	KSe, <i>L</i> = 22	relativity for cyclists	symmetry reduction	Summary

Continuous symmetry reduction for high-dimensional flows

Predrag Cvitanović¹ and Evangelos Siminos^{1,2}

¹Georgia Institute of Technology ²CEA/DAM/DIF, Paris

April 2, 2010

Navier-Stokes	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary

Outline

Navier-Stokes

- fluid measurements
- baby Navier-Stokes
- Kuramoto-Sivashinsky, *L* = 22, state space
 - types of solutions
 - PDE's as dynamical systems
- Oynamical systems approach to spatially extended systems
 - Lorenz equations example
 - complex Lorenz flow example
 - Interpretended in the second secon
 - Lie groups, algebras
- 5 symmetry reduction
 - Hilbert polynomial basis
 - method of slices
 - slice & dice
 - conclusions to be done

Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
00					

modern times

amazing data! amazing numerics!

3D turbulent pipe flow

solutions are

- rotationally equivariant
- translationally equivariant

Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
00					

KSe

Kuramoto-Sivashinsky equation

1-dimensional "Navier-Stokes"

$$u_t + u \nabla u = -\nabla^2 u - \nabla^4 u, \qquad x \in [-L/2, L/2],$$

describes extended systems such as

- reaction-diffusion systems
- flame fronts in combustion
- drift waves in plasmas
- thin falling films, ...

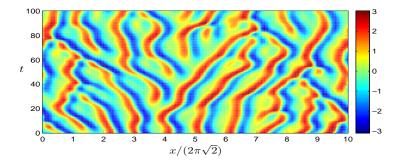
KSe, L = 22 Dynamicist's view of turbulence

relativity for cyclists

symmetry reduction

Summary

Kuramoto-Sivashinsky on a large domain

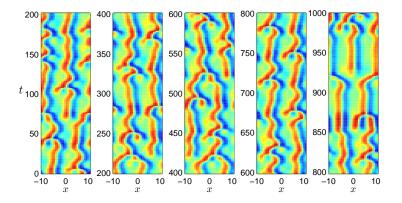


- turbulent behavior
- simpler physical, mathematical and computational setting than Navier-Stokes

Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Sum
	0000000				

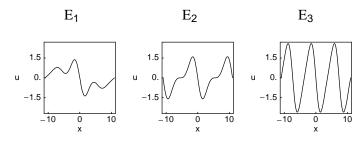
types of solutions

evolution of Kuramoto-Sivashinsky on small L = 22 cell



horizontal: $x \in [-11, 11]$ vertical: time color: magnitude of u(x, t)

Navier-Stokes	KSe, <i>L</i> = 22 ○●○○○○○○	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
types of solutions	3				
equilibria	a				



• E_3 invariant under $\tau_{1/3}$.

 For any E_i we have a continuous family of equilibria under rotations τ_{ℓ/L} E_i.

Navier-Stokes	KSe, <i>L</i> = 22 00●00000	Dynamicist's view of turbulence	symmetry reduction	Summary
types of solutions				

symmetries of Kuramoto-Sivashinsky equation

with periodic boundary condition

$$u(\mathbf{x},t)=u(\mathbf{x}+\mathbf{L},t)$$

the symmetry group is O(2):

- translations: $\tau_{\ell/L} u(x, t) = u(x + \ell, t)$, $\ell \in [-L/2, L/2]$,
- reflections: $\kappa u(x) = -u(-x)$.

translational symmetry \rightarrow traveling wave solutions

Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
	0000000				

types of solutions

symmetries of Kuramoto-Sivashinsky equation

with periodic boundary condition

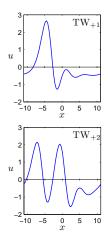
$$u(\mathbf{x},t)=u(\mathbf{x}+L,t)$$

the symmetry group is O(2):

- translations: $\tau_{\ell/L} u(x, t) = u(x + \ell, t)$, $\ell \in [-L/2, L/2]$,
- reflections: $\kappa u(x) = -u(-x)$.

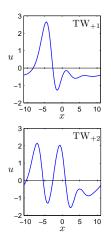
translational symmetry \rightarrow traveling wave solutions Traveling (or relative) unstable coherent solutions are ubiquitous in turbulent hydrodynamic flows

Navier-Stokes	KSe, <i>L</i> = 22 000●0000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
types of solutions					
traveling	waves				



- invariant (as a set) under rotations: relative equilibria.
- They live in full space.

Navier-Stokes	KSe, <i>L</i> = 22 000€0000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
types of solutions	\$				
traveling	waves				

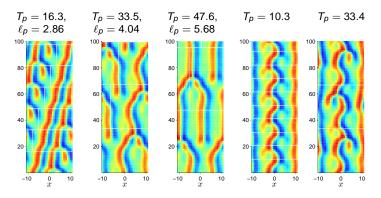


- invariant (as a set) under rotations: relative equilibria.
- They live in full space.
- Toshiba Corp and Microsoft Corp chairman Bill Gates are to work together to develop a next generation "traveling-wave reactor", which could operate for up to 100 years without refueling. [news item - Tokyo, March 23, 2010]

Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
	00000000				

types of solutions

unstable relative periodic orbits



- have computed 40,000 unstable periodic and relative periodic orbits.
- how are they organized?

Navier-Stokes	KSe, <i>L</i> = 22 00000●00	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
types of solutions	5				

symmetries of Kuramoto-Sivashinsky equation

translational symmetry \Rightarrow

- traveling wave solutions
- unstable relative periodic orbits

question

what are the invariant objects that organize phase space in a spatially extended system with translational symmetry and how do they fit together to form a skeleton of the dynamics?

Navier-Stok	Kes KSe, <i>L</i> = 22 000000€0	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
PDE's as d	ynamical systems				

state space

- the space in which all possible states u's live
- ∞-dimensional:
 point u(x) is a function of x on interval x ∈ L.

• in practice:

a high but finite dimensional space (e.g. through a spectral discretization)

Navier-Stokes KS	Se, L = 22	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
	000000				

PDE's as dynamical systems

state space of Kuramoto-Sivashinsky on L = 22

intrinsic dimensionality

- dynamics are often captured by fewer variables than needed to numerically resolve the PDE.
- Lyapunov exponents:
 (λ_i) = (0.048, 0, 0, -0.003, -0.189, -0.256, -0.290, -0.310, ···)
- '8-dimensional' covariant Lyapunov frame? perhaps tractable?
- how do we exploit such low dimensionality to obtain dynamical systems description?

Navier-S	Stokes KSe, L	= 22 Dynami	cist's view of turbulence	relativity for cyclists	symmetry reduction	Summary

- low dimensional systems: equilibria, periodic orbits organize the long time dynamics.
- is this true in extended systems?

Dynamicist's view of turbulence ●000 relativity for cyclists

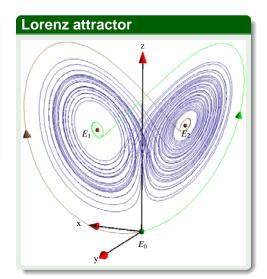
mmetry reduction

Summary

Lorenz equations example

Lorenz equations

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} \sigma(y-x) \\ \rho x - y - xz \\ xy - bz \end{bmatrix}$$
with
 $\sigma = 10, b = 8/3, \rho = 28.$

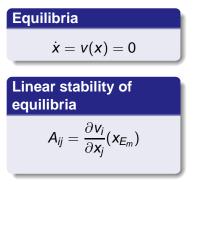


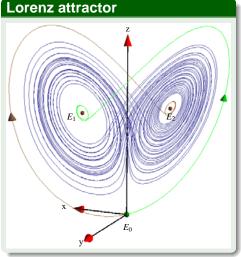
Dynamicist's view of turbulence ●000 relativity for cyclists

symmetry reduction

Summary

Lorenz equations example





Dynamicist's view of turbulence

relativity for cyclists

symmetry reduction

Summary

Lorenz equations example

from Lorenz 3D attractor to a unimodal map

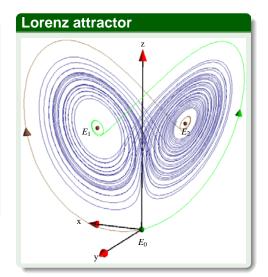
Linear stability of equilibria

$$A_{ij} = \frac{\partial v_i}{\partial x_j} (x_{E_m})$$

Eigenvalues of A: $\lambda_j = \mu_j \pm i\nu_j$

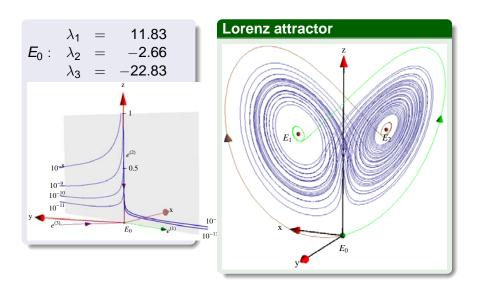
- Linearly stable if µ_j < 0

- Linearly unstable if µ_j > 0



Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
		• 00 0			

Lorenz equations example



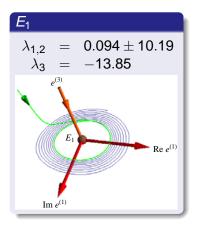
Dynamicist's view of turbulence

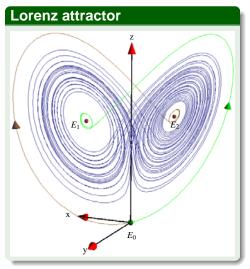
relativity for cyclists

mmetry reduction

Summary

Lorenz equations example





Dynamicist's view of turbulence

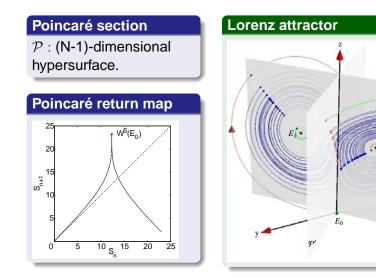
relativity for cyclists

symmetry reduction

 \mathcal{P}

Summary

Lorenz equations example



Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence ○●○○	relativity for cyclists	symmetry reduction	Summary
Lorenz equation	s example				

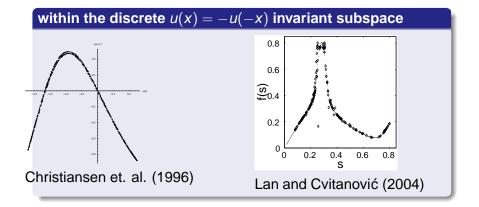
Take the hint from low dimensional systems

- low dimensional systems: equilibria, periodic orbits organize the long time dynamics.
- is this true in extended systems?

Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
		0000			

Lorenz equations example

Kuramoto-Sivashinsky flow reduced to discrete maps



∞ − d PDE state space dynamics can be reduced to low dimensional return maps!

Dynamicist's view of turbulence

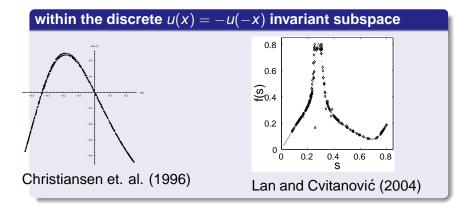
relativity for cyclists

symmetry reduction

Summary

Lorenz equations example

Kuramoto-Sivashinsky flow reduced to discrete maps



- ∞ d PDE state space dynamics can be reduced to low dimensional return maps!
- BUT! must reduce continuous symmetries first

Dynamicist's view of turbulence

relativity for cyclists

symmetry reduction Summary

complex Lorenz flow example

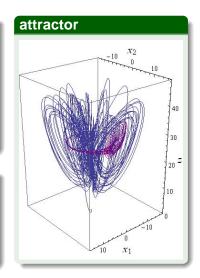
from complex Lorenz flow 5D attractor \rightarrow unimodal map

complex Lorenz equations

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{y}_{1} \\ \dot{y}_{2} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} -\sigma x_{1} + \sigma y_{1} \\ -\sigma x_{2} + \sigma y_{2} \\ (\rho_{1} - z)x_{1} - \rho_{2}x_{2} - y_{1} - ey_{2} \\ \rho_{2}x_{1} + (\rho_{1} - z)x_{2} + ey_{1} - y_{2} \\ -bz + x_{1}y_{1} + x_{2}y_{2} \end{bmatrix}$$

$$\rho_1 = 28, \rho_2 = 0, b = 8/3, \sigma = 10, e = 1/10$$

A typical $\{x_1, x_2, z\}$ trajectory of the complex Lorenz flow + a short trajectory of whose initial point is close to the relative equilibrium Q_1 superimposed.



Dynamicist's view of turbulence

relativity for cyclists

symmetry reduction

Summary

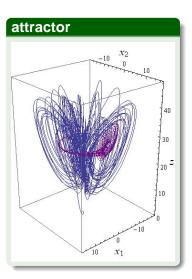
complex Lorenz flow example

from complex Lorenz flow 5D attractor \rightarrow unimodal map

what to do?

the goal

reduce this messy strange attractor to a 1-dimensional return map



Dynamicist's view of turbulence

relativity for cyclists

symmetry reduction

Summary

complex Lorenz flow example

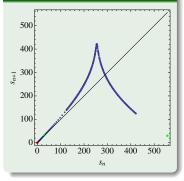
from complex Lorenz flow 5D attractor \rightarrow unimodal map

the goal attained

but it will cost you

after symmetry reduction; must learn how to quotient the SO(2) symmetry

1D return map!



Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	eocococococococococococococococococococ	symmetry reduction	Summary
Lie groups, algeb	oras				

Lie groups elements, Lie algebra generators

An element of a compact Lie group:

$$g(\theta) = \mathbf{e}^{\theta \cdot \mathbf{T}}, \qquad \theta \cdot \mathbf{T} = \sum \theta_{\mathbf{a}} \mathbf{T}_{\mathbf{a}}, \ \mathbf{a} = 1, 2, \cdots, N$$

 $\theta \cdot \mathbf{T}$ is a *Lie algebra* element, and θ_a are the parameters of the transformation.

Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Sumr
			000000		

Lie groups, algebras

example: SO(2) rotations for complex Lorenz equations

SO(2) rotation by finite angle θ :

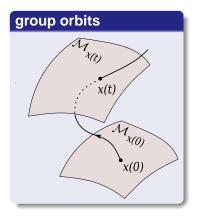
$$g(heta) = egin{pmatrix} \cos heta & \sin heta & 0 & 0 & 0 \ -\sin heta & \cos heta & 0 & 0 & 0 \ 0 & 0 & \cos heta & \sin heta & 0 \ 0 & 0 & -\sin heta & \cos heta & 0 \ 0 & 0 & 0 & 0 & 1 \ \end{pmatrix}$$

Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
in/equivariance					
symmeti	ries of dy	namics			

A flow $\dot{x} = v(x)$ is *G*-equivariant if

$$v(x) = g^{-1} v(g x)$$
, for all $g \in G$.

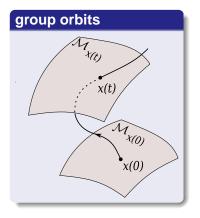
Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists ○○○●○○○	symmetry reduction	Summary
in/equivariance					



group orbit \mathcal{M}_x of x is the set of all group actions

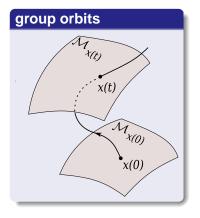
$$\mathcal{M}_{x} = \{g \, x \mid g \in G\}$$

Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
in/equivariance					



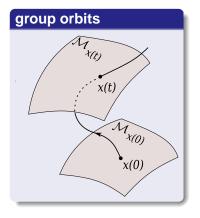
group orbit $\mathcal{M}_{x(0)}$ of state space point x(0), and the group orbit $\mathcal{M}_{x(t)}$ reached by the trajectory x(t) time tlater.

Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
in/equivariance					



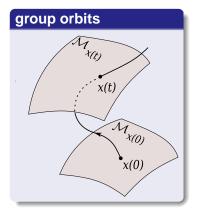
any point on the manifold $\mathcal{M}_{x(t)}$ is equivalent to any other.

Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
in/equivariance					



action of a symmetry group endows the state space with the structure of a union of group orbits, each group orbit an equivalence class.

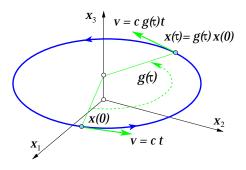
Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
in/equivariance					



the goal:

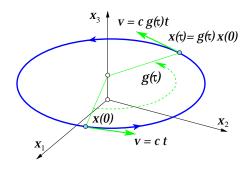
replace each group orbit by a unique point a lower-dimensional *reduced state space* (or orbit space)

Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary			
in/equivariance								
a dana a Bara ana an								



relative equilibrium (traveling wave, rotating wave) $x_{TW}(\tau) \in \mathcal{M}_{TW}$: the dynamical flow field points along the group tangent field, with constant 'angular' velocity *c*, and the trajectory stays on the group orbit

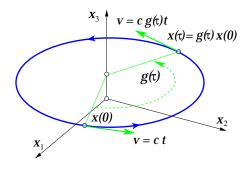
a traveling wave								
in/equivariance								
Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary			



relative equilibrium

$$egin{aligned} \mathbf{v}(\mathbf{x}) &= \mathbf{c} \cdot \mathbf{t}(\mathbf{x}) \,, \qquad \mathbf{x} \in \mathcal{M}_{\mathrm{TW}} \ \mathbf{x}(au) &= \mathbf{g}(- au \, \mathbf{c}) \, \mathbf{x}(0) \,= \, \mathbf{e}^{- au \, \mathbf{c} \cdot \mathbf{T}} \mathbf{x}(0) \end{aligned}$$

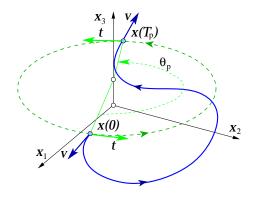
a travelin	ng wave				
in/equivariance					
Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists ○○○○●○○	symmetry reduction	Summary



group orbit $g(\tau) x(0)$ coincides with the dynamical orbit $x(\tau) \in \mathcal{M}_{TW}$ and is thus flow invariant

Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists ○○○○○●○	symmetry reduction	Summary
in/equivariance					

a relative periodic orbit



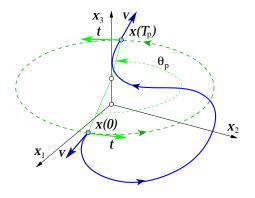
relative periodic orbit

$$x_{\rho}(0)=g_{\rho}x_{\rho}(T_{\rho})$$

exactly recurs at a fixed relative period T_p , but shifted by a fixed group action g_p

Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
in/equivariance					

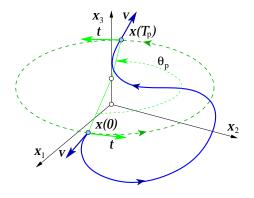
a relative periodic orbit



relative periodic orbit starts out at x(0), returns to the group orbit of x(0) after time T_p , a rotation of the initial point by g_p

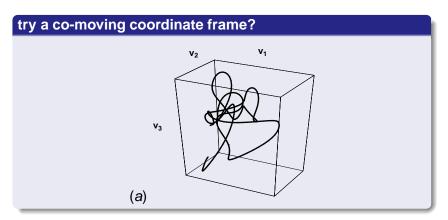
00	kes KSe, $L = 22$	Dynamicist's view of turbulence	coloceo	symmetry reduction	Summary
in/equivaria	ince				

a relative periodic orbit



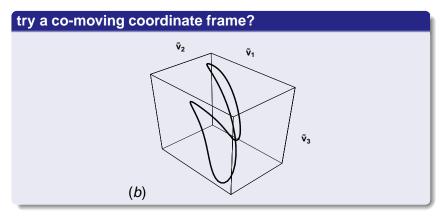
The group action parameters $\theta = (\theta_1, \theta_2, \dots \theta_N)$ are irrational: trajectory sweeps out ergodically the group orbit without ever closing into a periodic orbit.

relativity for pedestrians

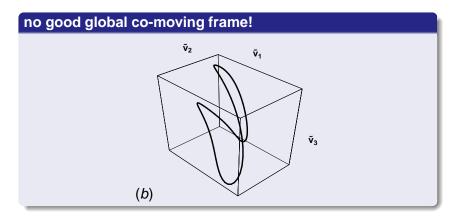


A relative periodic orbit of the Kuramoto-Sivashinsky flow, traced for four periods T_p , projected on (a) a stationary state space coordinate frame { v_1, v_2, v_3 };

relativity for pedestrians



A relative periodic orbit of the Kuramoto-Sivashinsky flow, traced for four periods T_p , projected on (b) a co-moving $\{\tilde{v}_1, \tilde{v}_2, \tilde{v}_3\}$ frame



this is no symmetry reduction at all; all other relative periodic orbits require their own frames, moving at different velocities.

Navier-Stok	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary

symmetry reduction

- all points related by a symmetry operation are mapped to the same point.
- relative equilibria become equilibria and relative periodic orbits become periodic orbits in reduced space.
- families of solutions are mapped to a single solution

KSe, <i>L</i> = 22	Dynamicist's view of turbulence	symmetry reduction	Summary

reduction methods

- Hilbert polynomial basis: rewrite equivariant dynamics in invariant coordinates
- moving frames, or slices: cut group orbits by a hypersurface (kind of Poincareé section), each group orbit of symmetry-equivalent points represented by the single point

Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary

reduction methods

- Hilbert polynomial basis: rewrite equivariant dynamics in invariant coordinates: global
- **moving frames, or slices**: cut group orbits by a hypersurface (kind of Poincareé section), each group orbit of symmetry-equivalent points represented by the single point: local

Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
Hilbert polynomi	al basis				
invariant	t polynon	nials			

• rewrite the equations in variables invariant under the symmetry transformation

Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary				
Hilbert polynomia	al basis								
invariant	invariant polynomials								

- rewrite the equations in variables invariant under the symmetry transformation
- or compute solutions in original space and map them to invariant variables

Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
Hilbert polynomia	al basis				

invariant polynomials basis

Hilbert basis for complex Lorenz equations

$$\begin{array}{rcl} u_1 &=& x_1^2 + x_2^2 \,, & u_2 \,=\, y_1^2 + y_2^2 \\ u_3 &=& x_1 y_2 - x_2 y_1 \,, & u_4 \,=\, x_1 y_1 + x_2 y_2 \\ u_5 &=& z \end{array}$$

invariant under SO(2) action on a 5-dimensional state space polynomials related through syzygies:

$$u_1u_2 - u_3^2 - u_4^2 = 0$$

invariant polynomials basis								
Hilber	t polynomial	basis						
Navie oo	r-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary		

complex Lorenz equations in invariant polynomial basis

$$\begin{split} \dot{u}_1 &= 2 \sigma (u_3 - u_1) \\ \dot{u}_2 &= -2 u_2 - 2 u_3 (u_5 - \rho_1) \\ \dot{u}_3 &= \sigma u_2 - (\sigma - 1) u_3 - e u_4 + u_1 (\rho_1 - u_5) \\ \dot{u}_4 &= e u_3 - (\sigma + 1) u_4 \\ \dot{u}_5 &= u_3 - b u_5 \end{split}$$

A 4-dimensional $\mathcal{M}/SO(2)$ reduced state space, a symmetry-invariant representation of the 5-dimensional SO(2) equivariant dynamics

Navier-Stokes

Dynamicist's view of turbulence

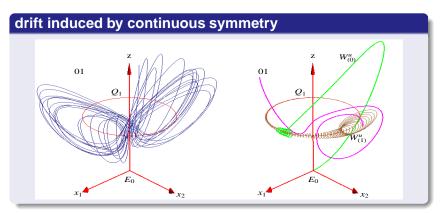
relativity for cyclists

symmetry reduction

Summary

Hilbert polynomial basis

state space portrait of complex Lorenz flow



A generic chaotic trajectory (blue), the E_0 equilibrium, a representative of its unstable manifold (green), the Q_1 relative equilibrium (red), its unstable manifold (brown), and one repeat of the $\overline{01}$ relative periodic orbit (purple).

invariant	invariant polynomials basis								
Hilbert polynomia	al basis								
Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary				

complex Lorenz equations in invariant polynomial basis

$$\begin{split} \dot{u}_1 &= 2 \sigma (u_3 - u_1) \\ \dot{u}_2 &= -2 u_2 - 2 u_3 (u_5 - \rho_1) \\ \dot{u}_3 &= \sigma u_2 - (\sigma - 1) u_3 - e u_4 + u_1 (\rho_1 - u_5) \\ \dot{u}_4 &= e u_3 - (\sigma + 1) u_4 \\ \dot{u}_5 &= u_3 - b u_5 \end{split}$$

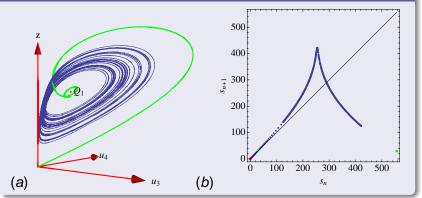
the image of the full state space relative equilibrium Q_1 group orbit is an equilibrium point, while the image of a relative periodic orbit, such as $\overline{01}$, is a periodic orbit

Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
				000000000000000000000000000000000000000	

Hilbert polynomial basis

Hilbert invariant coordinates

projected onto invariant polynomials basis



(a) The unstable manifold connection from the equilibrium E_0 at the origin to the strange attractor controlled by the rotation around the reduced state space image of relative equilibrium O:

Navier-Stokes

Dynamicist's view of turbulence

relativity for cyclists

C₃

symmetry reduction

Summary

Hilbert polynomial basis

higher-dimensional invariant bases? an example

first 11 invariants for the standard action of SO(2)

$$u_{1} = r_{1} = \sqrt{b_{1}^{2} + c_{1}^{2}}$$

$$u_{3} = \frac{b_{2}(b_{1}^{2} - c_{1}^{2}) + 2b_{1}c_{1}c_{2}}{r_{1}^{2}}$$

$$u_{4} = \frac{-2b_{1}b_{2}c_{1} + (b_{1}^{2} - c_{1}^{2})c_{2}}{r_{1}^{2}}$$

$$u_{5} = \frac{b_{1}b_{3}(b_{1}^{2} - 3c_{1}^{2}) - c_{1}(-3b_{1}^{2} + c_{1}^{2})c_{2}}{r_{1}^{3}}$$

$$u_{6} = \frac{-3b_{1}^{2}b_{3}c_{1} + b_{3}c_{1}^{3} + b_{1}^{3}c_{3} - 3b_{1}c_{1}^{2}c_{3}}{r_{1}^{3}}$$

Navier-Stokes

Dynamicist's view of turbulence

relativity for cyclists

symmetry reduction

Summary

Hilbert polynomial basis

higher-dimensional invariant bases? an example

first 11 invariants for the standard action of SO(2)

$$\begin{split} & U_{7} = \frac{b_{4} \left(b_{1}^{4} - 6b_{1}^{2}c_{1}^{2} + c_{1}^{4}\right) + 4b_{1}c_{1} \left(b_{1}^{2} - c_{1}^{2}\right)c_{4}}{r_{1}^{4}} \\ & U_{8} = \frac{4b_{1}b_{4}c_{1} \left(-b_{1}^{2} + c_{1}^{2}\right) + \left(b_{1}^{4} - 6b_{1}^{2}c_{1}^{2} + c_{1}^{4}\right)c_{4}}{r_{1}^{4}} \\ & U_{9} = \frac{b_{1}b_{5} \left(b_{1}^{4} - 10b_{1}^{2}c_{1}^{2} + 5c_{1}^{4}\right) + c_{1} \left(5b_{1}^{4} - 10b_{1}^{2}c_{1}^{2} + c_{1}^{4}\right)c_{5}}{r_{1}^{5}} \\ & U_{10} = \frac{-b_{5}c_{1} \left(5b_{1}^{4} - 10b_{1}^{2}c_{1}^{2} + 5c_{1}^{4}\right) + b_{1} \left(b_{1}^{4} - 10b_{1}^{2}c_{1}^{2} + 5c_{1}^{4}\right)c_{5}}{r_{1}^{5}} \\ & U_{11} = \frac{b_{6} \left(b_{1}^{6} - 15b_{1}^{4}c_{1}^{2} + 15b_{1}^{2}c_{1}^{4} - c_{1}^{6}\right) + 2b_{1}c_{1} \left(3b_{1}^{4} - 10b_{1}^{2}c_{1}^{2} + 3c_{1}^{4}\right)c_{6}}{r_{1}^{6}} \\ & U_{12} = \frac{-2b_{1}b_{6}c_{1} \left(3b_{1}^{4} - 10b_{1}^{2}c_{1}^{2} + 3c_{1}^{4}\right) + \left(b_{1}^{6} - 15b_{1}^{4}c_{1}^{2} + 15b_{1}^{2}c_{1}^{4} - c_{1}^{6}\right)c_{6}}{r_{1}^{6}}} \\ \end{split}$$

invariant	invariant polynomials - how to find them?									
Hilbert polynomia	al basis									
Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary					

• invariant polynomials (Hilbert basis)

Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary					
Hilbert polynomia	al basis									
invariant	invariant polynomials - how to find them?									

 invariant polynomials (Hilbert basis): computationally prohibitive for high-dimensional flows

Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary				
Hilbert polynomi	Hilbert polynomial basis								
invariant polynomials - how to find them?									

- invariant polynomials (Hilbert basis)
- Cartan moving frame method / method of slices

Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary				
Hilbert polynomi	al basis								
invariant polynomials - how to find them?									

- invariant polynomials (Hilbert basis)
- Cartan moving frame method / method of slices

Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary				
Hilbert polynomi	Hilbert polynomial basis								
invariant polynomials - how to find them?									

- invariant polynomials (Hilbert basis)
- Cartan moving frame method / method of slices: singularities

Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary			
slice & dice								
Lie algebra generators								

 \mathbf{T}_a generate infinitesimal transformations: a set of *N* linearly independent $[d \times d]$ anti-hermitian matrices, $(\mathbf{T}_a)^{\dagger} = -\mathbf{T}_a$, acting linearly on the *d*-dimensional state space \mathcal{M}

example: SO(2) rotations for complex Lorenz equations

$$\mathbf{T} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

The action of SO(2) on the complex Lorenz equations state space decomposes into m = 0 *G*-invariant subspace (*z*-axis) and m = 1 subspace with multiplicity 2.

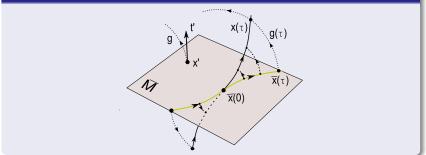
Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary		
slice & dice							
group tangent fields							

flow field at the state space point *x* induced by the action of the group is given by the set of *N* tangent fields

$$t_a(x)_i = (\mathbf{T}_a)_{ij} x_j$$

Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary
slice & dice					
slice & d	lice				

flow reduced to a slice

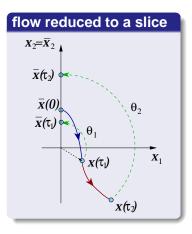


Slice $\overline{\mathcal{M}}$ through the slice-fixing point x', normal to the group tangent t' at x', intersects group orbits (dotted lines). The full state space trajectory $x(\tau)$ and the reduced state space trajectory $\overline{x}(\tau)$ are equivalent up to a group rotation $g(\tau)$.

Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Sum
				000000000000000000000000000000000000000	

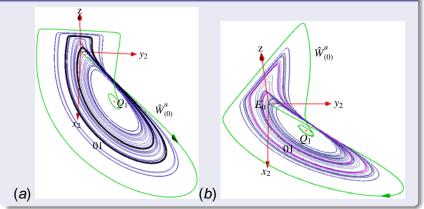
slice & dice

method of moving frames for SO(2)-equivariant flow



slice through x' = (0, 1, 0, 0, 0)group tangent t' = (-1, 0, 0, 0, 0)Start on the slice at $\overline{x}(0)$, evolve. Compute angle θ_1 to the slice rotate $x(\tau_1)$ by θ_1 to $\overline{x}(\tau_1) = g(\theta_1) x(\tau_1)$ back into the slice, $\overline{x}_1(\tau_1) = 0$. Repeat for points $x(\tau_i)$ along the trajectory.

Navier-Stokes	KSe, <i>L</i> = 22 00000000	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary				
slice & dice									
slice trouble 1									



all choices of the slice fixing point x' exhibit flow discontinuities / jumps

Navier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence

relativity for cyclists

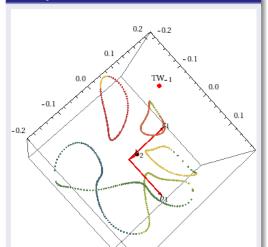
symmetry reduction

Summary

slice & dice

slice trouble 2

slice cuts an relative periodic orbit multiple times



Relative periodic orbit intersects a hyperplane slice in 3 closed-loop images of the relative periodic orbit and 3 images that appear to connect to a closed loop.

١	lavier-Stokes	KSe, <i>L</i> = 22	Dynamicist's view of turbulence	relativity for cyclists	symmetry reduction	Summary

summary

conclusion

- Symmetry reduction: efficient implementation allows exploration of high-dimensional flows with continuous symmetry.
- stretching and folding of unstable manifolds in reduced state space organizes the flow

to be done

- construct Poincaré sections and return maps
- find all (relative) periodic orbits up to a given period.
- use the information quantitatively (periodic orbit theory).