Chapter 4

Local stability

It does not say in the Bible that all laws of nature are ex-
pressible linearly.
— Enrico Fermi
(R. Mainieri and P. Cvitanovi€)

rFAR We have concentrated on describing the trajectory of a esimmtial
Spoint. Our next task is to define and determine the sizerdighborhood

of x(t). We shall do this by assuming that the flow is locally smoattl by
describing the local geometry of the neighborhood by stuglyie flow linearized
aroundx(t). Nearby points aligned along the stable (contractingdlions remain
in the neighborhood of the trajectoryt) = f!(xo); the ones to keep an eye on are
the points which leave the neighborhood along the unstatdetibns. As we shall
demonstrate in chaptés, the expanding directions matter in hyperbolic systems.
The repercussions are far-reaching. As long as the numherstéble directions
is finite, the same theory applies to finite-dimensional ODdtste space volume
preserving Hamiltonian flows, and dissipative, volume axttng infinite-dim-
ensional PDEs.

In order to streamline the exposition, in this chapter airagles are collected

in sect.4.8. We strongly recommend that you work through these examptas
can get to them and back to the text by clicking on the [exaiiples, such as

example 4.8
4.1 Flows transport neighborhoods

.\ .\
As a swarm of representative points moves along, it carliesgaand distorts Q
neighborhoods. The deformation of an infinitesimal neighbod is best un-
derstood by considering a trajectory originating nggr= x(0), with an initial
infinitesimal displacemenix(0). The flow then transports the displacemeéxit)
along the trajectork(xo, t) = f'(xo).

4.1.1 Instantaneous rate of shear

The system of lineagquations of variation$or the displacement of the infinites-
imally close neighborx + 6x follows from the flow equations2(7) by Taylor
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t
Figure 4.1: For finite times a local frame is trans-V(t) J v(0)
ported along the orbit and deformed by Jacobian ma*

trix J'. As J'is not self-adjoint, an initial orthogonal

frame is mapped into a non-orthogonal one. X(t)

x(0)

expanding to linear order
Vi

0Xi .
8Xj J

X + 6% = Vi(X+ 6X) ~ Vi(X) + Z
j
The infinitesimal displacemeni is thus transported along the trajectou(o, t),
with time variation given by

Y,

d
%001 = Z () 6%(X0. ). (4.1)

x=X(Xo,t)

0X;

As both the displacement and the trajectory depend on thalipoint xo and the
time t, we shall often abbreviate the notationx(o, t) — X(t) — X, 6%(Xo,t) —
oxi(t) — oxin what follows. Taken together, the set of equations

% =Vi0), 6% = > Aj(OX; (4.2)
j

governs the dynamics in the tangent bundlgSk) € TM obtained by adjoining
the d-dimensional tangent spaéa& € T My to every pointx € M in the d-dim-
ensional state spac®l c RY. Thestability matrixor velocity gradients matrix

ovi(X)

s (4.3)

Aj(X) =

describes the instantaneous rate of shearing of the irdim#g neighborhood of
X(t) by the flow. A swarm of neighboring points ®ft) is instantaneously sheared
by the action of the stability matrixgx(t + t) = ox(t) + 6t A(xp)ox(t). Ais a
tensorial rate of deformation, so it is a bit hard (if not irspibble) to draw.

example 4.1
4.1.2 Finite time linearized flow

By Taylor expanding &inite timeflow to linear order,

0

fit(x0)
f(x0 +6%) = f(x0) + Zjl g N (4.4)

one finds that the linearized neighborhood is transportetthdoyyacobian matrix

IX(L)i
ax(0); °

remark 4.1

ox(t) = ') %0, Jfj(x0) = I(x) = 1. (4.5)
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For example, in 2 dimensions the Jacobian matrix for charaya titial to final
coordinates is

3 3
Jt= a(x.,y) _[ﬁ ﬁ )

= = N
8 ( XO ’ yO) {;_XO (’jyo

The Jacobian matrix is evaluated on a trajectory segmenhsthes at point
Xo = X(tp) and ends at point; = x(t1), t1 > to. As the trajectoryx(t) is determin-
istic, the initial pointxg and the elapsed tinten (4.5) sufice to determinel, but
occasionally we find it helpful to be explicit about the iaitand final times and
state space positions, and write

OX(t)i

It (4.6)

Jitjl_t‘J = Jij(t1; to) = Jij (X, t1; X0, to) =

The mapf! is assumed invertible and ftirentiable so thaf' exists. For
sufficiently short timesJ! remains close td, so det)' > 0. By continuity det)*
remains positive for all times However, for discrete time maps, d€tcan have
either sign.

4.1.3 Co-moving frames

J describes the deformation of an infinitesimal neighborhabd finite timet in

the co-moving frame ok(t). This deformation of an initial frame ag into a
non-orthogonal frame at(t) is described by the eigenvectors and eigenvalues of
the Jacobian matrix of the linearized flow (see figlrs,

e =), j=12-...d (4.7)

Throughout this text the symbadlx will always denote thékth eigenvalue(the
stability multiplien) of the finite time Jacobian matridl. Symbol A® will be
reserved for théth stability exponentwith real pariu® and phase)®:

Ar=e1"  a0 = 40 4,0 (4.8)

As J'is a real matrix, its eigenvalues are either real or come intex conjugate
pairs,

{Ax, Aks1) = {et(“(k)+i“’(k)) et(/t(k)—iw(k))}

with magnitudgAy| = |Ak.1] = exptu®). The phases® describes the rotation
velocity in the plane spanned by the pair of real eigenvectidtee®, Im e},
with one period of rotation given by = 2r/w® .

W example 4.4
p. 88

J'(xo) depends on the initial pointy and the elapsed time For notational
brevity we omitted this dependence, but in general both ihengalues and the
eigenvectorsAj = Aj(Xo,t), -+, €V = é)(xo,t), also depend on the trajectory
traversed.

Nearby trajectories separate exponentially with time glilveunstable direc-
tions approach each other along thible directionsand change their distance
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along themarginal directionsat rates slower than exponential, corresponding to
the eigenvalues of the Jacobian matrix with magnitude fattggn, smaller than,

or equal to 1. In the literature, the adjectivesutral indifferent centerare often
used instead of ‘marginal’. Attracting, or stable direnscare sometimes called
‘asymptotically stable,” and so on.

One of the preferred directions is what one might expectditection of the
flow itself. To see that, consider two initial points alongrajectory separated
by infinitesimal flight timest: 6xo = f%(xg) — Xo = V(Xo)dt. By the semigroup
property of the flow,ft*t = fo%*! where

fo (x0) = f t+zllTV(X(T)) + f'(%0) = stv(x(t)) + f'(x0).

Expanding both sides oft(f%(xg)) = fo(f!(xo)), keeping the leading term in
st, and using the definition of the Jacobian matdxy, we observe thaf'(xo)
transports the velocity vector & to the velocity vector ax(t) (see figuret.l):

V(X(1) = 3'(x0) V(x0) (4.9)

4.2 Computing the Jacobian matrix

As we started by assuming that we know the equations of madtiom (4.3) we
also know stability matrixA, the instantaneous rate of shear of an infinitesimal
neighborhoodx;(t) of the trajectoryx(t). What we do not know is the finite time
deformation ¢.5), so our next task is to relate the stability matfixo Jacobian
matrix J'. On the level of dferential equations the relation follows by taking the
time derivative of 4.5) and replacingx by (4.2

d dJt

— OX(t) = — 6%0 = AdX(t) = A 6x0.

5 OX(0) = 5= 0% = Adx(t) = Alloxo
Hence the matrix elements of theqd] Jacobian matrix satisfy the ‘tangent linear
equations’

%Jt(XO) = AX) J'(x0), x= fi(x), initial conditionJ°(xp) = 1.(4.10)

For autonomous flows, the matrix of velocity gradieA(x) depends only orx,
not time, whileJ' depends on both the state space position and time. Given a nu-
merical routine for integrating the equations of motiorglaation of the Jacobian
matrix requires minimal additional programmingaet; one simply extends the
d-dimensional integration routine and integratesdhelements ofl{(xg) concur-
rently with f'(xg). The qualifier ‘simply’ is perhaps too glib. Integrationlwiork
for short finite times, but for exponentially unstable flowseaquickly runs into
numerical over- an@r underflow problems. For high-dimensional flows the ana-
lytical expressions for elements Afmight be so large tha fits on no computer.
Further thought will have to go into implementation thisotddtion.

So now we know how to compute Jacobian maffigiven the stability matrix
A, at least when thd? extra equations are not too expensive to compute. Mission
accomplished.

chapter 26
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fast track:
W chapter 7, p. 134

And yet... there are mopping up operations left to do. Weigeusitil we de-
rive the integral formula4.19 for the Jacobian matrix, an analogue of the finite-
time ‘Green’s function’ or ‘path integral’ solutions of ahlinear problems.

We are interested in smooth fidirentiable flows. If a flow is smooth, in a suf-
ficiently small neighborhood it is essentially linear. Herloe next section, which
might seem an embarrassment (what is a sectiolmear flows doing in a book
onnorlinear dynamics?),fers a firm stepping stone on the way to understanding
nonlinear flows. Linear charts are the key tool dfelential geometry, general
relativity, etc., so we are in good company. If you know yoigeavalues and
eigenvectors, you may prefer to fast forward here.

fast track:
W sect. 4.4, p. 81
4.3 A linear diversion

Linear is good, nonlinear is bad.
—Jean Bellissard
Linear fields are the simplest vector fields, described bsalirditerential equa-
tions which can be solved explicitly, with solutions thaé &yood for all times.
The state space for linearttirential equations i81 = RY, and the equations of
motion 2.7) are written in terms of a vectorand a constant stability matri as

X =V(X) = AX. (4.11)
Solving this equation means finding the state space trajecto

X(t) = (xa(t), Xa(t), . . ., Xa(t))

passing through a given initial poimg. If x(t) is a solution withx(0) = xo and
y(t) another solution witly(0) = yp, then the linear combinaticaux(t) + by(t) with
a,b € R is also a solution, but now starting at the painxy + byg. At any instant
in time, the space of solutions igdladimensional vector space, spanned by a basis
of d linearly independent solutions.

How do we solve the linear fierential equation4.11)? If instead of a matrix
equation we have a scalar one,=" Ax, the solution isx(t) = é'xg. In order
to solve thed-dimensional matrix case, it is helpful to rederive thisusioin by
studying what happens for a short time stp If time t = 0 coincides with
position x(0), then

x(ot) — x(0)
ot
which we iteratentimes to obtain Euler’s formula for compounding interest

= ax(0), (4.12)

X(t) ~ (1 + %a)m x(0) ~ e1(0). (4.13)
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The term in parentheses acts on the initial conditi@) and evolves it t(t) by
takingmsmall time stepst = t/m. Asm — oo, the term in parentheses converges
to €. Consider now the matrix version of equatieghl(?):

x(6t) — x(0)

= = AX0). (4.14)

A representative poink is now a vector inRY acted on by the matri, as in
(4.11). Denoting byl the identity matrix, and repeating the stepsl@ and @.13
we obtain Euler’'s formula for the exponential of a matrix:

X0 =Ix0), I=e= lim (1 ; %A)m . (4.15)

We will find this definition for the exponential of a matrix ppéll in the general
case, where the matrix = A(x(t)) varies along a trajectory.

Now that we have some feeling for the qualitative behavioeigénvectors and
eigenvalues of linear flows, we are ready to return to theineat case. How do
we compute the exponential.((9?

W example 4.2 W fast track: section 5.2.1
p. 87 sect. 4.4, p. 81

Henriette Roux: So, computing eigenvalues and eigenvesteems like a good

thing. But how do you really do it?

A: Any text on numerics of matrices discusses how this is dtrekeywords are
‘Gram-Schmidt’, and for high-dimensional flows ‘Krylov ssace’ and ‘Arnoldi

iteration’. Conceptually (but not for numerical purpose®) like the economical
description of neighborhoods of equilibria and periodibir &forded by projec-

tion operators. The requisite linear algebra is standasthis is a bit of sidetrack

that you will find confusing at the first go, it is relegated ppandixC.

4.4 Stability of flows

How do you determine the eigenvalues of the finite time loedbanationJ! for Q
a general nonlinear smooth flow? The Jacobian matrix is ctedpay integrating
the equations of variationg )

x(t) = f'(x0), X(Xo,t) = J'(X0) IX(X0,0). (4.16)

The equations are linear, so we should be able to integrate-thut in order to
make sense of the answer, we derive this integral step by step

Consider the case of a general, non-stationary trajesioyyThe exponential
of a constant matrix can be defined either by its Taylor sesieansion or in terms
of the Euler limit @.15):

eA = i Y~ im (1+ lA)m (4.17)
B LK B m /) '

Taylor expanding is fine ifA is a constant matrix. However, only the second,
tax-accountant’s discrete step definition of an exponkigiappropriate for the
task at hand. For dynamical systems, the local rate of neitjiolod distortion
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A(X) depends on where we are along the trajectory. The linghrirgghborhood
is deformed along the flow, and tme discrete time-step approximation 8 is
therefore given by a generalization of the Euler proddct):

1 1
Jo) = lim [ [@+tA) = lim [ ] e (4.18)
n=m n=m
= lim @AM A1) . fLADR) HAC)
m—oo

whereét = (t — tg)/m, andx, = X(tp + ndt). Indexing of the product indicates that
the successive infinitesimal deformation are applied bytipiying from the left.
Them — o limit of this procedure is the formal integral

3 (%) = [Teﬁde(X(T»]” : (4.19)
whereT stands for time-ordered integratiodefinedas the continuum limit of
successive multiplicationst(19. This integral formula fordt is the main con-
ceptual result of the present chapter. This formula is theeftrme companion of
the diferential definition 4.10. The definition makes evident important proper-
ties of Jacobian matrices, such as their being multipliessiong the flow,

JH) = () (%),  where X = fi(x), (4.20)

exercise 4.5

which is an immediate consequence of the time-ordered ptatiwcture of4.18).
However, in practice is evaluated by integratingt(10) along with the ODESs that
define a particular flow.

4.5 Stability of maps S

)N

\

The transformation of an infinitesimal neighborhood of gttory under the iter- Q
ation of a map follows from Taylor expanding the iterated piag at finite time
n to linear order, as in4.4). The linearized neighborhood is transported by the
Jacobian matrix evaluated at a discrete set of timesl, 2, . . .,

At (x)
Jn —
ij (X0) o%;

. (4.21)
X=X
As in the finite time case4(8), we denote by\y the kth eigenvalueor multiplier
of the finite time Jacobian matriX". There is really no dierence from the con-
tinuous time case, other than that now the Jacobian matexakiated at integer

times.
example 4.9
The formula for the linearization afth iterate of ad-dimensional map
(%) = I(Xn-1) -+ - I(x)I(X0), X} = f1(x0)., (4.22)

in terms of single time stepd; = df;/0x follows from the chain rule for func-
tional composition,

9 d, afi(y)
5 (0 = ), 7

k=1

(¥
y=fiy 0%
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Figure 4.2: If x(t) intersects the Poincaré section
P at timer, the nearbyx(t) + 6x(t) trajectory inter-
sects it timer + 6t later. As (U’ - vét) = —(U’ -

\ et AS & Vo, Tageva
J6X), the diference in arrival times is given bt = (1)
-(U’-36%)/(U V). (O+3x(t)
X X

If you prefer to think of a discrete time dynamics as a seqe@idoincaré sec-
tion returns, then4.22 follows from (4.20): Jacobian matrices are multiplicative
along the flow.

W example 4.10 W fast track:
p. 92 chapter 7, p. 134

4.6 Stability of Poincaré return maps

exercise 6.3

(R. Paskauskas and P. Cvitanovi ézb

We now relate the linear stability of the Poincaré returmprifa £ — # defined
in sect.3.1to the stability of the continuous time flow in the full stafmse.

The hypersurfac® can be specified implicitly through a functidih(x) that is
zero whenever a pointis on the Poincaré section. A nearby pairt 6x is in the
hypersurface if U(x+6x) = 0, and the same is true for variations around the first
return pointx’ = x(r), so expandindJ (X') to linear order in variatioax restricted
to the Poincaré section, and applying the chain rule leattset condition

- 0. (4.23)
P

iawx’) dx
0% dx

In what followsU; = ;U is the gradient o) defined in 8.3), unprimed quantities
refer to the starting poimnt = xg € P, v = V(Xp), and the primed quantities to the
first return: X' = x(7), V. = v(x'), U’ = U(X). For brevity we shall also denote
the full state space Jacobian matrix at the first returd byJ"(xp). Both the first
return X’ and the time of flight to the next Poincaré sectidi) depend on the
starting pointx, so the Jacobian matrix

dx

J(¥ij = ax
i

(4.24)

P

with both initial and the final variation constrained to tharearé section hyper-
surfacep is related to the continuous flow Jacobian matrix by

O g dgde o dr

= — =Ji+V—.
dx; P oxj  dr dx; ij 'de

The return time variatiowlr/dx, figure4.2, is eliminated by substituting this ex-
pression into the constraint.g3),

dr

OzaiU’Jij +(\/ ‘aU,)dX_ s
J



CHAPTER 4. LOCAL STABILITY 84

yielding the projection of the full spacd-dimensional Jacobian matrix to the
Poincaré mapd-1)-dimensional Jacobian matrix:

Vi okU’
kj

CETIE (4.25)

Jij = (5ik
Substituting 4.9) we verify that the initial velocity/(x) is a zero-eigenvector of
Jv=0, (4.26)

so the Poincaré section eliminates variations parallg] &md J is a rank ¢—1)-
dimensional matrix, i.e., one less than the dimension oftmtinuous time flow.

4.7 Neighborhood volume

Consider a small state space voluké = d?x centered around the poing at
timet = 0. The volumeAV’ around the poink’ = x(t) timet later is

AV
AV
so the|det]] is the ratio of the initial and the final volumes. The deteramin
detJi(xo) = ]‘[id:1 Ai(Xo, t) is the product of the Jacobian matrix eigenvalues. We
shall refer to this determinant as thacobianof the flow. The Jacobian is easil;(/axercise 41
evaluated. Take the time derivative, use thevolution equation4.10 and the '
matrix identity IndetJ = tr In J:

d d d 1.
—InNAV(t) = —Indetd=tr—InJ=tr-J=trA=9v;.
dt 0= dt J H
(Here, as elsewhere in this book, a repeated index impliesrgtion.) Integrate
both sides to obtain the time evolution of an infinitesimaluvoe ( Liouville’s
formula)

AV’

a 4
AV = ‘deta—);‘ AV = |det 3(xp)| AV | (4.27)

detJ'(xo) = exp[ft thrA(X(T))] = exp[ft draivi(x(r))] . (4.28)
0 0

As the divergencé;v; is a scalar quantity, the integral in the exponénif) needs
no time ordering So all we need to do is evaluate the time average

N t d
v = Jim < fo dri;/x-i(x(r))

d d
l_[ Ai(Xo, )
i=1

= > 190, 1) (4.29)
i=1

along the trajectory. If the flow is not singular (for examplee trajectory does
not run head-on into the Coulombrlsingularity), the stability matrix elements
are bounded everywher@;;| < M, and so is the tracg; Aij. The time integral
in (4.29 thus grows at most linearly with d;v; is bounded for all times, and
numerical estimates of thte— oo limit in (4.29 are not marred by any blowups.
In numerical evaluations of stability exponents, the sula (.29 can serve as a
helpful check on the accuracy of the computation.

1
—In
t
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example 4.8

The divergence,;v; characterizes the behavior of a state space volume in the
infinitesimal neighborhood of the trajectory. dfv; < 0, the flow islocally con-
tracting, and the trajectory might be falling into an attractor. dii;(x) < 0, for
all x e M, the flow isglobally contracting, and the dimension of the attractor is
necessarily smaller than the dimension of state sgecelf d;v; = 0, the flow
preserves state space volume anddet 1. A flow with this property is called
incompressible  An important class of such flows are the Hamiltonian flows
considered in sect..3.

But before we can get to that, Henriette Roux, the perfedestuand always
alert, pipes up. She does not like our definition of the Jaoobiatrix in terms of
the time-ordered exponential.(9. Depending on the signs of multipliers, the
left hand side of4.28) can be either positive or negative. But the right hand side
is an exponential of a real number, and that can only be pesiihat gives? As
we shall see much later on in this text, in discussion of togichl indices arising
in semiclassical quantization, this is not at all a dumb tioes

Résumé

A neighborhood of a trajectory deforms as it is transportgdalflow. In the
linear approximation, the stability matrik describes the shearirigompression
/ expansion of an infinitesimal neighborhood in an infiniteditime step. The
deformation after a finite timeis described by the Jacobian matrix

Ixg) = Te Jo drA(X(1) ,

whereT stands for the time-ordered integration, defined multgthely along
the trajectory. For discrete time maps this is multiplicatby time-step Jacobian
matrix J along then pointsXg, X1, X, .. ., Xn_1 On the trajectory okg,

J"(%0) = I(Xn-1)I(Xn-2) - - - I(X1) I(X0) ,

where J(X) is the single discrete time-step Jacobian matrix. In CBaok the
stability multiplier Ax denotes th&th eigenvalueof the finite time Jacobian matrix
J(x0), u® the real part okth stability exponentandw® its phase,

A = glletio)

For complex eigenvalue pairs the ‘angular velocitylescribes rotational motion
in the plane spanned by the real and imaginary parts of theswonding pair of
complex eigenvectors.

The eigenvalues and eigen-directions of the Jacobianxrdgscribe the de-
formation of an initial infinitesimal cloud of neighboringatectories into a dis-
torted cloud at a finite time later. Nearby trajectories separate exponentially
along unstable eigen-directions, approach each otheg @l@fble directions, and
change slowly (algebraically) their distance along malor center directions.
The Jacobian matri¥d® is in general neither symmetric, nor diagonalizable by a
rotation, nor do its (left or right) eigenvectors define athonormal coordinate
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frame. Furthermore, although the Jacobian matrices argplindtive along the

flow, their eigenvalues are generally not multiplicativedimensions higher than
one. This lack of a multiplicative nature for eigenvalues mportant repercus-
sions for both classical and quantum dynamics.

Commentary

Remark 4.1 Linear flows. The subject of linear algebra generates innumerable tomes
of its own; in sect4.3we only sketch, and in appendixrecapitulate a few facts that our
narrative relies on: a useful reference book is Meyigr The basic facts are presented
at length in many textbooks. Frequently cited linear algateferences are Golub and
Van Loan PJ], Coleman and Van Loars], and Watkins {, 5]. The standard references
that exhaustively enumerate and explain all possible cageblirsch and Smale] and
Arnol'd [7]. A quick overview is given by Izhikevichd]; for different notions of orbit
stability see Holmes and Shea-Brov#.[For ChaosBook purposes, we enjoyed the dis-
cussion in chapter 2 Meis& (], chapter 1 of Perkol[1] and chapters 3 and 5 of Glendin-
ning [17]; we also liked the discussion of norms, least square progl@nd diferences
between singular value and eigenvalue decompositionsifeffren and Baul[3]. Trues-
dell [2] and Gurtin 3] are excellent references for the continuum mechanicgppetive
on state space dynamics; for a gentle introduction to pasdiietween dynamical systems
and continuum mechanics see Chrisébal. [1] .

The nomenclature tends to be a bit confusing. A Jacobianxét) is sometimes
referred to as thundamental solution matrigr simply fundamental matrixa name in-
herited from the theory of linear ODES, or tRchet derivativ®f the nonlinear mapping
f!(x), orthe ‘tangent linear propagatoy’or even as the ‘error matrix’ (Lorenz{]). The
formula @.22 for the linearization ofith iterate of ad-dimensional map is calledlimear
cocyle amultiplicative cocyleaderivative cocyl®r simply acocyleby some. Since ma-
trix J describes the deformation of an infinitesimal neighborhetaal finite timet in the
co-moving frame ok(t), in continuum mechanics it is calleddaformation gradientr a
transplacement gradientt is often denotedD f, but for our needs (we shall have to sort
through a plethora of related Jacobian matrices) matriatimt J is more economical.
Single discrete time-step Jacobidyn = 0fj/dx in (4.22) is referred to as the ‘tangent
map’ by Skokos]6, 17]. For a discussion of ‘fundamental matrix’ see appertlik

We follow Tabor [L5] in referring to A in (4.3) as the ‘stability matrix’; it is also
referred to as the ‘velocity gradients matrix’ or ‘velocgyadient tensor’. It is the natural
object for study of stability of equilibria, time-invariapoint in state space; stability of
trajectories is described by Jacobian matrices. GoldhjiSalem, and Orszag {] call it
the ‘Hessenberg matrix’, and to the equations of variat{@ng as ‘stability equations.’
Manoset al.[19] refer to @.1) as the ‘variational equations’.

Sometime#\, which describes the instantaneous shear of the neighbddfa(xo, t),
is referred to as the ‘Jacobian matrix,’ a particularly uhfoate usage when one considers
linearized stability of an equilibrium point(1). A is not a Jacobian matrix, just as a
generator of SO(2) rotation is not a rotatiofs;is a generator of an infinitesimal time
step deformationJ® ~ 1 + Ast. What Jacobi had in mind in his 1841 fundamental
paper 0] on determinants (today known as ‘Jacobians’) were transiitions between
different coordinate frames. These are dimensionless geantithile dimensionally;
is 1/[time].

More unfortunate still is referring to the Jacobian maflix exptA) as an ‘evolution
operator,’ which here (see sett.2 refers to something altogethefi@irent. In this book
Jacobian matrix)' always refers to4.5), the linearized deformation after a finite tirhe
either for a continuous time flow, or a discrete time mapping.
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4.8 Examples

10. Try to leave out the part that readers tend to skip.
— Elmore Leonard’s Ten Rules of Writing.
The reader is urged to study the examples collected hereuliwant to return
back to the main text, click on [click to return] pointer oretimargin.

Example 4.1 Rdéssler and Lorenz flows, linearized: (continued from example 3.5) For
the Rossler (2.23) and Lorenz (2.18) flows, the stability matrices are respectively
0O -1 -1 - o 0
Aross=| 1 a 0 , Aog=| p—-z -1 x |. (4.30)
z 0 x-c y X -b

continued in example 4.5
( P ) click to return: p. 77

Example 4.2 Jacobian matrix eigenvalues, diagonalizable case: Should we be
so lucky that A = Ap happens to be a diagonal matrix with eigenvalues (A9, A2, . A@),
the exponential is simply

Y ..
J=¢go = . (4.31)
o ... &

Next, suppose that A is diagonalizable and that U is a nonsingular matrix that brings it
to a diagonal form Ap = U™XAU. Then J can also be brought to a diagonal form (insert
factors 1 = UU~! between the terms of the product (4.15)): exercise 4.2

J=er=udtut, (4.32)

The action of both A and J is very simple; the axes of orthogonal coordinate system
where A is diagonal are also the eigen-directions of J', and under the flow the neigh-
borhood is deformed by a multiplication by an eigenvalue factor for each coordinate
axis.

We recapitulate the basic facts of linear algebra in appe@dihe following
2-dimensional example serves well to highlight the mostartgnt types of linear
flows:

Example 4.3 Linear stability of 2-dimensional flows: For a 2-dimensional flow the
eigenvalues A, 1@ of A are either real, leading to a linear motion along their eigen-
vectors, xj(t) = xj(0) exp€V), or form a complex conjugate pair AY = p +iw, 1? =
u —iw, leading to a circular or spiral motion in the [Xy, X2] plane.

These two possibilities are refined further into sub-cases depending on the
signs of the real part. In the case of real A® > 0, 1® < 0, x; grows exponentially
with time, and x, contracts exponentially. This behavior, called a saddle, is sketched
in figure 4.3, as are the remaining possibilities: in/out nodes, inward/outward spirals,
and the center. The magnitude of out-spiral |x(t)| diverges exponentially when u > 0,
and in-spiral contracts into (0, 0) when u < O; whereas, the phase velocity w controls its
oscillations.

If eigenvalues AV = 1@ = 1 are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector. We distinguish two cases: (a) A
can be brought to diagonal form and (b) A can be brought to Jordan form, which (in
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Figure 4.3: Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node (at-
tracting), center (elliptic), in spiral.

e

saddle outnode innode

Figure 4.4: Qualitatively distinct types of expo-
nents{A®, 1@} of a [2x2] Jacobian matrix.

center outspiral in spiral

X X

X X

dimension 2 or higher) has zeros everywhere except for the repeating eigenvalues on
the diagonal and some 1’s directly above it. For every such Jordan [d,xd,] block there
is only one eigenvector per block.

We sketch the full set of possibilities in figures 4.3 and 4.4, and we work out in

detail the most important cases in appendix C, example C.3. .
click to return: p. 81

Example 4.4 In-out spirals. Consider an equilibrium whose stability expo-
nents {AW, 1@} = {4 + iw, u — iw} form a complex conjugate pair. The corresponding
complex eigenvectors can be replaced by their real and imaginary parts, {e1), e?} —
(Ree, ImeM}. The 2-dimensional real representation,

(5 W)=lo 2)eli )

consists of the identity and the generator of SQ(2) rotations in the {Ree®, Im eV} plane.
Trajectories X(t) = J'x(0), where (omitting €, &), . . . eigen-directions)

Jt:e&t:em(cc_JSwt —sinwt) (4.33)
sinwt coswt /)’

spiral infout around (x,y) = (0, 0), see figure 4.3, with the rotation period T. The tra-
Jectories contract/expand radially by the multiplier Aradiai @and also by the multiplier Aj,
along the 1) eigen-direction per turn of the spiral: exercise C.1

T=2nw, Avradial = e’ Aj= e (4.34)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(%.y) = (0,0) is of the order ~ T (and not, let us say, 1000T, or 10-2T). Aj multipliers
give us estimates of strange-set thickness in eigen-directions transverse to the rotation
plane.
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Figure 4.5: Two trajectories of the Rossler flow initi-
ated in the neighborhood of theor ‘outer’ equilib-
rium point 2.24). (R. PaSkauskas)

Example 4.5 Stability of equilibria of the R  dssler flow. (continued from ex-
ample 4.1)  The Rosler system (2.23) has two equilibrium points (2.24), the inner
o . . . exercise 4.4
equilibrium (x_,y-,z.), and the outer equilibrium point (x*,y", z"). Together w:the @%ﬂre 28
exponents (eigenvalues of the stability matrix), the two equilibria yield quite detallre ’
information about the flow. Figure 4.5 shows two trajectories which start in the neigh-
borhood of the outer +’ equilibrium. Trajectories to the right of the equilibrium point ‘+’
escape, and those to the left spiral toward the inner equilibrium point =’, where they
seem to wander chaotically for all times. The stable manifold of the outer equilibrium
point thus serves as the attraction basin boundary. Consider now the numerical values

for eigenvalues of the two equilibria:

WY, 1® +i0?) = (-5686 0.0970+ i0.9951)
W@ i ,@) - 6, (4.35)
(w7, iws’) = (01929 -4596x 10°+i5.428).
Outer equilibrium: The ;15_2) + i a)(P complex eigenvalue pair implies that the neighbor-
hood of the outer equilibrium point rotates with angular period T, =~ |27r /wf)| =1.1575
The multiplier by which a trajectory that starts near the +’ equilibrium point contracts
in the stable manifold plane is the excruciatingly slow multiplier A3 =~ exp(u(f)TJr) =
0.9999947per rotation. For each period the point of the stable manifold moves away
along the unstable eigen-direction by factor A} ~ exp(ugl)ﬂ) = 1.2497 Hence the
slow spiraling on both sides of the “+’ equilibrium point.

Inner equilibrium: The u(,z) +iw® complex eigenvalue pair tells us that the neighbor-
hood of the ‘=’ equilibrium point rotates with angular period T_ = |2n/a)(_2)| = 6.313
slightly faster than the harmonic oscillator estimate in (2.20). The multiplier by which
a trajectory that starts near the ‘-’ equilibrium point spirals away per one rotation is
Aradial = exp(u(,z)T_) = 1.84. The u(,l) eigenvalue is essentially the z expansion cor-
recting parameter c introduced in (2.22). For each Poincaré section return, the trajec-
tory is contracted into the stable manifold by the amazing factor of A1 ~ exp(u(,l)T,) =
107156 ().

Suppose you start with a 1 mm interval pointing in the A1 eigen-direction. Af-
ter one Poincaré return the interval is of the order of 107* fermi, the furthest we will
get into subnuclear structure in this book. Of course, from the mathematical point of
view, the flow is reversible, and the Poincaré return map is invertible.  (continued in
example 11.3)

(R. PaSkauskas)

Example 4.6 Stability of Lorenz flow equilibria: (continued from example 4.1) A
glance at figure 3.4 suggests that the flow is organized by its 3 equilibria, so let us have
a closer look at their stable/unstable manifolds.

The EQ equilibrium stability matrix (4.30) evaluated at xeq, = (0, 0, 0) is block-

. 3 . . . . . . (2) - _
diagonal. The z-axis is an eigenvector with a contracting eigenvalue A b. I‘Ie:ﬁwozm< OA 13
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Figure 4.6: (a) A perspective view of the lin-
earized Lorenz flow ned Q, equilibrium, see fig-
ure 3.4(a). The unstable eigenplane BfQ, is
spanned byRee | ImeY}: the stable subspace

by the stable eigenvecta@®. (b) Lorenz flow =1

near theEQy, equilibrium: unstable eigenvector

€M, stable eigenvectors?, €. Trajectories ini-

tiated at distances 19--- 1012, 1013 away from |

the z-axis exit finite distance fronEQ, along the ¢

(€M, €?)) eigenvectors plane. Due to the strorty — 107 - 0.5
10‘\—JF

10—10\_J

expansion, th&Qy, equilibrium is, for all practical
10711 .
o — 10712
EQ  —&gb

purposes, unreachable, and 8@, —» EQ, hete-
@) Im eV (b) 108

- N

roclinic connection never observed in simulations
such as figur@.5. (E. Siminos; continued in fig-
ure11.8)

|

(4.41) it follows that all [X, y] areas shrink at the rate —(o-+ 1). Indeed, the [X,y] subma-
trix
_ -0 (o
A :( o -1 ) (4.36)
has a real expanding/contracting eigenvalue pair A% = —(o-+1)/2+ /(o — 1)2/4 + por,

with the right eigenvectors €1, €3 in the [x,y] plane, given by (either) column of the
projection operator

A — 01 1 o= o o

00 0 _,m)( p —1-a0 ) l#jeily. (43D
E Q12 equilibria have no symmetry, so their eigenvalues are given by the roots

of a cubic equation, the secular determinant det (A — A1) = O:

B+ 22 +b+1)+ Ab(o + p) + 20b(p — 1) = 0. (4.38)

For p > 2474, EQy 2 have one stable real eigenvalue and one unstable complex con-
jugate pair, leading to a spiral-out instability and the strange attractor depicted in fig-
ure 2.5.

All numerical plots of the Lorenz flow are carried out here with the Lorenz pa-
rameters set to o = 10, b = 8/3, p = 28. We note the corresponding stability expo-
nents for future reference,

EQ: (1M, 1@, 1®)
EQr - (u®x i w®, 1)

(1183, —2.666 -2283)
(0.094+i1019, -1385).

(4.39)

We also note the rotation period Teq, =‘27r/a)(1) about EQy and the associated expan-
sion/contraction multipliers AV = expuTeq,) per spiral-out turn:

Teg = 06163, (AW, AP) = (1.060,1.957x 10°%). (4.40)

We learn that the typical turnover time scale in this problem is of the order T ~ Tgg, = 1
(and not, let us say, 1000, or 10-2). Combined with the contraction rate (4.41), this tells
us that the Lorenz flow strongly contracts state space volumes, by factor of ~ 10~* per
mean turnover time.
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In the EQqy neighborhood, the unstable manifold trajectories slowly spiral out,
with a very small radial per-turn expansion multiplier AY ~ 1.06 and a very strong
contraction multiplier A® ~ 10~* onto the unstable manifold, figure 4.6 (a). This con-
traction confines, for all practical purposes, the Lorenz attractor to a 2-dimensional
surface, which is evident in figure 3.4.

In the xeq, = (0,0, 0) equilibrium neighborhood, the extremely strong 10 ~
—23 contraction along the €2 direction confines the hyperbolic dynamics near EQ to
the plane spanned by the unstable eigenvector €, with A ~ 12, and the slowest
contraction rate eigenvector €? along the z-axis, with A? ~ —3. In this plane, the
strong expansion along e overwhelms the slow A?) ~ —3 contraction down the z-axis,
making it extremely unlikely for a random trajectory to approach EQy, figure 4.6 (b).
Thus, linearization describes analytically both the singular dip in the Poincaré sections
of figure 3.4 and the empirical scarcity of trajectories close to EQy.  (continued in
example 4.8)

(E. Siminos and J. Halcrow)

Example 4.7 Lorenz flow: Global portrait. (continued from example 4.6) As the
E Qi unstable manifold spirals out, the strip that starts out in the section above EQ, in
figure 3.4 cuts across the z-axis invariant subspace. This strip necessarily contains a
heteroclinic orbit that hits the z-axis head on, and in infinite time (but exponentially fast)
descends all the way to E Q.

How? Since the dynamics is linear (see figure 4.6 (a)) in the neighborhood of
EQo, there is no need to integrate numerically the final segment of the heteroclinic con-
nection. It is sufficient to bring a trajectory a small distance away from EQ, continue
analytically to a small distance beyond E Qg and then resume the numerical integration.

What happens next? Trajectories to the left of the z-axis shoot off along the e®)
direction, and those to the right along —\Y). Given that xy > 0 along the €V direction,
the nonlinear term in the z equation (2.18) bends both branches of the EQy unstable
manifold WY(EQy) upwards. Then ... - never mind. We postpone completion of this
narrative to example 9A.13, where the discrete symmetry of Lorenz flow will help us
streamline the analysis. As we shall show, what we already know about the 3 equilib-
ria and their stable/unstable manifolds suffices to completely pin down the topology of
Lorenz flow. (continued in example 9A.13)

(E. Siminos and J. Halcrow)

Example 4.8 Lorenz flow state space contraction: (continued from exam-
ple 4.6) It follows from (4.30) and (4.29) that Lorenz flow is volume contracting,

AOxt)=-0c-b-1, (4.41)

3
oV =

i=1

at a constant, coordinate- and p-independent rate, set by Lorenz to div; = —13.66 .
For periodic orbits and long time averages, there is no contraction/expansion along the
flow, A = 0, and the sum of AV is constant by (4.41). Thus, we compute only one

independent exponent A0, (continued in example 9A.13) click to return: p. 85

Example 4.9 Stability of a 1-dimensional map: Considerthe orbit{. .., X_1, Xg, X1, X2, .. .}
of a 1-dimensional map xn1 = f(Xn). When studying linear stability (and higher deriva-
tives) of the map, it is often convenient to use a local coordinate system z, centered on

the orbit point Xa, together with a notation for the map, its derivative, and, by the chain
rule, the derivative of the kth iterate f evaluated at the point X,
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Figure 4.7: A unimodal map, together with fixed
points 0, 1, 2-cycle 01 and 3-cycle 011.

X = Xa+Z, fa(za)=T(Xa+2z)
fo = 1'(x)
Axo.K) = =1, - ff  kx2.

(4.42)

Here a is the label of point x5, and the label a+1 is shorthand for the next pointb on the
orbit of Xa, Xp = Xar1 = f(Xa). For example, a period-3 periodic point in figure 4.7 might

have label a = 011, and by X110 = f(Xo11) the next point label isb = 110,

Example 4.10 Hénon map Jacobian matrix:
bian matrix for the nth iterate of the map is

1
o = [[( 75 5). = o0y,

m=n

click to return: p. 82

For the Hénon map (3.17) the Jaco-

(4.43)

The determinant of the Hénon one time-step Jacobian matrix (4.43) is constant,

detM = A1A, = —b.

(4.44)

In this case only one eigenvalue A; = —b/A; needs to be determined. This is not an
accident; a constant Jacobian was one of desiderata that led Hénon to construct a map

of this particular form.

click to return: p. 83

Exercises

4.1. Trace-log of a matrix. Prove that

detM = elf "M

for an arbitrary nonsingular finite dimensional matkix
detM = 0.

4.2. Stability, diagonal case. Verify the relation ¢.32
J=e?=Uleu, A,=UAUT.

4.3. State space volume contraction.

(a) Compute the Rossler flow volume contraction rate
at the equilibria.

(b) Study numerically the instantaneaf)s; along a
typical trajectory on the Rossler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) 8v;. If you see regions
of local expansion, explain them.

(c) (optional) Color-code the points on the trajec-
tory by the sign (and perhaps the magnitude) of
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(R. PaSkauskas)

(d) Compute numerically the average contraction rate| 5. Time-ordered exponentials. Given a time dependent

(4.29 along a typical trajectory on the Rossler at-
tractor. Plot it as a function of time.

(e) Argue on basis of your results that this attractor is
of dimension smaller than the state spdce 3.

(f) (optional) Start some trajectories on the escape
side of the outer equilibrium, and color-code the
points on the trajectory. Is the flow volume con-
tracting?

(continued in exercis20.10

4.4. Topology of the Rossler flow.
cise3.])

(continuation of exer-

(a) Show that equatiojdet (A — A1)| = 0 for Rossler

matrix A(t) check that the time-ordered exponential
3(t) = Teh 4rA®

may be written as

© t 1 -1
0= [ du [ der [ dioat)- A
= Jo 0 0

and verify, by using this representation, tlié) satisfies
the equation

J(t) = A®IW),

with the initial conditionJ(0) = 1.

flow in the notation of exercis2.8 can be written

as 4.6. A contracting baker’s map.

s (or ‘dissipative’) baker’'s map, acting on a unit square
B+2%¢(p*—€)+A(p* /e+1-CepT)Fc VD = 0(4.45)[0, 12 = [0, 1] x [0, 1], defined by

(b) Solve @.45 for eigenvaluest* for each equilib-
. . . Xp+1 | Xn/3
rium as an expansion in powersofDerive voer ] =\ 2y Yn<1/2

Consider a contracting

A7 = —C+€c/(c® + 1)+ 0(€)

A; = €c®/[2(c* + 1)] + o(€?) Xner | _ [ Xn/3+1/2

h =1t/ 4ol 0 yor |\ 2m-1

A =ce(l-¢€)+ o(€3) '

A5 = —€°¢2/2 + o(€%)

65 = V1+1/e(1+ o(e))
Compare with exact eigenvalues. What are dy-

namical implications of the extravagant value of
A7? (continued as exercide.?)

) Vo> 1/2.

This map shrinks strips by a factor of3lin the x-
direction, and then it stretches (and folds) them by a fac-
tor of 2 in they-direction.

By how much does the state space volume contract for
one iteration of the map?
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