Continuous symmetry reduction for high-dimensional flows

Predrag Cvitanović ${ }^{1}$ and Evangelos Siminos ${ }^{1,2}$

${ }^{1}$ Georgia Institute of Technology
${ }^{2}$ CEA/DAM/DIF, Paris

April 2, 2010

Outline

(1) Navier-Stokes

- fluid measurements
- baby Navier-Stokes
(2) Kuramoto-Sivashinsky, $L=22$, state space
- types of solutions
- PDE's as dynamical systems

3 Dynamical systems approach to spatially extended systems

- Lorenz equations example
- complex Lorenz flow example
(4) relativity for cyclists
- Lie groups, algebras
(5) symmetry reduction
- Hilbert polynomial basis
- method of slices
- slice \& dice

6 conclusions - to be done

amazing data! amazing numerics!

3D turbulent pipe flow

solutions are

- rotationally equivariant
- translationally equivariant

Kuramoto-Sivashinsky equation

1-dimensional "Navier-Stokes"

$$
u_{t}+u \nabla u=-\nabla^{2} u-\nabla^{4} u, \quad x \in[-L / 2, L / 2],
$$

describes extended systems such as

- reaction-diffusion systems
- flame fronts in combustion
- drift waves in plasmas
- thin falling films, ...

Kuramoto-Sivashinsky on a large domain

- turbulent behavior
- simpler physical, mathematical and computational setting than Navier-Stokes

evolution of Kuramoto-Sivashinsky on small $L=22$ cell

horizontal: $x \in[-11,11]$ vertical: time color: magnitude of $u(x, t)$

equilibria

- E_{3} invariant under $\tau_{1 / 3}$.
- For any E_{i} we have a continuous family of equilibria under rotations $\tau_{\ell / L} \mathrm{E}_{i}$.

symmetries of Kuramoto-Sivashinsky equation

with periodic boundary condition

$$
u(x, t)=u(x+L, t)
$$

the symmetry group is $O(2)$:

- translations: $\tau_{\ell / L} u(x, t)=u(x+\ell, t), \quad \ell \in[-L / 2, L / 2]$,
- reflections: $\kappa u(x)=-u(-x)$.
translational symmetry \rightarrow traveling wave solutions

symmetries of Kuramoto-Sivashinsky equation

with periodic boundary condition

$$
u(x, t)=u(x+L, t)
$$

the symmetry group is $O(2)$:

- translations: $\tau_{\ell / L} u(x, t)=u(x+\ell, t), \quad \ell \in[-L / 2, L / 2]$,
- reflections: $\kappa u(x)=-u(-x)$.
translational symmetry \rightarrow traveling wave solutions Traveling (or relative) unstable coherent solutions are ubiquitous in turbulent hydrodynamic flows

traveling waves

- invariant (as a set) under rotations: relative equilibria.
- They live in full space.

traveling waves

- invariant (as a set) under rotations: relative equilibria.
- They live in full space.
- Toshiba Corp and Microsoft Corp chairman Bill Gates are to work together to develop a next generation "traveling-wave reactor", which could operate for up to 100 years without refueling. [news item - Tokyo, March 23, 2010]

unstable relative periodic orbits

- have computed 40,000 unstable periodic and relative periodic orbits.
- how are they organized?

symmetries of Kuramoto-Sivashinsky equation

translational symmetry \Rightarrow

- traveling wave solutions
- unstable relative periodic orbits

question

what are the invariant objects that organize phase space in a spatially extended system with translational symmetry and how do they fit together to form a skeleton of the dynamics?

state space

- the space in which all possible states u's live
- ∞-dimensional: point $u(x)$ is a function of x on interval $x \in L$.
- in practice:
a high but finite dimensional space (e.g. through a spectral discretization)

intrinsic dimensionality

- dynamics are often captured by fewer variables than needed to numerically resolve the PDE.
- Lyapunov exponents:
$\left(\lambda_{i}\right)=(0.048,0,0,-0.003,-0.189,-0.256,-0.290$, $-0.310, \cdots$)
- ' 8 -dimensional' covariant Lyapunov frame? perhaps tractable?
- how do we exploit such low dimensionality to obtain dynamical systems description?
- low dimensional systems: equilibria, periodic orbits organize the long time dynamics.
- is this true in extended systems?

from Lorenz 3D attractor to a unimodal map

Lorenz equations

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right]=\left[\begin{array}{c}
\sigma(y-x) \\
\rho x-y-x z \\
x y-b z
\end{array}\right]
$$

with

$$
\sigma=10, b=8 / 3, \rho=28 .
$$

Lorenz attractor

Lorenz equations example

from Lorenz 3D attractor to a unimodal map

Equilibria

$$
\dot{x}=v(x)=0
$$

Linear stability of equilibria

$$
A_{i j}=\frac{\partial v_{i}}{\partial x_{j}}\left(x_{E_{m}}\right)
$$

Lorenz equations example

from Lorenz 3D attractor to a unimodal map

Linear stability of equilibria

$$
A_{i j}=\frac{\partial v_{i}}{\partial x_{j}}\left(x_{E_{m}}\right)
$$

Eigenvalues of A :
$\lambda_{j}=\mu_{j} \pm i \nu_{j}$

- Linearly stable if $\mu_{j}<0$
- Linearly unstable if $\mu_{j}>0$

Lorenz attractor

Lorenz equations example

from Lorenz 3D attractor to a unimodal map

Lorenz attractor

Lorenz equations example

from Lorenz 3D attractor to a unimodal map

Lorenz attractor

Lorenz equations example

from Lorenz 3D attractor to a unimodal map

Poincaré section

\mathcal{P} : ($\mathrm{N}-1$)-dimensional hypersurface.

Poincaré return map

Lorenz attractor

Take the hint from low dimensional systems

- low dimensional systems: equilibria, periodic orbits organize the long time dynamics.
- is this true in extended systems?

Kuramoto-Sivashinsky flow reduced to discrete maps

within the discrete $u(x)=-u(-x)$ invariant subspace

Christiansen et. al. (1996)

Lan and Cvitanović (2004)

- $\infty-d$ PDE state space dynamics can be reduced to low dimensional return maps!

Kuramoto-Sivashinsky flow reduced to discrete maps

within the discrete $u(x)=-u(-x)$ invariant subspace

Christiansen et. al. (1996)

Lan and Cvitanović (2004)

- $\infty-d$ PDE state space dynamics can be reduced to low dimensional return maps!
- BUT! must reduce continuous symmetries first

from complex Lorenz flow 5D attractor \rightarrow unimodal map

complex Lorenz equations

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{y}_{1} \\
\dot{y}_{2} \\
\dot{z}
\end{array}\right]=\left[\begin{array}{c}
-\sigma x_{1}+\sigma y_{1} \\
-\sigma x_{2}+\sigma y_{2} \\
\left(\rho_{1}-z\right) x_{1}-\rho_{2} x_{2}-y_{1}-e y_{2} \\
\rho_{2} x_{1}+\left(\rho_{1}-z\right) x_{2}+e y_{1}-y_{2} \\
-b z+x_{1} y_{1}+x_{2} y_{2}
\end{array}\right]
$$

$\rho_{1}=28, \rho_{2}=0, b=8 / 3, \sigma=10, e=1 / 10$

A typical $\left\{x_{1}, x_{2}, z\right\}$ trajectory of the complex Lorenz flow

+ a short trajectory of whose initial point is close to the relative equilibrium Q_{1} superimposed.

attractor

from complex Lorenz flow 5D attractor \rightarrow unimodal map

what to do?

attractor

the goal

reduce this messy strange attractor to a 1-dimensional return map

from complex Lorenz flow 5D attractor \rightarrow unimodal map

the goal attained

but it will cost you

after symmetry reduction; must learn how to quotient the $S O(2)$ symmetry

1D return map!

Lie groups elements, Lie algebra generators

An element of a compact Lie group:

$$
g(\theta)=e^{\theta \cdot \mathbf{T}}, \quad \theta \cdot \mathbf{T}=\sum \theta_{a} \mathbf{T}_{a}, a=1,2, \cdots, N
$$

$\theta \cdot \mathbf{T}$ is a Lie algebra element, and θ_{a} are the parameters of the transformation.

example: $S O(2)$ rotations for complex Lorenz equations

$S O(2)$ rotation by finite angle θ :

$$
g(\theta)=\left(\begin{array}{ccccc}
\cos \theta & \sin \theta & 0 & 0 & 0 \\
-\sin \theta & \cos \theta & 0 & 0 & 0 \\
0 & 0 & \cos \theta & \sin \theta & 0 \\
0 & 0 & -\sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

symmetries of dynamics

A flow $\dot{x}=v(x)$ is G-equivariant if

$$
v(x)=g^{-1} v(g x), \quad \text { for all } g \in G .
$$

foliation by group orbits

group orbits

group orbit \mathcal{M}_{x} of x is the set of all group actions

$$
\mathcal{M}_{x}=\{g x \mid g \in G\}
$$

foliation by group orbits

group orbits

 point $x(0)$, and the group orbit $\mathcal{M}_{x(t)}$ reached by the trajectory $x(t)$ time t later.

foliation by group orbits

group orbits

any point on the manifold $\mathcal{M}_{x(t)}$ is equivalent to any other.

foliation by group orbits

group orbits

action of a symmetry group endows the state space with the structure of a union of group orbits, each group orbit an equivalence class.

foliation by group orbits

group orbits

the goal:
replace each group orbit by a unique point a lower-dimensional reduced state space (or orbit space)

a traveling wave

relative equilibrium (traveling wave, rotating wave)
$x_{\mathrm{TW}}(\tau) \in \mathcal{M}_{\mathrm{TW}}$: the dynamical flow field points along the group tangent field, with constant 'angular' velocity c, and the trajectory stays on the group orbit

in/equivariance

a traveling wave

relative equilibrium

$$
\begin{aligned}
& v(x)=c \cdot t(x), \quad x \in \mathcal{M}_{\mathrm{TW}} \\
& x(\tau)=g(-\tau c) x(0)=e^{-\tau c \cdot \mathrm{~T}_{x}}
\end{aligned}
$$

a traveling wave

group orbit $g(\tau) x(0)$ coincides with the dynamical orbit $x(\tau) \in \mathcal{M}_{\text {Tw }}$ and is thus flow invariant

a relative periodic orbit

relative periodic orbit

$$
x_{p}(0)=g_{p} x_{p}\left(T_{p}\right)
$$

exactly recurs at a fixed relative period T_{p}, but shifted by a fixed group action g_{p}

a relative periodic orbit

relative periodic orbit starts out at $x(0)$, returns to the group orbit of $x(0)$ after time T_{p}, a rotation of the initial point by g_{p}

a relative periodic orbit

The group action parameters
$\theta=\left(\theta_{1}, \theta_{2}, \cdots \theta_{N}\right)$
are irrational: trajectory sweeps out ergodically the group orbit without ever closing into a periodic orbit.

relativity for pedestrians

try a co-moving coordinate frame?

A relative periodic orbit of the Kuramoto-Sivashinsky flow, traced for four periods T_{p}, projected on (a) a stationary state space coordinate frame $\left\{v_{1}, v_{2}, v_{3}\right\}$;

relativity for pedestrians

try a co-moving coordinate frame?

(b)

A relative periodic orbit of the Kuramoto-Sivashinsky flow, traced for four periods T_{p}, projected on (b) a co-moving $\left\{\tilde{v}_{1}, \tilde{v}_{2}, \tilde{v}_{3}\right\}$ frame

relativity for pedestrians

no good global co-moving frame!

this is no symmetry reduction at all; all other relative periodic orbits require their own frames, moving at different velocities.

symmetry reduction

- all points related by a symmetry operation are mapped to the same point.
- relative equilibria become equilibria and relative periodic orbits become periodic orbits in reduced space.
- families of solutions are mapped to a single solution

reduction methods

(1) Hilbert polynomial basis: rewrite equivariant dynamics in invariant coordinates
(2) moving frames, or slices: cut group orbits by a hypersurface (kind of Poincareé section), each group orbit of symmetry-equivalent points represented by the single point

reduction methods

(1) Hilbert polynomial basis: rewrite equivariant dynamics in invariant coordinates: global
(2) moving frames, or slices: cut group orbits by a hypersurface (kind of Poincareé section), each group orbit of symmetry-equivalent points represented by the single point: local

invariant polynomials

- rewrite the equations in variables invariant under the symmetry transformation

invariant polynomials

- rewrite the equations in variables invariant under the symmetry transformation
- or compute solutions in original space and map them to invariant variables

invariant polynomials basis

Hilbert basis for complex Lorenz equations

$$
\begin{array}{ll}
u_{1}=x_{1}^{2}+x_{2}^{2}, & u_{2}=y_{1}^{2}+y_{2}^{2} \\
u_{3}=x_{1} y_{2}-x_{2} y_{1}, & u_{4}=x_{1} y_{1}+x_{2} y_{2} \\
u_{5}=z &
\end{array}
$$

invariant under $S O(2)$ action on a 5-dimensional state space polynomials related through syzygies:

$$
u_{1} u_{2}-u_{3}^{2}-u_{4}^{2}=0
$$

invariant polynomials basis

complex Lorenz equations in invariant polynomial basis

$$
\begin{aligned}
& \dot{u}_{1}=2 \sigma\left(u_{3}-u_{1}\right) \\
& \dot{u}_{2}=-2 u_{2}-2 u_{3}\left(u_{5}-\rho_{1}\right) \\
& \dot{u}_{3}=\sigma u_{2}-(\sigma-1) u_{3}-e u_{4}+u_{1}\left(\rho_{1}-u_{5}\right) \\
& \dot{u}_{4}=e u_{3}-(\sigma+1) u_{4} \\
& \dot{u}_{5}=u_{3}-b u_{5}
\end{aligned}
$$

A 4-dimensional $\mathcal{M} / S O(2)$ reduced state space, a symmetry-invariant representation of the 5-dimensional $S O(2)$ equivariant dynamics

state space portrait of complex Lorenz flow

drift induced by continuous symmetry

A generic chaotic trajectory (blue), the E_{0} equilibrium, a representative of its unstable manifold (green), the Q_{1} relative equilibrium (red), its unstable manifold (brown), and one repeat of the $\overline{01}$ relative periodic orbit (purple).

invariant polynomials basis

complex Lorenz equations in invariant polynomial basis

$$
\begin{aligned}
& \dot{u}_{1}=2 \sigma\left(u_{3}-u_{1}\right) \\
& \dot{u}_{2}=-2 u_{2}-2 u_{3}\left(u_{5}-\rho_{1}\right) \\
& \dot{u}_{3}=\sigma u_{2}-(\sigma-1) u_{3}-e u_{4}+u_{1}\left(\rho_{1}-u_{5}\right) \\
& \dot{u}_{4}=e u_{3}-(\sigma+1) u_{4} \\
& \dot{u}_{5}=u_{3}-b u_{5}
\end{aligned}
$$

the image of the full state space relative equilibrium Q_{1} group orbit is an equilibrium point, while the image of a relative periodic orbit, such as $\overline{01}$, is a periodic orbit

Hilbert polynomial basis

Hilbert invariant coordinates

projected onto invariant polynomials basis

(a) The unstable manifold connection from the equilibrium E_{0} at the origin to the strange attractor controlled by the rotation around the reduced state space image of relative equilibrium

Hilbert polynomial basis

higher-dimensional invariant bases? an example

first 11 invariants for the standard action of $S O(2)$

$$
\begin{aligned}
& u_{1}=r_{1}=\sqrt{b_{1}^{2}+c_{1}^{2}} \\
& u_{3}=\frac{b_{2}\left(b_{1}^{2}-c_{1}^{2}\right)+2 b_{1} c_{1} c_{2}}{r_{1}^{2}} \\
& u_{4}=\frac{-2 b_{1} b_{2} c_{1}+\left(b_{1}^{2}-c_{1}^{2}\right) c_{2}}{r_{1}^{2}} \\
& u_{5}=\frac{b_{1} b_{3}\left(b_{1}^{2}-3 c_{1}^{2}\right)-c_{1}\left(-3 b_{1}^{2}+c_{1}^{2}\right) c_{3}}{r_{1}^{3}} \\
& u_{6}=\frac{-3 b_{1}^{2} b_{3} c_{1}+b_{3} c_{1}^{3}+b_{1}^{3} c_{3}-3 b_{1} c_{1}^{2} c_{3}}{r_{1}^{3}}
\end{aligned}
$$

higher-dimensional invariant bases? an example

first 11 invariants for the standard action of $S O(2)$

$$
\begin{aligned}
& u_{7}=\frac{b_{4}\left(b_{1}^{4}-6 b_{1}^{2} c_{1}^{2}+c_{1}^{4}\right)+4 b_{1} c_{1}\left(b_{1}^{2}-c_{1}^{2}\right) c_{4}}{r_{1}^{4}} \\
& u_{8}=\frac{4 b_{1} b_{4} c_{1}\left(-b_{1}^{2}+c_{1}^{2}\right)^{2}+\left(b_{1}^{4}-6 b_{1}^{2} c_{1}^{2}+c_{1}^{4}\right) c_{4}}{r_{1}^{4}} \\
& u_{9}=\frac{b_{1} b_{5}\left(b_{1}^{4}-10 b_{1}^{2} c_{1}^{2}+5 c_{1}^{4}\right)+c_{1}\left(5 b_{1}^{4}-10 b_{1}^{2} c_{1}^{2}+c_{1}^{4}\right) c_{5}}{r_{1}^{5}} \\
& u_{10}=\frac{-b_{5} c_{1}\left(5 b_{1}^{4}-10 b_{1}^{2} c_{1}^{2}+c_{1}^{4}\right)+b_{1}\left(b_{1}^{4}-10 b_{1}^{2} c_{1}^{2}+5 c_{1}^{4}\right) c_{5}}{r_{1}^{5}} \\
& u_{11}=\frac{b_{6}\left(b_{1}^{6}-15 b_{1}^{4} c_{1}^{2}+15 b_{1}^{2} c_{1}^{4}-c_{1}^{6}\right)+2 b_{1} c_{1}\left(3 b_{1}^{4}-10 b_{1}^{2} c_{1}^{2}+3 c_{1}^{4}\right) c_{6}}{r_{1}^{6}} \\
& u_{12}=\frac{-2 b_{1} b_{6} c_{1}\left(3 b_{1}^{4}-10 b_{1}^{2} c_{1}^{2}+3 c_{1}^{4}\right)+\left(b_{1}^{6}-15 b_{1}^{4} c_{1}^{2}+15 b_{1}^{2} c_{1}^{4}-c_{1}^{6}\right) c_{6}}{r_{1}^{6}}
\end{aligned}
$$

invariant polynomials - how to find them?

- invariant polynomials (Hilbert basis)

invariant polynomials - how to find them?

- invariant polynomials (Hilbert basis): computationally prohibitive for high-dimensional flows

invariant polynomials - how to find them?

- invariant polynomials (Hilbert basis)
- Cartan moving frame method / method of slices

invariant polynomials - how to find them?

- invariant polynomials (Hilbert basis)
- Cartan moving frame method / method of slices

invariant polynomials - how to find them?

- invariant polynomials (Hilbert basis)
- Cartan moving frame method / method of slices: singularities

Lie algebra generators

T_{a} generate infinitesimal transformations: a set of N linearly independent $[d \times d]$ anti-hermitian matrices, $\left(\mathbf{T}_{a}\right)^{\dagger}=-\mathbf{T}_{a}$, acting linearly on the d-dimensional state space \mathcal{M}

example: $\operatorname{SO}(2)$ rotations for complex Lorenz equations

$$
\mathbf{T}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The action of $S O(2)$ on the complex Lorenz equations state space decomposes into $m=0 G$-invariant subspace (z-axis) and $m=1$ subspace with multiplicity 2 .

group tangent fields

flow field at the state space point x induced by the action of the group is given by the set of N tangent fields

$$
t_{a}(x)_{i}=\left(\mathbf{T}_{a}\right)_{i j} x_{j}
$$

slice \& dice

flow reduced to a slice

Slice $\overline{\mathcal{M}}$ through the slice-fixing point x^{\prime}, normal to the group tangent t^{\prime} at x^{\prime}, intersects group orbits (dotted lines). The full state space trajectory $x(\tau)$ and the reduced state space trajectory $\bar{x}(\tau)$ are equivalent up to a group rotation $g(\tau)$.

method of moving frames for $S O(2)$-equivariant flow

flow reduced to a slice

slice through $x^{\prime}=(0,1,0,0,0)$ group tangent $t^{\prime}=(-1,0,0,0,0)$ Start on the slice at $\bar{x}(0)$, evolve. Compute angle θ_{1} to the slice rotate $x\left(\tau_{1}\right)$ by θ_{1} to
$\bar{x}\left(\tau_{1}\right)=g\left(\theta_{1}\right) x\left(\tau_{1}\right)$ back into the slice, $\bar{x}_{1}\left(\tau_{1}\right)=0$. Repeat for points $x\left(\tau_{i}\right)$ along the trajectory.

slice trouble 1

portrait of complex Lorenz flow in reduced state space

all choices of the slice fixing point x^{\prime} exhibit flow discontinuities / jumps

slice trouble 2

slice cuts an relative periodic orbit multiple times

Relative periodic orbit intersects a hyperplane slice in 3 closed-loop images of the relative periodic orbit and 3 images that appear to connect to a closed loop.

summary

conclusion

- Symmetry reduction: efficient implementation allows exploration of high-dimensional flows with continuous symmetry.
- stretching and folding of unstable manifolds in reduced state space organizes the flow

to be done

- construct Poincaré sections and return maps
- find all (relative) periodic orbits up to a given period.
- use the information quantitatively (periodic orbit theory).

