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modern times

amazing data! amazing numerics!

3D turbulent pipe flow

solutions are

rotationally equivariant

translationally equivariant
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KSe

Kuramoto-Sivashinsky equation

1-dimensional “Navier-Stokes”

ut + u�u = −�2u − �4u , x ∈ [−L/2,L/2] ,

describes extended systems such as

reaction-diffusion systems

flame fronts in combustion

drift waves in plasmas

thin falling films, . . .
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Kuramoto-Sivashinsky on a large domain
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turbulent behavior

simpler physical, mathematical and computational setting
than Navier-Stokes
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types of solutions

evolution of Kuramoto-Sivashinsky on small L = 22 cell
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types of solutions

equilibria
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E3 invariant under τ1/3.

For any Ei we have a continuous family of equilibria under
rotations τ�/L Ei .
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types of solutions

symmetries of Kuramoto-Sivashinsky equation

with periodic boundary condition

u(x , t) = u(x + L, t)

the symmetry group is O(2):

translations: τ�/L u(x , t) = u(x + �, t) , � ∈ [−L/2,L/2] ,

reflections: κu(x) = −u(−x) .

translational symmetry → traveling wave solutions
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types of solutions

symmetries of Kuramoto-Sivashinsky equation

with periodic boundary condition

u(x , t) = u(x + L, t)

the symmetry group is O(2):

translations: τ�/L u(x , t) = u(x + �, t) , � ∈ [−L/2,L/2] ,

reflections: κu(x) = −u(−x) .

translational symmetry → traveling wave solutions Traveling
(or relative) unstable coherent solutions are ubiquitous in
turbulent hydrodynamic flows
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types of solutions

traveling waves
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invariant (as a set) under
rotations: relative equilibria.

They live in full space.
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types of solutions

traveling waves
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invariant (as a set) under
rotations: relative equilibria.

They live in full space.

Toshiba Corp and Microsoft Corp
chairman Bill Gates are to work
together to develop a next
generation “traveling-wave
reactor”, which could operate for
up to 100 years without refueling.
[news item - Tokyo, March 23, 2010]
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types of solutions

unstable relative periodic orbits

Tp = 16.3, Tp = 33.5, Tp = 47.6, Tp = 10.3 Tp = 33.4
�p = 2.86 �p = 4.04 �p = 5.68

−10 0 10

20

40

60

80

100

x
−10 0 10

20

40

60

80

100

x
−10 0 10

20

40

60

80

100

x
−10 0 10

20

40

60

80

100

x
−10 0 10

20

40

60

80

100

x

have computed 40,000 unstable periodic and relative periodic orbits.

how are they organized?
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types of solutions

symmetries of Kuramoto-Sivashinsky equation

translational symmetry ⇒
traveling wave solutions

unstable relative periodic orbits

question

what are the invariant objects that organize phase space in a
spatially extended system with translational symmetry and how
do they fit together to form a skeleton of the dynamics?
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PDE’s as dynamical systems

state space

the space in which all possible states u’s live

∞-dimensional:
point u(x) is a function of x on interval x ∈ L.

in practice:
a high but finite dimensional space (e.g. through a spectral
discretization)



Navier-Stokes KSe, L = 22 Dynamicist’s view of turbulence relativity for cyclists symmetry reduction Summary

PDE’s as dynamical systems

state space of Kuramoto-Sivashinsky on L = 22

intrinsic dimensionality

dynamics are often captured by fewer variables than
needed to numerically resolve the PDE.

Lyapunov exponents:
(λi) = (0.048, 0, 0, −0.003, −0.189, −0.256, −0.290,
−0.310, · · · )
‘8-dimensional’ covariant Lyapunov frame? perhaps
tractable?

how do we exploit such low dimensionality to obtain
dynamical systems description?



Navier-Stokes KSe, L = 22 Dynamicist’s view of turbulence relativity for cyclists symmetry reduction Summary

low dimensional systems:
equilibria, periodic orbits organize the long time dynamics.

is this true in extended systems?
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Lorenz equations example

from Lorenz 3D attractor to a unimodal map

Lorenz equations

⎡
⎣

ẋ
ẏ
ż

⎤
⎦ =

⎡
⎣

σ(y − x)
ρx − y − xz

xy − bz

⎤
⎦

with
σ = 10,b = 8/3, ρ = 28.

Lorenz attractor

E2E1

E0

x

y

z
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Lorenz equations example

from Lorenz 3D attractor to a unimodal map

Equilibria

ẋ = v(x) = 0

Linear stability of
equilibria

Aij =
∂vi

∂xj
(xEm)

Lorenz attractor

E2E1

E0

x

y

z
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Lorenz equations example

from Lorenz 3D attractor to a unimodal map

Linear stability of
equilibria

Aij =
∂vi

∂xj
(xEm)

Eigenvalues of A:
λj = μj ± iνj

Linearly stable if
μj < 0

Linearly unstable if
μj > 0

Lorenz attractor

E2E1

E0

x

y

z
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Lorenz equations example

from Lorenz 3D attractor to a unimodal map

E0 :
λ1 = 11.83
λ2 = −2.66
λ3 = −22.83

x
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Lorenz equations example

from Lorenz 3D attractor to a unimodal map

E1

λ1,2 = 0.094 ± 10.19
λ3 = −13.85

Re e�1�

Im e�1�

e�3�

E1

Lorenz attractor

E2E1

E0
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z
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Lorenz equations example

from Lorenz 3D attractor to a unimodal map

Poincaré section
P : (N-1)-dimensional
hypersurface.

Poincaré return map

0 5 10 15 20 25

5

10

15

20

25

Sn

S
n+

1

WS(E0)

Lorenz attractor

E2

E1

E0

y

z

�
�

�



Navier-Stokes KSe, L = 22 Dynamicist’s view of turbulence relativity for cyclists symmetry reduction Summary

Lorenz equations example

Take the hint from low dimensional systems

low dimensional systems:
equilibria, periodic orbits organize the long time dynamics.

is this true in extended systems?
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Lorenz equations example

Kuramoto-Sivashinsky flow reduced to discrete maps

within the discrete u(x) = −u(−x) invariant subspace
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Lan and Cvitanović (2004)

∞− d PDE state space dynamics can be reduced to low
dimensional return maps!
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Lorenz equations example

Kuramoto-Sivashinsky flow reduced to discrete maps

within the discrete u(x) = −u(−x) invariant subspace
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∞− d PDE state space dynamics can be reduced to low
dimensional return maps!

BUT! must reduce continuous symmetries first
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complex Lorenz flow example

from complex Lorenz flow 5D attractor → unimodal map

complex Lorenz equations

⎡
⎢⎢⎢⎣

ẋ1
ẋ2
ẏ1
ẏ2
ż

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−σx1 + σy1
−σx2 + σy2

(ρ1 − z)x1 − ρ2x2 − y1 − ey2
ρ2x1 + (ρ1 − z)x2 + ey1 − y2

−bz + x1y1 + x2y2

⎤
⎥⎥⎥⎦

ρ1 = 28, ρ2 = 0, b = 8/3, σ = 10, e = 1/10

A typical {x1, x2, z} trajectory of the
complex Lorenz flow
+ a short trajectory of whose initial
point is close to the relative
equilibrium Q1 superimposed.

attractor
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complex Lorenz flow example

from complex Lorenz flow 5D attractor → unimodal map

what to do?

the goal

reduce this messy strange attractor to
a 1-dimensional return map

attractor
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complex Lorenz flow example

from complex Lorenz flow 5D attractor → unimodal map

the goal attained

but it will cost you

after symmetry reduction; must learn
how to quotient the SO(2) symmetry

1D return map!
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Lie groups, algebras

Lie groups elements, Lie algebra generators

An element of a compact Lie group:

g(θ) = eθ·T , θ · T =
∑

θaTa, a = 1,2, · · · ,N

θ · T is a Lie algebra element, and θa are the parameters of the
transformation.



Navier-Stokes KSe, L = 22 Dynamicist’s view of turbulence relativity for cyclists symmetry reduction Summary

Lie groups, algebras

example: SO(2) rotations for complex Lorenz equations

SO(2) rotation by finite angle θ:

g(θ) =

⎛
⎜⎜⎜⎜⎝

cos θ sin θ 0 0 0
− sin θ cos θ 0 0 0

0 0 cos θ sin θ 0
0 0 − sin θ cos θ 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠
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in/equivariance

symmetries of dynamics

A flow ẋ = v(x) is G-equivariant if

v(x) = g−1 v(g x) , for all g ∈ G .
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in/equivariance

foliation by group orbits

group orbits

group orbit Mx of x is the set of all
group actions

Mx = {g x | g ∈ G}
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in/equivariance

foliation by group orbits

group orbits

group orbit Mx(0) of state space
point x(0), and the group orbit Mx(t)
reached by the trajectory x(t) time t
later.
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in/equivariance

foliation by group orbits

group orbits

any point on the manifold Mx(t) is
equivalent to any other.
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in/equivariance

foliation by group orbits

group orbits

action of a symmetry group endows
the state space with the structure of a
union of group orbits, each group orbit
an equivalence class.
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in/equivariance

foliation by group orbits

group orbits

the goal:
replace each group orbit by a unique
point a lower-dimensional reduced
state space (or orbit space)
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in/equivariance

a traveling wave

x1

x2

x3

τg( )τx( )= x(0)

τg( )

x(0)

g( )tτ

v = c t

v = c 
relative equilibrium
(traveling wave, rotating
wave)
xTW(τ) ∈ MTW : the
dynamical flow field points
along the group tangent
field, with constant ‘angular’
velocity c, and the trajectory
stays on the group orbit
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in/equivariance

a traveling wave

x1

x2

x3

τg( )τx( )= x(0)

τg( )

x(0)

g( )tτ

v = c t

v = c 
relative equilibrium

v(x) = c·t(x) , x ∈ MTW

x(τ) = g(−τ c) x(0) = e−τ c·Tx(
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in/equivariance

a traveling wave

x1

x2

x3

τg( )τx( )= x(0)

τg( )

x(0)

g( )tτ

v = c t

v = c 

group orbit g(τ) x(0)
coincides with the
dynamical orbit x(τ) ∈ MTW

and is thus flow invariant
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in/equivariance

a relative periodic orbit

x(T )p

θp

x1

x2x(0)

t
v

v t

x3

relative periodic orbit

xp(0) = gpxp(Tp)

exactly recurs at a fixed
relative period Tp, but
shifted by a fixed group
action gp
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in/equivariance

a relative periodic orbit

x(T )p

θp

x1

x2x(0)

t
v

v t

x3

relative periodic orbit starts
out at x(0) , returns to the
group orbit of x(0) after time
Tp, a rotation of the initial
point by gp
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in/equivariance

a relative periodic orbit

x(T )p

θp

x1

x2x(0)

t
v

v t

x3

The group action
parameters
θ = (θ1, θ2, · · · θN)
are irrational: trajectory
sweeps out ergodically the
group orbit without ever
closing into a periodic orbit.
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in/equivariance

relativity for pedestrians

try a co-moving coordinate frame?

(a)

v1v2

v3

A relative periodic orbit of the Kuramoto-Sivashinsky flow,
traced for four periods Tp, projected on
(a) a stationary state space coordinate frame {v1, v2, v3};
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in/equivariance

relativity for pedestrians

try a co-moving coordinate frame?

(b)

v�1
v�2

v�3

A relative periodic orbit of the Kuramoto-Sivashinsky flow,
traced for four periods Tp, projected on
(b) a co-moving {ṽ1, ṽ2, ṽ3} frame
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in/equivariance

relativity for pedestrians

no good global co-moving frame!

(b)

v�1
v�2

v�3

this is no symmetry reduction at all; all other relative periodic
orbits require their own frames,moving at different velocities.
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symmetry reduction

all points related by a symmetry operation are mapped to
the same point.

relative equilibria become equilibria and relative periodic
orbits become periodic orbits in reduced space.

families of solutions are mapped to a single solution
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reduction methods

1 Hilbert polynomial basis: rewrite equivariant dynamics in
invariant coordinates

2 moving frames, or slices: cut group orbits by a
hypersurface (kind of Poincareé section), each group orbit
of symmetry-equivalent points represented by the single
point
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reduction methods

1 Hilbert polynomial basis: rewrite equivariant dynamics in
invariant coordinates: global

2 moving frames, or slices: cut group orbits by a
hypersurface (kind of Poincareé section), each group orbit
of symmetry-equivalent points represented by the single
point: local
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Hilbert polynomial basis

invariant polynomials

rewrite the equations in variables invariant under the
symmetry transformation
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Hilbert polynomial basis

invariant polynomials

rewrite the equations in variables invariant under the
symmetry transformation

or compute solutions in original space and map them to
invariant variables
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Hilbert polynomial basis

invariant polynomials basis

Hilbert basis for complex Lorenz equations

u1 = x2
1 + x2

2 , u2 = y2
1 + y2

2

u3 = x1y2 − x2y1 , u4 = x1y1 + x2y2

u5 = z

invariant under SO(2) action on a 5-dimensional state space

polynomials related through syzygies:

u1u2 − u2
3 − u2

4 = 0
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Hilbert polynomial basis

invariant polynomials basis

complex Lorenz equations in invariant polynomial basis

u̇1 = 2σ (u3 − u1)

u̇2 = −2 u2 − 2 u3 (u5 − ρ1)

u̇3 = σ u2 − (σ − 1)u3 − e u4 + u1 (ρ1 − u5)

u̇4 = e u3 − (σ + 1)u4

u̇5 = u3 − b u5

A 4-dimensional M/SO(2) reduced state space, a
symmetry-invariant representation of the 5-dimensional SO(2)
equivariant dynamics
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Hilbert polynomial basis

state space portrait of complex Lorenz flow

drift induced by continuous symmetry

x1 x2

z

E0

Q1

01

x1 x2

z

E0

W�0�
u

W�1�
u

Q1

01

A generic chaotic trajectory (blue), the E0 equilibrium, a
representative of its unstable manifold (green), the Q1 relative
equilibrium (red), its unstable manifold (brown), and one repeat
of the 01 relative periodic orbit (purple).
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Hilbert polynomial basis

invariant polynomials basis

complex Lorenz equations in invariant polynomial basis

u̇1 = 2σ (u3 − u1)

u̇2 = −2 u2 − 2 u3 (u5 − ρ1)

u̇3 = σ u2 − (σ − 1)u3 − e u4 + u1 (ρ1 − u5)

u̇4 = e u3 − (σ + 1)u4

u̇5 = u3 − b u5

the image of the full state space relative equilibrium Q1 group
orbit is an equilibrium point, while the image of a relative
periodic orbit, such as 01, is a periodic orbit



Navier-Stokes KSe, L = 22 Dynamicist’s view of turbulence relativity for cyclists symmetry reduction Summary

Hilbert polynomial basis

Hilbert invariant coordinates

projected onto invariant polynomials basis

(a) u3

u4

z

Q1

(b)
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(a) The unstable manifold connection from the equilibrium E0 at
the origin to the strange attractor controlled by the rotation
around the reduced state space image of relative equilibrium
Q1;
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Hilbert polynomial basis

higher-dimensional invariant bases? an example

first 11 invariants for the standard action of SO(2)

u1 = r1 =
√

b2
1 + c2

1

u3 =
b2

(
b2

1−c2
1

)
+2b1c1c2

r 2
1

u4 =
−2b1b2c1+

(
b2

1−c2
1

)
c2

r 2
1

u5 =
b1b3

(
b2

1−3c2
1

)
−c1

(
−3b2

1+c2
1

)
c3

r 3
1

u6 =
−3b2

1b3c1+b3c3
1+b3

1c3−3b1c2
1 c3

r 3
1



Navier-Stokes KSe, L = 22 Dynamicist’s view of turbulence relativity for cyclists symmetry reduction Summary

Hilbert polynomial basis

higher-dimensional invariant bases? an example

first 11 invariants for the standard action of SO(2)

u7 =
b4

(
b4

1−6b2
1c2

1+c4
1

)
+4b1c1

(
b2

1−c2
1

)
c4

r 4
1

u8 =
4b1b4c1

(
−b2

1+c2
1

)
+
(

b4
1−6b2

1c2
1+c4

1

)
c4

r 4
1

u9 =
b1b5

(
b4

1−10b2
1c2

1+5c4
1

)
+c1

(
5b4

1−10b2
1c2

1+c4
1

)
c5

r 5
1

u10 =
−b5c1

(
5b4

1−10b2
1c2

1+c4
1

)
+b1

(
b4

1−10b2
1c2

1+5c4
1

)
c5

r 5
1

u11 =
b6

(
b6

1−15b4
1c2

1+15b2
1c4

1−c6
1

)
+2b1c1

(
3b4

1−10b2
1c2

1+3c4
1

)
c6

r 6
1

u12 =
−2b1b6c1

(
3b4

1−10b2
1c2

1+3c4
1

)
+
(

b6
1−15b4

1c2
1+15b2

1c4
1−c6

1

)
c6

r 6
1
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Hilbert polynomial basis

invariant polynomials - how to find them?

invariant polynomials (Hilbert basis)
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Hilbert polynomial basis

invariant polynomials - how to find them?

invariant polynomials (Hilbert basis): computationally
prohibitive for high-dimensional flows
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Hilbert polynomial basis

invariant polynomials - how to find them?

invariant polynomials (Hilbert basis)

Cartan moving frame method / method of slices:
singularities
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slice & dice

Lie algebra generators

Ta generate infinitesimal transformations: a set of N linearly
independent [d×d ] anti-hermitian matrices, (Ta)

† = −Ta, acting
linearly on the d-dimensional state space M
example: SO(2) rotations for complex Lorenz equations

T =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

The action of SO(2) on the complex Lorenz equations state
space decomposes into m = 0 G-invariant subspace (z-axis)
and m = 1 subspace with multiplicity 2.
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slice & dice

group tangent fields

flow field at the state space point x induced by the action of the
group is given by the set of N tangent fields

ta(x)i = (Ta)ij xj
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slice & dice

slice & dice

flow reduced to a slice

Slice M̄ through the slice-fixing point x ′, normal to the group
tangent t ′ at x ′, intersects group orbits (dotted lines). The full
state space trajectory x(τ) and the reduced state space
trajectory x(τ) are equivalent up to a group rotation g(τ).
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slice & dice

method of moving frames for SO(2)-equivariant flow

flow reduced to a slice

τ

τ

τ

τ

1x

θ1

θ2

2x(  )

1x(  )

2       2x =x 

2

1x(  )
x(0)

x(  )

slice through x ′ = (0,1,0,0,0)
group tangent t ′ = (−1,0,0,0,0)
Start on the slice at x(0), evolve.
Compute angle θ1 to the slice
rotate x(τ1) by θ1 to
x(τ1) = g(θ1) x(τ1) back into the slice,
x1(τ1) = 0. Repeat for points x(τi)
along the trajectory.
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slice & dice

slice trouble 1

portrait of complex Lorenz flow in reduced state space
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all choices of the slice fixing point x ′ exhibit flow discontinuities
/ jumps
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slice & dice

slice trouble 2

slice cuts an relative periodic orbit
multiple times

Relative periodic orbit
intersects a hyperplane
slice in 3 closed-loop
images of the relative
periodic orbit and 3
images that appear to
connect to a closed loop.
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summary

conclusion
Symmetry reduction: efficient implementation allows
exploration of high-dimensional flows with continuous
symmetry.

stretching and folding of unstable manifolds in reduced
state space organizes the flow

to be done
construct Poincaré sections and return maps

find all (relative) periodic orbits up to a given period.

use the information quantitatively (periodic orbit theory).
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