Chapter 6

Lyapunov exponents

namics: Is a given system ‘chaotic’? And if so, how chaoticllpoints in
a neighborhood of a trajectory converge toward the same, dhigi attrac-
tor is a fixed point or a limit cycle. However, if the attracierstrange, any two 131
trajectoriesx(t) = f'(xg) andx(t) + 6x(t) = f'(xg + 6xo) that start out very close to%emo: 6'1'
each other separate exponentially with time, and in a fiimte their separationIemar '
attains the size of the accessible state space.
This sensitivity to initial conditiongan be quantified as

example 2.3

I ET US APPLY OUr newly acquired tools to the fundamental diagnosticsyin d

| x() || =~ e[| 6xo (6.1)

where 4, the mean rate of separation of trajectories of the systernalled the
leadingLyapunov exponentin the limit of infinite time the Lyapunov exponent
is a global measure of the rate at which nearby trajectonesge, averaged over
the strange attractor. As it so often goes with easy ideasnis out that Lyapunov
exponents are not natural for study of dynamics, and we woaveé passed them
over in silence, were it not for so much literature that talk®ut them. So in a
textbook we are duty bound to explain what all the exciteneabout. But then
we round the chapterfiowith a scholarly remark almost as long as the chapter
itself: we do not recommend that you evaluate Lyapunov egptsnand Lyapunov
singular vectors. Compute the stability expongrisvariant vectors.

6.1 Stretch, strain and twirl

Diagonalizing the matrix: that's the key to the whole thing.
— Governor Arnold Schwarzenegger

In general the Jacobian matrikis neither diagonal, nor diagonalizable, nor cop (ﬁb
stant along the trajectory. What is a geometrical meaninthefmapping of a
neighborhood byl? Here the continuum mechanics insights are helpful, in par-
ticular the polar decomposition whictifards a visualization of the linearization
of a flow as a mapping of the initial ball into an ellipsoid (figi.1).

First, a few definitions: A symmetricd[x d] matrix Q is positive definite
Q > 0, if X"Qx > 0 for any nonzero vector € RY. Q is negative definite
Q < 0, if x"Qx < 0 for any nonzero vectox. Alternatively, Q is a positive
(negative) definite matrix if all its eigenvalues are pesit(negative). A matrix
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Figure 6.1: The linearized flow maps a swarm
of initial points in an infinitesimal spherical neigh-
borhood of squared radiusx’ at x, into an ellip-
soid 6x7(J7J) 6x at x(t) a finite timet later, rotated
and stretchedompressed along the principal axes by
strechegoj} .

R is orthogonal ifRTR = 1, and proper orthogonal if d& = +1. Here the
superscript” denotes the transpose. For example, (- -, Xq) iS a row vector,
(X1, -, Xq4) " is a column vector.

By the polar decomposition theorem, a deformatibcan be factored into a
rotationR and a right left stretch tensod / V,

remark 6.2

J=RU=VR, (6.2)

whereR is a proper-orthogonal matrix and, V are symmetric positive definite
matrices with strictly positive real eigenvalugsy, o, -- -, 0¢} called principal
stretcheq(singular values, Hankel singular values), and with ortroral eigen-
vector bases,

U = ou®,  u® @, ...y

v ) oV | TORVORNEYCOLIS (6.3)

o > 1 for stretching and &< o < 1 for compression along the directiaf
or V), {uD} are theprincipal axes of strairat the initial pointxo; {V{)} are the
principal axes of strain at the present placement-rom a geometric point of
view, J maps the unit sphere into an ellipsoid, fig@réd; the principal stretches
are then the lengths of the semiaxes of this ellipsoid. Ttegiom matrixR carries
the initial axes of strain into the present ongs; RUR" . The eigenvalues of the

remark 6.1
right Cauchy-Green strain tensor: J7J = U?
left Cauchy-Green strain tensor: J J7 = V/? (6.4)

are{aj?}, the squares of principal stretches.
example 6.2
W p. 104
6.2 Lyapunov exponents

(J. Mathiesen and P. Cvitanovit)
The mean growth rate of the distan¢éx(t) || /|| dxo || between neighboring
trajectories §.1) is given by the leadind.yapunov exponenwhich can be esti-
mated for long (but not too long) tinteas

U1 lexl
€ 16X

(6.5)



CHAPTER 6. LYAPUNOV EXPONENTS 99

8%

Figure 6.2: A long-time numerical calculation of the
leading Lyapunov exponent requires rescaling the dis-
tance in order to keep the nearby trajectory separation
within the linearized flow range.

0%

For notational brevity we shall often suppress the depergleh quantities such
asd = A(Xg, 1), 9X(t) = 6X(Xp,t) on the initial pointxg. One can usef(5) as is,
take a small initial separatiafxg, track the distance between two nearby trajecto-
ries until|| §x(t1) || gets significantly big, then recotgl; = In(|| sx(t) |l / Il 6X%oll),
rescalesx(ty) by factor§xg/6x(t1), and continue add infinitum, as in figuée2,
with the leading Lyapunov exponent given by

1
A:t"—TonMi’ t= Zti . (6.6)

Deciding what is a safe 'linear range’, the distance beyohttlwvthe separation
vectordx(t) should be rescaled, is a dark art.

We can start out with a smaik and try to estimate the leading Lyapunov ex-
ponenta from (6.6), but now that we have quantified the notion of linear stgpbili
in chapterd, we can do better. The problem with measuring the growthafiiee
distance between two points is that as the points sepanatey¢asurement is less
and less a local measurement. In the study of experimemnealgeries this might
be the only option, but if we have equations of motion, a ety is to measure
the growth rate of vectors transverse to a given orbit.

Given the equations of motion, for infinitesimat we know thesx;(t)/6x;(0)
ratio exactly, as this is by definition the Jacobian matrix

i 9% _ ox(t) _
6x(0)-0 6X;(0)  0x;(0)

‘]itj (x0)
so the leading Lyapunov exponent can be computed from thariiration 4.16)

1 ]| 3'(x0) 6% ||

. .1 N A
A(x) = lim Z1n = lim = In(A7J'7'7) . (6.7)

6ol toe0 2t

In this formula the scale of the initial separation drops, @uly its orientation
given by the initial orientation unit vector= §xp/ || 6%o || matters. If one does not
care about the orientation of the separation vector betaéegectory and its per-
turbation, but only its magnitude, one can intergfelsxo |{2 = 6% (I 6%,

as theerror correlation matrix In the continuum mechanics language, the right
Cauchy-Green strain tensdrJ (6.4) is the natural object to describe how lin-
earized neighborhoods deform. In the theory of dynamicsiesys thestretches

of continuum mechanics are called thiwite-time Lyapunowr characteristicex-
ponents,

A%, ;1) = %In | 3| = %In(ﬁTJtTJtﬁ) : (6.8)
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Figure 6.3: A numerical computation of the loga-
rithm of the stretcm™(J3*7JY)f in formula 6.10) for the

Rossler flow 2.23), plotted as a function of the Rossler
time units. The slope is the leading Lyapunov exponent
1~ 0.09. The exponent is positive, so numerics lends’
credence to the hypothesis that the Rossler attractor ig
chaotic. The big unexplained jump illustrates perils of?

Lyapunov exponents numerics. (J. Mathiesen)

They depend on the initial pointy and on the direction of the unit vector ~
IRl = 1 at the initial time. If this vector is aligned along thi principal stretch,
A = u® | then the corresponding finite-time Lyapunov exponent @éstretching)

is given by

1i06:1) = 206.0D51) = T 7y (x7). 6.9)

We do not need to compute the strain tensor eigenbasis tomde&ethe leading
Lyapunov exponent

A%, 1) = lim % In| 3| = lim % In(ATJ'7J'A) (6.10)

as expanding the initial orientation in the strain tensgeebasis.3), i = X.(A -
uMu® | we have

d
ATITIN = Z(ﬁ U262 = (- U202 (1+ O(c3/0?))

i=1
with stretches ordered by decreasing magnitade; o2 > o3 - --. Forlong times
the largest stretch dominates exponentiallyari(), provided the orientation 6f
the initial separation was not chosen perpendicular to tmikant expanding
eigen-directionu®. Furthermore, for long timed'f is dominated by the largest
stability multiplier A1, so the leading Lyapunov exponent is

A(Xo)

1 . (-
lim = fIn || A- €D || +InAs(x0, t)] + Oe 2 ~)))

1
tI|m T In|A1(Xo0, V)|, (6.11)

whereA1(xo, t) is the leading eigenvalue df(x). The leading Lyapunov expo-
nent now follows from the Jacobian matrix by numerical inédign of @.10). The
eqguations can be integrated accurately for a finite timecéére infinite time limit
of (6.7) can be only estimated from a finite set of evaluationg lof(d™ J'"J'A) as
function of time, such as figui@ 3 for the Rossler flowZ.23).

As the local expansion and contraction rates vary along tve the tempo-
ral dependence exhibits small and large humps. The sudtleo falow value
in figure 6.3 is caused by a close passage to a folding point of the attraao
illustration of why numerical evaluation of the Lyapunoyexents, and proving
the very existence of a strange attractor isfAdlilt problem. The approximately
monotone part of the curve you can use (at your own peril)timese the leading
Lyapunov exponent by a straight line fit.
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As we can already see, we are courtinffidilties if we try to calculate the
Lyapunov exponent by using the definitiob.11) directly. First of all, the state
space is dense with atypical trajectories; for exampleg ihappens to lie on a
periodic orbitp, A would be simply Ifo,1|/Tp, a local property of cycleg, not
a global property of the dynamical system. Furthermorenévey happens to
be a ‘generic’ state space point, it is still not obvious that, 1(Xo, t)I/t should
be converging to anything in particular. In a Hamiltoniasteyn with coexisting
elliptic islands and chaotic regions, a chaotic trajectgets captured in the neigh-
borhood of an elliptic island every so often and can stayetfier arbitrarily long
time; as there the orbit is nearly stable, during such egidofdr, 1(Xo, t)l/t can
dip arbitrarily close to 0. For state space volume non-preserving flows the trajec-
tory can traverse locally contracting regions, anidrii (xo, t)l/t can occasionally
go negative; even worse, one never knows whether the asyimatwactor is pe-

riodic or ‘chaotic’, so any finite time estimate #fmight be dead wrong. exercise 6.3

Résum é

Let us summarize the ‘stability’ chaptedso 6. A neighborhood of a trajectory
deforms as it is transported by a flow. In the linear approtioma the stabil-
ity matrix A describes the sheaririggcompressior expansion of an infinitesimal
neighborhood in an infinitesimal time step. The deformatfier a finite timet

is described by the Jacobian matd% whose eigenvalues (stability multipliers)
depend on the choice of coordinates.

Floguet multipliersandeigen-vectorsre intrinsic, invariant properties of finite-
time, compact invariant solutions, such as periodic owdniis relative periodic or-
bits; they are explained in chapterStability exponentgl] are the corresponding
long-time limits estimated from typical ergodic trajecssr.

Finite-time Lyapunov exponents and the associatattipal axesare defined
in (6.8). Oseleded.yapunov exponentre thet — oo limit of these.

Commentary

Remark 6.1 Lyapunov exponents are uncool, and ChaosBook does not use them at
all. Eigenvectorg eigenvalues are suited to study of iterated forms of a mastixh

as Jacobian matrid' or exponential expf), and are thus a natural tool for study of
dynamics. Principal vectors are not, they are suited toystifidhe matrixJt itself. The
polar (singular value) decomposition is convenient for etigal work (any matrix, square
or rectangular, can be brought to such form), as a way of afitigthe &ective rank of
matrix J by separating the large, significant singular values froendinall, negligible
singular values.

Lorenz 2, 3, 4] pioneered the use of singular vectors in chaotic dynanwésfound
the Goldhirsch, Sulem and Orszad gxposition very clear, and we also enjoyed Hoover
and Hoover §] pedagogical introduction to computation of Lyapunov dpedy the
method of Lagrange multipliers. Greene and Kithdiscuss singular values vs. Jacobian
matrix eigenvalues. While they conclude that “singulaiuesl rather than eigenvalues,
are the appropriate quantities to consider when studyiagtihsystems,” we beg to dif-
fer: their Fig. 3, which illustrates various semiaxes of &igsoid in the case of Lorenz
attractor, as well as the figures in ref],[are a persuasive argument fastusing singular
values. The covariant vectors are tangent to the attraghile the principal axes of strain
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point away from it. It is the perturbations within the atti@cthat describe the long-time
dynamics; these perturbations lie within the subspacersghby the leading covariant
vectors.

That is the first problem with Lyapunov exponents: stretdog$ arenot relatedto
the Jacobian matrid' eigenvaluegAj} in any simple way. The eigenvectops?} of
strain tensord™J that determine the orientation of the principal axes, as#irdit from
the Jacobian matrix eigenvectqes)}. The strain tensod™J satisfies no multiplicative
semigroup property such ag.20; unlike the Jacobian matrixs(3), the strain tensor
JT'J" for therth repeat of a prime cyclp is not given by a power ad™J for the single
traversal of the prime cyclp. Under time evolution the covariant vectors map forward
asel) — Jel) (transport of the velocity vecto#(9) is an example). In contrast, the
principal axes have to be recomputed from the scratch fdr gaet.

If Lyapunov exponents are not dynamical, why are they indad@ frequently? One
reason is fear of mathematics: the monumental and theredogly read Oselede@,[9]
Multiplicative Ergodic Theorem states that the limifs4-6.11) exist for almost all points
Xo and vectorsn, and that there are at modtdistinct Lyapunov exponent§(xp) asni
ranges over the tangent space. To intimidate the readérwefuvte note in passing that
“moreover there is a fibration of the tangent spa@iga, L1(x) c L?(X) ¢ --- c L'(x) =
TxM, such that if" e L'(x) \ L'"}(x) the limit (6.7) equalsi(x).” Oseledec proof is
important mathematics, but the method is not helpful inielating dynamics.

The other reason to study singular vectors is physical aactioal: Lorenz 2, 3, 4]
was interested in the propagation of errors, i.e., how dagsual of initial pointsx(0) +
6x(0), distributed as a Gaussian with covariance ma@(®) = (5x(0) 6x(0)™), evolve in
time? For linearized flow with initial isotropic distriboth Q(0) = €1 the answer is given
by the left Cauchy-Green strain tensor,

Q(t) = (6x(0)J J76x(0)") = I Q) I" =€ J". (6.12)

The deep problem with Lyapunov exponents is that the intitiefinition 6.5 de-
pends on the notion of distanféx(t) || between two state space points. The Euclidean (or
L?) distance is natural in the theory ob3Zontinuous media, but what the norm should be
for other state spaces is far from clear, especially in higtedsions and for PDEs. As we
have shown in seck.3 Floquet multipliers are invariant under all local smootimtinear
coordinate transformations, they are intrinsic to the flamgl the Floquet eigenvectors
are independent of the definition of the normj. [In contrast, the stretchés-;}, and the
right/left principal axes depend on the choice of the norm. Appamtiiem to dynamics
destroys its invariance.

There is probably no name more liberally and more confuginged in dynamical
systems literature than that of Lyapunov (AKA Liapunov)n@ilar valued principal
axes of strain tensai'J (objects natural to the theory of deformations) and theiglo
time limits can indeed be traced back to the thesis of Lyap(ihg 8], and justly deserve
sobriquet ‘Lyapunov’. Oseledeé&]refers to them as ‘Liapunov characteristic numbers’,
and Eckmann and Ruell€ ]] as ‘characteristic exponents’. The natural objects in dy-
namics are the linearized flow Jacobian matfixand its eigenvalues and eigenvectors
(stability multipliers and covariant vectors). Why shothey also be called ‘Lyapunov’?
The Jacobian matrix eigenvectdes’} (the covariant vectors) are often called ‘covariant
Lyapunov vectors’, ‘Lyapunov vectors’, or ‘stationary lyianov basis’ [ 7] even though
they are notthe eigenvectors that correspond to the Lyapunov exponéeftiat’s just
confusing, for no good reason - the Lyapunov pagpéf [s not about the linear stability
Jacobian matri¥, it is about]™J and the associated principal axes. However, Trevisan [
refers to covariant vectors as ‘Lyapunov vectors’, and Radod] calls them ‘Lyapunov
modes’, motivated by thinking of these eigenvectors as agdization of ‘normal modes’
of mechanical systems, whereasitty‘Lyapunov mode’ Takeuchi and Chat&4] mean
{4;,eD}, the set of théth stability exponent and the associated covariant ve¢tani-
hiro et al.[15] call the eigenvalues of stability matriX (3), evaluated at a given instant in
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time, the ‘local Lyapunov exponents’, and they refer to thieos stability exponentsi(8)
for a finite time Jacobian matrix as the ‘intermediate Lyapuexponent’, “averaged”
over a finite time period. Then there is the unrelated, butemtly attributed ‘Lyapunov
equation’ of control theory, which is the linearization bft‘Lyapunov function’, and
there is the ‘Lyapunov orbit’ of celestial mechanics, egljirunrelated to any of objects
discussed above.

In short: we do not recommend that you evaluate Lyapunov msmpis; compute
stability exponents and the associated covariant veatsisad. Cost less and gets you
more insight. Whatever you call your exponents, please slatrly how are they being
computed. While the Lyapunov exponents are a diagnostictiaos, we are doubtful
of their utility as means of predicting any observables ofgital significance. This is
the minority position - in the literature one encounters ynprovocative speculations,
especially in the context of foundations of statistical hucs (‘hydrodynamic’ modes)
and the existence of a Lyapunov spectrum in the thermodynbmit of spatiotemporal
chaotic systems.

Remark 6.2 Matrix decompositions of the Jacobian matrix. A ‘polar decomposi-
tion’ of a matrix or linear operator is a generalization oé tfactorization of complex
number into the polar formg = r exp). Matrix polar decomposition is explained in
refs. [L6, 17, 18, 19). One can go one step further than the polar decomposigidiato

a product of a rotation and a symmetric matrix by diagonadjzhe symmetric matrix by
a second rotation, and thus express any matrix with realeziésrin the singular value
decomposition (SVD) form

J=RDR,", (6.13)

whereD is diagonal and real, arig;, R, are orthogonal matrices, unique up to permuta-
tions of rows and columns. The diagonal eleméots o, . .., o4} of D are thesingular
valuesof J.

Though singular values decomposition provides geomeinsgghts into how tan-
gent dynamics acts, many popular algorithms for asympsteigility analysis (computing
Lyapunov spectrum) employ another standard matrix decsitipo, the QR scheme[],
through which a nonsingular matrikis (uniquely) written as a product of an orthogonal
and an upper triangular matrik= QR This can be thought as a Gram-Schmidt decom-
position of the column vectors df The geometric meaning @Rdecomposition is that
the volume of thal-dimensional parallelepiped spanned by the column vectaidias a
volume coinciding with the product of the diagonal elemenftthe triangular matriR,
whose role is thus pivotal in algorithms computing Lyapuspectra 2 1].

Remark 6.3 Numerical evaluation of Lyapunov exponents. There are volumes of
literature on numerical computation of the Lyapunov expisesee for example ref2],

11, 23, 24]. For early numerical methods to compute Lyapunov vectses, refs. 75,

26]. The drawback of the Gram-Schmidt method is that the vecorconstructed are
orthogonal by fiat, whereas the staplenstable eigenvectors of the Jacobian matrix are
in general not orthogonal. Hence the Gram-Schmidt vect@sat covariant, i.e., the
linearized dynamics does not transport them into the eigetovs of the Jacobian matrix
computed further downstream. For computation of covasantors, see refs2[/, 28].

6.3 Examples

The reader is urged to study the examples collected hereetlionrback to the
main text, click on [click to return] pointer on the margin.
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Example 6.1 Lyapunov exponent.  Given a 1-dimensional map, consider observable
A(X) = In|f'(X)| and integrated observable

n-1
A'(x) = > Inlf (%) = In
k=0

i fn
[ (xk>l = In|Z-00)]
The Lyapunov exponent is the average rate of the expansion
1S
A(x0) = lim kz(]) InIf ().
See sect. 6.2 for further details.

Example 6.2 Singular values and geometry of deformations: Suppose we are
in three dimensions, and the Jacobian matrix J is not singular (yet another confusing
usage of word ‘singular’), so that the diagonal elements of D in (6.13) satisfy o1 > 0 >
o3 > 0. Consider how J maps the unit ball S = {x € R*|x* = 1}. V is orthogonal
(rotation/reflection), so V'S is still the unit sphere: then D maps S onto ellipsoid S =
{y € R®|y3/o3 + y3/05 + y3/05 = 1} whose principal axes directions -y coordinates -
are determined by V. Finally the ellipsoid is further rotated by the orthogonal matrix U.
The local directions of stretching and their images under J are called the right-hand and
left-hand singular vectors for J and are given by the columns inV and U respectively:

it is easy to check that Jw = oUy, if i, Ux are the k-th columns of V and U.

click to return: p. 98

Exercises

6.1.

6.2.

6.3.

Principal stretches.  Considerdx = f(xp + dxg) —
f(Xo), and show thatlx = Mdxy+ higher order terms
when ||[dx|| < 1. (Hint: use Taylor expansion for
a vector function.) Herelldx|| = Vdx - dxg is the
norm induced by the usual Euclidean dot (inner) prod-
uct. Then letdxy = (d¢)e and show thafdx|| = df and
[ldX| = oid¢. (Christovet al.[1])

Eigenvalues of the Cauchy-Green strain tensor.
Show thatx; = (riz using the definition ofZ, the polar
decomposition theorem, and the properties of eigenval-
ues. (Christowet al.[1])

How unstable is the Henon attractor?

(a) Evaluate numerically the Lyapunov expongbly
iterating some 100,000 times or so the HEnon map

[x’ }_[ 1-ax+y
Yy | 7| bx

fora=14,b=0.3.

(b) Would you describe the result as a 'strange attrac-
tor'? Why?

(c) How robust is the Lyapunov exponent for the
Hénon attractor? Evaluate numerically the Lya-
punov exponent by iterating the Hénon map for
a=1.39945219ph = 0.3. How much do you now
trust your result for part (a) of this exercise?

(d) Re-examine this computation by plotting the iter-
ates, and erasing the plotted points every 1000 it-
erates or so. Keep at it until the 'strange’ attractor
vanishes like the smile of the Chesire cat. What
replaces it? Do a few numerical experiments to
estimate the length of typical transient before the
dynamics settles into this long-time attractor.

(e) Use your Newton search routine to confirm exis-
tence of this attractor. Compute its Lyapunov ex-
ponent, compare with your numerical result from
above. What is the itinerary of the attractor.

(f) Would you describe the result as a 'strange attrac-
tor'? Do you still have confidence in claims such
as the one made for the part (b) of this exercise?
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6.4. Rossler attractor Lyapunov exponents. (c) Give your best estimate af. The literature gives
surprisingly inaccurate estimates - see whether

(a) Evaluate numerically the expanding Lyapunov ex- you can do better.
ponentle of the Rossler attractol(23. (d) Estimate the contracting Lyapunov exponggat

(b) Plot your own version of figuré.3 Do not worry Even though it is much smaller thal, a glance
if it looks different, as long as you understand why at the stability matrix4.30) suggests that you can
your plot looks the way it does. (Remember the probably getit by integrating the infinitesimal vol-
nonuniform contractiofexpansion of figurd.3) ume along a long-time trajectory, as #129.
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