
Chapter 6

Lyapunov exponents

L et us apply our newly acquired tools to the fundamental diagnostics in dy-
namics: Is a given system ‘chaotic’? And if so, how chaotic? If all points in

example 2.3
a neighborhood of a trajectory converge toward the same orbit, the attrac-

tor is a fixed point or a limit cycle. However, if the attractoris strange, any two
section 1.3.1

trajectoriesx(t) = f t(x0) andx(t)+δx(t) = f t(x0 + δx0) that start out very close to
remark 6.1

each other separate exponentially with time, and in a finite time their separation
attains the size of the accessible state space.

Thissensitivity to initial conditionscan be quantified as

‖ δx(t) ‖ ≈ eλt ‖ δx0 ‖ (6.1)

whereλ, the mean rate of separation of trajectories of the system, is called the
leadingLyapunov exponent. In the limit of infinite time the Lyapunov exponent
is a global measure of the rate at which nearby trajectories diverge, averaged over
the strange attractor. As it so often goes with easy ideas, itturns out that Lyapunov
exponents are not natural for study of dynamics, and we wouldhave passed them
over in silence, were it not for so much literature that talksabout them. So in a
textbook we are duty bound to explain what all the excitementis about. But then
we round the chapter off with a scholarly remark almost as long as the chapter
itself: we do not recommend that you evaluate Lyapunov exponents and Lyapunov
singular vectors. Compute the stability exponents/ covariant vectors.

6.1 Stretch, strain and twirl

Diagonalizing the matrix: that’s the key to the whole thing.
— Governor Arnold Schwarzenegger

In general the Jacobian matrixJ is neither diagonal, nor diagonalizable, nor con-
stant along the trajectory. What is a geometrical meaning ofthe mapping of a
neighborhood byJ? Here the continuum mechanics insights are helpful, in par-
ticular the polar decomposition which affords a visualization of the linearization
of a flow as a mapping of the initial ball into an ellipsoid (figure 6.1).

First, a few definitions: A symmetric [d×d] matrix Q is positive definite,
Q > 0, if x⊤Qx > 0 for any nonzero vectorx ∈ Rd. Q is negative definite,
Q < 0, if x⊤Qx < 0 for any nonzero vectorx. Alternatively, Q is a positive
(negative) definite matrix if all its eigenvalues are positive (negative). A matrix
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Figure 6.1: The linearized flow maps a swarm
of initial points in an infinitesimal spherical neigh-
borhood of squared radiusδx2 at x0 into an ellip-
soid δx⊤(J⊤J) δx at x(t) a finite time t later, rotated
and stretched/compressed along the principal axes by
streches{σ j} .
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x(t)+     x

R is orthogonal ifR⊤R = 1, and proper orthogonal if detR = +1. Here the
superscript⊤ denotes the transpose. For example, (x1, · · · , xd) is a row vector,
(x1, · · · , xd)⊤ is a column vector.

By the polar decomposition theorem, a deformationJ can be factored into a
rotationRand a right/ left stretch tensorU / V,

remark 6.2

J = RU = VR, (6.2)

whereR is a proper-orthogonal matrix andU, V are symmetric positive definite
matrices with strictly positive real eigenvalues{σ1, σ2, · · · , σd} calledprincipal
stretches(singular values, Hankel singular values), and with orthonormal eigen-
vector bases,

U u(i) = σiu
(i) , {u(1), u(2), · · · , u(d)}

V v(i) = σiv
(i) , {v(1), v(2), · · · , v(d)} . (6.3)

σi > 1 for stretching and 0< σi < 1 for compression along the directionu(i)

or v(i). {u( j)} are theprincipal axes of strainat the initial pointx0; {v( j)} are the
principal axes of strain at the present placementx. From a geometric point of
view, J maps the unit sphere into an ellipsoid, figure6.1; the principal stretches
are then the lengths of the semiaxes of this ellipsoid. The rotation matrixRcarries
the initial axes of strain into the present ones,V = RUR⊤ . The eigenvalues of the

remark 6.1

right Cauchy-Green strain tensor: J⊤J = U2

left Cauchy-Green strain tensor: J J⊤ = V2 (6.4)

are{σ2
j }, the squares of principal stretches.

example 6.2

p. 104

6.2 Lyapunov exponents

(J. Mathiesen and P. Cvitanović)
The mean growth rate of the distance‖ δx(t) ‖ / ‖ δx0 ‖ between neighboring

trajectories (6.1) is given by the leadingLyapunov exponentwhich can be esti-
mated for long (but not too long) timet as

λ ≃ 1
t

ln
‖ δx(t) ‖
‖ δx(0)‖ (6.5)
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Figure 6.2: A long-time numerical calculation of the
leading Lyapunov exponent requires rescaling the dis-
tance in order to keep the nearby trajectory separation
within the linearized flow range.
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For notational brevity we shall often suppress the dependence of quantities such
asλ = λ(x0, t), δx(t) = δx(x0, t) on the initial pointx0. One can use (6.5) as is,
take a small initial separationδx0, track the distance between two nearby trajecto-
ries until‖ δx(t1) ‖ gets significantly big, then recordt1λ1 = ln(‖ δx(t1) ‖ / ‖ δx0 ‖),
rescaleδx(t1) by factorδx0/δx(t1), and continue add infinitum, as in figure6.2,
with the leading Lyapunov exponent given by

λ = lim
t→∞

1
t

∑

i

tiλi , t =
∑

i

ti . (6.6)

Deciding what is a safe ’linear range’, the distance beyond which the separation
vectorδx(t) should be rescaled, is a dark art.

We can start out with a smallδx and try to estimate the leading Lyapunov ex-
ponentλ from (6.6), but now that we have quantified the notion of linear stability
in chapter4, we can do better. The problem with measuring the growth rateof the
distance between two points is that as the points separate, the measurement is less
and less a local measurement. In the study of experimental time series this might
be the only option, but if we have equations of motion, a better way is to measure
the growth rate of vectors transverse to a given orbit.

Given the equations of motion, for infinitesimalδx we know theδxi(t)/δx j(0)
ratio exactly, as this is by definition the Jacobian matrix

lim
δx(0)→0

δxi(t)
δx j(0)

=
∂xi(t)
∂x j(0)

= Jt
i j (x0) ,

so the leading Lyapunov exponent can be computed from the linearization (4.16)

λ(x0) = lim
t→∞

1
t

ln

w

w

w

w

w
Jt(x0) δx0

w

w

w

w

w

‖ δx0 ‖
= lim

t→∞
1
2t

ln
(

n̂⊤Jt⊤Jtn̂
)

. (6.7)

In this formula the scale of the initial separation drops out, only its orientation
given by the initial orientation unit vector ˆn = δx0/ ‖ δx0 ‖matters. If one does not
care about the orientation of the separation vector betweena trajectory and its per-
turbation, but only its magnitude, one can interpret

w

w

w

w

w
Jtδx0

w

w

w

w

w

2
= δx0

⊤(Jt⊤Jt) δx0 ,

as theerror correlation matrix. In the continuum mechanics language, the right
Cauchy-Green strain tensorJ⊤J (6.4) is the natural object to describe how lin-
earized neighborhoods deform. In the theory of dynamical systems thestretches
of continuum mechanics are called thefinite-time Lyapunovor characteristicex-
ponents,

λ(x0, n̂; t) =
1
t

ln
w

w

w

w

w
Jtn̂
w

w

w

w

w
=

1
2t

ln
(

n̂⊤Jt⊤Jtn̂
)

. (6.8)
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Figure 6.3: A numerical computation of the loga-
rithm of the stretch ˆn⊤(Jt⊤Jt)n̂ in formula (6.10) for the
Rössler flow (2.23), plotted as a function of the Rössler
time units. The slope is the leading Lyapunov exponent
λ ≈ 0.09. The exponent is positive, so numerics lends
credence to the hypothesis that the Rössler attractor is
chaotic. The big unexplained jump illustrates perils of
Lyapunov exponents numerics. (J. Mathiesen)
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They depend on the initial pointx0 and on the direction of the unit vector ˆn,
‖ n̂‖ = 1 at the initial time. If this vector is aligned along theith principal stretch,
n̂ = u(i) , then the corresponding finite-time Lyapunov exponent (rateof stretching)
is given by

λ j(x0; t) = λ(x0, u
( j); t) =

1
t

lnσ j(x0; t). (6.9)

We do not need to compute the strain tensor eigenbasis to determine the leading
Lyapunov exponent,

λ(x0, n̂) = lim
t→∞

1
t

ln
w

w

w

w

w
Jtn̂
w

w

w

w

w
= lim

t→∞
1
2t

ln
(

n̂⊤Jt⊤Jtn̂
)

, (6.10)

as expanding the initial orientation in the strain tensor eigenbasis (6.3), n̂ =
∑

(n̂ ·
u(i))u(i) , we have

n̂⊤Jt⊤Jtn̂ =
d
∑

i=1

(n̂ · u(i))2σ2
i = (n̂ · u(1))2σ2

1

(

1+O(σ2
2/σ

2
1)
)

,

with stretches ordered by decreasing magnitude,σ1 > σ2 ≥ σ3 · · ·. For long times
the largest stretch dominates exponentially in (6.10), provided the orientation ˆn of
the initial separation was not chosen perpendicular to the dominant expanding
eigen-directionu(1). Furthermore, for long timesJtn̂ is dominated by the largest
stability multiplierΛ1, so the leading Lyapunov exponent is

λ(x0) = lim
t→∞

1
t

{

ln
w

w

w

w

w

w

n̂ · e(1)
w

w

w

w

w

w

+ ln |Λ1(x0, t)| +O(e−2(λ1−λ2)t)
}

= lim
t→∞

1
t

ln |Λ1(x0, t)| , (6.11)

whereΛ1(x0, t) is the leading eigenvalue ofJt(x0). The leading Lyapunov expo-
nent now follows from the Jacobian matrix by numerical integration of (4.10). The
equations can be integrated accurately for a finite time, hence the infinite time limit
of (6.7) can be only estimated from a finite set of evaluations of1

2 ln(n̂⊤Jt⊤Jtn̂) as
function of time, such as figure6.3 for the Rössler flow (2.23).

As the local expansion and contraction rates vary along the flow, the tempo-
ral dependence exhibits small and large humps. The sudden fall to a low value
in figure 6.3 is caused by a close passage to a folding point of the attractor, an
illustration of why numerical evaluation of the Lyapunov exponents, and proving
the very existence of a strange attractor is a difficult problem. The approximately
monotone part of the curve you can use (at your own peril) to estimate the leading
Lyapunov exponent by a straight line fit.
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As we can already see, we are courting difficulties if we try to calculate the
Lyapunov exponent by using the definition (6.11) directly. First of all, the state
space is dense with atypical trajectories; for example, ifx0 happens to lie on a
periodic orbitp, λ would be simply ln|σp,1|/Tp, a local property of cyclep, not
a global property of the dynamical system. Furthermore, even if x0 happens to
be a ‘generic’ state space point, it is still not obvious thatln |σp,1(x0, t)|/t should
be converging to anything in particular. In a Hamiltonian system with coexisting
elliptic islands and chaotic regions, a chaotic trajectorygets captured in the neigh-
borhood of an elliptic island every so often and can stay there for arbitrarily long
time; as there the orbit is nearly stable, during such episode ln|σp,1(x0, t)|/t can
dip arbitrarily close to 0+. For state space volume non-preserving flows the trajec-
tory can traverse locally contracting regions, and ln|σp,1(x0, t)|/t can occasionally
go negative; even worse, one never knows whether the asymptotic attractor is pe-
riodic or ‘chaotic’, so any finite time estimate ofλ might be dead wrong.

exercise 6.3

Résum é

Let us summarize the ‘stability’ chapters4 to 6. A neighborhood of a trajectory
deforms as it is transported by a flow. In the linear approximation, the stabil-
ity matrix A describes the shearing/ compression/ expansion of an infinitesimal
neighborhood in an infinitesimal time step. The deformationafter a finite timet
is described by the Jacobian matrixJt, whose eigenvalues (stability multipliers)
depend on the choice of coordinates.

Floquet multipliersandeigen-vectorsare intrinsic, invariant properties of finite-
time, compact invariant solutions, such as periodic orbitsand relative periodic or-
bits; they are explained in chapter5. Stability exponents[1] are the corresponding
long-time limits estimated from typical ergodic trajectories.

Finite-time Lyapunov exponents and the associatedprincipal axesare defined
in (6.8). OseledecLyapunov exponentsare thet → ∞ limit of these.

Commentary

Remark 6.1 Lyapunov exponents are uncool, and ChaosBook does not use them at
all. Eigenvectors/ eigenvalues are suited to study of iterated forms of a matrix, such
as Jacobian matrixJt or exponential exp(tA), and are thus a natural tool for study of
dynamics. Principal vectors are not, they are suited to study of the matrixJt itself. The
polar (singular value) decomposition is convenient for numerical work (any matrix, square
or rectangular, can be brought to such form), as a way of estimating the effective rank of
matrix J by separating the large, significant singular values from the small, negligible
singular values.

Lorenz [2, 3, 4] pioneered the use of singular vectors in chaotic dynamics.We found
the Goldhirsch, Sulem and Orszag [1] exposition very clear, and we also enjoyed Hoover
and Hoover [5] pedagogical introduction to computation of Lyapunov spectra by the
method of Lagrange multipliers. Greene and Kim [6] discuss singular values vs. Jacobian
matrix eigenvalues. While they conclude that “singular values, rather than eigenvalues,
are the appropriate quantities to consider when studying chaotic systems,” we beg to dif-
fer: their Fig. 3, which illustrates various semiaxes of theellipsoid in the case of Lorenz
attractor, as well as the figures in ref. [7], are a persuasive argument fornotusing singular
values. The covariant vectors are tangent to the attractor,while the principal axes of strain
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point away from it. It is the perturbations within the attractor that describe the long-time
dynamics; these perturbations lie within the subspace spanned by the leading covariant
vectors.

That is the first problem with Lyapunov exponents: stretches{σ j} arenot relatedto
the Jacobian matrixJt eigenvalues{Λ j} in any simple way. The eigenvectors{u( j)} of
strain tensorJ⊤J that determine the orientation of the principal axes, are distinct from
the Jacobian matrix eigenvectors{e( j)}. The strain tensorJ⊤J satisfies no multiplicative
semigroup property such as (4.20); unlike the Jacobian matrix (5.3), the strain tensor
J⊤rJr for the rth repeat of a prime cyclep is not given by a power ofJ⊤J for the single
traversal of the prime cyclep. Under time evolution the covariant vectors map forward
as e( j) → J e( j) (transport of the velocity vector (4.9) is an example). In contrast, the
principal axes have to be recomputed from the scratch for each timet.

If Lyapunov exponents are not dynamical, why are they invoked so frequently? One
reason is fear of mathematics: the monumental and thereforerarely read Oseledec [8, 9]
Multiplicative Ergodic Theorem states that the limits (6.7–6.11) exist for almost all points
x0 and vectors ˆn, and that there are at mostd distinct Lyapunov exponentsλi(x0) as n̂
ranges over the tangent space. To intimidate the reader further we note in passing that
“moreover there is a fibration of the tangent spaceTxM, L1(x) ⊂ L2(x) ⊂ · · · ⊂ Lr (x) =
TxM, such that ifn̂ ∈ Li(x) \ Li−1(x) the limit (6.7) equalsλi(x).” Oseledec proof is
important mathematics, but the method is not helpful in elucidating dynamics.

The other reason to study singular vectors is physical and practical: Lorenz [2, 3, 4]
was interested in the propagation of errors, i.e., how does acloud of initial pointsx(0)+
δx(0), distributed as a Gaussian with covariance matrixQ(0) =

〈

δx(0)δx(0)⊤
〉

, evolve in
time? For linearized flow with initial isotropic distribution Q(0) = ǫ1 the answer is given
by the left Cauchy-Green strain tensor,

Q(t) =
〈

δx(0) J J⊤δx(0)⊤
〉

= J Q(t) J⊤ = ǫ J J⊤ . (6.12)

The deep problem with Lyapunov exponents is that the intuitive definition (6.5) de-
pends on the notion of distance‖ δx(t) ‖ between two state space points. The Euclidean (or
L2) distance is natural in the theory of 3D continuous media, but what the norm should be
for other state spaces is far from clear, especially in high dimensions and for PDEs. As we
have shown in sect.5.3, Floquet multipliers are invariant under all local smooth nonlinear
coordinate transformations, they are intrinsic to the flow,and the Floquet eigenvectors
are independent of the definition of the norm [7]. In contrast, the stretches{σ j}, and the
right/left principal axes depend on the choice of the norm. Appending them to dynamics
destroys its invariance.

There is probably no name more liberally and more confusingly used in dynamical
systems literature than that of Lyapunov (AKA Liapunov). Singular values/ principal
axes of strain tensorJ⊤J (objects natural to the theory of deformations) and their long-
time limits can indeed be traced back to the thesis of Lyapunov [10, 8], and justly deserve
sobriquet ‘Lyapunov’. Oseledec [8] refers to them as ‘Liapunov characteristic numbers’,
and Eckmann and Ruelle [11] as ‘characteristic exponents’. The natural objects in dy-
namics are the linearized flow Jacobian matrixJt, and its eigenvalues and eigenvectors
(stability multipliers and covariant vectors). Why shouldthey also be called ‘Lyapunov’?
The Jacobian matrix eigenvectors{e( j)} (the covariant vectors) are often called ‘covariant
Lyapunov vectors’, ‘Lyapunov vectors’, or ‘stationary Lyapunov basis’ [12] even though
they are notthe eigenvectors that correspond to the Lyapunov exponents. That’s just
confusing, for no good reason - the Lyapunov paper [10] is not about the linear stability
Jacobian matrixJ, it is aboutJ⊤J and the associated principal axes. However, Trevisan [7]
refers to covariant vectors as ‘Lyapunov vectors’, and Radons [13] calls them ‘Lyapunov
modes’, motivated by thinking of these eigenvectors as a generalization of ‘normal modes’
of mechanical systems, whereas byith ‘Lyapunov mode’ Takeuchi and Chaté [14] mean
{λ j , e( j)}, the set of theith stability exponent and the associated covariant vector.Kuni-
hiro et al. [15] call the eigenvalues of stability matrix (4.3), evaluated at a given instant in
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time, the ‘local Lyapunov exponents’, and they refer to the set of stability exponents (4.8)
for a finite time Jacobian matrix as the ‘intermediate Lyapunov exponent’, “averaged”
over a finite time period. Then there is the unrelated, but correctly attributed ‘Lyapunov
equation’ of control theory, which is the linearization of the ‘Lyapunov function’, and
there is the ‘Lyapunov orbit’ of celestial mechanics, entirely unrelated to any of objects
discussed above.

In short: we do not recommend that you evaluate Lyapunov exponents; compute
stability exponents and the associated covariant vectors instead. Cost less and gets you
more insight. Whatever you call your exponents, please state clearly how are they being
computed. While the Lyapunov exponents are a diagnostic forchaos, we are doubtful
of their utility as means of predicting any observables of physical significance. This is
the minority position - in the literature one encounters many provocative speculations,
especially in the context of foundations of statistical mechanics (‘hydrodynamic’ modes)
and the existence of a Lyapunov spectrum in the thermodynamic limit of spatiotemporal
chaotic systems.

Remark 6.2 Matrix decompositions of the Jacobian matrix. A ‘polar decomposi-
tion’ of a matrix or linear operator is a generalization of the factorization of complex
number into the polar form,z = r exp(φ). Matrix polar decomposition is explained in
refs. [16, 17, 18, 19]. One can go one step further than the polar decomposition (6.2) into
a product of a rotation and a symmetric matrix by diagonalizing the symmetric matrix by
a second rotation, and thus express any matrix with real elements in the singular value
decomposition (SVD) form

J = R1DR2
⊤ , (6.13)

whereD is diagonal and real, andR1, R2 are orthogonal matrices, unique up to permuta-
tions of rows and columns. The diagonal elements{σ1, σ2, . . . , σd} of D are thesingular
valuesof J.

Though singular values decomposition provides geometrical insights into how tan-
gent dynamics acts, many popular algorithms for asymptoticstability analysis (computing
Lyapunov spectrum) employ another standard matrix decomposition, the QR scheme [20],
through which a nonsingular matrixJ is (uniquely) written as a product of an orthogonal
and an upper triangular matrixJ = QR. This can be thought as a Gram-Schmidt decom-
position of the column vectors ofJ. The geometric meaning ofQRdecomposition is that
the volume of thed-dimensional parallelepiped spanned by the column vectorsof J has a
volume coinciding with the product of the diagonal elementsof the triangular matrixR,
whose role is thus pivotal in algorithms computing Lyapunovspectra [21].

Remark 6.3 Numerical evaluation of Lyapunov exponents. There are volumes of
literature on numerical computation of the Lyapunov exponents, see for example refs. [22,
11, 23, 24]. For early numerical methods to compute Lyapunov vectors,see refs. [25,
26]. The drawback of the Gram-Schmidt method is that the vectors so constructed are
orthogonal by fiat, whereas the stable/ unstable eigenvectors of the Jacobian matrix are
in general not orthogonal. Hence the Gram-Schmidt vectors are not covariant, i.e., the
linearized dynamics does not transport them into the eigenvectors of the Jacobian matrix
computed further downstream. For computation of covariantvectors, see refs. [27, 28].

6.3 Examples

The reader is urged to study the examples collected here. To return back to the
main text, click on [click to return] pointer on the margin.
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Example 6.1 Lyapunov exponent. Given a 1-dimensional map, consider observable
λ(x) = ln | f ′ (x)| and integrated observable

An(x0) =
n−1
∑

k=0

ln | f ′(xk)| = ln

∣

∣

∣

∣

∣

∣

∣

n−1
∏

k=0

f
′
(xk)

∣

∣

∣

∣

∣

∣

∣

= ln
∣

∣

∣

∣

∣

∂ f n

∂x
(x0)
∣

∣

∣

∣

∣

.

The Lyapunov exponent is the average rate of the expansion

λ(x0) = lim
n→∞

1
n

n−1
∑

k=0

ln | f ′ (xk)| .

See sect. 6.2 for further details.

Example 6.2 Singular values and geometry of deformations: Suppose we are
in three dimensions, and the Jacobian matrix J is not singular (yet another confusing
usage of word ‘singular’), so that the diagonal elements of D in (6.13) satisfy σ1 ≥ σ2 ≥
σ3 > 0. Consider how J maps the unit ball S = {x ∈ R3 | x2 = 1}. V is orthogonal
(rotation/reflection), so V⊤S is still the unit sphere: then D maps S onto ellipsoid S̃ =
{y ∈ R3 | y2

1/σ
2
1 + y2

2/σ
2
2 + y2

3/σ
2
3 = 1} whose principal axes directions - y coordinates -

are determined by V. Finally the ellipsoid is further rotated by the orthogonal matrix U.
The local directions of stretching and their images under J are called the right-hand and
left-hand singular vectors for J and are given by the columns in V and U respectively:
it is easy to check that Jvk = σkuk, if vk, uk are the k-th columns of V and U.

click to return: p. 98

Exercises

6.1. Principal stretches. Considerdx = f (x0 + dx0) −
f (x0), and show thatdx = Mdx0+ higher order terms
when ‖dx0‖ ≪ 1. (Hint: use Taylor expansion for
a vector function.) Here,‖dx0‖ ≡

√
dx0 · dx0 is the

norm induced by the usual Euclidean dot (inner) prod-
uct. Then letdx0 = (dℓ)ei and show that‖dx0‖ = dℓ and
‖dx‖ = σidℓ. (Christovet al. [1])

6.2. Eigenvalues of the Cauchy-Green strain tensor.
Show thatκi = σ2

i using the definition ofC, the polar
decomposition theorem, and the properties of eigenval-
ues. (Christovet al. [1])

6.3. How unstable is the H́enon attractor?

(a) Evaluate numerically the Lyapunov exponentλ by
iterating some 100,000 times or so the Hénon map

[

x′

y′

]

=

[

1− ax2 + y
bx

]

for a = 1.4, b = 0.3.

(b) Would you describe the result as a ’strange attrac-
tor’? Why?

(c) How robust is the Lyapunov exponent for the
Hénon attractor? Evaluate numerically the Lya-
punov exponent by iterating the Hénon map for
a = 1.39945219,b = 0.3. How much do you now
trust your result for part (a) of this exercise?

(d) Re-examine this computation by plotting the iter-
ates, and erasing the plotted points every 1000 it-
erates or so. Keep at it until the ’strange’ attractor
vanishes like the smile of the Chesire cat. What
replaces it? Do a few numerical experiments to
estimate the length of typical transient before the
dynamics settles into this long-time attractor.

(e) Use your Newton search routine to confirm exis-
tence of this attractor. Compute its Lyapunov ex-
ponent, compare with your numerical result from
above. What is the itinerary of the attractor.

(f) Would you describe the result as a ’strange attrac-
tor’? Do you still have confidence in claims such
as the one made for the part (b) of this exercise?
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6.4. Rössler attractor Lyapunov exponents.

(a) Evaluate numerically the expanding Lyapunov ex-
ponentλe of the Rössler attractor (2.23).

(b) Plot your own version of figure6.3. Do not worry
if it looks different, as long as you understand why
your plot looks the way it does. (Remember the
nonuniform contraction/expansion of figure4.3.)

(c) Give your best estimate ofλe. The literature gives
surprisingly inaccurate estimates - see whether
you can do better.

(d) Estimate the contracting Lyapunov exponentλc.
Even though it is much smaller thanλe, a glance
at the stability matrix (4.30) suggests that you can
probably get it by integrating the infinitesimal vol-
ume along a long-time trajectory, as in (4.29).
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