused as to why
this would present itself in the derivation.

Attempt at conservation laws Tried to work through Ibragimov results
to derive a "conserved vector" but after trying to work things through
for far too long I realize I have no idea what I’m doing. I thought
that I could make the "Formal Lagrangian" quasi-self adjoint for the
shift-reflect subspace and derive a conservation law due to that but
it gave me nonsense.
The general idea was to use the quasi-self adjoint criterion v = φ(u)
(as opposed to v = u if the equations were self-adjoint, and then
figure out what φ(u) converts the adjoint equation to the original
Kuramoto-Sivashinsky equation .
Substitution of v = φ(u) into (3.21) and grouping by derivatives of
φ,denoted by primes,leads to the following equation

φ
′
(−ut+uxx+uxxxx)−uφ′∂xu+φ

′′
(3u2

xx+4uxuxxx)+φ
′′′

(6u2
xuxx)+φ

′′′′
u4
x = 0

(16.46)
The big waste of time arises from the following desire; If I assume
that a linear function ansatz, φ(u) = gu then all of the higher order
derivatives vanish, resulting in

g(−ut + uxx + uxxxx)− ug∂xu = 0 (16.47)
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I was trying to see if I could figure out a symmetry operation g
such that the negative signs on the nonlinear term and time deriva-
tive term vanish, then the equations would be quasi self-adjoint. I
wasted a lot of time without realizing the only way to flip the sign
on the time derivative would be time-reversal; so this whole pur-
suit is worthless. Reflection would switch the sign on the nonlinear
term however, so I thought maybe if g = στ , i.e. shift reflection,
then it would work if u was in the shift-reflect subspace but it didn’t
work out. Basically I was careless in the beginning and then Euler-
Lagrange equation based on the "Formal Lagrangian" that is incor-
rect and nonsensical.

Matrix free’s last hope The finite difference calculation that is used to
approximate the matrix vector product is just too inaccurate to be
of use for the spatiotemporal problem. Comparing the norms of
the two vectors, the exact product, |Jδx|, and its approximation,
|F (x+δx)−F (x)

|δx| | they’re off by almost exactly |δx|, which makes me
feel like I had made some stupid mistake but changing this in the
GMRES code makes it completely worthless.
I believe the best pursuit is going to be use matrix-free methods
on the front end of the calculation and then pass the possible so-
lution to least-squares Newton, explicit matrices and all unless I can
find another matrix-free calculation that is more accurate than finite-
difference arnoldi inside of the GMRES routine.
Just because I believe it will work I am going for the first option. Au-
tomate my code so that it produces initial conditions in the various
subspaces, runs them through the adjoint descent method, and if a
tolerance is reached it then solves the Newton’s method equation by
explicit construction of the linear system.

2018-05-14 Matt Projection Operators Trying to figure out the best way to uti-
lize projection operators from discsymm.tex in trying to find in-
variant 2-tori in the shift-reflect subspace.
I think the problem with the shift-reflect invariant subspace code is
that it finds equilibria solutions too often, which I believe is because
the adjoint descent method doesn’t discriminate between U++ and
U++ ⊕ U−− as the zeroth temporal modes need to be included for
the shift-reflect subspace calculation. So I am trying to use projec-
tion operators to either begin invariant 2-torus spatiotemporal initial
conditions “closer" to shift-reflect subspace solutions and “further"
from equilibria, i.e. the U++ symmetry invariant subspace.
One of the consequences of this was figure 16.15, which I’m having
trouble realizing if it is entirely trivial or not because the organiza-
tion when projecting onto two components squares of the L2norms
are constrained, but their distribution 0.5 < p1 < 0.95 seems an in-
teresting consequence. My explanation for the discrepancy between
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(a) (b)

Figure 16.15: Organization of pre-periodic orbit solutions from L = 22
domain projected into two dimensions using projection operators that form
the shift-reflect subspace. The horizontal axis is defined by P1 = |u++|

|u| ,

and the vertical axis is defined by P4 = |u−−|
|u| . (a) Time integrated pre-

periodic orbit s (blue dots) and equilibria (triangles: (red,green,magenta) for
(first,second,third) equilibria ) (b) Projecting all solutions onto the U++ ⊕ U−−
shift reflect subspace and then plotting using the same axes.
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(a) (b)

Figure 16.16: (a) Initial guess for the hybrid invariant 2-torus code: (L0, T0) =
(22.0, 24.5833538399) (b) Resulting invariant 2-torus solution: (Lp, Tp) =
(25.036, 26.584)

(a) and (b) in figure 16.15 is picking up errors from time-integration
as the shift-reflect subspace is not a flow-invariant subspace, but
rather a spatiotemporal symmetry invariant subspace.
This can be applied in generating initial conditions, by ensuring that
the proportionality is right before starting the matrix-free adjoint de-
scent. I have also improved this part of the code before today as well
but never took anything like this into account.

Direct Matrix Code Still going through the optimization and fat cutting
so that explicit matrix methods in conjunction with matrix-free ad-
joint descent.

2018-05-18 Matt spatiotemp codes Nothing to report other than progressing
through the tedious process of scrapping, improving, and making
various codes compatible.
I’m also trying to make the code consistent with the notation of this
blog and others so if anyone went through them they would under-
stand what everything means.
Redefining almost all of the explicit matrix code improved the ac-
curacy and reliability a lot such that I think once all of the codes are
compatible I’ll be in a really good spot to find lots of invariant 2-tori.

2018-05-22 Matt Still in the beginning of the automation procedure, having
some coding troubles with the matrix free code for invariant 2-torus rela-
tive periodic orbit solutions. Included is a figure of something that I be-
lieve is good that came out; mostly finding equilibria and solutions close
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to u(x, t) = 0. This is likely due to how I am starting initial conditions in
a very naïve way as I tend to do whenever starting out codes instead of
thinking it through I’m just testing the combination of codes by throwing
anything in and seeing if something comes out. So far, the methods seem
to be poor ways of trying to get solutions:

• conjoining two spatial periods of invariant 2-torus solutions seems
to yield poor results.

• linear combinations of pre-periodic orbit invariant 2-torus solutions
is okay in certain circumstances if the length scales are correct. In-
correct length scales tends to lead to numerical results whereL→∞
for all practical purposes.

• random initial condition generation hasn’t been applied yet.

Figure 16.16 is an example of what I would call a good result for the
hybrid methods. Constricting a symmetry on a trivial initial condition
might be too strict of a constraint and I’ve been wondering if perhaps I
should run full-state space descent methods and then impose symmetry
constraints as a secondary method. More testing to come.

I have a lot to think about in the days ahead. The idea of imposing sym-
metry as a secondary option or modifying the preconditioning of the ad-
joint descent are still my main pursuits as maybe I can somehow modify
them or introduce a fictitious forcing that will avoid equilibria type solu-
tions.

2018-05-23 Matt Burak still doesn’t see any reason to look for invariant 2-tori
withL not fixed, claims it can’t work even though I showed him evidence
that it does. I agree with him that I need to find the reason for why it
works and why it picks out a single representative solution.

He suggested that I look at the (time) Floquet multiplier spectrum as he
believes I might be finding periodic orbits at saddle-node bifurcations.
I tried to test this quickly but numerical underflow prevents me from
seeing such things unless I implement the algorithm from Ding and Cvi-
tanović [18], I believe.

Much more work on automation code, just finding small inconsistencies
from testing, working on converging the pre-periodic orbit invariant 2-
torus solutions from Xiong’s main h5 file before moving onto randomly
generated initial conditions. The main idea from this kind of testing is
namely, to see if there are any errors in the automation code, but also
see the number of points needed for faithful time discretizations; the pre-
periodic orbit solutions are numbered based on their temporal periods
in the file so I’m hoping that after some number that either the code will
fail or not look accurate, because I am using a 32-by-32 space-by-time
discretization for all of the initial conditions.
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Qualitatively, it seems that 32 points in time, (16 real valued modes)
works well up until 2Tppo = 140 solutions, depending on the different
structures present. Convergence with this same number of modes can be
achieved for periods larger than this, so I will have to take an in-depth
look at the spatiotemporal spectra to see if there is anything discernable
about these solutions.

It’s quite possible that I merely haven’t tuned the adjoint descent well
enough, as I’m only allowing for two thousand adjoint descent steps
where for an arbitrary initial condition I have used up to one-hundred
thousand. But known pre-periodic orbit solutions should converge re-
gardless, so I am taking it on the size of the discretization and not the
methods which seem to work fine for other solutions.

I think because the spatial scale is well-defined the approach I will take
is as follows for new invariant 2-tori.

For a variety of domain sizes and periods, I will slowly increase the
length until I cannot find anything (as described by a number of failed
trials) that converges.

As my code allows for any additive factor of two increase in the dis-
cretization size in either time or space, I’ll have to describe the quantita-
tive way to increase said discretizations in an orderly manner. At each
new starting domain length, I will have a minimum number of spatially
discretized points, and then gradually increase the temporal discretiza-
tion as the numerics seem fit. I.e., there will be a systematic description
to the growth of the discretizations instead of just multiplicative factors
of two, because this grows too quickly.

I believe I fixed all of the issues in the matrix-free relative periodic orbit
code so now all that is left before the computers can take over is to do
testing on the initial condition generation from a modulated spatiotem-
poral tile, and seeing if there is any way I can weigh the cost functional to
penalize moving towards the U++ symmetry invariant subspace where
equilibria live.

2018-05-24 Matt I believe all of the automation and coding is done, now there
is only to run it. A possible result is that it works perfectly and finds
many invariant 2-tori of varying spatiotemporal symmetry subgroups.
The numerical issues that remain are (1) tuning the discretizations, (2)
defining the notion of spatiotemporal stability, and perhaps (3) penaliz-
ing U++ solutions.

I think more likely is that it finds some solutions, but mostly equilibria
and I still need a way to think around this. I think weighing by some-
thing like 1/(u− u++) would do the trick, but Elena mentioned in the
plumbers meeting that Ashley tried “something similar" (Predrag: read
the pipes blog where it is described) and it didn’t work.
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They don’t care if space is time? Barbarians! I do. Otherwise other
than perhaps some small efficiency, notational changes, and antisymmet-
ric subspace U+ codes the only thing left on the table are the notions of
spatiotemporal stability on compactified spacetime and why the meth-
ods are picking out certain solutions.

In my mind its rather arbitrary which domain size it lands on but appar-
ently I need a manifest reason in order to motivate it amongst the other
powers that be. I am assuming this is the way it will go for the defense
of my thesis proposal as well.

This is somewhat airing my grievance to Burak’s comments that it is
finding an arbitrary domain size (and actually he went as far as to say
it shouldn’t be possible without additional constraints).

As far as I’m concerned domain size and periodic boundary conditions
seemed to be axiomatic. Why attempt to perform periodic orbit the-
ory on the Kuramoto-Sivashinsky equation with L = 22 instead of L =
22.030238210398? My main point is to elucidate this grievance that I just
can’t seem to get through to Burak.

The conventional applications of the periodic orbit theory to Kuramoto-
Sivashinsky start by a priori fixing the domain size. What I am suggest-
ing is that instead we let the equations themselves dictate the periodic
domain sizes which satisfy the Kuramoto-Sivashinsky spatiotemporally.

Another argument is, sure, the solutions might (as there might be a break-
down or some other bifurcation) be able to be continued in domain size
using pseudo arc length continuation; but isn’t the whole reason behind
this project due to the lack of advancement in the theory of turbulence
calculations and periodic orbit theory on large computational domains
anyway?

2018-05-28 Matt Trying everything that I can think of to explain the reason
behind why my methods work. The Gauss-Newton method, otherwise
referred to as “least-squares" Newton, solves the underdetermined linear
system Ax = b by solving for the x of minimum norm that satisfies the
equation. The translational symmetries do not need to be separately con-
strained because that would imply an added cost via increasing the norm
of x. 5

I am doing more analysis on whether I can constrain a physically mean-
ingful quantity, i.e. a least energy density solution that perhaps would
be more likely to be realized in the infinite spatiotemporal world-view,
but this isn’t obvious to me as it is coupled to other solutions nonlinearly.
All in all I think I know a little more about why my code is finding the
solutions it is finding, but so far I cannot tell if there is a more meaningful
reason, as other calculations based on the area, energy, norm of the final

5Predrag 2018-05-28: By “the x of minimum norm” you mean Moore-Penrose pseudoinverse
(13.20)?
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Figure 16.17: Absolute value of the leading Floquet multiplier versus domain
size, calculated by numerical continuation of ppo22×10.2 and fixing domain size.
The red square is where the numerically converged invariant 2-torus sits when
converged without domain size being fixed.

state-vector, seem not to be meaningful quantities for the Gauss-Newton
code.

I think my code is still worthwhile as the solutions that it finds can be
used for other numerical continuation efforts if a obvious constraint (min-
imal area for instance) can be numerically derived. So, even if there is no
motivation behind the specific solutions that I am finding, they are still
great initial conditions for further efforts. They are being found without
any time integration or close recurrence procedures due to the efficacy of
the adjoint descent when starting with modulated noise.

2018-05-28 Predrag Re. your recent trawls: check whether E of relative equi-
librium (1.38) defined in Cvitanović, Davidchack and Siminos [12] Eq. (2.17)
is indeed constant when evaluated at any x in the periodic spatial do-
main. If the Kuramoto-Sivashinsky equilibrium solutions belong to con-
tinuous families as functions of L, I think E = E(L) should vary with L.
The notion of “energy density” E might be useful for periodic orbits as
well, see Sect. 3 of the above paper.

For E > 0 equilibria and relative equilibria are organized by the equilib-
rium points of (1.38)

c+ = (
√
E, 0, 0) , c− = (−

√
E, 0, 0) , (16.48)

as explained in ChaosBook [10], Example 30.6. Equilibria of equilibria.
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Figure 16.18: (a) E1, (b) E2, and (c) E3 equilibria. The E0 equilibrium is the
u(x) = 0 solution. (d) (u, ux, uxx) representation of (red) E1, (green) E2, (blue)
E3 equilibria, (purple) TW+1, and (orange) TW−1 relative equilibria. L = 22
system size. From Cvitanović, Davidchack and Siminos [12].

Now rescale u in (1.38) as u→ up
√
Ep:

1
2u

2
p +

1√
Ep

(−cup + up,x + up,xxx) = 1 , (16.49)

The equilibrium points of (1.38) are now

c+ = (1, 0, 0) , c− = (−1, 0, 0) , (16.50)

so all relative equilibria should line up nicely, like ducks in a row. You can
do the same thing for any invariant 2-torus p by rescaling the Kuramo-
to-Sivashinsky equation (18.1) by the invariant 2-torus p energy density
(1.44).

I do not remember Lan and me doing this, but it looks like the symbolic
dynamics for all equilibria and relative equilibria could be a ± for each
turn around the stable manifold of c±.

Also, I’m unsure whether my code is having a harder time finding in-
variant 2-torus spatiotemporal invariant solutions at larger domains or if
its just a consequence of punctuating the runs more often to make more
tuning and corrections.
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2018-05-30 Predrag Some logical cross-checks: The Kuramoto-Sivashinsky equa-
tion is Galilean invariant: if u(x, t) is a solution, then v+u(x− vt, t), with
v an arbitrary constant velocity, is also a solution. In our fixed L calcula-
tions we only work in the zero mean velocity frame, so let us also require
that in L→∞ limit ∫

dxu = 0 . (16.51)

Suppose that ∮
dxup = Cp 6= 0 (16.52)

for a given invariant 2-torus p. But that cannot tile the infinite space
(16.51), as each repeat over a segment of length L increments the inte-
gral by Cp. Hence it is OK to demand that 〈u〉 = 0 vanishes for every
solution p.

Note also that 〈u〉 = 0 implies that the energy density is proportional to
twice the variance of u,

σ2 = 〈(u− 〈u〉)2〉 = 〈u2〉 . (16.53)

This quantity is a “random walk” in u, and expected to grow linearly with
L, so the energy density (1.51) is expected to go to a limit for L → ∞,
justifying the rescaling of u proposed above. That also means that the
range of u values for a typical relative equilibrium should (could?) grow
linearly with L, and for a typical invariant 2-torus proportionally to LT.

The reason I obsess about this is that we need to have the same (covering)
alphabet everywhere. So our letters should correspond to local increments
(like the turns of the unstable spiral around the equilibrium c−), and not
be proportional to the magnitude of u.

2018-05-31 Matt Having trouble finding the magic bullet for rescaling equilib-
ria. I believe that the correct transformation for rescaling u in (1.38) is
u→ up

√
2Ep, rather than Predrag’s u→ up

√
Ep.

This can be seen by looking at the equilibrium condition of (16.49). If
the solution has spatial derivatives equal to zero, then (16.49) implies
1
2u

2
p = 1, which in turn implies u±p = ±

√
2.

2018-05-31 Matt Therefore, I believe the correct transformation is u→ up
√

2Ep,
which leads to

u2
p +

√
2

Ep
(−cup + up,x + up,xxx) = 1 , (16.54)

rather than Predrag’s (16.49).

With my rescaling, the equilibrium points of (1.38) are now

c+ = (
1√
2
, 0, 0) , c− = (− 1√

2
, 0, 0) , (16.55)

05/09/2019 siminos/spatiotemp/chapter/blogMNG18.tex556 7451 (predrag–6859)



CHAPTER 16. MATT’S 2018 BLOG

After further investigation and numerous checks the rescaling by the now
corrected value still doesn’t seem to work for equilibria solutions on ar-
bitrary domain sizes. The issue seems to be that solutions bifurcate via
crossing over (0, 0) in the rescaled (up, up,x) axes, almost in the act of
shedding loops that do not follow the symbolic dynamics prescribed by
looping around the equilibria at (±1, 0, 0).

2018-05-31 Matt Animation ../figs/eqva_bif.gif (run it in Chrome or in Photo-
shop or the like) shows the change of an equilibrium identified in the next
post with increasing the domain size from L = 12 to L = 32 through nu-
merical continuation (as opposed to hundreds of “slides"). The left frame
is a plot (up, up,x), and the right frame plots (x, up(x)). The domain size
is indicated in the title of each plot. Note that up are the rescaled fields, as
defined by (16.49).

The domain size was numerically continued by using spatiotemporal
(overkill) convergence code that fixes the domain size, unlike my other
codes. The domain size was changed in step sizes of ∆L = 0.1. It con-
verged over the range of L ∈ [12, 32], which suffices to identify several
bifurcations.

2018-06-19 Predrag ../figs/eqva_bif.gif narrative
Much is known about what one expects, see figure 1.3. In the natural
units L̃ = L/2π of system size length, one finds zero-energy bifurcations
off the equilibrium u(x, t) = 0 at integer L̃ = 1, 2, 3, 4, 5, · · · , i.e., at
L = 6.283, 12.566, 18.849, 25.133, 31.416, · · ·
As E is here a very important parameter that vanishes at the birth of
equilibria spun off u(x, t) = 0, one should not rescale u by (16.49) in these
plots. A look at Kevrekidis, Nicolaenko and Scovel [35] Fig. 6.1 indicates
that the same maxima E = 1.6 · · · for Ek, k = 1, 2, 3 are only apparently
the same, maxima do grow larger for for larger k.

The initial L = 12 equilibrium is E1. It collides with a pure harmonic at
L̃ = 2.013 (known asL = 12.65 in gradstud speak). We see from figure 1.3
that is the death of E1 and its continuation as E2. In turn, equilibrium E2

dies someplace above L > 25 (details might be in the literature). Matt’s
continuation misses all other coexisting equilibria and relative equilib-
ria, unless it picks up the bifurcation to equilibrium GLMRT [24] at L̃ =
2.5 · · · (known as L = 15.7 · · · in gradstud speak). But I am unsure as to
it actually doing that. 6

Next, something happens at L̃ = 3.63 (known as L = 22.8 in gradstud
speak). Perhaps GLMRT → TW±1. That will be easy to tell if also E is
plotted as a function of L.

6Predrag 2018-06-20: According to Greene and Kim [24], GLMRT solutions (studied at length
by them) are generalized LMRT solutions of LaQuey et al. [42], where “LMRT” are the author
initials, and decoding what they would correspond to today, 45 years later, we leave as an exercise
to the reader.
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2018-06-05 Matt Currently running testing to determine how many spatiotem-
poral modes are needed for accurate representations of invariant 2-tori.
Running tests where L = 23 with the number of spatial modes is m = 16
which has been shown before to be adequate at this domain size. Al-
though I have code running I have yet to find to most convincing way
of demonstrating where the temporal discretization is adequate, conver-
gence doesn’t seem to be the best means of demonstrating this because
solutions can converge with a small temporal discretization but when
viewed qualitatively sometimes even the converged solutions do not look
like what I would expect.

This falls under the title of tuning and testing of the spatiotemporal codes;
trawls still being run on light to find shift-reflect invariant 2-tori, as I
wasn’t sure where the error of relative periodic orbit invariant 2-tori was.
Will start relative periodic orbit invariant 2-torus trawls tomorrow, also
need to upload more figures from further trawls, although as the domain
size increases the number of convergent solutions seems to be decreasing.

After further testing, imposing the correct spatial scale as determined by
the spectrum of the Kuramoto-Sivashinsky equation L̃ = 2π

√
2 leads to

many equilibria solutions so imposing the incorrect spatial scale is almost
more beneficial much like imposing a larger than normal magnitude of
the spatiotemporal field u(x, t).

2018-06-11 Matt Trawling on larger domains L > 70 is picking up nothing but
bottom feeders currently so I’ve been working on improving the trivial
symmetry, i.e. full state space code in hopes that relaxing symmetry re-
quirements finds us more invariant 2-torus invariant doubly periodic so-
lutions. Other than the relative periodic orbit invariant 2-torus solutions
posted today there is only one new pre-periodic orbit invariant 2-torus
solution before I left the office so I’ll wait for a bigger haul before upload-
ing.

2018-06-11 Matt Numerics: aliasing Extracted information from ref. [4] on
what I thought was one of the gaps in my code which was the fact that
it seemed to perform much better as a fully aliased pseudospectral calcu-
lation rather than a de-aliased calculation. I feared that this would bring
criticism so as I tried to armor myself by actually reading. My argument is
that while aliasing can be devastating for temporal evolution due to the
contamination of the higher Fourier mode components by their aliases,
(k′ = k +N ) where N is the number of collocation points, the spatiotem-
poral problem should be fine as long as the calculation is well resolved
enough. In fact, this is likely why I have solutions that "converge" on
larger spatial domains than the discretizations can seem to resolve.

Aliasing commments:

For evolution problems one must address the issue of the tem-
poral numerical stability of the calculation. Collocation ap-
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proximations must be formulated with more care than Galerkin
approximations. The reason is that for evolution problems with
quadratic conservation properties, the Galerkin formulation will
automatically yield semi-discrete quadratic conservation laws.

Numerous comparisons have been performed for aliased and
de-aliased calculations of the periodic, multidimensional Navier-
stokes equations. Useful discussions may be found in [22, 34,
46, 50]. All of these authors conclude that with sufficient reso-
lution, aliased calculations are quite acceptable.

Moser, Moin and Leonard [47] caution against aliased calcu-
lations. They present a single, poorly resolved, aliased calcu-
lation and compare it with three de-aliased calculations, one
poorly resolved, one moderately resolved, and one well re-
solved. Their single aliased result is certainly much worse than
their well resolved, de-aliased case, but their poorly resolved,
de-aliased case is no better than the aliased one. Hence, their
conclusion is not supported by their evidence.

In light of these comments and discussions I believe that de-aliasing is
more important in the context of accurate temporal evolution, but not
required in the spatiotemporal fixed point problem as long as the patterns
are sufficiently resolved. One way of thinking about this is that in the
discretization of the spatiotemporal Kuramoto-Sivashinsky equation we
could add a term that represents the aliasing,∑

m′,n′

∑
k

6= 0, j 6= 0am−m′+kM,n−n′+jNam+kM,n+jN ,

as it is implicit in the fully aliased representation of the equations.

I believe the spectrum of the Kuramoto-Sivashinsky equation plays a
role, and it might be wise to at least dealias the temporal convolution
sum as there is less of a precedent for ignoring it; In the spatial case we
can at least claim the hyperdiffusion term diminishes the amount of cor-
ruption in the spatial wave number, but this is harder to motivate for the
temporal terms.

More motivation from Canuto, Hussaini, Quateroni and Zhang [4] are
their fig. 7.1 and fig. 7.4, where the fully aliased but more resolved terms
seem to beat out even the dealiased computations in energy conservation
of the KdV equation for fig. 7.1.

Their fig. 7.4 is a reproduction of the effects of aliasing in the transition to
turbulence in channel flow by Krist and Zang [38]. Only the high resolu-
tion (aliased) seems to be physically representative of the actual solution,
and even the dealiased computation on a coarser discretization (while
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(a) (b)

Figure 16.19: (a) Plots of up versus u2
p,x−u2

p,xxx for all of the equilibria solutions
in svn repository. (b) Zoomed in view showing that all spatial periodic orbits
seem to intersect at (±1, 0) in these coordinates.

better than the equivalent aliased discretization) still does not prevent ar-
tificial oscillations. This is also a temporal evolution problem which we
are not dealing with.

In light of all that I have seen, resolution is King.

2018-06-11 Matt Equilibria rescaling I’ve been trying to work with the rescaled
equation for equilibria of the T = 0 system in order to best demonstrate
how they are organized in space. Burak pointed out that I should be able
to get a lobe if I use the Miranda and Stone [45] coordinate transformation
(discussed at length in ChaosBook for the Lorenz symmetry reduction).
I’m still playing around with it but here are the best results I have so far:

• Figure 16.19 is a plot of u2
p,x−u2

p,xxx as a function of up. Other projec-
tions don’t seem to elucidate anything and when zooming in even
further than (b), all orbits come within about 10−7 of intersecting
(±1, 0) in terms of vertical (u2

p,x − u2
p,xxx) distance.

• Figure 16.20 finds the return map of u2
p,x − u2

p,xxx of a family of
numerically continued equilibria solutions in space by calculating
when the other nonlinear coordinate transformation v = 2up,xup,xxx
crosses the origin, with u2

p,x − u2
p,xxx positive, to guarantee that all

section crossings are in the same direction. Color coding indicates
domain size of the solution.

• Figure 16.21 The return map calculated as in figure 16.20 but with
all of the equilibria solutions in the repo.
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(b)

Figure 16.20: (a) Return map of u2
p,x − u2

p,xxx for a family of equilibria numer-
ically continued in space. Found by looking for when the other transformed
coordinate 2up,xup,xxx passes through zero and u2

p,x − u2
p,xxx is positive. (b)

Window around the origin. Color scale indicates the domain size of the nu-
merically continued equilibria

(b)

Figure 16.21: (a) Return map of u2
p,x − u2

p,xxx for all equilibria in svn reposi-
tory. Found by looking for when the other transformed coordinate 2up,xup,xxx
passes through zero and u2

p,x−u2
p,xxx is positive. (b) Window around the origin.

Color scale indicates the domain size of the equilibria .
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(a)
(b)

Defect1 Defect2

Streak Gap

Figure 16.22: (a) A proposal for an alphabet of Kuramoto-Sivashinsky spa-
tiotemporal patterns with catchy names. One should also quotient the spa-
tial reflection, i.e., the fundamental domain is 1/2 of the pattern shown. (b)
Corresponding representative invariant 2-tori: defect1 = rpo13.2×15; defect2 =
rpo17.5×T17; streak = eqva_L8.5; gap = po_L17.3_T15.3.

Whether these plots will prove useful for analysis is still to be seen. Fig-
ure 16.19 might help. While its not as clear as to how to formulate the
symbolic dynamics as in the Lorenz system, as there seem to be three
distinct lobes as opposed to two; in the symmetry reduced projection it
might change from a three-letter alphabet to a two letter alphabet; What
I’m trying to say is that by using this coordinate transformation, even
when plotted in a non-reflection symmetry reducing way I believe that
there are three lobes, i.e., (−1, C, 1), which might be useful.

2018-06-11 Matt Reading While making small coding adjustments and play-
ing with equilibria of equilibria I’ve been trying to read as much on the
variational integrator literature as I can; there’s just a lot. Kraus and
Maj [37] seems to be a good introduction but there the notation is seem-
ingly purposefully confusing. Due to the geometrical nature there are
lots of indices and substitutions and man I find it hard to get through the
brush.

2018-06-25 Matt Working through using CUDA (Nvidia based GPU process-
ing toolkit) for energy norm comparison code.

The outline of the code is as follows,

• Produce large scale (“infinite") spatiotemporal computations with a
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(a) (b)

Figure 16.23: (a) A crude tiling of a (b) shift-reflect invariant invariant 2-torus
ppo30×44 . This uses only snippets from figure 16.22. Continued in the blog post
of 2018-11-09.

spatiotemporal discretization convention such that ∆x,∆t = 1, for
instance.

• Rediscretize invariant 2-tori to obey the same discretization conven-
tion.

• Either use spatiotemporal invariant 2-torus solutions or subdomains
to search for regions where difference in energy norm is small.

• Do the energy norm computations in parallel so that it runs fast.

• Produce figure by cutting out where the difference in energy norm
is small comparatively, label with symbol.

From staring at invariant 2-tori there are a few tiles that seem to appear
frequently, see figure 16.22. Any of these patterns could also have an
additional adjective “tilted" in front of them, which is the same shape
with the addition of SO(2) rotation:

• Streaks (equilibria, relative equilibria)

• Defects (2→ 1 wavelength mergers)

• Hooks

• Half defect/half hook (birth and death timescales for each “half" of
the merger are drastically different)

• Bent streaks

• Gaps
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I believe that there is a physical way of explaining the pattern formation
of the defects in pre-periodic orbit invariant 2-tori. It begins when the
spatial domain size becomes large enough that it can admit an additional
pair of streaks (crest and trough), due to a higher spatial wavenumber be-
coming the most unstable. What I believe happens next is that the streaks
bend giving rise to a spatiotemporal region that is for all intensive pur-
poses “empty" of structure (u = 0). Because the Kuramoto-Sivashinsky
equation is linearly unstable, the region becomes a site for the formation
of a new defect. It begins first with the formation of a “hook" branch-
ing off from its original streak. As the magnitude of the crest and trough
combination grows, it detaches from its original streak, leading the the
“half-hook" or “half-defect" structure. I am categorizing this by “half"
because the time-scales for birth and death of the defect are drastically
different. Eventually the half defect merges with another streak, leading
to the full 2 → 1 wavelength merger, where both halves of the defect
have the same time scale. I don’t know how to include rotations into this
impromptu theory, but in my mind they just allow more combinations of
possible streak and half-defect mergers.

2018-06-27 Predrag The love child figure 16.23 of many genders of spacetime
patches is cute! Let’s try to find invariant 2-tori that capture these shapes.
(Continued in the blog post of 2018-11-09.)

2018-06-27 Predrag Looking at
gudorf/python/KSTori/converged_solutions/figures/:

eqva/ Need to know energy densities - perhaps a single E.txt list would
suffice.
u(x) = 0 solution: eqva_L26.9

eqva/figsWide u(x) = 0 solutions: eqva_L494.5, eqva_L594.7, eqva_L597.3, eqva_L625.7,
eqva_L628.2, eqva_L666.1, eqva_L676.8, eqva_L703.8, eqva_L751.4,
eqva_L813.2

reqva/ Need to know energy densities and travelling wave velocities - per-
haps E.txt, c.txt lists would suffice.
u(x) = 0 solutions: reqva_L24.9, reqva_L32.1, reqva_L44.3,

full/ What is “full/?” A periodic orbit? If in U+, I would expect those
should be antisymmetric under a space reflection, but I do not see
the symmetry line for any of them, except for ppo34.9×23, full_L26.7_T54,
full_L32.5_T19

I moved all u(x) = 0 solutions to zero/.

2018-06-29 Predrag moved from eqva/dataWide to eqva/data:
eqva_L56.4, eqva_L56.9, eqva_L77.7

2018-06-28 Matt “Full" was what I called the periodic orbits that were found
with (16.17) that had a SO(2) shift that was smaller than the grid spacing,
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i.e., σ ≤ L
M , I realized after looking at the trawls that my relative peri-

odic orbit invariant 2-torus codes did not have any guarantee they were
picking out prime periods and some of the solutions look spurious.

2018-06-27 Predrag eqva/ k wavenumber “streak” tiles:

eqva_L22.4 is 2 repeats of eqva_L11.2, find it.

eqva_L23.8 is 2 repeats of eqva_L11.9, find it.

eqva_L25.5 is 4 repeats of eqva_L6.37, find it.

eqva_L25.7 is 3 repeats of eqva_L8.6, find it.

eqva_L29.4 is 4 repeats of eqva_L7.35, find it.

eqva_L34.1 is 3 repeats of eqva_L11.4, find it.

2018-06-28 Matt All were found. As they belong to continuous families, I
found them at slightly different lengths.

2018-06-27 Predrag full/ (L/3, T/3 shift and translate “cat eye” or “gap”
tiles:

full_L24.4_T41 seems “almost” invariant under x→ x−L/3, t→ t+2T/3
and x→ xL/3, t→ t+ T/3.

Matt, can you find a solution ppo8.1×13.7 with 1/3 shifts both in space and
time?

Similarly, ppo25.3×13.7 seems “almost” invariant under x → x − L/3, t →
t+ T/3 and x→ xL/3, t→ t+ 2T/3.

Matt, can you find a solution ppo8.4×7.3 with 1/3 shifts both in space and
time?

In other words, both are the same solution, differing only in E. This “cat
eye” appears many places, for example in ppo24.4×17, ppo24.4×41, rpo26.8×21,
rpo24.5×55, rpo24.9×74, ppo30.6×12, rpo31.1×85, ppo31.8×40.

2018-06-27 Predrag k → k− 1 “defect” tiles: They look like temporally hetero-
clinic connections, not sure it makes sense to make the spatiotemporaly
periodic. Still, rpo28.6×12 suggests Matt might find be a rpo14.3×12, single
“defect tile.”

2018-06-27 Predrag When they go high, we go low. Try to find a set of invari-
ant 2-tori with the smallest possible L and T .

Keep track of energy density E - some of the above are related by con-
tinuation. We have to figure out what selects a preferred solution from a
continuous family with differing E.

In all of the above searches - never start by a random initial condition,
always use patches of the existing solutions (perhaps smoothed out by
a Fourier transform, throw away high wave numbers, Fourier transform
back) as the initial conditions.
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2018-06-29 Matt The fact the defects come in continuous families isn’t too sur-
prising but it makes analysis a little harder. The idea that I’ve been think-
ing through is to use invariant 2-tori to create a library of these patterns,
but they emerge in all of the spatiotemporal patterns.

2018-06-29 Predrag Try to find the above 2018-06-27 Predrag shortest time
rpo_L14.3_T12 k → k − 1 “defect” tile (extracted from rpo_L28.6_T12?).
Then other defects might be interpreted as streaks (of varying duration)
capped by the defect that might then be again followed by a streak.

2018-06-29 Matt I don’t have a very robust justification for it just yet, but I be-
lieve the constituent blocks need to be cropped from minimal time and
space solutions, I’m thinking this way because the smaller the spatiotem-
poral domain the less likely that rotations come into effect and the I be-
lieve we are more likely to get prime tilings this way. The evidence for
this is by looking through my solutions it seems that if given the leeway
in a larger temporal domain they tend to drift; even though we are in the
shift-reflect invariant subspace I believe the key way of thinking about
this is that the mean shift is equal to zero but not the instantaneous shifts.
Therefore, in small temporal strips the periodic boundary conditions pro-
vide a purer realization of the subdomains.

2018-06-29 Matt I’m including animation ../figs/MNG_ppo1_energy.png, a
continuation of 2018-06-19 Predrag ../figs/eqva_bif.gif narrative. Again,
it runs in Chrome and can be edited in Photoshop.

The idea is that by numerically continuing ppo22×10.2 of the L = 22 do-
main, we track the energy of the invariant 2-torus via the diagonalized
quadratic norm of the spatiotemporal Fourier coefficients and plot them
together.

In the animation, the only weak spot is that the extent of time is fixed;
it seems like the best solution to having multiple subplots, one of which
I wanted to demonstrate “growing". I.e. the u field’s spatial extent is
displayed as growing as it should be; sacrificing the aspect ratio between
time and length in the process, so be wary of time scales.

From the plotting, and surprising amount of numerical continuations
I was able to achieve if I stepped over L = 18.6 (For whatever rea-
son it couldn’t converge at that exact fixed length). I believe the ani-
mation shows that at bifurcations the energy as a function of domain size
remains continuous but not differentiable, as indicated by the kinks at
L̃ = L/2π ≈ 2.7, 2.9, 3.7.

The idea of this was to show that numerical continuations of a single
invariant 2-torus solution display the different types of defects based on
domain size, but it seems bifurcations are at play here. The cat’s eye (gap)
that appears from bifurcating from the equilibrium solutions at small L
occurs first, followed by a descent in energy that by eye seems to ap-
proach the antisymmetric subspace U+ (before and after L̃ ≈ 2.9. might
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be two different solution curves but I’m not convinced). Then as we ap-
proach the pre-periodic orbit we are familiar with, the hook shape seems
to form and as we get to large it transitions to the "half defect" state fol-
lowed by another bifurcation I believe that leads to the full defect.

I’m trying to use this as evidence that certain shapes fundamentally exist
in certain spatiotemporal areas, but it’s hard to specify due to the families
they come in.

2018-06-29 Predrag An attempt at ../figs/MNG_ppo1_energy.png narrative:

The antisymmetric subspace E1 family ∈ U+ (or −uE1
, note the tilts are a

reflection of each other) in ../figs/eqva_bif.gif is followed up to L̃ ≈ 2.7,
followed by a spatiotemporal bifurcation to

antisymmetric subspace U+ “cat eye” or “gap” at L̃ ≈ 2.9, followed by
spatial-reflection symmetry breaking bifurcation to

“hook” at L̃ ≈ 2.9 (known as ppo22×10.2 at L = 22), followed by bifurca-
tion to

“defect” at L̃ ≈ 3.7.

2018-06-29 Matt : Found the equilibria solutions from 2018-06-27 Predrag. Slight
discrepancies in predicted length due to allowing it to vary as a param-
eter. I took the original equilibria solutions that seemed to be made of
repeats and then took the fraction of the spatial domain given by 1/(num-
ber of repeats). For some of the equilibria solutions no work was needed,
in this case, the residual of the cost functional after chopping up the re-
peated solution was already within machine precision.

For equilibria the equations that define the cost functional for the T = 0
Kuramoto-Sivashinsky equation in terms of (purely imaginary) spatial
Fourier modes are

Feq = (q2
m − q4

m)bm +
qm
2

M−1∑
k=0

bmbk−m = 0 (16.56)

with the the cost functional

S =
1

2
F>eqFeq . (16.57)

I was able to find all prime (spatial) period equilibria that Predrag pre-
dicted, but the domain sizes vary slightly as the solutions come in con-
tinuous families.

2018-06-29 Predrag wegolow/eqva/figs/ are all the standard issue, anti-
symmetric space U+ solutions, so their actual, prime spatial period is
L/2 (all that needs to be plotted), where L is the length Matt currently
assigns them.
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eqva_L6.3, eqva_L7.1, eqva_L8.5, and eqva_L11.2 are presumably the
same solution, different E’s.
I think this should be the E1 family (or −uE1

) in ../figs/eqva_bif.gif.
eqva_L11.1 and eqva_L11.9 are presumably the same solution, different
E’s.
If uE is a solution, is −uE a solution? I vaguely remember that in the
restriction to the antisymmetric subspace U+, these appear as shifts by
L/2?
Defect1 rpo_L13.2_T15 looks like a periodic orbit in the antisymmetric
subspace U+, not like a relative periodic orbit. The effect after a T is a
shift by L/4: note, no change in the wavenumber.

2018-07-04 Matt Plumbing? I’m here to tile the walls Detailing the process by
which I found the tile which is currently being referred to as “gap"
or “cat’s eye".
I followed the following procedure;

• Look through figures of converged invariant 2-torus solutions
for what could hold a minimal spatiotemporal tile.

• Note that full_L26.7_T54 in figure 16.24 (a) seems to have a sub-
domain x

2π ∈ [0, 2.75], t ∈ [0, 18] that is the “gap" or “cat’s eye"
pattern.

• To be safe, first truncate the temporal extent only, and converge
the solution. This leads to figure 16.24 (b), where the period
takes the new value T ≈ 18.9, about a third of the initial in-
variant 2-torus.

• Finally, truncate the spatial extent of figure 16.24 (b) and con-
verge, resulting in invariant 2-torus wegolow/po/po_L17.3_T15.3
of figure 16.24 (c). 7

• We believe this invariant 2-torus to be a representative “cat’s
eye" pattern or “gap” sketched in figure 16.22, and seen fre-
quently in larger invariant 2-tori.

Invariant 2-torus full_L26.7_T54, as well as the so far unnamed in-
variant 2-tori figure 16.24 (b) and (c) belong to the antisymmetric
subspace U+, with reflection point x∗

2π ≈ 1.25. The spatial SO(2)x
shift of these solutions is dx ≈ 10−5. Because the initial condition
for full_L26.7_T54 was modulated noise, and no discrete symme-
tries was imposed during the calculation, one could not predict the
final symmetry subgroup of a solution when using the relative peri-
odic orbit invariant 2-torus spatiotemporal code.
The “full" type solutions are a subset of solutions to (16.17) where
the SO(2) parameter takes the value close to zero. Using a mean-
velocity frame I impose in the ansatz that the SO(2) shift manifests

7Predrag 2018-07-06: po_L17.3_T15.3 is eye-balling guess, please fix, provide data file in
po/data/

05/09/2019 siminos/spatiotemp/chapter/blogMNG18.tex568 7451 (predrag–6859)

../figs/eqva_bif.gif


CHAPTER 16. MATT’S 2018 BLOG

(a) (b)

(c)

Figure 16.24: (a) Invariant 2-torus full_L26.7_T54. (b) A temporal subtile that
was cut out from (a) and then converged via Gauss-Newton method. (c) The
final “gap" tile, figure 16.22, that was cut out from (b) and then converged to
invariant 2-torus po_L17.3_T15.3 via Gauss-Newton method.
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in the equation itself, but there is nothing to prevent this shift pa-
rameter from taking a value of zero, and there is no reason to fear
that either; relative equilibria some in continuous families, with cor-
responding intervals of spatial shifts, which can include periodic or-
bit dx = 0 solutions.
This is similar in regards to the pre-periodic orbit invariant 2-torus
spatiotemporal code. Technically, it can allow for twice repeating
solutions in the antisymmetric subspace U+, but it is quite rare that
these events happen as it requires half of the computational vari-
ables, (spatiotemporal Fourier modes) to be identically zero. An ex-
ample of this is ppo34.9×23. It is tagged as a pre-periodic orbit, only
the fundamental domain is being plotted, but it turns out to be a
periodic orbit with period T ≈ 23.
This process is quite idiosyncratic by its nature, and not very easy
to automate as it requires user input to tell what subdomains are
good candidates for minimal tiles. Therefore I hope to have more
tiles soon but its a trudge through messy waters.

Plumbers meeting Burak and Elena were present and I think now Burak
is on board and excited about the direction my research is taking; not
to say he was ever opposed to me, let’s just be clear. He thinks that it
would be beneficial to develop code that tracks the “trajectories" of
local minima and maxima through time and plots them might help
in terms of analysis. I agree that while looking at colored density
plots of spatiotemporal fields is more confusing, I’m not sure how
easy it would be to implement this type of code. I believe his idea
is that the idea of looking for important structures, streaks, gaps,
etc. comes down to local minima and maxima pairs, their births
and deaths, and one should remove all other extraneous informa-
tion. I believe he is in agreement with me that perhaps numerical
continuation of minimal tiles could span a wide enough library of
spatiotemporal symbols such that any solution can be constructed;
where the particular realizations picked from continuous families of
solutions would be determined by a priori choosing a spatiotempo-
ral area to work with.

2018-07-05 Burak I really like the patterns in figure 16.22! The solid state model
I mentioned in the earlier meetings is called “terrace ledge kink model”
and the Wikipedia article seems to have a good introduction to the basic
ideas. The analogy I had in mind was roughly the following:

• Space-time plot→ 2D crystal surface

• Patterns (defect, streak, etc.) → Crystal defects (kinks, adatoms etc.)

One thing that is different is the discreteness of crystal surface as opposed
to the continuous tiling in the (1+1)−D spatiotemporal dynamics, where
the patterns appear in different sizes. Matt nicely illustrated these things
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in yesterday’s meetings by pointing at frequently appearing patterns and
matching them to the ones that appear along the continuation of the fun-
damental PPO.

I suggest the following for a systematic classification of the patterns: Take
spatiotemporal plots of the Kuramoto-Sivashinsky dynamics and at each
time slice t, detect local minima and maxima. Than connect these local
minima and maxima along the spatiotemporal figure with, say, dashed
and solid lines respectively. Roughly speaking, this is going to be draw-
ing lines along the middle of red and blue regions of the spatiotemporal
visualizations. Perhaps, some thresholding, such as assuming an (−ε, ε)
interval to be 0 since sometimes there are very pale red/blue peaks. I
mentioned up to this point in yesterday’s hangout.

2018-07-06 Predrag I have split periodic orbits full/ folder into
full/ and po/.

full/ belong to the continuous relative periodic orbit families. They are
a subset of solutions to (16.17) for which the spatial shift happens to be
close to dx = 0.

po/ solutions, antisymmetric under a space reflection across symmetry
points x∗ and x∗ + LMatt/2, belong to the spatially antisymmetric subspace
U+, see sect. ??. Currently Matt has found only

ppo34.9×23, full_L26.7_T54, full_L32.5_T19,

but Christiansen, Cvitanović and Putkaradze [7] (L̃ ≈ 5.8), and Lan and
Cvitanović [41] (L = 38.5, L̃ = 6.12) have hundreds of them for a few
fixed system sizes L.
I have never explicitly searched for antisymmetric solutions ∈ U+ be-
cause I focused on pre-periodic orbit and relative periodic orbit solutions.
I’ll get on the trawling.

2018-07-06 Predrag eqva/figs:

The antisymmetric space U+ solutions prime spatial period is LMatt/2.
Center them at x∗ = 0 or x∗ + LMatt/2 = 0, and the prime spatial period
[0, L] where L = LMatt/2 is all that needs to be plotted, where LMatt is
the length Matt currently assigns them.
This has been fixed for equilibria. 8

s

2018-07-06 Matt First attempts at local minima and maxima tracking algorithm.
Simon Berman gave me the idea, which is to take the spatial derivative of
the spatiotemporal field represented as a matrix ux(xm, tn) ≡ am,n and
to calculate an elementwise product and subtraction Pm,n = am+1,nam,n
and Sm,n = am,n − am+1,n to capture where the derivative changes sign,

8Predrag 2018-07-07: Today they all look centred, but plotted on fundamental domain and its
copy, total width LMatt.
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as well as the sign of the second derivative approximated by the secant
line between spatially adjacent points.

Responses to Predrag’s posts:

• I haven’t trawled specifically for antisymmetric invariant 2-torus so-
lutions ∈ U+ but can do so, I was focused on pre-periodic orbit and
relative periodic orbit solutions.

• equilibria figures should now reflect the prime spatial period and so
will antisymmetric invariant 2-torus solutions ∈ U+.

2018-07-04 Matt Notes from Monday’s Art Institute visit Called Predrag via
hangouts, we discussed the two hurdles looming ahead of us in terms of
the theory. He says:

0 WeGoLow, WeGoLow, WeGoLow. We keep determining the alpha-
bet of minimal tiles, until we have a credibly complete alphabet. We
do not let ourselves get disturbed by Grand Schemes of Budanurs,
get batted out again into the far field. WeGoLow, WeGoLow, We-
GoLow, as has been the goal for the last 2 years.
Once we have an alphabet, the conceptual challenges ahead are

1 Solutions come in continuous families. Depending on the initial
guess, current Matt’s code picks out an arbitrary representatives
from such continuous family. Is there a saddle-point condition (let’s
say, extremum in energy density) that picks out a single representa-
tive invariant 2-torus per family? Or will periodic orbit zeta func-
tions involve integrals over such families?

2 To a single invariant 2-torus belongs a continuous family of tiles,
one for each value of (x, t) that we take to be the origin of the tile.
In other word, how will we maximize the amount of shadowing of
a large invariant 2-torus by smaller invariant 2-tori

2018-07-07 Predrag There are tons of intriguing solutions in Matt’s library, al-
most all for relatively large domains. I think new searches should focus
on smaller and smaller domains, to help the intuition about the alphabet,
and fusion rules - which pattern can be adjacent to which.

Some WeGoLow candidates:

rpo_L21.9_T95
(also rpo_L22.1_T92, rpo_L22.1_T93, rpo_L22.2_T84, rpo_L22.3_T90, ppo22.3×96,
rpo_L22.5_T89, rpo_L22.5_T89): start a periodic orbit search using T =
[9, 30] time clip, or (better) pre-periodic orbit search using T = [9, 20] time
clip. From that, start a pre-periodic orbit search using L/2π = [0.2, 2.6]
space clip. The result could be WeGoLow ppo15×11 “hook” in figure 16.22.
However, this solution might be rare for larger spatial periods.

rpo_L21.9_T79
(also ppo24.9×58, rpo_L34.8_T36, rpo_L36.9_T63, rpo_L42.6_T62): T = [45, 79]
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time clip suggests an interesting relative periodic orbit which is the T =
[45, 61] “hook" repeated.

rpo_L22.1_T81: T = [70, 87] time clip is an example of k = 3 → k = 1
defect.

2018-07-10 Matt After rewriting/updating the antisymmetric invariant sub-
space U+ spatiotemporal code, I was able to converge former “gap” or
“cat’s eye" tile rpo_L13.2_T15 to a periodic orbit named Defect 2 anti_L17.5_T17
in the antisymmetric invariant subspace, plotted in [0, L/2] domain.

With restructuring my code into a more presentable package I’ve found
that there are slight inconsistencies in how python interprets the "project"
whether in Windows or Linux OS. It’s this and bug hunting that are keep-
ing me preoccupied sadly. Also, I went through and wrote most of the
antisymmetric invariant subspace U+ trawling code; analogous to what
I used for pre-periodic orbit and relative periodic orbit solutions. There
seems to be a bug in the matrix free methods that I haven’t found. I
know that it lies in this specific part because the explicit matrix meth-
ods worked by producing defect2 anti_L17.5_T17. The matrix free code
is drastically altering the domain size and needs more work before I can
start trawling.

2018-07-11 Matt coding Wrote auxiliary functions to be able to more easily
manipulate datasets for the sake of finding WeGoLow tiles.

Plumbers Meeting I elucidate the WeGoLow tiling ideas to Ashley and
Mohammad.

2018-07-12 Matt Hook Huntin’ Still hunting for more small solutions; I tried
to find the ’hook’ by using a number of different methods, here’s the
one that lead to results that converged to within machine precision
but did not produce a "hook" tile. Firstly, because the hook is present
in the shortest pre-periodic orbit at L = 22 I thought that this would
give me the best chance of finding it rather than taking it from a
large domain. The following list is how I attempted to find the hook
solution:

1. Perform numerical continuation until the streaks in the pre-periodic
orbit invariant 2-torus solution straighten out. I thought this
would give me the "cleanest" version of the hook.

2. Remove streaks from pre-periodic orbit invariant 2-torus and
create a subdomain that is shift-reflect invariant.

3. Run the subdomain through spatiotemporal code, assuming it
lies in the shift-reflect subspace (use pre-periodic orbit invariant
2-torus code).

4. Run the subdomain through spatiotemporal code, assuming it
is a periodic orbitwith near zero SO(2) shift.

5. Hope that one of these looks like a hook.
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Both running the hook subdomain constrained to shift-reflect sub-
space and assuming it was actually a relative periodic orbit with
negligible SO(2) shift converged; in fact they converged to prac-
tically the same solution. The spatial length of the two solutions
are identical up to the thousandths place, the SO(2) shift is negli-
gible in the relative periodic orbit invariant 2-torus and so by eye
the figures, a pre-periodic orbit invariant 2-torus fundamental do-
main, looks like the first half of the relative periodic orbit invariant
2-torus .
I think there is a reason behind this; in all of the invariant 2-tori that
exhibit the hook pattern, even for consecutive repeats in time, there
is always a relatively straight streak partnered with the hooks in the
spatial direction. I’m citing
rpo_L21.9_T95, rpo_L22.1_T92, rpo_L22.1_T93, rpo_L22.2_T84,
rpo_L22.3_T90, ppo22.3×96, rpo_L22.5_T89, rpo_L22.5_T89
as examples. Perhaps at these relatively small domain sizes the hook
isn’t a prime spatiotemporal tiling but rather the hook-streak is. This
doesn’t feel right but its the only alternative I can think of.

Defect2 In other wegolow news, I found defect2 rpo_L17.5_T17, likely
related to the defect1 = rpo_L13.2_T15, but distinct enough that I
thought I would include it. It was the result of initiating the half-
defect search from rpo_L22.3_T98 subdomain t ∈ [55, 70], x/2π ∈
[0, 2.2].

2018-07-16 Predrag Of no importance, but just something to keep in mind: La-
TeX gets confused if a figure file name has several dots in it, that’s why I
keep renaming rpo_L17.5_T17.png→ MNG_rpo_L17d5_T17.png, where d
stand for “dot.”

Also, the Gibson not-approved phonetic abbreviation (my apologies) eqva
stands for the equilibria, the plural of eqv = equilibrium.

2018-07-17 Matt I chose ‘point’ instead of ‘dot’ in the future invariant 2-torus
labels: rpo_L17.5_T17.png→MNG_rpo_L17p5_T17.png,

2018-07-17 Matt If anyone wants to see my progress on the thesis proposal you
can view (and hopefully not edit for my sake) the outline I produced via
google docs:

Thesis Proposal Outline

Red text means that the initial draft is done but needs to be picked over.
Black means it’s still in drafting stages, and blue will mean I believe its
ready to be read. I was worrying about length before but I’m just going
to write my heart out and then trim if need be.

Notes on Literature review in thesis proposal are now all in sect. 6.
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2018-07-18 Matt spatiotemp I believe I found the minimal hook and streak
patterns (or at least members of the same families) today. This was ac-
complished by using the hybrid-methods that I used to trawl. Previously,
I was only using Gauss-Newton to converge subdomains as it worked
but the hook required adjoint descent before applying Gauss-Newton in
order to converge.

Hook tile Solution hook = rpo_L13.07_T10 was found by using a family
member of the shortest pre-periodic orbit in time at L = 22 whose energy
was a local maximum. This ended up being at L = 20, but this turns out
to not matter. What matters in the end is that I use hybrid methods and
not just Gauss-Newton to try to converge the tiles; just like how I had
done for all of the invariant 2-tori beforehand. The expedient results of
just using Gauss-Newton and finding “defects" and “gaps" had led me
astray.

“Streak" Similar story to that of the hook; applying hybrid numerical
methods allowed me to find an equilibrium solution whose spatial extent
is approximately 2π, or π in the fundamental domain of the antisymmet-
ric subspace U+.

code Rewriting energy analysis code because the script is a big mess.
Separating out and writing functions that write the energies and spatial
translation velocity E.txt and C.txt files for easy use.

Writing additional code that produces figures similar to the animated
png MNG_ppo1_energy.png that shows the energy of numerical con-
tinuations of solutions.

Need to write code that utilizes hybrid-methods in numerical continua-
tion in spatial domain size. Currently only using Gauss-Newton. I’m still
unsure whether I should pursue automated could that tries to find a fam-
ily member with certain properties because I can’t decide on which are
important. (extremum in energy, area, spatial size are a few examples).

2018-07-23 Matt continuous families Numerical continuation of the hook and
gap solutions provide continuous families of solutions of which it
seems the Predrag is correct that the “defect" type solution and “hook"
type solution are of the same family. As a means of trying to iden-
tify some criterion by which to choose members of said families I
produced plots of members of the continuous families adjacent to
plots of the entire family’s energy, spatiotemporal averaged energy
dissipation and production. There is some slight numerical discrep-
ancy but they should be equal in theory; It could be the quadrature
rule that I am using to calculate < u2

xx >LT and < u2
x >LT , where

< ? >LT indicates spatiotemporal average.
I thought it might be possible to identify each family by picking out
the constitutive member that had maximal or minimal dissipation
and production values; but for the numerical continuation of the
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Defect1

(a)

(b) (c)

hook

(d)

(e) (f)

Figure 16.25: (a) Invariant 2-torus rpo_L12.996_T23, (b) invariant 2-torus
rpo_L13.096_T8, (c) relative equilibrium reqv_L13.106_T8. These three solutions
were produced by numerical continuation in spatial domain size of invariant
2-torus defect1 = rpo_L13.02_T15 tile (see figure 16.22). (d) Invariant 2-torus
rpo_L12.995_T23, (e) invariant 2-torus rpo_L13.095_T8, (f) relative equilibrium
reqv_L13.105_T8. These three solutions were produced by numerical contin-
uation in spatial domain size of invariant 2-torus hook = rpo_L13.07_T10 tile.
Invariant 2-tori (a) rpo_L12.996_T23 and (d) rpo_L12.995_T23 are the one and
the same PO(13.0,23) ∈ U+, differing only by relative space and time shifts. The
reflection symmetry is broken by the nearby solution drifting either to the left
or to the right, so (e,f) belong to the right-drifting reflection of the left-drifting
branch of the solutions (a,b), i.e., they belong to the same branch of the solution
after the reduction of the spatial reflection symmetry. In general, solutions can
be distinguished or identified only after they are sectioned and sliced, as done
in figure 16.27.
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gap solution there doesn’t seem to be any local maxima or minima.
The benefit of this type of analysis is that while there isn’t any local
maxima or minima for the gap family, as I increase L to its upper
limits (in terms of being able to converge the solution) the period of
the solution grows extremely quickly; in my mind making it more
and more of an isolated solution. The reason I hold this belief is
that if we contemplate the family of gap solutions in the context of
the Kuramoto-Sivashinsky equation as a dynamical system, an in-
credibly long period in this instance is actually prohibitive due to
the fact that the antisymmetric subspace U+ is a flow invariant sub-
space. The idea I have is that the it is possible for periodic orbit’s to
shadow generic trajectories but as the period increases, it is essen-
tially a statement akin to “the trajectory stays near the flow invariant
subspace for longer and longer periods of time" which (although I
hesitate to use this word) probabilistically doesn’t seem likely.
In summary I suppose my thinking is that due to the fact that anti-
symmetric periodic orbit’s lie in a flow invariant subspace U+ that
trajectories can neither leave nor enter then the period is a sort of
measure of how isolated these periodic orbit’s must be. In this re-
gard I think that the more relevant quantities would be a respective
densities of scalar quantities than the quantities themselves (average
energy, dissipation, etc.).
Performing continuation of other solutions today, will see if any-
thing interesting pops out.

defect1 continuation The numerical continuation of defect1 = rpo_L13.2_T15
tile, figure 16.22 (b), the first tile I entitled ’defect’ seems to be a mem-
ber of the family of the reflection of the “hook" family: they are the
same family up to discrete symmetry. My attempt to demonstrate
this is to take three representatives of each family in figure 16.25,
and show that at similar spatiotemporal domains the solutions look
very similar up to spatial and temporal translations.
In this respect, one can see the family progresses from “defect" to
“hook" to relative equilibrium as L̃ increases.
My thought process on how to interpret this family goes as follows:
I don’t know whether to interpret the “hook" as a transition describ-
ing breakdown of the invariant 2-torus into a relative equilibrium, or
maybe as “spatiotemporal heteroclinic connection" but I am unsure
if such a statement makes sense in the absence of dynamics. There-
fore I thought that maybe it makes sense in terms of spatiotemporal
symbolic dynamics. If one was playing sudoku with spatiotemporal
symbolic dynamics and there were symbols for defect and relative
equilibrium, I think “hook" would be a symbol that could fit in the
middle. Now, this doesn’t really make sense because hook ≡ defect
because they are members of the same family; it just gets too com-
plicated too quickly to extrapolate any ideas currently, much more
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work required.

2018-07-23 Matt coding Mainly cleaning up analysis codes and figure refur-
bishing. Started on the functionality to fix the temporal domain and
let spatial domain size vary.

equations for calculation of energy related quantities The equations for
the spatial averages as discussed in ChaosBook tend to be more ac-
curate being they are comparing the dissipation and energy produc-
tion rates at specific points in time. Being a spatiotemporal project
what I have elected to do is the following;
For the total energy in terms of spatiotemporal Fourier modes I use

E =
1

2
|unm|2 (16.58)

For the dissipation and production I calculate both ux and uxx via
spectral differentiation, and then compute the pseudospectral prod-
uct in physical space, i.e. u2

x and u2
xx. The spatiotemporal average

of these quantities are the quadratic norms of the spatiotemporal
Fourier modes of these pseudospectral products, such that the spa-
tiotemporal averages can be written,

< u2
x >LT =

∑
n,m

|F ((F−1(iqmunm)2)|2

< u2
xx >LT =

∑
n,m

|F ((F−1(−q2
munm)2)|2, (16.59)

where F and F−1 indicate the spatiotemporal Fourier transform and
its inverse, respectively, and the norm is L2.
Both the spatiotemporal average of energy production and dissipa-
tion are of order 10−6 or 10−7. Note: if calculated at each point in
time separately the accuracy increases by a few orders of magnitude
as denoted by the residual of the difference P −D. I figured I should
use the spatiotemporal average instead.
I’m hoping that figure 16.26 demonstrates pretty well that these are
reflection related families of solutions. The plots for the "hook" fam-
ily is sampled better; but the two constituent members’ energy and
SO(2) phase speed seem to be in agreement.

2018-07-24 Matt : Ideas for continuous families of invariant 2-tori Now that
I have implemented the code to do numerical continuation while the pe-
riod T of invariant 2-torus solutions is fixed I have a couple ideas of how
to utilize it for analysis.

1. My first idea is to take one of the families of solutions computed
via numerical continuation in L, and for each L solution, attempt
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(a)

(b)

Figure 16.26: (a) Invariant 2-torus rpo_L13p100_T8 and related spatiotem-
poral quantities; solution comes from numerical continuation of defect1 =
rpo_L13.2_T15 tile, figure 16.22 (b). (b) invariant 2-torus rpo_L13p096_T8 and
related spatiotemporal quantities; solution comes from numerical continuation
of the rpo_L13.07_T10 “hook" tile.
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to numerically continue in T . The intention is that by doing so I
will be sampling the solutions in a two dimensional parameter space
defined by (L, T). The idea that I have currently is to roam around
(L, T) parameter space, then plot a scatter plot such that the points
are color coded by spatiotemporal energy E given by (16.58).

2. The second idea is to choose an invariant 2-torus solution as a start-
ing point and then see what happens by alternating continuations
in L and T . I.e. if I numerically continue a solution by increasing L
and the period T decreases as a result, I would hope that by increas-
ing T by numerical continuation I could either arrive at the original
solution or another solution via hysteresis.

Both of these ideas are essentially doing the same thing; which is, to
combine the numerical continuation procedures in both continuous di-
rections.

2018-07-27 Predrag on the eventual necessity of representing all invariant 2-
tori as single points in a common section and slice: My guess is that
your invariant 2-torus
rpo_L12.996_T23 in figure 16.25 (a) and invariant 2-torus
rpo_L12.995_T23 in figure 16.25 (e) are the one and the same

PO(13.0,23) ∈ U+

(U+ as in (16.28)), differing only by relative space and time shifts. There
is probably a number of such repetitions in your tables, because solutions
can be distinguished or identified only once the are sectioned and sliced.

2018-07-29 Matt : I agree, I was going to write code that slices and sections but
I got caught up in producing far too much data to analyze via numerical
continuations. I do not think its worth enforcing in trawling;but it might
be worthwhile including in the numerical continuation in T and L code. I
think what I’m going to go for is rotate the spatiotemporal Fourier modes
such that the space, time phase of the n = 0,m = 1 and n = 1,m = 1
equal some constant

2018-07-27 Predrag spacetime indices convention I’m entering the standard
lattice discretization definitions [26] here, so Matt notices them, before we
move them to chapter 1. The square lattice discretization of a spacetime
field u(x, τ) is obtained by specifying its values unt = u(xn, τt) on lattice
points z = (n, t) ∈ Z2. Examples are diffusive coupled map lattices [31,
32] and Gutkin et al. [26, 27]. Hence, the first index refers to configuration
space, the second to time.

The thing to remember is that

the first index always refers to configuration space,
the second to time.
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In the Fourier representation ûk`, the first index always labels the spatial
mode, the second the frequency.

There are two lattices at play here: (i) the spacetime discretization (1.42),
and (ii) the symbolic dynamics discretization. What follows refers to as
yet unattained latter.

Lattices. Consider a 2-dimensional square lattice infinite in extent, with
each site labeled by 2 integers z = (nm) ∈ Z2. Assign to each site z
a letter sz from a finite alphabet A. A particular fixed set of letters sz
corresponds to a particular lattice state M = {sz} . In other words, a 2-
dimensional lattice requires a d-dimensional code M = {mn1n2

} for a
complete specification of the corresponding state X. The full shift is the
set of all 2-dimensional symbol blocks that can be formed from the letters
of the alphabet A

Σ̂ = {{sz} : sz ∈ A for all z ∈ Z2} . (16.60)

Multidimensional shifts. For an autonomous dynamical system, the
evolution law f is of the same form for all times. If f is also of the same
form at every lattice site, the group of lattice translations, acting along
the spatial lattice direction by shift σ, is a spatial symmetry that com-
mutes with the temporal evolution. A temporal mapping f that satisfies
f ◦σj = σ ◦ f along the spatial lattice direction is said to be shift invariant,
with the associated symmetry of dynamics given by the d-dimensional
group of discrete spatiotemporal translations.

Blocks. Let Rz ⊂ Z2 be a finite [`1×`2] rectangular lattice region, `k ≥ 1,
whose lower left corner is the z = (n1n2) lattice site

R = R[`1×̀ 2]
n = {(n1 + j1, · · ·n2 + j2) | 0 ≤ jk ≤ `k − 1} . (16.61)

The associated finite block of symbols sz ∈ A restricted to R, MR =
{sz|z ∈ R} ⊂ M is called the block MR of area |R| = `1`2. For example, a
R = [3× 2] block is of form

M =

[
s12s22s32

s11s21s31

]
(16.62)

and volume (in this case, an area) equals 3×2 = 6. In our convention, the
first index is ‘space’, increasing from left to right, and the second index is
‘time’, increasing from bottom up.

Cylinder sets. While a particular admissible infinite symbol array M =
{sz} defines a point X (a unique lattice state) in the state space, the cylinder
set MR, corresponding to the totality of state space points X that share
the same given finite block MR symbolic representation over the region
R. For example, in d = 1 case

MR = {· · · a−2a−1 . s1s2 · · · s`a`+1a`+2 · · · } , (16.63)
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with the symbols outside of the block unspecified.

Invariant 2-tori. A state space point is spatiotemporally periodic if it be-
longs to an invariant 2-torus, i.e., its symbolic representation is a block
over regionR defined by (16.61),

Mp = MR , R = R[L×T]
0 , (16.64)

that tiles the lattice state M periodically, with periodL in the spatial lattice
direction, and period T in the time lattice direction.

Subshifts. Let Σ̂ be the full lattice shift (??), i.e., the set of all possible
lattice state M labelings by the alphabet A, and Σ̂(MR) is the set of such
blocks over a region R. The principal task in developing the symbolic
dynamics of a dynamical system is to determine Σ, the set of all admissible
itineraries/lattice states, i.e., all states that can be realized by the given
system.

Pruning, grammars, recoding. If certain states are inadmissible, the al-
phabet must be supplemented by a grammar, a set of pruning rules. Sup-
pose that the grammar can be stated as a finite number of pruning rules,
each forbidding a block of finite size,

G = {b1, b2, · · · bk} , (16.65)

where a pruned block b is an array of symbols defined over a finiteR lattice
region of size [L1×L2]. In this case we can construct a finite Markov
partition by replacing finite size blocks of the original partition by letters
of a new alphabet. In the case of a 1-dimensional, the temporal lattice, if
the longest forbidden block is of length L + 1, we say that the symbolic
dynamics is Markov, a shift of finite type with L-step memory.

Let X = {xz ∈ T1, z ∈ Z2} be a spatiotemporally infinite solution of
Kuramoto-Sivashinsky equation, and let M = {sz ∈ A , z ∈ Z2} be its
symbolic representation. By the presumed connection between X and M,
the corresponding symbolic dynamics block M is unique and admissible,
i.e., M defines the unique spatiotemporal state X and vice-versa.

Assume now that only partial information is available, and we know only
a finite block of symbols MR ⊂ M, over a finite lattice region R ⊂ Z2.
What information about the local spatiotemporal pattern XR = {xz ∈
T1, z ∈ R} does this give us? To be specific, letR be a rectangular [`1×`2]
region (see (16.61) for the definition), and let MR be the [`1×`2] block of
M symbols.

2018-07-30 Matt sliced and sectioned Wrote code that slices and sections in-
variant 2-tori . Using this, I produced figures of all relative peri-
odic orbit invariant 2-tori in their sliced and sectioned representa-
tions,without rescaling time as in ref. [3].
The implementation is described as follows.
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(a) (b)

Figure 16.27: Continued from figure 16.25. Sliced and sectioned minimal in-
variant 2-torus solutions (not scaled relative to others in repository; horizontal
axis is L); (a) Defect1 = rpo13.2×15 tile, figure 16.22 (b), numerically continued to
(L, T) = (12.996, 23.373682). (b) Reflection of the hook = rpo13.07×10 tile numer-
ically continued to (L, T) = (12.996, 23.373670).

(a)

Figure 16.28: Bifurcation diagram plotted in (L, T) plane. Two branches re-
sulting from numerical continuation in L of the hook = rpo13.07×10 tiles family.
L was decreased until the Gauss-Newton method failed; at which point, the
numerical continuation began increasing L to test for hysteresis. This can be
seen by the fact that the bifucation diagram has two branches.
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(a)

Figure 16.29: Bifurcation diagram plotted in (L, T) plane; numerical contin-
uation of all points in figure 16.28. These points were acquired by increasing
T and then decreasing T via numerical continuation of both the lower and
upper spatial continuation branches. The step size that T was changed by was
∆T = 5; smaller step sizes and smaller ranges seem to indicate that each branch
is a one dimensional family.

(a)

Figure 16.30: Bifurcation diagram plotted in (L, T) plane; numerical continua-
tion of upper branch of figure 16.28. These points were acquired by increasing
T and then decreasing T via numerical continuation of the upper spatial con-
tinuation branch. The step size that T was changed by was ∆T = 5; smaller
step sizes and smaller ranges seem to indicate that each branch is a one dimen-
sional family.
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(a) (b) (c)

Figure 16.31: Numerical continuation of the lower spatial continuation branch
of figure 16.28 by decreasing T by 10 with step sizes of ∆T = 1. Plots in
(a)(L,C) plane (b) (L, T) plane (c) (T,C) plane. Spatiotemporal energy is color
coded.

(a) (b) (c)

Figure 16.32: Numerical continuation of the lower spatial continuation branch
of figure 16.28 by decreasing T by as much as possible (while still remaining
positive) with step sizes of ∆T = 5. Plots in (a) (L,C) plane, (b) (L, T) plane,
and (c) (T,C) plane. Spatiotemporal energy is color coded.
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1. Perform spatial Fourier transform on a invariant 2-torus
2. Put invariant 2-torus into first Fourier mode slice.
3. Perform temporal Fourier transform of the sliced solution.
4. Fix the phase of the m = 1, n = 1 mode such that Im (ûm,n) = 0.

I tried an alternate formulation where the phase of the (m,n) =
(1, 0) and (m,n) = (1, 1) modes were fixed. The problem with this
is that due to the discontinuous nature of prime periods of relative
periodic orbit invariant 2-tori in state space I couldn’t guarantee that
the boundaries for the figures ended up in the "right place". (I.e. if
the discontinuity is at the boundary it doesn’t look bad but if ends
up in the middle of the figure it looks terrible). It’s kind of hard to
explain but basically the discontinuity of relative periodic orbit ’s is
prohibitive to merely phase fixing two spatiotemporal modes.
Therefore, the previously mentioned slicing and sectioning is what
was used to confirm that "defect one" and "hook" tiles are indeed
members of the same family, as can be seen by their slicing and sec-
tioning in figure 16.27. There are slight discrepancy in the temporal
extent T and SO(2) shifts. In order to get exactly the same results
I believe one of these other parameters would need to be fixed in
addition to fixing L.

Dissection of bifurcation diagrams for defect family First I just want to
say for the record that numerical continuation by fixing T seems to
behave much better than continuation in L; even though their val-
ues are dependent on one another.
Firstly, we can see that there is hysteresis in figure 16.28. The inter-
esting behavior occurs after the numerical continuation in the spa-
tial domain size L, when one begins numerically continuing in T .
In the following discussion I will refer to the "lower" and "upper"
branches; those which were obtained via numerical continuation in
L only. To describe the subbranches that arise from numerically con-
tinuing the upper and lower branches I will use "downward" and
"upward" to describe changes in T . For completeness I performed
both orders of numerical continuation in T on the lower and upper
branches; namely, increasing T then decreasing T and vice versa.
The order in which I performed these numerical continuations in T
seem to drastically alter the results.
I believe the main takeaways from the space-then-time numerical
continuations are

1. The period T and the domain size L of the upper branch fig-
ure 16.30 seem to be minimally coupled, unlike the highly non-
linear lower branch; due to this there may be families of con-
stant energy solutions. Burak and Simon both pointed out that
this may be a homoclinic orbit and evidence (numerical contin-
uation) suggests that this solution can be continued to very very
long periods (T ≈ 772 with a relatively small discretization).
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2. The lower branch when T is decreased as much as positive while
still remaining positive hits a family of traveling wave solutions,
which leads to hysteresis as the invariant 2-tori transition from
relative periodic orbit solutions to relative equilibria but when
T is increased they remain relative equilibria . The hysteresis is
best shown by the figures plotting T versus L for the upward
and downward T continuations with ∆T = 5, in figure 16.32.

3. The lower branch down-then-up continuation with ∆T = 1 in
figure 16.31 tracks a one dimensional continuous family of so-
lutions until it hits the same family of relative equilibria as fig-
ure 16.32. I believe this is best demonstrated by the (L,C) plane
plots, or (a) in both respective figures, (a) figure 16.32 (a) fig-
ure 16.31.

2018-08-04 Predrag Rummaging through day’s catch in the reflection antisym-
metric invariant subspace U+

gudorf/python/data_and_figures/converged/anti/figs/
I’m no fan of U+, as boundry conditions distort solutions. What look to
me as distinct solutions, ordered by increasing L:

2 two-streak equilibria, both missing from eqva/figs/
anti_L9.199_T40 anti_L30.2_T26
(-1/4 shift) atop (1/4 shift) :
anti_L9.119_T33 = anti_L9.143_T32 = anti_L9.144_T35 = anti_L9.187_T40
= anti_L9.188_T41 = anti_L9.218_T45
cat’s eye (a short wiggle)
anti_L9.180_T35 = anti_L9.182_T35 = anti_L9.190_T36 = anti_L9.215_T38
= anti_L9.219_T39 = anti_L9.296_T52 = anti_L9.841_T28 = anti_L26.1_T18
cat’s eye flipped
anti_L9.249_T43
(defect + streak) atop (defect + streak)
anti_L32.9_T19 anti_L34.4_T17
cute cat’s eye + streak
anti_L36.2_T29
cat’s eye + streak
anti_L34.3_T20 anti_L36.7_T27
cat’s eye flipped + streak
anti_L38.1_T30
defect + streak
anti_L38.4_T25

2018-08-04 Predrag The longer time period branch in figure 16.28 makes no
sense to me. There cannot exist a invariant 2-torus such that (L, T) =
(L, 67. · · · ), with monotonically increasing energy density E for a range
of L’s, T constant?
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This T = 7. · · · is the value at which the lower time period branch disap-
pears?

As I have not digested the discussion that follows, I am not sure about
my claim above either...

2018-08-04 Predrag OK, here is how I think about figure 16.28 to figure 16.32
passing over the meaning of taking ∆T = 5 steps. Figure 16.28 and many
figures in your album are examples of invariant 2-tori belonging to fami-
lies of invariant 2-tori homoclinic to 2-streak (relative) equilibrium. That
is discussed at length in the intermittency chapter of ChaosBook.org -
these are infinite (but discrete) sequences of families spending more and
more time close to the equilibrium, and for longer times to you they
might look like a continuum of solutions, even if they are not.

2018-08-13 Matt : Recovering from the summer doldrums:

1. Wrote and rewrote more thesis work
2. Gutted feeblepoint presentation template and input very coarse out-

line.

Also I only saved the data and not the figures but the antisymmetric sub-
space trawling seems to have picked up on a very large number of solu-
tions (most of which are likely repeats, reflection copies), I might have to
think of a way to reduce the number of redundant copies in the reposi-
tory after I produce figures, analyze, and upload them.

2018-08-17 Matt : Most of the day was spent finishing up (i.e. rewriting con-
stantly) the first draft of thesis proposal for review.

I’m thinking that its likely unbalanced in terms of content; I feel like I
should include more ideas that we plan to work on in the future rather
than what has already been done but if it reads well then I won’t change
it.

Starting code that uses symbolic dynamics. What I hope for is code that
takes as inputs:

• a symbolic block (two-dimensional array) of values
• a set of parameters (N,M, T, L), which are: number of time dis-

cretization points, number of spatial discretization points, period,
domain size.

• Symmetries present in solution

The output would be a doubly periodic spatiotemporal field that has
been made by glueing representative solutions together and then blend-
ing the boundaries by either truncation of higher Fourier modes, convo-
lution with a Gaussian (Weierstrass transform) or elementwise multipli-
cation with a Gaussian at the boundaries in physical space; will have to
experiment to see what performs the best.
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2018-08-20 Matt Current goals:

1. Finish presentation

2. Finish writing up a very thorough explanation of the difficulties ly-
ing in wait in the spatiotemporal symbolic dynamics.

3. Finish spatiotemporal symbolic dynamic initial condition generator.

4. Find any other important spatiotemporal tile solutions.

Beginning of Symbolic Dynamics Formulation When I began writing
the Python module symbolic_init.py I quickly realized how daunt-
ing of a task this is. I need the ability to at least attempt any possible two
dimensional symbolic block; but there’s many pieces of information that
are making the approach quite difficult.

Let’s say for the sake of argument that I knew the exact symbolic dy-
namical block I wanted to look for, all of its symmetries, etc. How does
one transform the symbolic dynamical block to a specific spatiotemporal
field?

The “1-d” chains in space and time seem relatively easy to fabricate nu-
merically, but there are certain instances where even they are not straight-
forward. Let us assume a trinary alphabet of 0, 1, 2 for “streak”,“defect“,
and “gap” solutions respectively.

As an example, let me work through the details of the simplest example
I can think of: conjoining a streak and a defect spatially. This can be
represented by the symbolic block,

M =
[

10
]

(16.66)

Because defects come in continuous families (streaks seem to be more
rigid, at least in my numerical continuation attempts), a natural question
arises even in this simple case; which member of the continuous family
should one use to best “seed” the spatiotemporal field?

One approach to this would be to choose a member that bisects the range
of domain sizes that the family exists in; another would be to specify the
domain size a priori, but that doesn’t seem natural. Other possibilities
would be to attempt it for a number of different family members and
see if they all converge to the same invariant 2-torus (if at all). The last
is to find an immutable criterion that can be applied to every family of
solutions which is also reasonable; as one can imagine this isn’t straight-
forward or easy.

In this specific instance I think it is relatively straightforward conjoin the
streak by setting its period to be equal to that of the defect, with the same
number of discretized points in time so the two spatiotemporal fields
can be concatenated numerically. The guess for the domain size would
merely be additive.
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For joining two different invariant 2-tori spatially, it seems that a fair posi-
tion would be to either run a quick line-searching subroutine to see what
period T minimizes the cost functional; or, simply take the average of the
two different periods.

If these methods work then it would be straightforward to apply the anal-
ogous routines to temporal symbolic chains; domain sizes would either
be put through a line-search or be averaged and the periods would be
additive. The only difference is that the convergence behavior of solu-
tions is much more dependent on being close to “the correct” domain size
parameter (the solutions come in families but each initial condition has a
specific domain size that it would be closest to in a least-squares sense).

Moving onto any symbolic block that is two dimensional difficulties arise
quickly. For example, in the context of two plots of Figure 6.1 (k) and (l)
in ref. [12]; a defect immediately precedes a hook. This is confusing as
figure ?? seems to indicate that the defect and hook are family members.
(This is not technically known as the stability or notion of spatiotemporal
stability still hasn’t been formulated outside of my ideas of ’sensitivity’
that I posited more than a year ago).

If we assume that the defect and hook solutions are family members then
this is what I can currently think of that might reconcile this issue. The de-
fect and hook manifest with different periods(on domain sizes) I believe
the correct way to view this is that at this specific period the solutions
that can sum to the period constitute a defect and a hook. If it were con-
tinued in time I would posit that it would visit multiple defects in time
(something to be tested).

Another possible test would be to find the spatiotemporal energy of all
constituent pieces and the the total and see if the sum of the constituents
equals the whole.

08-21-2018 Matt : Day’s work:

• Started reviewing Kuramoto-Sivashinsky equation literature prior
to thesis proposal

• More work on thesis proposal presentation.

• Writing up and thinking through the symbolic dynamics ideas

• Trying to read more of my backlogged literature and textbooks

• Started Stat Mech II. readings Stochastic Problems in Physics and As-
tronomy by Chandrasekhar.

• Attempted to find k = 3→ k = 1 defect without luck.

• Found the one-by-two (space-by-time) symbolic block correspond-
ing to a shift-reflection invariant invariant 2-torus composed of a
defect and its reflection, figure 16.33
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(a)

στ

1

1

(b)

Figure 16.33: Symbolic block (a) and corresponding converged spatiotemporal
solution (b). This was found by taking a member of the family of “defect” rela-
tive periodic orbits and gluing it together with its reflection copy as (hopefully)
indicated by (a). Plot (b) is of shift-reflection fundamental domain (half of the
invariant 2-torus in time).

Trying to garner experience with symbolic dynamical initial conditions
and their numerical difficulties through simple examples. If the figure of
the symbolic block is not of the correct formulation (a) in figure ?? then I
can change; will need to get opinion.

2018-08-22 Predrag Matt’s trial run of the thesis proposal presentation. Matt,
can you complete these notes?

• Burak: Summarize in intro how people used to do this tradition-
ally in turbulence (past 20 years). You are developing a statistical
mechanics approach to spatiotemporal states in terms of building
blocks.

• Burak: emphasize the bridge between small structures and large do-
mains. Similar to homogenous turbulence in large cube.

• John: shorten introductory “what am I going to do?”

• Burak: Can do this visually - will also save time.

• Burak: can go through slides faster. When you name a symmetry,
give a picture, the picture will explain it.

• Burak: in slide of invariant 2-tori, put pictures of examples.

• Burak: in Kuramoto-Sivashinsky slide need b.c.’s, explain terms by
annotating the equation, make comparison to Navier-Stokes.

• Burak: relative periodic orbits; moves with mean speed

• Burak: write what symmetry a given solution has

• Burak: brag about your domains being much larger than L = 22
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• Spatial scale
√

2 comes from competition of unstable diffusion and
stable hyperdiffusion. John: Where does the time scale comes from?
Predrag: one scale is the Lyapunov time of≈ 0.4 for the current scale
conventions. I think it has nothing to do with the actual time scale.

• John, Predrag: generate a few large spacetime domain solutions,
look at magnitudes of
(1) spatial Fourier components, averaged over time - should peak at
kmax = 2π/

√
(2), fall off exponentially for large wave numbers.

(2) time Fourier components, averaged over space - does it peak
anywhere? does it have a shoulder, beyond which it fall off expo-
nentially for large frequencies?

• Predrag Xiong and predecessors work on Kuramoto-Sivashinsky in-
ertial manifolds should serve as a guide here. Correctly scaled spec-
tra (dimensions scales linearly with L, for example) all fall on the
same curve.

• John: How are you going to do tilings? By Photoshopping?

• Matt: I’ll start with my symbolic dynamics - from a given symbol
array I’ll generate approximate solution by corresponding tiles, the
anneal it. Patterns whose boundaries are very different (in some
norm) might serve to help with grammar.

• Burak: emphasize your success - your solutions are robust. Already
achieved the qualitative confirmation that large solutions can split
into small domains.

• John: Inability to use Newton-Krylov methods sounds wrong; in his
experience cost functions are relatively smooth in all parameters. I
suppose if I’m not including calculations, numerical evidence, etc.,
I should just not bring topics up; better to focus on other details.

• Include figures that show initial conditions and the solutions they
converge to. Also show how a “random” looking initial condition
can converge but a “good-looking” (looks close to Kuramoto-Siva-
shinsky solution) initial condition can fail.

• Ashley: Don’t necessarily have to look at minimal invariant 2-tori as
library of converged solutions are technically all “tiles” as well just
of larger size.

• Burak: Numerical continuation of library of solutions can serve to
flush out spatiotemporal invariant 2-tori.

2018-07-05 Burak Most of what I said is already in Predrag’s list above. Spe-
cific additions:

• In the introduction, show very large domain simulation then mark
qualitatively similar structures. Your preliminary result is that those
qualitatively similar structures are in fact invariant solutions in small
domains. This way, you have a story.
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• The glued-up solution you presented is most likely an approxima-
tion to a homoclinic orbit. It’s important to understand that because
homoclinic orbits are likely to be a part of your library.

2018-09-10 Matt Skimmed ref. [55]. My general consensus: They do the proofs
to prove you can cover unstable manifolds in an algorithmic way.
Then once they have all of this very precise mathematical formu-
lation, they abandon it and approximate the unstable manifold us-
ing proper orthogonal decomposition, and numerical continuation
in conjunction with Monte Carlo methods. This likely doesn’t help
the reader as its too short to describe the paper. They work on a
domain which is equivalent to L̃ ≈ 2.73 or L ≈ 17.2 for Kuramoto-
Sivashinsky equation and work with a traveling wave solution with
two dimensional unstable manifold,

We expect that the dimension of the embedded unstable
manifold is approximately two since different initial con-
ditions result in trajectories in observation space that are
rotations of each other about the origin.

one on one with Burak At last week’s meeting Burak described a way
to “power-up” my research; He went into a description of the par-
ticular scales and the energy cascade present in Navier-Stokes flows
and made different comparisons using both 3-d isotropic flows and
shear flows as examples. He thinks a good use of my research would
be similar to what I have done for the Kuramoto-Sivashinsky equa-
tion which is to be able to link the energy and different spatial scales
of the problem by finding small invariant 2-tori embedded in large
spatiotemporal simulations.

ppt thesis proposal Worked on making improvements that Burak and
others mentioned for my thesis proposal presentation.

tile gluing Worked on symbolic dynamic initial condition generation and
thinking through gluing codes.
I think I’ll have to search for solutions using only matrix free meth-
ods which means that I will likely be employing a hybrid method
comprised of adjoint descent and Newton-Krylov methods with fixed
spatiotemporal area, as the method won’t work otherwise. I’m un-
sure as to whether this will work but because solutions seemingly
come in families I’m more hopeful. This will only be employed
when the system size (number of independent variables) is of order
104 or greater, as before this threshold lienar systems can be solved
directly without too much of an impact on numerics.
The general idea is to take the library of solutions that I have found
and then automate the process that glues them together; i.e.the au-
tomation will contain the following subroutines:

1. Determine symmetry subgroup of the solutions.
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2. Choose solutions and direction (space or time) to glue.
3. Make sure the discretizations match such that the final result is

a rectangular grid.
4. Use Fourier smoothing, Gaussian mollifiers, or insertion of ze-

ros to pad the two solutions and connect them or any combina-
tion of these procedures.

5. Determine (L, T, σ) based on averaging.
6. Use either hybrid adjoint-descent Newton or adjoint descent

Newton Krylov to converge the approximate solution.
I have an inkling that liberal use of inserting streaks and traveling
wave type solutions might be used to help glue solutions together
as but I don’t have motivation for this other than intuition currently.
Need to produce power spectrum in time and space for presentation
to generate approximate time and spatial scales.

2018-09-11 Matt channelflow two I tried for five hours but I cannot get the
MPI enabled version of channelflow 2.0 to work (MPI enables paral-
lelization). I wish I could include more detail here as it took up most
of my day but sadly that’s just the way the cookie crumbles.

2018-09-14 Matt Spatiotemp Outlining the gluing procedure but first need to
do thorough testing of recycled Newton-Krylov solvers.

2018-09-24 Matt Weekly Goals

• Finish automated gluing initial condition generator
• Finish automated symbolic dynamics initial condition generator
• Expand library of solutions by numerical continuation
• Absolutely finish presentation and thesis proposal
• Get reimbursed for DFD registration fee
• Finish Stat Mech two assignment
• Set date for thesis proposal presentation.

Powerpoint This is finally finished.
Thesis Proposal This is finally polished; just need Predrag to confirm

that its OK to send out.
Glue Implemented code to glue pairs of invariant 2-tori either spatially

or temporally. Larger arrangements are likely prohibitively expen-
sive at current tolerance threshold of machine precision. The process
will take either two random (if running the automated script) invari-
ant 2-torus solutions with the same symmetry and glue them either
temporally or spatially, while either maintaining the same symme-
try (default option) or not. When concatenating two different in-
variant 2-torus solutions there are a couple key points needed to
take into consideration
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• The discretizations must be consistent.
• There will be a discontinuity that needs to be smoothed out for

the spatiotemporal Fourier spectrum to have nice convergence
properties.

• Special considerations for different symmetries.

The discretization can already be taken care of by functions written
in my library. If the newly formed solution has too many points
for the linear system to be solved efficiently then there are two ap-
proaches that I can consider. Rediscretize by truncating the Fourier
spectrum, then process with hybrid numerical methods; or, run the
large discretization through adjoint descent and then rediscretize
before explicitly solving via Newton’s method.
For the discontinuity I am going to elect to smooth any discontinu-
ities by multiplying the scalar field with a Gaussian centered at the
boundary. The width of the Gaussian is something to play around
with but from previous experience 0.3 ≤ σ ≤ 0.5 has worked for
me in the past. The reason I would elect to use this method in-
stead of truncating the Fourier spectrum is that the latter has a more
pronounced effect on the scalar field away from the boundary than
the Gaussian mollifier. In other words, I believe the multiplication
with a Gaussian (local smoothing) is better than Fourier truncation
(global smoothing) when merging two converged invariant 2-torus
solutions, as locally away from the boundary we know that the con-
stituent pieces satisfy the Kuramoto-Sivashinsky equation .
The symmetry considerations are relatively minor details but are
important to get right; in the case of continuous symmetry I will
elect to average the spatial translation when concatenating solutions.
The data of all invariant 2-tori with continuous spatial translation
symmetry i.e., relative periodic orbit’s, is kept in mean-velocity frame
format such that the scalar field data is saved in a doubly periodic
form. While its hard to motivate, and likely wrong to join two so-
lutions in two different reference frames, I thought that perhaps I
could circumvent this logical gap by cheating and just taking the
average of the spatial shift, and hope that the initial condition is de-
cent enough to converge through my numerics; the motivation isn’t
well founded, other than the fact that my numerical codes seem to
be able to converge to solutions even when starting with “poor” ini-
tial conditions. The confusion is born out of being unsure how to
spatially concatenate invariant 2-tori with continuous spatial sym-
metry.
I am unsure how well this will work but in the first attempt it’s a
simple idea to implement. For the solutions with discrete symme-
try the only extra consideration is that instead of just glueing two
solutions together side by side, one of the solution will have to be
cut in half such that the halves can be concatenated onto both sides
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of the solution. This is due to the fact that both solutions will have
a symmetry axis that we need to respect if the new initial condition
will have the same symmetry.
The numerics can handle everything I plan to do so all that is left
is to introduce the precise smoothing functions, which will wrap up
the new initial condition generation.

Families I’m going to run numerical continuation code on all invariant
2-tori in current library to test my hypothesis that as the solutions
get larger in terms of spatiotemporal area they live in smaller re-
gions in (L, T) tiles. I’m hoping that this will be analogous to the
statement that specifying a invariant 2-torus with more symbols is
analogous to specifying a field with more precision. This is going to
produce a large amount of data so I’m going to run it on light rather
than my laptop soon.

2018-09-27 Matt [Numerical Continuation and other codes] Still working on
the initial condition generation for glueing together solutions and sym-
bolic dynamics.

2018-10-01 Predrag This might be of interest: Andre Wibisono (joint work with
Ashia Wilson and Michael Jordan), Georgia Tech CS, Monday, Oct 1, 2018
- 1:55pm in Skiles 005 - “Faster convex optimization with higher-order smooth-
ness via rescaled and accelerated gradient flows”:

Accelerated gradient methods play a central role in optimization, achiev-
ing the optimal convergence rates in many settings. While many exten-
sions of Nesterov’s original acceleration method have been proposed, it is
not yet clear what is the natural scope of the acceleration concept. In this
work, we study accelerated methods from a continuous-time perspec-
tive. We show there is a Bregman Lagrangian functional that generates
a large class of accelerated methods in continuous time, including (but
not limited to) accelerated gradient descent, its non-Euclidean extension,
and accelerated higher-order gradient methods. We show that in contin-
uous time, these accelerated methods correspond to traveling the same
curve in spacetime at different speeds. This is in contrast to the family
of rescaled gradient flows, which correspond to changing the distance in
space. We show how to implement both the rescaled and accelerated gra-
dient methods as algorithms in discrete time with matching convergence
rates.

In any case, Professor Molei Tao is a smart cookie, worth talking to.

2018-10-01 Matt Weekly Goals

• Finish automated gluing initial condition generator

• Finish automated symbolic dynamics initial condition generator

• Expand library of solutions by numerical continuation
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• File reimbursement for DFD registration fee

• Try some new numerical methods on Kuramoto-Sivashinsky equa-
tion

Andre Wibisono Talk Universal language for describeing phenomena,
Learning, economoics, Optimal Transport, Neuroscience, Statistical
mechanics, statistics,biology,physics (Laws of physics as principle
of least action in spacetime). Find best parameter x that minimizes
some loss function. (cost function).
Convex Optimization in Rn in continuous and discrete time. Want
to design “fast” algorithms to solve min f(x). Assuming differentia-
bility, convexity, gets us a guarantee on convergence properties of
the different methods.
Many algorithms are discretizations of dynamics in continuous time,
for example gradient descent and gradient flow. Talking about con-
vergence rates, differences between continuous and discrete time.
Gradient descent

xk+1 = xk − ε∇f(xk) (16.67)

Gradient Flow
Ẋt = −∇f(Xt) (16.68)

Nice properties for convex, nonconvex f, some conditions on bounded
∇2f . Can say a lot about convergence.

xk+1 = xk − ε∇f(xk) (16.69)

Theorem: If f is convex and 1
ε smooth then gradient descent scales

like O( 1
εk )

Ẋt = −∇f(Xt) (16.70)

Theorem: If f is convex (upper bound on Hessian) then gradient
descent scales like O(1/(t)).
i.e.these have same convergence rates if t = εk.
How to design (provably) fast dynamics for min f . Can we get faster
than gradient flow? What is the fastest dynamics? Not actually well
defined, definition of fast is dependent on t parameterization; repa-
rameterizing via speeding up time speeds up algorithm.

The sped up gradient flow τ = tp−1

p−1 (specific form dependent on
convex f then gradient flow takes

Ẏt = −tp−2∇f(Yt) (16.71)

What is sped-up gradient descent?

yk+1 = yk − εkp−2∇f(yk) (16.72)
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This does not get better thanO(1/k) Faster dynamics from optimiza-
tion, Recaling gradients

Ẋt = −∇f(Xt)/||∇f(Xt)||
p−2
p−1 (16.73)

Acceleration and speeding up time.

Ẍt +
p+ 1

t
Ẋt + tp−2∇f(Xt) = 0 (16.74)

First, look at rescaled gradient flow

Ẋt = −frac∇f(Xt)||∇f(Xt)||
p−2
p−1 = argmin(< ∇f, v > +1/p||v||p)

(16.75)
Faster when the gradient is small. (This might be worth looking at).
p =∞ is “normalized gradient flow”.
Convergence O(frac1tp−1). Same as gradient flow when p = 2.
Proof provided by convexity and Fenchel-Young.
He is skipping details to get to accelerated flow. How to implement
as an algorithm. Proximal method, Higher-order gradient descent,
rescaled gradient descent. Proximal is an implicit method (back-
wards discretization of rescaled gradient).

xk+1 = argminf(x) +
1

εp
||x− xk||p (16.76)

xk+1 = argminfp−1(x;xk) +
1

εp
||x− xk||p (16.77)

Instead of minimizing f , minimize the taylor expansion up to terms
p − 1 order. Examples of this are, p = 2 leading to regular gradient
descent, p = 3 Cubic newton.
Assumption that f is smooth of order p then convergence rate is
O( 1

εkp−1 ).
New stuff. If function is strongly smooth (all gradients up to pth order
smooth), then,

xk+1 = xk − ε
1
p−1

∇f(Xt)

||∇f(Xt)||
p−2
p−1

(16.78)

Proximal method. Higher gradient descent. Rescaled gradient de-
scent. Lower bound given by Nemirovski, Yudin, Nesterov. Using
assumption that algorithm generates xk ∈ x0+Lin(∇f(x0), · · · ,∇f(xk)).
This has order O 1

εk2
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Rescaled gradient and cubic-regularized require that Hessian is bounded
but we can get better without this assumption with the accelerated
gradient descent.
Accelerated Descents

xk+1 = yk − ε∇f(yk)

yk = xk +
k − 1

k + 2
(xk − xk−1) (16.79)

gradient descent “with momentum”. function value can oscillate,
gradient descent is monotonic. Achieves optimal convergence rate.
Gradient descent is very intuitive, but it is not optimal. Now let’s go
to continuous time limit,

ddxt + 3/tdotxt+∇f(xt) = 0 (16.80)

For accelerated gradient descent (AGD). Can show that oscillatory
dynamics both in function value and trajectory. Convergence rate
proofs via Lyapunov function. Question, whhy the dynamics, why
the optimality. There is non constant damping. With 1/t damping
for convex f and constant damping for strongly convex f. (strongly
convex is bounded Hessian).
How would you come up with this? Use a lagrangian formula-
tion that generates almost all of the algorithms that we know. La-
grangian, principle of least action, optimal curves satisfy Euler-Lagrange
equation.
Lagrangian that he uses:

L(x, v, t) = t3(1/2||v||2 − f(x)) (16.81)

Reference to Yezzi talk from last week “Accelerated optimization
of PDE framework”. If we speed up time in the AGD then it has
O(1/tp). Can we implement this? not quite he says. Reference to
Bregman divergence; working on Euclidean space with metric given
by the Hessian. Write the NGF as “mirror flow”

· ∇h(xt) = −∇f(xt) (16.82)

can be discretized as mirror descent (MD) as

xk+1 = arg minx∈Rn{< ∇f, x− xk > +Bregman divergence term} .

Accelerated mirror descent by Nesterov (2005). Can ask, what is
Lagrangian for accelerated mirror flow (AMF)?

ẍt + 3/tdotxt+ (∇2h(Xt + t/2Ẋt))
−1∇f(xt) = 0 (16.83)
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AMF is generated by the Bregman Lagrangian. Speeding up AMF
with speed up time rescaling.
How to implement (polynomial rate AMF) Can be unstable. There-
fore borrow Nesterov’s trick and indroduce an aux sequence to sta-
bilize the algorithm. “What actually works” Accelerated higher-
order gradient descent (AHGD) has correct convergence rate.
Can also accelerate rescaled gradient descent (easier). Again due to
Nesterov. AHGD is the discretized form of accelerated mirror flow.
Can convert to Bregman Hamiltonian, looks like Lyapunov func-
tion; use symplectic structure?. Madison, Paulin, Teh, O’Donoghue,
Doucet 2018 (different Hamiltonian).
What’s still unclear, the Lagrangian works, but still don’t know if its
best. Need to formulate optimal dynamics for optimization.

Takeaways from Wibisono Talk In my personal experience when look-
ing for numerical methods that are commonly used in nonlinear op-
timization procedures fall into two classes: descent methods and
iterative methods. I thought I was pretty exhaustive on the types
of numerical optimization methods (specifically descent methods)
that were out there but after this talk I realize that I came across the
most common but not the most cutting edge. That being said, this
talk helped provide me with some of the more recent, cutting edge
algorithms in the descent method category, giving me a new list of
numerical methods I add to my numerical methods suite after suf-
ficient time. The list of different descent methods mentioned looks
something like,

• proximal method
• “mirror prox” method
• higher-order gradient gescent
• rescaled gradient descent
• accelerated gradient descent
• accelerated mirror descent
• accelerated higher-order gradient descent

These are all methods I can try; in addition to these descent algo-
rithms I can try different direct and iterative methods as well such
as,

• Cubic regularized Newton
• BiCGSTAB

As opposed to the more common Newton and GMRES methods.
I think The most promising of these numerical that I can try out
are the so called accelerated methods, which use the acceleration
techniques of the past derived by Nesterov [48] applied to newer
optimization algorithms.
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2018-10-05 Matt Trying to make up for lost time by working overtime during
the week and completely crashing on weekends. I’m hoping I can keep
it up

Spatiotemp Codes Implemented a number of new numerical methods
to see if any of them could compete with what I currently have.
Out of the three classes of solvers, (descent methods, direct meth-
ods, iterative methods) iterative methods have work terribly for me.
Therefore in order to see if its just my innate disability to be able to
use these methods I am running a suite of tests using built in opti-
mization algorithms in SciPy.
On the other numerical front, I implemented two different types
of Levenberg-Marquardt algorithms, the first one [19] performed
much better than ref. [53], and much better than the BiCGSTAB
algorithm I also implemented; but for whatever reason the Gauss-
Newton with back-tracking performs better in all cases I have tried
so far.
I also tried more testing with the accelerated adjoint descent that
I had recently forgone in favor of using a lower order integration
scheme in fictitious time with preconditioning, I’m thinking I’ll likely
stick to that as well.
The main portion of today’s work was to implement the gluing algo-
rithm that takes any two invariant 2-torus solutions with the same
solution and glues them together, with a slough of options as to how
one specifically wants to do this, namely, whether to concatenate in
space or time, whether to pad the boundaries between the two solu-
tions with buffer zones, and how to smooth out the glued together
data. The smoothing still needs some fine tuning; I’m using circu-
lar convolution with an anisotropic Gaussian that is wider in the
dimension by which two solutions were glued. Currently trying to
run through some test cases. The two shortest pre-periodic orbit so-
lutions concatenated in time after adjoint descent looks interesting
but Gauss-Newton squashes it into an equilibrium. Definitely needs
some more fine tuning on the smoothing front.

2018-10-10 Matt Spatiotemporal gluing I’ll produce a figure that makes this
entire process more obvious, as I see that it is almost assuredly com-
pletely opaque to anyone other than I.
Had a discussion with Predrag about how no one has listened to him
about how to make a figure eight orbit from two constituent periodic
orbits. Instead of using L2 norm minimizer between two orbits the
smart thing to do is to find segments that follow the periodic orbits
for a fraction of their periods with the segments ending / beginning
on the unstable / stable manifolds of the two orbits, respectively,
and then making connections with lines. This same reasoning can
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be applied to my spatiotemporal situation, except now I will shave
off sections of two tori so that they can be joined by a surface.
I believe the practical way of doing this is going to be to take the
convex combination of the pieces of the tori that remain after chop-
ping them up to connect them to one another. For example, if torus
A and B are to be connected in time, I should take a subset of the
time values of both A and B. Let these subsets be denoted by tA ∈
[TA− , TA+

] and tB ∈ [TB− , TB+
]. The connect should now be be-

tween pairs A(TA−), B(TB+
) and A(TA+

), B(TB−). I propose that
this is done in the following manner: (naive and simple, but more
intuitive than just zero padding and smoothing).
To join the two ends of the torus we take the convex combination,
for τ ∈ [0, 1]

T+ = A(TA−)τ +B(TB+)(1− τ) , (16.84)

and likewise for the other connection,

T− = A(TA+)(1− τ) +B(TB−)τ , (16.85)

of course while maintaining any symmetry relations (i.e.gluing fun-
damental domains together).
After this has been performed, one must determine the period ap-
proximate period (Could do a line search around TA + TB to see
what minimizes cost function) and decide on what kind of smooth-
ing to perform. I believe that the convex combinations imply that
we only have C0 continuity in time, the Fourier spectrum will not
converge exponentially, and as such Fourier truncation might prove
to be too strong, in terms of net affect on the global spatiotemporal
field. I will perform tests on Gaussian convolution versus Fourier
truncation to see which seems more reasonable.
Now, I just want to state that I really do understand the unstable and
stable manifold argument; but in terms of the spatiotemporal Kura-
moto-Sivashinsky equation that does not contain dynamics this is
the idea that I am going to (finish) implementing. As a crude (I am
afraid exactly what Predrag and I both know is wrong, especially
after he told me today) is to calculate the pairwise L2 norms between
different 1-d time or spatial strips of the solution, store the results
in a matrix, and then find the minima of a weighted version of the
matrix that attempts to preserve as much of the original information
as possible
Let’s assume that I am gluing two periodic orbits together in the
time direction. After a bit of work I realize that when working in the
fundamental the setup and algorithm is identical for all symmetry
types. Given that we want to glue tori TA and TB together, we can
produce a matrix that stores the L2norms between different points

05/09/2019 siminos/spatiotemp/chapter/blogMNG18.tex602 7451 (predrag–6859)



CHAPTER 16. MATT’S 2018 BLOG

in the gluing direction, i.e.,

Mi,j = ||A(x, ti)−B(x, TB − tj)|| (16.86)

Instead of finding minima to this, I want to favor keeping as much
of the fields of A and B as possible; therefore I will instead find
the minima of the following weighted matrix. (Finding a minima at
index pair (i, j) is equivalent to deleting the following information:
A(x, t), t ∈ [0, ti] andB(x, t), t ∈ [Tp−tj , Tp] In order to favor smaller
N = i + j, I weight the matrix M to penalize large (i, j) choices via
the following.

M̃i,j = ||A(x, ti)−B(x, TB − tj)||+ i/NA + j/NB , (16.87)

where NA and NB are the maximum values that i, j take on respec-
tively. The first choice or calculation of (i, j) helps identify and glue
one pair of boundaries together, but we still have to glue the other
boundary. This can be computed by performing the same operation
on the Cofactor matrixCi,j that is created by deleting all rows up to i
and all columns up to j. In order to switch to the other boundary we
also have to flip the cofactor matrix around so that the indices corre-
spond to the correct boundary, after performing these bookkeeping
operations, we find the minimum of

C̃`,k = ||A(x, TA − t`)−B(x,−tk)||+ i

ÑA
+

j

ÑB
, (16.88)

where Ñ ’s are the dimensions of the cofactor matrix. The method
of penalizing large indices is another expedient, simple implemen-
tation and so I’m not claiming that it works until I test these codes,
which I sadly didn’t finish as I had to rewrite a number of pieces
today.
This was the first idea I came up with to chop and glue tori together.
I haven’t finished the code yet but I hope to soon so I can do some
tests.

2018-10-11 Matt Still working overtime (maybe a little too much....) in at-
tempts to catch up on my responsibilities. Today’s work mainly focused
on rewriting portions of the automated gluing code and debugging it.

I found success in a variety of circumstances but there are still a large
number of relations that need to be more precise before I can say my
work is done. So far I have some decent results of merging the two short
pre-periodic orbit ’s together spatially and converging to a new solution.
Other attempts have found equilibria and strangely enough there have
been trials where one of the constituent solutions dominates and so the
glued initial condition converges back onto a single constituent invariant
2-torus .
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Figure 16.34: Plots detailing the spatial gluing of two L = 22 solutions de-
scribed in four steps: (1) Initial invariant 2-tori. (2) Splitting initial invariant
2-tori in a symmetry preserving manner (creating new fundamental domain).
(3) Initial invariant 2-torus guess resulting from the gluing procedure. (4) The
numerically converged solution (Lf , Tf ) = (44.23634914249, 58.57834597407).
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Figure 16.35: Plots detailing the temporal gluing of two L = 22 solutions de-
scribed in four steps: (1) Initial invariant 2-tori. (2) Splitting initial invariant
2-tori in a symmetry preserving manner (creating new fundamental domain).
(3) Initial invariant 2-torus guess resulting from gluing procedure. (4) The nu-
merically converged solution (Lf , Tf ) = (44.23634914249, 58.57834597407).
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It’s all kind of strange because it is quite sensitive to certain choices such
as the total discretization, the discretization of the buffers (spatiotem-
poral functions that are convex combinations in the “gluing direction”),
whether or not the solution is Fourier smoothed,Gaussian smoothed, or
just rediscretizing the solution (similar to truncation). Rediscretizing and
Fourier smoothing appears to be a bad idea as it is analogous to truncat-
ing twice.

There’s quite a bit of testing left; I need to make a spreadsheet to keep
track of all of the variables floating around.

Regardless; due to the fact that the two shortest (period) pre-periodic or-
bit invariant 2-tori at L = 22 match almost too well (It’s actually kind
of suspicious that they match so well), I was able to glue them together
with two buffer regions that used the convex combination procedure de-
scribed yesterday. The two trickiest parts seem to be how much buffer to
include between two solutions as it depends on how similar their bound-
aries are, and how much if any parts of the tori to shave off.

Figure 16.34 and figure 16.35 are the penultimate summary of today’s
work. It chronicles each step in the gluing process for shift-reflect invari-
ant solutions; I recommend looking at in case there are any important
comments for me. 9

The invariant 2-tori space and time periods (a) from figure 16.34 were
(L0, T0) = (22.0, 20.5057459345) and (L1, T1) = (22.0, 28.6609617454). Fi-
nal values for this solution were (Lf , Tf ) = (42.580326368, 24.210913068).

Solutions were glued together by using discretizations of 128 × 128 for
each field; the final field in the configuration space had dimensions 32×
64, which corresponds to 31 ∗ 31 spatiotemporal Fourier modes due to
symmetries. The initial guesses for the period and domain size of the
solution were estimated by

T ≈ T1 + T2

2
, (16.89)

and

L ≈M ∗ (
L1

M1
+
L2

M2
)/2 = M ∗ ((∆x)1 + (∆x)2)/2 , (16.90)

where M is the new spatial discretization size, and M1 and M2 are the
previous discretization sizes of the solutions respectively.

2018-10-17 Matt Glue automation I have the gluing code fully automated by
it doesn’t work too well as the discretizations get too large. To cir-
cumvent this, I went through testing whether I could optimize the
discretization through a quantitative measure. This was attempted

9Predrag 2018-10-29: Why do you write (Lf , Tpf ) in figure 16.34, and not (Lf , Tf )?
Why is (Lf , Tf ) the same in figures 16.34 and 16.35? Looks wrong in figure 16.34.
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Figure 16.36: Plots detailing the spatial gluing of two L = 22 solutions de-
scribed in four steps: (1) Initial invariant 2-tori. (2) Splitting initial invariant
2-tori in a symmetry preserving manner (creating new fundamental domain).
(3) Initial invariant 2-torus guess resulting from gluing procedure. (4) The nu-
merically converged solution (Lf , Tpf ) = (44.23634914249, 58.57834597407)
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by looking at the (initial)condition number of the matrix that arises
from Newton’s method. This is a measure of how close the (least-
squares) linear system is to being singular. From this investigation it
was seen that the condition number seemed almost independent of
the temporal discretization but highly dependent on the spatial dis-
cretization. I approached this from the perspectives of being both a
pre-processing and post-processing step; I was hoping to be able to
decrease the number of variables to speed up the numerical compu-
tations, without throwing away too much information.
In certain instances this is easy as the condition number increases as
the solution starts to change dramatically; in other instances the con-
dition number σc → 0 as M → 0 where M is the number of points
in space. This leads to arbitrary bounds on the discretization and
quickly becomes a procedure that is idiosyncratic to each solution,
which is not useful. The application as a post-processing treatment
is also at risk of throwing out too much information, which can take
a converged solution to a non-solution. So without considering the
period and domain size of each solution separately this is likely a
wasted effort.
I also tested the differences between slicing solutions and chopping
them; slicing is referring to concatenation of solutions by remov-
ing points from the fields and then smoothing out the boundaries.
Chopping refers to splitting the fields into multiple subdomains and
padding the boundaries with zeros. Both procedures use convex
combinations to fill in the missing information.
Regardless; there might be a few more things to do to the gluing
code before running it on light or eventually PACE.

Cheaptricks Went through the built-in minimization functions from the
SciPy library to see if any would work. The method BFGS seemed
promising and might be able to be used for this problem. BFGS
stands for Broyden-Fletcher-Goldfarb-Shanno. In a couple of minutes
it was able to reduce the cost function to a value of 10−10; Newton on
this problem gets it to within machine precision in a couple seconds
so whether its useful is going to be dependent on whether it scales
better than Newton with respect to system size.

Spatiotemporal Symbolic Dynamics The gluing code might work much
better for surveying the spatiotemporal symbolic dynamics because
the discretizations of the tiles tend to be smaller than average solu-
tions, because they are defined on smaller spatiotemporal areas.

2018-10-18 Matt Autogluer should be ready tomorrow; the last thing I wanted
to play around with was trying to optimize and or minimize the num-
ber of discretized points. I have a very rough criterion, which is just to
decrease the number of points (decreasing number of spatial points only
seems to be most consistent) based on the residual of the cost function.
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Figure 16.37: Gluing diagram for same initial conditions as figure 16.34, except
in the second to last figure the discretization of N ×M = 32 × 64 points was
reduced toN×M = 16×40; values determined by cost functional evaluations.
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Figure 16.38: Gluing diagram for same initial conditions as figure 16.36, except
in the second to last figure the discretization of N ×M = 32 × 64 points was
reduced toN×M = 32×38; values determined by cost functional evaluations.
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The idea was that including extra Fourier modes only serves to contribute
to the residual and there should be a minimal number that contains most
of the information from the original solution, with higher order terms
serving to add to the residual by the large diagonal terms of the lin-
ear component of the Kuramoto-Sivashinsky equation in spatiotemporal
Fourier space. The original problem with this kind of investigation is
that depending on what criterion one uses to measure this phenomenon,
it can quickly take much more time than it takes to converge a solution;
thereby defeating the point in the short-term, albeit if the new solution is
also going to be glued then any reliable rule for decreasing the discretiza-
tion is useful.

What works surprisingly well is one of the most naïve ideas one could think
of, which is to take the new, glued initial condition, and decrease the
number of points in the discretization until the value of the cost func-
tion increases. This is no where near an exact science but because we are
gluing together previously converged solutions, there is some notion of
being “close” to a new solution by using the residual of the cost function.
Once the discretization changes start to increase the residual, a rough
claim would be that we are starting to throw out required numerical in-
formation.

This investigation I believe will be of the utmost importance if we want
to be able to repeatedly glue solutions together; its a very rough approx-
imation to the minimal number of points required to resolve a invariant
2-torus. It does have its downsides; sometimes if one does not provide
a lower bound it will get close to zero and then converge to equilibria
solutions.

figure 16.38 and figure 16.37 detail the gluing procedure for a minimized
discretization; the second to last step is the extra step. If we label the
two initial conditions by 0 and 1, then this step takes the new discretiza-
tion (N0 + N1,M) ((N,M0 + M1)) from temporal (spatial) gluing, and
reduces it. The only cases where this has been attempted was for pre-
periodic orbitinvariant 2-torus solutions. The discretizations were able
to be reduced to from (N − 1) ∗ (M − 2)/2 = 961 to 285 for the spatial
concatenation of the two shortest pre-periodic orbit invariant 2-torus so-
lutions, and from 961 to 558 for the third and fourth shortest solutions
glued torus. So although crude, it is quite effective.

Also, in order to make the gluing figures as appealing as possible I spent
far too much time tinkering with the plotting features afforded to me in
Python. Things get so specific its mind numbing; but after a number of
wasted hours I realized my problems were born out of aspect ratios being
automatically determined.

2018-10-24 Matt Abstract for March Meeting I’ll get this done by the dead-
line.
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Figure 16.39: Gluing diagram for two shortest relative periodic orbit invariant
2-tori from L = 22. This was the successful test case for invariant 2-tori with
continuous spatial translation symmetry.
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Gluing code Some woes with gluing solutions with continuous symme-
try. Realized that the spatial shift parameter didn’t match with the
data stored for the L = 22 initial conditions, hence the update to the
files containing relative periodic orbit data.
The method by which the two solutions are adjoined is similar to in-
variant 2-tori with discrete symmetries except for the minimization
preprocessing that attempts to minimize the difference between the
two solutions by translating them in the direction orthogonal to the
gluing direction; i.e.if trying to glue two relative periodic orbit in-
variant 2-torus solutions in time I used spatial translations to get
them to match.
Describing figure 16.39 subplots from left to right:

1. The two initial conditions (the shortest relative periodic orbit
solutions from L = 22).

2. The first attempt at gluing the solutions in time, by padding the
boundaries with zeros and then filling in the zero padding with
convex combinations of the boundaries.

3. The spatiotemporal field after reducing the discretization from
N = 64(time) and M = 32(space) to Ñ = 32 and M̃ = 16.

4. The converged spatiotemporal field resultant from adjoint de-
scent and Gauss-Newton with backtracking (my typical numer-
ical method)

The unjustified means by which I chose the value for the spatial
translation parameter was to just use the spatial translation for the
second solution. The rationale behind doing so is that I am only in-
terested in doubly periodic solutions. This choice makes the new ini-
tial condition periodic with the tradeoff being a coordinate transfor-
mation (mean-velocity frame) that twists the first solution in a linear,
but artificial manner. I want to stress that this tradeoff might be too
much for future cases, but it worked well enough for the test case,
and had at least some motivation. The spatial case is a whole other
can of worms; I haven’t finished this portion yet as it is hard to moti-
vate combining solutions in two different reference frames (concate-
nating the solutions in their respective mean-velocity frames), other
than the fact that working in the non-periodic coordinates is even
worse. I have no intuition as to how to join two relative periodic or-
bit invariant 2-tori spatially, because they have different group tan-
gents at every point in time.
One option might be two glue solutions whose mean-velocity frame
coordinate transformations are similar or the crude method of join-
ing the solutions together in the mean velocity frame and then av-
eraging the spatial translation. Again these are crude methods but
I haven’t been able to think of better ones just yet. This is very im-
portant; however, as some fundamental “defect” tiles are relative
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periodic orbitś. So unless I can resolve these issues, using gluing to
survey the spatiotemporal symbolic dynamics will be impossible.

2018-10-24 Matt Plumbers Talked to the plumbers about really thorough and
well performed experiment with monkeys. I believe the main take
away was that the experiments were performed over a very long
time period; by performing PCA or something similar they were
able to find a low dimensional basis (analogous to a local basis of
an inertial manifold) that “aligned” data in a way that enabled com-
parison and analysis of long-term experimental data as a singular
set instead of many different experiments. There are of course the
actual contributions to neuroscience but I didn’t read enough of the
paper to get that far in.
I shared my recent work with gluing solutions together; Burak made
sure to mention not to miss out on the side projects that might seem
trivial or easy now, it would be best to capitalize on these side-quests
with relative haste; a sentiment I agree with. I unleashed my current
woes of gluing solutions with continuous symmetries together and
how I had a couple ideas but wanted insight. I believe Predrag in-
dicated that this falls under the applications of slicing (quotienting
the continuous symmetry). In other words, given two orbits, the
lemniscate combination that arises should be calculated in slice.
I mentioned how I’ve been using a time-dependent group transfor-
mation as a coordinate transformation into what I and others de-
note the mean-velocity frame. Burak suggested that maybe in ad-
dition to matching the extent of continuous dimension perpendic-
ular to gluing, one should also match solutions with similar shifts.
For example, perhaps gluing two relative periodic orbit invariant
2-torus solutions spatially is justified when the periods of each so-
lution and their average phase speed (or total spatial translation
through a prime period) are approximately equal T1 ≈ T2,C1 ≈ C2.
Burak was excited by the fact that I am able to get this to work in
at least the test case scenarios, and he suggested that perhaps this
would be a way of formulating the one dimensional symbolic dy-
namics at a particular (L = 22) domain size; something that has not
been accomplished yet. While an exciting path to pursue there is
still much work to be done.

Spatiotemp gluing Over the past few days I’ve made some sweeping
changes in the gluing code. In order to gain intuition on all of the
different changes made I assembled a battery of tests (whose size
quickly got out of hand) to be applied to the gluing invariant 2-tori
with continuous symmetries. The main idea that I found lacking
motivation was how to decide what the new spatial translation pa-
rameter (shift over prime period) should be, given two solutions
with differing spatial shifts. It turns out after some investigation
that the cost functional doesn’t seem very sensitive to changes in
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Figure 16.40: Gluing diagram for two shortest relative periodic orbit invari-
ant 2-tori from L = 22. This was the successful test case for spatial gluing of
invariant 2-tori with continuous spatial translation symmetry. From the top
down: 1. The two initial solutions to be glued. 2. The two solutions being
glued after a small attempt at minimizing the difference at the boundaries. 3.
The initial condition after Fourier truncation (what I think I will call guided
rediscretization, as the final discretization is guided by the cost functional). 4.
The converged solution. All plots are in the physical coordinate frame, not the
periodic mean-velocity frame.
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(a)

(b)

Figure 16.41: Second to last and last plots from figure 16.40 respectively, plot-
ted here to show their approximate relative scales. (a) The initial guess after
gluing and preprocessing. (b) The resulting invariant 2-torus.
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this spatial shift parameter. Therefore; I believe that there is some
freedom in deciding conventions, much like how I had to come up
with rules for the generation of “random” initial conditions by ini-
tializing spatiotemporal Fourier modes on a grid with certain spa-
tiotemporal extent.
I had better luck with spatially gluing invariant 2-tori with continu-
ous symmetries after a fair bit of work today. There are still a large
number of dials and knobs to play with to fine tune the procedure.
In general it looks like my method of gluing solutions together, in
addition to my hybrid numerical methods are strong enough to find
invariant 2-torus solutions to the Kuramoto-Sivashinsky equation
whether gluing solutions together spatially or temporally. An ex-
posé on the number of parameters I am playing around with is
stated below. I’m going to determine my conventions by choosing
the set of parameters that make converging to a solution most likely,
and therefore make the procedure the most efficient.
The main goal is use these tests to decide on conventions, then move
onto attempting to merge larger (and smaller with the tiles) solu-
tions together.

Test Battery I’m giving this part its own section just for my own book-
keeping. The factors that seem to hold sway over whether solutions
will converge or not (all initial conditions are manipulations of the
two shortest period relative periodic orbitś fromL = 22 as test cases)
are the following. Neglecting some obvious contributions to the list,
such as numerical methods, choice of initial condition, etc., there
are still a number of independent criteria that can be chosen, which
quickly multiply and make the list of combinations large. The fac-
tors that contribute to the number of choices made are the following

• Size of the “buffer regions”
• Type of method to fill in the buffer regions.
• Which direction to glue in, space or time.
• Types of smoothing (Fourier truncations guided by cost func-

tional)
• Algorithmic position of rediscretization, before or after adjoint

descent
• The particular ordering of the solutions, using their reflection

copies as well as continuous familes.
• Working in mean-velocity frame or physical coordinate frame.
• Bounds on reduction of discretization size (two relatively rea-

sonable choices so far)
The total number of combinations is close to the thousands, meaning
I have some testing and analysis ahead of me (currently in produc-
tion). The largest worry currently is that there seem to be sharp cut-
offs in convergence in terms of the spatiotemporal discretizations.
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i.e.32 × 32 points might not be enough but 32 × 34 might be. As a
general rule it seems less sensitive to the number of points in time
and more sensitive to space; likely because there is a minimum num-
ber of spatial modes required to capture the inertial manifold at any
given L.
I’m currently running these trials to see if anything sticks out as a
clear winner; I believe rediscretizing first will win, but I need a set
of more precise bounds. If the buffer regions get too large then they
start introducing more error into the initial condition, or start re-
moving too much information from original constituents, so this can
probably be safely fixed at a size of 2 or 3, meaning that either there
are two times this amount of zeros inserted between solutions, or
this number of spatial, temporal points (entire rows of information)
are used to blend solutions together.
I’m curious as to how the rediscretization before or after adjoint de-
scent will turn out, I honestly have no idea. For the smoothing rou-
tines, I believe that which one of the four is the “best” depends on
lower bounds, the solutions themselves, as well as the “gluing direc-
tion”. I don’t think I should worry about choosing specific members
of continuous families or particular reflection copies of solutions;
this can be handled automatically by seeing if the different combi-
nations converge.

2018-10-26 Matt APS Abstract Reposting here for transparency; sadly this is
all being done last minute so I won’t hope for any sort of critique.
I signed up for a poster under Category: “Statistical and Nonlin-
ear Physics” Sub-category: pattern formation and spatio-temporal
chaos. (the only other option was the more general “chaos and non-
linear dynamics”.
TITLE: Spatiotemporal tiling of the Kuramoto-Sivashinsky equa-
tion Abstract Body:Numerical simulations play a very important
role in the study of chaotic partial differential equations due to the
lack of analytic solutions. In the limit of strong chaos and or tur-
bulence, these computations become very challenging if not com-
pletely intractable. In an attempt to circumvent these difficulties,
we recast time dynamical systems as purely spatiotemporal prob-
lems in (d+1) dimensional spacetime. Specifically, the focus of this
study will be on the spatiotemporal Kuramoto-Sivashinsky equa-
tion, a (1+1) dimensional system. Our main hypothesis is that spa-
tiotemporal recurrences resultant from shadowing of invariant 2-
tori are of critical import. This intuition is a spatiotemporal parody
derived from the theory of cycle expansions [9]. By developing a
(1+1) dimensional symbolic dynamics with invariant 2-tori as the
fundamental building blocks, we hope to quantitatively character-
ize infinite spacetime solutions.
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Funding Acknowledgement: P.C. thanks the family of the late G.
Robinson Jr. and NSF DMS-1211827 10

Gluing Testing, Testing, and more testing.
Implement a number of various means for rediscretization, reordered
a bunch of processes. List of rediscretization processes, “Residual
guided rediscretization”: Lower N and M while |F |2 is decreasing
“Converged Solution guided rediscretization”: Lower N to mini-
mum value dependent on period, incrementally increase until solu-
tion converges, then do the same with M .
The first of these is the cheap, expedient procedure that should be
used to produce initial conditions that have a smaller discretization
that one started with; The second tries is a much more expensive
procedure because it tries to find the minimal discretization for con-
verged solutions; therefore, it requires a bit of computational time.
From testing it seems much better to increase the discretization at
all points in the calculation, and then as the very last preprocess-
ing step, decrease the discretization. The motivation for this in-
creased cost is because the second procedure has repeated gluings
in mind; not only do we want a converged solution, but also the
converged solution with minimal discretization. Because the con-
vergence seems to be much more finicky with respect to changes in
the spatial discretization when working at a fixed length L = 22.
A correction was made that more fairly weights solutions depend-
ing on their initial parameters; I was mistakenly creating initial con-
ditions where solutions with drastically different periods were re-
ceiving equal number of points in the final discretization, as op-
posed to being weighted by how much they contribute to the final
periods. In other words I wasn’t incorporating the correct scales in
the initial conditions.
In terms of specific testing, the main parameters that I tested were,

• Rediscretization before and after adjoint descent
• The size of the discretization of the buffers
• The method of creating the buffers
• The use of the “residual-guided” rediscretization

which lead to the following conclusions. It’s always better to redis-
cretize before before numerical methods. A moderate buffer size is
5, a moderate number of points and likely should be proportional to
the total number of points; still testing. Use of the residual guided
rediscretization routine should always be used on the dimension
perpendicular to the gluing dimension first. Some (seemingly) im-
proved lower bounds on the number of points in the discretization

10Matt I’ve seen this on most of the recent papers so I included it as safety measure, also I put
the authors as just myself and PC as I was unsure of what to do.:
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Figure 16.42: All steps and figures are annotated in long enumerated list in
blog post 2018-10-31

is something like M = 2( log2 L + 1) and N = 2( log2 L − 1). Main
point: less sensitive to changing (reducing) the maximum frequency
mode (less points in time).

AutoRPO I’ve begun code that will eventually run through all combi-
nations (permutations excluded, even though they are technically
different in the mean velocity frame) of the relative periodic orbit
invariant 2-tori with L = 22. The hope is to illuminate the sym-
bolic dynamics for L = 22, as something to run in the background.
I wrote the code to be able to pick off where it left off, because there
are twenty-five thousand plus combinations of relative periodic or-
bitś. The current efficiency (granted this is biased to the first few
shortest relative periodic orbitś being combined) is 15/18 ≈ 0.83.
Interestingly enough, I’ve found more success in spatial gluing, but
the time gluing has been with fixed domain size, which can be a
strict constraint.

2018-10-31 Matt RPO time gluing About to run the automated gluer on light;
There are so many initial conditions to choose from I am unsure if
I should just attempt to glue all invariant 2-tori that I can or if I
should be more precise and target a specific subset in attempts to
gain intuition into the spatiotemporal symbolic dynamics.
As I have glossed over several steps in the test case figure 16.39, here
I overhaul a number of things and included some of the ideas that
might lead to a more efficient (faster converging) algorithm. The
improvements include:
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• only combining invariant 2-tori with continuous spatial trans-
lation symmetry that go in the same direction (positive x shifts
paired together, likewise for negative shifts). Allows for addi-
tive combination of spatial translation parameters.

• “buffer” size dynamically determined by the discretization as
opposed to being a static number.

• Only for variable domain size L; forgetting trying to determine
symbolic dynamics at L = 22 as its a sub-project within the
bigger picture.

• Started looked at sliced and sectioned versions of figures; might
include in gluing diagrams.

• Made sure everything is done and displayed in the full state
space.

• Including time (or space) increments of buffer regions as omit-
ting them underestimates the period of the glued guess invari-
ant 2-torus.

1. Gluing the two shortest relative periodic orbit invariant 2-tori
with fixed L = 22. Original discretizations of time-by-space
128 × 32. Let u(1) be the top invariant 2-torus, and u(2) the bot-
tom invariant 2-torus.

2. (A hidden step: validate that the discretizations match so that
joining two fields makes sense.)

3. The first step is rediscretizing the two initial conditions from the
first figure such that they are correctly scaled relative to each
other in time. I.e. if T1 = 1/4 ∗ T2 then the initial condition
corresponding to orbit 1 will appear as 1/4 of the time domain.
The second step included in this step is a dramatic increase in
the size of the discretization; this is purely to make the next few
steps more accurate. It is not computationally expensive be-
cause we will discard Fourier modes before computations start
becomeing expensive.

4. The first step in this figure is to ensure that the solutions both
have net spatial translations in the same±x direction; if not, the
top solution is reflected (not this case). The first solution is then
rotated relative to the second solutions such that the impromptu
cost functional I = |u(1)(x, T1 +T2)−u(2)(x, 0)|2 + |u(1)(x, T1)−
u(2)(x, T2)|2 is minimized. u(1) indicates the solution on top, u(2)

represents the solution on the bottom.
5. Two buffer regions, whose discretization is dynamically deter-

mined by the discretization of u(1) and u(2) in the gluing di-
rection (in this case, the number of points in time equal Nb =
(N1 + N2)/8 for both buffer regions. They are assigned with
periods equal to Nb ∗ (∆t)avg. Where (∆t)avg = T1/N1+T2/N2

2 ).
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6. The buffer regions filled in with convex combinations of the
form τu(1) + (1 − τ)u(2) and τu(1) + (1 − τ)u(2) with the val-
ues of u being those of the respective horizontal boundaries.

7. The Fourier truncation of the previous figure. Going from some
very high number of modes (I usually increase the discretiza-
tion by factors of four or sixteen in each direction; arbitrarily).
The figure here, however, has an additive discretization corre-
sponding to the original initial conditions. N = N1 +N2 (time)
and M = M1 = M2 (space). In this case, the resultant initial
condition had 256 × 32 points. The domain sizes are trivially
the same, and the net spatial translations and periods are addi-
tive.

8. The converged solution with the additional discretization min-
imization protocol. The solution being viewed has a discretiza-
tion of 16 × 32 points, but more points are interpolated (zero
padding Fourier-Fourier spectrum) so the figure looks nicer.

2018-11-02 Predrag Figure 16.7, obtained by applying the adjoint descent to a
(L, T) = (500.0, 500.0) large domain noisy initial condition is pleasing to
the Kuramoto-Sivashinsky jaundiced eye, but deceptive. The structures
look similar to those seen time-forward simulations of the Kuramoto-
Sivashinsky equation, but they are not. On the (L, T) = (500.0, 500.0)
domain the u magnitudes in time-forward simulations peak at about 3.6,
while figure 16.7 peaks at 5.2. So that’s pretty bad.

What should u peak at? The overall 〈u〉 is set to 0 in order to fix the
Galilean invariance of Kuramoto-Sivashinsky. For small domains, like
figure 16.6, u peaks at about 2.2. However, fluctuations of u(x, t) are con-
strained by its immediate neighborhood, and on large domains it exe-
cutes a random walk, so I would expect that 〈u2〉 ≈ 2DuL, where Du is
the spatial diffusion constant for the Kuramoto-Sivashinsky field ampli-
tude u(x, t).

The reason the fluctuations in figure 16.7 are so much larger is presum-
ably because the numerics is crude (way too few Fourier modes?), so
numerical errors add as the additional random walk.

I do not expect any diffusion along the temporal direction because (me-
thinks) Kuramoto-Sivashinsky is a dissipative PDE, and I expect ddt 〈u2〉 ≈
0 for L fixed.

Actually, this is all explained in Cvitanović, Davidchack and Siminos [12]
Sect. 3. Energy transfer rates, see in particular their eq. (3.6). By Ding et
al. [17] and references therein we expect 〈u2〉 ≈ 2DuL, while the rigorous
bounds are things like E ∝ L2. I just did not realize that the energy
density E is the consequence of the random walk in the amplitude u.

〈u2〉(t) is easy to compute for a turbulent evolution at a given L, or for
any invariant 2-torus, so the diffusive guess for its magnitude is easily
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(a) (b) (c)

Figure 16.43: relative periodic orbit invariant 2-torus initial condition from
L = 22 at converged to varying tolerances of the cost function. (a) Coarse tol-
erance I = 1/2||F ||2 = 10−3, (b) intermediate tolerance I = 10−6, (c) machine
precision I = 10−14.

checked by plotting it for many different solutions with different L that
should fall on a line whose slope is 2Du. I’m sure this must have been
done in the numerical papers on Kuramoto-Sivashinsky, because that is
kind of things stat mech people do instinctively.

2018-11-03 Matt Last two days have been consumed by last few touch ups
with remastering data, altering gluing code, and mainly with testing the
implementations of new numerical schemes BFGS and L-BFGS. BFGS
stands for Broyden-Fletcher-Goldfarb-Shanno algorithm, and its relatively
popular in unconstrained optimization problems but doesn’t perform the
best with ill conditioned problems; it requires construction of a Hessian
matrix so the alternative, L-BFGS,is the preferred modification. The “L”
stands for “limited memory” version. It doesn’t construct any Hessian
(Hessian of the cost functional, not the Kuramoto-Sivashinsky equation )
but approximates it with gradients (i.e. vectors). The number of vectors
that are used is a free parameter so there is some storage required but no
large matrices and no solving of large linear systems (We’re in the ′(n2)
range for number of operations where solving the linear system directly
would be ′(n3). I’ve been using ref. [49] as the reference text as I feel like
it is a very well written text. Normally in these computational texts the
number of variables, indices on said variables and self references to ear-
lier discussed algorithms make it an adventure book (turn to page 5, then
turn to page 63, etc.) but I feel like everything is well explained and laid
out neatly enough to understand relatively quickly.

Sadly, while I got both algorithms to work their performance, in terms of
cost function residual 1/2||F ||2, mimics that of the adjoint descent algo-
rithm previously employed. In the write up that will show up here in the
near future I believe that the adjoint descent I am employing is actually
a limiting case of the BFGS algorithm. Also, its interesting to note that
while the algorithm requires an approximation to the inverse of a Hes-
sian, this can be approximately well by only employing the part of the
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Hessian that arises from the linear operators in the cost functional as it
results in a term that is anywhere from three to twelve orders of mag-
nitude larger than other terms. (what I mean by this is that v>L>Lv ≈
0.99v>Hv).

The main thing I want to report is my frustration that yet again I can get
something to work “half-way” but then I need to rely on Gauss-Newton
to converge to within machine precision. It’s interesting that in ref. [49]
their tolerance criterion is not based on the cost functional but rather the
magnitude of its gradient. I did some testing and I believe that this is
a more lax but still strong enough condition to get invariant 2-toriṪhe
reasons why I believe this, if we use a relatively large tolerance for the
gradient of the cost functional, |∇I| = |J>F | < 10−5, and then compare
with the adjoint descent, we see that

It = −|J>F |2 < −1010 (16.91)

which is a statement for the stalling behind the adjoint descent, by look-
ing for solutions F (x) = 0 via the construction of the cost function I =
1/2||F ||2, then the derivative gets negligible as we get close to the in-
tended target.

Another argument for using a tolerance criterion based on the magnitude
of the gradient of the cost function uses converged solutions at L = 22
from Xiong and Ruslan’s repository, (i.e. solution where the shooting
method residual is of order 10−9 10−12). These solutions, when a time
discretization is made via time integration of the saved point “on” the
orbit, have cost function typically have residuals in the 10−1−10−3 range.
Therefore, what someone else would refer to as a spatiotemporal solution
isn’t even close to the numerical tolerance that I have been achieving.
Granted, I am also allowing the spatial dimension to vary but even if I fix
L the residual is the same.

A very crude argument would use the how the solution looks based on its
residual. Honestly, I believe that if I created a array of figures each with
a cost function residual at at different orders of magnitude, i.e.Ik {10−k},
k = 0, 1, 2, 3, ..., 15, that no one would be able to tell the difference after
about k = 5 or so. I’m going to run a test to see if I can better quantify this
by derivatives rather than the objective value.

TL;DR Testing numerical algorithms, I think we’re being too strict nu-
merically, although it is more impressive, I believe if we capture the cor-
rect patterns that is sufficient. figure 16.43 is attempting to be evidence
towards this.

2018-11-06 Matt List of things I need to write about when I wake tomorrow.

• BFGS and L-BFGS algorithms, motivations, etc.
• refactored automated gluing code (better bounds on discretizations,

more reliable discretizations,
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• attempt at minimization of spatiotemporal area; works well for ini-
tial conditions near solutions, not so much for gluers.

• Started investigating how I can best utilize PACE, talked to Simon
about how to get started; need to learn how to parallelize my python
scripts.

• I think I should probably look for places to optimize codes before
parallelizing them and sending them to PACE, might rewrite por-
tions and or entire implementations of some codes if it seems worth-
while.

2018-11-07 Matt I will get back to this, I’ve just been bouncing between so
many different pursuits its hard to find time to blog

BFGS algorithm

L-BFGS algorithm

Torus gluing refactoring combinations, better residual guided discretiza-
tion, better bounds, found that was well hidden by usually using
powers of two in discretization, which resulted in incorrect inverse
discrete Fourier transform matrices for pre-periodic orbit invariant
2-tori ; it only affected the direct matrix code for pre-periodic or-
bit invariant 2-tori when N was even but not a multiple of four, i.e.
when N = 4 ∗ n + 2. I’m surprised that this hasn’t shown up until
now.

kstori2C I realized that while I’ve been using real valued Fourier trans-
forms that have the same number of variables as complex valued
transforms, complex valued matrices would actually save a factor
of four due to the matrices being ...

Torus gluing tuning

Clean up

Pace

Optimization

Tiling

2018-11-09 Matt Frankenstein, and his bride After putzing around all night I
am finally content with the results from manually gluing together
subdomains to try and find ppo30×44 (figure file /figs/ppo_L30_T44)
which was what I was attempting to approximate with figure 16.23.
In a relatively short amount of time I was able to get a solution
that was similar to ppo30×44 but I wasn’t convinced. The discussion
that follows is an in depth step-by-step description of how Franken-
stein’s bride came alive, but not before his bride.
Firstly, I decided in creating the approximate tiling to represent ppo30×44

, it was more important to nail the quantitative shapes rather than
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Figure 16.44: A figure representing the general blueprint for dividing the fun-
damental domain of ppo30×44 into subdomains. The lettering dictates which
spatiotemporal solution one should insert to generate the target invariant 2-
torus. The dictionary is “S” stands for streak, “HoD” stands for hook-on-defect,
and “HalfD” stands for half-defect.

(a) (b)

Figure 16.45: (a) ppo21.93×92.77 with a subdomain cutout (b), which I call the
“hook on top of defect” tile.
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(a)

(b)

(c)

Figure 16.46: Three sub-components of the fundamental domain built from
only manipulations of streaks and the “hook on top of defect” invariant 2-torus
from figure 16.45. All plots consist of a pair of streaks (eqva_L3p195 tiles) with
one hook on defect solution.
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(a)
(b)

(c)

Figure 16.47: (a) Gluing together the three subdomains from figure 16.46 in the
temporal direction. This is the initial condition for the fundamental domain of
a invariant 2-torus with shift-reflection symmetry. (b) The convergent result of
the numerics with initial condition (a). Note, this looks slightly different from
the goal invariant 2-torus ppo30×44 in (c), from figure 16.23.
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(a) (b)

Figure 16.48: (a) ppo21.94×85.73 with a subdomain cutout, represented in (b).
This is a non-converged guess for what I title the “half-defect”.

use tiles that were converged. At first, I thought I would be about to
capture the spatiotemporal behavior with only two shapes, specifi-
cally eqva_L3p195 and the hook-on-defect solution from figure 16.45.
This was not sufficient to get complete agreement with ppo30×44 , but
it did produce a similar solution. Attempts to numerically continue
this solution to ppo30×44 were unsuccessful. It took me a while guess
what was wrong, which was the fact that the last spatiotemporal
pattern from ppo30×44 looked different from what I called the hook-
on-defect solution.

The procedure for gluing the approximate solutions together can
be described as follows. First, subdivide the temporal domain into
subdomains demarcated by spatiotemporal patterns with approxi-
mate periods, not including streaks as they do not have an inherent
time scale as they are shadowing equilibria. With this criteria, the
fundamental domain of ppo30×44 can be subdivided into three sepa-
rate temporal segments, with the approximate blueprint being rep-
resented by the table of shapes in figure 16.44. The streak solutions
can be used liberally to fill in the spatiotemporal area between the
time varying subdomains as the streaks tend (in my experience) to
not contribute much to the cost functional; in a sense they can be
viewed as buffers separating the more interesting spatiotemporal
dynamics.
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(a)

(b)

(c)

Figure 16.49: Three sub-components of the fundamental domain built from
only manipulations of streaks and the “hook on top of defect” invariant 2-torus
from figure 16.45. All plots consist of a pair of streaks (eqva_L3p195 tiles), (b)
and (c) contain the hook-on-defect subdomain and its reflection, respectively;
while (a) contains a half-defect subdomain.
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(a) (b)

(c) (d)

Figure 16.50: (a) Gluing together the three subdomains from figure 16.46 in the
temporal direction. This is the initial condition for the fundamental domain of
a invariant 2-torus with shift-reflection symmetry. (b) The convergent result
of the numerics with initial condition (a). (c) figure 16.23 invariant 2-torus
ppo30×44 included for comparison to (b).
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Once I produced the blueprint, I went ahead and looked for subdo-
mains exhibited in solutions other than our goal, as that would just
be a self-fulfilling prophecy. The two subdomains I elected to use
(other than the streaks, which are relatively boring) were snippets
from two other, similarly sized (in L) pre-periodic orbit invariant 2-
tori. Namely, ppo21.94×85.73 and ppo21.93×92.77 for the half defect and
hook-on-defect solution respectively.
Once the constituent subdomains had been produced and cutout
from the collection of solutions, all that was left was to glue them.
I did this in a very crude but manual manner. The lack of qual-
ity gluing was born from the fact that spatially I was gluing streaks
on either side of a non-trivial spatiotemporal pattern and then ap-
plying reflections and rotations. (rotations and or translations vi-
able because I am building up the fundamental domain only, a rele-
vant shift reflection later guarantees it lies in the shift-reflection sub-
space).
An important caveat about the parameters values (L, T). I knew
ahead of time what I was aiming for, but if I naïvely totaled the
parameters from the subdomains one would get a drastic overesti-
mation in time and an underestimation in space. Instead of a fun-
damental domain with (L, T) ≈ (30, 44), I would have had (L, T) ≈
(25, 65), which are quite far from each other, so I don’t think linearly
adding spatial and temporal extents is wise in the future.
There are some very numerical details I am leaving out, such as
rediscretizing prior to cutting out subdomains such that the sub-
domains are highly resolved, ourier truncation and rediscretization
to get to the initial conditions, etc. The general message is there,
however. For “Frankenstein’s bride” (the solution I pieced together
but wasn’t exactly what I was looking for) there were only two con-
stituent spatiotemporal subdomains, with symmetry operations. One
might argue that the hook-on-defect is literally a two by one, time by
space, segment of symbols, which I believe is likely, but also likely
hard to prove, as the small spatiotemporal solutions are typically
hard to converge.
By looking at Frankenstein’s bride figure 16.47 (b) and comparing
with ppo30×44 one can tell that there are some discrepancies in the
upper middle. Only when the a third spatiotemporal pattern, the
half-defect is introduced, does one get pretty good agreement with
the target solution.
So, the proof of concept is quantitatively demonstrated now, I be-
lieve the hook-on-defect is a good place to look for a new tile, albeit
not a fundamental tile.
I likely have more to share but I am tired and need to go to bed.

2018-11-10 Matt tiles from frankenstein Attempted to converge and find spa-
tiotemporal tiles which exhibit similar spatiotemporal patterns. While
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(a)
(b)

(c)

Figure 16.51: (a) An initial condition in attempt to find the “hook on defect tile”
used in the tilings figure 16.47 and figure 16.50. It has been slightly modified
by including the addition of two streaks at the top of the tile, in time. (b) The
converged invariant 2-torus, its spatial shift after a prime period is close to zero,
and it looks like it could be close to a invariant 2-torus, invariant under shift-
reflection; (c) The converged ppo??×?? fundamental domain invariant 2-torus,
confirmation of (b).

certain initial conditions have converged, the resultant solutions are
not similar to the initial conditions upon visual inspection.

Complex valued code refactoring Still working through the optimiza-
tion of current codes, also introducing relative pathing for data in-
stead of hardcoded directory references currently widespread.

2018-11-29 Matt Presentation for Schatz and Grigoriev journal club Interest fos-
tered from APS DFD talk led to a desire to have me present a more
technical version of the talk to their group(s) at Georgia Tech.

Verifying and testing results While progress has been made towards find-
ing solutions, gluing solutions, and numerical continuation of solu-
tions, I haven’t been running the multitude of automated codes at
all times.
Other than assuming I have trawled enough solutions, there isn’t
any other excuse for not running the trawling code. The continu-
ation code hasn’t been run because I don’t really have a criterion
for which member of the continuous families to choose. Recently, I
decided to just find the instance of solutions that has the smallest pe-
riod possible as we know shorter solutions contribute more in cycle
expansions; i.e.there is some motivation behind the criteria.
The reason for gluing code not being run is the tuning has taken
more work than I thought and the verification of ideas has shown
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me that some solutions assumed to be isolated because upon visual
inspection they don’t look right are in fact very unstable and can’t
be reproduced via time integration. I’m unsure if time integration
should be the verifying criterion for determining whether a solu-
tion is “valid” or not. Upon using a higher resolution discretization,
sometimes these orbits will converge onto an orbit that is reproduce-
able via time integration, but in a couple instances attempts to glue
together two invariant 2-tori results in converging to one of these
original invariant 2-tori but at a different domain size. The only way
that I have found to ensure that the intended solution is found is to
compare numerical continuations and ensure that the final result is
not equivalent to one of the initial conditions.

Some theorem by Smale I’ve been trying to test the theorem offered by
Burak that one shouldn’t be able to glue together solutions of dif-
ferent stability spectra. This lead to multiple different ways of inte-
grating the Jacobians but I never developed an algorithm that was
accurate enough so I’m borrowing some of Ruslan’s matlab codes
just for stability.
Simon recently told me that to evaluate J̇ = AJ I should take a
derivative of the actually integration scheme i.e.evaluate the matrix
of velocity gradientsA via the definitionA = ∂xn+1

∂xn
. The idea comes

from his use of a symplectic integrator and wanting to preserve the
symplectic nature of the Jacobian.
I attempted this with the Exponential time differencing Runge-Kutta
fourth order from ref. [33] algorithm; it’s an accurate integrator used
ubiquitously for the Kuramoto-Sivashinsky equation and used by
Burak, Xiong, Ruslan and others. It was a quick attempt but I must
have a mistake such that it didn’t work.
Regardless, the main reason behind this communication is that I re-
alized that some of my gluing results were converging to one of the
two constituent invariant 2-tori just at a different domain size (nu-
merical continuation showed that the final result and the initial con-
dition had the same period and leading Floquet exponent to 10−7.
I’m unsure why they’re not exactly the same but I believe it’s be-
cause the two solutions are both within machine precision of the
continuous family so there’s a small segment of the continuous fam-
ily that is unavoidable to distinguish between.

2018-12-05 Matt GMRES-hookstep After last week’s plumbers union meet-
ing I had a conversation with Michael Krygier, who works mostly
on numerical Taylor-Couette. We had a chat that inspired me to get
back into investigating iterative methods and I had an epiphany. My
the truth was obscured because of the conventional computation in
the literature, almost everyone in the field that uses Newton-Krylov
or other iterative methods approximates J tδx ≈ F t+δt(x+δx)−F t(x)

|δx| .
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It’s due to the fact that I had seen this equation or approximation
ubiquitously that I was blinded to a far better way of performing
this computation, one that in fact I already use in the adjoint descent!.
Namely, because the dependence on T is completely explicit in the
spatiotemporal Kuramoto-Sivashinsky equation and doesn’t rely on
implicit forward-time mappings (i.e.time-integration), all I have to
do is compute the action of the matrix J = ∂F

∂x on a vector δx! I
can’t believe I haven’t realized this until today. It’s literally (up to a
transpose) how I’ve been employing the adjoint descent method for
many months now, but like I said the literature blinded me I sup-
pose.
What I mean by “compute the action of the matrix J on a vector δx”
is to decompose the matrix multiplications into elementwise oper-
ations dependent on the spatiotemporal Fourier mode indices. It’s
actually ridiculously easy and I’m just baffled but how I didn’t see
it when it was right in front of my eyes. The mathematical equation
that follows is,

J · x = (iωj − q2
m + q4

m +
iqmS

T
)xn,m + iqmFdiag(u)F−1x . (16.92)

Such an equation can be evaluated without the use of any matrices
whatsoever (the linear term with S is for solutions with continuous
symmetry. There is no error or approximation (up to machine preci-
sion) by performing the calculation in this matrix-free way (yet an-
other boon of spatiotemporal formulation), such that the application
translates nicely to iterative methods that require the matrix-vector
product, such as Newton-Krylov-Hookstep.
This seems to be the last piece of the puzzle for having a complete,
optimized, routine for calculating spatiotemporal invariant 2-torus
solutions. I’m excited to see how far I can take it.

Ibragimov Formal Lagrangian I messed around with a calculation but
just came to the same conclusion I had previously reached, namely
if the adjoint variable v is chosen to be the Kuramoto-Sivashinsky
equation then the variational derivative of the formal Lagrangian in
the Ibragimov sense corresponds to the adjoint descent direction.
This is perhaps why it works so well for me. i.e.the variational
derivative obeys the equation

δL(u, v)

δu
= −vt + vxx + vxxxx − uvx

δL(u,−F (u))

δu
= Ft − Fxx − Fxxxx + uFx ≡ −J†F (16.93)

Pseudospectral spatiotemporal formulation of two dimensional Kolmogorov flow
I believe I have derived most of the numerically relevant equations
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except for the specific constraints due to discrete symmetries. Will
write the “Feynmann equation” in pseudospectral representation,
a formula for the matrix vector product Jx and a formula for the
adjoint −J†F tomorrow

ETDRK4 for Jacobians I tried to pursue what Simon taught me in re-
gards to calculating Jacobians when a certain numerical integration
scheme is already instantiated and known to work well. The gist of
the calculation is a lot of algebra to explicitly write the equation

∂tJn =
∂xn+1

∂xn
Jn (16.94)

where the dependence of xn+1 in terms of xn depends on the under-
lying equations as well as the integration scheme. I haven’t gotten
this to work yet likely due to the number of areas for algebra errors
to occur.

2018-12-06 Matt Going matrix free As a test of the new matrix-free GMRES
code that utilizes the matrix free exact evaluation of the matrix vec-
tor product J · y ≡ ∂F

∂x · y, I took an old initial condition with a
larger-than-necessary discretization. As a proof of concept, I took
theN×M discretization to be of the same order of magnitude of the
two dimensional Kolmogorov flow calculations, namely N = M =
128. While technically the true number of variables is halved due
to the shift-reflect symmetry of the solution, it still offered a good
demonstration of why I felt this was necessary. Starting from the
same initial condition, (not utilizing adjoint descent at all) GMRES
and Gauss-Newton were run until machine precision convergence
of the cost function. Even though it only took one Newton step to
converge, the time saved by GMRES is very exciting. Specifically,
the GMRES routine took 5.13613756917 seconds to converge, while
Newton took 640.616473401 seconds. In other words, the matrix free
iterative method is 124.727280914 times as fast as the direct matrix-
forming Newton’s method. I would argue that this is very signif-
icant and might allow the search for invariant 2-tori on very large
domains. There is a slight cavaet, however; for numerical stability
the GMRES routine does not include the spatial domain size L as a
variable. Although I believe that this is not the right thing to do, I
believe there is an argument to be made as to why this is acceptable.
The argument I would make is this: towards the end of the adjoint
descent procedure (when it stalls likely due to gradients becoming
small) the order of magnitude of the changes to the domain size is
of order 10−7, so I believe one should heavily favor the numerical
stability in favor of minimal changes to the domain size, especially
because the solutions come in continuous families anyway.
On the other fronts, while I got preconditioned GMRES to work the
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list of numerical schemes that don’t seem to show nearly as much
promise include,

• restarted GMRES
• BiCGSTAB
• BFGS
• L-BFGS

and so it isn’t all good news. The main requirement for the GM-
RES routine to work seems to be a relatively high dimension of the
Krylov subspace, compared to similar efforts in CFD. The solution
that I tested required a maximum of about one hundred dimensions,
compared to the 8002 computational variables, which is approxi-
mately one percent of the computational variables.

GMRES algorithm For closure, I will include the (right preconditioned)
GMRES algorithm that I used to converge the example solution.

1. To solve Jδx = −F (x), for δx, follow this procedure
2. Set q0 = b = −F (x), where F is the Kuramoto-Sivashinsky

equation
3. Perform arnoldi iteration to produce orthonormal matrix Qn

that spans Krylov subspace and the upper Hessenberg matrix
Hn which satisfy the following relation, JQn = Qn+1Hn. The
shape of Qn is dim(x) × n and the shape of Hn is (n + 1) × n.
(Described in more detail below)

4. Solve nonlinear optimization problem ||βe1 −Hny|| = 0 for y
5. produce GMRES correction via δx = P−1 ·Qn · y

The right preconditioned arnoldi iteration (with modified Graham-
Schmidt for orthogonalization) is written as follows in pseudo code.
for j = 1, · · · ,m

zj+1 = P−1 · qj
qj+1 = J · zj+1 (16.95)

for i = 1, · · · j

Hi,j = < w, qi >

qj = qj −Hi,j ∗ qi (16.96)

end for

Hi+1,i = ||qj ||2
qj = qj/||qj ||2 (16.97)

end for
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BFGS algorithm The Broyden-Fletcher-Goldfarb-Shanno algorithm that
I attempted to implement can be written as follows. It requires the
calculation of a Hessian (of the scalar cost function)
For a quadratic model for the cost function, here designated as f ,

mk(p) = fk +∇f>k p+
1

2
p†Bkp (16.98)

the BFGS algorithm provides a minimization routine via the follow-
ing,
Given x0, ε and inverse Hessian H0,

1. While ||∇fk|| > ε

2. pk = −Hk∇fk
3. xk+1 = xk + αkpk (Alpha given by Wolfe curvature conditions,

will describe below)
4. sk = xk+1 − xk
5. yk = ∇fk+1 −∇fk
6. zk = 1

ytopk sk

7. Hk = (I− zksky>k )Hk(I− zkyks>k ) + zksks
>
k

The Wolfe conditions that determine the “step size” alphak are given
by the following, find alphak such that the following hold,

f(xk + αkpk) ≤ f(xk) + c1αk∇f>k pk
∇f(xk + αkpk)>pk ≥ c2∇f>k pk (16.99)

1. r+ = si(αi − β)

2. end for
3. pk = −r
4. xk+1 = xk + αk + pk (alpha from wolfe conditions)
5. if k > m

6. Discard (sk−m, yk−m)

7. end if
8. sk = xk+1 − xk
9. yk = ∇fk+1 −∇fk

10. pk = −Hk∇fk
11. xk+1 = xk + αkpk (Alpha given by Wolfe curvature conditions,

will describe below)
12. sk = xk+1 − xk
13. yk = ∇fk+1 −∇fk
14. zk = 1

ytopk sk

15. Hk = (I− zksky>k )Hk(I− zkyks>k ) + zksks
>
k
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L-BFGS algorithm The following is an adaptation of the BFGS algorithm
that makes it possible to optimize the same quadratic model without
holding full matrices in memory.

1. Let m be the maximum number of column vectors to hold in
memory

2. While residual > tolerance and k < maximum step number
3. q = ∇fk
4. If k > m,
5. for i = k − 1, · · · , k −m
6. zi = 1

y>i si

7. ai = zisiq

8. q = q − ai ∗ yi
9. end for

10. r = H0
kq

11. for k −m− 1, · · · , k − 1

12. β = ziy
>
i r

13. r+ = si(αi − β)

14. end for
15. pk = −r
16. xk+1 = xk + αk + pk (alpha from wolfe conditions)
17. if k > m

18. Discard (sk−m, yk−m)

19. end if
20. sk = xk+1 − xk
21. yk = ∇fk+1 −∇fk
22. pk = −Hk∇fk
23. xk+1 = xk + αkpk (Alpha given by Wolfe curvature conditions,

will describe below)
24. sk = xk+1 − xk
25. yk = ∇fk+1 −∇fk
26. zk = 1

ytopk sk

27. Hk = (I− zksky>k )Hk(I− zkyks>k ) + zksks
>
k

BiCGSTAB algorithm Just to include this as a final algorithm,
Given r0 = b−Ax0, α0 = ρ0 = w0 = p0 = 1

1. While residual > tolerance
2. For i = 1, · · · ,
3. ρi =< r0, ri >

4. β = ρi
ρi−1

αi
wi

5. u = ri + βqi
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6. pi = u+ beta(qi + beta ∗ pi)
7. y = P−1pi

8. v = Jy

9. α = ρi/ < r0, v >

10. qi = u− alphav
11. z = P−1(u+ qi)

12. xi+1 = xi + alpha ∗ z
13. If xi+1 satifies tolerance, exit, else
14. ri+1 = ri − αJz

Pseudospectral spatiotemporal formulation of 2-D Kolmogorov flow The
equations governing two dimensional Kolmogorov flow can be writ-
ten in terms of velocity field u(eliminated later) and vorticity ω in
the following manner. For now I will just write the homogeneous
equations, with forcing easily added afterwards

ωt − ẑ · (∇× (u× ωẑ))− 1

Re
∇2ω = 0 (16.100)

The only difficult part of rewriting this equation in terms of (2 +
1) spatiotemporal Fourier coefficients (assuming periodic boundary
conditions) is the nonlinear term, not only due to the cross products
but the necessity to express the velocity field in terms of the stream-
function, and consequently the vorticity field as u = ∇ × (∇−2ω)
which is possible due to the two dimensional approximation. The
operator ∇−2 is the inverse of the Laplacian, which is technically
singular; I asked around and the standard practice is to essentially
define it in fourier space as 1

|k|2 , where |k|2 = k2
x+k2

y . For numerical
purposes its apparently common practice to say that the inverse of
the kx = ky = 0 term equals 1. In other words, 1/0 = 1. It’s just a
means of approximating the operator in spectral space.
Although ref. [6] give nice formula that is almost entirely of Fourier
coefficients, I find it more useful to completely eliminate the velocity
field components u = (u, v) from the equation.
Therefore, the pseudospectral (homogeneous) spatiotemporal equa-
tion takes the form,

iωΩ + ikxF [F−1(
iky
|k|2 Ω) ∗ F−1(Ω)]

− ikyF [F−1(
ikx
|k|2 Ω) ∗ F−1(Ω)]

− |k|2
Re

Ω = G(Ω, T, Lx, Ly) = 0 (16.101)
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Likewise, if allowed to write differentiation operators viaDt, Dx, Dy ,
etc, then the jacobian takes on the form in pseudospectral represen-
tation,

J = Dt +DxF [diag(Dy∇−2ω)F−1 + diag(ω)Dy∇−2F−1]

− DyF [diag(Dx∇−2ω)F−1 + diag(ω)Dx∇−2F−1]

− ∇2

Re
(16.102)

By taking the complex conjugate and multiplying by the Feynman
equation (16.101), the expression for the adjoint descent direction,
−J†G.

−J†G = [Dt + Fdiag(Dy∇−2ω)F−1Dx

− F∇−2Dydiag(ω)F−1Dx

− Fdiag(Dx∇−2ω)F−1Dy

+ F∇−2Dxdiag(ω)F−1Dy

− ∇2

Re
] ·G (16.103)

Jacobian integration from ETDRK4 scheme The Exponential time dif-
ferencing in conjunction with Runge-Kutta 4th order [33] as an in-
tegration scheme for stiff equations has used by many people to in-
tegrate the Kuramoto-Sivashinsky equation. I recall sifting through
the Kuramoto-Sivashinsky literature and almost everyone used this
integrator, due to its ability to handle the stiffness of the linear term
and explicitly evaluate the nonlinear term.
Something that I never saw, however, was a calculation that di-
rectly follows, which is taking the derivative of the time integration
scheme itself to provide a reliable integration scheme for Jacobian’s.
I recall in Ruslan’s codes he uses some sort of interpolation to pro-
duce the Jacobian but I think maybe Burak has already done this. I
can’t say for certain because I haven’t been through all of the codes
in the repository.
Regardless, the ETDRK4 scheme evaluates the stiff, linear portion
of the Kuramoto-Sivashinsky equation via what are essentially inte-
grating factors, and then calculate the nonlinear terms accordingly.
Given v, a set of spatial Fourier coefficients, the scheme can be writ-
ten relatively succinctly via the use of a number of constant opera-
tors in the problem which are created by various numerical combi-
nations of the exponentiated linear operator of the Kuramoto-Siva-
shinsky equation. I’ll leave the details to the reader in ref. [33], but
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for any given discrete time step, we can write, (using n as a discrete
time subscript)

N(vn) =
−iq

2
F((F−1(vn))2)

an = E2 ∗ vn +Q ∗N(vn)

N(an) =
−iq

2
F((F−1(an))2)

bn = E2 ∗ vn +Q ∗N(an)

N(bn) =
−iq

2
F((F−1(bn))2)

cn = E2 ∗ vn +Q ∗ (2 ∗N(bn)−N(vn)

N(cn) =
−iq

2
F((F−1(cn))2)

vn+1 = E ∗ vn + f1 ∗N(vn) + 2f2 ∗ (N(an) +N(bn)) + f3N(c)(16.104)

Now, we can take the derivative of the last equation for vn+1 with
respect to vn, to get the velocity gradient matrix, A(vn) ≡ ∂vn+1

∂vn

The derivatives of each of the nonlinear functions looks like the fol-
lowing via the chain rule

∂N(xn)

∂vn
= (−iqF

∗ (diag(F−1(xn))F−1)) ∗ ∂xn
∂vn

(16.105)

Because of the nested nature of the Runge-Kutta integration scheme,
a pattern quickly emerges such that it becomes smart to define the
following, let the velocity gradients matrix evaluated at each vari-
able, an, bn, cn, vn be represented by Av, Aa, Ab, Ac. With this and
the following substitutions,

Ãv = (E2 +QAv)

Ãa = Aa(E2 +QAv)

Ãb = Ab(E2 +QÃa) , (16.106)

it becomes much easier to write an explicit expression for the desired
quantity,

A(xn) =
∂vn+1

∂vn
= E+f1Av+2f2[Ãa+Ãb]+f3Ac[E2Ãv+2QÃb−QAv]

(16.107)
I believe that this equation, in accordance with the equation

J̇ = AJ (16.108)
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should yield an accurate integration scheme for finding Jacobian’s
and hence stability multipliers or exponents for periodic orbits.

2018-12-08 Matt Lagrangian Formalism for the Kuramoto-Sivashinsky equation
Following Ibragimov and Kolsrud [30], which uses a slightly differ-
ent formulation than the “formal Lagrangian” in the other Ibrag-
imov references such as ref. [29]. I’m unsure why the difference
makes a difference as the variational derivatives reproduce the Ku-
ramoto-Sivashinsky equation and adjoint of the Kuramoto-Sivashin-
sky equation properly.
Specifically, instead of the Lagrangian,

L = v(ut + uxx + uxxxx + uux) (16.109)

one can derive the following Lagrangian following the prescription
and examples of ref. [30],

L =
1

2
(vut − uvt)− uxvx + uxxvxx+

u

3
(vux − uvx) (16.110)

which provides the variational derivatives,

δL
δv

= ut + uxx + uxxxx + uux

−δL
δu

= vt +−vxx +−vxxxx + uvx (16.111)

which equal the Kuramoto-Sivashinsky equation and its adjoint equa-
tion. Evaluation of the second variational derivative with v = F (u)
defines the adjoint descent direction.
While this Lagrangian is equivalent to the other in terms of its vari-
ational derivatives, something I found interesting while attempting
to derive conservation laws using the Lie-Bäcklund operators corre-
sponding to the generators of the Lie algebra.
The thing I found interesting is that with this different Lagrangian
is that we can define an action given by its integrals, and upon the
substitution v = −u, we arrive at what might be an interesting rela-
tion. Technically this need not be a spatiotemporal integral, and can
be taken just to be a spatial integral, either way one arrives at the
equation, ∫ ∫

L(u,−u)dxdt =

∫ ∫
u2
x − u2

xxdxdt (16.112)

which we know from chaosbook is equivalent to the time average
of the energy variation of the Kuramoto-Sivashinsky equation. I’m
unsure if this is a coincidence or is a good result, hoping for better
minds to help with the interpretation.
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Chapter 17

Matt’s 2019 blog

2019-01-10 Matt Paper on spatiotemporal defects Trying to put the finishing
touches on the written document for my thesis proposal. While
sourcing some of my written statements I stumbled across some-
thing interesting in ref. [36], displayed in the quote,

We believe that the longer time scales for the excited modes
arise from the metastability of the cellular solutions (which
are stable for small L) undergoing continuous creation and
annihilation events (“space-time defects”) [6]

It is ref. [6] that is the earliest reference to “space-time defects” that
I have found. The lion’s share of the work presented is regard-
ing wavelet-based simulation as well as statistical computations but
there are certain ideas that could possibly be useful for my needs.
Both of these papers discuss spatial and temporal scales as well as
reframe dynamics in terms of “metastable cellular solutions”, “space-
time defects” and in ref. [6] they reference the system (Kuramoto-
Sivashinsky equation) being “frustrated” by the existence of multi-
ple “metastable cellular states”.
I haven’t delved too deep into either paper but on the surface it
seems like there is some low-hanging fruit that can be picked for
spatiotemporal purposes.

2019-01-18 Matt In an attempt to restart the hunt for symbolic dynamics, some
initial guess tiles that were used in the frankenstein reconstruction efforts
were used to attempt to find more tiles. These by themselves did not nu-
merically converge to spatiotemporal invariant 2-tori but by concatena-
tion of a single streak (crest trough pair) in space is necessary and suffi-
cient to numerically converge the solutions. I believe that this elucidates
some of the spatiotemporal symbolic dynamical grammar.

Let 0, 1, 2 represent “streaks”, “defects” and “gaps” family members, re-
spectively. If we assume that the subdomains “half-defect” and “hook-
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(a)
(b)

(c)

Figure 17.1: (a) Initial condition from figure ?? that converges to a solution that
is believed to be a numerical continuation of (b) from figure 16.33. (b) An initial
condition resulting from concatenating a streak-pair with (a), that numerically
converges to (c).

(a)
(b)

(c)

Figure 17.2: (a) Initial condition that has not been shown to numerically con-
verge. (b) An initial condition resulting from concatenating a streak-pair with
(a), that numerically converges to (c).
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on-top-of-defect” correspond to a 2-by-1 time by space symbolic dynamic
chain,

hook on defect =

[
1
1

]
, (17.1)

then this is believed to be inadmissible, but can be made to be admis-
sible by conjoining a streak spatially, which is believe to have symbolic
representation,

[
1 0
1 0

]
, (17.2)

Likewise, for the half-defect symbolic tile I believe the most accurate
guess would be

hook on defect =

[
2
1

]
, (17.3)

then this is believed to be inadmissible, but can be made to be admis-
sible by conjoining a streak spatially, which is believe to have symbolic
representation,

[
2 0
1 0

]
, (17.4)

which I believe gives an inkling into the possible grammar rules; my ap-
peal to intuition is that longer strings in time introduce instability which
is balanced by introducing streaks spatially as some kind of metastability.

These are demonstrated visually in figure 17.1 and figure 17.2.

2019-02-04 Matt Application of Hill’s formula using the action functional de-
fined by the integral of the Lagrangian (density) previously derived in
(16.110),

S[φ] =

∫ ∫
L(x, t, u, v, ux, vx, ut, vt, uxx, vxx)dxdt (17.5)

yields a Hessian matrix whose determinant does not rely on the values
of either the original scalar field u or the adjoint variable v. This is due
to the specific matrix structure, not due to absence of u or v as matrix
elements. Specificially, the matrix of second variations, or Hessian of the
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(a) (b)

Figure 17.3: (a) ppo21.94×85.73 with a subdomain cutout, represented in (b). This
is a non-converged guess for what I title the “half-defect”.

(a) (b)

Figure 17.4: (a) ppo21.94×85.73 with a subdomain cutout, represented in (b). This
is a non-converged guess for what I title the “half-defect”.
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action functional, is given by

2v/3 ux/3 0 −1/2 v/3 2u/3 0 0
ux/3 0 1/2 0 u/3 0 0 0

0 1/2 0 0 0 0 0 0
−1/2 0 0 0 0 0 0 0
v/3 u/3 0 0 0 0 0 0
2u/3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (17.6)

The determinant of this matrix is constant and equals 1/16. The matrix
elements are understood to be shorthard for the spatiotemporal integral
present in the action functional definition. The constant determinant
value has confused me for a some time and I have been attempting to
figure out if this makes any sense. The determinant can be substituted
into the expression for Hill’s formula from ref. [3] to yield,

det (P − I) = σ(−1)mβ/16 . (17.7)

For the spatiotemporal Kuramoto-Sivashinsky equation the dimension
of the configuration space manifold m = 2; the only comments regarding
β and σ are that they are a “scaling factor” and σ = ±1 “takes care of
orientation”; that is the extent of their explanation. I’m unsure how to
interpret this unless the “scaling factor” is dependent on u, v. Also, the
argument of stability of periodic solutions is predicated on the sign of
the RHS, so I believe it’s determined a priori by the fact that we know
unstable solutions exist.

This result seems very artificial; I believe it is due to the artificial introduc-
tion of Lagrangian structure for problems that originally had none. This
lead me to investigate as much as possible if this formulation is indeed
worthless or not. Ibragimov [12] utilizes this “formal Lagrangian” to
construct new conservation theorems and conserved quantities for par-
tial differential equations using Lie theory. Other references refer to this
type of construction as an “extended Lagrangian” [18]. Kraus claims that
there is a better alternative to Ibragimov’s quasi self-adjoint derivations
in terms of simplicity. Specifically, he claims that if adjoint and or dual
variables v and its collection of partial derivatives (jet prolongation) can
be chosen such that the adjoint equation is satisfied when the Kuramoto-
Sivashinsky equation is satisfied then the formal Lagrangian formulation
is physically relevant.

“If it is possible to select the relation (2.286) such that (2.287)
is automatically respected when u solves (2.281), then a con-
servation law for the extended system amounts to a physical
conservation law.”
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In other words, the stationary points of the action are where the varia-
tional derivatives of the action are equal to zero. For this Lagrangian for-
malism, this is equivalent to satisfying the adjoint equations and the Ku-
ramoto-Sivashinsky equation simultaneously. This is no where near ob-
vious as it depends on the choice of adjoint variable i.e.v = φ(x, t, u, u(1), ...).
Luckily, there is no reason to not choose the Kuramoto-Sivashinsky equa-
tion itself as the adjoint variable, even though it might seem tautological
on the surface. Each term in the adjoint equation is linear in v and its
derivatives; therefore, choosing v = F (ũ) guarantees the criterion that
we want to guarantee. While this does not explain whether or not the
use of Hill’s formula makes any sense, it is an argument that any con-
served quantities derived from the Lagrangian would be physically rel-
evant. The justification from ref. [18] is that being able to express v as
purely functions of the original scalar field guarantees that symmetry of
the extended “formal Lagrangian” system can be reduced to symmetries
of the original system. Sadly my (Lie) algebra skills need some work as
I kept getting confused with what jet prolongation, the differences be-
tween Lie-Bäcklund and Lie point symmetries, and how to produce the
set of generators that span the Lie algebra and extend them to include the
adjoint variables. Once I derive the correct set of generators that span the
Lie Algebra I should be able to derive something useful.

One proposed explanation is that technically due to doubly periodic bound-
ary conditions, all Hessian matrix elements represent integrals, which are
technically zero. This leads to a very simple expression for the character-
istic polynomial of the Hessian, the eigenvalues are ±1,±1/2 each with
multiplicity k = 2.

Although it is reaching, this might be a manifestation of the action func-
tional being PT -symmetric, which constrains the eigenvalues to be real.
It is a weaker condition than the Hessian being Hermitian although tech-
nically by being real and symmetric it is anyway. I really don’t know
how to explain this away so I’ve been attempting and failing to derive a
conserved quantity that might be of future use.

2019-02-13 Matt Lie groups and algebras for Lagrangian formalism The fol-
lowing will hopefully serve as both a report on what I have been
doing as well as a guide to refer back to.
While I haven’t delved into the really mathematical formalism (pull-
backs,lifts,contact) there are a few preliminaries that are absolutely
essential to understand the description that follows,

1. Jet prolongation [18, 19] (sometimes referred to by the constituent
pieces: jets,prolongation, jet bundles)

2. “formal” or “extended” Lagrangians [14]
3. Lie algebras and their generators (sometimes referred to as vec-

tor fields instead as the generators are differential forms that act
on the relavant manifold)
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4. Prolongation of Lie algebra generators
5. The difference between Lie point group operators and Lie-Bäcklund

operators.
6. Extension of generators to adjoint variables
7. Conserved vectors and conservation theorems

The best single sentence I have found to describe jet bundles and
prolongations comes from Wikipedia: “Jets may also be seen as the
coordinate free versions of Taylor expansions”.
Instead of ruining the discussion with words such as sections, fibre
bundles,holonomic sections, tangent lifts,etc., I’ll merely define the nth
jet prolongation as a mapping that takes a set of independent and
dependent variables, e.g. (x, t, u), and returns all derivatives with
maximum order n:

jnψ ≡ jn(x, t, u) = (x, t, u, ux, ut, ...,
∂u

∂xi1 ...∂xin
). (17.8)

The concept of formal Lagrangian was previously used to derive
(16.110). Introduction of new dependent variables, “adjoint vari-
ables”, (v, vx, vt, ...) can be used to impose a Lagrangian structure
where there formally was none. Accordingly, a Lagrangian that de-
pends on both the original dependent variables and their adjoints
can be derived, such that the variational derivatives reproduce the
Kuramoto-Sivashinsky equation and its adjoint.
The infinitesimal generators of a Lie group are vector fields which
are elements of the Lie algebra. Each vector field generates a one-
parameter family of symmetry transformations.
These vector fields are usually written as an expansion in terms of
derivatives with respect to independent xi and dependent variables
uα,

X =
∑

εi
∂

∂xi
+
∑

ηα
∂

∂uα
(17.9)

If the coefficients in this expansion only depend on the independent
variables and the dependent variable (no dependence on deriva-
tives), i.e.,

εi = εi[x, t, u]

ηj = ηj [x, t, u] (17.10)

then the symmetries will be referred to as Lie point symmetries, oth-
erwise they will be referred to as Lie-Bäcklund symmetries.
This expansion, while commonly presented in this form, is rather
misleading as it carries an implicit assumption along with it; namely,
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that it needs to be prolonged to the highest order of derivative of rele-
vance in order to be correct. For example in the Kuramoto-Sivashin-
sky equation, this would require a prolongation of order four, due
to the presence of fourth spatial derivative. The specific formula for
the coefficients of these additional differentials are sometimes re-
ferred to as prolongation formula. It requires (total) differentiation of
existing coefficients,

ηαJ = DJ(ηα + εiuαi ) + εiuα(J,i) (17.11)

As previously mentioned, the specific form of the expansion is de-
termined by the relevant PDE and assumptions. This expansion to-
gether with the invariance condition,

prX(F (jnψ)) = 0, (17.12)

produces a (typically overdetermined, at least for point symmetries)
system of equations that can be used to determine coefficients of the
corresponding infinitesimal generators that span the symmetry Lie
algebra. This step always seems to be taken for granted or not dis-
played, as its likely a lengthy symbolic pen-and-paper (also known
as Mathematica) computation.
This isn’t even the entire story for us, as the general expression for
the infinitesimal generators needs to be extended to include the terms
corresponding to the prolongation of the adjoint variables.
If the symmetry Lie algebra is known, then the spanning operators
can be immediately extended to include the adjoint variables. There
are formulae for determining the coefficients of extension terms de-
pending on Lie point or Lie-Bäcklund symmetry is being consid-
ered.
In summary, symmetries or their equivalent generators are derived
by the prolongation of a general expansion to the PDE of relevance.
This and an invariance condition allows one to determine the coef-
ficients of the expansion and hence the generators that span the Lie
algebra.
Once the generators have been derived, they are extended to include
the adjoint variables, yielding operators that can be used in conjunc-
tion with the conservation equations,

Di(C
i) = 0

Ci = εiL+Wα[
∂L
∂uα

]−Dk
∂L
∂uαik

] +Dk(Wα)
∂L
∂uαik

(17.13)

in order to produce conserved quantities.
A very relevant and important piece of information regards symme-
tries and conserved quantities of the extended Lagrangian. Namely,
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ref. [18] claims that if the adjoint equation is automatically satis-
fied when the Kuramoto-Sivashinsky equation is satisfied, i.e. if
F ∗(j4(x, t, u, v)) = 0 when F (j4(x, t, u)) = 0, then “a conserva-
tion law for the extended system amounts to a physical conservation
law”. Also for the conservation laws to be non-trivial, the extended
equations need to be nonlinearly self-adjoint, which is equivalent to
the previous statement regarding the adjoint being satisfied when
the original equation is satisfied.

KS Lie algebra I’ve been trying to do the symbolic computation with
Mathematica to derive the extended operators that span the Lie al-
gebra but the process has been slow because I’m not used to Mathe-
matica and I’ve found it very easy to lose my place amidst all of the
indices.
Luckily, I feel more comfortable with the general procedure and
ideas that constitute what I suppose amounts to a Lagrangian field
theory. The entire point behind this exercise was to derive interest-
ing and relevant conserved quantities for the spatiotemporal Kura-
moto-Sivashinsky equation, i.e. to utilize the Lagrangian formalism
as much as possible.

2019-02-15 Matt Notes from discussion with Lan.

• His first suggestion to get a better grasp on the spatiotemporal sym-
bolic dynamics is to plot spatiotemporal solutions in a phase space
of higher dimension but similar to that of ref. [8]. Specifically, plot
partial derivatives ut, utx, ... as functions of space and time and see
how this space is organized. This might provide a smarter way for-
ward for determining the grammar.

• His second comment is regarding troubles on the horizon concern-
ing the continuous families of solutions, one such worry is how to
deal with boundary conditions of an infinite domain.

• Regarding the Hill’s formula “result” using the formal Lagrangian,
he thinks that if true it’s actually a great result because the continu-
ous families are an indication of a hidden symmetry, so if the solu-
tions in these families all the same stability it would be nice.

• Regarding the Lagrangian itself, he believe it is a good theoretical
attempt, and thinks the theory is really the lion’s share of the re-
maining work.

• He’s been thinking of this a lot and has a lot of his own ideas which
we did not get into but he believes that I’ve done really impressive
work that has gotten him really excited in regards to his ideas. It
made me very happy and he even went so far as to say “This is really
important” in regards to my work; not only for fluid dynamics but
also for chaotic systems and PDEs in general.
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Hopefully this optimism leads to good results and many publications :)

2019-02-16 Predrag We’ll have to teach Lan how to use GaTech VPN - lots of
hoops to start with, until it works. His GaTech ID is
lyueheng6 Sp....t......l?
His subversion ID is
y-lan b.T......!

2019-02-19 Predrag I have not really digested (17.6), but a quick remark. For
for discrete time flows the Hessian of a periodic orbit is a high-dimensional
finite matrix, with every point on the cycle-n varied (see Han’s blog); for
continuous time flows it is an infinite matrix, that’s why it took Poincaré
to prove that it’s determinate is finite. So a single matrix (17.6) is not the
Hessian, or is a Hessian only for an equilibrium solution?

2019-03-11 Matt LSS Methods I’ve been reading the Least Squares Shadow-
ing method developed in [34] and mentioned in both [20, 21]. I
had a former roommate explain adjoint methods and their applica-
tion in an engineering context. Typically from what I have seen in
adjoint methods is that engineers acknowledge that solving for the
full velocity field is hard so they write the adjoint equations such
that there are only a few control variables being varied instead of a
very high dimensional flow field. I believe this is because engineers
are predominately searching for stable equilibria by varying control
parameters such as: airfoil geometry, drag coefficient, etc.
I think I need to read the Lasagna papers more thoroughly to see
how the LSS method is applied to chaotic systems. I believe Wang’s
method only applies for finding the derivatives of observables w.r.t
scalar control variables, in my case this would be the domain size,
period, spatial shift (or energy, or another conserved quantity yet to
be discovered).

Symbolic Dynamics Trying to get back into the swing of things by pur-
suing Lan’s method of plotting partial derivatives in order to de-
velop some intuition regarding the admissible spatial and temporal
combinations of tiles in order to develop the symbolic dynamics.
I don’t have anything worth showing really but I’m starting to be-
lieve that the spatial itineraries might be decoupled from the tem-
poral ones; I haven’t really developed an idea as to what is the best
way to plot these yet, but following [8] and plotting in the u, ux
plane and taking temporal cross sections of spatiotemporal invari-
ant 2-tori shows patterns similar to spatial equilibria (T = 0 sys-
tem). I believe this makes sense as spatially conjoining two tiles
means that each time instance must be periodic in space; therefore
I believe the intuition is something like follows: To glue two tiles
0,1 spatially, then at each instant in time the combination needs to
be topologically equivalent to a spatial equilibrium 01. This is re-
ally hard to demonstrate other than rather vague attempts such as
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the time dependent trajectory in (u, ux, ut) space needs to intersect
(u, ux, 0) plane to be able to glue spatially; this always seems to be
the case so I believe a first trial would be to continuously attempt
to glue equilibria to an orbit and see if it can be repeated ad nau-
seam. This could be misguided due to unwarranted projections, but
currently plotting trajectories as functions of space and time is far
too obfuscating to be useful. (similar to plotting trajectories prior to
quotienting continuous symmetry or plotting Fourier coefficients).
I believe this best way to proceed is to tile repetitively in space or
time and then analyze the corresponding partial derivative plots.

04-04-2019 Matt comments on Pathak et al. [30] Model-free prediction of large spa-
tiotemporally chaotic systems from data: A reservoir computing approach.
Slightly confused on what they mean by the “echo state property"
in their Fig. 1:

...all of the conditional Lyapunov exponents of the train-
ing reservoir dynamics conditioned on u(t) are negative so
that, for large t, the reservoir state r(t) does not depend on
initial conditions.

Is this a statement that the network is not being trained w.r.t. tran-
sient behavior but rather trained by the attractor and or inertial man-
ifold?
My main reaction to this paper is that it once again points out how
attached researchers are to the concept of time, and predictions of
future behavior. They demonstrate that after a small number of Lya-
punov times that their predictions become inaccurate; while the pre-
dictions extend past a few Lyapunov times I cannot help but think
they would be much better off training their reservoir on invariant
2-tori so that the process isn’t so much as predicting the future as
it is about "facial recognition" for lack of a better term. My bias is
showing, but if they themselves acknowledge that there are fun-
damental limits imposed by positive Lyapunov exponents I can’t
help but feel that it would be better to (even at different system
size) develop a database of invariant 2-tori and then find the "aver-
age" much like how the "average" facial structure can be produced
for different countries and ethnicities; in this sense one would de-
velop averages for observable quantities, but, like I stated, this is
spatiotemporal bias.

Least Square Shadowing Finally got around to rereading this thoroughly.
I believe that we originally investigated the Least Squares Shadow-
ing (LSS) refs. [20, 21, 34] as a means of classifying continuous fam-
ilies of solutions generated by dependence on system parameters
T, L. From what I have gleaned from these papers the LSS method
has an underlying engineering spirit I believe. It’s a numerically
stable means to see how observable quantities change in response
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to changing system parameters over both individual orbits and the
attractor they shadow. I believe the application to the control prob-
lem in [20] regarding the Kuramoto-Sivashinsky equationis simply
introducing a Lagrange multiplier and then analyzing how observ-
able quantities are sensitive to perturbation in this multiplier.
It’s good work but I don’t think that it can be leveraged for my own
work unless it would be decided that the desirable representative
from each continous family has a minimized/maximized sensitivity
to changes in T, L. I don’t see any basis for this reasoning however.

Partial derivative plotting and symbolic dynamics The intuition from the
Kuramoto-Sivashinsky equation on the T = 0 line from Dong and
Lan [8] doesn’t seem to extend to the spatiotemporal case; in other
words, there doesn’t seem to be a useful projection onto partial deriva-
tives of the velocity field (u, ux, utx, etc..) that elicits interesting be-
havior.
The way this idea was tested is as follows: For each tile, and each
projection axes, the respective fields (u(x, t) and its partial deriva-
tives) were plotted for all values of x, t. If shadowing were present,
then it should be present three dimensional projection is how I was
thinking.
This doesn’t seem to be the case; therefore, unless there is some new
development I’m ceasing this activity.

Slowly learning Julia I’m starting to board the Julia train lead by con-
ductor Gibson. I enjoy how it’s really tailored to scientific comput-
ing by not messing around with object oriented programming, not
to mention the fact that it’s very fast if programmed correctly. The
problem is at this stage it seems that in order to leverage the ca-
pabilities one would have to either create wrappers for underlying
C++ and Fortran codes or borrow them from other projects such as
DifferentialEquations.jl, so I’m not sure how much inde-
pendence I would have; my thoughts were to rewrite kstori2 in
Julia before writing anything new but I’m unsure if it is worthwhile
at this stage. TL;DR I’m interested in pursuing this but it’s low on
the priority list right now.

04-09-2019 Matt :

variational methods and numerical implementations (Description of spa-
tiotemporal problem, function defined.)

• define cost function (functional eqn.)
• adjoint equations

tile extraction :
• decide on subdomain that we believe is suitable candidate.
• retrieve the numerical subdomain, discretization and parame-

ters
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• put through same code that found the source torus
• if converge, done
• if not converge, take larger subdomain and repeat process iter-

atively or quit

gluing :

• two known solutions
• interpolate onto fine discretization
• aspect ratio
• if continuous symmetry, rotate
• if discrete symmetry, chop
• numerically zero pad between boundaries
• fill in with convex combinations of the boundaries of zero-padded

region
• convex combination isn’t differentiable; know Kuramoto-Siva-

shinsky equationis smooth, therefore perform filtering / smooth-
ing / Fourier truncation

• Coarsen discretization depending on numerical method used

2019-04-22 Matt Mainly been writing daily activities in sect. 4.4 GuBuCv17blog.tex,
see posts there for changes.

Wei and Wang (2019) article The following passage consists of outtakes
from Wei and Wang [35].
Work studies dissipative Dullin-Gottwald-Holm (DGH) equation us-
ing Lie symmetry analysis à la Ibragimov [14].
The DGH equation

ut − α2uxxt + kux + 3uux + γuxxx = α2(2uxuxx + uuxxx) . (17.14)

results from

“...using asymptotic expansions directly in the Hamiltonian for
Euler’s equation in the shallow water regime. It is completely
integrable with a bi-Hamiltonian as well as a Lax pair...”

The equation that is referenced far more often than the general Dullin-
Gottwald-Holm equation is the special case

ut − uxxt + 3uux − 2uxuxx − uuxxx + k(u+ uxx)x + λ(u− uxx) = 0 .
(17.15)

(which is quite clearly the center of the study of this paper) from
[27, 28]. The title and abstract are slightly misleading as the general
case is not the emphasis of the study.
Certain parameters values k = λ = γ = 0, α2 = 1 produces the
Camassa-Holm equation

ut − utxx + 3uux + uxxx − 2uxuxx− uuxxx = 0 , (17.16)
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which describes “unidirectional propagation of surface waves on a
shallow layer of water that is at rest at infinity.”
Wei and Wang then discuss Ibragimov’s formal Lagrangian formal-
ism [13, 14, 16] as well as the nonlinear self-adjointedness prop-
erty [13, 14]. 1

Very briefly, the main concept at hand is that by creating a formal
Lagrangian L = vE where E is an s-th order nonlinear equation
(e.g. the DGH equation or the Kuramoto-Sivashinsky equation). An
equation that is nonlinearly self-adjoint has the property that the
adjoint equation

E∗ =
δL
δu

= 0 , (17.17)

is satisfied by some substitution v = φ(x, u). Here, δ signifies the
variational derivative (many different names, see the “Names” sec-
tion of Wikipedia).
Written more explicitly, the nonlinear self-adjoint condition can be
written

E∗
∣∣∣
v=φ

= λ0E + λ1DtE + λ2DxE + ... (17.18)

where λi depend on u and its derivatives.
2The point that frustrates me to no end, maybe I’m just ignorant,
is that the symmetry operators admitted by the equation are stated
without derivation. By “the” symmetry operators of an equation I
mean the set of operators which leave the equation invariant as well
as produce the Lie algebra. The machinery developed by Ibragimov
is completely reliant on the derivation of these generators, or worse, having
a priori knowledge. For example, the following Lie point symmetry
operators admitted by (17.15)

X1 = ∂t, X2 = ∂x andX3 = eλt(∂t + k∂x − λu∂u) . (17.19)

I understand the inclusion of the generators of translations, X1 and
X2, but have absolutely no idea why they include X3 without deriva-
tion as it seems very non-trivial to me. I believe it comes from the
invariance condition

XαE = 0 , whereXα = ξtα
∂

∂t
+ ξxα

∂

∂x
+ ηα

∂

∂u
, (17.20)

which produces an over-determined linear system of equations wherein
the coefficients ξtα, ξxα, ηα of generators Xα are determined by solv-
ing said system of equations. Moving beyond this point of con-

1Predrag 2019-04-22: Here Matt referred to Ibragimov10, I cannot find it.
2Matt If the “extended system” (the variational derivatives) satisfy δL

δu
= δL

δv
= 0 for some

v (i.e.is nonlinearly self-adjoint) any conservation law of the extended system corresponds to a
physical conservation law [18]. :
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tention, they state that “...optimal system of one-dimensional sub-
algebras of the Lie algebra spanned by X1,X2,X3 of (17.15) given
by..."

X1, X2, X1 + aX2, andX2 + bX3 . (17.21)

Again, producing the generators is the component I have had trou-
ble with; perhaps it is because I was trying to derive the generators
for Lie-Bäcklund symmetries because I did not have success with
the easier case which is Lie point symmetries.
3The rest of the paper, although not trivial, follows the Ibragimov’s
blue print pretty closely. The applications and derivations include:

• Using nonlinear self-adjointedness and Ibragimov’s conserva-
tion theorem [12] to derive conservation laws for (17.15)

• Using conservation laws to show solutions exhibit blow-up and
the “global existence of strong solutions”

• Deriving analytic solutions from the conservation law

Details are left in the paper as the proofs and derivations are too
specific to (17.15) to be of use in the spatiotemporal Kuramoto-Siva-
shinsky equation.

2019-04-23 Matt Tom Day Graduate student from Peter Yunker’s group pre-
sented on the manner in which yeast forms clusters. This was mo-
tivated by the evolution from single cell to multicellular organisms,
want to investigate the key properties of one such evolutionary pro-
cess. The general idea is that yeast cells will collect and subse-
quently undergo a budding process which creates branches which
result in large clusters. There were two differing experimental se-
tups which both resulted in the same mass distribution as a function
of cluster diameter. The general idea was to have a tube consist-
ing of a yeast mixture where after a set amount of time the bottom
portion (clusters stratify based on mass, bottom has largest clusters)
was extracted. Repeating this process iteratively is equivalent to se-
lecting the largest. It was shown that the cells evolve by elongating
(aspect ratio changes) to improve packing efficiency. The distribu-
tion of cluster sizes was only investigated for a finite period of time;
nothing said about the expected limits of such a process or whether
there is a critical size which clusters cannot exceed.
The two experiments both involved repeated extraction of the largest
clusters, with one critical difference. For one of the setups the yeast
mixture was compressed at constant force for a set amount of time
prior to every extraction. In spite of this compression, the distribu-
tion of the cluster sizes were identical. A model was created that

3Matt The difference between Lie point symmetries and Lie-Bäcklund symmetries (according
to Ibragimov) is whether the generators of the vector field (Lie algebra) depend on the partial
derivatives of u (Lie-Bäcklund symmetry) or not (Lie point symmetry).:
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related the probability for the size to change by a scalar to the “ki-
netics” or rate which the the clusters form. The model was based
on some well known evolutionary model which had structure simi-
lar to Boltzmann distribution. There was no link between this model
and experimental results sadly so it is not known whether the model
is valid.

Jaemin Park On radial symmetry of uniformly rotating stationary solutions
TL;DR for 2D Euler equation there is a (constant) range of angular
velocities where radially symmetric solutions exist. For the gSQG
equation there exists a similar range but it depends on a parameter
(domain size I think?).
Symmetry of relative equilibria and equilibria solutions to 2D euler.
Using vorticity equations and stream function formulation. Biot-
Savart law, Yudovich Theorem for uniqueness of weak solutions.
Vortex patch solutions, where the vorticity field is given by linear
combination of some functions.
The uniformly rotating patch with angular velocity Ω counter-clockwise
satisfies

zt(t, α) = Ωz(t, α)⊥ (17.22)

Boundary equation is the difference of the gradient of the stream
function minue the equation for zt dotted with some z.
Vortex patch is “uniformly rotating” if

φ(x)− Ω

2
|x|2 = Const (17.23)

on each connected component of the boundaries. Call this constant
function f(x). If Ω = 0 then ω is a stationary solution. Any radial
solution is a rotating solution with any angular velocity.
Question to be answered: Among all connected patches with smooth
boundary, must every rotatting patch with Ω ≤ 0 or Ω ≥ 1/2 be ra-
dially symmetric?
Kirchoff (1876) showed than an ellipse is a rotating solution where
semi-axes satisfy

Ω =
ab

(a+ b)2
(17.24)

two other statements, going too fast to type. Theorem by the authors
of the paper, radial symmetry is broken in the parameter range 0 ≤
Ω ≤ 1/2.
Energy functional

1/2

∫
p(x)(p ?N )(x)dx− Ω/2

∫
p(x)|x|2dx (17.25)

note that
δE

δp
= f = φ− Ω/2|x|2 (17.26)
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Perturbations for a diveregence free vector field V satisfy continuity
equations “...”
Time derivative (inserting continuity equations) of the energy func-
tional implies that

dE

dt
=

∫
V · ∇p = 0 (17.27)

For an integral I that has a long definition, can show that inequali-
ties only hold if patch is a disk for Ω ≤ 0 and Ω ≥ 1/2 as previously
stated.
Putting holes in the patches betray the constraint I = 0; need con-
stant values of p on boundaries. Can bound a sequence of integrals
(step functions) approximating stream functions by isocontours of
vorticity ω below by some integral expressions, even though the
limit of this quantity is zero.
Theorem; there exist stationary nontrivial patch solutions to the 2D
Euler equations even with finite energy. These solutions are “close”
to nested annuli with vorticity of different sign. Proof bases on
Crandall-Rabinowitz theorem.
Now consider Generalized Surface Quasi-Geostrophic equation. Shown
in literature the existence of non-radial solutions in parameter range.
Difference between Euler and this is that the parameter range where
simply connected patches must be radially symmetric: Euler has
constant range, gSQG depends on the size of the domain. Perturba-
tion of the energy functional under “continuous Steiner symmetriza-
tion”. “Similar technique has been used to show radial symmetry of
steady solutions to nonlinear aggregation-diffusion equations”.
Description of continuous Steiner symmetrization. Assume non sym-
metric patch, split half-plane in two to split the patch in two. Define
“needles” (1D cross sections); make them symmetric with respect to
the half plane seperatrix.
Future work. Euler equation in unit disk. “Can we still prove the
radial symmetry of stationary patches on the disks or annuli?”. Kir-
choff ellipse solution (rotating solution). Should be 0 ≤ Ω << 1
such that aspect ratio is very large (or small). In other words, the
future work is to investigate the parameter ranges 0 < Ω << 1 and
0 < 1/2− Ω << 1.
“n-fold symmetric patch” exist which look like smoothed polygons
which have Dn symmetry.

2019-04-24 Matt My intentions for future edits of the paper; general additions
like including figures and citations are left out in favor of more explicit
goals.

Others would know better than me, but my gut is telling me that if the
paper is titled “Spatiotemporal tiling of the Kuramoto-Sivashinsky flow”
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then incorporating Gutkin and Osipov is consistent with this message. I
foresee this process unfolding in two ways: 1. The paper is aimed at the
overarching topic of spatiotemporal tiling, for example, “Spatiotemporal
tiling of both discrete and continuous nonlinear dynamical systems” and
the computational details such as adjoint method, GMRES, etc. are left
to another, more technical, paper. 2. The focus of the paper is the Kura-
moto-Sivashinsky equation and the methods with which new solutions
have been found and can be constructed. This would go over the specific
numerical methods for finding solutions as well as gluing and tiling. I
don’t think spatiotemporal cats fits into this message personally.

For the second option I propose the following outline for the paper

1. Abstract

2. Intro

3. Kuramoto-Sivashinsky equation literature review

4. Spatiotemporal Kuramoto-Sivashinsky equation in Fourier basis (sFb.tex)

5. Spatiotemporal symmetries

6. Spatiotemporal symbolic dynamics concept

7. Descent methods

8. Iterative methods

9. Gluing methods

10. Tiling methods

11. (If possible) symbolic dynamics quantitatively explained

12. Conclusion

with the following reserved for appendices of either the paper or thesis

• Variational methods

• Matrix-free computations

• Preconditioning

• Fourier transform conventions and selection rules

with the caveat that if the Ibragimov-type study pans out, then the re-
sults would be moved to the variational methods section which would in
turn be inserted between symbolic dynamics concepts and descent meth-
ods. This is the narrative that I believe has the most continuity. There is
not much application of discrete Lagrangian methods similar to ref. [19].
While I believe this work is formulated as a variational problem, almost
all of the key components of discrete Lagrangian methods are missing.
For example, we do not formulate discrete jet bundles, discrete action
principles, discrete Noether’s theorem, etc. These results are inherently
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different from our calculation because they work in a discretized config-
uration space (x, t) and define everything in terms of finite differences on
these grid points.

The second option is more akin to how I believe my thesis will be struc-
tured and so I am biased to approve of this format more. Due to the
already exorbitant length of GuBuCv17.tex I think that actually there
should be three papers: A spatiotemporal cat paper, a spatiotemporal Ku-
ramoto-Sivashinsky paper, and a “grand narrative” paper which builds
on the results of the first two.

2019-05-13 Predrag I have already discussed it elsewhere, in 2019-02-26 post
above, but it has to go into the paper.

In figure ?? and following figures, the most unstable wavelength 2π
√

2 of
the u=0 equilibrium (see sect. 1.5) is an estimate the mean spatial wave-
length of the turbulent Kuramoto-Sivashinsky flow, so there are approxi-
mately 55 wiggles across the spatial domain at any instant in time. There
is a very prominent leftward / rightward wave propagation speed, per-
haps several. But the result is puzzling: on the left half, there are promi-
nent leftward moving reddish lines - but there are no prominent right-
ward moving bluish lines. Also, both figures reveal a very persistent
structure (not in our alphabet?) from (x, t) = (9, 0) to (10, 130) with a
smaller wave velocity.

If you look at figure ??, it has bluish regions and reddish regions, and u ∈
{−3.4,+3.4}. But if you look at your (over-counted) alphabet figure ??, it
has uj ∈ {−2,+2}. Why is that?

You use Galilean invariance (12.31) to set the mean velocity of the overall
front to zero, 〈u〉(t) =

∫ L
0
dxu(x, t) = 0 . But for an arbitrary subregion

of width L1 < L, the mean velocity is generically 〈u〉(t) 6= 0. Actually,
we know that as function of L the velocity front executes a random walk,
with variance E(t) = 1

2 〈u2〉(t) ∝ L by the extensivity of Kuramoto-Siva-
shinsky, and hence the range of the color bar in a figure such as figure ??
has to grow proportionally to

√
L. The variance grows only in the spatial

direction, in the time direction E(t)→ E.

However, I think that if you plot ux for figure ?? or figure ??, that might
have bounded variance, as 〈ux〉(t) is invariant under the u(x, t)→ u(x−
ct)− c transformation.

That implies that in gluing letters uj of alphabet figure ?? into larger pat-
terns, one also has to vary 〈uj〉(t) averaged over the tile of width Lj , in
order to glue optimally. In other words, we have to use the Galilean sym-
metry group orbit of the letter uj , and slice that group orbit at 〈uj〉(t0) = 0
for purposes of ploting its representative in figure ??.

Perhaps the variational descent takes care of that, but it is not obvious.
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2019-05-13 Matt Let me preface the discussion with saying that the colorbar
units (displaying the range [−1.5, 1.5]) is an adopted convention for in-
variant 2-torus figures so that all velocity fields are displayed on the same
scale. Generically, if one integrates the Kuramoto-Sivashinsky equation
defined on a domain with small L (i.e. the size of tiles) then the average
for the local minima and maxima over a large number of trials is ≈ 2.6.
The minima and maxima for the tiles are as follows

maxima minima
defect #1 2.53 -2.64
defect #2 2.00 -2.37

hook 2.40 -2.67
gap 2.49 -2.47

streak 1.21 -1.21

upon further inspection the values for the solutions seem to match the
time integrated simulations but the value for the streak is worrisome un-
til one, once again, performs numerical simulations on a domain size
comparable to that of the streak domain L ≈ 6.39, L2π ≈ 1. So in sum-
mary the values of the colorbar as exaggerated by the convention to fix
the limits of the colorbar. This convention was not employed for figure ??,
which is predominately the reason for the discrepancy.

As to why the value of local maxima(minima) increase(decrease) as a
function of L, I don’t have a better argument than the extensive nature
of the Kuramoto-Sivashinsky equation. It is sometimes useful to modify
the magnitude of u when gluing, which can probably be explained by
approaching the upper bound of u from above is numerically beneficial.
For instance, I would never use streaks bounded between values exhib-
ited by figure ??, but the solution exists with those bounds at that domain
size regardless. Therefore, to take the extensive property of the Kuramo-
to-Sivashinsky equation into account it is fairly common to rescale the
tiles from figure ?? to suit the situation and better fit together. This is
not equivalent to using Galilean symmetry group orbit as the rescaled
solutions still satisfy the mean velocity condition.

I agree that the mean velocity constraint is not satisfied locally ; this was
the basis behind my idea of “stabilizing” spatial integration by somehow
incorporating a “local” Galilean symmetry but I never figured out how
to do it or even what I really meant by this.

Incorporating the degree of freedom provided by the Galilean invariance
would likely make finding solutions easier (in a least squares sense) be-
cause it increases the codimension of the group orbit of solutions, iden-
tically to translations (I don’t do any slicing or use Poincaré sections for
this exact reason; why impose such strict constraints when there is no
reason to a the moment?). I never really thought of this, as it is another
case of being too comfortable with the conventions developed for time
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dynamical systems. I’ll try to work through this idea but it would be a
pretty sizeable upheaval as most of my code eliminates the zeroth spatial
modes; something that can be shelved for later.

2019-05-14 Predrag Looking at figure ?? and figure ??: we might chose Galilean
invariant elementary tiles (spatial derivatives of u), instead of Galilean
equivariant uj tiles of figure ??.

2019-05-14 Predrag Which brings me back to figure 16.10 (b). Can you start
with a figure 16.9 smoothed and L̄ = 2π

√
2 modulated “noise” initial

guess on (L, T) = (500, 500), run it through your optimizer - do you get a
small error, and something that looks like (u, ut, ux) of figure ??? Maybe
the answer is already your figure 16.7, but that looks nothing like fig-
ure ??, so it worries me.

We need such figures anyway to illustrate your initial guesses.

2019-05-16 Matt Trying to see if I can get a nice large-domain adjoint descent
optimization; its been a while since I tried. I spent some time tweaking
my codes to try and get the best results but this still needs a bit of work.
Not investing too much time in this, I think I just need a large chunk of
computation time and something decent should pop out.

Results from large domains like figure ?? when starting with modulated
noise are hard and I never really gave it much effort because of its likeli-
hood to work and or priority not to mention the amount of time it takes.
I’m attempting some trials now so hopefully I will have something that
looks better than figure 16.7 in the near future.

2019-05-15 Predrag Plumbers’ hangout: Predrag showed Matt’s latest plots of
Kuramoto-Sivashinsky velocity field u, its spatial gradient ux and its time
derivative ut on a large (L, T) = (500, 500) spacetime domain (that is
≈ 55 wiggles of u across x-axis), figure ??. The most striking is the ut plot
- clearly visible is a dominant ± phase velocity which implies there are
long range correlations, in time at least as long as the entire pattern of
time period T = 500.
2019-05-20 Predrag figure ?? (a) is a lesson in dangers of using strange
initial conditions, not checking whether transients have died out. As il-
lustrated by figure ?? (b), there are weird ‘letters’, no long range correla-
tions.

This violates our common intuition that Kuramoto-Sivashinsky decorre-
lates exponentially both in space and time. Burak showed us (again) the
earliest simulation of turbulent body-forced 3D cube (again Predrag for-
gets the authors) which shows very clearly that the turbulent flow has
long correlations in form of long vortex tubes. That does not help with
1D Kuramoto-Sivashinsky - no vortex tubes...

2019-05-15 Predrag Which brings me back to figure 16.10 (b). We usually plot
(1.61) which balances the powerP pumped in by anti-diffusion uxx against
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(a) (b) (c)

Figure 17.5: Members of the continuous family of defects (2-to-1 wavelength
mergers) numerically continued and converged at spatial domain sizes (a)
L = 13.08, (b) L = 13.09, (c) L = 13.10. Here not stated in “natural” units
of 2π

√
2 because of their proximity. (a) Is most reminiscent of the defect family,

specifically the pattern previously often called the “hook”. (b) As the “hook”
gains an increasing relative equilibrium spatiotemporal shift it “tilts” more and
more until it finally bifurcates into a relative equilibrium solution (c). The
“hook shedding” mentioned (somewhere?) in sits precariously between (b)
and (c).

the energy dissipation rate D by hyper-viscosity uxxxx in the Kuramoto-
Sivashinsky equation. So it might be nice to have look at plots of local
power 1

2u
2
x, dissipation 1

2u
2
xx, and energy rate (the difference of the two).

All of the above were derived by thinking “in time”. Might have to re-
think all of these in spacetime. In particular, might plot the 4-dimensional
vector field (1.34) as well.

2019-05-16 Matt Produced figure ??, figure ??, figure ??, which are the power,
dissipation and energy density rates respectively for the large spatiotem-
poral data set figure ?? (b), plotted on a logarithmic scale and thus looking
like red lobsters. These look like to me like many different things, white
caps in the ocean, a fan, a dispersing wave, a beat-like pattern. 4

The energy rate seems to display two main behaviors, a highly localized
maxima at 2 to 1 wavelength defects and then a much broader pattern of
increased energy rate in the shape of a fan, patch, beat, wave or any other
shape left to one’s imagination.

2019-05-16 Matt Regarding above comments on figure ?? (a):

ut = −uux − uxx − uxxxx is a Galilean invariant field. There is a very
prominent leftward / rightward wave propagation speed, perhaps sev-
eral. But the result is puzzling: on the left half, there are prominent left-
ward moving reddish lines - but there are no prominent rightward mov-
ing bluish lines. Also, both figures reveal a very persistent structure (not
in our alphabet?) from (x, t) = (9, 0) to (10, 130) with a smaller wave
velocity (note, the x-axis is mislabelled).

4Predrag 2019-05-20: why all duplicate figures MNG_P_largeL2000.png =
MNG_P_largeL.png, etc.?
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In regards to this “missing letter”, I have an explanation (as Senator War-
ren says, I have a plan for that) but its a very specific case of a known
“letter” so I had not mentioned before. The reason for the lack of inclu-
sion of the coherent relative equilibria structure in the bottom right hand
corner of figure ?? (a) is because it sits right at the “edge” of the defect
family before it transitions into a relative equilibrium solution. This phe-
nomenon occurs around L ≈ 1.47× 2π

√
2.

2019-05-16 Matt Viewed as a decreasing function of L, the relative equilibrium
undergoes a bifurcation (I haven’t inspected any eigenvalues), likely a
Hopf bifurcation, such that there is an additional (quasi) periodic behav-
ior which is very coarsely analogous to “vortex shedding”, except in this
case its “hook shedding” as a function of time. The likely reason behind
its presumed quasi-periodicity exhibited in figure ?? (a) is due to local
spatiotemporal coupling. I surmise that the bottom right hand corner of
figure ?? (a) consists (perhaps surprisingly) of members of the same de-
fect family which pervades the entire plot.

Three ‘rubber tiles’ in this family which display this phenomenon are
shown in figure 17.5. Note: old figs, so old units.

2019-05-16 Matt Correction: the above “missing letter” seems to have been ar-
tifact of my time-froward integrations staring with a suspiciously sym-
metric initial condition. Now that I’ve increased transient time from
T ≈ 50 to T ≈ 2, 000, all weird things, including the “missing letter,”
are gone.

2019-05-16 Predrag Keep the short-initial-transient *.png’s in figures ?? (a)-
?? (b) under current file names. Give slightly different names to your
asymptotic *.png’s, transient time T ≈ 2, 000 . The pre-asymptotic fig-
ures are educational for us, internally, keep them.

2019-05-19 Matt Takashi Tokieda Chain fountain (Newton’s beads) demon-
stration. Theorem from the 19th century Once it gets going, a chain
can flow in any shape in neutral equilibrium.
Looking at the net forces of a infinitesimal section of the chain. By
the normal component of tension, if the flow is fast enough then
the tension is independent of the radius of curvature (geometry be-
comes irrelevant).
This is an anomalous reaction, which appears to violate Newton’s
third law. A toy model for this phenomenon is a free-falling rod
which lands at an angle to the ground, such that one end hits first.
This contact with the ground induces a torque which “pulls” the
end of the rod down faster. (Movie by Andy Ruina) of rope ladders
falling, one that makes contact ends up falling faster. This is an ex-
ample of tension resulting from compression. This model relies on
the bending stiffness of the rods.
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(Very) Basic model for the rod example using Newtonian mechanics,
Half of the energy is lost to the shock dissipation.
Using this, estimate how high the newton’s beads should go. Zigzag
monolayer has only horizontal components, yet there is a vertical
arching. Criticality (where derivative vanishes) is taken advantage
of the change.
Why does the chain stand up vertically? Very singular phenomenon
of minimum chain radius. Curvature induced at the location of hori-
zontal motion. The accumulated curvatures of the curl induce buck-
ling due to torsion.
WHITE PINE

Qiqi Wang Computation of sensitivities in chaotic systems: an overview
Overview of sensitivities in chaotic simulations.
Going to use a very real example. Using the buffets of F35 (raptor?).
Shaking is due to vortex breakdown (chaos). Chaotic aerodynamics
cause aircraft buffet. This also takes place with (space) launch vehi-
cles. Length makes it so most of the body is actually in the wake of
the front end. Yet another example: chaotic aerodynamics melts en-
gine components. This mini symposium is dedicated to sensitivity
analysis and optimization of chaotic dynamical systems, not merely
simulation.
How is the objective function (structural damage, long time average
heat transfer).
steps

1. Parameterize the autonomous equations
2. Define the objective function (average quantities, instantaneous

quantities not really defined).
3. Compute the derivative of the objective function with respect to

the parameters.
Why not use finite difference for sensitivity of statistics? Extremely
inefficient. Argument: let X be a random variable in a uniform prob-
ability distribution on [0, s]. The derivative of the mean is equal to
half. Sampling error (finite difference implies cancellation error?)
ruins the finite difference scheme, this error is amplified by dividing
by ds. Error decreases as the square root of the sample size.
Using the Lorenz equations, define the objective function as the av-
erage of the deviation of z from some mean. The “design parame-
ter” is ρ from Lorenz. Looks like noise at low sample size.
For “small problems” you can parameterize the 2D slice
Adjoint: differentiation the output of a simulation to its inputs by
tracing backwards through the calculations. The problem with this
is that it doesn’t work because of the instability.
Can we desensitize the adjoint method to the noise in computed
statistics of chaotic simulations.
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Parameter perturbation vs initial condition perturbation.
Question: Implicitly there is some flow which is very high dimen-
sional, is this always with normally this would be an incredibly high
dimensional problem, is the flow not a variable? Is the base flow al-
ways stable?

Angxiu Ni Adjoint Shadowing direction in Chaotic Dynamical Sys-
tems for sensitivity analysis Classical trajectory-based sensitivity
analysis fails. Small scale variations has much more profound effect
on the “zoom in” slope as opposed to the “zoom out” slope. Zoom
in, let ds→ 0 and then T →∞ Zoom out, let T →∞ then ds→ 0.

Javg
=

d

ds
lim
t→inf

1

t

∫
∂uJ

du

ds
+ ∂sJdt (17.28)

Shadowing lemma: two kinds of perturbations. Perturb initial con-
ditions, keep parameters and vice versa. If you do both, and they
are coordinated, can remain close (L2 norm of perpendicular dis-
tance (pointwise?)). Is this always continuous? bifurcations?
Changing the initial condition uses covariant Lyapunov vectors (ho-
mogeneous tangent equation). Changing the parameters results in
inhomogeneous tangent equations.

Javg

ds
≈!/T

∫ T

0

[|partialufv⊥ + ∂sJ + η(J− < J >) (17.29)

Interpretation of terms, in order, state space “location difference”,
direct dependence of J on s and the speed difference term.
This was tangent space definition, now onto the Adjoint shadowing
direction now.

d < J >

ds
= 1/T < v, Ju >L2

(17.30)

v(t) =
δu

δs
(17.31)

Propagate stable parts forward, unstable part backwards. “Dual”
derivation. Let

v̄(t) = T
δ < J >

δu(t)
(17.32)

Conditions of v̄ imply adjoint shadowing direction, approximation
of real adjoint shadowing direction.

dJ∞
ds
≈ 1/T < ∂sf, v̄ >L2 (17.33)

Non-Intrusive Least-Squares Adjoint Shadowing Adjoint flow and tan-
gent flow have similar structures, which allows for recycling of least
squares shadowing ideas.
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Violates the adjoint shadowing lemma but still works fine? Can’t
prove but still works well in practice. It still works as long as unsta-
ble directions are not orthogonal?

Nisha Chandramoorthy Space-split statistical sensitivity computation
in chaotic systems Autonomous equations, forward time mapping,
time discretized PDE or forward time mapping.
Split tangent space into stable and unstable manifolds. Unique er-
godic invariant physical measure (SRB). Work with uniform hyper-
bolic chaotic systems. Cat map example.
PRIMROSE A

Chris Marcotte Sensitivity of spiral wave core formation and transient
spiral core interactions Very behind schedule or is this dude tak-
ing all of Chris’ time? Adjoint eigenfunctions and singular modes
are the subject of his talk. Cardiac rhythms and arrhythmia. Using
very simplified excitable models. Model allows for sustained spiral
chaos. Spiral cores born in pairs die in pairs. Tangent space flow via
linearization, and its adjoint
Tangent flow modes are global while adjoint modes are localized.
Can quantify this localization. Adjoint modes tell us how pertur-
bations generate transitions. Floquets modes (tangent space eigen-
modes) characterize stability of solutions.
Open trajectory, when linearization fails due to distance of succes-
sive points on the trajectory. Using Golub, Kahan (probably based
on Ginelli). Display of singular modes with respect to time.

Andrew Krause Pattern formation in bulk-surface reaction diffusion
systems
Turing instabilities and chemical morphogenesis (how you see sym-
metry breaking in-vivo). Have two reaction-diffusion equations which
are coupled. Mouse whiskers develop sequentially. Microsoft is ge-
netically engineering bacteria. Develop in-vivo Turing patterns and
instabilities.
Classical dispersion relation and stability analysis
Linearize autonomous system around spatially steady state and use
(Lindstedt) ansatz which is base flow plus exponential growth term.
Instabilities on spheres and tori. Influence of curvature, growth,
anisotropy. Laplacian is space dependent but can solve via spectral
problem.

det(Mk) = det(λk − ρkDk − Jk) (17.34)

Multiregion domains Super complicated, cannot reduce problem via
symmetry arguments so have to work on full problem. Cannot solve
eigenvalue problem as a function of depth (y) due to coupling. Try
anyway, get solutions and some expression for determinant and hence
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the dispersion relation. Nontrivial coupling, relating heterogeneity
to some strength parameter.
Turing instabilities in heterogeneous domains. In reaction kinetics
(not the transport) is heterogeneous. Other than the initial bifur-
cation (one to two cells), every pattern does not occur on homoge-
neous background. Mouse and chicken modeling, simulations cap-
ture some behavior. Linear analysis on heterogeneous domains via
WKB ansatz. WKB modes are not supported on same domains.

Raquel Gonzalez Farina Dynamics from a coupled chemical thermal
microsilica partical formation model
Information of chemical reaction. Microsilica particles are spherical
and growth is mediated by nucleation,condensation and aggrega-
tion (combining) Want to control the furnace to control the proper-
ties of the microsilica.
Initially well mixed chemical species One dimensional geometry,
conservation equations for all chemicals,temperature and number
density of particles.
Uniform concentrations, no diffusion terms. Boundary conditions
on flux is related to particle number and nucleation rate, otherwise
straightforward.
Derivation of dimensionless quantities and various growth and nu-
cleation rates.
Analytical solution when ζi = 0 (nonlinear coupling constants). Can
then solve for an analytical solution of the particle density equation
(method of characteristics). Divergent particle side.
Now set ζi 6= 0. Something about equations being coupled except
with respect to one degree of freedom? Asymptotic particle size.
Spatially heterogeneous chemical concentrations Diffusion comes
back into the equations. Proof that there are no relative equilibria
but can find solutions that have some properties of relative equilib-
ria and self-similar solutions.
Diffusion dominant for small times and reactions dominant are large
times? (obvious?, concentration approaches steady state no?)
Coupling makes it so particle size distribution pushes small parti-
cles into the “middle”.
Future: more realistic flow and furnace geometry.

Robert Van Gorder Pattern Formation in reaction-diffusion systems on
time-evolving domains Loss of stability of spatially homogeneous
steady states for such systems can signal the onset of pattern forma-
tion.
Turing instabilities on state domains, the conditions for the onset of
instability are algebraic. This is not the case for growing domains.
Evolving is not the same as growing. Turing conditions for time-
evolving domains. Want a linearly stable steady state in order to
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get a Turing instability. This leads to complex exponential solutions,
conditions on the determinant for inducing a Turing instability. This
extends to arbitrary manifolds, as long as spectrum and eigenvec-
tors can be determined.
Manifold now depends on time now. Simple case of dilation as the
“equations of motion” for the manifold. Transform to co-moving
coordinates. Spatial dependence when other evolution types are
considered. In this case only time dependence. Steady state was
perturbed spatially, but now the underlying state is dependent on
time (this is a choice which makes the problem harder). Derive the
linearized problem. Cannot rely on eigenvalues and eigenfunctions
due to time dependence. Can prove linear instability if a differential
inequality holds. Time oscillatory example was more interesting of
the two, if too fast then pattern is destroyed (decoherence?).
Evolution of an area conserving rectangle, volume conserving cylin-
der. Slow evolution leads to spatial homogeneity as oppose to fast
evolution, where it is still somewhat organized but less homoge-
neous.

Piyush Grover Understanding and designing emergent behavior via
stability analysis of mean field games Talk is in regards to multi-
agent systems (swarms of drones, traffic, etc). Features that present
in nature, desirable in engineering. This has a flavor of an AI, ma-
chine learning, etc. talk.
Continuum (PDE) abstraction of collective agent dynamics.
Phase space distribution

ρ(x, t) = 1/N
∑

δ(x− xk(t)) (17.35)

Considering the N → ∞ limit, this is not the most common formu-
lation so its somewhat unique.
For flocking and swarming the model that is used is a first order
model with gradient dynamics, with homogeneous population.
ODE or SDE for each agent labeled by i

dxi(t) = ∂xU(xi)dt+ 1/N
∑
j

(xj − xi) + σdwi(t) (17.36)

Using a potential that is quartic plus quadratic which is proportional
to a strength of agent behavior parameter.
The noise induces a bifurcation, when its small then the individual
motion of the agents dominate, leads to nonzero mean velocity.
Finite number of agents, introduce cost functional for each agent

J = lim 1/T

∫ T

0

[βF [Xi, xi − 1 +
1

2σ2
u2
i (t)]dt (17.37)
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Mean field approximation replaces the coupling with time depen-
dence, which is in turn a proxy for density. Solution of the opti-
mization and agent dynamics problem via Stochastic Hamiltonian-
Jacobi-Bellman theory. HJB equation leads to (Closed loop?) Fokker-
Planck which uses “consistency” equations such that the HJB is cou-
pled to the FP equation.
Exposé on “closed loop stability analysis”. Linear stability decom-
poses into a local and global operators, where the local is essentially
the adjoint. Shows that zero mean solutions become stable when the
control penalty is high and the non-zero mean solutions are never
stable.

2019-05-20 Matt Gluing improvements via additional BVP After some thought
I realized that the method I was using to produce the initial conditions for
the gluing procedure was a terrible idea and the truncation of the Fourier
modes was much better than the use of convex combinations and Fourier
truncation.

The reason for this is that although the smoothing of the piecewise lin-
ear functions would result in a continuous field that would like the con-
stituent invariant 2-tori together the tangent space would be terribly wrong.
I attribute the success of the gluing in spite of this to the potency of the
spatiotemporal numerical methods (adjoint descent, etc.)

I will propose an improvement (whose implementation I will reserve for
after the paper is written due to the amount of work involved).

Chebyshev BVP gluing The method by which I believe that solutions should
be glued, or at least the initial invariant 2-tori should be joined is to solve
a supplementary problem which fills in a zero padded region by virtue
of approximately solving the BVP problem induced by the connection of
the boundaries of each invariant 2-torus.

Specifically, because we are more concerned with the tangent space be-
ing correct we will utilize Neumann boundary conditions for the BVP.
Because of these boundary conditions the “natural” choice for the dis-
cretization of this connecting region is to either used finite difference
methods or Chebyshev collocation methods. The former is rather expedi-
ent and perhaps would be better for this additional optimization problem
because it will not result in an exact solution either way.

The reason we know that the intermediate area cannot have a tangent
space that satisfies the Kuramoto-Sivashinsky equation everywhere lo-
cally is because we are connecting two invariant 2-torus solutions. For
instance, integration of the IVP initiated at either boundary would (theo-
retically) result in the invariant 2-torus being repeated ad infinitum.

There is still indecision on my part as to the precise method by which the
problem could be solved.
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The first, a fully spatiotemporal method, would allow for use of the cur-
rently implemented (with modifications to incorporate the boundary con-
ditions) numerical methods. The idea is to merely follow the typical pro-
cedure except the basis would be either Fourier-Chebyshev or Chebyshev-
Fourier depending on the gluing direction.

The second (more straightforward in my mind) method would be to ap-
ply the variational Newton descent formalism to a Chebyshev basis with
Neumann BC. This would be easily accomplished by using a Chebyshev
basis and differentiation operator instead of the finite difference meth-
ods. The only difference between the spatial gluing and temporal gluing
cases would then be the tangent space equations, namely, whether we are
using (1.26) or (1.34) in the variational Newton descent equation.

As I’m writing this I don’t think the spatiotemporal method would re-
ally be that difficult. The only difference from the current spatiotempo-
ral method would be to incorporate Chebyshev transforms and modify
the differential operators to accomodate the boundary conditions. For
instance, if tackling Neumann BC in time then for an N by M time by
space discretization (Fourier in space, Chebyshev in time) then the cor-
rect form of the equation would take the spectral coeff Let ut(A) and
ut(B) represent the first time derivative evaluated on the “boundary” of
each solution. In matrix notation we have the following ...??

2017-08-01 Matt PC recommends a paper on rigorous bounds on observables
in chaotic in turbulent flows by D. Goluskin, Tobasco, Doering, showing
for instance in the Lorenz system that the energy for points with a certain
bound on the z coordinate is saturated by the equilibria, and then when
z increases then the energy is saturated by the shortest periodic orbit.

2018-02-24 Predrag Charlie Doering writes: The absence proper instantaneous
and/or long-time-averaged a priori bounds on solutions of the Kuramoto-
Sivashinky equation in the large interval length (L) limit has annoyed our
community for decades.

Utilizing a generalization of the background method and implementing
recently developed optimization techniques, David and Giovanni (see
arXiv:1802.08240) have now computed rigorous bounds ––– over a large
but limited range of L ––– on the time averaged energy density of solu-
tions that behave exactly as it is widely believed that they should behave,
i.e., < u2 >≤ L0. Moreover, their method reveals the nature of maximiz-
ing/extreme solutions: they are the largest amplitude steady solutions
on the branches bifurcating from u = 0.

The resulting conjecture is that this precise O(1) bound holds uniformly
as L tends to∞.

2019-05-20 Predrag David Goluskin Studying Dynamics using Polynomial Op-
timization: Various global properties of nonlinear ODEs and PDEs can
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be inferred by constructing functions that satisfying suitable inequali-
ties. Greater precision can be achieved by using computational methods
of polynomial optimization to construct functions that satisfy the suit-
able inequalities. In several examples such as the estimation of average
and extreme quantities on the attractors of the Lorenz equations and the
Kuramoto-Sivashinsky equation, polynomial optimization produces ar-
bitrarily sharp results.

2019-05-20 Predrag Giovanni Fantuzzi Convex Analysis of Maximal Transient
Growth Phenomena: Various global properties of nonlinear ODEs and PDEs
can be inferred by constructing functions that satisfying suitable inequal-
ities. Greater precision can be achieved by using computational methods
of polynomial optimization to construct functions that satisfy the suit-
able inequalities. In several examples such as the estimation of average
and extreme quantities on the attractors of the Lorenz equations and the
Kuramoto-Sivashinsky equation, polynomial optimization produces ar-
bitrarily sharp results.

2019-05-21 Matt Chad Topaz A topological view of collective behavior Per-
sistent homology using the Vietoris-Rips complex: this complex is
the standard for data that is organized in a point wise fashion as op-
posed to Kuramoto-Sivashinsky equation invariant 2-torus data in
scalar-field form.
I thought that most of the talk was relatively straight forward even
with my modicum of self-taught knowledge. Every talk that I see
of this flavor leaves me with the same question, how does one ex-
tract and or classify important patterns from the topological infor-
mation. I understand that the topological Betti numbers pick out
the topological invariants of, for instance, spatial ordering of flocks
and the like. The problem I have with this research that I have
is when you are trying to compare data that have similar but not
identical topology. The best example that comes to mind is facial
recognition. Topological data analysis would be able to tell the user
that faces are connected components and perhaps that their circular
structure would be picked up by Betti number 1 events, but I believe
the model is far too reductive to be able to tell faces apart from one
another. Perhaps this is not the point, perhaps one would merely
want to be able to pick out the number of faces in the crowd as op-
posed to the specific people that they belong to. This is a contrived
example but still a question that I struggle with slash has led me
astray from Topological data analysis.

2019-05-23 Predrag Are bits of travelling waves that dominate figure ??? re-
lated to either of the two relative equilibria TW+1 and TW+2 of fig-
ure 17.6?

2019-05-30 Matt Matt’s ultimate to-do list
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Figure 17.6: Relative equilibria: TW+1 with velocity c = 0.737 and TW+2 with
velocity c = 0.350. The upper panels show the relative equilibria profiles. The
lower panels show evolution of slightly perturbed relative equilibria and their
decay into generic turbulence. Each relative equilibrium has a reflection sym-
metric partner related by u(x) → −u(−x) travelling with velocity −c. (From
ref. [7]).

Short term goals This list contains the work that is currently being worked
on.

• GuBuCv17.tex rewrites
• GuBuCv17.tex figures
• GuBuCv17.tex references fleshed out
• More thorough description of adjoint descent(garnered a lot of

attention at DS19)
Intermediate term goals This list represents the work I would like to

complete in the next couple months.
• Investigate more numerical methods
• Investigate convergence as function of N,M
• Find better numerical method for smoothing boundaries of glu-

ing and tiling (Chebyshev BVP, will give experience for non-
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periodic boundary conditions of higher dimensional flows)
• Investigate and improve GMRES routine

Long term Goals This list contains the work I believe I could finish be-
fore I graduate; I list Kolmogorov flow because of what I have learned
will dramatic improve the efficiency with which I can code.

• Migrate to Julia
• Finish papers and thesis
• Kolmogorov with periodic boundary conditions

Unicorn tier goals • Optimize Julia
• Kolmogorov with non-periodic boundary conditions
• Navier-Stokes with periodic boundary conditions
• Plane-Coutte and Pipeflow

Matt’s GuBuCv17 to-do list

• trawl.tex edits

• tile.tex edits

• Add continuous family description of tiles (The misunderstandings
of the tiles and how they’re used were profound and ubiquitous)

Skimmed the paper by Goluskin and Fantuzzi [10]. I need to thoroughly
study the variational principles therein but it’s pretty confusing for me.
Perhaps PC and I could walk through? Figure 1 (b) serves as corroborat-
ing evidence for my streak tile.

The problem and or question I have is: from a dynamical systems per-
spective we know that the antisymmetric flow invariant subspace is iso-
lated and not representative of the dynamics of the full (no symmetry)
Kuramoto-Sivashinsky equation. I understand that the equilibria exist in
this subspace so am I supposed to take this as merely energy bounds for
the antisymmetric subspace? I feel like that defeats the point but I don’t
know how else to interpret.

07-11-2019 Matt Ideas for automatic tiling using trinary tile alphabet

Method one Concatenate the scalar fields of each tile after ensuring the
discretizations accurately reflect the relative sizes of the tiles. Fourier
truncate the result. The most basic of methods that doesn’t really
take anything into consideration other than domain sizes.

Method two The first method is to take the original tiles and rediscretize
them such that the aspect ratios between tiles accurately represent
the different periods T and domain sizes L that the tiles exist on.
Put the appropriately sized tiles (making sure the relative sizes are
demonstrated in the discretizations) together by padding them with
a boundary of zeros and then sticking the newly sized tile plus zeros
together.
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This takes the sizes of the tiles and the fact that they are discontinu-
ous into account.

Method three Take the existing (slightly modified and or cleaned up)
gluing code to glue the tiles together to produce one large block of
tiles that is an approximate solution. This is then the initial condition
that is passed to the numerical methods.

Method four The general idea is glue plus converge at every step. This
glues the tiles together in a pairwise manner just like method three,
but also takes into consideration that the gluing combinations are
only approximations to solutions and so this goes one step further
by converging after each pairwise gluing
The quick descriptions given previously describe varying levels of
difficulty in regards to implementation which is not necessarily in-
dicative of improved performance.
There are a lot of important details which are so numerous that it
is actually going to take a minute to compile them all. Currently
they stand at: Making the sizes of tiles relative to one another in a
manner that still allows them to be combined, all the while ensuring
the “best” discretization is being used. Dealing with the numeri-
cal discontinuity that arises from combining tiles in space and time.
Taking into account different symmetries of tiles and the blocks they
are being used to produce.
The reason why this isn’t straight forward is because it is best to take
the time to automate it as opposed to hard coding in a case-by-case
basis. As per usual in coding, I write something only to realize that
there is a better way of doing it (rinse and repeat).

2019-07-29 Matt Symbolic Tiling code Running new script blocks.py along
with some of its new subroutines tile.py.
The code attempts to initialize and converge spatiotemporal solu-
tions created via combining tiles from a trinary alphabet. The alpha-
bet contains the “streak” equilibrium solution, “gap” antisymmetric
wave-equilibrium solution, and “defect” relative periodic (approxi-
mately half-cell shift solution).
The representatives chosen from each of the three continuous fami-
lies is close to being antisymmetric. This is an intrinsic property for
the gap and streak tiles but for the defect tile, one could elect to take
the more “hook-like” member of the continuous family. The hook
like pattern is a member of the continuous family which appears
before numerical continuation in domain size results in a relative
equilibrium solution. The reason for this choice is to ensure that the
trinary alphabet is symmetry invariant. This seemed the more natu-
ral choice instead of having two antisymmetric tiles and then a third
which has a reflection symmetry partner. That is, a truly trinary al-
phabet instead of trinary plus one symmetry partner. This might be
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hopeful but its seems more elegant when the tiles have the most in
common. Numerically, it seemed the most reasonable as the other
members of the defect family have non-negligible spatial shift which
makes it awkward to combine with the other tiles. In other words,
it is nonsensical (to me) to combine a relative periodic tile with a
regularly periodic tile. One of the corresponding tiles will be non-
periodic, which only depends on whether one goes to a co-moving
frame or not; again this makes no sense in the context of combining
tiles.
The automated version of the code is first searching for combina-
tions under the assumption that the result has no symmetry (i.e.its
isotropy subgroup is the trivial subgroup). The tiles are combined
in such a manner that they are first padded with a rectangular frame
of zeros numerically, such that zero padded tiles are arranged in a
mosaic like fashion. This zero padding is an attempt to cut down on
the Gibbs’ phenomenon error associated with discontinuities.
While we know the Kuramoto-Sivashinsky equation is linearly un-
stable, and hence, including regions of u(x, t) = 0 is a relatively un-
intelligent idea, the adjoint descent method works with such initial
conditions by “filling in” these zero regions well. In other words,
we know the adjoint descent brings us closer to invariant 2-torus
solutions and therefore the zero filled regions are filled in by cor-
recting the corresponding spatiotemporal tangent space with local
solutions such that the entire spatiotemporal domain approaches a
invariant 2-torus solution. If this last paragraph was as convoluted
as I believe it might have been the general idea is that adjoint de-
scent brings initial conditions closer to invariant 2-tori by correcting
the tangent space (making it abide by Kuramoto-Sivashinsky equa-
tion.) Therefore, implementing regions with incorrect tangent space
is not an issue, so long as it does not introduce discontinuities that
make the numerical procedures fail.

2019-08-01 Matt : As a preface to the following blog post: for file names of
tiling combinations, zero refers to streak, one refers to defect and two
refers to gap. The format of the filenames is as follows (examples that
have not been found yet)

The string 012 001 would represent symbolic block, i.e.the underscor-
ing separates the temporal portions of the blocks.

M =

[
012
001

]
(17.38)

All tilings (so far) have assumed that the final solution has no symmetries
(its isotropy subgroup is the trivial group).

Slightly worried about tiling results. From the initial conditions formed
by simply zero-padding and then concatenating tiles the solutions (which
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(a) (b)

(c)

Figure 17.7: (a) Invariant 2-torus with spatial translation symmetry defined
on approximate domain x ∈ [0,≈ 3.5(2π)], t ∈ [0,≈ 94.59]. Truncation of
significant digits is denoted by “≈” . (b) The extracted subdomain to serve as
an initial condition for tile searching. Defined on domain size x ∈ [0, 2.2(2π)],
t ∈ [0, 20].
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(a) (b)

(c)

Figure 17.8: (a) Invariant 2-torus with spatial translation symmetry defined
on approximate domain x ∈ [0,≈ 3.5(2π)], t ∈ [0,≈ 94.59]. Truncation of
significant digits is denoted by “≈” . (b) The extracted subdomain to serve as
an initial condition for tile searching. Defined on domain size x ∈ [0, 2(2π)],
t ∈ [0, 17].
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(a) (b)

(c)

Figure 17.9: (a) Invariant 2-torus with spatial translation symmetry defined
on approximate domain x ∈ [0,≈ 3.5(2π)], t ∈ [0,≈ 85.735]. Truncation of
significant digits is denoted by “≈” . (b) The extracted subdomain to serve as
an initial condition for tile searching. Defined on domain size x ∈ [0, 2.6(2π)],
t ∈ [0, 17].
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(a) (b)

(c)

Figure 17.10: (a) Fundamental domain of Invariant 2-torus with spatiotempo-
ral shift-reflection symmetry defined on x ∈ [0,≈ 3.5(2π)], t ∈ [0,≈ 10.25].
Truncation of significant digits is denoted by “≈” . (b) The extracted subdo-
main to serve as an initial condition for tile searching. Defined on domain size
x ∈ [0, 2.1(2π)], t ∈ [0, 10.5].

have converged) look like they have too much structure as compared
to where they initially begin. The result after only the first numerical
method, adjoint descent, is more what I would think the tiles should con-
verge to. As can be seen in figure 17.16. Even though my expectations
are being betrayed it may just be a representation of the spatiotemporal
grammar.

The streak defect spatial conjunction leads to what I believe to be a rep-
resentation of a symbolic block of twice the temporal extent as what I
started with. Specficically, I believe if I started with

M =
[

01
]

(17.39)

it ends up converging (after Gauss-Newton) to the following

M =

[
01∗

01

]
(17.40)

Now obviously this is undesirable (if the targeted original symbolic block
is admissible). I don’t mean to sound braggadocios but perhaps this is
due to the numerical methods working too well. Whether or not the defect
tile is in its comoving frame (because its technically an relative periodic
orbit with nearly a half-cell shift) does not seem to affect what solution
the initial conditions converge to, up to spatial and temporal translations.
I understand that it makes no sense to join something which is in a co-
moving frame with something that is not, but this shows that it doesn’t
seem to matter, numerically.

All of these facts seem to point to the fact that spatially concatenating a
defect to a streak is not admissible; only the temporal concatenation (such
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(a) (b)

(c)

Figure 17.11: (a) Invariant 2-torus defined on x ∈ [0,≈ 4.25(2π)], t ∈ [0,≈
54.12]. Truncation of significant digits is denoted by “≈” . (b) The extracted
subdomain to serve as an initial condition for tile searching. Defined on do-
main size x ∈ [0, 2.7(2π)], t ∈ [0, 15].
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(a) (b)

(c)

Figure 17.12: (a) Fundamental domain of invariant 2-torus with spatiotem-
poral shift-reflection symmetry defined on x ∈ [0,≈ 21.97], t ∈ [0,≈ 73.52].
Truncation of significant digits is denoted by “≈” . (b) The extracted subdo-
main to serve as an initial condition for tile searching. Defined on domain size
x ∈ [0, 2.4(2π)], t ∈ [0, 20]. Both figure 17.13 (c) and figure 17.14(c) demonstrate
a similar pattern with similar spatiotemporal extent.
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(a) (b)

(c)

Figure 17.13: (a) Fundamental domain of Invariant 2-torus with spatiotem-
poral shift-reflection symmetry defined on x ∈ [0,≈ 21.93], t ∈ [0,≈ 92.77].
Truncation of significant digits is denoted by “≈” . (b) The extracted subdo-
main to serve as an initial condition for tile searching. Defined on domain size
x ∈ [0, 2.3(2π)], t ∈ [0, 20]. Both figure 17.12 (c) and figure 17.14 (c) demonstrate
a similar pattern with similar spatiotemporal extent.
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(a) (b)

(c)

Figure 17.14: (a) Fundamental domain of Invariant 2-torus with spatiotem-
poral shift-reflection symmetry defined on x ∈ [0,≈ 21.99], t ∈ [0,≈ 47.77].
Truncation of significant digits is denoted by “≈” . (b) The extracted subdo-
main to serve as an initial condition for tile searching. Defined on domain size
x ∈ [0, 2.5(2π)], t ∈ [0, 25]. Both figure 17.12 (c) and figure 17.13 (c) demonstrate
a similar pattern with similar spatiotemporal extent.
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(a)

(b)

Figure 17.15: (a) Fundamental domain of Invariant 2-torus with spatiotempo-
ral shift-reflection symmetry defined on x ∈ [0,≈ 3.5(2π)], t ∈ [0,≈ 10.25].
Truncation of significant digits is denoted by “≈” . (b) The extracted subdo-
main to serve as an initial condition for tile searching. Defined on domain size
x ∈ [0, 2.1(2π)], t ∈ [0, 10.5].

that the result is a pre-periodic orbit.) seems to appear. The pre-periodic
orbit in question (or rather, representatives of its continuous family) can
be seen in part (c) of each figure 17.12, figure 17.13, and figure 17.14.

This is also evidenced by figure 17.18 and figure 17.17.

2019-08-05 Matt Added a number of tiling results which were found after some
more tuning of the tiling methods. In order to not miss certain admissi-
ble spatiotemporal symbolic blocks, each symbolic block combination is
looked for using an array of different discretizations, specifically, until a
convergent solution is found (or until the available discretizations are de-
pleted). The initial “minimum” discretization (fewest number of points)
is given by Nmin = max(32, 2log2(T )+1), Mmin = max(32, 2log2(T )+1). The
range of discretizations is N = Nmin, ..., 2 ∗Nmin, M = Mmin, ..., 2 ∗Mmin.
These values are cycled through in a two loop recursion incrementally in-
creasing by 4. The incremental increase (as opposed to a factor of 2 each
time) is to ensure that the discretizations do not get too large; a situation
which would eat up a gratuitous amount of computational time.

The solutions are always kept in a high resolution form and then the
rediscretization (truncation, if you would like to think about it in spa-
tiotemporal Fourier space) is applied at the beginning of each trial. This
ensures that we are not truncating and then interpolating, merely trun-
cating.

This helps convergence, but increases the computation time as the num-
ber of trials increases. This and other tuning efforts is the reason why I’m
still working on the 1 ×M sized tilings. The number of runs increasing
is taking a bit of time.
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(a) (c)

Figure 17.16: (a) Initial condition produced by taking defect and streak tiles,
padded them with zeros (spatiotemporally in a window-pane like fashion),
and then concatenating them. (b) The resulting spatiotemporal field after being
passed through adjoint descent. (c) The fully converged solution, defined on
x ∈ [0,≈ 19.67],t ∈ [0,≈ 20.84].

(a) (b)

Figure 17.17: (a) Initial condition produced by taking one defect and two streak
tiles, padded them with zeros (spatiotemporally in a window-pane like fash-
ion), and then concatenating them spatially. (b) The resulting spatiotemporal
field after being passed through adjoint descent. (c) The fully converged solu-
tion, defined on x ∈ [0,≈ 25.90],t ∈ [0,≈ 23.15].

So far, after tuning, (a fancy way of saying trial & error) all tile combina-
tions have been found when assuming no symmetries; again, the issue
lies in whether the final, converged solutions actually pertain to the sym-
bolic blocks in question.

Other than these tunings I’ve been getting back into improving the nu-
merical side of the code; just can’t seem to get enough of it.

The future work other than future tuning of the tiling; redoing the glu-
ing method (similar but not the same to tiling), more numerical methods,
working on the “average spectrum” initial conditions and “seeding” ini-
tial conditions, the latter is a process of embedding tiles (or blocks) in a
large spatiotemporal domain.

I’m hoping to get to either Kolmogorov flow or Navier-Stokes doubly
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(a) (b)

Figure 17.18: (a) Initial condition produced by taking a single defect, gap, and
streak tile, padded them with zeros (spatiotemporally in a window-pane like
fashion), and then concatenating them spatially. (b) The resulting spatiotem-
poral field after being passed through adjoint descent. (c) The fully converged
solution, defined on x ∈ [0,≈ 39.98] ,t ∈ [0,≈ 24.97].

(triply) periodic flows before I leave; I could probably start one of these
when tiling code is finished.

Instead of dwelling on continuous improvement/optimization of Kura-
moto-Sivashinsky code I’m going to try to move onto a harder problem
once the tiling code is exhausted.

I figure that my Kuramoto-Sivashinsky code can be used as a testing
ground for things that I need to implement for Kolmogorov/Navier-
Stokes doubly/triply periodic flows. I have most of the machinery as I’ve
tried to make the numerical methods as modular as possible. (Literally
just need to code Kolmogorov functions for the spatiotemporal function,
matrix vector product, transpose matrix-vector product, FFTs).

This is, of course, as long as Predrag deems this appropriate; it seems
premature because the paper isn’t done yet but I want to try my hand at
something new.

2019-08-06 Predrag What Predrag deems appropriate sounds like a broken record:
“The paper / thesis does not write itself” “The paper / thesis does not
write itself” “The paper / thesis does not write itself” “The paper / thesis
does not write itself” · · · “The paper / thesis does not write itself”

If you follow what is going on with kittens, the other finished project,
REALLY writing a readable, publishable paper, with publishable figures,
correctly referenced and proofread always takes at least 3 times longer
than one had planned, and in the process one discovers that there are
many things one believed one understood, but did not, really.

At this point I would ration my time to 2/3rds paper / thesis writing,
1/3rd new research.

2019-08-14 Matt Added tiling figures and description to tiles.tex demon-
strating how one can tile the spatiotemporal state space in a relatively
straightforward manner, how it links with symbolic dynamics. Need to
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figure out how to describe the false positives (i.e.finding solutions not
corresponding to original tilings).
Splitting numerical methods descriptions to motivate a much mroe in
depth discussion regarding global convergence properties, rates of con-
vergence, etc.

2019-08-15 Matt Trying to expand the numerical methods section to look more
professional by looking at global convergence and rates of convergence
proofs for Gauss-Newton methods such as in [32] but haven’t found any-
thing for adjoint descent. Other, more commonly implemented iterative
methods like GMRES [31] have papers on the convergence properties
such as [23] but they vary in how intelligible they are, at least to me. I
feel like perhaps the “adjoint descent method” from [9] is perhaps a pre-
viously derived method under a different name. Personally it seems too
effective and straightforward of a derivation (in the discretized case it’s
just a fictitious time derivative of the cost functional construction com-
prised of the L2 norm of the spatiotemporal “Feynmann equation” form
of the Kuramoto-Sivashinsky equation. It seems too straightforward to
have not been done before.
Starting a subsection of variational that discusses both the adjoint sensi-
tivity analysis of [33] and [2] and Hill’s formula from [3].

2019-08-19 Matt Hessian of the Kuramoto-Sivashinsky equation Lagrangian
take two. in variational.tex

2019-08-20 Matt Expand variational.tex via discussions regarding Hill’s
formula [3], formal Lagrangians [15, 17], adjoint equations, adjoint sen-
sitivity formulas, least squares shadowing refs. [2, 11, 21, 34, 37], calculus
of variations and variational integrators refs. [19, 25].

2019-08-21 Matt Variational.tex started to get too convoluted. Outline
stated here for writers benefit.

1. The point of transforming an IVP to a variational BVP
2. Introduction to variational notation and variational calculus?
3. cost functional and action functional
4. alternative to stability, sensitivity
5. adjoint sensitivity
6. least-squares shadowing
7. hill’s formula

Read [4] to add details regarding “least-norm optimization” problems

2019-08-22 Matt Still fixing variational.tex
I want to be able to apply [12] to the paper but I haven’t figured it out
yet; I think perhaps if I use [35] as a guide I can do it but will focus on
writing for now.
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2019-08-24 Matt Found [29] through references of [1] which really inspired
me to give Lie Group analysis of Kuramoto-Sivashinsky equation and its
(formal) Lagrangian another go. Wrote a Mathematica script to help in
this regard; Everything is matching up this time I just need a little more
time to finish it up.

This and a few other resources which I will add soon gave me some clar-
ity into the steps I was missing from papers such as [17]. There was just
a few details I needed help on and [29] did the trick I think.

In other news; I found a paper regarding a certain explicit transformation
that also applies to the Kuramoto-Sivashinsky equation I believe which
is possibly a different way to handle Galilean velocity in the spirit of
Predrag’s idea of matching tiles with said quantity varying. Details in
[26], the concept is that a generalized Kuramoto-Sivashinsky equation,
with addition of a forcing term, can be transformed back into the original
Kuramoto-Sivashinsky equation(by the same transformation they list for
KdV). The specific form of everything leads to the interpretation that the
forcing is due to the acceleration of the x axis. Which gives a transforma-
tion to an accelerating coordinate frame as implied by the section title of
the paper.

2019-08-26 Matt nonlinear transformation . From [26] The generalized Ku-
ramoto-Sivashinsky equation

ut + uxx + uxxxx + uux = ytt (17.41)

with notable time-dependent “forcing term” can be transformed back
to the original Kuramoto-Sivashinsky equation via the set of trans-
formations

t
′

= t

x
′

= x− y(t)

u(x, t) = u
′
(x
′
, t
′
) + yt′ (t

′
) (17.42)

back to the original Kuramoto-Sivashinsky equation in primed vari-
ables.
Galilean transformations are a specific example of this transforma-
tion as can be readily seen by the substitution y(t) = vt, v being the
Galilean velocity.

nonlinearly self-adjointness Following Ibragimov’s idea of nonlinear self
adjointness, i.e. set adjoint variable equal to some arbitrary function
of u and its derivatives and find solutions to the adjoint equation.
Unfortunately the only solution is the constant solution meaning
that both the “conservation law” from variational.tex is trivial
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and always satisfied so that the entire process is ostensibly worth-
less. The only saving grace would be to look for variational symme-
tries (symmetries of the Lagrangian itself as opposed to equations),
but [29] says that variational symmetries (of a Lagrangian) are al-
ways symmetries of the corresponding Euler-Lagrange equations,
but not vice-versa. Meaning, that we already have all symmetries of
the governing equations such that there are no alternative options.
It seems that the Kuramoto-Sivashinsky equation is just too simple
(in terms of symmetries) to benefit from this type of analysis. Note
that we did not investigate the role of parameters such as T and L
as thats not really the purview of this investigation.
In other words, this investigation that took quite a bit of time for me
to not only understand but implement in Mathematica bore no fruit.
In fact, there isn’t even a tree for said fruit.

2019-08-27 Matt Variational stuff copied from variational.tex

prv(4) = ε(x, t, u)
∂

∂x
+τ(x, t, u)

∂

∂t
+φ(x, t, u)

∂

∂u
+φt(x, t, u(1))

∂

∂ut
+φx(x, t, u(1))

∂

∂ux
+φxx(x, t, u(2))

∂

∂uxx
+φxxxx(x, t, u(4))

∂

∂uxxxx
,

(17.43)
because all other terms will annihilate when acting on the Kuramoto-
Sivashinsky equation. Note that the higher the order of the coefficient
the more terms it depends on due to the differentiation that takes place
in (??)
Now that we have the general form of the vector field we can begin to
derive the infinitesimal generators which span the Lie algebra. To accom-
plish this, we will derive the determining equations which are produced by
applying (??) to the system of differential equations and equating to zero,
that is

prv(4)(G(u(α)(x, t), u
(
(1)α)(x, t), . . . , u

(
(n)α)(x, t))) = 0 (17.44)

performing this operation yields the following equation

φt + φxx + φxxxx + uφx + φux = 0 . (17.45)

We finally are forced to derive the coefficients φJ and to include as many
details as possible we will write the exact formulas needed to derive them
as well as the long form expressions that they are equal to.

φt = Dt(φ(x, t, u)− ε(x, t, u)ux − τ(x, t, u)ut) + τ(x, t, u)utt+ ε(x, t, u)uxt

φx = Dx(φ(x, t, u)− ε(x, t, u)ux − τ(x, t, u)ut) + τ(x, t, u)utx+ ε(x, t, u)uxx

φxx = D2
x(φ(x, t, u)− ε(x, t, u)ux − τ(x, t, u)ut) + τ(x, t, u)utxx + ε(x, t, u)uxxx

φxxxx = D4
x(φ(x, t, u)− ε(x, t, u)ux − τ(x, t, u)ut) + τ(x, t, u)utxxx + ε(x, t, u)uxxxx(17.46)
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where Dt and Dx represent total differentiation operators,

Di =
∂

∂xi
+ ui

∂

∂u
+ uii

∂

∂ui
+ . . . (17.47)

the long form expressions from each of these are

φt = u2
t (−τu)− τtut − utuxεu − εtux + utφu + φt (17.48)

φx = −utτuux − utτx + u2
x (−εu)− uxεx + uxφu + φx (17.49)

φxx = −utu2
xτuu − 2utuxτxu − utτuuxx

− utτxx + u3
x (−εuu) + u2

xφuu

− 2τuuxuxt − 2uxtτx − 2u2
xεxu

+ 2uxφxu − 3uxuxxεu − uxεxx

− 2uxxεx + uxxφu + φxx (17.50)

φxxxx = −4utuxuxxxτuu − 3utu
2
xxτuu − 6utu

2
xuxxτuuu − utu4

xτuuuu

− 12utuxuxxτxuu − 4utu
3
xτxuuu − 6utu

2
xτxxuu − 4utuxτxxxu − 4utuxxxτxu

− 6utuxxτxxu − utτuuxxxx − utτxxxx − 12uxuxtuxxτuu

− 15uxu
2
xxεuu − 6u2

xuxxtτuu − 10u2
xuxxxεuu + 4uxuxxxφuu

+ 3u2
xxφuu − 4u3

xuxtτuuu − 10u3
xuxxεuuu + 6u2

xuxxφuuu

+ u5
x (−εuuuu) + u4

xφuuuu − 12u2
xuxtτxuu − 12uxuxtτxxu

− 12uxuxxtτxu − 16uxuxxxεxu − 24u2
xuxxεxuu + 12uxuxxφxuu

− 4u4
xεxuuu + 4u3

xφxuuu − 18uxuxxεxxu − 6u3
xεxxuu + 6u2

xφxxuu

− 4τuuxuxxxt − 4uxxxtτx − 4u2
xεxxxu + 4uxφxxxu − 5uxuxxxxεu − uxεxxxx

− 4uxxxxεx − 12uxtuxxτxu − 4τuuxtuxxx − 4uxtτxxx

− 12u2
xxεxu + 4uxxxφxu − 6τuuxxuxxt − 6uxxtτxx

+ 6uxxφxxu − 10uxxuxxxεu − 6uxxxεxx − 4uxxεxxx

+ uxxxxφu + φxxxx (17.51)

upon substitution into (17.45) we can separate the terms by coefficients
of monomials which gives us the determining equations as previously
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mentioned

φt + φxx + φxxxx = 0
−4τx = 0
−6τxx = 0

−2τx − 4τxxx = 0
−4εx + τt + τxx + τxxxx = 0

4φxu − 6εxx = 0
−4τu = 0
4τxu = 0

−2εx − 4εxxx + τt + τxx + τxxxx + 6φxxu = 0
−6τu = 0
−12τxu = 0
6τxxu = 0

4τxu − 10εu = 0
−12εxu + 6τxxu + 3φuu = 0

3τuu = 0
3τuu = 0

φ− εt − εxx − εxxxx + 2φxu + 4φxxxu = 0
−4τu = 0
−12τxu = 0

−2τu − 12τxxu = 0
−4εu + 2τxu + 4τxxxu = 0

4φuu − 16εxu = 0
4τuu = 0

−2εu − 18εxxu + 2τxu + 4τxxxu + 12φxuu = 0
−12τuu = 0
12τxuu = 0
4τuu = 0

12τxuu − 15εuu = 0
−2εxu − 4εxxxu + φuu + 6φxxuu = 0

−6τuu = 0
−12τxuu = 0

(17.52)
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τuu + 6τxxuu = 0
−10εuu = 0

−24εxuu + τuu + 6τxxuu + 6φuuu = 0
6τuuu = 0
6τuuu = 0

−εuu − 6εxxuu + 4φxuuu = 0
−4τuuu = 0
4τxuuu = 0

4τxuuu − 10εuuu = 0
φuuuu − 4εxuuu = 0

τuuuu = 0
τuuuu = 0
−εuuuu = 0
φx = 0
τx = 0
τx = 0

−εx + τt + τxx + τxxxx = 0
4τxu = 0
6τxxu = 0
3τuu = 0

2τxu + 4τxxxu = 0
4τuu = 0

12τxuu = 0
τuu + 6τxxuu = 0

6τuuu = 0
4τxuuu = 0
τuuuu = 0
τx = 0

While initially intimidating, these equations can be solved by noticing
the lower order equations such as τx = τu = 0 which means that τ can
only be a function of t. Following this reasoning we find that in fact

τ(x, t, u) = τ = c1

ε(x, t, u) = ε(t) = c3t+ c1

φ(x, t, u) = φ = c3 (17.53)

such that the Lie algebra of infinitesimal symmetries is spanned by

v1 = ∂x

v2 = ∂t

v3 = t∂x + ∂u (17.54)
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which are the generators of space and time translations as well as Galilean
transformations. This is not surprising as these symmetries are well known
[5] but we need to know the prolongations of (17.54) and their extensions
to the adjoint variables present in (??).

The prolongations of (17.54) results in

prv1 = y1 = ∂x

prv2 = y2 = ∂t

prv3 = y3 = ∂x + ∂u − ux∂ut . (17.55)

We can now derive the extended versions of (??) such that we can apply
them to the formal Lagrangian (??) Once again we follow the machinery
of Ibragimov to extend (17.55) to the adjoint variables. Unfortunately it
seems that the symmetries were too simple to actually have extensions to
the adjoint variables, but we can still go forward with the conservation
law calculations regardless. Both [12] and [29] both work through the
proof that there is a conserved vector (as Ibragimov calls it) such that its
divergence provides a conservation law (technically infinite number of
conservation laws because they are equations involving PDE solutions).
The components of the conserved vector (one for each independent vari-
able) are given by

Ci = ξiL+Wα[
∂L
∂uαi
−Dj

∂L
∂uαij

+DjDk
∂L
∂uαijk

−+DjDkDl
∂L
∂uαijkl

]+Dj(W
α)[

∂L
∂uαij
−Dk

∂L
∂uαijk

+DkDl
∂L
∂uαijkl

]+DjDk(Wα)[
∂L
∂uαijk

−Dl
∂L
∂uαijkl

+DkDj
∂L
∂uαikj

−+DkDjDl
∂L
∂uαikjl

]+DjDkDl(W
α)[

∂L
∂uαijkl

] ,

(17.56)

where the equation has been extended to include all possible non-zero
terms in the context of the Kuramoto-Sivashinsky equation, Wα is short-
hand for φα + ξiuαi . Applying this to our generators yields one unique
conservation law which we shall now detail.

For the Galilean transformation generator prv3 = t∂x + ∂u − ux∂ut the
components equal

Cx = t ∗ L+W [
∂L
∂ux

−Dx
∂L
∂uxx

−D3
x

∂L
∂uxxxx

]

+ Dx(W )[
∂L
∂uxx

+D2
x

∂L
∂uxxxx

]

+ D2
x(W )[−Dx

∂L
∂uxxxx

]

+ D3
x(W )[

∂L
∂uxxxx

]

Ct = 0 ∗ L+ (1− tux)[
∂L
∂ut

] (17.57)

which both simplify to
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Cx = t(utv + uxvx + uxvxxx + uxxxvx + uxxvxx) + uv − vx − vxxx
Ct = vt − vux − uxvtt (17.58)

such that the conservation law is given by the divergence

Dx(Cx) +Dt(C
t) = 0

= vt − vux − uxvtt+ uvx + vux − vxx − vxxxx
+ t(vx(ut + uxx + uxxxx) + ux(vxx+ vxxxx) + 2Dx(uxxvxx))

= t(vx(ut + uxx + uxxxx) + ux(−vt + vxx + vxxxx) + +2Dx(uxxvxx))

= 2Dx(uxxvxx) . (17.59)

where multiple times we have substituted one of the equations from (??).

The conserved quantity
Dx(uxxvxx) = 0 (17.60)

Or upon integration (note: there is implicit time dependence)

uxxvxx = y(t) (17.61)

Following the analysis of Burgers’ equation and the prescription of [17]
we find an alternative form of the Lagrangian for the Kuramoto-Sivashin-
sky equation to be

There are various choices for For instance, if upon substitution v = u
into the adjoint equation reproduces the original equation, the equation
is said to be self-adjoint. Introduced in [15] there are the notions of self-
adjoint, quasi-self-adjoint and nonlinearly-adjoint equations.

2019-08-27 Matt I was being stubborn and had an idea regarding the varia-
tional stuff. I thought the adjoint variable v(x, t) = u(−x,−t) = RxRtu(x, t)
given by space and time reflections would solve the adjoint equation as it
would flip the sign on the single derivative times but after wasting some
time I realized this type of answer could never work due to the presence
of u(x, t) in the adjoint equations. In other words, I would retrieve some-
thing very close to the Kuramoto-Sivashinsky equation but not exactly it;
therefore not being an answer.

2019-08-29 Matt Investigations into the rate of convergence of the adjoint de-
scent method and just adjoint methods in optimization in general have
lead to the revelation that the adjoint descent method, when applied to
my spatiotemporal problem at least, is merely the steepest descent algo-
rithm applied to the cost functional L = 1/2||F ||2.

The derivation was written in adjointdescent.tex. This means that
there should be room for numerical improvements.
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2019-09-09 Matt Crunch time as the September 30th deadline is fast approach-
ing

Focusing on expanding the writing in trawl.tex, tiles.tex,glue.tex
(the results basically).

I wish I had more time because my codes need to be refactored yet again
because they are simply getting too large and convoluted; I began the
process but the shift is so large I am keeping all records of my work on
github and trying to keep this as a tertiary, weekend job.

The goal is to completely revamp the project (and as a symbolic action I
am going to rename the project to “torihunter”.) to be much more object
oriented. Currently it takes a rather intimate knowledge of the package
to be able to write scripts, and it is also specific to the Kuramoto-Siva-
shinsky equation. By switching to object oriented programming, a gen-
eral “Torus” class can be instantiated such that instead of using specific
functions, general class methods can be used (basically the way to go
about it is to pass functions as a class method. The general idea is that
we should be able to pass any Jacobian and spatiotemporal function and
have the numerical methods work, not just ones specific to the Kuramo-
to-Sivashinsky equation). The manner by which to pass spatiotemporal
symmetry constraints (on the Fourier modes, I mean) is to have this built
into the functions themselves.

2019-09-11 Matt Writing and running scripts which quantify the dependence
on the size of the spatiotemporal discretization. Specifically I’m going to
do two things. Produce plots that demonstrate the rate of convergence
depending on N,M for various L, T . Also, for some given initial con-
ditions known to converge at Ñ , M̃ , investigate the rate of convergence
for Ni,Mi < Ñ, M̃ , to see if this informs us on how to minimize N,M .
This information will go into trawl.tex as it is regarding the finding of
solutions.

2019-09-12 Matt Migrated variational.tex Ibragimov stuff to
LieGroupAnalysis.tex More trawl.tex edits, more work on
convergence_rate.py to produce analyses on discretization sizes.

2019-09-23 Matt Got lost in the weeds trying to see if I could apply machine
learning to find the “faces” of the Kuramoto-Sivashinsky equation. Specif-
ically, “Gabor wavelets” (just a modulated Gaussian in two dimensions)
[22] can be used as image processing filter and pick out “features” which
can be applied to facial recognition [24].

Started to write ideas relating the spatiotemporal continuation methods
to demonstrate how useful they are in the plumber’s world. The basic
benefits are

1. Reynolds number continuation to compare and reproduce data
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(a) (b)

Figure 17.19: (a) Invariant 2-torus converged in full state space purported to
be symbolic block 1012 (spatial sequence). (b) Local maxima peak detection of
(a) using skimage package.

2. Domain size continuation to compare and reproduce data

3. Geometry continuation? (maybe? likely very very ill conditioned)

4. Able to transform data to match experiments. Idea is that one of the
most common things to change in experimental setup is the size of
spatial domains.

5. Being able to analyze the full spatiotemporal state space of all pa-
rameter values (as dictated by equations) instead of mistaking a tree
for the forest.

2019-09-23 Matt Further investigation into image processing in the spirit of
facial recognition of the “faces” of the Kuramoto-Sivashinsky equation.
There are of course many many things to take into account but the main
goal of this was to create a way to detect tiles embedded in shadowing
orbits. Partial success so far; although features can be detected I haven’t
figured out a way to classify them numerically; I have a good idea for
how to do so manually however.

If one takes any solution to the Kuramoto-Sivashinsky equation, invari-
ant 2-torus or otherwise; and passes it through a image processing rou-
tine which picks out the local maxima based on image data alone (easier
that making mistakes and trying to implement by hand, using skimage
Python package). This produces figure 17.19 which demonstrates what
picking out the local maxima would look like. The results (with these pa-
rameters, to be specific) are quite striking. Recall that we’re using these
methods to detect features which correspond to tiles. It appears in fig-
ure 17.19(b) that streaks are represented by, well, streaks. New streaks
however leave a signature of an upwards facing pitchfork, while mergers
are represented by downward facing pitchforks (in this case there is an
example of an “imperfect pitchfork” like from bifurcation theory). There
is a thick wishbone type shape which represents a gap and an annulus

7451 (mgudorf3–6799) 70303/12/2019 siminos/spatiotemp/chapter/blogMNG19.tex



CHAPTER 17. MATT’S 2019 BLOG

Figure 17.20: (a) Feature detection “ORB” routine applied to figure 17.19(b).

on the left side on the domain which appears to represent either a hook
(member of the merger tile family) or another gap; this is hard to distin-
guish because of boundary effects.

The reason why these features are useful is because we can categorize
all members of the tile continuous families with one distinct shape even
more distinct than the color coded tiles. Using these shapes as indicators,
I believe we may confidently say that this tile is not a representation of
the spatial sequence 1012 as previously believed. Venturing a guess; this
is a much more complicated such as

M =

 0 0 0 0 0 0 0
2 2 2 2 0 0 0

0 1 0 1 0 0 00 0 0 0 0 0 0

 (17.62)

but this is a quick guess.s

Let us assume that these categorizations using new codes are valid; how
do we use them? Luckily for us there is already code which can be used
for feature detection; that is, it picks out features in images that are robust
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(a)

Figure 17.21: The “detected” points indicating features in the image data
(without parameter tuning)s.

under affine transformations and scalings (they can be detected before
and after the transformation, that is).

A beginner’s level application of the feature detecting routines provides
at least some “detections” around the key features described previously
(upward/downward pitchfork, streaks, etc.). This can likely be tuned to
reduce the number of detections of streaks; this is desireable because if
we find the number (and location) of gaps and mergers, we can fill out
the rest of the invariant 2-torus with streaks.

The .png files used in figure 17.19 are kept as large files for future use,
as these methods directly use image data.

2019-10-11 Matt I tried to derive a clean result for the spatiotemporal Kuramo-
to-Sivashinsky equation which follows the course of action of Predrag’s
stability derivation but the results are inconsistent with the stability prop-
erties of the tests performed with L = 22 orbits with well known stability
properties.

I will walk through the derivation now and hopefully someone can tell

7451 (mgudorf3–6799) 70503/12/2019 siminos/spatiotemp/chapter/blogMNG19.tex



CHAPTER 17. MATT’S 2019 BLOG

me where I have gone wrong. I work in spatiotemporal Fourier space be-
cause not only is it most familiar but also I wanted to investigate spatial
stability as well. We begin with the analog of the vector p̂ which instead
of a collection of state-space points we have a finite dimensional repre-
sentation of the infinite dimensional scalar field u(x, t) in spatiotemporal
Fourier space. I will label the spatiotemporal modes by ũkj , k for space
and j for time. I’m using the convention u(xm, tn) ≡ un for time indices
to simplify the expressions. We can use an analog of the multishooting
difference function F (20.4).

F (û) = û− g ◦ (û+ v(û)δt) (17.63)

Put very simply, this maps the field, reorders it, and then subtracts it
from the original. The indices for both terms are now the same thanks
to the rotation; there are implied indices which correspond to xm and
tn The reason that I pursued a form was because I thought that I could
make a block diagonal if not diagonal form. My original error was that
I thought I could make use of the spectral differentiation operator ût =∑
k,j iwj

ˆ̃uk,je
i(wjtn+qkxm). This is equivalent to multiplication by a diago-

nal matrix whose diagonal is k copies of iwj . The problem with this is that
yes; it produces the exact same velocity field ut = −uxx−uxxxx−uux but
the linearization is not at all the same and as such gives us a nonsensical
Jwhich doesn’t even depend on ũ. This was clearly wrong; substitution
of ut = −uxx − uxxxx − uux yields

F (û) = ũk,j − expiwjδt(ũk,j + [(q2
k − q4

k)ũk,j + iqk
2 F(F−1ũk,j)

2](δt)) .
(17.64)

The nonlinear term has been written in a pseudospectral manner; F rep-
resents the spatiotemporal Fourier transform operation (a linear opera-
tor) For the linearization of (17.64) we have a different expressions in-
stead of f ′k

∂F

∂ũ
= 1− g ◦ (1 +Aδt) (17.65)

where
A =

∂vkj
ũk′j′

= (q2
k − q4

k) + iqkFdiag(û)F−1 (17.66)

A quick comparison with Predrag’s derivation to ensure that we aren’t
completely wrong; the permutation matrix σ in Predrag’s derivation is
a circulant matrix; one property of such matrices is that they are diago-
nalized by Fourier transforms. Therefore, the rotation, which is a ma-
trix with the characters of CN on the diagonal (repeated for each spa-
tial mode) is exactly σ in a Fourier basis. The other term is slightly less
easy to compare. By using a spatiotemporal Fourier basis there is no no-
tion of having separate state space points parameterized by time; instead
there is a |p|d dimensional vector of spatiotemporal Fourier modes. In-
stead of having a block diagonal expression (20.7) I instead have a single
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[|p|d × |p|d] dense matrix (almost all elements are non-zero). Now, I am
fairly certain that this is the Fourier transform of (20.7). 5 am having trou-
ble with the practical application of this expression however. Perhaps I
do not understand this derivation as fully as I had thought and or how
to use it. Firstly, I thought that this would lead to the block diagonal rep-
resentation as it has the characters of CN built right into the definition.
The problem lies in the details of A. In Fourier space, the linear term is
diagonal and the nonlinear term is dense (almost all matrix elements are
non-zero); these properties are reversed in configuration space, such that
regardless of basis the result won’t be block diagonal. It might be that
I am misunderstanding Predrag’s post and that is only the case in his
example and not for the Kuramoto-Sivashinsky equation.
The only place where I think I could be wrong is the attempt to apply
this machinery to the spatiotemporal Fourier basis instead of the time pa-
rameterized spatial Fourier modes. The reason why I might be wrong is
because I skipped over the important detail which is exactly what am I cal-
culating the stability of?. This seems like a dumb question because the sta-
bility of invariant 2-tori is what we known we’re trying to do; but I can’t
help but shake the feeling that I am looking at the stability of spatiotem-
poral modes with respect to time “evolution” while Predrag’s equation
determines the stability of spatial modes with respect to time evolution.
I’m starting to think that only Predrag’s way makes sense.

2019-10-11 Matt stability calculation comparision Verified that my calculation
is indeed the same as Predrag’s just in the spatiotemporal Fourier
basis. That is, the matrix that I calculate is equal to the following,

J̃ = 1− g ◦ (1 +Aδt)

= 1− (FσF−1) ◦ (FJF−1) , (17.67)

which is simply Predrag’s original expression transformed to the
spatiotemporal Fourier basis. This indicates that instead of having
the wrong equation, I am instead making an error in the calculation
process which relates J and 1− σJ .

n-cycle stability relation Following the notation of chapter 20, define
the one time step cycle rotation as J = (1 − σf ′) such that for an
n-cycle we have Jp = J n = (1 − σf ′)n. We want to prove that
DetJp = det (1− Jp), where Jp = (σf ′)n.
Start by rewriting the binomial expansion of (1− σf ′)n.

Jp = (1− σf ′)n

=

( ∑n
k=0(n

k)(−1)n−k(σf ′)k

)
=

(
(1− Jp) +

∑n−1
k=1(n

k)(−1)n−k(σf ′)k .

)
(17.68)

5Matt I mean FAF−1 when I say “Fourier transform” of a matrix: I
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Note that f ′ is a diagonal matrix with f ′k as its entries and σ is the
shift matrix (20.7) such that (σf ′)k has no diagonal entries unless
k = 0, n. Therefore the second term does not contribute to the trace.
With this knowledge we can apply the identity det eA = etrA such
that

Det eJp = etrJp = etr (1−Jp) = det e1−Jp (17.69)

which I believe concludes our business.
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Chapter 18

Matt’s 2020-22 blog

2020-01-14 Predrag meeting notes:

Restart of editing tiles/current/GuBuCv17.tex

1. Matt will have a go at editing the current spatiotemp/chapter/abstract

2. Matt wrote down bullet points for introduction section
1. paragraph - great things already done, but [...]!
2. paragraph - Revolution!
3. to be discussed Thursday

3. spatiotemp/chapter/intro
tiles/current/intro
here just for ideas - a copy of old
siminos/rpo_ks/current/intro.tex, remove once mined for ideas

4. For inspiration / discussion: Predrag’s outline
siminos/presentations/spatiotemp/spatiotemp.tex

2020-01-16 Predrag meeting notes:

1. Matt bullet points for introduction section
4. paragraph - What?

(a) Kuramoto-Sivashinsky, rather than Navier stokes
(b) invariant 2-torus tiles (transl. inv)
(c) gluing

5. paragraph - How?
6. to be discussed Tuesday

2020-1-23 Matt meeting notes:

1. Matt bullet points results section
7. paragraph - results

(a) The results of creating library of solutions
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(b) The results from clipping tiles
(c) The results from gluing

8. paragraph - discussion

(a) (Don’t know) How to account for rubber tiles
(b) Don’t have a systematic method of gluing
(c) Haven’t developed either the symbolic dynamics nor the spa-

tiotemporal theory.

2020-01-15 Matt Introduction 2020-01-15 text moved to spatiotemp/chapter/intro.tex,
pdflatex GuBuCv17

Revolution WHY? 2020-01-15 text moved to spatiotemp/chapter/intro.tex,
pdflatex GuBuCv17

What is needed in the revolution?

How does the revolution take place?
1

2020-1-31 Matt WHY: reasons for a spatiotemporalformulation

Need new, bold ideas In light of all of these difficulties we believe that
new, bold ideas are required to resume forward progress. Specif-
ically, we have begun a completely spatiotemporal formulation of
chaos which treats all continuous dimensions democratically. The

1Matt 2020-01-20: [Introduction]

The problem at hand

ECS are important

Minimal cells

Hard to visualize, use KSE

Large is too hard, new approach

Chaotic or turbulent processes categorize one of the few outstanding problems to be solved in clas-
sical physics. While deterministic, the complexity of the problem can be categorized by infrequent
or lack of analytic results. It is often necessary to rely on models which capture the important
quantitative properties and behavior of the underlying process. These models often take form
as nonlinear partial differential equations which are hyperbolically unstable. The systems whose
spatial correlations decay sufficiently fast, and the attractor dimension and number of positive Lya-
punov exponents diverges with system size are said [2, 19, 26] to be extensive, ‘spatio-temporally
chaotic’ or ‘weakly turbulent.’ The Lyapunov exponents or equivalently the exponential instabili-
ties they quantify prevent prediction of future behavior outside a finite time interval. This behavior
is so peculiar that it has permeated into popular culture, where it is known as the butterfly effect.
This behavior poses a serious challenge which has effects everything from weather prediction to
air travel. While there is no specific reason other than the difficulty for why this problem remains
unsolved, the intricacies of turbulence are typically swept under the rug of “good enough” mod-
els which allow for suboptimal but sufficient engineering solutions. The lack of forward progress
motivates us to approach turbulence with a new perspective, one that treats all continuous dimen-
sions equally.

03/12/2019 siminos/spatiotemp/chapter/blogMNG.tex712 7451 (mgudorf3–6799)



CHAPTER 18. MATT’S 2020-22 BLOG

main idea is to discard the idea of a dynamical system completely;
exponential instabilities mean that conventional methods never could
have worked. By converting to a truly spatiotemporal formulation
we have discarded dynamics and the inherent difficulties therein.
This allows us to quantify and characterize infinite space-time via
shadowing of fundamental spatiotemporal patterns.

Treat each dimension equally Conventional methods treat spatial dimen-
sions as finite and fixed; meanwhile, time is treated as infinite. One
interpretation is that this is natural due to the human familiarity
with finite space, especially in regards to experimental setups. This
assumption is actually a very unnatural one in the context of state
space. The fundamental reason for this is that it disregards the
translational invariance of the equations and while there are implicit
physical scales, choosing a specific domain size to study is com-
pletely arbitrary. This notion must be reconsidered going forward
as it is a very strict constraint on the space of solutions and on the
study of turbulence in general. Finite spatial dimensions of course
have practical import, but these specific constraints should only be
imposed after the study of infinite space-time, as they represent spe-
cial cases of the general equations. The spatiotemporal formulation
handles this properly by treating all continuous dimensions as equal
by respecting all translational symmetries. What are the differences
and advantages of this? The first key difference is that the govern-
ing equation dictates the spatiotemporal domain size in an unsu-
pervised fashion; the decision of what specific domain size to study
is no longer present in the discussion. This is another manner in
which time and space are being treated as equals; the parameters
(L, T ) that determine the size of the spatiotemporal domain are both
allowed to vary. The values of these parameters are determined by
the requirement that the equations must be satisfied locally at every
lattice site. This small detail, allowing the domain size L to vary,
is not as trivial as it seems. At present it has not been seen in the
dynamical systems literature. The variation of the period T is com-
mon, however. The likely culprit behind this different treatment is
likely a result of the equations themselves. This difficulty is espe-
cially evident in the Kuramoto-Sivashinsky equation, whose spatial
derivative terms are of higher order than the first order time deriva-
tive, but also there is a spatial derivative present in the nonlinear
component.

describes infinite spacetime

No instability

characterize and quantify all patterns

tiles invariant?

simply can’t use conventional methods in large limit
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domain size determined by equation

Spacetime computations are easier to parallelize

beats conventional methods numerically • initial conditions The con-
ventional method to generate initial conditions involves time
integration and recurrence functions, the latter simply calcu-
lates the pairwise distance between all points in a time inte-
grated series.In the high dimensional limit, both of these com-
ponents are time consuming. This is yet another component of
the dynamical systems formulation that gets worse as spatial
sizes increase. There are two detrimental factors that contribute
towards this. The number of dimensions must increase in or-
der to accurately resolve the domain. The other factor is that
the growth of complexity of solutions can reduce the number
of recurrences drastically. There isn’t really a manner to deal
with the increasing number of computational variables other
than to wait for improvements in computing power and mem-
ory availability. As for the recurrences, the typical solution for
increasingly rare events is to compute in parallel when possible.
The exponential growth in complexity makes even this proposi-
tion a daunting one. The spatiotemporal completely avoids this
by constructing larger invariant 2-tori from the combination of
smaller invariant 2-tori. That is, we locate the fundamental tiles,
which are easy to find due to their small domain size, and then
build them up to create larger invariant 2-tori. The only search
required is the search for the fundamental tiles. To stress this
even further one of the challenges of turbulence computations has
been eliminated. The reason why the search for the fundamen-
tal tiles is classified as “easy” is because in the small domain
size limit there just aren’t that many invariant 2-tori; the dy-
namics is relatively simple. Recurrence functions also require
the introduction of a norm, typically chosen without taking the
geometry of the state space into account. Points that are close
in this norm can be far apart in a dynamical sense (i.e., on op-
posite sides of an unstable manifold). An arbitrary norm is also
chosen in the spatiotemporal context but there are some subtle
differences. For starters, the norm introduced in the spatiotem-
poral formulation is not beholden to dynamics, as there are no
longer any dynamics to speak of. Additionally, the norm in the
spatiotemporal case measures the distance between invariant 2-
tori, not just single state space points. This is not a statement of
proof but rather a suggestion that the underlying topology im-
proves the reliability of the chosen norm. Restated in a differ-
ent manner, the spatiotemporal norm takes both the magnitude
and phase into account. Another numerical advantage is that
the spatiotemporal formulation is able to find solutions of the
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Kuramoto-Sivashinsky equation starting from modulated ran-
dom noise. The specifics of “modulated random noise” are de-
scribed in the numerical methods section but it can essentially
be thought of as randomly assigning values to spatiotemporal
Fourier modes. The ability to find solutions from this starting
point is a radical improvement over the conventional capabil-
ities. This is of course in conjunction with allowing the spa-
tiotemporal domain to change. The reaction to these changes in-
dividually has induced skepticism and disbelief; together they
comprise a completely unheard of force.

• no instability
• generalizable
• many newfound capabilities
• memory, parallelizability.

The spatiotemporal formulation also includes the improvement of a com-
monly practiced numerical method known as pseudo-arclength continu-
ation. The general idea is to track a solution as a parameter is varied. In
the Navier-Stokes equations this is typically the Reynolds number. The
improvement is due to our common refrain: the lack of dynamical insta-
bility and the topological constraint of invariant 2-tori. There can be more
confidence that if the continuation fails it is due to the solution not exist-
ing rather than not being able to converge due to dynamical instability.

2020-01-31 Matt WHAT?

KSe N-S comparison As previously stated, the testing grounds for these
ideas will be the spatiotemporal Kuramoto-Sivashinsky equation

ut + uxx + uxxxx + uux = 0 where x ∈ [0, L], t ∈ [0, T ] (18.1)

where u = u(x, t) represents a spatiotemporal velocity field. This
equation has been used to model many different processes such as
the laminar flame front velocity of Bunsen burners. This was chosen
as the testing ground for our ideas because it has a two dimensional
space-time and has many similarities to the Navier-Stokes equa-
tions. It is useful to relate the terms between the two equations via
the physical processes that they represent even though these pro-
cesses aren’t The numerical challenge is to find discretized velocity
fields u(x, t) ≈ u(xm, tn) which satisfy the Kuramoto-Sivashinsky
equation locally at every lattice site.

2-tori, translational invariance, Fourier The translational invariance and
periodicity make spatiotemporal Fourier modes the natural repre-
sentation of our equations. The inherently infinitely dimensional
equations are approximated by a Galerkin truncation of the spa-
tiotemporal Fourier modes. The velocity field u(xm, tn) with xm =
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mL
M and tn = nT

N can be described by a set of spatiotemporal Fourier
coefficients, represented as a vector û. The indices which indicate
the spatiotemporal frequencies each mode represents are withheld
as computational details that would only bog us down at this stage
of the discussion. The Kuramoto-Sivashinsky equation (18.1) in terms
of the Fourier coefficients û is a system of differential algebraic equa-
tions û

F (û, L, T ) ≡ (ωj − q2
k + q4

k)û+
qk
2
F(F−1(û)2) . (18.2)

The nonlinear term is computed in a pseudospectral fashion: a method
which computes the nonlinear term as a product in physical space as
opposed to a convolution in spectral space. The definitions of each
term is as follows; F and F−1 represent the forward and backwards
spatiotemporal Fourier transform operators. Spatial and temporal
derivatives are calculated (most efficiently) by element-wise multi-
plication with the appropriate power of the appropriate frequency
vector. Differentiation can be alternatively viewed as the “lattice-
wise” multiplication of the Fourier modes and a lattice of frequen-
cies (this is sometimes referred to as the Hadamard product or Schur
product).

Optimization problem

find library

large to small

small to large

This attempt to overthrow the status quo includes multiple techniques
and methods that have not yet been witnessed in the literature. The nov-
elty of these methods result in newfound capabilities, which in turn allow
for new analyses. The utility and important properties of these methods
will be detailed later but we provide a preview here.

In this formulation we describe turbulence not as a series of temporal
snapshots but rather as a collection of spatiotemporal patterns. This for-
mulation is unconventional but appeals to our intuition; an example of
spatiotemporal patterns would be weather phenomena from the benign
clouds to deadly hurricanes. Although they technically represent movies,
we treat space and time as equally as possible by referring to these ob-
jects as spatiotemporal patterns. The claim is that when the laws of mo-
tion have several commuting continuous symmetries (time-translation
invariance; space-translation invariance), all continuous symmetries di-
rections should be treated democratically, as (1+D) different ‘times’. The
proposal is inspired by the Gutkin and Osipov [16] modelling of chain
of N coupled particle by temporal evolution of a lattice of N coupled
cat maps. Specifically, we propose to study the evolution of Kuramo-
to-Sivashinsky on the 2-dimensional infinite spatiotemporaldomain and
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develop a 2-dimensional symbolic dynamics for it: the columns coding
admissible time itineraries, and rows coding the admissible spatial pro-
files. We already have the two edges of this symbol plane - the L = 22
minimal cell [3, 22] is sufficiently small that we can think of it as a low-
dimensional (“few-body” in Gutkin and Klaus Richter [8–11] condensed
matter parlance) dynamical system, the left-most column in the Gutkin
and Osipov [16] 2D symbolic dynamics spatiotemporal table (not a 1-
dimensional symbol sequence block), a column whose temporal sym-
bolic dynamics we will know, sooner or later. Michelson [27] has de-
scribed the bottom row. The remainder of the theory will be developed
from the bottom up, starting with small spatiotemporal blocks.

The first step required to construct our spatiotemporal theory is to col-
lect a library of invariant 2-tori. There are infinitely many such solutions
but our search does not need to be exhaustive, it only has to provide
an adequate sampling of the solution space. The notion of “adequate”
is an inexact one, broadly speaking, it consists of collecting invariant 2-
tori of various size and symmetry types until all unique patterns have
been accounted for. Using this library the fundamental patterns will be
determined by their frequency in the library. It is possible to miss a spe-
cific pattern but this is an indication that it is not fundamental and in all
likelihood does not account for any substantial porti An example of this
would be an isolated invariant 2-torusin state space. It may have unique
properties but it doesn’t get shadowed frequently enough to influence
the infinite space-time behavior. The search ranges over all types of sym-
metries; the shadowing events within the symmetric solutions are not
symmetric themselves hence they may represent fundamental tiles. This
is important especially for relative periodic orbits as they may contain
tiles whose local spatial drift is non-zero.

By definition shadowing is not the exact realization of a invariant 2-torus;
it is a “fuzzy window” which represents a local region of space-time that
is in the proximity of the invariant 2-torus in question (in some norm). As
the size of the shadowed invariant 2-torus increases, so does the accuracy
of the shadowing region. that is, away from the boundary, the shadowing
becomes exponentially more accurate.

Once a satisfactory library has been created, the search for tiles can begin.
Visual inspection of the library of invariant 2-tori (enabled by the ease
of visualization) helps develop an intuition as to which patterns repre-
sent fundamental tiles. The tiles by our definition are subdomains which
shadow large invariant 2-tori. It should be intuitive, therefore, to search
for these tiles by numerically “clipping” them out of the larger invariant
2-tori. This amounts to extracting sub-lattices from the larger invariant
2-torusṪhis process is straightforward and intuitive; at least in the con-
text of a numerical method that can converge initial conditions that are
periodic in neither space nor time. These clippings are clearly not in-
variant 2-tori so they need to be run through the same numerical meth-
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ods that were used to converge the original invariant 2-torus from which
they originated. A successful outcome is not guaranteed; this is likely a
numerical property and not indicative of the importance of the tile. The
number of attempts to converge a tile should be proportional to its fre-
quency in our library. If a suspected tile repeatedly fails to converge then
either it is not a tile or it is not a minimal tile but a component of one;
this latter hypothesis would be evidenced by common occurrence of the
suspected tile with another pattern.

The next portion of the overarching spatiotemporal method assumes that
not only a large number of invariant 2-tori have been found but also
a handful of tiles. The idea is to use these solutions as spatiotemporal
building blocks in order to find new solutions. Going even further, the
eventual goal is to create a spatiotemporal symbolic dynamics wherein
the tiles are the alphabet. If this can be done then all solutions are the-
oretically enumerable by spatiotemporal symbol blocks. This symbolic
dynamics has not been constructed as of yet but it is worth mentioning
as it serves as the overarching motivation. This method of “gluing” so-
lutions by combining them in space-time presents not only a very attrac-
tive method for describing invariant 2-tori through fundamental physical
behaviors but also for constructing initial conditions to find arbitrary in-
variant 2-tori. This method in theory constitutes an improvement over
both the dynamical systems formulation as well as our own search using
“random” initial conditions. This improvement results from the ability
to produce better initial conditions for our spatiotemporal searches. The
proof of concept for this method was the reproduction of a known solu-
tion by gluing together tiles.

After the detailing and application of these methods we will have a col-
lection of fundamental tile solutions. With these tiles we layout out case
that infinite space-time can be described by these tiles. In addition, we set
the stage for how the investigation can process in a systematic manner.

2020-1-31 Matt The formulation of the spatiotemporal theory is dependent upon
three main numerical processes; finding invariant 2-tori of arbitrary do-
main size, cutting out tiles from these invariant 2-tori, and gluing the
tiles together. The first of these procedures requires the solving of the
optimization problem

There are many ways to solve this type of problem but before we can
begin solving the equation we need a method of generating initial condi-
tions. As previously discussed, this work does not use approximate re-
currences; or time integration at all, to generate initial conditions. Instead
we simply initialize a lattice of Fourier modes by first deciding on the di-
mensions of the lattice and then assigning random values to the modes.
Random values in this case are drawn from a normal distribution. The
Fourier spectrum is then rescaled to better represent the physical scales
of the Kuramoto-Sivashinsky equationand typical field magnitude of in-
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variant 2-tori. This modulation of the spectrum is determined by two
factors: the smoothness of spatiotemporal solutions and the linear sta-
bility profile of the Kuramoto-Sivashinsky equation. The smoothness or
differentiability combined with the bounded magnitude of the field im-
plies that the Fourier coefficients should decrease exponentially in the in
the infinite mode limit. Our heuristic approach is not identical for space
and time, so we describe the process in detail. The rescaling with respect
to the spatial index linear stability profile of the original dynamical equa-
tion is used as a rough guide for the magnitude of the Fourier coefficients;
the easiest implementation is to just truncate the spatiotemporal modes at
the boundary between linearly unstable and linearly stable modes with
respect to the spatial index. For time, the strategy is the truncation of
nearly all of the modes. There is a time scale associated with the prob-
lem, the Lyapunov time, but this simple strategy avoids the calculation
of this time. The intuition behind this choice is that the general solution
is comprised of many meandering "streaks"; shadowing of a one wave-
length (in terms of physical scale) equilibrium. The truncation attempts
to account for this approximately time independent behavior in the lo-
cality of these streaks.

There are many different ways to approach this problem; we focus on
two different methods whose combination comprises a robust numer-
ical method. The first method substitutes an equivalent optimization
problem instead of directly solving F = 0. The optimization problem
is formed by the construction of a scalar cost function. Because we are
concerned with finding exact solutions to (18.2) we elect to simply use
the L2 norm of (18.2) (with a constant factor for convenience)

I(û, T, L) =
1

2
||F (û, T, L)||22 . (18.3)

There is no motivation for the specific choice of norm or cost function
other than they are simple choices which satisfy our needs. The gradi-
ent of this cost function with respect to a fictitious time, τ , results in the
fictitious flow

∂I
∂τ

= ∇
(1

2
||F (û, T, L)||22

)
∂τ [û, T, L]

=

([∂F
∂û

,
∂F

∂T
,
∂F

∂L

]>
F (û, T, L)

)
· ∂τ [û, T, L]

≡
(
J>F

)
· ∂τ [û, T, L] . (18.4)

This equation (18.4) by itself does not provide us with a descent direction
because the partial derivative of the independent variables with respect
to τ , ∂τ [û, T, L] remains undefined. Luckily, we are free to choose what it
is. The only requirement is a monotonically decreasing cost function. In
other words, ∂τ [û, T, L] needs to be chosen such that ∂I∂τ is never positive.
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The most obvious choice is the negative gradient of the cost function;
this choice corresponds to the gradient descent algorithm. This is the
most basic descent method, but it works very well when preconditioning
is also included. The details regarding the preconditioning are left out
for brevity; it’s a rough approximation to the inverse of the linear portion
of the equation. Regarding this choice of numerical method: originally,
we believed that our implementation represented a more sophisticated
numerical method called the adjoint descent algorithm [12]. Technically,
the algorithm is the adjoint descent method, its just that with a lack of
dynamics the adjoint descent method collapses onto the gradient descent
method. This fact wasn’t realized until much later but it worked so no
harm no foul. If anything, this shows how much room there is for nu-
merical improvements. In any case, the choice that was made for the
descent direction was

∂τ [û, T, L] = −
(
J>F

)
, (18.5)

such that
∂I
∂τ

= −
∣∣∣∣∣∣(J>F)∣∣∣∣∣∣2

2
≤ 0 . (18.6)

It is clearly never positive but it can be equal to zero; this occurs at roots
of F but also local extrema of F . The former is of course the desired state;
the latter presents the problem of getting stuck at local minima. Getting
stuck at local minima is a very common problem in the field of optimiza-
tion. Instead of trying to eliminate this possibility we elect to merely
account for this by termination of the computation after a threshold is
met. The actual optimization process takes the form of numerical inte-
gration of the fictitious flow. Numerical integration is of course affected
by the integration scheme used. Luckily, we do not care about the accu-
racy of the intermediate states as they are still approximations and not
exact solutions. The only true requirement is that the cost function must
monotonically decrease. Therefore we elected to use the simplest inte-
gration scheme: Euler’s method. Because this is first order and explicit,
the accuracy depends on the step size. The step size was determined by
finding the first value of ∆x = 2−n, n = 0, 1, . . . which reduced the cost
function. To again save time, this calculation was only performed once.
Finding the optimal distance to step using a line-search algorithm, for
instance, drastically slows the calculation. Another possibility would be
to adapt the step size not at every step, but at a finite number of check-
points during the descent. These attempts always returned the original
step size such that these efforts are no longer attempted. If, at any point,
the numerical integration no longer decreases the cost function, then the
step size would be further reduced. The descent process was terminated
whenever the step size was reduced beyond a minimum value of 10−13.
It could be argued that this threshold should be changed to a larger value.
Experientially it doesn’t seem to affect the calculation; further reduction
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of the step size almost always resulted in termination of the descent. To
increase the efficacy of our descent method, we also employed the no-
tion of preconditioning. The reason why we felt that preconditioning
was warranted was due to the stiff spatial derivative terms. The descent
direction is dominated by the components with high spatial frequencies
but the magnitude of the corresponding Fourier coefficients are typically
small. This can be counteracted by scaling the descent direction such that
the lower frequency modes are favored. The exact choice of precondi-
tioner is the inverse of the linear spatial derivative operators. This comes
very cheap as these operators are diagonal and is very effective for its
price. Technically, an absolute value is individually applied as to avoid
division by zero. It is also very beneficial to rescale the partial derivatives
with respect to the spatiotemporal domain parameters. The specific rea-
son results from how poorly the initial conditions approximate invariant
2-tori. If nothing is done to control the magnitude of these gradients, a
very common occurence is that the solutions are stretched out to incred-
ibly large domains and either do not converge or converge only to equi-
libria. These large equilibria, while perhaps desirable in some circum-
stances, are not desired for our purposes as they are far too unstable to be
witnessed in infinite space-time. The decision of when to cut off the gra-
dient descent can be determined in a variety of ways, the most common
involve either the absolute tolerance (magnitude of the cost function) or
the relative tolerance (change in cost function magnitude between steps).
We elect to use a combination of step limit and absolute tolerance. If the
cost function doesn’t cross the threshold by the step limit then the descent
is terminated. Again these are some of the simplest conditions that en-
sure that the descent will end in a reasonable amount of time. The reason
why this is acceptable is because the majority of the heavy lifting is done
by the back-end algorithm, the least-squares solver with backtracking.
In this context, the descent algorithm can be viewed as bringing approxi-
mate solutions close enough to invariant 2-tori such that the least-squares
algorithm can converge them, akin to [12]/
The second portion of our hybrid numerical method is to apply a least-
squares solver to the root finding problem F = 0. The first step is every-
one’s favorite derivation, the derivation of Newton’s equations from the
linearization about a root of F

F (û+ δû, T + δT, L+ δL) ≈ F (û, T, L) + J · [δû, δT, δL] + . . . . (18.7)

substitution of zero for the LHS (the root) yields

J · [δû, δT, δL] = −F (û, T, L) . (18.8)

where
J ≡

[∂F
∂û

,
∂F

∂T
,
∂F

∂L

]
. (18.9)

This equation is of the general form for a linear system Ax = b; it is con-
venient to refer the system of equations in this form. Technically, this
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equation is solved a number of times, each time producing its own least-
squares solution which guides the field to invariant 2-torus. We avoid
this here just to keep the notation clean. It is implicit in the definition
of J that this is a rectangular linear system; there are more columns
in J than rows. The equations are augmented to include variations in
T, L and there are no components of the Kuramoto-Sivashinsky equa-
tion associated with this. Two choices for how the handle this are: create
and include additional constraints on either the Fourier coefficients or
the spatiotemporal parameters, or solve the equations in a least-squares
sense. We chose to solve the equations in a least-squares manner. We
are not focused on finding specific solutions so we can get away with
this. Another reason is that a common choice for the constraints is to fix
the translational degrees of freedom, that is, ensure that the solutions to
the linear system (18.8) are orthogonal to the partial derivatives ∂û

∂x and
∂û
∂t . These constraints are suboptimal for two reasons: they specify a par-
ticular member of a group orbit beforehand reducing the likelihood to
converge and the orthogonality to the direction of spatial translations is
not well defined for invariant 2-tori with discrete symmetry. As briefly
mentioned, we also include the notion of backtracking; that is, the least-
squares step is repeatedly divided by a factor of two until either the cost
function decreases or the step size becomes too small. This saves time in
comparison to line searching methods which find the optimal step size
which produces the largest reduction in the cost function. Now that the
numerical methods have been detailed, we can move onto how we want
to use them.

As mentioned multiple times the first step is to produce a library of in-
variant 2-toriusing the numerical methods developed above. It was not
known if we would even be able to find invariant 2-tori given our for-
mulation. It was possible that the particular numerical methods chosen
wouldn’t work; of course, if the methods described previously didn’t
work then we would not be reporting on them. To apply the numerical
methods an initial condition needs to be created which requires selection
of the discretization size, the initial mode values, the period and the do-
main size. In our searches the process was automated by searching over
a range of periods and domain sizes over the following ranges. For the
period the range was wider, due to the experience from the study of the
equation at system size L = 22. Periods were chosen from the range T ∈
[20, 180]. Meanwhile, the spatial range was L ∈ [22, 88]. The discretiza-
tion size depended on the spatiotemporal domain size; more modes are
needed to resolve larger solutions. The number of lattice points in each
dimension were typically chosen to be powers of two in order to exploit
the speed of fast Fourier transforms. A strict (well motivated) rule for
the size of the lattice was never developed so all that can be offered are
approximate guidelines: The number of typical spatial lattice points fol-
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lowed the formula
M = 2int(log2(L)−1) (18.10)

and for time
N = 2int(log2(T )) . (18.11)

Once the initial condition is defined, it is passed to the gradient descent
algorithm. The tolerance of the cost function for the gradient descent
was typically set at 10−4 and the step limit was set as a function of the
size of the lattice, the maximum number of steps being 16NM . Once
either the tolerance or step limit was reached, the approximate solution
would be passed to the least-squares algorithm, where the tolerance for
termination was 10−14 and the step limit was 500. The relatively large
step limit was because of the allowance of back tracking, where the max-
imum amount of damping was varied between 2−5, 2−8 by powers of
two. A choice that we did not elect to use but very well could have is to
use each matrix inversion more than once. This could be done by com-
puting the inverse, and then iteratively using it to update until the cost
function no longer decreases. We believe that any numerical operation
that maintains the monotonic decrease of the cost function is fair game.

It is actually recommended to not use descent methods for small dimen-
sion problems; Newton converges too quickly to not use and with back-
tracking the region of convergence can increase substantially.

Another option would be to simply decrease the allowed damping, thus
causing more failures, but run more searches in parallel.

Searching through the library of collected invariant 2-tori led to a number
of candidates for fundamental tiles. This was a natural result of picking
out the most frequent patterns that occur spatiotemporally. This section
focuses on the numerical process of finding tiles; it is almost self explana-
tory. The claim is that the tiles are invariant 2-tori which shadow larger
invariant 2-tori. Therefore we should be able to find these tiles by nu-
merically clipping them out of larger invariant 2-tori and then passing
them to the same numerical routine used to converge the larger invari-
ant 2-torus. If the original invariant 2-torus has dimensions x ∈ [0, L0]
and t ∈ [0, T0] and is defined on a lattice [xm, tn] then the process is as
follows. Find the approximate domain on which the shadowing occurs
x ∈ [0, xi − xj ], t ∈ [0, tp − tj ]; translational invariance allows us to start
from the origin. The tile is then defined on the corresponding lattice of
size M ′, N ′ = M

xi−xj
L , N ∗ ti−xj

T . M ′, N ′ are always taken to be even
numbers for reasons specific to our computational codes. This leaves us
with a field defined on this subset of the original lattice; this will never
be doubly periodic. The discontinuities which result from the clipping
are handled by simple truncation of the higher frequency spatiotemporal
Fourier coefficients.

If possible, clippings were made such that the result minimized the dis-
continuities at the boundary. This is both numerically beneficial but also
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motivated by the notion of tiles representing shadowing of small invari-
ant 2-tori.

This process suffices to find tiles such that any other methods that im-
prove the initial conditions are ignored.

The only step left is to converge these initial conditions numerically just
like how was done with the larger invariant 2-tori. This process continues
until we believe that we have captured all fundamental solutions depict-
ing in our library of invariant 2-tori. This appeals to our intuition which
begs the question: is there a quantitative manner to know whether our
tile collection is complete? The answer to this question arises naturally as
a consequence of the next component of this numerical method, namely,
the gluing of invariant 2-tori and tiles.

It is one thing to claim that certain spatiotemporal invariant 2-tori are
building blocks; it is another thing all together to be able to actually use
them in this manner. We would like to remind the audience that the abil-
ity to construct and find solutions in this manner has not been witnessed
in the literature. With this in mind our choices should be treated as pre-
liminary ones; it is entirely possible and likely that many improvements
could be made. This description covers both the implementation that
worked for us for the spatiotemporal Kuramoto-Sivashinsky equation,
as well as some alternatives.

Much like the clipping process used to find tiles combining solutions in
space-time, the overarching idea of gluing is straightforward and intu-
itive. We lean towards simplicity such that the process of gluing and
converging invariant 2-tori is only slightly more complex than the orig-
inal method of trawling for invariant 2-tori. With this in mind, what do
we mean exactly when we say that we are gluing invariant 2-tori? As in-
variant 2-tori are infinite space-time solutions the notion of gluing them
doesn’t actually make sense; the actual entities being glued are the com-
pact support of these solutions. This is a familiar notion which has many
different names: Brillouin zone, fundamental domain, unit cell of a lat-
tice, etc. To distinguish between the infinite space-time invariant 2-tori
and their finite representatives which we shall refer to as tiles.

The first step is to choose which invariant 2-tori to glue and how to ar-
range them. The general case is that we have a general sn× sm sized mo-
saic of tiles with no particular attention given to whether or not the tiles
fit well together. The minimum requirement so that gluing is well de-
fined operation is that tiles must have equal number of grid points along
boundaries being glued. This creates a problem, however, as different
tiles will have different spatiotemporal dimensions T, L because they are
fundamentally different solutions. Therefore, the domains of each lattice
are different but the number of grid points is the same, hence, the grid
spacings are necessarily different. This problem actually helps provide
a precise meaning to the term “gluing”. Gluing is a method of creat-
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ing initial conditions via the combination of spatiotemporal tiles which
approximates the corresponding non-uniform rectangular lattice as uni-
form. The regularization of the lattice is a global transformation but it
introduces error in the form of local tangent space distortions which, of
course, depend on the local change in mesh size. In Fourier space, differ-
entiation is equivalent to multiplication of the Fourier coefficients by the
corresponding frequencies. Using this fact, we can create a crude bound
on the error introduced to give us an idea as to how detrimental the ap-
proximation is. In a discrete setting, for a dimension of length d, the
greatest frequencies that are accounted for by anN point discrete Fourier
transform are 2πN

d . Therefore, the error between an order n tangent of
the tile and its gluing approximation scales like

∂nd u− ∂nd u′ ∼ (2πN)n(
1

dn
− 1

d′n
)û. (18.12)

By substituting d′ = d+ δd and assuming δd is small

∆∂nd û ∼ n
δd

d

(2πN

d

)n
û

≡ ∂[∂nd u]

∂d
δd . (18.13)

This result, while quite obvious in hindsight, would be different if we
had been using finite differences to compute the tangents. Therefore the
total error of the approximation can be found by the summation of the
error of each tile individually

∆F =
∑
z

(δL)z
∂F

∂L

∣∣∣
u=uz

+ (δT )z
∂F

∂T

∣∣∣
u=uz

. (18.14)

We derived how the error depends on local changes to mesh size; we did
not however describe how to choose the final mesh size. The choice of the
parameters depends on how the gluing is performed. We describe two
methods which differ in complexity there are a number of intermediate
states but these two examples get the point across. The simplest method
merely rediscretizes and concatenates the tiles, setting the new dimen-
sions to be the average of the tile dimensions. Note that this averaging
should only occur with respect to the dimension transverse to the glu-
ing. For example, if gluing two tiles together in time, the period would
be T = T1 + T2 but the spatial period would be L = L1+L2

2 . In this case,
the number of spatial grid points and the temporal grid spacing need to
be the same. This same idea can be extended to arbitrary sized gluings;
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generalizing to a summation over the tiles

T =
1

sx

sx,st∑
i,j=1,1

Tij

L =
1

st

sx,st∑
i,j=1,1

Lij . (18.15)

The more complicated alternative is to glue tiles in a pairwise fashion,
building block by block. The problem with this method is that it is not
agnostic to the order in which tiles are being glued as each iteration re-
quires lattice regularization. For example, gluing four tiles together spa-
tially would be completed in three pairwise steps; this results in the final
approximation having period

T =

sx−1∑
i=1

Ti
2sx−i

(18.16)

where the index i represents the sequential gluing of tiles. Going even
further, we can alternate between gluing and converging; this allows for
much more complicated strategies for gluing such as gluing tiles together
in ascending order of spatiotemporal domain size. The motivation for
doing so is that even though there are no dynamical instabilities, the dif-
ficulty of finding invariant 2-tori still scales with their spatiotemporal do-
main size. Note that this process does not need to be done from scratch
for each gluing; once converged, the result can be saved for later usage.
As can be seen the options seem to only limited by our creativity, we opt
for simple solutions as we have not developed any best practices as of
yet. Before any more improvements can be discussed we first need to
deciminate the results of the methods proposed thus far.

2020-1-27 Matt

Discounting the time it took to produce the codes used for the computations,
it did not take much effort to complete the collection of invariant 2-tori.
This search was performed over intermediately sized domains and all
symmetry types.

The first test of the ideas was to converge coarse discretizations of known
solutions. When converged using shooting type methods, the number of
discrete time steps numbers in the thousands. When converged using
other variational techniques such as the Newton descent method, [20]
mentions using upwards of 512 to 1024 discrete time points. Meanwhile,
the method proposed here can converge solutions on very coarse dis-
cretizations orders of magnitude smaller than these other methods. This
is slightly disingenuous as the shooting type method does not require all
of the points to be maintained in memory; this is merely an argument that
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the memory requirements for spatiotemporal methods do not need to be
nearly as large as one might imagine. This reduces even further if im-
posing discrete symmetries; a common occurrence in flows such as pipe
and plane Couette flows [14]. The familiarity with finite difference meth-
ods leads to another foreseeable counter argument; coarse discretization
which do not resolve the appropriate physical scales lead to nonsensical
solutions, regardless of whether or not they converge. This is exactly the
case; if the problem were to be composed of finite differences in physical
space. The coarse discretization in Fourier space is sufficient to resolve
all physically relevant modes a quick visual inspection is typically suffi-
cient; this can be done by interpolating a finer grid via zero padding. If
skepticism remains an alternative would be to alternative between zero
padding and converging. This works but it will change the spatiotempo-
ral dimensions if they remain free parameters and so the lattice dimen-
sion is best increased in small increments. It is possible to perform this
type of extension to a very large dimension but it is very hard to decrease
the error; we recommend using this as an error density such that the ab-
solute tolerance becomes NM · 10−15 instead of 10−15. This remains a
qualitative value but there is evidence that the tolerance need not be ma-
chine precision for the calculations at least in the spatiotemporal setting
which lacks dynamical instability. As a test of practicality of this bound
a numerical experiment was ran which attempted to converge a known
solution using a discretization which dwarfed the original. After a fi-
nite number of gradient descent steps a spatial strip was taken from the
approximate solution and integrated in time to test whether or not this
would reproduce the solution. A successful test increased a spatiotem-
poral discretization of size [64, 32] to [4096, 512]. Not many tests were run
so this could be an indication of sampling bias, but it was informative at
least in regards to whether or not this formulation could work for higher
dimensional equations.

Once this preliminary testing was completed, we started trawling the so-
lution space for invariant 2-tori. The parameter ranges employed for the
search varied, but the typical ranges were L ∈ [22, 66], T ∈ [20, 180]. The
typical lattice dimensions over these ranges were N ×M ∈ [32, 128] ×
[32, 64].

The typical pattern for finding a solution was as follows. An initial field
with very large magnitude of the cost function, upwards of ≈ 1010, is
annealed by the descent algorithm. This uses the method described in

typically ending at the maximum step limit instead of the numerical tol-
erance. The annealed approximation is then passed to the least-squares
backtracking algorithm. The damping typically starts high until the the
approximation nears a invariant 2-toruswith the last few steps typically
being undamped. “Rough patches” are also common during the least-
squares backtracking routine; this term represents local regions where
the damping increases presumeably due to increased curvature of the
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cost function.

The computation times to find solutions ranged from seconds to tens of
minutes, depending heavily on the dimensionality of the discretization.
The solutions which converged the fastest always resulted from smaller
solutions which did not take much time at all to complete the descent
algorithm; essentially they would be immediately passed to the least-
squares algorithm.

After examination of our library of solutions we determined that there
are only a small number of fundamental patterns. We have tentatively
named these patterns after the basic physical processes they represent.
The first tile is actually defined with T = 0

They can be described by the following physical processes.

Upon convergence of the guesses for these tiles, this number reduced
even further upon realization that some of the guesses belong to the same
continuous family.

Despite our best efforts to determine the opposite, no continuous sym-
metry was found that explains these continuous families of tiles.

The interpretation of these families is that instead of having a unique,
finite set of tiles we instead

The most frequent patterns, that is, those which are presumably the best
tile candidates are relatively simple to describe in terms of physical pro-
cesses. This description is best carried out in the context of spatial waves
present in each solution. The natural length scale of the equations

The most unstable wavelength, however, seems to mediate the interac-
tion between these waves. The “most” fundamental of the tiles is what
we have denoted as the streak tile.

Our naming convention appeals to similar shapes witnessed in fluid sim-
ulations. It has been argued that the natural length scale of the problem
is the wavelength corresponding to the most unstable mode. Visual in-
spection of arbitrary solutions shows a slightly more detailed story best
described as a tug-of-war between two different length scales. The most
unstable wavelength results from the linearized spectrum; while infor-
mative it does not encapsulate the full story. Luckily the tiles The number
of pronounced (amplitude above a threshold) wavelengths varies over
time, seemingly oscillating between these two different scales.

The transition to the most unstable wavelength seems to be a transient
phenomenon that accounts for the destruction of wavelengths via col-
lision. This is not simply linear superposition of waves but the linear
affects can be The equilibria

It should be noted that previously we claimed that there are only three
tiles. This is actually disingenuous because when we use tiles in gluing
access to their group orbit is used; that is, any symmetry copy or member
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(a) (b)

(c)

Figure 18.1: (a) [La, Ta] = [3.50 · · · , 94.59 · · · ] fundamental domain of an al-
ready computed invariant 2-torus with spatial translation symmetry. (b) The
clipped-out [Lb, Tb] = [2, 17] subdomain used the initial guess for the funda-
mental domain of a shift-reflect symmetric tile. (c) The converged [Lc, 2Tc] =
[2.07 · · · , 18.46 · · · ] invariant 2-torus with spatial translation symmetry.
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(a) (b)

(c)

Figure 18.2: (a) [La, Ta] = [3.50 · · · , 94.59 · · · ] fundamental domain of an al-
ready computed invariant 2-torus with spatial translation symmetry. (b) The
clipped-out [Lb, Tb] = [2.2, 20] subdomain used the initial guess for the funda-
mental domain of a shift-reflect symmetric tile. (c) The converged [Lc, 2Tc] =
[2.07 · · · , 15.46 · · · ] invariant 2-torus with spatial translation symmetry.
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(a) (b)

(c)

Figure 18.3: (a) [La, Ta] = [3.50 · · · , 85.73 · · · ] fundamental domain of an al-
ready computed invariant 2-torus with spatiotemporal shift-reflection symme-
try. (b) The clipped-out [Lb, Tb] = [2.6, 17] subdomain used the initial guess
for the fundamental domain of a shift-reflect symmetric tile. (c) The converged
[Lc, Tc] = [2.06 · · · , 19.92 · · · ] invariant 2-torus with spatial translation symme-
try.
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(a) (b)

(c)

Figure 18.4: (a) [La, Ta] = [3.50 · · · , 10.25 · · · ] fundamental domain of an al-
ready computed invariant 2-torus with spatiotemporal shift-reflection symme-
try. (b) The clipped-out [Lb, Tb] = [2.1, 10.5] subdomain used the initial guess
for the fundamental domain of a shift-reflect symmetric tile. (c) The converged
[Lc, Tc] = [2.08 · · · , 9.22 · · · ] invariant 2-torus with spatial translation symme-
try.

of their continuous family can be used. It is the tile’s neighbors which
determines which family member is used in the gluing process. There
are many uses for the process of gluing; the most important being the
eventually explanation of infinite space-time by virtue of spatiotemporal
symbolic dynamics

By looking at the set of converged gluings it lacks the pattern correspond-
ing to a gap being adjacent to a merger, spatially. Indeed, in almost every

Here are some examples,

This process depends on the neighbors of the tiles as well; it seems to be
primarily influenced by spatial neighbors. For instance, in

Another common occurrence is the stretching of solutions in time where
large swathes shadow equilibria. The numerical description of this effect
is that during the variational search the time dimension being stretched,
as evidenced by the large difference in time period. This reduces the
magnitude of the temporal tangents which brings it close to equilibria
In other words, stretching of the variational “rubber band” kills any tan-
gential variation. This process is evidenced by numerical continuation
of various solutions. For instance, the merger tile has a maximum spa-
tial domain size at which point the torus essentially contracts into a rela-
tive equilibrium. This process is (numerically) irreversible; reducing the
domain size of the newly found relative equilibrium does not bring the
original merger tile back.

For our purposes a collection on the order of a thousand invariant 2-tori
was collected but this was likely overkill; as seemingly indicated by the
number of fundamental tiles.
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(a) (b)

(c)

Figure 18.5: (a) [La, Ta] = [4.25 · · · , 54.13 · · · ] fundamental domain of an al-
ready computed invariant 2-torus with spatiotemporal shift-reflection symme-
try. (b) The clipped-out [Lb, Tb] = [2.7, 15] subdomain used the initial guess
for the fundamental domain of a shift-reflect symmetric tile. (c) The converged
[Lc, Tc] = [2.90 · · · , 17.95 · · · ] full reflection symmetric invariant 2-torus.
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(a)

(b)

(c) (d)

Figure 18.6: Sequential subdomain extraction to find tiles. (a) A periodic
orbit from the collection of new solutions [La, Ta] = [4.25 · · · , 54.12 · · · ]. By
taking progressively smaller subdomains (b)-(d) and numerically converging
them to invariant 2-tori at each step, we are able to find the smallest sub-
domain of (a) which can be converges to a invariant 2-torus, namely (d).
(b)[Lb, Tb] = [4.16 · · · , 18.93 · · · ] (c)[Lc, Tc] = [2.79 · · · , 17.14 · · · ] (d)[Ld, Td] =
[1.39 · · · , 17.14 · · · ]
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Figure 18.7: Spatial gluing of the two shortest shift-reflection invariant 2-tori.
The sizes of the fundamental domains of these invariant 2-tori are [L1, T1] =
[3.5 · · · , 20.50 · · · ] and [L2, T2] = [3.5 · · · , 28.66 · · · ] respectively. The result is a
shift-reflection invariant 2-torus with [L1,2, T1,2] = [6.79 · · · , 24.82 · · · ] funda-
mental domain.
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Figure 18.8: Gluing procedure which spatially combines the third short-
est (period) shift-reflection invariant [L3, T3] = [3.5 · · · , 64.70 · · · ] invariant
2-torus with the resultant shift-reflection invariant invariant 2-torus from
reffigfig:ppo12spaceglue with [L1,2, T1,2] = [6.79 · · · , 24.82 · · · ] fundamental
domain. This results in another shift-reflection invariant 2-torus with the
[L1,2,3, T1,2,3] = [10.53 · · · , 68.84 · · · ] fundamental domain. The dramatic
change between the last two panels is presumably an effect of the discrepancy
between the temporal period of the constituent solutions.
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Figure 18.9: Spatial gluing of the two shortest shift-reflection invariant 2-tori.
The sizes of the fundamental domains of these invariant 2-tori are [L1, T1] =
[3.5 · · · , 20.50 · · · ] and [L2, T2] = [3.5 · · · , 28.66 · · · ] respectively. The result is a
shift-reflection invariant 2-torus with [L1,2, T1,2] = [6.79 · · · , 24.82 · · · ] funda-
mental domain.
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Figure 18.10: Spatial gluing of the two shortest shift-reflection invariant 2-tori.
The sizes of the fundamental domains of these invariant 2-tori are [L1, T1] =
[3.5 · · · , 20.50 · · · ] and [L2, T2] = [3.5 · · · , 28.66 · · · ] respectively. The result is a
shift-reflection invariant 2-torus with [L1,2, T1,2] = [6.79 · · · , 24.82 · · · ] funda-
mental domain.
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(a)

(b)

(c) (d)

Figure 18.11: (a) Spatiotemporal symbolic block representation created using
group orbits of three tile families, (b) initial condition produced by combining
tiles according to (a); dimensions initialized at [Lb, Tb] = [4.79 · · · , 88.62 · · · ], (c)
converged invariant 2-torus when using (b) as an initial condition, (d) targeted
invariant 2-torus which (c) was trying to match.
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(a) (b) (c)

(d) (e) (f)

(g)

(h) (i)

Figure 18.12: Demonstration of how to construct an initial condition corre-
sponding to a specific spatiotemporal symbolic block. (a),(b) and (c) together
are the set of tiles used for all other plots in this figure. (d) is a subdomain com-
prised of two copies of (a) and one copy of (b). (e) is a subdomain comprised
of two copies of (a) and one copy of the reflection of (b). (f) is a subdomain
comprised of two copies of (a) and a single copy of (c). The last row of figures
demonstrate how to combine (d),(e), and (f). (g) is the combination of (d) and
(e). (h) is the combination of (d),(e) and (f) (equivalently, (g) and (f)). Lastly (i)
is the smoothed version of (h) which will serve as the initial condition.
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(a)
(b)

Figure 18.13: (a) Initial spatiotemporal field for the one-by-two symbolic block
given by (1.83) (b) Invariant 2-torus resultant from numerically converging (a),
[Lb, Tb] = [3.13 · · · , 20.84 · · · ]

(a)

(b)

Figure 18.14: (a) Initial spatiotemporal field for the one-by-three symbolic
block given by (1.84) (b) Invariant 2-torus resultant from numerically converg-
ing (a), [Lb, Tb] = [4.12 · · · , 23.15 · · · ].

(a)

(b)

Figure 18.15: (a) Initial spatiotemporal field for the one-by-three symbolic
block given by (1.84) (b) Invariant 2-torus resultant from numerically converg-
ing (a), [Lb, Tb] = [4.12 · · · , 23.15 · · · ].
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(a)

(b)

Figure 18.16: (a) Initial spatiotemporal field for the one-by-three symbolic
block given by (1.84) (b) Invariant 2-torus resultant from numerically converg-
ing (a), [Lb, Tb] = [4.12 · · · , 23.15 · · · ].

(a)

(b)

Figure 18.17: (a) Initial spatiotemporal field for the one-by-three symbolic
block given by (1.84) (b) Invariant 2-torus resultant from numerically converg-
ing (a), [Lb, Tb] = [4.12 · · · , 23.15 · · · ].
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It is of course desirable to match tiles based on their boundaries as to
reduce the severity of numerical discontinuities. A more subtle reason to
access the entire family is to match the spatiotemporal domain size of the
neighbors. Solving the optimization problem is equivalent to enforcing
the tangent space to behave according to the governing equations. The
magnitudes of the each tangent; spatiotemporal derivatives, are affected
by the magnitude of the temporal and spatial domain sizes.

This paper mainly sets the stage and shows the feasibility for a spatiotem-
poral theory. There is still much more work required to advance the the-
ory.

Some of the main detractions and foreseeable criticism

Not only do we lack the symbolic dynamics to describe infinite space-
time, we also describe a smart system for enumerating all invariant 2-tori.
We currently lack a systematic approach for the enumeration of all

Criticisms of these methods Solving the linear system directly by computing
the (pseudo) inverse of the matrix is only available for problems of di-
mension smaller than those that occur in Navier-Stokes computations. In
fact, this method wouldn’t be feasible in the larger case at all and would
have to be replaced with an alternative; a common choice is to use iter-
ative methods such as GMRES [28]. Another aspect that has room for
improvement is the choice of norm used in the cost function. There have
been cases where the approximate invariant 2-torus hardly changes (vi-
sually) even though the cost function is decreasing from 10−4 to 10−14.
The tolerance is strict because we want the best approximations possi-
ble; especially in regards to the fundamental tiles whose acquisition is
detailed next.

Did not include considerations of local non-zero galilean velocity.

A common criticism and source of skepticism as to these methods is the
requirement to maintain the entire spatiotemporal discretization in mem-
ory. While this is proper cause for concern, comparisons with other stud-
ies shows a dramatic increase in performance. For example, in [21], the
tolerance was much less strict, the discretization was larger, and the nu-
merical methods required the inversion of large matrices.

In our case, coarse spatiotemporal discretizations remain viable and be-
cause the convergence is occurring in spectral space it is not only easier to
interpolate points (via zero padding of the spectrum) but also produces
more accurate results than with finite differencing.

2020-2-21 Matt Refs. [6, 7, 29] introduce and parallelize a method known as
“spectral deferred corrections”. Ref. [7] applies it to a square L, T = 100
domain of the Kuramoto-Sivashinsky equation. In the applications it
does not assume periodic boundary conditions in time but it does treat
the problem spatiotemporally. The distinction that is made is that time
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Figure 18.18: (a) Original, converged invariant 2-torus [L = 21.99..., T =
20.50...], (b) aperiodic noise taken from standard normal distribution, multi-
plied by the L∞ norm of (a), (c) is the sum of (a) and (b), (d) is the invariant
2-torus that (c) converges to, [L = 22.18..., T = 20.58...] .

integration of the discretized ODE’s is not the same as solving the under-
lying PDE.

In all cases, the errors reported are computed by comparing to a tem-
porally resolved run on the fine grid (i.e., the solution of the dis-
cretized ODE and not the solution to the underlying PDE).

They use a coarse grid to represent the solution and then corrections are
made by solving multi-shooting on a sequence of fine grids created via
polynomial interpolation. Because they interpolate, they evaluate the
equations of motion at the grid points and then use “spectral integra-
tion” to evaluate the integral. Ref. [6] do not use xn+1 − fn as their cost
function for their “multishooting”. For some reason their cost functions
always starts from the beginning of the fine grid and then define the cost
function to be xn+1 − (x0 + f tn+1(x0)). In, [7], the entire domain is not
solved for at the same time, rather this process sweeps or scans through
time (see figure 11). The parallelization component comes in from solving
the optimization problem on each fine grid in parallel. The main appli-
cation seems to be improving the temporal error introduced by time in-
tegration schema; specifically, it provides good corrections even though
the order of the methods being applied in parallel are of lower order than
the original method.

2020-03-03 Matt For a sense of how much noise is added, the maximum and
minimum values of the fields in figure 18.18 are (a)≈ ±2.47 and (c)≈ ±8.
All four fields are included in a single figure to make it easier to have
them share the color legend.

2020-03-03 Matt

2020-03-03 Matt Added the skeletons for the body and future work sections of
the paper.
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(a)

(b)

Figure 18.19: (a) Initial condition composed of three streaks and an region
of zeros, imbued on a spatiotemporal domain approximating the known tile’s
domain size. (b) The tile that (a) converges to.

2020-03-05 Matt Condensed version of summary. want to check the length and
wording at today’s meeting.

2020-03-19 Matt physicists average over everything and get some number. Repetoire
of admissible patterns, this is not the usual thing. Full description not an
average number obtained. I say such and such patterns can exist, if this
is the law that describe.

working on a problem that has been around since 1822, a century of
wrong predictions (Eulerian flows). No one has a theory of turbulence
that everyone agrees is *the* theory of turbulence. Work on this problem
at a time when the computational methods available to me are able to
describe the solutions compatible given the equations.

Critique based on the setting, Kuramoto-Sivashinsky equation, it is not
a fluid it is a one-dimensional model but this puts me in common with
many people. There is a large population that have followed this path as
a means of exploring new ideas. Most recent nobody pays attention to it.

Approaching a problem that people understand is a problem. I am fol-
lowing one line of attack which is not the historical one. Starting with
the laws and then deriving the consequences. Tackling a difficult prob-
lem which most people use to develop techniques (KSE) (GHC N-S, C-
CHristianze-Pukradtze KSe). Not in the Kolmogorov spirit, derive some
number Lots of instabilities in space and time, not able to extend results
to larger domains because the methods we’ve been using are very unsta-
ble. Spatiotemporal has access to methods that cannot be done otherwise
be done. Globally they are right and locally the Decent solutions with-
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Figure 18.20: This flow chart represents the order that is required to make spa-
tiotemporal constructions. The flow from orbits to prime orbits to fundamental
orbits represents the process of searching for solutions and then clipping out
the fundamental tiles. Once the fundamental tiles are converged, the funda-
mental tiles are well defined (the space-time on which the fundamental orbit
sits) as well as the fundamental blocks (the names that we assign to the unique
pattern found in the fundamental orbit). In order to glue, there are three re-
quirements, the prime configuration of blocks, the prime tile that they are de-
fined on, and the approximate state that exists on the prime tile. Only after the
prime tile and prime block are in place can the fundamental orbits be laid out
on the prime tile. With this, an approximate solution that is shadowed by a
prime orbit is made. By converging this shadowed orbit we arrive at the prime
orbit it is shadowed by. Symmetry operations and space-time periodicity then
produce the entire (global) orbit.
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out insisting on a very high accuracy. Able to describe general solution.
This is exploratory and difficult problem. It is harder than our situation
because we are using 1−D. Write it in such a way that they do not have
to stare at the equations too much as opposed to previous formulations.

More credible setting than cat map setting. Use the fundamental patterns
to describe larger and larger solutions.

The way that deciding on the fundamental patterns is done via the sta-
bility. It is derived. Every solution has a weight that is roughly inversely
proportional to unstable directions. "There is a theory of temporal sys-
tems that says every such solution such as the one I am finding, its im-
portance is given by 1 over stability. The big ones are unstable and take
larger neighborhoods. When I say I have a fundamental tile, it has a very
large neighborhood. In Lorenz we say we are close to this fixed point
or that fixed point. Haven’t done explicit derivation so I can only argue
from analogy. The other way is the frequency. Historically they take very
narrow spatial strips and look at temporal recurrences, more recurrences
means more importances. This affects our intuition of importance. Now
we say that we are extending this idea, close recurrence in time (some-
thing that everyone is comfortable with), and now just extending it to
spacetime. Haven’t succeeded mathematically, but have succeeded in
finding these solutions.

Spatiotemporal defect. Spatiotemporal chaos literature supports this name.
Number of rolls, at sometime the name changes. What it really is in my
case is the skip by π/2 in the phase; more abstract wiggle. wiggle, skip,
swerve, curve, bend, streaks wavy solutions at time, peaked at square
root of two. Do not have wavy structure in time.

Fixed points in time much more robust. Much more characteristic shapes
that are building up spatiotemporal solutions. GO down to smallest pos-
sible one and call them fundamental. Use the fundamental ones to build
back up the others. Shown consistency, everything shown to the reader
is a numerically exact solution to the law (equations). On a democratic
footing. Believe solution is important because it shadows generic spa-
tiotemporal solution by being seen frequently.

Many open problems that are not covered in this first paper. Reflects
what is observed in this kind of system.

2020-03-22 Matt Task: Library results section Indication of completion: when
there is sufficient information such that a reader in our field could walk
away having a good idea of what kind of solutions have been and could
be found?

To this end, need to describe the types of solutions and their importance.

Clipping and gluing periodic orbits have sections dedicated to them so
this section considers everything excluding results of those types. I am
also including continuation of in those sections because chronologically
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clipping precedes finding fundamental periodic orbits. The types of solu-
tions remaining then amount to the following brainstorming of examples:

• "homoclinic" orbit that occurs frequently in antisymmetric subspace.

• relative periodic

• preperiodic

• antisymmetric

• eqva? reqva?

• Solutions that would be antisymmetric upon imposition of reflec-
tion axis. (original "po")

• solutions seen in other papers?

• initial conditions?

• small

• (relatively) large orbits

• different members of the same group orbit.

• "homoclinic" orbit with different symmetries

• highly tilted rpos, nearing relative equilibria rpo_L24p06_T69p30

• "stretched" solutions that occur near transition of unstable mode to
new frequency.

• underresolved?

• examples of very frequent fundamental periodic orbits shadowing

Stratifying these into categories to compile the narrative.

• example initial conditions.

• Examples of every symmetry type, size, repeats.

• Outliers, "homoclinic", "isolated" (typically antisymmetric), rpo tilt

• "bad" results, numerical under resolution

• orbits which demonstrate frequent repetition of a single pattern.

Added macros for the titles of fundamental periodic orbits and referral
to the spatiotemporal domain size (lattice size? spatiotemporal area?) as
well as subdomains

2020-03-31 Matt Other spatiotemporal methods such as the Newton descent
method developed in [22] gave an indication as to the typical spatiotem-
poral discretization size required to resolve periodic orbits with L = 22
but not in the context of (1.26). Regardless of the discretization size, these
known solutions would never be solutions to (1.26), due to the intrinsic
error induced by numerical integration. Ref. [7] summarizes this nicely
by saying “solving a discretized system of ODEs is different than solving
the underlying PDE”.
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continuation of shift-reflect orbit as relative periodic? maybe the shift
reflect is the bisection of the "real" fundamental periodic orbit. Look for
invariants.

2020-04-13 Matt Looking forward, the main computational benefit of spatiotem-
poral methods is that spatiotemporal method can be computed in par-
allel; therefore, the method scales with the number of computing cores
as opposed to computing speed. The idea is to subdivide a large spa-
tiotemporal domain into small subdomains, solve the equations locally
and then let these subdomains communicate with each other. This con-
struction merges seamlessly with our spatiotemporal theory in the con-
text of fundamental periodic orbits. These fundamental periodic orbits
present topologically motivated computational subdomains as opposed
to arbitrary ones. The downside, however, is that subdivision breaks
the periodic boundary conditions and hence removes the ability to use
a Fourier basis. Our intuition tells us that the best schematic moving
forward goes something like this: for dimensions of small extent, assume
periodic boundary conditions (if possible) and use a Fourier basis. For di-
mensions of large extent, when it is necessary to subdivide, use a Cheby-
shev polynomial basis on the subdomains. Likewise, for non-periodic
boundary conditions we also recommend Chebyshev spectral methods.
These choices incorporate our bias against finite element methods, but as
long as the treatment is spatiotemporal and the inherent instability is not
included, finite element methods might have merit. This is confusing but
the concept is hard to explain and likely harder to understand.

To quell any confusion we offer the following example: it is intuitive to
imagine a 3 − D spatial domain subdivided into cubes (for sake of sim-
plicity). The extension of this to 4 − D space-time is to simply extend
this subdivision so that each subdomain is now a 4−D hypercubes. This
is a method to find periodic orbits. Therefore the temporal dimension
is always periodic. If the temporal period is small enough that subdivi-
sion is not required, then by following our own guidelines the compu-
tational domains would be discretized by Chebyshev collocation points
in the three spatial dimensions but Fourier modes in the time dimension.
Therefore, in this example, the subdomains are not 4−D hypercubes but
rather domains with three finite dimensions (space) and one infinite di-
mension (time). This is, of course, hard to visualize; at any given time the
snapshot looks like a cube, string these (periodic) snapshots together and
you get a periodic orbit. In (2+1) dimensional space time the picture that
comes to mind is a toroidal solenoid with square cross section. The usage
of 4−d hypercubes is assuming the “worst case” scenario when the com-
putational domain is so large that each dimension has to be subdivided.
It may be sufficient, however, to simply increase the number of Fourier
modes (and in fact, this is what we will likely implement first). The main
reason why we include this description is to incorporate non-periodic
boundary conditions which occur in fluid dynamics calculations. Histor-
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ically, these have been handled in fluid dynamics research by the afore-
mentioned Chebyshev basis. This type of creative problem solving will
be crucial for solving higher dimensional equations spatiotemporally. All
of this speculation considers higher dimensional equations, but there is
still much work to be done on the theory for the Kuramoto-Sivashinsky
equation.

The suspected way forward is to use Hill’s formula. Without going into
too much detail, this relates the (infinite) determinant of the Hessian of
the action functional to the characteristic polynomial of the monodromy
matrix of a periodic orbit. Simply speaking, this would allow us to relate
our variational formulation to stability, even in the absence of dynamics.

2020-04-16 Matt Ideas for names to replace “symbolic dynamics”

In our previous meeting we discussed the origin of symbolic dynamics
which was to utilize discrete “time” to quantify chaotic dynamical sys-
tems (period moving through a 1-D time itinerary). Obviously we want
to keep the word “symbolic” but we need a replacement for “dynamics”.

The new name should be able to describe a system with which tori are
described. In other words I believe it should account for the overarching
hypothesis that we use: infinite space-time is a collection of space-time
shadowing events. So it should be a concise way of saying “System of
symbolic representation and shadowing?” which does not

I think that if we can find a word that fits the phrase “d-dimensional
symbolic ******” then we will be straight.

Candidates that I’ve thought of to replace “symbolic dynamics” We likely
still want to use the “linguistics” themed terminology like alphabet and
grammar so perhaps we should stick

• d-dimensional symbolic syntax

• d-dimensional symbolic structuring

• d-dimensional symbolic system

• d-dimensional symbolic rendition

• d-dimensional symbolic characterization

• d-dimensional symbolic classification

• d-dimensional symbolic representation

• d-dimensional symbolic discretization

• d-dimensional symbolic presentation

• d-dimensional symbolic method

• d-dimensional symbolic fragmentation

• d-dimensional symbolic decoration

• d-dimensional symbolic marking
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• d-dimensional symbolic tessellation

• d-dimensional symbolic amalgamation

• d-dimensional symbolic demarcation

We want to say that the solutions are D + 1 tori but the notation we de-
cided on uses

How do we distinguish between our D+1 invariant tori and the 1-dimensional
periodic orbits? We decided on using periodic orbits and fundamental
periodic orbits but I feel like this makes it seem like we’re not doing any-
thing new.

2020-04-17 Matt The first key difference is that the governing equation dictates
the spatiotemporal domain size in an unsupervised fashion. The results
here are not The only reason why L was treated as fixed is due to the
inherent instability it includes when treated as a varying quantity. This
small detail, allowing the domain size L to vary, is not as trivial as it
seems. This difficulty is especially evident in the Kuramoto-Sivashinsky
equation, whose spatial derivative terms are of higher order than the first
order time derivative, but also there is a spatial derivative present in the
nonlinear component.

2020-04-30 Matt cut from tilebody.tex For example, in [20] the spatiotemporal
dimensions used to define periodic orbits was stated to beM = 32 points
in space (in their case the spatial period is fixed at L = 22) and eitherN =
512 or N = 1024 in time, depending on the time period. For our methods
we found that for similar periods the spatial dimension remained the
same but the temporal dimension could be reduced to either N = 32 or
N − 64. This is an improvement by a factor of 16; we emphasize this
improvement as perhaps the most common criticism of spatiotemporal
methods is regarding the computational memory requirements.

The most notable is that we no longer have to grapple with exponen-
tial instabilities. One consequence of this is that we can now find pe-
riodic orbits starting only with randomly initialized Fourier coefficients
defined on arbitrary fundamental tiles. This specifically eliminates the
time-consuming processes of time integration and searching for close re-
currences.

Sometimes, possible improvements hint towards the grammar of the sym-
bolic dynamics. For instance, it seems unwise to glue the spatiotemporal
streak and spatiotemporal defect temporally, as this does not conserve
the number of wavelengths; additionally, there is a large discrepancy
between the spatial periods. This implies that a single spatiotemporal
streak should not be glued in time with a spatiotemporal defect. This con-
figuration (spatiotemporal defect followed by two spatiotemporal streak
in time) is inconsistent in a symbolic manner. Likewise, false positives oc-
cur when a guess for a block converges to the “wrong” periodic orbit. To
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alleviate this problem we need topological invariants which can be used
to both identify continuous families but also the fundamental periodic
orbits they are being shadowed by.

2020-05-03 Matt comments on determining grammar in unsupervised man-
ner. As a consequence of partaking in a extensive data science / machine
learning training course I’m learning how to implement different types
of neural networks.

This is likely the best manner with which to pursue automated, unsu-
pervised identification of fundamental periodic orbits in periodic orbits
going forward. Specifically, convolutional neural networks work very
well on image recognition and there are specific techniques to “crowd
count”. Also with the addition of details such as max pooling, the pro-
cess can be robust to translations and rotations (i.e. it has the potential to
be able to pick up different members of each fundamental periodic orbit
family. It would be worth testing but I’m guessing it will not be so easy
as crowd counting techniques only count the number of people; they do
not distinguish between people. There is also the possibility that fun-
damental periodic orbits are too similar looking to be distinguished by
these methods.

2020-05-03 Matt Adding footnotes and highlights of most recent edits; the en-
tire paper is essentially new in the past week, however.

clipping from tilebody In hindsight we learned that it is possible to im-
pose shift reflection symmetry as opposed to spatial translation symme-
try, using the original clipping as the fundamental domain. Because we
know that every solution has a reflection partner due to the symmetries
of the Kuramoto-Sivashinsky equation, every relative periodic orbits ex-
ists as a pair related by reflection having equal and opposite spatial shifts.
Gluing these two solutions temporally creates and initial guess for a shift-
reflect invariant periodic orbit. While not tested, it might be better to not
assume relative periodicity is that the initial guess for the spatial shift
parameter is sensitive to how the initial guess is clipped.

2020-05-14 Matt excerpt from "what" section.

The nonlinear term is computed in a pseudospectral fashion as element-
wise product in physical space as opposed to a double-convolution in
Fourier space. The definitions of each term is as follows: F and F−1

represent the forward and backwards spatiotemporal Fourier transform
operators. Likewise, ω = [ 2π

T ,
4π
T , ...,

2πN
T ] and k = [ 2π

L ,
4π
L , ...,

2πM
L ] are

the temporal and spatial frequencies corresponding to a set of Fourier
modes. Their multiplication with the spatiotemporal Fourier coefficients
produces the corresponding partial derivatives through spectral differenta-
tion [1]. Technically speaking both ω and k actually represent a number
of repeats of their frequencies; our usage of a vectorized notation avoids
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indices but it should be understood that each contains N ·M values, cor-
responding to the entire set of Fourier coefficients.

excerpt from gluing-what section; probably fits better in summary or
results.

We already have the two edges of this symbol plane - the L = 22 minimal
cell [3, 22] is sufficiently small that we can think of it as a low-dimensional
(“few-body” in Gutkin and Klaus Richter [8–11] condensed matter par-
lance) dynamical system, the left-most column in the Gutkin and Os-
ipov [16] 2D symbolic dynamics spatiotemporal table (not a 1-dimen-
sional symbol sequence block), a column whose temporal symbolic dy-
namics we will know, sooner or later. Michelson [27] has described the
other edge of the symbol plane, the T = 0 line whose analogy would be
“many-body ” steady state solutions. There are converged periodic orbits
which resulted from these constructions but we have yet to determine or
parse any grammar rules from said combinations.

2020-05-14 Matt Changes to tileintro: entire ’what’ section reworded, symbolic
dynamics exposition and numerical explanation of Fourier mode equa-
tion pruned. (in above blog post).

’new capabilities’ in ’why’ section pruned.

Initial guesses rearranged, instead of Fourier modes, then periods and
discretization it is the other way around, which is the only logical way
of actually doing it (to initialize the modes you need to know how many
there are, of course).

old gluing section The exact numerical choices which define the method
should be treated as preliminary ones; we believe that many improve-
ments can (and should) be made. The only absolute requirement with
this method that at the “gluing boundaries” between periodic orbits or
fundamental periodic orbits there must be an identical number of points.
It is of course recommended that the differences in periods be small but
this is technically not required. As this is the direction we are heading
anyway, we shall go into futher detail of the gluing technique in the con-
text of spatiotemporal configurations of fundamental periodic orbits; a
technique designed to determine the admissibility of blocks of the pro-
posed 2-dimensional symbolic represention. The general case is that we
have a sj × sk sized block. Each of these symbols represents a specific
fundamental periodic orbit such that the state of each block can be repre-
sented as the configuration of uj × uk fundamental periodic orbit states.
The mission is to combine these states in a numerically coherent manner.
Before we detail the choices we made, first we discuss their motivations.
There are two main sources of error resultant from gluing: discontinu-
ities created at the gluing boundaries and the error introduced into the
tangent space by the new approximations of ((∆t)j , (∆x)j). When com-
bining fundamental periodic orbits, then, it makes sense that we make
choices which attempt to reduce these factors. In the first version of
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the fundamental periodic orbit gluing method, both of these are handled
with zero-padding; albeit one occurs in Fourier space and the other oc-
curs in physical space. The zero-padding in Fourier space is a method
of interpolating points to increase the fidelity of the velocity field state.
Each fundamental periodic orbit state is defined on a fundamental tile
with (Nj ,Mj) points and periods (Tj , Lj). The first step taken was to
zero-pad the Fourier coefficients of each fundamental periodic orbit, in-
creasing the resolution of each fundamental periodic orbit’s state. This
was done in a manner such that for each new fundamental tile discretiza-
tion, (Ñj , M̃j), the grid spacing are approximately constant between all
fundamental periodic orbits

(
Tj

Ñj
,
Lj

M̃j

) = ((∆t)j , (∆x)j) ≈ (∆t,∆x) . (18.17)

Technically these high resolution copies are no longer exact solutions,
but because this is simply a method with which to create initial guesses
we deemed this as acceptable. As previously mentioned, gluing is only
well defined if the lattices being combined have the same number of grid
points along the gluing boundary.

The physical space zero-padding is just as it sounds, a ‘buffer region’ of
zeroes is appended to each fundamental periodic orbit state. Because it is
done to each fundamental periodic orbit there will no longer be any dis-
continuities; the error therefrom is instead exchanged for error in the tan-
gent space. Dynamically, we know that regions of zero valued velocity
fields do not happen due to linear instability; the variational formulation
is able to ‘fill in’ these regions with the correct values such that the final
state is a solution.

Therefore (18.17) will be betrayed in one manner or another; the choice
we made again utilizes padding, but this time we zero-pad in physical
space. This introduces a ‘buffer region’ of zeros around each fundamen-
tal periodic orbits’ original state. We elected for the simplest method
for approximating the new periods which is to simply add or average,
depending on the gluing direction. As an example, when gluing a pair
of periodic orbits together in time the new temporal period for the ap-
proximation is set to be T = T1 + T2 while the spatial period is set to
be L = L1+L2

2 (if the gluing was in space, the average and summation
operations would be permuted). In this case the number of spatial grid
points and temporal grid spacing are made to be the same. These choices
become less obvious when gluing is extended to arbitrary spatiotempo-
ral combinations. The difficulty arises from maintaining as uniform of
a grid spacing as possible while also satisfying the requirement for the
equal number of points along each boundary. The current implemen-
tation combines the gluing methods for space and time by building up
spatiotemporal combinations via spatial or temporal strips. This worked
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sufficiently well such that “full” gluing process defined by gluing all con-
stituents in a single step was left for future work.

2020-05-15 Matt intro, why, excerpts The variational formulation does not com-
pletely remove all challenges, however, such as finding periodic orbits
on large spatiotemporal domains. However for our purposes we have no
need to confront this challenge directly. The current goal is to find only
the most important fundamental periodic orbits; believed to exist only
on small spatiotemporal domains.
intro, what, excerpts There is no guarantee that the final periods will be
near the original values, but the idea is that these initial guesses start
closer, and hence converge, to periodic orbits of similar size.
That is to say, the corresponding region of discretized configuration space
and the overlying state are extracted; providing an initial guess for an
fundamental periodic orbit (or periodic orbit, depending upon what is
clipped) which is passed to our optimization methods.
In regards to the Kuramoto-Sivashinsky equation, the clipping is cur-
rently a single step procedure; however, we shall demonstrate an iter-
ative usage as other systems may not have this luxury. The process of
finding fundamental periodic orbits via clipping is the process of distill-
ing large periodic orbits into small periodic orbits. This smoothed initial
guess is then used to search for a periodic orbit. Arbitrary fundamental
periodic orbit combinations are not guaranteed to represent periodic or-
bits; this property is encapsulated by the symbolic represention that we
are developing. In other words, gluing constitutes an empirical method
used to probe and uncover a 2-dimensional spatiotemporal symbolic rep-
resention. Specifically the gluing process as it has just been described is
the method that converts blocks into initial guesses for the corresponding
periodic orbits.
As a reminder, our collection of periodic orbits need not range over all
sizes; which we believe manifest as periodic orbits with small periods.
Therefore, the search for periodic orbits was limited to what we consider
as intermediate domain sizes. Periods were chosen from the ranges T ∈
[20, 180] and L ∈ [22, 88].
but were typically chosen to be powers of two; in order to leverage fast
Fourier transforms. Typically, we used a rule of thumb which set the
number of points in the spatial dimension as M = 2blog2(L)c+1 and the
number of points in the temporal dimension as N = 2blog2(T)c .

intro, how, excerpts As previously mentioned, we do not use approxi-
mate recurrences nor time integration to generate initial guesses. Instead,
initial guesses can be generated by initializing arbitrarily sized domains
with random noise. More specifically, random values are drawn from
the standard normal distribution and assigned as the values of the cor-
responding Fourier modes. These modes may then rescaled in a man-
ner that befits a doubly periodic solution of the Kuramoto-Sivashinsky
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equation, manipulating the Fourier spectrum to match the relevant scales
of the Kuramoto-Sivashinsky equation. In our experience, however, the
initial guesses which are ‘worse’ with respect to the cost function actu-
ally converge more often; or, equivalently by our standards, they seem
to get trapped by local minima less often. It is therefore hard to provide
a recommendation for a single or ‘best’ manner with which to provide
initial guesses. The numerical methods we employ do not seem to be
interested in our desire to produce a physically motivated construction
method drawn from our experience and intuition.

The termination of the descent is determined by either error threshold or
step limit; though there are arguably better termination conditions such
as the Wolfe or Goldstein conditions.

Euler’s method is used because it is the simplest and fastest integration
scheme. The integration need only be as accurate as necessary to de-
crease the cost function; we only care as to whether we are approaching
a periodic orbit or not.

The first is to solve (??) in a least-squares manner [4], the second is to
include constraints which make the system square, the third is to solve
the system of normal equations which result from multiplication of both
sides of (??) by ∇F>. We are not focused on finding unique or specific
solutions (a specific member of a group orbit, uniquely determined by
a square, invertible linear system). In fact, it is to our advantage to do
exactly the opposite: increase the frequency of convergence by allowing
for any member of a group orbit. The price of this is the acceptance that
calculations may be redundant; however, the number of periodic orbits
being infinite this seemed unlikely to be exceptionally dangerous. Here-
after it shall always be implied that any discussion pertaining to solving
(??) shall be in a least-squares sense.

This is done in an inexact manner instead of finding the optimal step
length, as would be the case in a line search. Specifically, we simply halve
the step length until one of the criteria is met.

For the numerical methods, a handful of parameters are required such
as the step limit and tolerance. Our typical choices, noting that they are
likely suboptimal, are as follows: the tolerance of the cost function for
the gradient descent was J = 10−4 and the step limit was set to a mul-
tiple of the dimension, either 16NM or 32NM . This means that if ei-
ther (??) J < 10−4 or the step limit is reached, then the descent method
terminates, and the guess is passed to the least-squares implementation.
The “heavy lifting” was delegated to the least-squares method with back-
tracking. The threshold for termination was originally set to double float-
ing point precision but over time this was relaxed to incorporate the cdof,
i.e. the current tolerance is on the order of (NM) ∗ 10−15; and the step
limit, 500. For those familiar with Newton methods, this number of steps
appears like overkill at first, but the allowance of backtracking negatively
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impacts the rate of convergence.

The clipping process by definition returns initial guesses which are not
doubly-periodic. To mitigate the error introduced by this we always in-
creased the resolution prior to clipping and decrease it afterwards by
means of zero-padding and Galerkin truncation of the Fourier coeffi-
cients, respectively.

This was especially true in the cases where the suspected fundamental
periodic orbits were relative periodic orbits.

Clipping can be described quantitatively as follows. Let the dimensions
of the original periodic orbit be x ∈ [0, L0], t ∈ [0, T0] defined on a spa-
tiotemporal lattice with N ×M sites. To create an initial guess via clip-
ping, choose a rectangular subregion of the original periodic orbit’s dis-
cretization, n ≤ N,m ≤ M . The periods are then given by the appropri-
ate fractions of the original, Tc = Tn

N and Lc = Lm
M . Because translation is

free, the domain is relocated to the origin, such that the result is an initial
guess uc(x, t) with 0 ≤ t ≤ Tc, 0 ≤ x ≤ Lc, where uc(x, t)

he clipping process creates an initial guess with periods , where n and
m represent the number of points in time and space which define the
clipping’s discretization. . Because translation is a free action, we say
that the clipping is now

The main challenge of gluing is reconciling the differing discretizations
and periods of the fundamental periodic orbits. Discretization by itself is
a non-issue; one simply pads or truncates the Fourier spectrum such that
along every shared boundary, each fundamental periodic orbit has the
same number of points. The fundamental periodic orbits have different
periods, however, so if they have an equal number of points that implies
that they have an unequal grid spacing (∆t or ∆x). This discrepancy af-
fects the magnitudes of tangents and hence the quality of the gluing. In
purely practical terms, the gluing of large arrangements of fundamen-
tal periodic orbits in a single step is more complex simply due to the
number of boundaries. To deal with this complexity, a methodology is
required; our prototype is an extension of pair-wise gluing, which shall
be described now.

For notational purposes, let us call refer to the pair of orbits as orbit A
and orbit B. As a preprocessing step these orbits are rediscretized so that
they all have equal grid spacings. This seems to contradict our previous
statements, but the initial uniformity allows for a tidier description. For
sake of argument we’ll be using space as the ‘gluing direction’; the solu-
tions are concatenated spatially. To retrieve the temporal gluing method,
simply permute all mentions of space and time. Let orbit A be defined
with periods [Ta, La], on a discretization with [Na,Ma] points in time and
space, respectively. Likewise for orbit B. When gluing in space, we set the
temporal period of the gluing to be the average of the original periods,
Tab = Ta+Tb

2 . This, in combination with the fact that the number of points
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in the time dimension must be the same, leads us to rediscretize each or-
bit such that the new number of points in time is also the average of the
originals Nab = Na+Nb

2 . For space, no rediscretization is required, be-
cause the preprocessing step made the spatial grid spacings equal. Sim-
ilarly, the new spatial period is simply set to be the sum of the originals
Lab = La + Lb. This choice may seem poor at first; the spatial period of
the periodic orbit being shadowed by two constituents would be guaran-
teed to be larger than this sum (imagine a figure eight being shadowed by
two circles). More precisely, Lab > La + Lb would be satisfied However,
because we allow both time and space periods to change, it is possible to
find a member of the shadowed orbit’s family which does not satisfy this
inequality. Now that we have the periods and discretization of the glu-
ing, we can give it a precise definition. This particular gluing results in a
field defined on a fundamental tile of dimensions [Tab, Lab] andNab×Mab

points. The field is now piecewise defined such that

uab(x, t) =

{
ua(x, t) 0 ≤ x ≤ La , 0 ≤ t ≤ Tab
ub(x, t) La ≤ x ≤ Lb , 0 ≤ t ≤ Tab

(18.18)

with boundary conditions uab(0, 0) = uab(Lab, 0) = uab(0, Tab) = uab(Lab, Tab)

This concludes the pairwise gluing method, in summary, in the gluing
direction the number of points and periods are additive and in the trans-
verse dimension these quantities are averaged.

There was no clear manner with how to proceed with gluing large ar-
rangements of fundamental periodic orbits; our prototype is an exten-
sion of the pairwise gluing method. Let us represent the arrangement of
fundamental periodic orbits as an array, where the rows correspond to
time and the columns, space. For space-time gluing, we elect to first glue
the fundamental periodic orbits into spatial strips, and then glue them
in time. For example, let us have a 3x3 array of fundamental periodic
orbits. First, we glue each row together (spatial gluing), creating a 3x1
array; the time period of each row come from averaging and the spatial
period comes from summation. Then we glue these strips in time; such
that now the time periods ares summed and the spatial periods, added.
This produces the final gluing result: the final periods end up being the
total sum, divided by the number of rows and columns in the array of
fundamental periodic orbits; in this example, the resultant periods are
T = 1

3

∑
Tij and L = 1

3

∑
Lij We propose some alternative methods for

this in sect. 10.8 but currently, they are not fully developed.

The main challenge of gluing is reconciling the differing discretizations
and periods of the fundamental periodic orbits. Discretization by itself is
a non-issue; one simply pads or truncates the Fourier spectrum such that
along every shared boundary, each fundamental periodic orbit has the
same number of points. The fundamental periodic orbits have different
periods, however, so if they have an equal number of points that implies
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that they have an unequal grid spacing (∆t or ∆x). This discrepancy af-
fects the magnitudes of tangents and hence the quality of the gluing. In
purely practical terms, the gluing of large arrangements of fundamen-
tal periodic orbits in a single step is more complex simply due to the
number of boundaries. To deal with this complexity, a methodology is
required; our prototype is an extension of pair-wise gluing, which shall
be described now.

summary excerpts The difficulties are described here in the context of
periodic orbit theory specifically cycle expansions. Cycle expansions are
quantitative descriptions of chaotic attractors via summation over an in-
finite collection of prime orbits. This collection has a well defined hier-
archy of importance as determined by periodic orbit’s temporal periods
and stability. This ranking is critical as it dictates how to truncate the infi-
nite sum resulting from cycle expansion. In our case, however, we do not
know what constitutes “primeness” with respect to continuous families.
In addition, we currently do not have a manner with which to compute
spatiotemporal topological invariants. In other words, we do not know
how to rank and sum over periodic orbits in our description. Our intu-
ition tells us that the analogous quantity to temporal periods should be
the spatiotemporal area but this has not yet been confirmed explored.

2020-08-13 Matt Finally finished with data science / machine learning / deep
learning / neural network certification program.

Roadmap for the next three months:

1. Finish Thesis

2. Finish Thesis presentation

3. Finish orbithunter (my python package) documentation, included
in thesis

4. Discuss randomly connected RNN with Schatz, Grigoriev group.

5. (external to Physics) find a job, work on CNN symbolic dynamics

6. Future projects TBD.

2020-10-08 Matt I’ve looked and asked around but I cannot find an answer to
a very simple question; I’ve attached it as an image.

For context: the projections I will actually be describing are projections
onto symmetry invariant subspaces, the image is just a toy example of
what I mean. I understand that the functions (in the image) are formally
equivalent to one another but I am trying to explain that they are differ-
ent numerically because the latter reduces the number of computational
degrees of freedom. The example uses functions, but technically I am
trying to explain the distinction in the context of matrix representations.

Is there a word for this distinction, or does one have to explicitly include
it in the definition?
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2020-10-09 Predrag mhm... In birdtracks.eu eq. (3.60) I think of each sub-block
as a matrix of lower dimension. I would never write φ(v) = [x, y, 0]>,
only φ(v(α)) = [x, y]>, in the α irrep.

2020-10-10 Predrag I’ll talk in Moscow Monday morning about our spatiotem-
poral ideas, so I’m having a look at recent papers on variational methods:

Kerswell Exact Coherent States: Variational Methods lectures look good.

Daniel Lecoanet et al. Daedalus deserves a look.

Brunton et al. Machine Learning for Fluid Mechanics - have not checked
it yet.

2020-10-22 Erik Aurell .

Title: Spatiotemporal tiling of the Kuramoto-Sivashinsky equation
Speaker: Matthew Gudorf (Georgia Tech)
Time & place: Thursday October 22 at 13.00 on zoom

Abstract: Motivated by space-time translational invariance, ‘spatiotem-
porally chaotic’ or ‘turbulent’ flows are recast as a (D+1)-dimensional
spatiotemporal theory which treats space and time equally. In this for-
mulation time evolution is replaced by a repertoire of spatiotemporal
patterns taking the form of (D+1) dimensional invariant tori. Infinite
space-time is then explained by the shadowing of these tori. This is for-
malized by the development of a (D+1)-dimensional symbolic dynamics
whose alphabet is comprised of space-time tori of minimal size. Enumer-
ating these spatiotemporal building blocks enables the construction of all
admissible spatiotemporal patterns. These ideas are investigated in the
context of the Kuramoto-Sivashinsky equation using new, open source
spatiotemporal computational computing package ’orbithunter’. These
codes are designed to offer easy access to new spatiotemporal techniques,
persistent homology, convolutional neural networks and more.

The talk was not recorded. For seminars in the CS & BP series, see here.

2020-10-22 Matt Karoshi which can be translated literally as “overwork death"
is a Japanese term relating to occupational sudden mortality. The most
common medical causes of karoshi deaths are heart attacks or strokes
due to stress and a starvation diet. Mental stress from the workplace can
also cause karoshi through workers taking their own lives. People who
commit suicide due to overwork are called karojisatsu. The phenomenon
of death by overwork is also widespread in other parts of Asia.

I have worked out enough that I believe in my cardio but random pal-
pitations and arrhythmia have me shook; probably psychosomatic. One
last sprint to the finish....

2020-10-25 Predrag No karoshi, please, we already have fascists and COVID-
19 to stress us out.

Just play it cool, boy, Real cool!.
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Figure 18.21: (left) Parametric plot of ux(x) vs. u(x) for L ≈ 3974779240 equi-
librium. As the stable “cells" of Frisch, She and Thual [13], this equilibrium
belongs to the asymmetric subspace, but as it has a number of winds it is (pre-
sumably) unstable. (right) Fourier coefficients −i c0k. See the thesis [15] for
definitions, spatially antisymmetric zeroth time kth spatial modes.

Figure 18.22: (left) Modes of uux for L ≈ 3974779240 equilibrium. They are
approximately the negative of (right) uxx modes, in agreement with the wrong
sign diffusion term “Burgers” eq. (18.19) for an equilibrium; the difference is
the vanishingly small uxxxx that can be neglected for such long wavelength
solutions.
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2020-10-22 Matt I found some big boys...like really big.... like a L = 4 · 109 big
equilibrium. The modes with all of the energy are multiples of 32n for a
reason unknown to me other than simply saying ’aliasing’. I obviously
do not have enough modes to resolve all scales but hey its kinda cool.

I can’t tell if this is an interesting result, or if it’s already known solutions
from Michelson [27] or similar? The fourth derivative gets killed, so that
the equations, for practical purposes, reduce to

ut + uux = −uxx . (18.19)

I double checked it and I stand by the values, however I don’t know if
its worth anything. Some of the figures do not fit on the page so look for
them in /figs/.

2020-10-25 Predrag I suspect your 32n are the stable “cells" of Frisch, She and
Thual [13] Viscoelastic behaviour of cellular solutions to the Kuramoto-Sivashinsky
model (1986). Have to convert the units as in ChaosBook sect. 30.1.1 Sym-
metries of Kuramoto-Sivashinsky equation to compare.

“The fourth derivative getting killed” would make them into solutions of
the wrong sign Burger’s equation (18.19).

I looked into /figs/, but there is nothing there other than figure 18.21 and
18.22. EquilibriumOrbitKS_L3974779240p595_field_fdomain.png color plot
is not informative, for equilibria one plots u(x) on [0, L/2].

2020-10-25 Predrag Aren’t you plotting twice as many wave-numbers in fig-
ure 18.21 (right) (right) as needed for an antisymmetric subspace solu-
tion? But then I do not understand the k-axis in figure 18.22, these do
not mach up - should you get the same non-vanishing modes in all three
figures?

2020-10-25 Predrag The single, universal, correct spatial mode-indexing con-
vention [5] for all Kuramoto-Sivashinsky documents that we produce:

The horizontal, eigenmode / wavenumber axis should always be j/L̃ =
2πj/L, and, due to the O(2) having 2-dimensional irreducible represen-
tations (sines & cosines, rather than exp(i2πj/L)’s) one should always
group Floquet exponents (and, I believe, Fourier modes as well) into
j, j + 1 pairs, plot them as a single, two-valued j.

I think you also want to use logarithmic scale on the y-axis, as everything
is expected to fall off exponentially or faster for modes beyond the en-
tangled, “physical”, inertial-manifold modes. To trust your calculation,
you always want to capture the beginning of the transient, “unphysical”
modes in your spectrum.

What one chooses to pair for low j might be ambiguous, as the nonlinear
interactions mix up the O(2) 2-dimensional linearly irreducible represen-
tations.

03/12/2019 siminos/spatiotemp/chapter/blogMNG.tex762 7451 (mgudorf3–6799)

http://chaosbook.org/chapters/ChaosBook.pdf#section.30.1


CHAPTER 18. MATT’S 2020-22 BLOG
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Figure 18.23: (a) Initial guess for orbit hunting. Periods (L, T) ≈ (500, 488).

This way wave-number plots for any L have the same x axis.

Should you know of any reason that we should not be joined in holy
notational convention, speak now or forever hold your peace.

If you agree, follow our convention in ALL plots, it’s our misfortune that
none living has as much experience with Kuramoto-Sivashinsky as we
do.

2021-04-12 Matt Getting really close to being able to find very very large
periodic orbits. In figure 18.23 (a) the resolution is due to computational
degrees of freedom; small amount of interpolation but too much would
distort the field and make it look non-physical. For figure 18.24 (b) the
residual is O(10−2); for a solution this large I find this to be quite the
achievement. Requires lots of supervision however, to create an initial
guess.

Getting very close to finding arbitrarily large periodic orbits for Kura-
moto-Sivashinsky equation, however, when trying to develop a guide by
implementing the Lorenz equations, the code fails quite miserably, when
σ, b, ρ are fixed. In other words, discrete dimensions provide yet another
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Figure 18.24: (b) Final result after about 6 hours (on my laptop) of application
of conjugate gradient method. Dimensions (L, T) ≈ (555, 783). Discretization
included 512 in space, 128 points in time, hence low resolution figure.
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challenge. Unsure if unpalatable but my gut is telling me the quasi 2-
d nature of the Lorenz attractor is causing this, meaning that for "extra
flexibility", unconstrained parameters are needed, as I do not believe that
the attractor would remain in the same plane, just my two cents.

2021-04-16 Predrag Interesting.

You started with u guess in range u ∈ [−3.3, 3.3] and - even though the re-
sulting solution is stretched out by 50% in time, the u range is barely big-
ger, u ∈ [−3.8, 3.8]. So somehow if you start with atypical guess pattern
(no random walk in the local mean u), you end with atypical solution.

Contrast with u ∈ [−5, 5] of figure 16.7 (and many large spacetime figures
currently commented out, but fine otherwise). As I explain above (see
2019-05-13 Predrag post), we expect the range of the color bar in such
figures to grow proportionally to

√
L.

2022-03-05 Matt This is one of those things that, if true, is embarassing for me
in hindsight. We have noticed that for solutions to the Kuramoto-Siva-
shinsky equation on large domains, it is painfully obvious that there are
large swathes of space time that have non-zero Galilean velocity locally,
even though the mean flow is beholden to the usual constraint

∫
udx =

0, ∀t.
We have yet to explain this phenomenon, but I believe I might have some
clues for where to start.

To set the stage, here’s how all of this came about.

When performing the first tiling computations, there were large regions
of space-time that went "uncovered" by the current set of fundamental
orbits; that is, shadowing of the current set of fundamental periodic or-
bits was not detected. These regions had two distinct properties; not only
was the local Galilean velocity non-zero, they also had locally non-zero
spatial translation velocity, as indicated visually by the appearance of
slanted fundamental periodic orbits. Indeed, when the current "defect" or
"merger" fundamental periodic orbit was mapped onto a parallelipiped
domain, i.e. giving it a fictitious numerical slant, then the regions be-
came almost completely covered when using the "mean flow corrected L2
norm density" as a metric. This metric is simply computed by subtract-
ing the mean flow in the shadowing window, taking the L2 difference
with the fundamental periodic orbit and lastly dividing by the number
of points in the spatiotemporal discretization,

D(u, u′) =
1

NM
||(u− ū)− u′||2 (18.20)

This idea behind this is exactly to only compare the shapes/patterns re-
moving any local Galilean velocity, and also making the metric invariant,
or at the very least, robust with respect to discretization sizes.
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Being able to cover these previously uncovered regions begged the ques-
tion; what is the relation between local Galilean velocity and local spatial
translation speed? I’m still unsure if it is coincidence or confirmation bias,
but every time a pair of non-zero Galilean velocity regions emerged (the
mean flow is still conserved, so clearly if one subregion has non-negative
local Galilean velocity, another region must have non-positive to cancel
it out), it is very common for it to be preceded by a region which shad-
ows the antisymmetric subspace (i.e. the "wiggle" and "streak" tiles). My
bold claim is that the regions of non-zero Galilean velocity are resultant
from the local reflection symmetry being broken. Considering the rela-
tion between the spatial reflection symmetry and spatial translation, this
had some merit in my mind.
The crude test I thought of was this: if in some region we pick up a non-
zero spatial translation velocity i.e. u(x, t) ≈ u(x − ct, t), and this coin-
cides with picking up a non-zero Galilean velocity; then why don’t we
just compare v + u(x + 2vt, t) and u(x − ct, t)? Here is what I did as a
crude test.
Generate a large patch of space-time; find a candidate region that looks
red-shifted or blue shifted (i.e. how local Galilean velocity manifests us-
ing our typical heat map coloring scheme for the spatiotemporal velocity
field plot). Clip said region out. Compute the mean flow v on the region,
compute the SO(2) rotation angle and corresponding spatial shift s be-
tween the field at t′ = 0 and t′ = T ′. Compute the drift speed c = s/T ′,
and lastly compare v with c/2. treating the aperiodic spatial boundaries
of the clipping as if they were periodic (a very crude approximation).
I’m currently in the process of generating a statistically significant way of
verifying the claim, but initial attempts yielded both "good" results 0.157
vs. 0.159, and bad results seemingly off by a factor of two, −0.178 vs.
−0.331.
At the very least it might be an avenue of research for someone inter-
ested in the study of symmetries of PDEs. Unfortunately I don’t know
anything about spontaneous symmetry breaking to make any rigorous
claims; I am hoping a statistical approach will be convincing enough.

2020-03-05 Matt It seems I have provided another example for why statistics
exists; the coincidental agreement previously provided was just that, co-
incidence; the computation of the spatial shift is simply too polluted by
the Gibbs phenomenon resulting from clipping; a better way of comput-
ing local drift speed is needed; something utilizing the spatiotemporal
derivatives most likely.

2020-03-26 Matt I bought a new rig and wanted to benchmark it with some nu-
merical computations, so I decided to expand upon the φ4 Euler–Lagrange
equation results from yesterday. What took 27 seconds on my work lap-
top only took 2 on my new PC, which further reduced to 0.4 seconds
when adding in a number of changes.
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Changed the cost function to 0.5 ∗ ||F ||2 and adding the corresponding
analytical gradient J>F By adding in the analytical derivative the com-
pute time decreased even further from 2 to 0.5 seconds. To test it further, I
compute all cycles from length 2 to 10, inclusive. It only took 10 seconds;
running it without the jacobian would take 240 seconds, just to give an
idea as to how much an analytical expression for the (cost functions) ja-
cobian helps.

We can do better, though. This still technically called the numerical opti-
mization algorithm once for each initial condition (they were ran in par-
allel though). Instead, we can tensorize the N -cycle equations such that
they are solved simultaneously. In other words, imagine stacking all cy-
cle vectors as rows like layers in a cake. This creates a tensor with dimen-
sions 3N ×N (I’m avoiding usage of "matrix" because of the operations it
implies; there is no matrix multiplication happening). This tensor is then
converted into a vector of dimension N ∗ 3N .

By tensor-izing the equations in this way, I was able to get all cycles from
length 2 to 10 down from 10 to 4.7 seconds or so. all cycles up to 11 takes
about 20 seconds.

Additionally because I was having fun, I tensorized the Jacobian matrices
as well; the Jacobians are computed by manipulating a 3 ∗ ∗N × N × N
tensor’s elements; which can be easily iterated over and eigenvalues and
eigenvectors computed for each N ×N matrix.

With all of this tensorization it can produce (locally) all 7-cycles, jaco-
bians, eigenvalues and eigenvectors in 0.1 seconds or so. Final bench-
marks

all 7-cycles, their jacobians and respective eigenvalues and eigenvectors :
0.1 seconds all cycles up to and including length 12: 60 seconds

link for easy viewing

click here. 2

2022-03-26 Predrag Wow! Wow! Can you check blogCats.tex, post 2020-
03-18, 2020-03-23 Molei Tao and see whether any of his suggestions are
useful?

2022-03-26 Matt I did indeed choose the l-bfgs-b algorithm, but changing
the algorithm is as easy as changing the string of characters from l-bfgs-b
to any of the methods listed here.

Regarding Tao’s papers; I found them useful as a resource for other things
I am trying to accomplish, but I thought we were strictly in the deter-
ministic setting, and so the fundamental idea of finding solutions to the

2Matt 2022-03-26: See the corresponding requirements text file in the GitHub repo to install the
environment I used.

7451 (mgudorf3–6799) 76703/12/2019 siminos/spatiotemp/chapter/blogMNG.tex

https://github.com/mgudorf/felines/blob/main/notebooks/phi_k_equations.ipynb
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html


CHAPTER 18. MATT’S 2020-22 BLOG

Euler-Lagrange equations stands, but I don’t think any of the actual de-
tails regarding finding minimizers of the action in the presence of noise
apply right now.

Regarding numerical methods and preconditioning; until we run into a
wall, pretty sure the current l-bfgs-b setup is fine; by including the analyt-
ical Jacobian matrix I don’t think preconditioning is really needed either,
unless there is a desire to see what happens to the cycles in the µ → 0 or
µ → ∞ limits. In those cases, I would probably try to find a non-trivial
way of rescaling the matrix-vector product with the Jacobian matrix by
a factor of µ−2. In my experience preconditioning has the largest effect
when there is a wide range in orders of magnitude. I.e. if the elements of
your gradient range from 10−6 to 106, you should try to find some map-
ping to make them all order 1. This typically means finding a cheap way
of approximating the inverse of the Jacobian matrix. For the Kuramo-
to-Sivashinsky equation I approximated the inverse of the linear terms,
because that is where the largest discrepancy of magnitudes were result-
ing from.
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2022-04-24 Matt April 22nd arXiv:2204.10066, (click for the pdf) follows Lasagna [23,
25] least squares shadowing methodology applied to Kuramoto-Sivashin-
sky. Check also refs. [17, 18, 24] and page 114, page 120 and page 657.

Similar to what we discussed on Friday, the practitioners of the least
squares shadowing, refer to the partial derivatives which constitute the
orbit Jacobian matrix as being the ’sensitivity" of spatiotemporal func-
tionals which define observables.

It’s all a matter of perspective and objective. We are interested in the
underlying states themselves, as we want to derive them for cycle ex-
pansions and shadowing computations. The aerodynamic perspective is
centered around the effect of their inputs on the observables of the sys-
tem (how does a perturbation to my airfoil geometry affect drag?) and
the optimal control aspect of the problem (i.e. along which eigenvector
do I apply force to drive me towards a local minima of drag?).

In terms of mathematical construction, the main difference is that our
cost functional is based explicitly around the satisfaction of the equations,
|F |2 = 0, which is directly solved via a minimization approach, or via a
root solving methodology F = 0. Meanwhile, their cost functional is
centered around the physical observables directly and is comprised of
two terms: 1. the square of the first order variation of the fluid states u in
terms of a set of "control parameters" s. 2. a Tikhonov regularization term
(L2 penalty) which penalizes deviation from the governing equations. In
this sense, the second term is similar to how Lagrange multipliers are
used in Lagrangian mechanics, but not exactly.

By defining the cost functionals themselves in terms of observables, i.e.
the spatiotemporal average of the square of the state u2 corresponds to
an energy functional which they use as their starting point; we compute
the energy as a follow up computation after finding the periodic orbits.

I’m not a fan of expanding the orbit Jacobian matrix in terms of Fourier
modes, i.e. defining its elements are defined in terms of convolutions
as I think it’s much easier to view the orbit Jacobian matrix by decom-
posing into products of linear operators (i.e. discrete Fourier transform
matrices, SO(2) derivatives, etc.). The reason why it is easier is quite
literally because it demystifies the nature of the matrix-vector product,
which is the key to resolve the computational memory issues that are
often stated when describing the challenges of solving the least squares
system of equations.

I’m also not a fan of interpretation of the eigenvectors of the orbit Jaco-
bian matrix as optimal forcing directions. Why? Because engineering
has not transcended spacetime and they don’t ever apply spatiotemporal
forcing; they apply a sequence of kicks in time.

Figure 1. also seems dubious to me. They use spatial boundary condi-
tions u(0, t) = u(L, t) = 0 and ux(0, t) = ux(L, t) = 0, and they get spa-
tiotemporal averages which are highly oscillatory near the boundaries.
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To me, this seems much more likely to be a consequence of improper nu-
merical implementation than it does to be something meaningful; i.e. a
manifestation of the Runge phenomenon or Gibbs phenomenon.
They also mention that those averages are generated with respect to 1000
"random initial conditions". I’m hoping they mean that this is averaged
over 1000 solutions which they found starting with 1000 random initial
conditions, but they conveniently leave out how these are defined.
How does this affect us? I see this paper as being half committed to
the notion of space-time; it’s seen as a means to compute solutions but
they still analyze the results in terms of temporal averages and scaling
behavior as T →∞without any mention of space.

2022-04-27 Predrag I think you should toot your horn, get in tauch with the
authors, tell them about your PhD thesis and your unpublished work.
An economical way is to give them the link to
ChaosBook.org/overheads/spatiotemporal/
It includes your thesis, and you can point out the talks and slides th——
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
————————————————————————————————
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————————————————————————————————
————————————————————————————————
———————————————————–at might be relevant to this
discussion, as well as make them aware of Orbithunter.

I am sorry I did not record Lan’s presentation. You can ask him to do
it again one of coming Friday 9am’s, you two invite whoever you think
should be there, and I’ll record it this time.

2022-05-13 Matt Updated felines github repo; fixed a small notebook specific
mistake in the phi k equation notebook, and finished a version of prime
cycle counting for k-ary symbolic dynamics. It is a copy of Ibrahim’s
idea so gracias to him; I need to work on its computational efficiency,
however.

2022-05-20 Matt I added everyone as collaborators but honestly it will be eas-
ier to just create an org via github; everyone will get yet another invite.

2022-05-22 Matt Created an organization via github: "chaotic-systems". De-
ployed phi-k codes as new python package cyclehunter which is now
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installable via pip. Added a notebook phik.ipynb to the github reposi-
tory to explain the library; it is very basic there is a discrepancy between
Ibrahim’s prime cycle counting and mine; need to confirm with count-
ing equation to see who is right. For now, because I tried to make mine
more efficient, I’ve only added mine, but have kept Ibrahim’s code in his
separate notebook

2022-07-23 Matt Ramblings of a mad man regarding using deep learning for
symbolic dynamics and prediction/description of chaotic systems. First
step: create a catchy name to capture the audience’s attention, e.g. "The
Language of Chaos" if trying to make analogies between symbolic gram-
mars and natural language processing. I believe the goal would be to
incorporate/account for the following properties in a new type of hybrid
deep learning model.

1. Spatiotemporal symmetries; continuous and discrete

2. Admissibility of configurations of symbols

3. Satisfaction of the equations of motion

4. Unnatural representation of continuous families/group orbits of pe-
riodic orbits as uniformly spaced rectangular lattices

My original idea is as follows: build a CNN which incorporates the equa-
tions of motion, symmetries, continuous deformations (rubbery tiles) into
a binary classification algorithm which determines "admissible" or "in-
admissible". I think these could be incorporated into the cost functional,
nonlinear activation layers, and deformable CNN layers (learns the "shape"
of the convolutional grids, not just rectangular grids). If we do not cap-
ture the rubbery nature of tiles however, I think this is bound to fail. For
continuous families of (discretized) periodic orbits it is analogous to be-
ing able to represent words with different letters, although even more
pathological because the notion of "continuous deformation of a letter"
doesn’t exist.

The general idea behind CNN layers is that they learn the important ge-
ometries/shapes (whose dimension is dependent on the dimension of
the convolution) through convolution. These shapes are then passed to
fully connected layers which learn the combinations of those shapes that
are important. Almost always these shapes are not invariant under sym-
metries; CNNs learn separately what a "left ear" and "right ear" look like
when considering facial recognition, as far as I am aware. There are two
approaches here I think; one is just include a huge sampling of group
orbits and train on all of them; which, while brute force, is probably the
better option as more training data is typically always beneficial. The
second is to incorporate these symmetries into nonlinear activation lay-
ers which somehow encode or quotient them.
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The grammar and admissibility is more concerned with the relative posi-
tions of symbols; it might be better to frame the problem in terms of find-
ing the relative differences between neighboring regions of space time.

Once we have some notion of symbolic grammar, we pass the admissible
configurations to an NLP predictive model which either tries to perform
inference on future states (i.e. predicting time evolution) or inference
on masked symbols (you mask some symbols in your configuration, it
predicts the missing symbols).

If we were able to incorporate the BERT language model into the anal-
ysis I can almost guarantee this would take off like a rocket; it’s an in-
credibly relevant, widespread, trusted model created by Google. The "T"
in "BERT" stands for "transformers". To give an indication how popular
this is, the seminal paper, Attention is All You Need was published in
2017 and already nearly has 50,000 citations; worth a skim for numerical
practitioners and data scientists for sure.

Here is a motivation to use transformers for this task. 1. It already has
built in the notion of encoding-decoding process of encoding symbolic
representations as continuous representations, then decoding the sym-
bolic representations, time dependence, as well as continuous translation
symmetries.

Most competitive neural sequence transduction models have
an encoder-decoder structure. Here, the encoder maps an input
sequence of symbol representations (x1, ..., xn) to a sequence
of continuous representations z = (z1, ..., zn). Given z, the de-
coder then generates an output sequence (y1, ..., ym) of symbols
one element at a time. At each step the model is auto-regressive
consuming the previously generated symbols as additional in-
put when generating the next.

The issue with using typical NLP models is that they are sensitive to po-
sitional nature of sentence structure. Transformers, however, capture this
with "positional encoding"; using sin and cos to encode phase; shocking!

To this end, we add "positional encodings" to the input em-
beddings at the bottoms of the encoder and decoder stacks.
The positional encodings have the same dimension dmodel as
the embeddings, so that the two can be summed. There are
many choices of positional encodings, learned and fixed. In
this work, we use sine and cosine functions of different fre-
quencies:

PE(pos, 2i) = sin(pos/100002i/dmodel)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel)
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where pos is the position and i is the dimension. That is, each
dimension of the positional encoding corresponds to a sinu-
soid. The wavelengths form a geometric progression from 2π
to 100002̇π. We chose this function because we hypothesized
it would allow the model to easily learn to attend by relative
positions, since for any fixed offset k, PE(pos + k) can be rep-
resented as a linear function of PE(pos).
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Chapter 19

Space-time, blogged

I’m a space and time continuum
— Red Wanting Blue

The latest entry at the bottom for this blog

2016-10-27 Predrag The revolution (in strongly nonlinear field theory) will not be tele-
vised. But it will be on YouTube.

2011-05-15 Predrag A. Hramov and A. Koronovskii [32], Detecting unstable pe-
riodic spatio-temporal states of spatial extended chaotic systems, arXiv:0708.4349.

2016-01-12 PC also of possible interest:

Llibre [46] The averaging theory for computing periodic orbits.

Also, Gutkin and Osipov [30] write “In general, calculating periodic or-
bits of a non-integrable system is a non-trivial task. To this end a number
of methods have been developed,” and then, for some reason, they refer
to ref. [4].

2016-03-02 Predrag Also Pazó et al. [51] Structure of characteristic Lyapunov vec-
tors in spatiotemporal chaos. Actually (I hesitated to bring it up) this line
of inquiry goes smoothly into Xiong Ding’s inertial manifold dimension
project.

Not sure Li et al. [45] Lyapunov spectra of coupled chaotic maps is of any
interest, but we’ll know only if we read it.

Takeuchi and Sano [58] Role of unstable periodic orbits in phase transi-
tions of coupled map lattices.

2016-08-15 Predrag : Before I start sounding critical: Rana, Adrien, Matt and
Li are all good students / postdoc, and the work and what people learned
this summer is very good. Now, to my first impressions.
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Matt’s report is most in my taste. We still do not know whether there is
something seriously wrong with the spatiotemporal proposal for Kura-
moto-Sivashinsky, the core part of this whole research project, or is there
a coding problem, but that’s research. We’ll sort it out eventually.

2016-09-28 Predrag Learned much more from Rafael de la Llave that I can
possibly remember.

I explained that we turn a dissipative PDE with commuting continuous
symmetries (time, space translations) into a set of 1st order PDEs in both
time and space directions. Then we integrate spatiotemporally periodic
solutions along the space directions just like we used to integrate the
along the time direction. I explained that as a discretized version of that,
we studdy 1D chain of diffusively spatiotemporal cats.

Rafael was very happy to hear that, because he has hardly ever done any-
thing else in his life. Except piss off the Smale cult by publicly refusing
to prove generic results. “Would you give your fiance a diamond, or a
generic pebble of the street?”

2016-10-03 Predrag Various people focus on proving “local rigidity of partially
hyperbolic algebraic actions.” Katok’s papers on this are absolutely un-
readable.

Reinhardt and Mireles James paper deals with constructing unstable
manifolds of steady states in parabolic PDE’s and gets very close to es-
tablishing homoclinic intersections.

The concrete example they use is the Fisher equation, but it seems that
the Kuramoto-Sivashinsky could work. The recoding is not trivial and
that there are many things that will go wrong.

We had done some work on extending these techniques to periodic orbits.
Of course, one needs to have the periodic orbits and, I know full well that
this is not trivial (I have spent some time doing something and realized
that I am not tough enough to do it). On the other hand, may be some
infusion of strength and new ideas could be enough.
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2016-10-24 Predrag A note on a conversation between Stephen Shenker and
Paul Wiegmann. Shenker presented his work on a quantum black hole
in a box, i.e., in a thermal equilibrium, and mentioned that this field the-
ory has a leading positive Lyapunov exponent. Paul argued afterwards
that a system in equilibrium cannot have positive Lyapunov exponents -
they are a property of externally driven, out of equilibrium systems (let’s
say, Navier-Stokes turbulence). I believe here Stephen is right, will try to
explain that first for finite-dimensional dynamical systems, and then for
infinite-dimensional field theories.

What is ‘chaos’? ( ChaosBook.org, ver. 15.7, Sect. 1.3.1) In a ‘chaotic’
dynamical system, any two trajectories that start out very close to each
other separate exponentially with time, and in a finite (and in practice,
short) time their separation δx(t) attains the magnitude of L, the charac-
teristic linear extent of the whole system. This property of sensitivity to
initial conditions can be quantified as

|δx(t)| ≈ eλt|δx(0)|

where λ, the mean rate of separation of trajectories of the system, is the
Lyapunov exponent.

A positive Lyapunov exponent does not in itself lead to chaos. One could
try to play 1- or 2-disk pinball game, but it would not be much of a
game; trajectories would only separate, never to meet again. What is also
needed is mixing, the coming together again and again of trajectories.
While locally the nearby trajectories separate, the interesting dynamics is
confined to a globally finite region of the state space and thus the sep-
arated trajectories are necessarily folded back and can re-approach each
other arbitrarily closely, infinitely many times. The number of trajectories
that return by time t can be quantified as

N(n) ≈ eht

where h, the growth rate of the number of topologically distinct trajecto-
ries, is called the “topological entropy". The word ‘chaos’ has in this context
taken on a narrow technical meaning. If a deterministic system is locally
unstable (positive Lyapunov exponent) and globally mixing (positive en-
tropy) it is said to be chaotic.

While mathematically correct, the definition of chaos as ‘positive Lya-
punov + positive entropy’ is useless in practice, as a measurement of
these quantities is intrinsically asymptotic and beyond reach for systems
observed in nature or simulated on computers. More powerful is Poincaré’s
vision of chaos as the interplay of local instability (unstable periodic or-
bits) and global mixing (intertwining of their stable and unstable mani-
folds).

04/19/2020 siminos/spatiotemp/chapter/dailyBlog.tex780 7451 (predrag–7383)

http://ChaosBook.org


CHAPTER 19. SPACE-TIME, BLOGGED

Escape rates ( ChaosBook.org, ver. 15.7, Sect. 22.4) The above para-
graph describes the essence of “chaos” for finite-dimensional dynamical
systems, but not how to compute its consequences. That is accomplished
by the periodic orbit theory. Consider the simplest possible chaotic sys-
tem, with the state space partitioned into two intervals, with equal ex-
panding multipliers, |Λ0| = |Λ1| = eλ (Bernoulli map, tent map).

[A side remark to Paul: Hamiltonian versions with uniform stretching,
such as Arnold cat map, baker’s map, Selberg zeta function, etc., work
the same way, in equilibrium or away from it, modulo inessential details,
such as pairing of eigenvalues, due to the symplectic invariance].

In the above λ = ln |Λ|/T is the cycle Lyapunov exponent. For an open
system, the real part of the eigenvalue sα gives the decay rate γ of αth
eigenstate. If there was only one periodic orbit (zero entropy), the decay
rate would equal the cycle Lyapunov exponent.

Our task is to determine the leading zero z = e−γ of the dynamical zeta
function. The exponentially growing number of cycles with growing pe-
riod balances the escape rate from individual cycles, and conspires to
shift the zeros of the zeta function, and for this particular uniform stretch-
ing map correct formula is

0 = 1− eγ−λ+h , h = ln 2. (19.1)

This particular formula for the escape rate γis a special case of a general
relation between escape rates, Lyapunov exponents and entropies.

Physically this means that the escape induced by the repulsion by each
unstable fixed point is diminished by the rate of backscatter from other
repelling regions; the difference of the two is the actual escape rate.

What about nonlinear field theory and turbulence?

2016-10-27 Predrag A prologue. By 1972 I had completed, together with Ki-
noshita, what at the time was the largest and most expensive QFT calcu-
lation ever [38] (it broke CERN theory division computing budget). Once
I emerged from the trenches, wiser for the experience, tthe main thing I
had learned is that perturbative QED is stupid (colored text is live hy-
pelinks), and doing QCD by Feynman diagrams is plain wrong.

If you are an atomic or nuclear physicist you think that quantum mechan-
ics is a Hamiltonian and the energy spectrum. From that perspective, the
Wigner surmise is the first thing to do if you see a complicated spectrum.
It tells you what “random” means for distributions constrained by uni-
tarity, time-reversal invariance, etc.. It’s a diagnostic, not a theory. Not
then, and not now.

If you are a field theorist, you think that quantum mechanics is path inte-
grals, Lagrangians, their extrema (WKB/semiclassics), and ~ expansions
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around these classical solutions. And you strive (i) write down equa-
tions, (2) solve them, and (3) predict, with no statistical assumptions or
mindless averaging. One thing that “chaos” is not are Gaussians.

Since 1976 I knew that nonlinear equations can have infinitely many dis-
tinct unstable solutions, and, in order to organize them for the period-
doubling and circle-maps [25] into the fundamental terms, and system-
atic series of exponentially small corrections, I invented cycle expansions [10],
in an esoteric setting - not time evolution flow of a conventional dynami-
cal system, but fictitious “time” of renormalization flows. Working back-
wards, I was able to relate them to zeta functions of Gutzwiller and Ru-
elle.

I derived the equation for the period doubling fixed point function (not
a big step - it is the limit of his functional recursion sequence), which has
since played a key role in the theory of transitions to turbulence. Since
then we have generalized the universal equations to period n-tuplings;
constructed universal scaling functions for all winding numbers in circle
maps, and established universality of the Hausdorff dimension of the
critical staircase.

This all reads like a Physics Today obituary for a buddy of Lenny Susskind.
But it brings us to today, when for the next 6 weeks me and my plumber
friends will work on how to fashion a theory of turbulence from myard
...
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2016-11-06 Predrag Early references on the spatiotemporal invariants and in-
variant measures:
Ruelle [53] Large volume limit of the distribution of characteristic exponents
in turbulence writes: “ For spatially extended conservative or dissipative
physical systems, it appears natural that a density of characteristic expo-
nents per unit volume should exist when the volume tends to infinity. In
the case of a turbulent viscous fluid, however, this simple idea is compli-
cated by the phenomenon of intermittency.
In the case of a Hamiltonian system, and taking for ρ an ergodic com-
ponent of the Liouville measure, one finds that the spectrum is invariant
under change of sign.
For certain classes of physical systems a large volume limit exists (for equi-
librium statistical mechanics this is the thermodynamic limit). We want
to investigate the possibility of defining a large volume limit for certain
dynamical systems. The idea is that, if several systems with indepen-
dent dynamics occupy disjoint regions, the spectrum of the joint system
is simply the union of the spectra of the subsystems (repeated characteris-
tic exponents appear with added multiplicity). If an interaction between
the subsystems is introduced, one may hope that this does not alter the
spectrum much and that, in the large volume limit, a number of charac-
teristic exponents per unit volume may be defined. ”
He refers to the leading Lyapunov exponent as “characteristic exponent.”
Then the things get pretty technical, and I skimmed through the rest.
“ The ‘barber pole’ turbulence which fascinated Feynman (Feynman et
al. [5, II, Sect. 41-6]) appears in the flow between two concentric rotat-
ing cylinders and consists of an helical turbulent band alternating with a
‘laminar’ region. ”

2017-01-24 Predrag Celebrating Finkelstein’s Reckless Ideas in Physics by a night
of thinking. Dunno whether the above papers are any good, but they
have pushed us over the edge, and the log germinating process is over.
Dynamics is dead - the theory of turbulence is now again a branch of
physics, on par with Ising models and quantum field theories, but this
time around based on fundamental equations, with no statistical assump-
tions.
In turbulence, there is no more time, there is only spacetime, and DNS
will have to follow - integrating forward in time from specified initial
conditions is over. From now one has to parallelize and solve the equa-
tions in spacetime, globally and variationally, not step them incremen-
tally in any given 1D spacetime direction - that problem is ill posed. And
the game is to enumerate admissible patterns - symbolic dynamics will
be more crucial than ever before.

2017-02-03 Björn Birnir A nice book to learn basic facts about PDEs is Partial
Differential Equations by Fritz John [34].
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Also, study the work of Christian Kuehn

2017-02-15 Predrag The 2017-01-24 declaration above that the dynamics is dead
is not just another piece of Predrag bombast. In the Santa Barbara secret
seminar (i.e., the one talk that was not recorded) it met some resonance
with fluid dynamicists. In the Dresden MPIPKS talk it barely raised any-
one’s pulse (a quantum optics crowd - makes sense, what do they care
about chaos). Only Denis Ullmo responded, and that is because he’s been
thinking about “mean field games,” a new field of social sciences which
uses constraint optimization methods. But I digress.

For me, this is a time of intellectual turmoil: dynamics is dead. I make fun
of rocket scientists [60] discovering now, in 2013, that “the initial value
problem of a chaotic dynamical system is ill-conditioned,” but they are
right. Since high school, I have been thinking incorrectly, like a physicist
(formulating chaotic dynamics locally in time, as an initial value problem,
to be integrated forward in time) while all along working correctly, as an
engineer (solving for chaotic orbits globally, by variational methods). So
DasBuch has to be rewritten, entirely, from chapter 4 on, with the ideas
of Chapter 38 Relaxation for cyclists to be moved to the beginning of the
exposition. All bits and pieces are already available, but the puzzle has
to be fully reconfigured.

I credit the moronic citizenry for this insight - since November 9, the Na-
tional Day of Shame, I have read no news, all my life is now local. Sit,
think, talk to friends and family. It is amazing how peaceful and liber-
ating is this quiet period, in-between the shameful deed and the major
disasters that are about to befall us.

The real credit goes to Boris Gutkin and trying to decode how thinks:
Spatiotemporal cat is a gift that goes on giving. For a single cat, things
seem business as usual - dynamics is just a product of matrices, and if
the eigenvalues are hyperbolic, at any finite discrete time the usual par-
tition of state space issues, into exponentially shrinking regions of given
finite symbolic dynamics. But the moment one goes to 2-dimensional
spatiotemporal cat business as usual is impossible - advancing a spatial
configuration one discrete step forward in time is impossible, as it is in-
finitely unstable.

This message is really nailed in by going to continuous spacetime.

2017-03-26 Predrag This might merit a quick read: and M. Balajewicz [49] La-
grangian basis method for dimensionality reduction of convection dominated
nonlinear flows

2017-03-26 Predrag This might merit a quick read: A. Gouasmi, E. Parish and
K. Duraisamy [28] Characterizing memory effects in coarse-grained nonlin-
ear systems using the Mori-Zwanzig formalism looks interesting: “ Reduced
representations of complex, non-linear dynamical systems often require
closure, that is finding a good representation of the contribution of the
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discarded physics to the retained physics. In this work, we pursue the
construction of closure models within the context of the Mori-Zwanzig
(M-Z) formalism of irreversible statistical mechanics. In this setting, the
effect of the unresolved states on the resolved states can be exactly rep-
resented as a time-history dependent integral, commonly referred to as
memory, and a noise term. Evaluating the memory kernel requires the
solution to the so-called orthogonal dynamics equation. An understand-
ing of the structure and mechanics of the orthogonal dynamics is criti-
cal to the development of M-Z-based reduced models. The orthogonal
dynamics equation, however, is a high-dimensional partial differential
equation in free-space that is intractable in general. We propose an al-
ternative method to compute the memory kernel that builds on the ap-
proximation that the orthogonal dynamics locally retains the structure of
a Liouville equation. The method is demonstrated on Fourier-Galerkin
simulations of the Kuramoto-Sivanshinsky (K-S) equation.

The proposed procedure provides accurate reconstruction of the memory
integral and valuable insight into the structure and scaling of the memory
kernel. ”

2017-06-20 Predrag Elder et al. [23] Spatiotemporal chaos in the damped Kuramoto-
Sivashinsky equation: “ A discretized version of the damped Kuramoto-
Sivashinsky (DKS) equation is constructed to provide a simple compu-
tational model of spatiotemporal chaos in one dimension. The discrete
map is used to study the transition from periodic solutions to disordered
solutions (i.e., spatiotemporal chaos). The numerical evidence indicates
a jump discontinuity at this transition.

2017-06-13 Predrag Mike Schatz told us in February to look at Xu and Paul [61]
Covariant Lyapunov vectors of chaotic Rayleigh-Bénard convection. We really
should.

2017-06-20 Predrag I have asked Mark Paul about their calculation. He said
that they computed ridiculously many covariant vectors - lake a thou-
sand - and never saw and indication of the physical (invariant mani-
fold) dimension. It is certainly above 100. They compute a large “fractal
dimension;” according to a ChaosBook remark, any fractal dimension
above 5 or so is not credible. Considering how much care estimating
physical dimension took in Xiong’s work, one would need to critically
read through the paper before taking their results at the face value.

Bala(chandra) Suri feels that his 2D Kolmogorov flow would be the best
experimental flow to try to find the physical dimension. I worry about
that example - it has a rather complicated approximate discrete symme-
try –I remember something like D8 from Mohammad’s elton blog– and a
broken translation symmetry, that must produce tons of nearly degener-
ate covariant vectors.
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My best candidates are still the small domain plane Couette flow and
pipe flow.

2017-09-20 Predrag ruminations on spatiotemporal stability. Let’s first recall
how the measure (“inverse” of the “stability”) of a pattern is computed
for the spatiotemporal cat [29]. The d = 2 spatiotemporal cat “equations
of motion” in the Lagrangian form are given by

(−2 + s− 4)xnt = snt , sz ∈ A , (19.2)

with 2 being the discrete spacetime Laplacian on Z2,

2xnt := xn,t−1 + xn−1,t − 4xnt + xn,t+1 + xn+1,t .

The symbols snt from the set A = {3, 2, · · · , s−2, s−1} on the right hand
side of (19.2) are necessary to keep xnt within the interval [0, 1) The sym-
bol |xnt| here denotes xnt with the negative sign, i.e., ‘3’ stands for symbol
‘−3’. The block M = {snt ∈ A , (n, t) ∈ Z2} can be used as a 2-dimen-
sional symbolic representation of the lattice system state. Any solution X
of (19.2) can be uniquely recovered from its symbolic representation M.
By inverting (19.2) we obtain

xz =
∑
z′∈Z2

gzz′sz′ , gzz′ =

(
1

−2 + s− 4

)
zz′

, (19.3)

where gzz′ is the Green’s function for the 2-dimensional discretized heat
equation. A spatiotemporal cat lattice state M is admissible if and only if
all xz given by (19.3) fall into the interval [0, 1).

Moving onto Kuramoto-Sivashinsky: first on solves the nonlinear fixed
point equation, something like

v(x∗) = 0

where the state vector x is a finite discretization of the set of fields (1.34)
over a compact L × T spatiotemporal invariant 2-torus, and v is con-
structed from a linear operator L(x), a matrix of first order space and
time derivatives acting on x, plus a nonlinear term N (x). The equilib-
rium solution x∗ is now taken as a background field (hopefully some-
thing related to the right side of (19.2)), and one looks at small deforma-
tions y = δx = x− x∗,

(L − 1) y(x, t) = x∗(x, t) . (19.4)

Inverting (L−1) yields a det (L−1)−1× (co-matrices), so for large unsta-
ble eigenvalues, the inverse is exponentially small, just like for temporal
dynamics ζ functions. This does not make sense as yet, but you get my
drift... The det ()−1 term should yield the likelihood of a given pattern,
nothing to do with the “fictitious time” used in paranoid Newton to find
the equilibrium pattern x∗.
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2017-09-27 Predrag Knobloch suggests that we study:

Klaus Kirchgässner [39], Wave-solutions of reversible systems and applica-
tions has 296 Google Scholar citations.

Björn Sandstede and Arnd Scheel. This one (not sure ?): On the structure
of spectra of modulated travelling waves [55]

2017-11-03 Predrag This flew by below the radar, sorry - in chapter 18 above,
blog entry 2017-03-23 Matt wrote: “ Also a note on symmetry, the way
that J. F. Gibson Channelflow handles the spatial and temporal trans-
lation symmetry is to constrain the Newton steps to only progress in
directions transverse to the spatial and temporal equivariance tangent
directions. ”

This is not a symmetry reduction. Separating the flow locally into group
dynamics and a transverse, ‘horizontal’ flow, [1, 57] by the ‘method of
connections’, [52], does not reduce the dynamics to a lower-dimension-
al reduced state space M/G. In contrast to the method of co-moving
frames, where one defines a mean phase velocity of a relative periodic
orbit, the method of connections is inherently local. The two methods
coincide for relative equilibria.

This is explained many places: 2013-09-19 entry in siminos/blog/,
2013-10-28 entry in pipes/blog/ (there is actually a whole chapter there,
currently commented, on getting Kreilos and Eckhardt to understand
that, and correct their Kreilos, Zammert and Eckhardt [40] Comoving frames
and symmetry-related motions in parallel shear flows prior to publication),
sect. VI. Bridges to nowhere in ref. [11], sect. 3.1. Method of connections in
Budanur et al. [6] Relative periodic orbits form the backbone of turbulent pipe
flow, and towards the end of the very scholarly Remark 13.1 A brief history
of relativity, or, ‘Desymmetrization and its discontents’.

If that is what Channelflow still does, please alert John that this is wrong;
give him a pdf printout of this blog, so he can reread the references him-
self. And please do tell me whether you had any luck communicating
with him about this; it is important to us, because fluid dynamics com-
munity has by now learned a bit about periodic orbits, but almost noth-
ing about the necessity of symmetry reduction for analysis of turbulent
flows.

2017-11-03 Predrag I find it very hard to understand mathematical physics
when it it is only described in words, without formulas. As an exam-
ple of the way I would blog an article that I am reading it, I am starting
here a discussion of López articles. In this case writing formulas is easy,
as one can download her source files from arXiv:1502.03862. In this way
one can discuss the particular step in her calculations by referring to the
formula she is using.
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2017-11-03 Predrag Matt mentioned that he is rereading Vanessa López pa-
per [48], because she found relative periodic orbits of complex Ginzburg-
Landau using spatiotemporal methods (He had already discussed the pa-
per in blog entries 2017-03-14 and 2017-03-23 in chapter 18, though not
in any detail.). My bad - I simply paid no attention to their numerical
method.

López has since written a more detailed paper [47] on her PhD work.
We usually cite López, Boyland, Heath and Moser [48] Relative periodic
solutions of the complex Ginzburg-Landau equation for being the first to de-
termine relative periodic orbits in a spatiotemporal PDE, though we had
never used her method of finding relative periodic orbits. (I do object to
her using a nonsensical formula from literature to average over relative
periodic orbits, but that is unrelated to the problem of finding them.)

Indeed, in both papers she discretizes using Fourier series expansions in
both space and time, in order to derive an underdetermined system of
nonlinear algebraic equations from which invariant solutions of the com-
plex Ginzburg-Landau equation are sought. That is described in sect. 3
Numerical Method of ref. [47].

She first defines the symmetries of the problem:

The complex Ginzburg-Landau have a three-parameter group [3] 1

G = T2 × R (19.5)

of continuous symmetries generated by spacetime translations x→ x+σ,
t→ t+τ and a rotationA→ eiθA of the complex fieldA(x, t), in addition
to being invariant under the action of the discrete group of transforma-
tions A(x, t) → A(−x, t) of spatial reflections. If A(x, t) is a solution, so
are

eiθA(x, t), (19.6)
A(x+ σ, t), (19.7)
A(x, t+ τ), (19.8)
A(−x, t), (19.9)

for any g(θ, σ, τ) ∈ G. For a given solutionA(x, t) of the complex Ginzburg-
Landau equation, consider the isotropy subgroup GA of G at A 2,

GA = {(ϕ, S, T ) ∈ G | A(x, t) = eiϕA(x+ S, t+ T )}, (19.10)

which consists of elements of the symmetry group G = T2 × R leaving
the complex Ginzburg-Landau equation invariant.

1Predrag 2018-03-20: She thinks of a “group” not as a collection of group elements, but as its
parameter space. In (19.5) R refers to time t ∈ (−∞,∞), and T2 refers to the complex phase
θ ∈ (0, 2π), and the configuration space restricted to a periodic domain of length x ∈ (0, Lx).
Remember, for us also x ∈ (−∞,∞).

2Predrag 2018-03-20: Looks like she is defining a triply-periodic relative periodic orbit A(x, t)?
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López seeks solutions A(x, t) of the complex Ginzburg-Landau equation
satisfying

A(x, t) = eiϕA(x+ S, t+ T ), (19.11)

for (ϕ, S, T ) ∈ G also unknown and to be determined.

She represents A(x, t) as a spatial Fourier series

A(x, t) =
∑
m∈Z

am(t)eiqkx, (19.12)

where qk = 2πm/Lx denotes the m-th wavenumber in the expansion.
From the group-invariance condition (19.11) it then follows that the com-
plex-valued Fourier coefficient functions am(t) in (19.12) satisfy

am(t) = eiϕeiqkSam(t+ T ) (19.13)

for all m ∈ Z. Because of the presence of spatial translational symmetry
the solutions sought can be restricted to those with elements g(ϕ, S, T ) ∈
G having S ∈ [0, Lx).

O(2) symmetry. Since the complex Ginzburg-Landau equation is in-
variant under the action of the group Z2 of spatial reflections A(x, t) →
A(−x, t), to any solution A(x, t) of the complex Ginzburg-Landau equa-
tion having (0, Lx, 0) and (ϕ, S, T ) as generators of subgroups of the isotropy
subgroup GA there corresponds a solution Ã(x, t) := A(−x, t) having
(0, Lx, 0) and (ϕ,Lx−S, T ) as generators of subgroups of the isotropy sub-
group GÃ. [... some details of incorporating the reflection symmetry we
should also study ...] She calls the invariant solutions (A;ϕ,Lx/2 ± δ, T )

and (Ã;ϕ,Lx/2 ∓ δ, T ), as well as their corresponding orbits G · A and
G · Ã, conjugate to each other under the (involutive) action of the group
Z2 of spatial reflection symmetry of the complex Ginzburg-Landau equa-
tion.

She writes: “The complex Ginzburg-Landau equation may admit solu-
tions having symmetries other than (or in addition to) that defined by
(19.11) and several of the solutions resulting from our study do have ad-
ditional symmetries. For instance, there may exist solutions of the com-
plex Ginzburg-Landau equation satisfying”

A(x, t) = ei2π/lA(x+ Lx/l, t), for some l ∈ N, l > 1,(19.14)
A(x, t) = A(−x+ 2c1, t) for some c1 ∈ R, (19.15)
A(x, t) = −A(−x+ 2c2, t) for some c2 ∈ R. (19.16)

The first one is standard: (19.14) describes solutions fixed by a composi-
tion of the actions (19.7) and (19.6), and gives (2π/l, Lx/l, 0) as one gen-
erator of a subgroup of GA. Symmetries (19.15) and (19.16) might be our
pre-periodic orbits, they are, respectively, even about x = c1 or odd about
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x = c2 for some real numbers c1, c2. Presumably awkwardly placed sym-
metry points in a conjugacy class, should all really be conjugated to the
standard origin x = 0.

A solution having both symmetries (19.14) and (19.15) also satisfies

A(−x+ 2(c1 + Lx/(2l)), t) = ei2π/lA(x, t) . (19.17)

In particular, note that a solution satisfying (19.14) for l = 2 and which is
even about x = c1 is also odd about x = c2 = c1 + Lx/4.

Since the boundary conditions are periodic in x, she usea the spatial
Fourier series (19.12) and substitutes into the complex Ginzburg-Landau
equation to obtain an infinite system of ordinary differential equations
(ODEs),

dam
dt

= Ram − q2
k(1 + iν)am − (1 + iµ)

∑
m1+m2−m3=m

am1am2a
∗
m3
, (19.18)

for the complex-valued functions am(t). Under this transformation the
symmetries (19.6–19.9) of complex Ginzburg-Landau equation become
symmetries of (19.18). Thus, if a(t) = (am(t)) is a solution of the system
of ODEs (19.18), then so are

(eiθam(t)), (19.19)

(eimσam(t)), (19.20)
(am(t+ τ)), (19.21)

(a−m(t)), (19.22)

for any (θ, σ, τ) ∈ T2 × R. In particular, (19.19) and (19.20) say that the
ODEs (19.18) are invariant under the T2-action

(θ, σ) · (am(t)) = (eiθeimσam(t)).

She employs a spectral-Galerkin projection obtained by fixing an even
numberNx and truncating the expansion (19.12) to include only the terms
with indices m satisfying −Nx/2 + 1 ≤ m ≤ Nx/2 − 1. Both theory and
computation [16, 36] shows that for sufficiently large Nx the behavior of
this truncation captures the essential features of the complex Ginzburg-
Landau dynamics.

From the condition (19.11) defining an invariant solution of the complex
Ginzburg-Landau equation, it follows that the corresponding solution
a(t) of the system of ODEs (19.18) satisfies

ak(t) = eiϕeiqkSam(t+ T ) (19.23)

for all m and t (and where ϕ, S, T are to be determined).
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As Matt pointed out in a conversation, a solution of the system of func-
tional equations (19.23) can be expressed in the spacetime Fourier-Fourier
basis for (19.18) as

ak(t) = e−i ϕT te−iqk
S
T t
∑
j∈Z

âkje
iωjt , (19.24)

where ωj = 2πn/T denotes the n-th frequency in the expansion. It might
be most economical to do for Kuramoto-Sivashinsky precisely what López
did for complex Ginzburg-Landau. It should be easier, as there is one less
continuous symmetry.

Figure 19.1: A Chanellflow equilibrium
solution comparison between Laurette’s
Stokes method (in red) and the standard
method (in blue).

2017-11-13 Predrag As fate would have it, I talked to Laurette Tuckerman, and
she reminded me of her method of determining equilibria and relative
equilibria that is some 20 times faster than the usual Newton, and it re-
minds me very much of Matt’s approach. The references are BifAnal-
TimeStep.pdf, mamun.pdf, timesteppers.pdf, and invpow_CICP.pdf.

Figure 19.1 is an example of (to me very impressive) convergence accel-
eration.

2018-02-06 Predrag I went to 5 (five!) seminars, colloquia and public lectures
yesterday, plus spent couple of hours working with students one-on-one.
Twitter is aflame with a debate whether professors really pull 60-hour
weeks. Not sure that counts as ‘work’ (or, what in the notes that follow
we call ‘action’), especially the two math seminars that made impenetra-
ble the topics I currently work on but - that might be counted as ‘relax-
ation’, but it sure was many hours. The second seminar of the day, while I
still had some neurons lighting up, was Discrete stochastic Hamilton-Jacobi
equation by Renato Iturriaga, CIMAT. He is a collaborator Georgia Tech’s
A. Fathi. This should be a flip side of Marsden’s discrete Lagrangian
methods, to be blogged here at some point. Here it goes:

Lagrangian L : TT d → R (19.25)
Hamiltonian H : T ∗T d → R . (19.26)
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The dynamics is on the tangent bundle. T ∗ means symplectic struc-
ture. Minimizing L gives Euler-Lagrange equation (ODE). MinimizingH
gives Hamilton-Jacobi equation (PDE). Can discretize Hamilton-Jacobi in
two ways (1) add viscosity, (2) add discount factor (for ‘discount factors’
see, for example, here):

H(x, dxU) = ∆U + ε . (19.27)

A Lax-Oleinik transformation gives a unique solution of (19.27). (And so
on, but I give up - have another 17 things awaiting me.)

2018-02-06 Predrag I ran into an interesting discussion by Miles Stoudenmire:
Periodic vs Open or Infinite Boundary Conditions for DMRG, Which Should
You Choose? Stoudenmire says that when open BC achieves a given
accuracy when keeping m states, then to reach the same accuracy with
periodic BC one must keep m2 states. I find it interesting, because I have
a strong prejudice for periodic BC, but it really should not matter - if you
are doing a large scale turbulence simulation free BC might make sense,
if that decreases the cost of the computation.

2018-02-26 Predrag A snippet from internet:

Topological quantum computing (TQC) is a newer type of quantum com-
puting that uses “braids” of particle tracks, rather than actual particles
such as ions and electrons, as the qubits to implement computations. Us-
ing braids has one important advantage: it makes TQCs practically im-
mune to the small perturbations in the environment that cause decoher-
ence in particle-based qubits and often lead to high error rates.

2018-03-09 Predrag I uploaded my APS March Meeting 2018 slides.

2018-03-12 Predrag We are not alone. It is an obvious idea.

Kevin O’Keeffe, Hyunsuk Hong and Steven Strogatz of Cornell Univer-
sity, developed a ‘swarmalator’ model, consisting of oscillators whose
phase dynamics and spatial dynamics are coupled, leading to simultane-
ous spatially-coordinated and synchronous behavior [50]. They say that
‘synchronization’ is self-organization in time, such as activation in heart
cells, and that ‘aggregations’ is self-organization in space, like alignment
of electron spins in magnetic material. In the synchronized state, the in-
dividual cells coordinate the timing of their oscillations, but they do not
move through space. In swarming individuals move through space, but
without conspicuously altering their internal states.

Now, what they actually do is very much in the style of the Winfree, Ku-
ramoto, Strogatz’ life work (fireflies in synch, etc.) and it might have too
much detail of that kind for us to truly enjoy the work. They claim that
“insights from biological synchronization have shed light on neutrino os-
cillations, phase locking in Josephson junction arrays (that one with Kurt
as coauthor), ...,” but I doubt that.
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Say what you want, but they sure get the prize for the ugliest new termi-
nology: “A rich phenomenology is expected for mobile oscillators whose
phases affect their motion. We call these hypothetical systems ‘swarmala-
tors’ because they generalize swarms and oscillators.”

As they work with N ‘particles’ in continuous time and space, the sim-
plest model is 2N all-to-all coupled ODEs (like Kuramoto models), a bit
complicated at get go. Emphasis on “space” and “time” is fraudulent:
what they really mean is that space dynamics ofN interacting “particles”
is coupled to the internal dynamics of these N “particles.” It will provide
employment for folks who have run out of ideas in their work on Ku-
ramoto systems. In other words, this is just an ordinary, time evolving
dynamical 2N -dimensional system, where the physical interpretation of
the first N dimensions differs from the second N dimensions. It is not
even Hamiltonian, or anything. They do not use symmetries, even per-
mutation ones. For us, a downer.

2018-02-06 Alex Haro You can compute Lyapunov exponents of the tangent
dynamics to the torus. If you want something more explicit, as eigenval-
ues and “eigenvectors" (technically invariant bundles), you can discretize
what is known as transfer operator. Angel Jorba has a paper on this brute
force method. Rafael de la Llave, I. G. Kevrekidis and R. A. Adomaitis3

used this method many years ago. In my papers with Rafael (see also
chapter 3 of our book [31] The parametrization method for invariant mani-
folds) we use several efficient methods.

You could ask Rafael, or some PhD student from Barcelona, as Joan Gi-
meno.

2018-03-20 Predrag We can track the references through their recent numer-
ical paper, Canadell and Haro [7] Computation of quasi-periodic normally
hyperbolic invariant tori: Algorithms, numerical explorations and mechanisms
of breakdown. From the abstract: “ We present several algorithms for com-
puting normally hyperbolic invariant tori [...]. The algorithms use dif-
ferent hyperbolicity and reducibility properties and compute also the in-
variant bundles and Floquet transformations. ”

2018-04-12 Predrag Stephen Wolfram writes:

Cool. I like your idea (if I understood it) of making symbolic dynamics
out of spacetime lumps of PDEs. (somewhat reminiscent of my space-
time patches.

Simpler than Kuramoto-Sivashinsky, but seemingly just as “turbulent” is
my PDE. I’ve been asking PDE people about this equation for years . . .

3Predrag 2018-03-20: I was not able to pinpoint the particular references. Perhaps Adomaitis,
Kevrekidis and de la Llave [2] A computer-assisted study of global dynamic transitions for a noninvert-
ible system or Predicting the complexity of disconnected basins of attraction for a noninvertible system, a
technical report from 1991.

7451 (predrag–7383) 79304/19/2020 siminos/spatiotemp/chapter/dailyBlog.tex

http://www.wolframscience.com/nks/notes-6-7--spacetime-patches-in-cellular-automata/
http://www.wolframscience.com/nks/notes-6-7--spacetime-patches-in-cellular-automata/
http://www.wolframscience.com/nks/p165--partial-differential-equations/


CHAPTER 19. SPACE-TIME, BLOGGED

nobody has ever told me anything interesting about it, beyond what’s
already in my notes.

P.S. Common response from kids: “What a strange coincidence that your
name is the same as the name in Wolfram|Alpha. Oh, and that your
computer has that same logo on it.” :)

2018-05-02 Predrag In 2012 Wilczek hyothesized existence of ‘Time crystals’,
see ...observed time crystals... and “Time Crystals Multiply”: “ Time
crystals are different from other time-periodic systems (like pendula and
beating hearts) in that they don’t move to the rhythm set by their driving
mechanism. Instead, they oscillate with a period that is an integer mul-
tiple of the driving period. In addition, according to most models, the
periodic driving would overheat the crystal, and a discrete time crystal
could only exist if the system is stabilized against heating by a disorder-
induced phenomenon called many-body localization. ”

I do not think we will run into them, because one needs higher time
derivatives, see (19.28), but I am not sure. The credit for looking at things
spatiotemporal globally perhaps goes back to Lagrange (the action is the
cost function for mechanical systems). Any time you have a stable limit
cycle you have a time crystal (they call that “spontaneous time-symmetry
breaking", but chaotic dynamics selects an infinite set of periods (periods
of unstable periodic orbits, generically not rationally related). But I keep
looking at these papers, such as Sacha and Zakrzewski [54] Time crystals:
a review. Who knows, we might learn something. They write:

Time crystals are time-periodic self-organized structures postulated by
Frank Wilczek in 2012. Discrete (or Floquet) time crystals are structures
that appear in the time domain due to spontaneous breaking of discrete
time translation symmetry. The struggle to observe discrete time crystals
is reviewed here together with propositions that generalize this concept
introducing condensed matter-like physics in the time domain. We re-
view strategies aimed at spontaneous breaking of continuous time trans-
lation symmetry.

Switching from space to time crystals exchanges the role of space and
time. In the space crystal case we expect periodic behaviour in space at a
fixed instant of time (i.e. at the moment when we perform a measurement
of a system) while in the time crystal case we fix the position in space and
ask whether a detector clicks periodically in time.

Assume the energy of a particle of the form

E =
ẋ4

4
− ẋ2

2
. (19.28)

The lowest energy corresponds to particle motion with velocity ẋ = ±1.
Note that the energy (19.28) cannot be converted to the Hamiltonian smoo-
thly: the Hamiltonian is a multi-valued function of the momentum with
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cusps corresponding precisely to energy minima at ẋ = ±1 where the
Hamilton equations are not defined (Shapere and Wilczek [56]).

The quantum version is based on taking a time-periodic (Floquet) Hamil-
tonian H(t + T ) = H(t) and then working with the complete set of Flo-
quet eigenstates |un(t+ T )〉 = |un(t)〉 , quasi-energies En,

|ψ(t)〉 =
∑

cne
−iEnt|un(t)〉 .

Quasi-energy spectrum is not bounded from below. It is periodic with
a period 2π/T and it is sufficient to consider only a single Floquet zone
in order to fully describe a system, in analogy to a Brillouin zone in con-
densed matter physics.

The general motivation is the same as our cat map discussion - they con-
sider a rotor motivated by a Rydberg electron perturbed by a microwave
field. Then they relate the quantum version to a tight-binding model.

2018-07-10 Predrag Of possible interest to Matt, as we will have to continue
our invariant 2-tori: Engelnkemper et al. [24], arXiv:1808.02321, Continu-
ation for thin film hydrodynamics and related scalar problems. They write “ [...]
how to apply continuation techniques [...] applied to a number of com-
mon examples of variational equations, namely, Allen-Cahn- and Cahn–
Hilliard-type equations including certain thin-film equations for partially
wetting liquids on homogeneous and heterogeneous substrates as well
as Swift–Hohenberg and Phase-Field-Crystal equations. Second we con-
sider nonvariational examples as the Kuramoto–Sivashinsky equation
[...]. Through the different examples we illustrate how to employ the
numerical tools provided by the packages auto07p and pde2path to de-
termine steady, stationary and time-periodic solutions in one and two
dimensions and the resulting bifurcation diagrams. ”

2018-08-19 Predrag I have the periodic orbit theory formula for an equilibrium
point (for the last 20-30 years!) in the boyscout version of ChaosBook
(current sect. 22.3 Equilibrium points), but do not know what to do with it.

Very frustrating.

Now it is pressing - in the spatiotemporal formulation of turbulence the
zeta functions (Fredholm determinants) are presumably 2-d or (1+3)-d
Laplace/Fourier transforms of trace formulas, one dimension for each
continuous symmetry: one Laplace transform for time, and one Fourier
transform for each infinite spatial direction.

We have not written either the trace or the determinant formulas yet. The
spatiotemporal cat periodic points (invariant 2-tori) counting suggests a
way, so far unexplored.

Or, a deeper insight: in the spatiotemporal formulation of turbulence
there are no periodic orbits, as there is no evolution, neither in space nor
in time. All solutions are fixed points, and the important measure is not
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the natural (Ruelle-Bowen-Sinai) infinite time measure, but the measure
concept is more like the stat mech understanding of the Ising model -
what is the likelihood of occurrence of a given spacetime configuration
(admissible by the defining equations of the system)?

2018-08-21 Predrag Dong [17] Organization of the periodic orbits in the Rössler
flow writes: “Numerical implementation of the variational method [...] a
finite difference scheme is used to obtain accurate discrete loop deriva-
tives. We use the five-point approximation. [that is of interest to us]
We invert the matrix using the banded LU decomposition on the embed-
ded band diagonal matrix, and treat the cyclic and border terms with the
Woodbury formula.”
Have to read these as well (Matt has had a look at Dong [19], did not see
how to apply it to his own project):
Dong, Wang, Du, Uzer and Lan [22] The ionized electron return phenomenon
of Rydberg atom in crossed-fields
Dong [19] Topological classification of periodic orbits in the Kuramoto-Sivashinsky
equation
Dong [18] Topological classification of periodic orbits in Lorenz system
Dong [20] Topological classification of periodic orbits in the Yang-Chen system

2018-09-02 Predrag Ziessler, Dellnitz and R. Gerlach [64] The numerical compu-
tation of unstable manifolds for infinite dimensional dynamical systems by em-
bedding techniques, arXiv:1808.08787: “ we extend the novel framework
developed by Dellnitz, Hessel-von Molo and Ziessler [15], arXiv:1508.07182,
to the computation of finite dimensional unstable manifolds of infinite di-
mensional dynamical systems. To this end, we adapt a set-oriented con-
tinuation technique for the computation of such objects of finite dimen-
sional systems. We show how to implement this approach for the analy-
sis of partial differential equations and illustrate its feasibility by comput-
ing unstable manifolds of the one-dimensional Kuramoto-Sivashinsky
equation as well as for the Mackey-Glass delay differential equation. ”

2018-10-06 Predrag A summary of Wang, Wang and Lan [59] Accelerated varia-
tional approach for searching cycles.
Lan and Cvitanović [43] variational approach eliminates most Poincaré
sections by discretizing continuous time evolution into small time steps.
The approach requires storage of an entire trajectory in the computer
memory, so the computational load is proportional to the number of dis-
cretization points. In order to extend the method to determination of
connecting (homo/hetero-clinic) orbits, Dong and Y. Lan [21] designed
an automatic mesh allocation algorithm which makes the guess points
evenly distributed in arc length instead of in time, and thus avoids their
accumulation near the ends of the connection, where the flow is expo-
nentially approaching zero. In this paper they introduce several new
schemes to allocate mesh points in different situations.
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In their calculations of periodic orbits, they approximate the loop deriva-
tives by a five-point banded matrices, with the periodic boundary condi-
tion.
Following Zhou, Ren and E [63], they reparametrize the loop parame-
ter by a desired density of points (their eq. (6)), for example uniform in
time, or uniform in arc length, and derive an effective equation to auto-
matically allocate lattice points which capture local fine orbit structures,
while keeping the exponential convergence of the variational approach.
The time-translational invariance of a periodic orbit leads to neutral di-
rection in the update of the coordinates [43], which is eliminated by a
gauge-fixing condition [21, 37, 63]. They use the usual Poincaré section
plane condition (below their eq. (6)). A conservation law may supply
another neutral direction for the variation. They use a two-dimensional
Hamiltonian energy conservation neutral direction as an example of a
way to remove such neutral direction by adding a Lagrange multiplier
(their eq. (16)), while keeping the dynamics on the desired energy sur-
face.
Utilizing the special structure of the matrix involved in the homotopy
evolution, the lower-upper (LU) decomposition is implemented with gre-
ater efficiency and less memory. Their number of unknown elements
in L and U is proportional to Nd instead of (Nd)2 as in the usual LU
decomposition, which greatly speeds up the computation.
Three examples are used to demonstrate the validity of the accelerated
algorithm.
Left for the future:

1. The computation of the Jacobian in high-dimensional systems is time
and resource consuming. How to overcome this difficulty remains
a major challenge.

2. The computation of the weight function is quite cumbersome. There
may exist an equivalent way for redistributing the lattice point but
with much lighter computation load.

If you want to discuss this with Lan, we can get him online any time. Un-
fortunately Georga Tech prevents him from coming here February 2019,
or perhaps as long as we live in Trumplandia.

2019-02-03 John Gibson I met Datseris at the last JuliaCon and attended his
talk. His
DynamicalSystems.jl:
A Julia software library for chaos and nonlinear dynamics [14]
and
DynamicalBilliards.jl:
An easy-to-use, modular and extendable Julia package for dynamical billiard
systems in two dimensions [13]
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are really spectacular packages. You should assign a student to use them
in a project.

Any volunteers? I have a dynamite (but difficult) turbulence project for
you :)

His JuliaCon talk is here (click!). John is in the second row to the
left, light blue shirt.

2019-02-21 John Gibson Saw this on Julia Discourse this morning: an interac-
tive tool for exploring dynamical system

discourse.julialang.org/t/announcing-interactivechaos/21046

juliadynamics.github.io/DynamicalSystems.jl/dev/#interactivechaos

2019-02-25 Predrag As fate would have it, the new theoretical condensed mat-
ter physics assistant professor here, Glen Evenbly <glen.evenbly@gmail.com>
does all his tensor networks computations in Julia. Han Liang visited
him, explained the spatiotemporal cat, and they were both happy.

2019-03-24 John Gibson on defining the Kuramoto-Sivashinsky time scale:

ut = −uxx − uxxxx − uux

Linear stability around u = 0 gives a maximally unstable mode 4 exp(iαt)
with α = 1/

√
2 and wavelength L = 2π/α = 2π

√
2.

We get a wavespeed c ≈ 3 from the nonlinear wave term −uux, and the
fact that u saturates at about |u| = 3. That gives a nonlinear time scale of
about t = 3 from t = L/c = 2

√
2π/3 ≈ 3.

Seems to be about right from viewing simulations. I don’t have a good
argument why u saturates at |u| = 3.

2019-02-26 Predrag Objection! We know that asL grows, the flame front u(x, t)
is a random walk in u with mean 〈u〉(t) = 0 (we used Galilean invariance
to enforce that) and the variance 〈u2〉(t) (the “kinetic energy”) growing
linearly with L (have a look at the color bar units in Matt’s invariant 2-
tori), so |u| certainly does not saturate at 3. This global argument has to be
turned into some local rate of growth of |u|, perhaps |ux|. The steepness
of kinks in the flame front might be bounded by the hyperviscosity...

2019-02-27 Predrag Machine learning workshop:
I moved my notes to pipes/blog/dailyBlog.tex

2019-02-27 Predrag Ispolatov [33] Chaos in high-dimensional dissipative dynami-
cal systems cites a huge amount of literature that studies high dimensions
and might have to be cited in our work.

4Predrag 2019-03-25: I think he means exp(αt).
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They solve numerically coupled systems of equations which contain second-
and third-order nonlinear terms, with coefficients drawn from Gaussian
distributions with zero mean and unit variance.

They find that the probability of chaos increases with the dimension of
the phase space and that, essentially all trajectories become chaotic for
d > 50, while for intermediate dimensions d � 15, the majority of chaotic
trajectories essentially fill out the available phase space.

[...] We assume that for sufficiently high d, all Jacobian eigenvalues are
statistically independent. This assumption [...] is a rather strong approxi-
mation without which it seems impossible to derive analytical estimates,
and which seems to result in reasonable results.

2019-05-19 Predrag SIAM DS19 talk by Joanna Slawinska, Abbas Ourmazd,
Dimitrios Giannakis, and Joerg Schumacher Vector-Valued Spectral Analy-
sis of Complex Flows have been doing this for a while, and a bunch of old
literature comes with it...

Vector-Valued Spectral Analysis (VSA) is a recently developed frame-
work [27] for spatiotemporal pattern extraction, based on the eigende-
composition of a kernel integral operator acting on vector-valued ob-
servables (spatially extended fields) of the dynamical system generating
the data, constructed by combining elements of the theory of operator-
valued kernels for multitask machine learning with delay-coordinate maps
of dynamical systems. The method utilizes a kernel measure of similar-
ity that takes into account both temporal and spatial degrees of freedom
(whereas classical techniques such as EOF analysis are based on aggre-
gate measures of similarity between “snapshots”). As a result, VSA ex-
tracts physically meaningful patterns with intermittency in both space
and time, while factoring out any symmetries present in the data.

2019-06-01 Predrag Giannakis et al. [27] Spatiotemporal pattern extraction by spec-
tral analysis of vector-valued observables:

“Vector-valued spectral analysis (VSA) is based on an eigendecompo-
sition of a kernel integral operator acting on a Hilbert space of vector-
valued observables of the system. [...] conventional eigendecomposition
techniques decompose the input data into pairs of temporal and spatial
modes with a separable, tensor product structure. The patterns recovered
by VSA can be manifestly non-separable, requiring only a modest num-
ber of modes to represent signals with intermittency in both space and
time. The kernel construction naturally quotients out dynamical sym-
metries in the data and exhibits an asymptotic commutativity property
with the Koopman evolution operator of the system, enabling decom-
position of multiscale signals into dynamically intrinsic patterns. Appli-
cation of VSA to the Kuramoto-Sivashinsky model demonstrates signifi-
cant performance gains in efficient and meaningful decomposition over
eigendecomposition techniques utilizing scalar-valued kernels. [...] the
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techniques described above recover from the data a set of temporal pat-
terns and a corresponding set of spatial patterns, sometimes referred to
as “chronos” and “topos” modes, respectively. [...] ”

This looks like something it will take time to digest, but digest we must...

2020-01-22 Predrag Well, if we are going to have a revolution, nothing will re-
main untouched. In particular, we have to give up on the forward-in-time
evolution operators, replace them by enforcing infinitesimal continuity
equation at any spacetime instant.

Scary, as the solutions are supposed to be invariant spacetime measures,
and those are horrible nowhere differential beasts. But invariant 2-toruss
should save the day.

2020-08-04 Predrag When it comes to proofs that solutions like our Kuramoto-
Sivashinsky exist, Akitoshi Takayasu want us to refer to 3 of his papers:
“A method of verified computations for solutions to semilinear parabolic
equations using semigroup theory,” SIAM J. Numer. Anal., Vol. 55, pp.
980-1001,(2017)

Numerical verification for existence of a global-in-time solution to semi-
linear parabolic equations, J. Comput. Appl. Math., Vol. 315, pp. 1-16,
(2017)

“Accurate method of verified computing for solutions of semilinear heat
equations,” Reliable Computing, Vol. 25, pp. 74-99, (2017).

I have not read them. Other work of this rigorous kind is by Piotr Zgliczyn-
ski et al..

2020-10-20 Erik Aurell Thanks for the presentation, it was very enjoyable, and
impressive. Thanks also for making it interactive, which is much more
enjoyable than a zoom talk with slides. To follow up on the remark I
made, the paper I was thinking about was Frisch, She and Thual [26]

2020-10-25 Predrag to Erik (& Lan, Roberto),

you are right, and thanks for reminding me: Frisch, She and Thual [26]
Viscoelastic behaviour of cellular solutions to the Kuramoto-Sivashinsky model
(1986) is an amazing paper (nobody writes papers like that one any more),
we always cite it, but I had forgotten the "viscoelastic" in the title.

As you had noticed immediately, there are very long correlated patterns
in the large scale simulations (not because of transients not having died
out - the long-range correlations are always there), and - as Frisch et al
write, they are a consequence of Galilean symmetry, in the following way:

‘Visco’: While on small finite domains we always work by fixing 〈u〉 = 0,
on large and infinity domains, u can attain any value, ie, the flame
front velocity “diffuses" or executes a “random walk" - that’s how
I interpret a part of their paper. We actually routinely compute the
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covariance 〈u2〉/2 of this random walk, as that goes into our power-
in/dissipation-out plots, ChaosBook Sect. 30.3 Energy budget, Figure
30.3.

‘-elastic’: I know precisely what spatiotemporal stability of a relative doubly-
periodic solution is, but I do not understand how to identify the
‘elastic’ eigen-exponents when we study stability of our rubbery
tiles.

For me the paper is very hard to digest (my fault, not theirs), but you
have worked on this, you’ll figure it out.

Basically, while they discuss long wavelengths compared to the typi-
cal wiggle-spacing, our problem is a single nearly marginal eigenvalue
/ eigendirection in deforming a small rubbery tile while infinitesimally
changing both spatial and temporal period in determining the continu-
ous family of what we would like to identify uniquely by a single spa-
tiotemporal array of symbols.

Wow, that was a long sentence. My hunch is that we should pick the
unique value where this eigenvalue is zero (the "least-strained" tile shape)
to describe the whole continuous family of relative doubly-periodic so-
lutions corresponding to a given ruberry shape. It should die at both ends
through some abrupt, precise, shape-changing bifurcation. All other eigen-
exponents are strictly away from zero, so the family should be isolated.
It should not be possible to continuously transform distinct rubber tiles
into one another for spatiotemporal discrete symbolic dynamics to make
sense.

Matt has explored the bifurcations at the ends of the continuous families
of rubber-tile deformations, but not sufficiently precisely to establish that.

2019-02-16 Predrag to Matt Eventually the study of the deformation of our “rub-
ber alphabet tiles” should go to a chapter of its own. Currently the text
above, around 2018-07-23 Matt continuous families is what we have,
and the main conceptual problem remains what point on the 1D contin-
uous family of a rubber tile to take as the representative tile.

Here is a simple proposal - pick the point at which an “alphabet” tile is
reflection symmetric; than the continuum of other solutions belongs to
relative periodic tiles, with continuum of non-zero phase shifts.

Is this good enough?

2019-05-14 Predrag We might chose Galilean invariant elementary tiles (spa-
tial derivatives of u), instead of Galilean equivariant uj tiles.

2019-12-06 Matt & Predrag excerpt from a draft spatiotemp/chapter/tiles.tex:

[· · · ] we have not investigated how the local Galilean velocities of the tiles
affect the tiling procedure. We [· · · use] the Galilean invariance (12.31) to
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set the mean velocity of the overall front to zero. For an arbitrary subre-
gion of width L1 < L, the mean velocity is generically 〈u〉(t) 6= 0. Actu-
ally, we know that as function of L the velocity front executes a random
walk, 5 and hence the range of the color bar in a figure such as figure 1.1
has to grow proportionally to

√
L. The variance grows only in the spatial

direction, in the time direction E(t) → E. That implies that in gluing
letters uj of alphabet figure 1.10 into larger patterns, one also has to vary
〈uj〉(t) averaged over the tile of width Lj , in order to glue optimally. In
other words, we have to use the Galilean symmetry group orbit of the let-
ter uj , and slice that group orbit at 〈uj〉(t0) = 0 for purposes of plotting
its representative in figure 1.10. The tiles of figure 1.10 were all converged
with under the zero mean velocity condition; locally, subdomains of the
tiling have non-vanishing local Galilean velocities.

2020-10-23 Predrag We refer to Frisch et al. after (1.22), in figure 18.21, and in
posts 2018-05-09 PC and 2013-12-29 PC. In

Cvitanović, Davidchack and Siminos [12] write: “For large system size,
it is hard to imagine a scenario under which attractive periodic states (as
shown in ref. [26], they do exist) would have significantly large immedi-
ate basins of attraction.”

2021-03-20 Predrag I’m worried about ‘rubbery tiles’ in Matt’s Kuramoto-Siva-
shinsky project, specifically about Frisch et al. “viscoelasticity” paper [26]
that seems to describe long range correlations.

Graham know what they are, see 2017-01-26 Matt, M. Graham Talk above.

See 2020-10-22 Matt eq. (18.19), 2020-10-25 Predrag above.

For some viscoelasticity papers to possibly ponder (have not tried to read
them), search for 2021-03-20 Predrag in svn repo pipes, blog/blog.tex.

2020-10-25 Predrag notes on Frisch, She and Thual [26] Viscoelastic behaviour of
cellular solutions to the Kuramoto-Sivashinsky model:

“A multiple-scale analysis of the Kuramoto-Sivashinsky one-dimensional
model of a flame front with 2π-periodic boundary conditions is presented.
For arbitrary large values of the number M of linearly unstable modes
there exist stable steady solutions of period 2π/N where N = O(M). These
‘cellular solutions’ exhibit elastic behaviour under perturbations of wave-
length much larger than 2π/N . The results are illustrated by numerical
experiments. Elasticity has its origin in the translation and Galilean in-
variances. Similar invariance properties are likely to be at the root of the
viscoelastic behaviour of turbulent flows conjectured by many authors.”

They show that the stability of cellular solutions is related to their vis-
coelastic behaviour under large-scale weak perturbations. Actually this

5Predrag 2019-12-06: make sure that this is explained in the text elsewhere, then link here to the
variance equation “with variance E(t) = 1

2
〈u2〉(t) ∝ L by the extensivity of Kuramoto-Sivashin-

sky,”
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stability is at best marginal: the KS equation is invariant under transla-
tions and Galilean transformations ; thus there are perturbations which
cannot relax, namely weak uniform translations and addition of weak
uniform velocities. When such perturbations are taken to be slightly
non-uniform, slow but non-trivial dynamical behaviour sets in. This is
a particular case of what is known as ‘phase dynamics’ (Kuramoto [41,
42],1984a,b; Pomeau & Manneville 1979; Coullet & Fauve 1984, 1985;
Fauve 1985).

Technically, weak large-scale perturbations of the cellular solutions are
governed by a linear p.d.e. with (spatially) rapidly varying coefficients.
This may be asymptotically analysed by the same multiscale homoge-
nization methods that are used in deriving the bulk properties of period-
ically inhomogeneous materials or flows (Bensoussan, Lions and Papani-
colaou 1978 ; Papanicolaou & Pironneau 1981). Most problems studied so
far by these techniques have only translation invariance. The presence in
our case of the additional Galilean invariance gives rise to second-order
rather than first-order dynamics in time.

2020-11-13 Predrag Johnson, Noble, Rodrigues and Zumbrun [35] Behavior of
periodic solutions of viscous conservation laws under localized and nonlocal-
ized perturbations: “ when there exist conserved quantities, whether de-
riving from Hamiltonian structure/symmetries of the equations, or, as
in the case of parabolic conservation laws considered here, simply from
divergence form of the equations/conservation of mass, then there ex-
ist additional critical modes, and the formal WKB prediction becomes
that of a more complicated hyperbolic-parabolic system of conservation
laws rather than the scalar convected Burgers equation of the reaction-
diffusion case.

Perhaps the best-known example of such a model is the Kuramoto-Sivashinsky
equation, for which the formal asymptotic description of behavior via
a hyperbolic-parabolic system of conservation laws was pointed out al-
ready in Frisch, She and Thual [26] under the alternative form of a damped
scalar wave equation (the “viscoelastic behavior” of the title). ”

but, on the whole, I doubt this paper will help us.

2020-11-15 Predrag Matt writes: “In this symbolic representation the columns
code admissible time itineraries, and rows encode the admissible spatial
profiles.” I like the phrasing.

2020-11-23 Predrag Could it be that continuous [L× T] families somehow cor-
respond to Floquet of ‘Brillouin’ bands?

2021-04-12 Predrag Matt started working as “Data Scientist” for a AI logistics
startup Verusen.com.

Burak and Matt have committed to writing up the first draft of the Matt
thesis paper.
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2021-04-12 Predrag From Sep 2019 to present Matt has designed, developed,
documented, deployed and dockerized Python package as Jupyter Note-
book,

Orbithunter guide
GitHub Orbithunter
docker.com login: orbithunter beThebest!
orbithunter port is: -p 8887:8887

which serves as a framework for the study of nonlinear dynamics and
chaos. Designed to maximize user friendliness and modularity to enable
collaboration between scientists and comparison of their results. Acts as
a high-level user interface of the SciPy and NumPy numerical Python
packages and partial differential equations.

2021-06-28 Predrag Potentially of interest.

Salihah Alwadani, Kelowna, B. C., Heinz H. Bauschke, Julian P. Revalski
and Xianfu Wang, The difference vectors for convex sets and a resolution of the
geometry conjecture, arXiv:2012.04784, write:

Let X be a real Hilbert space, and C1, . . . , Cm are nonempty closed con-
vex subsets of X , with projectors PC1 , . . . , PCm which we also write more
simply as P1, . . . , Pm, and withm ∈ {2, 3, . . . , }. We define the fixed point
sets of the cyclic compositions by

Fm := Fix(Pm · · ·P1),

Fm−1 := Fix(Pm−1 · · ·P1Pm), . . . ,

F1 := Fix(P1Pm · · ·P2). (19.29)

Compositions of projectors are often employed in projection methods.
This is a vast area which we will not summarize here; however, we refer
the reader to ref. [8], arXiv:1802.07529 as a starting point, as well as the
ref. [9], arXiv:2008.02260.

2021-08-27 Predrag Potentially of interest.

Zeng and Graham [62] Symmetry reduction for deep reinforcement learning
active control of chaotic spatiotemporal dynamics (2021): “Deep reinforce-
ment learning (RL) is a data-driven, model-free method capable of dis-
covering complex control strategies [...] systems of flow control interest
possess symmetries [...] Kuramoto-Sivashinsky equation (KSE), equally
spaced actuators, and a goal of minimizing dissipation and power cost,
we move the deep RL problem to a symmetry-reduced space [...] symmetry-
reduced deep RL yields improved data efficiency [...] the symmetry aware
control agent drives the system toward an equilibrium state of the forced
KSE [...] despite having been given no explicit information regarding its
existence.”
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Deep learning approaches that respect symmetries automatically rather
than learn to approximate them from data are likely to have superior per-
formance, [...] incorporating symmetries of the learning domain into the
deep neural-network (NN) models. For example, the state-of-the-art [44]
AlexNet NN image classifier spontaneously learns redundant internal
representations that are equivariant to flips, scalings, and rotations.
Many flow geometries of interest possess symmetries to incorporate into
the deep RL model.
Read also:
Lenc and Vedaldi [44] Understanding image representations by measuring
their equivariance and equivalence, (2018).
Bucci, Semeraro, Allauzen, Wisniewski, Cordier and Mathelin [5] Control
of chaotic systems by deep reinforcement learning, (2019).

2022-06-13 Chris Crowley Why is a time average distance from turbulence to
an RPO in Taylor-Couette dependent on τ (time along the orbit), but not
on θ (azimuthal orientation)? Both are symmetries of the system and I
am having a difficulty wrapping my head around why those symmetries
don’t imply invariance to translations along both directions.

2022-08-03 Josh Pughe-Sanford Have yall every heard of
GitHub.com/mxgmn/WaveFunctionCollapse The Wavefunction Collapse
Algorithm explained very clearly by Robert Heaton?
Apparently creates large images that have the same “feel” as small seed
tiles. I am so curious what it would do with yalls Kuramoto-Sivashinsky
tiles. Would it produce qualitatively accurate dynamics?

2022-08-04 Matt I think “wavefunction collapse” is just a catchy name for Monte
Carlo sampling from a probability distribution; specifically a distribution
corresponding to an undirected probabilistic graphical model. You cre-
ate a lattice, choose a site, sample from the PMF defined by the weights,
then the remaining sites are conditioned on the sample you just made.
Inadmissibility simply indicates a state whose conditional probability is
zero. I am guessing their rules of admissibility are based only on neigh-
boring states, such that the joint density can be factorized into pairwise
potentials. I believe choosing the state based on entropy is simply a way
of trying to sample/seed in a way to reduce correlation. Or that is at least
what it seems like to me after a couple minute skim :)
In regards to Kuramoto-Sivashinsky. A means of tiling currently exists,
it maps a configuration of symbols into a large spatiotemporal state, but
no work has been done on the grammar. In other words I have a set of
representative shapes but no informed decision on a probability distri-
bution has been made (i.e. uniform and independent currently). Clearly
you could calculate frequencies of states appearing in the large space-
time limit and use that to inform the distribution, but only minimal work
has been done towards that end.
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So if we could determine the grammar and weights of each of the tile
orbits (of which there are only a few continuous families) then we could
probably use their codes. The one tricky detail is that it sounds like they
require the tiles to be [N×N ] in shape, but not all orbits are identical in
their periods, so this would naturally induce error due to differences in
the grid spacings.

2022-08-04 Predrag Wish they would stick to wedding planning and not mis-
use words like “wavefunction collapse” which already mean something
quite different. Anyway:

This gets at the heart of the matter of admissibility in gluing. Once one has
extracted from a large Kuramoto-Sivashinsky spatiotemporal pattern a
small set of fundamental tiles (FTs) and assigned an alphabet to them,
almost any large (for us doubly periodic, with the relative periodic orbit
shift) random spatiotemporal tilling will be inadmissible.

Matt’s approach has been to start with every such pattern as a rough spa-
tiotemporal guess, and let his optimization algorithms descend to an ad-
missible solution (perhaps adjusted to a nearby admissible pattern, with
a nearby symbol block) or get stuck and thrown away.

My suggestion has been motivated by the way we enumerate temporally
admissible itineraries: start with gluing all possible smallest spatiotem-
poral tile arrays, glue to them FTs from the edges to grow the next small-
est tiles, list the inadmissible patterns as pruning rules, and from then on
prune each inadmissible glue-on before checking for the existence of the
corresponding (relative) periodic orbit. The probability of the periodic or-
bit is the inverse of its Hill determinant, so we could preferentially glue
low Shannon entropy tilings first to obtain new pruning rules.

The whole thing is a minefield, so we would test it first on our space-
time discretized spatiotemporal cat, φ3 (Hénon) and φ4 deterministic Eu-
clidean field theories, where we can construct examples with exact trivial
and nontrivial symbolic codings, and see how these “wedding collapse”
algorithms do. Then move to Kuramoto-Sivashinsky and TC duct flows.
Decades of person-years of research, I fear.

2022-10-28 Predrag A major conceptual breakthrough - the day ‘rubbery tiles’
died!

For the Kuramoto-Sivashinsky system at hand, we impose the constant
mean dissipation rate (computed as along-time average over any ergodic
trajectory) to be satisfied by every compact solution, resulting in a single
(or no) solution contribution for each continuous family, see sect. 1.9.4.

Please either agree, or shoot me down. Important step in our program.
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Chapter 20

Spatiotemporal stability

20.1 Temporal lattice

Assume that a periodic orbit x(Tp + t) = x(t) of a continuous time flow ẋ =
v(x) is known ‘numerically exactly’, that is to say, to arbitrary (but not infinite)
precision. One way to present the solution is to give a single point x(0) in the
orbit, and let the reader reconstruct the orbit p by integrating forward in time,
x(t) = f t(x(0)), t ∈ [0, Tp].

However, for a linearly unstable periodic orbit a single point does not suf-
fice to present the orbit, because there is always a finite ‘Lyapunov time’ tLyap
beyond which f t(x(0)) has lost all memory of the periodic orbit p. This prob-
lem is particularly severe in searches for ‘exact coherent structures’ embedded
in turbulence, where even the shortest period solutions have to be computed
to the (for everyday fluid dynamics excessive) machine precision [19, 20, 31] in
order to complete the first return to the initial state.

Instead of relaying on forward-in-time numerical integration, global methods
for finding periodic orbits [5] view them as equations for the vector fields ẋ
on spaces of closed curves. In numerical implementations one discretizes the
periodic orbit p into sufficiently many short segments [5, 11, 12, 14, 21], and
lists a point for each segment

p = (x1, x2, · · · , x|p|) . (20.1)

For a d-dimensional discrete time map f obtained by cutting the flow by a
set of Poincaré sections, with the periodic orbit p of discrete period |p|, every
segment can be reconstructed by a short time integration, and satisfies

xk+1 = f(xk) , (20.2)

to high accuracy, as for sufficiently short times the exponential instabilities are
numerically controllable.

So, how accurate is such an orbit, i.e., how fast do errors grow for such
globally specified orbit? In numerical work we know the cycle points only to a
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finite precision

p̂ = (x̂1, x̂2, · · · , x̂|p|) , x̂k = xk + ∆xk , (20.3)

where xk are the exact periodic orbit points. Define the error field by F (p̂) =
f(p̂) − σp̂, an operator which compares the forward map of every point in p̂
with the next point σp̂, a (|p|×d)-dimensional vector field obtained by stacking
|p| state space points x̂k

F (x̂) = F


x̂1

x̂2

· · ·
x̂|p|

 =


x̂1 − f̂|p|
x̂2 − f̂1

· · ·
x̂|p| − f̂|p|−1

 , f̂k = f(x̂k) , (20.4)

which measures the misalignment of every finite forward-in-time segment f(x̂)k
with the next listed point x̂k+1 on the periodic orbit.

By (20.2), the exact discretized cycle (20.1) is a zero of this vector field,
F (x) = 0. Assuming that the d-dimensional vectors ∆xk are small in mag-
nitude, and Taylor expanding the one discrete time-step map f to linear order
around the exact solution,

f(xt + ∆xt) = xt+1 + Jt∆x+ (· · · ) ,
where

[Jt]ij =
∂fi(xt)

∂xj
, t = (1, 2, · · · , |p|) , i, j = (1, 2, · · · , d) (20.5)

one finds that the neighborhood of entire cycle p is linearly deformed by the
[|p|d× |p|d] orbit Jacobian matrix

∆x′ = J (x) ∆x , Jij(x) =
∂F (x)i
∂xj

, (20.6)

with
J = 1− σJ ,

the one discrete time-step temporal [d×d] diagonal Jacobian matrix J evaluated
on the entire cycle p, and σ the shift matrix

σ =



0 11
11 0

11 0
11

. . . 0
11 0


, J =



J1

J2

J3

. . .
J|p|−1

J|p|


,

(20.7)
with 11 in the upper right corner assuring periodicity, σ|p| = 11. 1

Next, we address two questions: (i) how is the high-dimensional orbit Ja-
cobian matrix J related to the temporal [d×d] Jacobian matrix J? and (ii) how
does one evaluate the orbit Jacobian matrix J ?

1Predrag 2019-10-10: this is σ−1 shift operator as defined in ChaosBook.
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20.1.1 Second-order difference equation
2 2CB

A second-order difference equation with constant coefficients has the form

xt+2 + p1xt+2 + p2xt = 0 (20.8)

Let x0,t = xt, x1,t = xt+1, and rewrite this as a pair of coupled first-order
difference equations

Xt+1 = AXt , Xt = (x0,t, x1,t)
>

A =

(
0 1
−p2 −p1

)
. (20.9)

The characteristic equation

λ2 + p1λ+ p2 = 0 (20.10)

can be obtained by substitution xt = λn into the two-term recursion (20.8).
If λ1 6= λ2, λj real, then the solution of (20.8) is

xt = c1λ
t
1 + c2λ

t
2 . (20.11)

If λ1 = λ2 = λ, then the solution is

xt = c1λ
t + c2tλ

t . (20.12)

If λ1 = α+ iβ, λ2 = α− iβ, then the solution is

xt = |λ|t(c1 cos tω + c2 sin tω) , (20.13)

where ω = arctan(β/α). To solve such second-order difference equation, one
has to specify initial conditions, for example x0 = 1, x1 = 0 .

(Based on Elaydi [17])

20.1.2 Third-order difference equation

One can always reformulate an k-term recursion relation (??) as a set of k cou-
pled first-order difference equations (delay equations). For example, one can
rewrite the three-term recursion relation (third-order difference equation)

xt+3 + p1xt+2 + p2xt+1 + p3xt = 0 (20.14)

as three coupled first-order difference equations

x0,t+1 = x1,t,

x1,t+1 = x2,t,

x2,t+1 = −p3x0,t − p2x1,t − p1x2,t . (20.15)

2Predrag 2020-12-15: Transfer to ChaosBook.org. Once incorporated, remove from here)
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where x0,t = xt, x1,t = xt+1, x2,t = xt+2. Compactly

Xt+1 = AXt , Xt = (x0,t, x1,t, x2,t)
>

A =

 0 1 0
0 0 1
−p3 −p2 −p1

 . (20.16)

The eigenvalues of A are the characteristic roots of (20.14), see (??) and (??).
The discrete time derivative of a lattice state X evaluated at the lattice site t

is given by the difference operator

Ẋt =

[
∂X

∂t

]
t

=
xt − xt−1

∆t
(20.17)

Eq. (20.16) can be viewed as a time-discretized, first-order ODE dynamical
system

Ẋ = v(X) , (20.18)

with the time increment set to ∆t = 1
(Based on Elaydi [16])

20.2 Repeats of a prime Bravais cell

2021-06-11 Han

A lattice state Xp is prime if it is not a repeat of a smaller lattice state. The
orbit Jacobian matrix of a period-(r||) lattice state X which is a r-th repeat of a
period-|| prime lattice state Xp has a tri-diagonal block circulant matrix form

J =


sp −d −d>
−d> sp −d

. . . . . . . . .
−d> sp −d

−d −d> sp

 , (20.19)

where sp, d and d> are [||×||] block matrices

sp =


s0 −1 0
−1 s1 −1

. . . . . . . . .
−1 s||−2 −1

0 −1 s||−1

 ,

d =


0 · · · 0

. . .
...

1 0

 , d> =


0 1

...
. . .

0 · · · 0

 , (20.20)
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and d and its transpose enforce the periodic bc’s.

As J is a block circulant matrix, it brought into a block diagonal form by a
unitary transformation, with a repeating block along the diagonal.

Note that matrices sp, d and d> are not circulant, the matrix J is not a block
circulant with circulant blocks [3, 4, 32].

20.2.1 Bravais cell repeats symmetrized

2021-06-11 Han

The tri-diagonal block matrix can be projected into the symmetric subspace
of the shorter lattice state. As an example, take the shorter lattice state of period
n = 4, and the long lattice state given by the shorter lattice state repeated 4
times. Then the reflection operator can also be written into the 16-dimensional
space of the long lattice state:

d =



0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0



=


R̂ 0 0 0

0 R̂ 0 0

0 0 R̂ 0

0 0 0 R̂

 , (20.21)

where R̂ is the reflection operator in the 4-dimensional space of the shorter

7451 (predrag–7383) 81504/19/2020 siminos/spatiotemp/chapter/dailyBlog.tex



CHAPTER 20. SPATIOTEMPORAL STABILITY

lattice state. Using the projection operator of this reflection matrix R:

PR+ =
1

2



1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1



=


PR̂+ 0 0 0

0 PR̂+ 0 0
0 0 PR̂+ 0
0 0 0 PR̂+

 (20.22)

the orbit Jacobian matrix is projected into the symmetric subspace and it still
has the tri-diagonal form:

JPR+ =


spPR̂+ −dPR̂+ 0 −d>PR̂+

−d>PR̂+ spPR̂+ −dPR̂+ 0
0 −d>PR̂+ spPR̂+ −dPR̂+

−dPR̂+ 0 −d>PR̂+ spPR̂+

 . (20.23)

20.2.2 Repeats blog

2016-09-28 Predrag Amritkar et al. [1, 18] have investigated the stability of spa-
tiotemporally periodic orbits in one- and two-dimensional coupled map
lattices, i.e., 1 + 1 and 1 + 2 spatiotemporal dimensions. They derive con-
ditions for the stability of periodic solutions in terms of the criteria for
smaller orbits.

2020-06-01 Predrag Gade and Amritkar [18] Spatially periodic orbits in coupled-
map lattices (a preliminary version of a part of this work was published as
Amritkar, Gade, Gangal and Nandkumaran [1] Stability of periodic orbits
of coupled-map lattices):

They are interested in stability, rather than our focus on instability.

They take CMLs with periodic orbits over [L×T]0 and study the stability
of their periodic orbit ‘replicas’ [kL×T]0 obtained by repeating [L×T]0 k
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times in the spatial direction, and show that orbit Jacobian matrix eigen-
values of the replica follow from the small periodic orbit. Not obvious,
as the replica periodic orbit has more directions to be stable/unstable in.
The trick is observing that the replica orbit Jacobian matrix is a block cir-
culant with circulant blocks. The stability matrices for such lattice states
are block circulant and hence can be brought onto a block diagonal form
through a unitary transformation, their eq. (19).

The textbook they use is Davis [10] Circulant Matrices.

They write:

We call X||,r the r replica solution of X||,1. We address the problem of
what can be stated about the stability properties of such spatially and
temporally periodic solutions X||,r, from the analysis of the stability ma-
trices for X||,1 of the building blocks [1]. In other words the question is,
What is the effect of enlargement of phase space and the couplings on the
stability of the replica solutions?

(Their eq. (16) is our (??). Note their block-circulant matrix eq. (18))

The trick is observing that the replica orbit Jacobian matrix is a block
circulant with circulant blocks. The stability matrices for such lattice
states are block circulant and hence can be brought onto a block diagonal
form through a unitary transformation, their eq. (19). The unitary ma-
trix which affects the block diagonalization is a direct product of Fourier
matrices of sizes [r × r] and [|| × ||].
(2022-01-12 Predrag: but block matrix sp in (??) is not circulant?)

The effects on the stability due to the enlargement of the state space and
couplings manifest themselves through the eigenvalues of the additional
blocks.

Our analysis leads to the following important conclusion about unstable
periodic orbits. The matrix sp appears as a block of the matrix J . Hence,
a solution built out of the replicas of unstable periodic orbits will also be
unstable. Enlargement of state space and the effect of couplings cannot
stabilize an unstable replica solution. The unstable periodic orbits are
dense on the chaotic attractor. They are supposed to form the backbone
of the dynamics on the attractor.

Our formalism will be useful if one tries to use unstable periodic orbits
to analyze the spatially extended systems. It is clear that the replica so-
lutions can be used to construct a hierarchy of unstable periodic orbits
based on the orbits for building blocks. This may help in the organiza-
tion of spatio-temporal chaos on the lines of arguments in ref. [6].

We have also discussed the two-dimensional extension of our formalism.
From the convenient form in which the equations can be set, it is obvious
that the generalization to higher dimensions is also possible. If one tries
to analyze the problems similar to the ones analyzed here, in oscillator
arrays this procedure can be easily used to simplify the computation.
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CHAPTER 20. SPATIOTEMPORAL STABILITY

Cited Gade and Amritkar [18] in LC21 as an early investigation of a lattice
orbit Jacobian matrix. They did not know about ‘Hill’s formula.

2016-11-11 Predrag Bountis and Helleman [2] On the stability of periodic or-
bits of two-dimensional mappings: “ We apply our criterion and derive
a sufficient stability condition for a large class of periodic orbits of the
widely studied “standard mapping” describing a periodically ‘kicked’
free rotator. ”

I find this paper quite interesting, because the computation of Floquet
multipliers, i.e., linearization of periodically ‘kicked’ free rotor, is full of
matrices that look like Laplacians + a diagonal term which varies along
the periodic orbit. For cat maps this term is constant, essentially the
stretching factor s. This might help with interpreting coupled ‘kicked’
rotor lattices.

This is presumably related to the block circulant stability matrices [1, 18]
for spatially and temporally periodic orbits in coupled map lattices.

2016-09-28 Predrag Zhilinet al. [33] Spatiotemporally periodic patterns in symmet-
rically coupled map lattices write: “ The stability of the deduced orbits is
investigated and we can reduce the problem to analyze much smaller
matrices corresponding to the building block of their spatial periodicity
or to the building block of the spatial periodicity of the original orbits
from which we construct the new orbits. In the two-dimensional case the
problem is considerably simplified. ”

2019-02-04 Predrag A relative periodic block p̂ is always preperiodic to a peri-
odic block whose period Tp = rTp̂, so you can always Fourier-transform
this larger torus. But the right way of doing is acting relative periodic
block p̂ with the translation dr that makes it periodic, and then Fourier-
transforming the minimal d-torus.

In this case we are still solving (??) except the rank 2d tensor is no longer
a circulant tensor.

2019-02-04 Predrag The orbit Jacobian matrix times the translation dr is circu-
lant, I believe. That is how we compute the Jacobian matrices of relative
periodic orbits in ChaosBook. But we can still solve for the eigenvectors.
I have shown how to compute the eigenvectors and eigenvalues in (??–
??) and verified this is correct for small blocks. In (??–??) I proved this is
correct in any dimension. Using these eigenvectors we can diagonalize
the orbit Jacobian matrix and get the inverse (Green’s function). The only
problem is even though the counting formula is very compact, it seems
to me that now it is hard to simplify the topological zeta function.

2019-02-04 Predrag I doubt it. In ChaosBook we show that after symmetry re-
duction, counting relative periodic orbits is not any harder than counting
periodic orbits.
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2021-05-04 Predrag Can one write the orbit Jacobian matrix of a repeat of a p-
cycle as a product of p-cycle orbit Jacobian matrices?
(2021-06-14 Predrag This is now accomplished by the block matrix for-
mulation (20.23).)

J (2)
p J (1)

p =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 φ0 1 1
0 0 0 1 φ1 1
0 0 0 1 1 φ2




φ0 1 1 0 0 0
1 φ1 1 0 0 0
1 1 φ2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



6=


φ0 1 0 0 0 1
1 φ1 1 0 0 0
0 1 φ2 1 0 0
0 0 1 φ0 1 0
0 0 0 1 φ1 1
1 0 0 0 1 φ2

 , (20.24)

Another try:

J (2)
p J (1)

p =


1 0 0 0 0 1
0 1 0 0 0 0
0 0 1 1 0 0
0 0 1 φ0 1 0
0 0 0 1 φ1 1
1 0 0 0 1 φ2




φ0 1 0 0 0 1
1 φ1 1 0 0 0
0 1 φ2 1 0 0
0 0 1 1 0 0
0 0 0 0 1 0
1 0 0 0 0 1



6=


φ0 + 1 1 0 0 0 2

1 φ1 1 0 0 0
0 1 φ2 + 1 2 0 0
0 0 1 φ0 + 1 1 0
0 0 0 1 φ1 1

φ0 + φ2 0 0 0 1 φ2 + 1

 , (20.25)

(partly wrong, but does not matter), so orbit Jacobian matrices do not
multiply.

But they do not add up, either, cannot reconcile the small block periodic
bc’s with the repeated block bc’s. Defeated again.

2021-08-22 Predrag I believe was wrong in asking that we look at the stability
of repeats of a shorter period block, eq. (??) above. That does not arise
in the new formulation of periodic orbit theory; the Hill determinant is
computed on any lattice state X in the orbitMc of a lattice state Xc. There
are only orbits, nothing is computed on repeats. There should be no re-
peats summation in the derivation of zeta functions.

2022-01-22 Predrag believes today that he was very wrong on 2021-08-22 :)
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CHAPTER 20. SPATIOTEMPORAL STABILITY

Example 20.1. Temporal lattice stability of a 3-cycle. For for a 1-dimensional map
f , orbit Jacobian matrix is an [|p| × |p|] matrix:

J (x) =


1 −f ′|p|
−f ′1 1

· · · 1
· · · 1

−f ′|p|−1 1

 . (20.26)

Let us invert a 3-cycle orbit Jacobian matrix J (x) for such 1-dimensional map by
hand, step by step. According to (20.6), the initial small ∆x deviations from the periodic
orbit (20.3) are mapped into deviations ∆x′ a time step later by ∆x′1

∆x′2
∆x′3

 =

 1 0 −f ′3
−f ′1 1 0

0 −f ′2 1

 ∆x1
∆x2
∆x3

 ,

where the d-dimensional vectyor ∆xi = x̂i−xi is the error at ith periodic point. In terms
of the shift matrix σ, the one-time step cycle Jacobian matrix (20.26) can be written as

J = 1− σf ′ , σ =

 0 0 1
1 0 0
0 1 0

 , f ′ =

 f ′1 0 0
0 f ′2 0
0 0 f ′3

 . (20.27)

Suppose all |f ′k| > 1, so forward in time the errors are growing. We can make errors
contract by going backwards in time, i.e., evaluating the inverse matrix J , and noting
that every 3rd power (σf ′)3 = Jp1 is diagonal,

1

1− σf ′ =

∞∑
j=0

(σf ′)j =

∞∑
k=0

Jkp

2∑
`=0

(σf ′)` =
1

1− Jp
[
1 + σf ′ + (σf ′)2

]
(20.28)

=
1

1− J

1 + σ

 f ′1 0 0
0 f ′2 0
0 0 f ′3

+ σ2

 f ′2f
′
1 0 0

0 f ′3f
′
2 0

0 0 f ′1f
′
3

 ,
where Jp = f ′3f

′
2f
′
1 is the forward-in-time stability of the cycle p, so ∆x1
∆x2
∆x3

 =
1

1− Jp

 ∆x′1 + f ′3∆x′3 + f ′3f
′
2∆x′2

∆x′2 + f ′1∆x′1 + f ′1f
′
3∆x′3

∆x′3 + f ′2∆x′2 + f ′2f
′
1∆x′1

 .

For an unstable cycle, the error gets contracted by overall factor 1/(1 − J), with the
earlier errors amplified by the orbit instability; for example, ∆x3 receives a contribution
from two time steps in the past of form f ′2f

′
1∆x′1.

By explicit evaluation, for 1-dimensional maps 3 J (x)3 = (1− Jp)1 + (...) and

DetJp = det (1− Jp) (20.29)

for the d-dimensional case. J (x) is a cycle rotation by one time step; for a 3-cycle we
are back, times a constant, uniform factor multiplying all errors by the rotation invariant
scalar quantity det (1− Jp), whose inverse happens to be the cycle-expansions’ size of
the neighborhood of cycle p.

4

3Predrag 2019-10-10: Still have to derive this formula, probably by ln det = tr ln relation
4Predrag 2019-09-28: I have inverted this Newton Jacobian matrix often, see for example
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Example 20.2. Temporal lattice stability of a 3-cycle.
Consider an period-|| lattice state Xp, with d fields {xt,1, xt,2, . . . , xt,d} on each lat-

tice site t satisfying the condition

xt − f (xt−1) = 0 , t = 1, 2, · · · , || , (20.30)

where d-dimensional time evolution function. A deviation ∆X from Xp must satisfy the
linearized condition

∆xt − Jt−1 ∆xt−1 = 0 , (Jt)ij =
∂f(x)i
∂xj

∣∣∣∣
xi=xt,i

, (20.31)

where Jt is the 1-time step [d×d] time-evolution Jacobian matrix. Let 11d be a d-dimen-
sional identity matrix. For an period-|| lattice state Xp, the orbit Jacobian matrix Jp ∆X =
0 is an [||d×||d] matrix

Jp = 11− d−1J =


11d −J||
−J1 11d

−J2
. . .

11d
−J||−1 11d

 , (20.32)

where the [||d×||d] matrix

d =


0 11d

0 11d
. . .
0 11d

11d 0

 , (20.33)

implements the shift operation, a cyclic permutation that translates forward in time the
lattice state Xp by one site, (dX)> = (x2, x3, · · · , x||, x1).

To evaluate the Hill determinant (??), note that d|| = 11, that Tr (d−1J)k = ||δk,r||tr Jrp
is non-vanishing only if k is a multiple of ||, and expand

ln Det (Jp) = Tr ln( 11− d−1J) = −
∞∑
k=1

1

k
Tr ((d−1J)k)

= −tr

∞∑
r=1

1

r
Jrp = ln det ( 11d − Jp) . (20.34)

So, the Hill determinant for any hyperbolic 2-term difference equation on a temporal
lattice is

Det (Jp) = det ( 11d − Jp) .

eq. (16) and onward in Cvitanović, Dettmann, Mainieri and Vattay [7], click here. I have also
introduced the notation for finite-time (shorter than the period) Jacobian matrices, see for exam-
ple eq. (69) in Cvitanović and Lippolis [9], click here. But I have never done it the way I should
have, by a discrete Fourier transform, into sum of irreps of Cn (AKA Fourier modes) and using
characters for discrete Fourier transforms.
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CHAPTER 20. SPATIOTEMPORAL STABILITY

In the temporal Bernoulli case, the field xt is a scalar, and the 1-time step [d×d] time-
evolution Jacobian matrix (20.31) at any time is simply Jt = s, so

N|| = |DetJ | = s|| − 1 , (20.35)

in agreement with the time-evolution count.
In terms of the shift matrix d, the one-time step cycle Jacobian matrix (20.26) can

be written as

Jp = 11− d−1J , d =

 0 0 11d
11d 0 0
0 11d 0

 , J =

 J1 0 0
0 J2 0
0 0 J3

 . (20.36)

Suppose all Jp 6= 1. Note that every ||th power (dJ)3 = JpJ is diagonal,

1

11− dJ =

∞∑
j=0

(dJ)j =

∞∑
k=0

Jkp
2∑
`=0

(dJ)` =
1

1− Jp
[
J + dJ + (dJ)2

]
(20.37)

=
11

11− J

J + d

 J1 0 0
0 J2 0
0 0 J3

+ d2

 J2J1 0 0
0 J3J2 0
0 0 J1J3

 ,
where Jp = J3J2J1 is the forward-in-time stability of the cycle p.
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To summarize, a discretized, temporal lattice periodic orbit linear stability
can be computed in two ways - either by computing the [|p|d × |p|d] Jacobian
matrix J (x), or by computing Jp

|DetJp| = |det (1− Jp)| , (20.38)

where Jp is the |p| time-steps [d×d] forward-time Jacobian matrix. In the limit
of discretization |p| → ∞ the left hand side is a functional determinant of an
∞-dimensional operator. Nevertheless, thanks to the discrete Fourier diagonal-
ization of J (x), appendix ??, the determinant DetJp is easier to compute than
the ill-posed Jp. 5 6

The projection operator on the kth Fourier mode is

Pk =
∏
j 6=k

d− ωj 11
ωk − ωj

. (20.39)

The set of the projection operators is complete,∑
k

Pk = 11 , (20.40)

and orthonormal
PkPj = δkjPk (no sum on k) . (20.41)

[TO BE CONTINUED]

20.3 Spatiotemporal lattice

In spatiotemporal settings, Jp can be defined only for finite numbers of spatial
sites, and it gets funkier and funkier as the spatial direction increases (that is
why we are able to work only with very small spatial domain Kuramoto-Siva-
shinsky discretizations). But, as shown for the spatiotemporal cat in ref. [8],
DetJp works just fine on any spatiotemporal torus. In particular, for any in-
variant 2-torus Kuramoto-Sivashinsky discretization.

20.4 Noether’s theorem

2018-05-04 Predrag Moved this section to spacetime continuous systems spatiotemp/blog.tex

5Predrag 2019-10-10: J (x) is block-diagonalized by the discrete Fourier transform on a peri-
odic lattice of three sites. Write up next the discrete Fourier evaluation of DetJp.

6Predrag 2019-10-10: Rewrite the derivation of the Hill-Poincaré-Van Vleck stability matrix (??)
for symplectic / Lagrangian Hessians (orbit Jacobian matrix) using the shift matrix (20.27).
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20.5 Stability blog

2019-10-10 Predrag Reread Lindstedt-Poincaré [28] Fourier method papers by
Viswanath [29, 30]; his most accurate resolution of fractal structure of the
Lorenz attractor. It is a very thin fractal, stable manifold thickness is of
the order 10−4. He has computed all 111011 periodic orbits correspond-
ing to symbol sequences of length 20 or less, all with 14 digits accuracy.

2019-10-13 Predrag Viswanath [28] writes: “ The Lindstedt-Poincaré technique
uses a nearby periodic orbit of the unperturbed differential equation as
the first approximation to a perturbed differential equation. One of the
examples presents what is possibly the most accurate computation of
Hill’s orbit of lunation since its justly celebrated discovery in 1878.
The eigenvalues excluding 1 are called characteristic multipliers.
AUTO [13, 14] collocation method, Guckenheimer and Meloon [21], Choe
and Guckenheimer [5] all set up their periodic orbits as in (20.4). Since
the linear systems that they form are sparse, the cost of solution is only
linear in the number of mesh points.
There are other variants of this forward multiple shooting algorithm: one
is a symmetric multiple shooting algorithm and another is based on Her-
mite interpolation.
He dismisses harmonic balance methods for computing periodic orbits
(Lau, Cheung and Wu [?15], and Ling and Wu [?16]) as being too expen-
sive, of order O(n3), where the Fourier series are of width n, whereas his
method is of order O(n lnn) .
Wisvanath algorithm for computing periodic orbits is a “polyphony of
three themes:” the Lindstedt-Poincaré technique from perturbation the-
ory, Newton’s method for solving nonlinear systems, and Fourier inter-
polation.
To compute n Fourier coefficients of x(t), the fast Fourier transform (FFT)
is applied to the function evaluated at n equispaced points in [0, 2π). The
width n of the Fourier series must be sufficiently large to pick up all the
coefficients above a desired accuracy threshold.
If (x1, x2, · · · , xm) are 2π periodic, so is f(x1, x2, · · · , xm). To obtain its
Fourier series from those of the xi, interpolate xi at equispaced points,
evaluate f at those points, and apply the FFT. The inverse FFT can be
used to interpolate a Fourier series at equispaced points [27]. In d state
space dimensions, one needs d Fourier series, one for each coordinate in
Rd.
His 4 coupled Josephson junctions (10-dimensionalstate space) uses 64
Fourier modes.
”
The implementation of the algorithm must pay attention to the possibility
of aliasing.
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2019-10-13 Predrag Viswanath [29] writes: “ The representation of periodic or-
bits by Fourier series is both accurate and efficient because, when a peri-
odic orbit is analytic, the Fourier coefficients decrease exponentially fast,
making its Fourier representation compact.

”

2019-10-13 Predrag Guckenheimer and Meloon [21] set up their periodic or-
bits as in (20.4), and have the same d-dimensional orbit Jacobian matrix
variant of (20.26), but with extra, time-direction fixing diagonals, as they
are looking at continuous time flows. Instead of the cyclic group, they
use LU factorization. They get 1− Jp matrix.

2019-10-14 Predrag Notes on Choe and Guckenheimer [5], a clear and enjoy-
able read:

Instead of relaying on forward-in-time numerical integration, global meth-
ods for finding periodic orbits view the vector field as an equation on a
function space of closed curves. Here f is a Lipschitz continuous vector
field on a smooth manifoldM, and p : S1 → M is a C1 closed curve in
M.

Computer implementation of global methods for computing periodic or-
bits requires discretization of closed curves and approximation of the pe-
riodic orbit equations. One defines finite-dimensional submanifolds of
the space of closed curves and approximates the periodic orbit equations
as a map defined on this space.

They keep the number of discretization points fixed and increase the ac-
curacy by automatic differentiation, constructing the Taylor series of trajec-
tories at discretization points. They also compute stability matrix deriva-
tives of the Taylor series coefficients with respect to the state space vari-
ables for use in the Newton iteration. As the degree of the computed
Taylor series increases, their curves converge since the trajectories are an-
alytic.

The Taylor series is obtained by repeated differentiation of the differential
equation ẋ = v(x) and recursive substitution of the values of derivatives
x(k)(t) of increasing degree. To make the approximate curve smooth and
continuous, they use a somewhat funky interpolation function they call
β(t).

[Predrag’s aside: hopefully our strategy of using Fourier transforms has
much faster convergence than Taylor series. Even if one wants polynomi-
als, I suspect Chebyshev or Hermite or some other orthogonal sets would
be better.]

Indeed, the Hermite splines, interpolating functions that arc polynomials
of degree 2d+ 1, gave the best results in their computations.

They eliminate the time translation marginal eigenvalue by using sets of
Poincaré section hyperplanes transverse to the vector field, and solving
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for points that lie on the intersection of Poincaré section with the periodic
orbit. They use the orthogonal complements to the vector field v(xi) at
the mesh points xi. The normal subspace to the vector field at xi, is de-
termined by computing the QR factorization of the [d×(d + 1)] matrix.
There is a whole PhD thesis worth of detail here.

The structure of the Jacobian matrices that are used in the root finding has
a simple sparsity pattern that can be exploited in its inversion. Explicit
inversion of this block matrix in terms of the inverses of the individual
blocks yields a relationship between the regularity of the root finding
problem and the hyperbolicity of the periodic orbit. They relate the reg-
ularity of orbit Jacobian matrix J to the periodic orbit’s monodromy ma-
trix, their sect. 3. Analysis, using LU factorization. They show that J is
invertible (needed for Newton schemes) if and only if the monodromy
matrix Mof the Poincaré section does not have 1 as an eigenvalue.

Since their methods produce smooth approximations to periodic orbits,
they can evaluate the distance between the tangent vectors to a computed
curve and the vector field along that curve. These error estimates enable
them to develop strategies for mesh refinement that balance the error in
different mesh intervals. Since the approximating solution in a mesh in-
terval is determined entirely by its endpoints, mesh refinement is a sim-
ple process and does not change the structure of the discretized periodic
orbit equations.

They define the error field (20.4) as operator F (p) = f(p) − σp, with pe-
riodic orbits solutions satisfying F = 0. p are analytic curves, but Choe-
Guckenheimer approximations are not analytic.

The starting data is an N -point discrete closed curve (20.3), a cyclically or-
dered collection of N points. Given a map S, on seeks seek systems of
(|p|×d)-dimensional vector field equations FS = 0 whose solutions yield
good approximations to periodic orbits of f. The convergence is takes
place on a fixed mesh, but with increasing degree d of map Sd. They
compute the orbit Jacobian matrix J and invert it to use in the Newton
routine, but do not mention or discus computing detJ .

They test their algorithm with the Hodgkin-Huxley equations, a moder-
ately stiff 4-dimensional vector field with strongly stable directions. They
do not boast, but their residual errors are of order 10−11.

2022-05-06 Predrag Check out Wolfram Demonstrations Project Learning New-
ton’s Method.

2022-05-06 Predrag Check out Kevin Zeng, Alec J. Linot and Michael D. Gra-
ham Data-driven control of spatiotemporal chaos with reduced-order neural
ODE-based models and reinforcement learning arXiv:2205.00579: We com-
bine data-driven nonlinear manifold dynamics with deep RL to control
spatiotemporal chaos in the Kuramoto-Sivashinsky equation. The ap-
proach discovers and stabilizes a low-dissipation steady state!
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Linot and Graham [25] Data-driven reduced-order modeling of spatiotemporal
chaos with neural ordinary differential equations, (2022)

Also: M. A. Bucci, O. Semeraro, A. Allauzen, G. Wisniewski, L. Cordier,
and L. Mathelin. Control of chaotic systems by deep reinforcement learning,
Proceedings of the Royal Society A, 475(2231):20190351, 2019 DOI.

2022-07-11 Predrag Study these 2 papers which compute and discuss Hessian
spectra:

Le Cun, Kanter and Solla [23] Second order properties of error surfaces: Learn-
ing time and generalization (1990), (click here).

Le Cun, Kanter and Solla [24] Eigenvalues of covariance matrices: Applica-
tion to neural-network learning (1991).

The dynamical behavior of learning algorithms based on the minimiza-
tion of the learning error function E(W ) through gradient descent is con-
trolled by the second-order properties of E(W ), as represented by its
Hessian matrixH . The cost function is quadratic inW , and can be rewrit-
ten in terms of a symmetric non-negative covariance matrix (or Hessian)
of the inputs.

The diagonalization of R provides a diagonal matrix A formed by its
eigenvalues and a matrix Q formed by its e—igenvectors.
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20.6 Generating function literature

For the latest entry, go to the bottom of this section

2016-11-11 Predrag I still cannot get over how elegant the Gutkin-Osipov [22]
spatiotemporal cat is. It is linear! ( mod 1, that is - the map is continuous
for integer s). A 1-dimensional cat map has a Hamiltonian (??), and they
have written down the 2-dimensional Lagrangian, their Eq. (3.1) (or the
“generating function”, as this is a mapping). Their spatiotemporal cat
generating function is defined on a spatiotemporal cylinder, infinite in
time direction,

S(qt, qt+1) = −
N∑
n=1

qntq1+n,t −
N∑
n=1

qnt(qn,t+1 +mq
n,t+1) +

a

2

N∑
n=1

q2
nt

+
b

2

N∑
n=1

(qn,t+1 +mq
n,t+1)2 −mp

n,t+1qn,t+1 , (20.42)

where qt = {qnt}Nn=1 is a spatially periodic state at time t, with qnt be-
ing the coordinate of nth “particle” n = 1 . . . N at the moment of time
t ∈ Z, and mq

n,t+1,m
p
n,t+1 are integer numbers which stand for wind-

ing numbers along the q and p directions of the 2N-torus. Note that
x1+n,t = x1+(nmod N),t . The coefficients a, b, s = a + b are integers which
they specify. Gutkin and Osipov refer to the map generated by the ac-
tion (20.42) as non-perturbed coupled cat map, and to an invariant 2-torus
p as a “many-particle periodic orbit” (MPO) if qnt is doubly-periodic, or
“closed,” i.e.,

qnt = qn+L,t+T , n = 1, 2, · · · , L , t = 1, 2, · · · , T .

2D symbolic representation Encode each invariant 2-torus (many-particle
periodic orbit) p by a two dimensional (periodic) lattice of symbols ant,
(nt) ∈ Z2, where symbols ant belong to some alphabet A of a small size.
Each invariant 2-torus p is represented byL×T toroidal array of symbols:

Āp = {ant| (nt) ∈ Z2
LT } .

The Hamiltonian equations of motion can be generated using (??) but
who needs them? Remember, a field theorist would formulate a space-
time symmetric field theory in a Lagrangian way, with the invariant ac-
tion.

2016-11-11 Predrag Percival and Vivaldi [26] state the Lagrangian variational
principle in Sect. 6. Codes, variational principle and the static model: 7

7Predrag 2016-11-12: eventually move to remark ??
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The Lagrangian variational principle for the sawtooth map on the real
line states that the action sum (??) is stationary with respect to variations
of any finite set of configurations xt. Their discussion of how “elastic-
ity” works against the “potential” is worth reading. For large values of
stretching parameter s, the potential wins out, and the state xt falls into
the mtth well: “the code may be considered as a labelling of the local
minima of the Lagrangian variational principle.”

Dullin and Meiss [15] Stability of minimal periodic orbits does the calcula-
tions in great detail.

2016-11-11 Predrag “mean action” = the action divided by the period

2018-12-07 Predrag as shown in (copied here from ChaosBook) example ??,
example ??, and example ?? Hamiltonian spectral determinant and dyn-
amical zeta function have a special form. Recheck against our cat map
1/ζAM.

2019-10-14 Predrag The Jacobi operator acts on a discrete periodic lattice as

Lu(t) = a(t+ 1)u(t+ 1) + b(t)u(t) + a(t− 1)u(t− 1) ,

where a(t) and b(t) are real valued for each t ∈ Z, and M-periodic in t.
Jacobi operators are the discrete analogue of Sturm–Liouville operators,
with many similarities to Sturm–Liouville theory.

2022-02-13 Josh & Sam Questions about how to best (and practically) evaluate
cycle averaging formulas:

1. The numbers of terms in the expansion grows so quickly with re-
spect to the minimal symbol length orbit excluded that we are not
quite sure how and where to truncate the sum, even moderately
sized collections of orbits.

2. Has anyone attempted to compute periodic orbits averages by nu-
merically computing the zero and derivative of F =

∏
p(1 − tp) di-

rectly?

2022-02-11 Predrag .

1. Nobody so far has had enough understanding of Navier-Stokes pe-
riodic orbits to evaluate truncation errors. For low-dimensional sys-
tems:

(a) If grammar is known, exponentially decreasing errors kick in
only after ‘fundamental’ cycles are accounted for, read the end
of ChaosBook sect. 18.3 Determinant of a graph

(b) If symbolic dynamics is not understood, ChaosBook sect. 23.7
Stability ordering of cycle expansions

2. None has attempted it - an idea worth exploring.
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(a) Watch out for ChaosBook sect. 22.4 False zeros: the unexpanded
product

∏
p(1− tp) is only a shorthand, just like for the original

Riemann zeta function.
(b) If you expand the terms as a (pseudo)cycle expansion, numeri-

cally “computing the zero and derivative” seems to be what we
already do?

3. But your question does lead to something that Matt Gudorf never
explored in his thesis: Perhaps the most important insight of the spa-
tiotemporal reformulation of ‘chaos’ is that the weight of periodic
orbits (N -torus, if theory has N continuous symmetries) is given by
its Hill determinant, see LC21 sect 8.2 Periodic orbit theory for the
retarded.

(a) Can you think of new/better ways to evaluate DetJ ? Orbit Ja-
cobian matrix J is big, but very sparse, and DetJ has a nice ge-
ometrical interpretation as a LC21 fundamental parallelepiped?
The edges of the parallelepiped are the columns of the orbit Ja-
cobian matrix, which are sparse, so maybe it is computable?

(b) In the continuum limit (more appropriate to Navier-Stokes?),
maybe the best was is to follow LC21 Hill and Poincaré, and
truncate Fourier series?

(c) For viscous flows, like Navier-Stokes, the infinity of transient,
strongly dissipative modes immediately damp put, so the Hill
determinant should only have the dimension of the inertial man-
ifold. Does it?

2022-02-19 Predrag JAX is said to make evaluation of Jacobians trivial.
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