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overview

1 what this talk is about
2 “turbulence” in small domains
3 coupled cat maps lattice
4 space is time
5 bye bye, dynamics



The Day Dynamics Died

R. I. P.
January 24, 2016 at 6 AM PST, Santa Barbara, CA

why did it have to die?



do clouds solve PDEs?

do clouds integrate Navier-Stokes equations?

NO!
=⇒ other swirls =⇒

do clouds satisfy Navier-Stokes equations?

yes!
they satisfy them locally, everywhere and at all times



part 1

1 “turbulence” in small domains
2 coupled cat maps lattice
3 space is time
4 bye bye, dynamics



goal : go from equations to turbulence

Navier-Stokes equations

∂v
∂t

+ (v · ∇)v =
1
R
∇2v−∇p + f , ∇ · v = 0,

velocity field v ∈ R3 ; pressure field p ; driving force f

describe turbulence
starting from the equations (no statistical assumptions)



pipe experiment

T. Mullin lab



example : pipe flow

amazing data! amazing numerics!

36



dynamical description of turbulence

state space

a manifoldM∈ Rd : d numbers determine the state of the
system

representative point
x(t) ∈M
a state of physical system at instant in time

integrate the equations

trajectory x(t) = f t (x0) = representative point time t later



charting the state space of a turbulent flow

A long long time ago
I can still remember how
That dynamics used to make me smile
And I knew if I had my chance
That I could make those coherent structures dance

And maybe they’d be happy for a while

John F Gibson (U New Hampshire)
Jonathan Halcrow (Google)
P. C. (Georgia Tech)



plane Couette : so far, small computational cells

velocity field visualization



can visualize 61,506 dimensional state space of turbulent flow

equilibria of turbulent plane Couette flow,
their unstable manifolds, and
myriad of turbulent videos mapped out as one happy family

for movies, please click through ChaosBook.org/tutorials

http://ChaosBook.org/tutorials


plane Couette state space 105 → 3D

equilibria, periodic orbits, their (un)stable manifolds
shape the turbulence



part 2

1 “turbulence” in small domains
2 coupled cat maps lattice
3 space is time
4 bye bye, dynamics



next: large space-time domains

example : complex Ginzburg-Landau on a large domain

[horizontal] space x ∈ [−L/2, L/2] [up] time evolution
codeinthehole.com/static/tutorial/coherent.html



describe (x , t) ∈ (−∞,∞)× (−∞,∞)

continuous symmetries : space, time translations



1) chaos and a single kitten



example of a “small domain dynamics” : kicked rotor

an electron circling an atom, subject to
a discrete time sequence of angle-dependent kicks F (xt )

Taylor, Chirikov and Greene standard map

xt+1 = xt + pt+1 mod 1,
pt+1 = pt + F (xt )

→ chaos in Hamiltonian systems



standard map

example of chaos in a Hamiltonian system



the simplest example : a single kitten in time

force F (x) = Kx linear in the displacement x , K ∈ Z

xt+1 = xt + pt+1 mod 1
pt+1 = pt + Kxt mod 1

Continuous Automorphism of the Torus, or

Hamiltonian cat map
a linear, area preserving map of a 2-torus onto itself(

xt+1
pt+1

)
= A

(
xt
pt

)
mod 1 , A =

(
s − 1 1
s − 2 1

)
for integer s = tr A > 2 the map is hyperbolic→ a fully chaotic
Hamiltonian dynamical system



cat map in Lagrangian form

replace momentum by velocity

pt+1 = (xt+1 − xt )/∆t

dynamics in (xt , xt−1) state space is particularly simple

2-step difference equation

xt+1 − s xt + xt−1 = −mt

unique integer mt ensures that
xt lands in the unit interval at every time step t

nonlinearity : mod 1 operation, encoded in

mt ∈ A , A = finite alphabet of possible values for mt



example : s = 3 cat map symbolic dynamics

B

CD

B

C

D

x 0 x 1 x 1

x−1 x0 x0

str
etc

h

wrap

cat map stretches the unit square
translations by

m0 ∈ A = {1,0,1,2} = {red, green, blue, yellow}
return stray kittens back to the torus



cat map (x0, x1) state space partition
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(a) 4 regions labeled by m0. , obtained from (x−1, x0) state space by one iteration
(b) 14 regions, 2-steps past m−1m0. (c) 44 regions, 3-steps past m−2m−1m0.

(d) 4 regions labeled by future .m1

(e) 14 regions, 2-steps future .m1m2 (f) 44 regions, 3-steps future block m3m2m1.



2) chaos and the spatiotemporally infinite cat



spatiotemporal cat map

Consider a 1-dimensional spatial lattice, with field xn,t (the
angle of a kicked rotor “particle” at instant t) at site n.

require
(0) each site couples to its nearest neighbors xn±1,t
(1) invariance under spatial translations
(2) invariance under spatial reflections
(3) invariance under the space-time exchange

obtain

2-dimensional coupled cat map lattice

xn,t+1 + xn,t−1 − s xn,t + xn+1,t + xn−1,t = −mn,t



herding cats : a Euclidean field theory

convert the spatial-temporal differences to discrete derivatives

discrete d-dimensional Euclidean space-time Laplacian in
d = 1 and d = 2 dimensions

�xt = xt+1 − 2xt + xt−1
�xn,t = xn,t+1 + xn,t−1 − 4 xn,t + xn+1,t + xn−1,t

→ the cat map equations generalized to

d-dimensional spatiotemporal cat map

(�− s + 2d)xz = mz

where xz ∈ T1 , mz ∈ A and z ∈ Zd = lattice site label



deep insight, derived from observing kittens

an insight that applies to all coupled-map lattices, and all PDEs
with translational symmetries

a d-dimensional spatiotemporal pattern
{xz} = {xz , z ∈ Zd}

is labelled by a d-dimensional spatiotemporal block of symbols
{mz} = {mz , z ∈ Zd} ,

rather than a single temporal symbol sequence

(as is done when describing a small coupled few-“particle”
system, or a small computational domain).



“periodic orbits” are now invariant d-tori

1 time, 0 space dimensions
a state space point is periodic if its orbit returns to it after a
finite time T; in time direction such orbit tiles the time axis by
infinitely many repeats

1 time, d-1 space dimensions
a state space point is spatiotemporally periodic if it belongs to
an invariant d-torus R, i.e., a block MR that tiles the lattice state
M periodically, with period `j in j th lattice direction



an example of invariant 2-tori :
shadowing, symbolic dynamics space

2d symbolic representation of two invariant 2-tori shadowing
each other within the shared block MR = MR0 ∪MR1 (blue)

border R1 (thick black), interior R0 (thin black)
symbols outside R differ



shadowing, state space
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(left) state space points (x0,t , x0,t−1) of the two invariant 2-tori
(right) zoom into the small rectangular area
interior points ∈ R0 (large green), (small red) circles
respectively
border points ∈ R1 (large violet), (small magenta) squares
respectively
within the interior of the shared block, the shadowing is
exponentially small



part 3

1 “turbulence” in small domains
2 coupled cat maps lattice
3 space is time
4 bye bye, dynamics



yes, lattice schmatiz, but

does it work for PDEs?



chronotope

In literary theory and philosophy of language,
the chronotope is how configurations of time
and space are represented in language and
discourse.

— Wikipedia : Chronotope

Mikhail Mikhailovich Bakhtin (1937)
Politi, Giacomelli, Lepri, Torcini (1996)

https://en.wikipedia.org/wiki/Chronotope


space-time complex Ginzburg-Landau on a large domain

a nearly recurrent chronotope

[horizontal] space x ∈ [−L/2, L/2] [up] time evolution



must have : 2D symbolic dynamics ∈ (−∞,∞)× (−∞,∞)



(1+1) space-time dimensional “Navier-Stokes”

computationally not ready yet to explore the inertial manifold of
(1 + 3)-dimensional turbulence - start instead with
(1 + 1)-dimensional

Kuramoto-Sivashinsky time evolution equation

ut + uOu = −O2u−O4u , x ∈ [−L/2,L/2] ,

describes spatially extended systems such as
flame fronts in combustion
reaction-diffusion systems
. . .



a test bed : Kuramoto-Sivashinsky on a large domain

[horizontal] space x ∈ [0, L] [up] time evolution

turbulent behavior
simpler physical, mathematical and computational setting
than Navier-Stokes



compact space, infinite time cylinder

so far : Navier-Stokes on compact spatial domains, all times



compact space, infinite time Kuramoto-Sivashinsky

in terms of discrete spatial Fourier modes
N ordinary differential equations (ODEs) in time

˙̃uk (t) = (q2
k − q4

k ) ũk (t)− i
qk

2

N−1∑
k ′=0

ũk ′(t)ũk−k ′(t) .



evolution of Kuramoto-Sivashinsky on small L = 22 cell
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yes, but

is space time?



compact time, infinite space cylinder



compact time, infinite space Kuramoto-Sivashinsky

ut = −uux − uxx − uxxxx ,

u(0) ≡ u , u(1) ≡ ux , u(2) ≡ uxx , u(3) ≡ uxxx

periodic boundary condition in time u(x , t) = u(x , t + T)

evolve u(t , x) in x , 4 equations, 1st order in spatial derivatives

u(0)
x = u(1) , u(1)

x = u(2) , u(2)
x = u(3)

u(3)
x = −u(0)

t − u(2) − u(0)u(1)

initial values u(x0, t), ux (x0, t), uxx (x0, t), uxxx (x0, t),
for all t ∈ [0,T) at a space point x0



a time-invariant equilibrium, spatial periodic orbit

(a) (b)

evolution of EQ1 : (a) in time, (b) in space
initial condition for the spatial integration is the time strip
u(x0, t), t = [0,T), where time period T = 0, spatial x period is
L = 22.

Michelson 1986



chronotope :
a finite (1 + D)-dimensional symbolic dynamics rectangle

make it doubly periodic



compact space and time chronotope



a spacetime invariant 2-torus

(a) (b)

(a) old : time evolution. (b) new : space evolution
x = [0,L] initial condition : time periodic line t = [0,T ]

Gudorf 2016



zeta function for a field theory ? much like Ising model

"periodic orbits" are now spacetime tilings

Z (s) ≈
∑

p

e−Aps

|det (1− Jp)|

tori / spacetime tilings : each of area Ap = LpTp

symbolic dynamics : (1 + D)-dimensional
essential to encoded shadowing

at this time : this zeta is still but a dream



part 4

1 “turbulence” in small domains
2 coupled cat maps lattice
3 space is time
4 bye bye, dynamics



computing spacetime solutions



kiss your DNS codes

goodbye

for long time and/or space integrations

they never worked and could never work



life outside of time

the trouble:
forward time-integration codes too unstable

multishooting inspiration: replace a guess that a point is on the
periodic orbit by a guess of the entire orbit.

an example is “Newton descent” : a variational method to drive
the initial guess toward the exact solution.

→

a variational method for finding spatio-temporally periodic
solutions of classical field theories



compute locally, adjust globally

Computing literature : parallelizing spatiotemporal computation
is FLOPs intensive, but more robust than integration forward in
time



1d example : variational principle for any periodic orbit

N guess points→∞ points along a smooth loop (snapshots of
the pattern at successive time instants)1

1Y. Lan and P. Cvitanovic’, “Variational method for finding periodic orbits in
a general flow,” Phys. Rev. E 69, 016217 (2004); nlin.CD/0308008.



a guess loop vs. the desired solution

loop defines tangent vector ṽ

periodic orbit defined by
velocity field v(x)

L

x(s)v

p
v(x)

x(t)



extremal principle for a general flow

loop tangent ṽ(x̃) 6= v(x̃)

periodic orbit ṽ(x̃), v(x̃) aligned

τ

p

L(   )

v
v

cost function

F 2[x̃ ] =

∮
L

ds (ṽ − v)2 ; ṽ = ṽ(x̃(s, τ)) , v = v(x̃(s, τ)) ,

penalizes misorientation of the loop tangent ṽ(x̃) relative to the
true dynamical flow v(x̃)



Newton descent

cost minimization

drives

initial guess L(0)
→

cycle p = L(∞)

as fictitious time τ →∞

x

L(0)

L(    )=p

τL(  )



clouds do not solve PDEs

do clouds integrate Navier-Stokes equations?

NO!
=⇒ other swirls =⇒

at any spacetime point Navier-Stokes equations describe the
local tangent space

they satisfy them locally, everywhere and at all times



summary

1 small computational domains reduce “turbulence” to
“single particle” chaos

2 consider instead turbulence in infinite spatiatemporal
domains

3 theory : classify all spatiotemporal tilings
4 numerics : parallelize spatiotemporal computations

there is no more time

there is only enumeration of spacetime solutions



Arrival of spacetime kitten



single kitten bonus slides



each chronotope is a fixed point

discretize un,m = u(xn, tm) over NM points of spatiotemporal
periodic lattice xn = nT/N, tm = mT/M, Fourier transform :

ũk ,` =
1

NM

N−1∑
n=0

M−1∑
m=0

un,m e−i(qk xn+ω`tm) , qk =
2πk

L
, ω` =

2π`
T

Kuramoto-Sivashinsky is no more a PDE / ODE, but a fixed
point problem of determining all invariant unstable 2-tori

[
−iω` − (q2

k − q4
k )
]

ũk ,` + i
qk

2

N−1∑
k ′=0

M−1∑
m′=0

ũk ′,m′ ũk−k ′,m−m′ = 0

Newton method for a NM-dimensional fixed point :
invert 1− J,
where J is the 2-torus Jacobian matrix, yet to be elucidated



dynamical Zeta function for a field theory

∞ of spacetime tilings

Z (s) ≈
∑

p

e−Aps

|det (1− Jp)|

tori / plane tilings
each of area Ap = LpTp

trace formula for a field theory



what is next for the students of Landau’s Theoretical Minimum?
take the course!

student raves :
...106 times harder than any other online course...
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