
Chapter 4

Local stability

It does not say in the Bible that all laws of nature are ex-
pressible linearly.

— Enrico Fermi
(R. Mainieri and P. Cvitanović)

So far we have concentrated on describing the trajectory of a single initial
point. Our next task is to define and determine the size of aneighborhood
of x(t). We shall do this by assuming that the flow is locally smooth and by

describing the local geometry of the neighborhood by studying the flow linearized
aroundx(t). Nearby points aligned along the stable (contracting) directions remain
in the neighborhood of the trajectoryx(t) = f t(x0); the ones to keep an eye on are
the points which leave the neighborhood along the unstable directions. As we shall
demonstrate in chapter18, the expanding directions matter in hyperbolic systems.
The repercussions are far-reaching. As long as the number ofunstable directions
is finite, the same theory applies to finite-dimensional ODEs, state space volume
preserving Hamiltonian flows, and dissipative, volume contracting infinite-dim-
ensional PDEs.

In order to streamline the exposition, in this chapter all examples are collected
in sect.4.8. We strongly recommend that you work through these examples: you
can get to them and back to the text by clicking on the [example] links, such as

example 4.8

p. 87

4.1 Flows transport neighborhoods

As a swarm of representative points moves along, it carries along and distorts
neighborhoods. The deformation of an infinitesimal neighborhood is best un-
derstood by considering a trajectory originating nearx0 = x(0), with an initial
infinitesimal displacementδx(0). The flow then transports the displacementδx(t)
along the trajectoryx(x0, t) = f t(x0).

4.1.1 Instantaneous rate of shear

The system of linearequations of variationsfor the displacement of the infinites-
imally close neighborx + δx follows from the flow equations (2.7) by Taylor
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Figure 4.1: For finite times a local frame is trans-
ported along the orbit and deformed by Jacobian ma-
trix Jt. As Jt is not self-adjoint, an initial orthogonal
frame is mapped into a non-orthogonal one.
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expanding to linear order

ẋi + δ̇xi = vi(x+ δx) ≈ vi(x) +
∑

j

∂vi

∂x j
δx j .

The infinitesimal displacementδx is thus transported along the trajectoryx(x0, t),
with time variation given by

d
dt
δxi(x0, t) =

∑

j

∂vi

∂x j
(x)

∣

∣

∣

∣

∣

∣

x=x(x0,t)

δx j(x0, t) . (4.1)

As both the displacement and the trajectory depend on the initial point x0 and the
time t, we shall often abbreviate the notation tox(x0, t) → x(t) → x, δxi(x0, t) →
δxi(t)→ δx in what follows. Taken together, the set of equations

ẋi = vi(x) , δ̇xi =
∑

j

Ai j (x)δx j (4.2)

governs the dynamics in the tangent bundle (x, δx) ∈ TM obtained by adjoining
the d-dimensional tangent spaceδx ∈ TMx to every pointx ∈ M in the d-dim-
ensional state spaceM ⊂ Rd. Thestability matrixor velocity gradients matrix

Ai j (x) =
∂vi(x)
∂x j

(4.3)

describes the instantaneous rate of shearing of the infinitesimal neighborhood of
x(t) by the flow. A swarm of neighboring points ofx(t) is instantaneously sheared
by the action of the stability matrix,δx(t + δt) = δx(t) + δt A(xn)δx(t) . A is a
tensorial rate of deformation, so it is a bit hard (if not impossible) to draw.

example 4.1
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4.1.2 Finite time linearized flow

By Taylor expanding afinite timeflow to linear order,

f t
i (x0 + δx) = f t

i (x0) +
∑

j

∂ f t
i (x0)

∂x0 j
δx j + · · · , (4.4)

one finds that the linearized neighborhood is transported bythe Jacobian matrix
remark 4.1

δx(t) = Jt(x0) δx0 , Jt
i j (x0) =

∂x(t)i

∂x(0) j
, J0(x0) = 1 . (4.5)
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For example, in 2 dimensions the Jacobian matrix for change from initial to final
coordinates is

Jt =
∂(x , y )
∂(x0, y0)

=















∂x
∂x0

∂x
∂y0

∂y
∂x0

∂y
∂y0















.

The Jacobian matrix is evaluated on a trajectory segment that starts at point
x0 = x(t0) and ends at pointx1 = x(t1), t1 ≥ t0. As the trajectoryx(t) is determin-
istic, the initial pointx0 and the elapsed timet in (4.5) suffice to determineJ, but
occasionally we find it helpful to be explicit about the initial and final times and
state space positions, and write

Jt1−t0
i j = Ji j (t1; t0) = Ji j (x1, t1; x0, t0) =

∂x(t1)i

∂x(t0) j
. (4.6)

The map f t is assumed invertible and differentiable so thatJt exists. For
sufficiently short timesJt remains close to1, so detJt > 0. By continuity detJt

remains positive for all timest. However, for discrete time maps, detJn can have
either sign.

4.1.3 Co-moving frames

J describes the deformation of an infinitesimal neighborhoodat a finite timet in
the co-moving frame ofx(t). This deformation of an initial frame atx0 into a
non-orthogonal frame atx(t) is described by the eigenvectors and eigenvalues of
the Jacobian matrix of the linearized flow (see figure4.1),

Jt e( j) = Λ j e( j) , j = 1, 2, · · · , d . (4.7)

Throughout this text the symbolΛk will always denote thekth eigenvalue(the
stability multiplier) of the finite time Jacobian matrixJt. Symbolλ(k) will be
reserved for thekth stability exponent, with real partµ(k) and phaseω(k):

Λk = etλ(k)
λ(k) = µ(k) + iω(k) . (4.8)

As Jt is a real matrix, its eigenvalues are either real or come in complex conjugate
pairs,

{Λk,Λk+1} = {et(µ(k)+iω(k)), et(µ(k)−iω(k))} ,

with magnitude|Λk| = |Λk+1| = exp(tµ(k)). The phaseω(k) describes the rotation
velocity in the plane spanned by the pair of real eigenvectors, {Ree(k), Im e(k)},
with one period of rotation given byT = 2π/ω(k) .

example 4.4
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Jt(x0) depends on the initial pointx0 and the elapsed timet. For notational
brevity we omitted this dependence, but in general both the eigenvalues and the
eigenvectors,Λ j = Λ j(x0, t) , · · · , e( j) = e( j)(x0, t) , also depend on the trajectory
traversed.

Nearby trajectories separate exponentially with time along theunstable direc-
tions, approach each other along thestable directions, and change their distance
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along themarginal directionsat rates slower than exponential, corresponding to
the eigenvalues of the Jacobian matrix with magnitude larger than, smaller than,
or equal to 1. In the literature, the adjectivesneutral, indifferent, centerare often
used instead of ‘marginal’. Attracting, or stable directions are sometimes called
‘asymptotically stable,’ and so on.

One of the preferred directions is what one might expect, thedirection of the
flow itself. To see that, consider two initial points along a trajectory separated
by infinitesimal flight timeδt: δx0 = f δt(x0) − x0 = v(x0)δt . By the semigroup
property of the flow,f t+δt = f δt+t, where

f δt+t(x0) =
∫ δt+t

t
dτ v(x(τ)) + f t(x0) = δt v(x(t)) + f t(x0) .

Expanding both sides off t( f δt(x0)) = f δt( f t(x0)), keeping the leading term in
δt, and using the definition of the Jacobian matrix (4.5), we observe thatJt(x0)
transports the velocity vector atx0 to the velocity vector atx(t) (see figure4.1):

v(x(t)) = Jt(x0) v(x0) . (4.9)

4.2 Computing the Jacobian matrix

As we started by assuming that we know the equations of motion, from (4.3) we
also know stability matrixA, the instantaneous rate of shear of an infinitesimal
neighborhoodδxi(t) of the trajectoryx(t). What we do not know is the finite time
deformation (4.5), so our next task is to relate the stability matrixA to Jacobian
matrix Jt. On the level of differential equations the relation follows by taking the
time derivative of (4.5) and replacingδ̇x by (4.2)

d
dt
δx(t) =

dJt

dt
δx0 = Aδx(t) = AJt δx0 .

Hence the matrix elements of the [d×d] Jacobian matrix satisfy the ‘tangent linear
equations’

d
dt

Jt(x0) = A(x) Jt(x0) , x = f t(x0) , initial condition J0(x0) = 1 . (4.10)

For autonomous flows, the matrix of velocity gradientsA(x) depends only onx,
not time, whileJt depends on both the state space position and time. Given a nu-
merical routine for integrating the equations of motion, evaluation of the Jacobian
matrix requires minimal additional programming effort; one simply extends the
d-dimensional integration routine and integrates thed2 elements ofJt(x0) concur-
rently with f t(x0). The qualifier ‘simply’ is perhaps too glib. Integration will work
for short finite times, but for exponentially unstable flows one quickly runs into
numerical over- and/or underflow problems. For high-dimensional flows the ana-
lytical expressions for elements ofA might be so large thatA fits on no computer.
Further thought will have to go into implementation this calculation.

chapter 26
So now we know how to compute Jacobian matrixJt given the stability matrix

A, at least when thed2 extra equations are not too expensive to compute. Mission
accomplished.
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fast track:

chapter 7, p. 134
And yet... there are mopping up operations left to do. We persist until we de-

rive the integral formula (4.19) for the Jacobian matrix, an analogue of the finite-
time ‘Green’s function’ or ‘path integral’ solutions of other linear problems.

We are interested in smooth, differentiable flows. If a flow is smooth, in a suf-
ficiently small neighborhood it is essentially linear. Hence the next section, which
might seem an embarrassment (what is a section onlinear flows doing in a book
onnonlinear dynamics?), offers a firm stepping stone on the way to understanding
nonlinear flows. Linear charts are the key tool of differential geometry, general
relativity, etc., so we are in good company. If you know your eigenvalues and
eigenvectors, you may prefer to fast forward here.

fast track:

sect. 4.4, p. 81

4.3 A linear diversion

Linear is good, nonlinear is bad.

—Jean Bellissard
Linear fields are the simplest vector fields, described by linear differential equa-
tions which can be solved explicitly, with solutions that are good for all times.
The state space for linear differential equations isM = Rd, and the equations of
motion (2.7) are written in terms of a vectorx and a constant stability matrixA as

ẋ = v(x) = Ax. (4.11)

Solving this equation means finding the state space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))

passing through a given initial pointx0. If x(t) is a solution withx(0) = x0 and
y(t) another solution withy(0) = y0, then the linear combinationax(t)+ by(t) with
a, b ∈ R is also a solution, but now starting at the pointax0 + by0. At any instant
in time, the space of solutions is ad-dimensional vector space, spanned by a basis
of d linearly independent solutions.

How do we solve the linear differential equation (4.11)? If instead of a matrix
equation we have a scalar one, ˙x = λx , the solution isx(t) = etλx0 . In order
to solve thed-dimensional matrix case, it is helpful to rederive this solution by
studying what happens for a short time stepδt. If time t = 0 coincides with
positionx(0), then

x(δt) − x(0)
δt

= λx(0) , (4.12)

which we iteratem times to obtain Euler’s formula for compounding interest

x(t) ≈
(

1+
t
m
λ

)m
x(0) ≈ etλx(0) . (4.13)
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The term in parentheses acts on the initial conditionx(0) and evolves it tox(t) by
takingmsmall time stepsδt = t/m. Asm→ ∞, the term in parentheses converges
to etλ. Consider now the matrix version of equation (4.12):

x(δt) − x(0)
δt

= Ax(0) . (4.14)

A representative pointx is now a vector inRd acted on by the matrixA, as in
(4.11). Denoting by1 the identity matrix, and repeating the steps (4.12) and (4.13)
we obtain Euler’s formula for the exponential of a matrix:

x(t) = Jtx(0) , Jt = etA = lim
m→∞

(

1+
t
m

A
)m
. (4.15)

We will find this definition for the exponential of a matrix helpful in the general
case, where the matrixA = A(x(t)) varies along a trajectory.

Now that we have some feeling for the qualitative behavior ofeigenvectors and
eigenvalues of linear flows, we are ready to return to the nonlinear case. How do
we compute the exponential (4.15)?

example 4.2
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fast track:

sect. 4.4, p. 81
section 5.2.1

Henriette Roux: So, computing eigenvalues and eigenvectors seems like a good
thing. But how do you really do it?
A: Any text on numerics of matrices discusses how this is done; the keywords are
‘Gram-Schmidt’, and for high-dimensional flows ‘Krylov subspace’ and ‘Arnoldi
iteration’. Conceptually (but not for numerical purposes)we like the economical
description of neighborhoods of equilibria and periodic orbits afforded by projec-
tion operators. The requisite linear algebra is standard. As this is a bit of sidetrack
that you will find confusing at the first go, it is relegated to appendixC.

4.4 Stability of flows

How do you determine the eigenvalues of the finite time local deformationJt for
a general nonlinear smooth flow? The Jacobian matrix is computed by integrating
the equations of variations (4.2)

x(t) = f t(x0) , δx(x0, t) = Jt(x0) δx(x0, 0) . (4.16)

The equations are linear, so we should be able to integrate them–but in order to
make sense of the answer, we derive this integral step by step.

Consider the case of a general, non-stationary trajectoryx(t). The exponential
of a constant matrix can be defined either by its Taylor seriesexpansion or in terms
of the Euler limit (4.15):

etA =

∞
∑

k=0

tk

k!
Ak = lim

m→∞

(

1+
t
m

A
)m
. (4.17)

Taylor expanding is fine ifA is a constant matrix. However, only the second,
tax-accountant’s discrete step definition of an exponential is appropriate for the
task at hand. For dynamical systems, the local rate of neighborhood distortion
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A(x) depends on where we are along the trajectory. The linearized neighborhood
is deformed along the flow, and them discrete time-step approximation toJt is
therefore given by a generalization of the Euler product (4.17):

Jt(x0) = lim
m→∞

1
∏

n=m

(1+ δtA(xn)) = lim
m→∞

1
∏

n=m

eδt A(xn) (4.18)

= lim
m→∞

eδt A(xm)eδt A(xm−1) · · · eδt A(x2)eδt A(x1) ,

whereδt = (t − t0)/m, andxn = x(t0 + nδt). Indexing of the product indicates that
the successive infinitesimal deformation are applied by multiplying from the left.
Them→ ∞ limit of this procedure is the formal integral

Jt
i j (x0) =

[

Te
∫ t
0 dτA(x(τ))

]

i j
, (4.19)

whereT stands for time-ordered integration,definedas the continuum limit of
successive multiplications (4.18). This integral formula forJt is the main con-

exercise 4.5
ceptual result of the present chapter. This formula is the finite time companion of
the differential definition (4.10). The definition makes evident important proper-
ties of Jacobian matrices, such as their being multiplicative along the flow,

Jt+t′(x) = Jt′(x′) Jt(x), where x′ = f t(x0) , (4.20)

which is an immediate consequence of the time-ordered product structure of (4.18).
However, in practiceJ is evaluated by integrating (4.10) along with the ODEs that
define a particular flow.

4.5 Stability of maps

The transformation of an infinitesimal neighborhood of a trajectory under the iter-
ation of a map follows from Taylor expanding the iterated mapping at finite time
n to linear order, as in (4.4). The linearized neighborhood is transported by the
Jacobian matrix evaluated at a discrete set of timesn = 1, 2, . . .,

Jn
i j (x0) =

∂ f n
i (x)

∂x j

∣

∣

∣

∣

∣

∣

x=x0

. (4.21)

As in the finite time case (4.8), we denote byΛk thekth eigenvalueor multiplier
of the finite time Jacobian matrixJn. There is really no difference from the con-
tinuous time case, other than that now the Jacobian matrix isevaluated at integer
times.

example 4.9

p. 91
The formula for the linearization ofnth iterate of ad-dimensional map

Jn(x0) = J(xn−1) · · · J(x1)J(x0) , x j = f j(x0) , (4.22)

in terms of single time stepsJ jl = ∂ f j/∂xl follows from the chain rule for func-
tional composition,

∂

∂xi
f j( f (x)) =

d
∑

k=1

∂ f j(y)

∂yk

∣

∣

∣

∣

∣

∣

y= f (x)

∂ fk(x)
∂xi

.
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Figure 4.2: If x(t) intersects the Poincaré section
P at time τ, the nearbyx(t) + δx(t) trajectory inter-
sects it timeτ + δt later. As (U′ · v′δt) = −(U′ ·
J δx), the difference in arrival times is given byδt =
−(U′ · J δx)/(U′ · v′).

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

x(t)

v’ tδ
x’

U(x)=0

x

x(t)+δx(t)

Jδ

U’

If you prefer to think of a discrete time dynamics as a sequence of Poincaré sec-
tion returns, then (4.22) follows from (4.20): Jacobian matrices are multiplicative
along the flow.

exercise 6.3

example 4.10

p. 92

fast track:

chapter 7, p. 134

4.6 Stability of Poincaré return maps

(R. Paškauskas and P. Cvitanović)
We now relate the linear stability of the Poincaré return map P : P → P defined
in sect.3.1to the stability of the continuous time flow in the full state space.

The hypersurfaceP can be specified implicitly through a functionU(x) that is
zero whenever a pointx is on the Poincaré section. A nearby pointx+ δx is in the
hypersurfaceP if U(x+δx) = 0, and the same is true for variations around the first
return pointx′ = x(τ), so expandingU(x′) to linear order in variationδx restricted
to the Poincaré section, and applying the chain rule leads to the condition

d
∑

i=1

∂U(x′)
∂xi

dx′i
dxj

∣

∣

∣

∣

∣

∣P
= 0 . (4.23)

In what followsUi = ∂ jU is the gradient ofU defined in (3.3), unprimed quantities
refer to the starting pointx = x0 ∈ P, v = v(x0), and the primed quantities to the
first return: x′ = x(τ), v′ = v(x′), U′ = U(x′). For brevity we shall also denote
the full state space Jacobian matrix at the first return byJ = Jτ(x0). Both the first
return x′ and the time of flight to the next Poincaré sectionτ(x) depend on the
starting pointx, so the Jacobian matrix

Ĵ(x)i j =
dx′i
dxj

∣

∣

∣

∣

∣

∣P
(4.24)

with both initial and the final variation constrained to the Poincaré section hyper-
surfaceP is related to the continuous flow Jacobian matrix by

dx′i
dxj

∣

∣

∣

∣

∣

∣P
=
∂x′i
∂x j
+

dx′i
dτ

dτ
dxj
= Ji j + v′i

dτ
dxj
.

The return time variationdτ/dx, figure4.2, is eliminated by substituting this ex-
pression into the constraint (4.23),

0 = ∂iU
′ Ji j + (v′ · ∂U′) dτ

dxj
,
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yielding the projection of the full spaced-dimensional Jacobian matrix to the
Poincaré map (d−1)-dimensional Jacobian matrix:

Ĵi j =

(

δik −
v′i ∂kU′

(v′ · ∂U′)

)

Jk j . (4.25)

Substituting (4.9) we verify that the initial velocityv(x) is a zero-eigenvector of̂J

Ĵv= 0 , (4.26)

so the Poincaré section eliminates variations parallel tov, and Ĵ is a rank (d−1)-
dimensional matrix, i.e., one less than the dimension of thecontinuous time flow.

4.7 Neighborhood volume

section 6.2
remark 6.1

Consider a small state space volume∆V = ddx centered around the pointx0 at
time t = 0. The volume∆V′ around the pointx′ = x(t) time t later is

∆V′ =
∆V′

∆V
∆V =

∣

∣

∣

∣

∣

det
∂x′

∂x

∣

∣

∣

∣

∣

∆V =
∣

∣

∣det Jt(x0)
∣

∣

∣∆V , (4.27)

so the|detJ| is the ratio of the initial and the final volumes. The determinant
detJt(x0) =

∏d
i=1Λi(x0, t) is the product of the Jacobian matrix eigenvalues. We

shall refer to this determinant as theJacobianof the flow. The Jacobian is easily
exercise 4.1

evaluated. Take the time derivative, use theJ evolution equation (4.10) and the
matrix identity ln detJ = tr ln J:

d
dt

ln∆V(t) =
d
dt

ln detJ = tr
d
dt

ln J = tr
1
J

J̇ = tr A = ∂ivi .

(Here, as elsewhere in this book, a repeated index implies summation.) Integrate
both sides to obtain the time evolution of an infinitesimal volume ( Liouville’s
formula)

detJt(x0) = exp

[∫ t

0
dτ tr A(x(τ))

]

= exp

[∫ t

0
dτ ∂ivi(x(τ))

]

. (4.28)

As the divergence∂ivi is a scalar quantity, the integral in the exponent (4.19) needs
no time ordering. So all we need to do is evaluate the time average

∂ivi = lim
t→∞

1
t

∫ t

0
dτ

d
∑

i=1

Aii (x(τ))

=
1
t

ln

∣

∣

∣

∣

∣

∣

∣

d
∏

i=1

Λi(x0, t)

∣

∣

∣

∣

∣

∣

∣

=

d
∑

i=1

λ(i)(x0, t) (4.29)

along the trajectory. If the flow is not singular (for example, the trajectory does
not run head-on into the Coulomb 1/r singularity), the stability matrix elements
are bounded everywhere,|Ai j | < M , and so is the trace

∑

i Aii . The time integral
in (4.29) thus grows at most linearly witht, ∂ivi is bounded for all times, and
numerical estimates of thet → ∞ limit in (4.29) are not marred by any blowups.
In numerical evaluations of stability exponents, the sum rule (4.29) can serve as a
helpful check on the accuracy of the computation.
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example 4.8

p. 91
The divergence∂ivi characterizes the behavior of a state space volume in the

infinitesimal neighborhood of the trajectory. If∂ivi < 0, the flow islocally con-
tracting, and the trajectory might be falling into an attractor. If∂ivi(x) < 0 , for
all x ∈ M, the flow isglobally contracting, and the dimension of the attractor is
necessarily smaller than the dimension of state spaceM. If ∂ivi = 0, the flow
preserves state space volume and detJt = 1. A flow with this property is called
incompressible. An important class of such flows are the Hamiltonian flows
considered in sect.7.3.

But before we can get to that, Henriette Roux, the perfect student and always
alert, pipes up. She does not like our definition of the Jacobian matrix in terms of
the time-ordered exponential (4.19). Depending on the signs of multipliers, the
left hand side of (4.28) can be either positive or negative. But the right hand side
is an exponential of a real number, and that can only be positive. What gives? As
we shall see much later on in this text, in discussion of topological indices arising
in semiclassical quantization, this is not at all a dumb question.

Résum é

A neighborhood of a trajectory deforms as it is transported by a flow. In the
linear approximation, the stability matrixA describes the shearing/ compression
/ expansion of an infinitesimal neighborhood in an infinitesimal time step. The
deformation after a finite timet is described by the Jacobian matrix

Jt(x0) = Te
∫ t
0

dτA(x(τ)) ,

whereT stands for the time-ordered integration, defined multiplicatively along
the trajectory. For discrete time maps this is multiplication by time-step Jacobian
matrix J along then pointsx0, x1, x2, . . ., xn−1 on the trajectory ofx0,

Jn(x0) = J(xn−1)J(xn−2) · · · J(x1)J(x0) ,

where J(x) is the single discrete time-step Jacobian matrix. In ChaosBook the
stability multiplierΛk denotes thekth eigenvalueof the finite time Jacobian matrix
Jt(x0), µ(k) the real part ofkth stability exponent, andω(k) its phase,

Λ = et(µ+iω) .

For complex eigenvalue pairs the ‘angular velocity’ω describes rotational motion
in the plane spanned by the real and imaginary parts of the corresponding pair of
complex eigenvectors.

The eigenvalues and eigen-directions of the Jacobian matrix describe the de-
formation of an initial infinitesimal cloud of neighboring trajectories into a dis-
torted cloud at a finite timet later. Nearby trajectories separate exponentially
along unstable eigen-directions, approach each other along stable directions, and
change slowly (algebraically) their distance along marginal or center directions.
The Jacobian matrixJt is in general neither symmetric, nor diagonalizable by a
rotation, nor do its (left or right) eigenvectors define an orthonormal coordinate
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frame. Furthermore, although the Jacobian matrices are multiplicative along the
flow, their eigenvalues are generally not multiplicative indimensions higher than
one. This lack of a multiplicative nature for eigenvalues has important repercus-
sions for both classical and quantum dynamics.

Commentary

Remark 4.1 Linear flows. The subject of linear algebra generates innumerable tomes
of its own; in sect.4.3we only sketch, and in appendixC recapitulate a few facts that our
narrative relies on: a useful reference book is Meyer [1]. The basic facts are presented
at length in many textbooks. Frequently cited linear algebra references are Golub and
Van Loan [2], Coleman and Van Loan [3], and Watkins [4, 5]. The standard references
that exhaustively enumerate and explain all possible casesare Hirsch and Smale [6] and
Arnol’d [7]. A quick overview is given by Izhikevich [8]; for different notions of orbit
stability see Holmes and Shea-Brown [9]. For ChaosBook purposes, we enjoyed the dis-
cussion in chapter 2 Meiss [10], chapter 1 of Perko [11] and chapters 3 and 5 of Glendin-
ning [12]; we also liked the discussion of norms, least square problems, and differences
between singular value and eigenvalue decompositions in Trefethen and Bau [13]. Trues-
dell [2] and Gurtin [3] are excellent references for the continuum mechanics perspective
on state space dynamics; for a gentle introduction to parallels between dynamical systems
and continuum mechanics see Christovet al. [1] .

The nomenclature tends to be a bit confusing. A Jacobian matrix (4.5) is sometimes
referred to as thefundamental solution matrixor simply fundamental matrix, a name in-
herited from the theory of linear ODEs, or theFréchet derivativeof the nonlinear mapping
f t(x), or the ‘tangent linear propagator’, or even as the ‘error matrix’ (Lorenz [14]). The
formula (4.22) for the linearization ofnth iterate of ad-dimensional map is called alinear
cocyle, amultiplicative cocyle, aderivative cocyleor simply acocyleby some. Since ma-
trix J describes the deformation of an infinitesimal neighborhoodat a finite timet in the
co-moving frame ofx(t), in continuum mechanics it is called adeformation gradientor a
transplacement gradient. It is often denotedD f , but for our needs (we shall have to sort
through a plethora of related Jacobian matrices) matrix notation J is more economical.
Single discrete time-step JacobianJ jl = ∂ f j/∂xl in (4.22) is referred to as the ‘tangent
map’ by Skokos [16, 17]. For a discussion of ‘fundamental matrix’ see appendixC.2.

We follow Tabor [15] in referring to A in (4.3) as the ‘stability matrix’; it is also
referred to as the ‘velocity gradients matrix’ or ‘velocitygradient tensor’. It is the natural
object for study of stability of equilibria, time-invariant point in state space; stability of
trajectories is described by Jacobian matrices. Goldhirsch, Sulem, and Orszag [18] call it
the ‘Hessenberg matrix’, and to the equations of variations(4.1) as ‘stability equations.’
Manoset al. [19] refer to (4.1) as the ‘variational equations’.

SometimesA, which describes the instantaneous shear of the neighborhood ofx(x0, t),
is referred to as the ‘Jacobian matrix,’ a particularly unfortunate usage when one considers
linearized stability of an equilibrium point (5.1). A is not a Jacobian matrix, just as a
generator of SO(2) rotation is not a rotation;A is a generator of an infinitesimal time
step deformation,Jδt ≃ 1 + Aδt . What Jacobi had in mind in his 1841 fundamental
paper [20] on determinants (today known as ‘Jacobians’) were transformations between
different coordinate frames. These are dimensionless quantities, while dimensionallyAi j

is 1/[time].
More unfortunate still is referring to the Jacobian matrixJt = exp(tA) as an ‘evolution

operator,’ which here (see sect.17.2) refers to something altogether different. In this book
Jacobian matrixJt always refers to (4.5), the linearized deformation after a finite timet,
either for a continuous time flow, or a discrete time mapping.
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4.8 Examples

10. Try to leave out the part that readers tend to skip.
— Elmore Leonard’s Ten Rules of Writing.

The reader is urged to study the examples collected here. If you want to return
back to the main text, click on [click to return] pointer on the margin.

Example 4.1 Rössler and Lorenz flows, linearized: (continued from example 3.5) For
the Rössler (2.23) and Lorenz (2.18) flows, the stability matrices are respectively

ARoss=

















0 −1 −1
1 a 0
z 0 x− c

















, ALor =

















−σ σ 0
ρ − z −1 x

y x −b

















. (4.30)

(continued in example 4.5)
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Example 4.2 Jacobian matrix eigenvalues, diagonalizable case: Should we be
so lucky that A = AD happens to be a diagonal matrix with eigenvalues (λ(1), λ(2), . . . , λ(d)),
the exponential is simply

Jt = etAD =























etλ(1) · · · 0
. . .

0 · · · etλ(d)























. (4.31)

Next, suppose that A is diagonalizable and that U is a nonsingular matrix that brings it
to a diagonal form AD = U−1AU. Then J can also be brought to a diagonal form (insert
factors 1 = UU−1 between the terms of the product (4.15)):

exercise 4.2

Jt = etA = UetADU−1 . (4.32)

The action of both A and J is very simple; the axes of orthogonal coordinate system
where A is diagonal are also the eigen-directions of Jt, and under the flow the neigh-
borhood is deformed by a multiplication by an eigenvalue factor for each coordinate
axis.

We recapitulate the basic facts of linear algebra in appendix C. The following
2-dimensional example serves well to highlight the most important types of linear
flows:

Example 4.3 Linear stability of 2-dimensional flows: For a 2-dimensional flow the
eigenvalues λ(1), λ(2) of A are either real, leading to a linear motion along their eigen-
vectors, x j(t) = x j(0) exp(tλ( j)), or form a complex conjugate pair λ(1) = µ + iω , λ(2) =

µ − iω , leading to a circular or spiral motion in the [x1, x2] plane.

These two possibilities are refined further into sub-cases depending on the
signs of the real part. In the case of real λ(1) > 0, λ(2) < 0, x1 grows exponentially
with time, and x2 contracts exponentially. This behavior, called a saddle, is sketched
in figure 4.3, as are the remaining possibilities: in/out nodes, inward/outward spirals,
and the center. The magnitude of out-spiral |x(t)| diverges exponentially when µ > 0,
and in-spiral contracts into (0, 0) when µ < 0; whereas, the phase velocity ω controls its
oscillations.

If eigenvalues λ(1) = λ(2) = λ are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector. We distinguish two cases: (a) A
can be brought to diagonal form and (b) A can be brought to Jordan form, which (in
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Figure 4.3: Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node (at-
tracting), center (elliptic), in spiral.

Figure 4.4: Qualitatively distinct types of expo-
nents{λ(1), λ(2)} of a [2×2] Jacobian matrix.

saddle

××
✻
✲

out node

××
✻
✲

in node

××
✻
✲

center

×
×

✻
✲

out spiral

×
×

✻
✲

in spiral

×
×

✻
✲

dimension 2 or higher) has zeros everywhere except for the repeating eigenvalues on
the diagonal and some 1’s directly above it. For every such Jordan [dα×dα] block there
is only one eigenvector per block.

We sketch the full set of possibilities in figures 4.3 and 4.4, and we work out in
detail the most important cases in appendix C, example C.3.
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Example 4.4 In-out spirals. Consider an equilibrium whose stability expo-
nents {λ(1), λ(2)} = {µ + iω, µ − iω} form a complex conjugate pair. The corresponding
complex eigenvectors can be replaced by their real and imaginary parts, {e(1), e(2)} →
{Ree(1), Im e(1)}. The 2-dimensional real representation,

(

µ −ω
ω µ

)

= µ

(

1 0
0 1

)

+ ω

(

0 −1
1 0

)

consists of the identity and the generator of SO(2) rotations in the {Ree(1), Im e(1)} plane.
Trajectories x(t) = Jt x(0), where (omitting e(3), e(4), · · · eigen-directions)

Jt = eAqt = etµ
(

cosωt − sin ωt
sin ωt cosωt

)

, (4.33)

spiral in/out around (x, y) = (0, 0), see figure 4.3, with the rotation period T. The tra-
jectories contract/expand radially by the multiplier Λradial and also by the multiplier Λ j ,
along the e( j) eigen-direction per turn of the spiral:

exercise C.1

T = 2π/ω , Λradial = eTµ , Λ j = eTµ( j)
. (4.34)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x, y) = (0, 0) is of the order ≈ T (and not, let us say, 1000T, or 10−2T). Λ j multipliers
give us estimates of strange-set thickness in eigen-directions transverse to the rotation
plane.
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Figure 4.5: Two trajectories of the Rössler flow initi-
ated in the neighborhood of the ‘+’ or ‘outer’ equilib-
rium point (2.24). (R. Paškauskas)

xy

z

 0

 20

 40

-40
-20

 0

Example 4.5 Stability of equilibria of the R össler flow. (continued from ex-
ample 4.1) The Rösler system (2.23) has two equilibrium points (2.24), the inner

exercise 4.4
exercise 2.8

equilibrium (x−, y−, z−), and the outer equilibrium point (x+, y+, z+). Together with their
exponents (eigenvalues of the stability matrix), the two equilibria yield quite detailed
information about the flow. Figure 4.5 shows two trajectories which start in the neigh-
borhood of the outer ‘+’ equilibrium. Trajectories to the right of the equilibrium point ‘+’
escape, and those to the left spiral toward the inner equilibrium point ‘−’, where they
seem to wander chaotically for all times. The stable manifold of the outer equilibrium
point thus serves as the attraction basin boundary. Consider now the numerical values
for eigenvalues of the two equilibria:

(µ(1)
− , µ

(2)
− ± i ω(2)

− ) = (−5.686, 0.0970± i 0.9951 )
(µ(1)
+ , µ

(2)
+ ± i ω(2)

+ ) = ( 0.1929, −4.596× 10−6 ± i 5.428 ).
(4.35)

Outer equilibrium: The µ(2)
+ ± i ω(2)

+ complex eigenvalue pair implies that the neighbor-
hood of the outer equilibrium point rotates with angular period T+ ≈

∣

∣

∣2π/ω(2)
+

∣

∣

∣ = 1.1575.
The multiplier by which a trajectory that starts near the ‘+’ equilibrium point contracts
in the stable manifold plane is the excruciatingly slow multiplier Λ+2 ≈ exp(µ(2)

+ T+) =
0.9999947per rotation. For each period the point of the stable manifold moves away
along the unstable eigen-direction by factor Λ+1 ≈ exp(µ(1)

+ T+) = 1.2497. Hence the
slow spiraling on both sides of the ‘+’ equilibrium point.

Inner equilibrium: The µ(2)
− ± i ω(2)

− complex eigenvalue pair tells us that the neighbor-
hood of the ‘−’ equilibrium point rotates with angular period T− ≈

∣

∣

∣2π/ω(2)
−

∣

∣

∣ = 6.313,
slightly faster than the harmonic oscillator estimate in (2.20). The multiplier by which
a trajectory that starts near the ‘−’ equilibrium point spirals away per one rotation is
Λradial ≈ exp(µ(2)

− T−) = 1.84. The µ(1)
− eigenvalue is essentially the z expansion cor-

recting parameter c introduced in (2.22). For each Poincaré section return, the trajec-
tory is contracted into the stable manifold by the amazing factor of Λ1 ≈ exp(µ(1)

− T−) =
10−15.6 (!).

Suppose you start with a 1 mm interval pointing in the Λ1 eigen-direction. Af-
ter one Poincaré return the interval is of the order of 10−4 fermi, the furthest we will
get into subnuclear structure in this book. Of course, from the mathematical point of
view, the flow is reversible, and the Poincaré return map is invertible. (continued in
example 11.3)

(R. Paškauskas)

Example 4.6 Stability of Lorenz flow equilibria: (continued from example 4.1) A
glance at figure 3.4 suggests that the flow is organized by its 3 equilibria, so let us have
a closer look at their stable/unstable manifolds.

The EQ0 equilibrium stability matrix (4.30) evaluated at xEQ0 = (0, 0, 0) is block-
diagonal. The z-axis is an eigenvector with a contracting eigenvalue λ(2) = −b. From

remark 9A.13
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Figure 4.6: (a) A perspective view of the lin-
earized Lorenz flow nearEQ1 equilibrium, see fig-
ure 3.4(a). The unstable eigenplane ofEQ1 is
spanned by{Ree(1) , Im e(1)}; the stable subspace
by the stable eigenvectore(3). (b) Lorenz flow
near theEQ0 equilibrium: unstable eigenvector
e(1), stable eigenvectorse(2), e(3). Trajectories ini-
tiated at distances 10−8 · · · 10−12, 10−13 away from
thez-axis exit finite distance fromEQ0 along the
(e(1),e(2)) eigenvectors plane. Due to the strongλ(1)

expansion, theEQ0 equilibrium is, for all practical
purposes, unreachable, and theEQ1 → EQ0 hete-
roclinic connection never observed in simulations
such as figure2.5. (E. Siminos; continued in fig-
ure11.8.)

(a) (b)

x
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eH2L

eH3L
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- 0.5
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10-12

10-11

10-10
10-9

10-8

(4.41) it follows that all [x, y] areas shrink at the rate −(σ+1). Indeed, the [x, y] subma-
trix

A− =

(

−σ σ
ρ −1

)

(4.36)

has a real expanding/contracting eigenvalue pair λ(1,3) = −(σ+1)/2±
√

(σ − 1)2/4+ ρσ,
with the right eigenvectors e(1), e(3) in the [x, y] plane, given by (either) column of the
projection operator

Pi =
A− − λ( j)1
λ(i) − λ( j)

=
1

λ(i) − λ( j)

(

−σ − λ( j) σ

ρ −1− λ( j)

)

, i , j ∈ {1, 3} . (4.37)

EQ1,2 equilibria have no symmetry, so their eigenvalues are given by the roots
of a cubic equation, the secular determinant det (A− λ1) = 0:

λ3 + λ2(σ + b+ 1)+ λb(σ + ρ) + 2σb(ρ − 1) = 0 . (4.38)

For ρ > 24.74, EQ1,2 have one stable real eigenvalue and one unstable complex con-
jugate pair, leading to a spiral-out instability and the strange attractor depicted in fig-
ure 2.5.

All numerical plots of the Lorenz flow are carried out here with the Lorenz pa-
rameters set to σ = 10, b = 8/3, ρ = 28. We note the corresponding stability expo-
nents for future reference,

EQ0 : (λ(1), λ(2), λ(3)) = ( 11.83, − 2.666, −22.83 )
EQ1 : (µ(1) ± i ω(1), λ(3)) = ( 0.094 ± i 10.19, −13.85 ).

(4.39)

We also note the rotation period TEQ1 = 2π/ω(1) about EQ1 and the associated expan-
sion/contraction multipliers Λ(i) = exp(µ( j)TEQ1) per spiral-out turn:

TEQ1 = 0.6163, (Λ(1),Λ(3)) = ( 1.060, 1.957× 10−4 ) . (4.40)

We learn that the typical turnover time scale in this problem is of the order T ≈ TEQ1 ≈ 1
(and not, let us say, 1000, or 10−2). Combined with the contraction rate (4.41), this tells
us that the Lorenz flow strongly contracts state space volumes, by factor of ≈ 10−4 per
mean turnover time.
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In the EQ1 neighborhood, the unstable manifold trajectories slowly spiral out,
with a very small radial per-turn expansion multiplier Λ(1) ≃ 1.06 and a very strong
contraction multiplier Λ(3) ≃ 10−4 onto the unstable manifold, figure 4.6 (a). This con-
traction confines, for all practical purposes, the Lorenz attractor to a 2-dimensional
surface, which is evident in figure 3.4.

In the xEQ0 = (0, 0, 0) equilibrium neighborhood, the extremely strong λ(3) ≃
−23 contraction along the e(3) direction confines the hyperbolic dynamics near EQ0 to
the plane spanned by the unstable eigenvector e(1), with λ(1) ≃ 12, and the slowest
contraction rate eigenvector e(2) along the z-axis, with λ(2) ≃ −3. In this plane, the
strong expansion along e(1) overwhelms the slow λ(2) ≃ −3 contraction down the z-axis,
making it extremely unlikely for a random trajectory to approach EQ0, figure 4.6 (b).
Thus, linearization describes analytically both the singular dip in the Poincaré sections
of figure 3.4 and the empirical scarcity of trajectories close to EQ0. (continued in
example 4.8)

(E. Siminos and J. Halcrow)

Example 4.7 Lorenz flow: Global portrait. (continued from example 4.6) As the
EQ1 unstable manifold spirals out, the strip that starts out in the section above EQ1 in
figure 3.4 cuts across the z-axis invariant subspace. This strip necessarily contains a
heteroclinic orbit that hits the z-axis head on, and in infinite time (but exponentially fast)
descends all the way to EQ0.

How? Since the dynamics is linear (see figure 4.6 (a)) in the neighborhood of
EQ0, there is no need to integrate numerically the final segment of the heteroclinic con-
nection. It is sufficient to bring a trajectory a small distance away from EQ0, continue
analytically to a small distance beyond EQ0 and then resume the numerical integration.

What happens next? Trajectories to the left of the z-axis shoot off along the e(1)

direction, and those to the right along −e(1). Given that xy > 0 along the e(1) direction,
the nonlinear term in the ż equation (2.18) bends both branches of the EQ0 unstable
manifold Wu(EQ0) upwards. Then . . . - never mind. We postpone completion of this
narrative to example 9A.13, where the discrete symmetry of Lorenz flow will help us
streamline the analysis. As we shall show, what we already know about the 3 equilib-
ria and their stable/unstable manifolds suffices to completely pin down the topology of
Lorenz flow. (continued in example 9A.13)

(E. Siminos and J. Halcrow)

Example 4.8 Lorenz flow state space contraction: (continued from exam-
ple 4.6) It follows from (4.30) and (4.29) that Lorenz flow is volume contracting,

∂ivi =

3
∑

i=1

λ(i)(x, t) = −σ − b− 1 , (4.41)

at a constant, coordinate- and ρ-independent rate, set by Lorenz to ∂ivi = −13.66 .
For periodic orbits and long time averages, there is no contraction/expansion along the
flow, λ(‖) = 0, and the sum of λ(i) is constant by (4.41). Thus, we compute only one
independent exponent λ(i). (continued in example 9A.13)
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Example 4.9 Stability of a 1-dimensional map: Consider the orbit {. . . , x−1, x0, x1, x2, . . .}
of a 1-dimensional map xn+1 = f (xn). When studying linear stability (and higher deriva-
tives) of the map, it is often convenient to use a local coordinate system za centered on
the orbit point xa, together with a notation for the map, its derivative, and, by the chain
rule, the derivative of the kth iterate f k evaluated at the point xa,



EXERCISES 92

Figure 4.7: A unimodal map, together with fixed
points 0, 1, 2-cycle 01 and 3-cycle 011.

xn+1

xn

110
01

011

10

101
0

1

x = xa + za , fa(za) = f (xa + za)

f ′a = f ′(xa)

Λ(x0, k) = f k
a
′ = f ′a+k−1 · · · f ′a+1 f ′a , k ≥ 2 . (4.42)

Here a is the label of point xa, and the label a+1 is shorthand for the next point b on the
orbit of xa, xb = xa+1 = f (xa). For example, a period-3 periodic point in figure 4.7 might
have label a = 011, and by x110 = f (x011) the next point label is b = 110.
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Example 4.10 Hénon map Jacobian matrix: For the Hénon map (3.17) the Jaco-
bian matrix for the nth iterate of the map is

Mn(x0) =
1

∏

m=n

(

−2axm b
1 0

)

, xm = f m
1 (x0, y0) . (4.43)

The determinant of the Hénon one time-step Jacobian matrix (4.43) is constant,

detM = Λ1Λ2 = −b. (4.44)

In this case only one eigenvalue Λ1 = −b/Λ2 needs to be determined. This is not an
accident; a constant Jacobian was one of desiderata that led Hénon to construct a map
of this particular form.
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Exercises

4.1. Trace-log of a matrix. Prove that

det M = etr ln M .

for an arbitrary nonsingular finite dimensional matrixM,
detM , 0.

4.2. Stability, diagonal case. Verify the relation (4.32)

Jt = etA = U−1etAD U , AD = UAU−1 .

4.3. State space volume contraction.

(a) Compute the Rössler flow volume contraction rate
at the equilibria.

(b) Study numerically the instantaneous∂ivi along a
typical trajectory on the Rössler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) of∂ivi . If you see regions
of local expansion, explain them.

(c) (optional) Color-code the points on the trajec-
tory by the sign (and perhaps the magnitude) of
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∂ivi − ∂ivi .

(d) Compute numerically the average contraction rate
(4.29) along a typical trajectory on the Rössler at-
tractor. Plot it as a function of time.

(e) Argue on basis of your results that this attractor is
of dimension smaller than the state spaced = 3.

(f) (optional) Start some trajectories on the escape
side of the outer equilibrium, and color-code the
points on the trajectory. Is the flow volume con-
tracting?

(continued in exercise20.10)

4.4. Topology of the Rössler flow. (continuation of exer-
cise3.1)

(a) Show that equation|det (A− λ1)| = 0 for Rössler
flow in the notation of exercise2.8can be written
as

λ3+λ2c (p∓−ǫ)+λ(p±/ǫ+1−c2ǫp∓)∓c
√

D = 0(4.45)

(b) Solve (4.45) for eigenvaluesλ± for each equilib-
rium as an expansion in powers ofǫ. Derive

λ−1 = −c+ ǫc/(c2 + 1)+ o(ǫ)
λ−2 = ǫc

3/[2(c2 + 1)] + o(ǫ2)
θ−2 = 1+ ǫ/[2(c2 + 1)] + o(ǫ)
λ+1 = cǫ(1− ǫ) + o(ǫ3)
λ+2 = −ǫ5c2/2+ o(ǫ6)
θ+2 =

√
1+ 1/ǫ (1+ o(ǫ))

(4.46)

Compare with exact eigenvalues. What are dy-
namical implications of the extravagant value of
λ−1? (continued as exercise13.7)

(R. Paškauskas)

4.5. Time-ordered exponentials. Given a time dependent
matrix A(t) check that the time-ordered exponential

J(t) = Te
∫ t

0
dτA(τ)

may be written as

J(t) =
∞
∑

m=0

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tm−1

0
dtmA(t1) · · ·A(tm)

and verify, by using this representation, thatJ(t) satisfies
the equation

J̇(t) = A(t)J(t),

with the initial conditionJ(0) = 1.

4.6. A contracting baker’s map. Consider a contracting
(or ‘dissipative’) baker’s map, acting on a unit square
[0, 1]2 = [0, 1] × [0, 1], defined by

(

xn+1
yn+1

)

=

(

xn/3
2yn

)

yn ≤ 1/2

(

xn+1
yn+1

)

=

(

xn/3+ 1/2
2yn − 1

)

yn > 1/2 .

This map shrinks strips by a factor of 1/3 in the x-
direction, and then it stretches (and folds) them by a fac-
tor of 2 in they-direction.

By how much does the state space volume contract for
one iteration of the map?
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