
Chapter 2

Go with the flow

Dynamical systems theory includes an extensive body of
knowledge about qualitative properties of generic smooth
families of vector fields and discrete maps. The theory
characterizes structurally stable invariant sets [...] The
logic of dynamical systems theory is subtle. The theory
abandons the goal of describing the qualitative dynamics
of all systems as hopeless and instead restricts its atten-
tion to phenomena that are found in selected systems. The
subtlety comes in specifying the systems of interest and
which dynamical phenomena are to be analyzed.

— John Guckenheimer

(R. Mainieri, P. Cvitanović and E.A. Spiegel)

We define a dynamical system (M, f ) and classify its solutions as equilibria,
periodic, and aperiodic. An ‘aperiodic’ solution is either ‘wandering’ or
belongs to a non–wandering set, which in turn can be decomposed into

into chain-recurrent sets. Various cases are illustrated with concrete examples,
such as the Rössler and Lorenz systems.

fast track:

chapter 19, p. 345

2.1 Dynamical systems

In a dynamical system we observe the world as it evolves with time. We express
our observations as numbers and record how they change; given sufficiently de-
tailed information and understanding of the underlying natural laws, we see the
future in the present as in a mirror. The motion of the planets against the celestial

section 1.3
firmament provides an example. Against the daily motion of the stars from East
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Figure 2.1: A trajectory traced out by the evolution
rule f t. Starting from the state space point x, after a
time t, the point is at f t(x).

f (x)f (x)
t

x

to West, the planets distinguish themselves by moving among the fixed stars. An-
cients discovered that by knowing a sequence of planet’s positions–latitudes and
longitudes–its future position could be predicted.

For the solar system, tracking the latitude and longitude in the celestial sphere
suffices to completely specify the planet’s apparent motion. All possible values for
positions and velocities of the planets form the phase space of the system. More
generally, a state of a physical system, at a given instant in time, can be represented
by a single point in an abstract space called state spaceM (mnemonic: curly ‘M’
for a ‘manifold’). As the system changes, so does the representative point in state
space. We refer to the evolution of the totality of such points as a flow or dynamics,
and the function f t which specifies where the representative point is at time t as
the evolution rule.

remark 2.1

If there is a definite rule f that tells us how this representative point moves in
M, the system is said to be deterministic. For a deterministic dynamical system,
the evolution rule takes one point of the state space and maps it into exactly one
point. However, this is not always possible. For example, knowing the tempera-
ture today is not enough to predict the temperature tomorrow; knowing the value
of a stock today will not determine its value tomorrow. The state space can be en-
larged, in the hope that in a sufficiently large state space it is possible to determine
an evolution rule, so we imagine that knowing the state of the atmosphere, mea-
sured over many points over the entire planet should be sufficient to determine the
temperature tomorrow. Even that is not quite true, and we are less hopeful when
it comes to stocks.

For a deterministic system almost every point has a unique future, so trajecto-
ries cannot intersect. We say ‘almost’ because there might exist a set of measure
zero (tips of wedges, cusps, etc.) for which a trajectory is not defined. We may

chapter 15
think such sets a nuisance, but it is quite the contrary–they will enable us to parti-
tion state space, so that the dynamics can be better understood.

Locally, the state spaceM looks like Rd, meaning that a dynamical evolution
is an initial value problem, with d numbers sufficient to determine what will hap-
pen time t later. The local linear vector space (tangent space) at any given state
space point x ∈ M can be thought of as a ‘chart’ (however, we shall use this term
in a more restricted sense, only after the continuous time and continuous sym-
metries have been ‘quotiented out’, see sects. 3.1 and 13.1). Globally, the state
space may be a more complicated manifold such as a torus, a cylinder, or some
other smooth geometric object. By manifold we mean a smooth differentiable d-
dimensional space which looks like Rd only locally. For example, the state space
of an autonomous Hamiltonian system the flow is confined to a curved constant
energy hyper-surface. When we need to stress that the dimension d ofM is greater
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Figure 2.2: A flow: The evolution rule f t can be used
to map a region Mi of the state space into the region
f t(Mi).
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t
ff (     )Mi

than one, we may refer to the point x ∈ M as xi where i = 1, 2, 3, . . . , d. If the
dynamics is described by a set of PDEs (partial differential equations), the state
space is the infinite dimensional function space. The evolution rule ft :M→M
tells us where a point x is inM after a time interval t.

The pair (M, f ) constitute a dynamical system.

The dynamical systems we will be studying are smooth. This is expressed
mathematically by saying that the evolution rule ft can be differentiated as many
times as needed. Its action on a point x is sometimes indicated by f (x, t) to remind
us that f is really a function of two variables: the time and a point in state space.
Note that time is relative rather than absolute, so only the time interval is neces-
sary. This follows from the fact that a point in state space completely determines
all future evolution, and it is not necessary to know anything besides the time
interval. The time parameter can be a real variable (t ∈ R), in which case the evo-
lution is called a flow, or an integer (t ∈ Z), in which case the evolution advances
in discrete steps in time, given by iteration of a map. The evolution parameter
need not be the physical time; for example, a time-stationary solution of a partial
differential equation is parameterized by spatial variables. In such situations one
talks of a ‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systems. They manifest them-
selves through their orbits: given a state x0 at initial time t0, the flow map

f t : x0 → x(x0, t)

yields the state x(t) time t later. This evolution rule traces out a sequence of
points x(t) = f t(x0), the orbit through the point x0 = x(0). We shall usually
omit the x0 label from x(x0, t). By extension, we can also talk of the evolution
of a regionMi of the state space. The language of continuum mechanics is quite
helpful in visualizing such deformations, not only in 3-dimensional space, but also
in state spaces of arbitrary dimension. Consider a motion f from the undeformed
(reference or initial) region (a ‘body’)Mi to the deformed (current or final) region
M f = f t(Mi). We may write the motion as a map

f t : Mi →M f , (2.1)

flows - 26jan2015 ChaosBook.org version15.2, Jan 26 2015
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Figure 2.3: A periodic point returns to the initial point
after a finite time, x = f Tp (x). Periodic orbit p is the
set of periodic points p =Mp = {x1, x2, · · ·} swept out
by the trajectory of any one of them in the finite time
Tp.

x1
x(T) = x(0)

x2

x3

such that every x0 inMi is mapped to an x = f t(x0) inM f , as in figure 2.2, where
x denotes the state in the deformed region, and x0 represents the state in the initial,
undeformed region.

exercise 2.1

The subset of points Mx0 ⊂ M that belong to the infinite-time trajectory
of a given point x0 is called the orbit of x0; we shall talk about forward orbits,
backward orbits, periodic orbits, etc.. For a flow, an orbit is a smooth continuous
curve; for a map, it is a sequence of points. In this book ‘trajectory’ refers to
a set of points or a curve segment traced out by x(t) over a finite time interval
t. ‘Orbit’ refers to the totality of states that can be reached from x0, with state
spaceM foliated into a union of such orbits (eachMx0 labeled by a single point
belonging to the set, x0 = x(0) for example). Under time evolution a trajectory
segment is mapped into another trajectory segment, but points within an orbit
are only shifted; the orbit considered as a set is unchanged. Hence an orbit is a
dynamically invariant notion.

The central idea of ChaosBook is to replace the complicated, ergodic, asymp-
totic t → ∞ dynamics by a systematic hierarchy of compact time-invariant sets or
compact orbits (equilibria, periodic orbits, invariant tori, · · ·).

2.1.1 A classification of possible motions?

Ah, yes, Judgie, everything will go away someday. It’s the
waiting that’s so exquisitely wearing.

— Duke Ellington, to Robert Traver

What kinds of orbits are there? This is a grand question, and there are many
answers. The following chapters offer some. Here is a first attempt to classify all
possible orbits:

stationary: f t(x) = x for all t
periodic: f t(x) = f t+Tp (x) for a given minimum period Tp

aperiodic: f t(x) � f t′ (x) for all t � t′ .

A periodic orbit (or a cycle) p is the set of points Mp ⊂ M swept out by a
trajectory that returns to the initial point in a finite time. We refer to a point on a
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periodic orbit as a periodic point, see figure2.3. Periodic orbits form a very small
subset of the state space, in the same sense that rational numbers are a set of zero
measure on the unit interval.

chapter 5

Periodic orbits and equilibrium points are the simplest examples of ‘non-
wandering’ invariant sets preserved by dynamics. Dynamics can also preserve
higher-dimensional smooth compact invariant manifolds; most commonly en-
countered are the M-dimensional tori of Hamiltonian dynamics, with the notion of
periodic motion generalized to quasiperiodic (the superposition of M incommen-
surate frequencies) motion on a smooth torus, and families of solutions related
by a continuous symmetry. Further examples are afforded by stable / unstable
manifolds (swept by semi-infinite curves originating at an equilibrium along each
stability eigenvector) and the most mysterious of all invariant orbits, the infinite
time ergodic orbits.

section 15.1

The ancients tried to make sense of all dynamics in terms of periodic motions,
epicycles, what we today call ‘integrable systems’. The embarrassing truth is that
for a generic dynamical system almost all motions are aperiodic. So we refine the
classification by dividing aperiodic motions into two subtypes: those that wander
off, and those that keep coming back.

A point x ∈ M is called a wandering point, if there exists an open neighbor-
hoodM0 of x to which the orbit never returns

f t(x) �M0 for all t > tmin . (2.2)

In physics literature, the dynamics of such a state is often referred to as transient.

Wandering points do not take part in the long-time dynamics, so your first task
is to prune them fromM as well as you can. What remains envelops the set of the
long-time orbits, or the non-wandering set.

For times much longer than a typical ‘turnover’ time, it makes sense to relax
the notion of exact periodicity and replace it by the notion of recurrence. A point
is recurrent or non-wandering, if for any open neighborhood M0 of x and any
time tmin there exists a later time t, such that

f t(x) ∈ M0 . (2.3)

In other words, the orbit of a non-wandering point reenters the neighborhoodM0

infinitely often. We shall denote the non–wandering set of f by Ω, i.e., the union
of all the non-wandering points of M. This non–wandering set of f is key to
understanding the long-time behavior of a dynamical system; all calculations un-
dertaken here will be carried out on non–wandering sets.

So much about individual trajectories. What about clouds of initial points? If
there exists a connected state space volume that maps into itself under forward
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evolution (and you can prove that by the method of Lyapunov functionals, or
several other methods available in the literature), the flow is globally contracting
onto a subset of M which we shall refer to as the attractor. The attractor may
be unique, or there can coexist any number of distinct attracting sets, each with
its own basin of attraction, the set of all points that fall into the attractor under
forward evolution. The attractor can be a fixed point (a sink), a periodic orbit
(a limit cycle), aperiodic, or any combination of the above. The most interesting
case is that of an aperiodic recurrent attractor, to which we shall refer loosely as a
strange attractor. We say ‘loosely’, as will soon become apparent that diagnosing

example 2.3
and proving existence of a genuine, card-carrying strange attractor is a highly
nontrivial undertaking; it requires explaining notions like ‘transitive’ and ‘chain-
recurrent’ that we will be ready to discuss only in sect.17.1.

Conversely, if we can enclose the non–wandering set Ω by a connected state
space volumeM0 and then show that almost all points withinM0, but not in Ω,
eventually exitM0, we refer to the non–wandering setΩ as a repeller. An example
of a repeller is not hard to come by–the pinball game of sect.1.3 is a simple chaotic
repeller. Ω, the non–wandering set of f , is the union of all of the above, separately
invariant sets: attracting/repelling fixed points, strange attractors, repellers, etc..

It would seem, having said that the periodic points are so exceptional that
almost all non-wandering points are aperiodic, that we have given up the ancients’
fixation on periodic motions. Nothing could be further from truth. As longer and
longer cycles approximate more and more accurately finite segments of aperiodic
trajectories, we shall establish control over non–wandering sets by defining them
as the closure of the union of all periodic points.

Before we can work out an example of a non–wandering set and get a better
grip on what chaotic motion might look like, we need to ponder flows in a little
more depth.

2.2 Flows

Knowing the equations and knowing the solution are two
different things. Far, far away.

— T.D. Lee

A flow is a continuous-time dynamical system. The evolution rule ft is a family
of mappings of M → M parameterized by t ∈ R. Because t represents a time
interval, any family of mappings that forms an evolution rule must satisfy:

exercise 2.2

(a) f 0(x) = x (in 0 time there is no motion)

(b) f t( f t′(x)) = f t+t′ (x) (the evolution law is the same at all times)

(c) the mapping (x, t) �→ f t(x) fromM× R intoM is continuous.

flows - 26jan2015 ChaosBook.org version15.2, Jan 26 2015
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We shall often find it convenient to represent functional composition by ‘◦ :’
appendix D.1

f t+s = f t ◦ f s = f t( f s) . (2.4)

The family of mappings f t(x) thus forms a continuous (1-parameter forward Lie
semi-) group. Why ‘semi-’group? It may fail to form a group if the dynamics
is not reversible, and the rule ft(x) cannot be used to rerun the dynamics back-
wards in time, with negative t; with no reversibility, we cannot define the inverse
f −t( f t(x)) = f 0(x) = x , in which case the family of mappings ft(x) does not form
a group. In exceedingly many situations of interest–for times beyond the Lya-
punov time, for asymptotic attractors, for dissipative partial differential equations,
for systems with noise, for non-invertible maps–the dynamics cannot be run back-
wards in time, hence, the circumspect emphasis on semigroups. On the other
hand, there are many settings of physical interest, where dynamics is reversible
(such as finite-dimensional Hamiltonian flows), and where the family of evolution
maps f t does form a group.

For infinitesimal times, flows can be defined by differential equations. We
write a trajectory, a smooth curve embedded in the state space as

x(t + τ) = f t+τ(x0) = f ( f (x0, t), τ) (2.5)

and express the tangent to the curve at point x(t) as
exercise 2.3

dx
dτ

∣∣∣∣∣
τ=0
= ∂τ f ( f (x0, t), τ)|τ=0 = ẋ(t) , (2.6)

the time derivative of the evolution rule, a vector evaluated at the point x(t). By
considering all possible orbits, we obtain the vector ẋ(t) at any point x ∈ M. This
vector field is a (generalized) velocity field:

remark 13.2

ẋ(t) = v(x) . (2.7)

Newton’s laws, Lagrange’s method, or Hamilton’s method are all familiar pro-
cedures for obtaining a set of differential equations for the vector field v(x) that
describes the evolution of a mechanical system. Equations of mechanics may ap-
pear different in form from (2.7), as they are often involve higher time derivatives,
but an equation that is second or higher order in time can always be rewritten as a
set of first order equations.

We are concerned here with a much larger world of general flows, mechanical
or not, all defined by a time-independent vector field (2.7). At each point of the
state space a vector indicates the local direction in which the orbit evolves. The
length of the vector |v(x)| is the speed at the point x, and the direction and length of
v(x) changes from point to point. When the state space is a complicated manifold

flows - 26jan2015 ChaosBook.org version15.2, Jan 26 2015
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Figure 2.4: (a) The 2-dimensional vector field for
the Duffing system (2.21), together with a short
trajectory segment. (b) The flow lines. Each
‘comet’ represents the same time interval of a tra-
jectory, starting at the tail and ending at the head.
The longer the comet, the faster the flow in that
region.

(a) (b)

embedded in Rd, one can no longer think of the vector field as being embedded in
the state space. Instead, we have to imagine that each point x of state space has a
different tangent plane TMx attached to it. The vector field lives in the union of
all these tangent planes, a space called the tangent bundle

TM =
⋃
x∈M

TMx .

TMx is called a fiber at x, hence the whole thing is called the fiber bundle. Locally
a fiber bundle looks like the product of two Rd spaces.

A simple example of a flow defined by a 2-dimensional vector field v(x) is
afforded by the unforced Duffing system, figure 2.4. Lorenz flow of figure 2.5,
and Rössler flow of figure 2.6 , are representative 3-dimensional flows.

example 2.1

p. 55

example 2.2

p. 55

example 2.3

p. 55

The instantaneous velocity vector v is tangent to the orbit, except at the equi-
librium points, where it vanishes.

If v(xq) = 0 , (2.8)

xq is also referred to as a stationary, fixed, critical, invariant, rest, stagnation
point, zero of the vector field v, standing wave, stationary solution, or steady
state. Our usage will be ‘equilibrium’ for a flow, ‘fixed point’ for a map. The
orbit remains forever stuck at xq. Otherwise the orbit passing through x0 at time
t = 0 can be obtained by integrating the equations (2.7):

x(t) = f t(x0) = x0 +

∫ t

0
dτ v(x(τ)) , x(0) = x0 . (2.9)

We shall consider here only autonomous flows, i.e., flows for which the vector
field vi is stationary, not explicitly dependent on time. A non-autonomous system

dy
dτ
= w(y, τ) , (2.10)

flows - 26jan2015 ChaosBook.org version15.2, Jan 26 2015
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Figure 2.5: Lorenz “butterfly” strange attractor. (J.
Halcrow) −20 −10 0 10 20
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Figure 2.6: A trajectory of the Rössler flow at time
t = 250. (G. Simon) -10
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can always be converted into a system where time does not appear explicitly.
exercise 2.4
exercise 2.5To do so, extend (‘suspend’) state space to be (d + 1)-dimensional by defining

x = {y, τ}, with a stationary vector field

v(x) =

[
w(y, τ)

1

]
. (2.11)

The new flow ẋ = v(x) is autonomous, and the orbit y(τ) can be read off x(t) by
ignoring the last component of x.

exercise 6.3

2.2.1 Lagrangian and Eulerian viewpoints

Continuum mechanics offers two profoundly different but mathematically equiva-
lent ways to represent a given state space flow, the ‘Lagrangian’ and the ‘Eulerian’
viewpoints. From the Eulerian perspective one only cares about what is the state
of system here and now; think of a field of grass, each grass blade the local ve-
locity vector. From the Lagrangian viewpoint one cares about where a state space
point come fromand where is it going to; think of the state space foliated into a
bowl of linguini, each noodle an orbit, marked with a label x0 somewhere along
it. In the Eulerian formulation the flow is defined by specifying (2.7), the veloc-
ity field v(x). In the Lagrangian formulation it is given by the finite time flow
(2.9), i.e., the totality of the trajectories x(t) comprising the deformed region, la-
beled by their origin x0 in the initial undeformed region. If we mark the orbit
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x(t) by its initial point x0, we are describing the flow in the Lagrangian coordi-
nates. The Eulerian velocity v(x) at a fixed state space position x is equal to the
Lagrangian velocity v(x(t)) at the orbit passing through x at the instant t. Because
f t is a single-valued function, any point on the orbit can be used to label the orbit.
The transport of the ‘material point’ x0 at t = 0 to its value at the current point
x(t) = f t(x0) is a coordinate transformation from the Lagrangian coordinates to
the Eulerian coordinates.

In numerical work we are given the equations of motion (the local Eulerian
velocity field v(x)), but we care about the solutions of these equations (the global
Lagrangian flow). Conversely, in experimental work we observe ensembles of
Lagrangian trajectories from which we then extract the velocity field (in fluid
dynamics this is achieved by particle image velocimetry (PIV)). Once an Eulerian
velocity field has been specified or extracted from the observational data, it is
straightforward to compute the Lagrangian trajectories, objects of great practical
interest in studies of long time dynamics, mixing, and transport.

fast track:

chapter 3, p. 64

2.3 Changing coordinates

Problems are handed down to us in many shapes and forms, and they are not al-
ways expressed in the most convenient way. In order to simplify a given problem,
one may stretch, rotate, bend and mix the coordinates, but in doing so, the vector
field will also change. The vector field lives in a (hyper)plane tangent to state
space and changing the coordinates of state space affects the coordinates of the
tangent space as well, in a way that we will now describe.

Denote by h the conjugation function which maps the coordinates of the initial
state space M into the reparameterized state space M′ = h(M), with a point
x ∈ M related to a point y ∈ M′ by

y = h(x) = (y1(x), y2(x), . . . , yd(x)) .

The change of coordinates must be one-to-one and span bothM andM′, so given
any point y we can go back to x = h−1(y). For smooth flows the reparameterized
dynamics should support the same number of derivatives as the initial one. If h is
a (piecewise) analytic function, we refer to h as a smooth conjugacy.

The evolution rule gt(y0) on M′ can be computed from the evolution rule
f t(x0) onM by taking the initial point y0 ∈ M′, going back toM, evolving, and
then mapping the final point x(t) back toM′:

y(t) = gt(y0) = h ◦ f t ◦ h−1(y0) . (2.12)
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Here ‘◦’ stands for functional composition h ◦ f (x) = h( f (x)), so (2.12) is a
shorthand for y(t) = h( ft(h−1(y0))).

The vector field ẋ = v(x) is locally tangent to the flow ft; it is related to the
flow by differentiation (2.6) along the orbit. The vector field ẏ = w(y), y ∈ M′
locally tangent to gt, follows by the chain rule:

exercise B.2

w(y) =
dgt

dt
(y)

∣∣∣∣∣∣
t=0

=
d
dt

(
h ◦ f t ◦ h−1(y)

)∣∣∣∣∣
t=0

= h′(h−1(y)) v(h−1(y)) = h′(x) v(x) . (2.13)

In order to rewrite the right-hand side as a function of y, note that the ∂y differen-
tiation of h(h−1(y)) = y implies

∂h
∂x

∣∣∣∣∣
x
· ∂h

−1

∂y

∣∣∣∣∣∣
y

= 1 → ∂h
∂x

(x) =

[
∂h−1

∂y
(y)

]−1

, (2.14)

so the equations of motion in the transformed coordinates, with the indices rein-
stated, are

ẏi = wi(y) =

[
∂h−1

∂y
(y)

]−1

i j
v j(h

−1(y)) . (2.15)

Imagine the state space as a rubber sheet with the flow lines drawn on it.
A coordinate change h corresponds to pulling and tugging on the rubber sheet
smoothly, without cutting, gluing, or self-intersections of the distorted rubber
sheet. Trajectories that are closed loops in M will remain closed loops in the
new manifold M′, but their shapes will change. Globally, h deforms the rubber
sheet in a highly nonlinear manner, but locally it simply rescales and shears the
tangent field by the coordinate transformation Jacobian matrix ∂jhi, yielding the
simple transformation law (2.13) for the velocity fields.

Time itself is a parametrization of points along flow lines, and it can also
be reparameterized, s = s(t), with the concomitant modification of (2.15). An
example is the 2-body collision regularization of the helium Hamiltonian (8.8), to
be undertaken in appendix B.2.

2.4 Life in extreme dimensions

Sometimes I’ve believed as many as six impossible things
before breakfast.

— Lewis Carroll
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Figure 2.7: (a) The Ring of Fire, visualized as a
Bunsen burner flame flutter, with u = u(x, t) the
velocity of the flame front at position x and time t.
(b) A profile of the velocity u of the flame front at
fixed time instant t folded out on a plane, with spa-
tial periodicity u(x, t) = u(x+ 40, t) (from ref. [1]).
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Systems described by partial differential equations [PDEs] are said to be ‘infinite
dimensional’ dynamical systems, because in order to uniquely specify the state
of a spatially extended ‘field’, one needs infinitely many numbers, one for the
value of the field at each configuration space point. Even though the state space
is infinite-dimensional, the long-time dynamics of many such systems of physical
interest is finite-dimensional, contained within a ‘strange attractor’ or an ‘inertial
manifold’. Most of us find it hard to peer into four dimensions. How are we
to visualize -and why we would have any hope of visualizing- dynamics in such
extreme dimensions? A representative point is a point, and its trajectory is a curve
in any 2- or 3-dimensional projection, so that is not so hard. What is hard is to get
an understanding of relative disposition of different states. The coordinates have
to be chosen thoughtfully, as in a randomly picked coordinate frame most orbits
of interest will appear minuscule.

A dynamical system is specified by the pair (M, f ), where d numbers uniquely
determine a state of the system, or the representative point x in the state space
manifoldM. Here we focus on how one constructs such state space, and how one
visualizes a representative point x and its trajectory ft(x) time t later. We shall re-
turn to dynamics, i.e., the evolution rule ft that maps a state space regionMi of the
state space into the region ft(Mi) (see figure 2.2) for such systems in chapter 29,
where we describe in some detail time-evolution equations for spatially-extended
systems, and discuss ‘turbulence’ that such systems may exhibit.

2.4.1 Fluttering flame front

Consider the flame front flutter of gas burning on your kitchen stove. Such ‘Bun-
sen burner’, invented by Göttingen chemistry prodigy Robert Bunsen in 1855, en-
tered popular culture in 1963 as Johnny Cash et al. [2] “Ring of Fire”. Its flame
front instabilities are perhaps the most familiar example of a nonlinear system that
exhibits ‘turbulence’ (or, more modestly, ‘spatiotemporally chaotic behavior’): a
typical ‘configuration’ or ‘physical’ space visualization is sketched in figure2.7.
Its state can be described by the ‘flame front velocity’ u = u(x, t) on a periodic
domain u(x, t) = u(x + L, t).

Spatial, ‘configuration’ or ‘physical’ space visualization of a state of such
system, figure 2.7, or a fixed time snapshot of velocity and vorticity fields in 3D
Navier-Stokes, or a visualization of the flame front flutter in time, figure 2.8, or
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Figure 2.8: A spatiotemporal plot of a typical
Ring of Fire “turbulent” solution, periodic domain
u(x, t) = u(x + 20π

√
2, t) is obtained by plotting

the profile of figure 2.7 (b) for successive time in-
stants (vertical axes). The color indicates the value
of u at a given position and instant in time (from
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a time-evolving video of a fluid, offer little insight into detailed dynamics of such
systems. To understand the dynamics, one must turn to the complementary, and
often much more illuminating state space representations. In this context ‘flow’
refers to a d-dimensional flow in the dynamical state space, not the flow of a fluid,
and ‘velocity’ to the state space tangent field ẋ = v(x), not to the 3D configuration
space fluid velocity field u(x, t) ∈ R3. A ‘representative point’ is a full speci-
fication of the state x ∈ M of the system, In today’s experiments or numerical
simulations, this is a set of anything from 16 to 106 numbers, a complete snapshot
of the flame front figure 2.7 or the state of volume of turbulent fluid in a pipe at
an instant in time.

2.4.2 Constructing a state space

Think globally, act locally.

— Patrick Geddes

At this juncture, our everyday, plumber’s visual intuition actually interferes
with dynamical visualization of state space of a spatially-extended systems: while
the spatial dimension of the Ring of Fire is 1, its dimension as a dynamical system
is ∞. Absorbing this simple fact of life is the same rite of passage as going from
the 1 degree of freedom quantum mechanical oscillator to the ‘second quantiza-
tion’ of quantum field theory, with its infinitely many quantum oscillator degrees
of freedom.

To develop some intuition about such dynamics we turn to experiments, or
numerical simulations, such as the Ring of Fire time evolution, figure 2.8. The
first thing we note is that while the dynamics might be ‘turbulent’, for many such
systems the long-time solutions tend to be smooth. That suggests that a discretiza-
tion, perhaps aided by interpolations such as n-point spatial derivatives might give
us a representation of the dynamics of reasonable accuracy.

Discrete mesh: You can subdivide the configuration domain into a sufficiently
fine discrete grid of N boxes, replace space derivatives in the governing equations
by approximate discrete derivatives, and integrate a finite set of first order differ-
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ential equations for the discretized spatial components uj(t) = u( jL/N, t), by any
integration routine you trust. Most often that’s the best you can do.

The next thing we note is that the solutions for many physical systems of phys-
ical interest tend to be not only smooth, but also that the laws that govern them
are invariant in form under operations such as translations. For example, the flut-
tering flame front governing equations should be configuration-space rotationally
equivariant, time-translationally invariant, and invariant under reflection x → −x,
u→ −u.

Spectral methods: The spatial periodicity u(x, t) = u(x + L, t) then suggests that
it might be convenient to work in the Fourier space,

u(x, t) =
+∞∑

k=−∞
ũk(t) eiqk x , (2.16)

where ũk = xk + i yk = |ũk |eiφk , qk = 2πk/L, L is the domain size, x is the spatial
coordinate and τ is time. The velocity field u(x, t) is real, so ũk = ũ∗−k, and we
can replace the sum by an k ≥ 0 sum. Thus a state of a spatially 1-dimensional
extended system can described by an infinite set of complex Fourier coefficients
ũk(t). This is an example of an infinite-dimensional state space alluded to on
page 45, in this section’s introduction.

Intuitively the flame front is smooth, so Fourier coefficients ũk drop off fast
with k, and truncations of (29.7) to finite numbers of terms can yield highly ac-
curate states. In numerical computations this state space is truncated to a finite
number of real dimensions. For example, a state might be specified by 2N real
Fourier coefficients, or ‘computational degrees of freedom’

x = (x1, y1, x2, y2, . . . , xN, yN)T . (2.17)

More sophisticated variants of such truncations are called in the literature Gälerkin
truncations, or Gälerkin projections.

Once a trajectory is computed in Fourier space, we can recover and plot the
corresponding spatiotemporal pattern u(x, t) over the configuration space, as in
figure 2.7 and figure 2.8, by inverting (29.7). Spatiotemporal patterns give us a
qualitative picture of the flow and a physical intuition about the energetics of the
flow, but no detailed dynamical information; for that, tracking the evolution in a
high-dimensional state space is much more informative.

2.4.3 State space, as visualized by dummies

This is dedicated to Student X

— Professore Dottore Gatto Nero
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The question is: how is one to look at such state space flow? The laziest thing to
do is to examine the trajectory’s projections onto any three computational degrees
of freedom, let’s say the first three Fourier modes (ũ1, ũ2, ũ3). Why would you
do that? Well, that’s what computer spews out. This won’t do. Let’s accept that
you do not know much about high dimensions, but you have been born someplace
where they force you to watch grown men kick a ball, for hours on end. Your
choice of (ũ1, ũ2, ũ3) coordinates means that you (or the TV camera) are standing
at a corner of the field. Far, far away, at the opposite end of the field, there is
action - but you only see a few little moving silhouettes, and can hardly see the
ball.

Or, if you scholarly kind, and would rather while hours away evaluating Γ-
functions, here is a precise way of saying the same: chose a direction in a high-
dimensional state space, call it your basis vector e(1). Now pick a state u in state
space at random. That gives you a second vector. What is the angle between these
two vectors? The cosine of that angle you compute by evaluating the ‘dot’ product
(or L2 norm)

〈u|e(1)〉 = 1
V

∫
Ω

dx u · e(1) , ‖u‖2 = 〈u|u〉 . (2.18)

exercise 2.11

Once you finish the exercise 2.11 you will know what every computer scientist
knows: the expectation value of the angle between any two high-dimensional
vectors picked at random is 90o, with a very small variance. In other words,
in high dimension and with a random coordinate system, every distant silhouette
is vanishingly small. And your lazy (ũ1, ũ2, ũ3) coordinates are a random choice,
the turbulent state might require 105 such coordinates to be accurately resolved.

So, if you were a referee, or a cameraman, would your really just stand there,
in the far corner of the field?

2.4.4 Exact state-space portraiture: go where the action is

(J.F. Gibson and P. Cvitanović)

You are interested into dynamics and especially the recurrent dynamics, so
cross the field, and identify, by long-time numerical simulations or other means,
prominent states that characterize the observed recurrent coherent structures of
interest to you. If you form a basis set from them, and project the evolving state
x(t) onto this basis, coordinates so formed will capture close recurrences to these
states. That is, form orthonormal basis functions {e(1), e(2), . . . , e(n)} from a set of
linearly independent fluid states and produce a state-space trajectory

x(t) = (x1(t), x2(t), · · · , xn(t), · · ·) , xn(t) = 〈u(t)|e(n)〉 (2.19)

in the {e(n)} coordinate frame. The projection of the trajectory can be viewed in
any of the 2d planes {e(m), e(n)} or in 3d perspective views {e(�), e(m), e(n)}. The

flows - 26jan2015 ChaosBook.org version15.2, Jan 26 2015



CHAPTER 2. GO WITH THE FLOW 50

dimensionality is lower than the full state space, so in such projections trajecto-
ries can appear to cross. It is important to understand that this is low-dimensional
visualization, not low-dimensional modeling, a truncation to fewer computational
degrees of freedom. The dynamics are computed with fully-resolved direct nu-
merical simulations and projected onto basis sets to produce low-dimensional
state-space portraits, tailored to specific purposes and specific regions of state
space. The resulting portraits depend on the physical states involved and not on
the choice of a numerical representation. The portraits reveal dynamical informa-
tion visually, providing insight into dynamics that can guide further analysis.

There is an infinity of possible basis sets, but two types of bases appear par-
ticularly natural: (a) a global basis, determined by a set of dynamically important
states, or (b) a local basis, defined, for example, in terms of a given equilibrium
and its linear stability eigenvectors.

With this road map in hand, we can take a stroll through the state space of
a spatiotemporally turbulent flow. Like many dynamical narratives, this might
turn into a long trek through unfamiliar landscape with many landmarks of local
interest. It is amazing that such a promenade is possible even in 105 dimensions.
But a detailed road map is a necessary prerequisite for solving at least three of
your outstanding problems: (a) uncovering the interrelations between (in principle
infinite number of) unstable invariant solutions of a turbulent flow, (b) a partition
of state space is a needed for a systematic exploration of turbulent dynamics, and
(c) linear stability eigenvectors and their unstable-manifold continuations will be
needed to control and chaperon a given spatiotemporal state to a desired target
state.

In summary, when dealing with spatiotemporally extended systems, you’ll
need dual vision - you will have to think both in the configuration space, and in
the state space ( click on the video link here).

2.5 Computing trajectories

On two occasions I have been asked [by members of Par-
liament], ’Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come out?’ I am not
able rightly to apprehend the kind of confusion of ideas
that could provoke such a question.

— Charles Babbage

You have not learned dynamics unless you know how to integrate numerically
whatever dynamical equations you face. Sooner or later, you need to implement
some finite time-step prescription for integration of the equations of motion (2.7).
The simplest is the Euler integrator which advances the trajectory by δτ× velocity
at each time step:

xi → xi + vi(x) δτ . (2.20)
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This might suffice to get you started, but as soon as you need higher numerical ac-
curacy, you will need something better. There are many excellent reference texts
and computer programs that can help you learn how to solve differential equations
numerically using sophisticated numerical tools, such as pseudo-spectral methods
or implicit methods. If a ‘sophisticated’ integration routine takes days and gob-

exercise 2.6
bles up terabits of memory, you are using brain-damaged high level software. Try
writing a few lines of your own Runge-Kutta code in some mundane everyday
language. While you absolutely need to master the requisite numerical methods,

exercise 2.7
this is neither the time nor the place to expound upon them; how you learn them is
your business. And if you have developed some nice routines for solving problems

exercise 2.9
in this text or can point another student to some, let us know.

exercise 2.10

Résumé

Start from a state space point and evolve it for a finite time, you trace out its
trajectory. Evolve it forward and backward for infinite time, you get the orbit, the
set of all states reachable by evolution from a given state space point. An orbit is
a time-invariant notion: time evolution marches points along it, but the set itself
does not change. The flow describes the time evolution of all state space points,
i.e., the totality of all orbits: the evolution law f turns the state space into a bowl
of spaghetti, with each individual spaghetto an orbit.

Chaotic dynamics with a low-dimensional attractor can be visualized as a suc-
cession of nearly periodic but unstable motions. In the same spirit, turbulence in
spatially extended systems can be described in terms of recurrent spatiotemporal
patterns. Pictorially, dynamics drives a given spatially extended system through
a repertoire of unstable patterns; as we watch a turbulent system evolve, every so
often we catch a glimpse of a familiar pattern. For any finite spatial resolution
and finite time, the system follows approximately a pattern belonging to a finite
repertoire of possible patterns. The long-term dynamics can be thought of as a
walk through the space of such patterns. Recasting this image into mathematics is
the subject of this book.

The state-space portraits are dynamically intrinsic, since the projections are
defined in terms of solutions of the equations of motion, and representation in-
dependent, since the L2 product (2.18) is independent of the numerical repre-
sentation. The method can be applied to any high-dimensional dissipative flow.
Production of state-space portraits requires numerical data of configuration space
fields evolving in time (obtained obtained from simulation or experiment), es-
timates of important physical states (such as equilibria and their linear stability
eigenfunctions), and a method of computing the inner product between velocity
fields over the physical domain.

flows - 26jan2015 ChaosBook.org version15.2, Jan 26 2015



CHAPTER 2. GO WITH THE FLOW 52

Commentary

Remark 2.1 ‘State space’ or ‘phase space?’ In ChaosBook, state space is the set
of admissible states in a general d- or∞-dimensional dynamical system. The term phase
space is reserved for Hamiltonian state spaces of 2D-dimensions, where D is the number
of Hamiltonian degrees of freedom. If the state space is a continuous smooth manifold
much of the literature [4, 5] refers to it as ‘phase space,’ but we find the control engineer-
ing usage sharper: in the state space (or ‘time-domain’) description of an autonomous
physical system, the state of the system is represented as a vector within the ‘state space,’
space whose axes are the state variables, and the evolution of a state is given by differ-
ential equations which are first-order in time. Hopf [6] would refer to such a state as
an ‘instantaneous phase’ of the system obeying a ‘differential law of the phase motion’.
The distinction made here is needed in a text where one treats deterministic dynami-
cal systems, stochastic systems and quantum-mechanical systems. The term ‘phase’ has
a precise meaning in wave mechanics, quantum mechanics and dynamics of integrable
systems at the heart of Hamilton’s formulation of Newtonian mechanics, while ‘state
space’ is more descriptive of the way the notion is used in the general theory of dynami-
cal systems. Further confusion arises when prefix spatio- as in ‘spatiotemporal’ is used in
reference to states extended in the (1, 2, or 3-dimensional) physical configuration space.
They may exhibit spatial wave-like behaviors, but their state space is∞-dimensional.

Much of the literature denotes the vector field in a first order differential equation
(2.7) by f (x) or F(x) or even X(x), and its integral for time t by the ‘time-t forward map’
or ‘flow map’ x(x0, t) = Φ(x0, t), or φt(x0), or something else. Here we treat maps and
flows on an equal footing, and we save Greek letters for matters quantum-mechanical. We
reserve the notation f t(x) for maps such as (2.9) and refer to a state space velocity vector
field as v(x). We come to regret this choice very far into the text, only by the time we
delve into Navier-Stokes equations.

Remark 2.2 Rössler and Duffing flows. The Duffing system (2.21) arises in the study
of electronic circuits [7]. The Rössler flow (2.27) is the simplest flow which exhibits many
of the key aspects of chaotic dynamics. It was introduced in ref. [ 8] as a set of equations
describing no particular physical system, but capturing the essence of Lorenz chaos in the
most simple of smooth flows. Otto Rössler, a man of classical education, was inspired
in this quest by that rarely cited grandfather of chaos, Anaxagoras (456 B.C.). This and
references to earlier work can be found in refs. [9, 10, 11]. We recommend in particular
the inimitable Abraham and Shaw illustrated classic [12] for its beautiful sketches of
many flows, including the Rössler flow. Timothy Jones [13] has a number of interesting
simulations on a Drexel website.

Remark 2.3 Lorenz equation. The Lorenz equation (2.22) is the most celebrated
early illustration of “deterministic chaos” [5] (but not the first - that honor goes to Dame
Cartwright [15]). Lorenz’s paper, which can be found in reprint collections refs. [ 16, 17],
is a pleasure to read, and it is still one of the best introductions to the physics motivating
such models (read more about Lorenz here). The equations, a set of ODEs in R3, exhibit
strange attractors. W. Tucker [18, 19, 20] has proven rigorously via interval arithmetic
that the Lorenz attractor is strange for the original parameters (no stable orbits) and that
it has a long stable periodic orbit for slightly different parameters. In contrast to the
hyperbolic strange attractors such as the weakly perturbed cat map, the Lorenz attractor is
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structurally unstable. Frøyland [21] has a nice brief discussion of Lorenz flow. Frøyland
and Alfsen [22] plot many periodic and heteroclinic orbits of the Lorenz flow; some of the
symmetric ones are included in ref. [21]. Guckenheimer-Williams [23] and Afraimovich-
Bykov-Shilnikov [24] offer an in-depth discussion of the Lorenz equation. The most
detailed study of the Lorenz equation was undertaken by Sparrow [ 25]. For a geophysics
derivation, see Rothman course notes [26]. For a physical interpretation of ρ as “Rayleigh
number,” see Jackson [27] and Seydel [28]. The Lorenz truncation to 3 modes is so drastic
that the model bears no relation to the geophysical hydrodynamics problem that motivated
it. For a detailed pictures of Lorenz invariant manifolds consult Vol II of Jackson [ 27]. The
Lorenz attractor is a very thin fractal – as we saw, stable manifold thickness is of the order
10−4 – whose fractal structure has been accurately resolved by D. Viswanath [ 29, 30].
If you wonder what analytic function theory has to say about Lorenz, check ref. [ 31].
Refs. [32, 33] might also be of interest. (continued in remark 11.1)

Remark 2.4 Diagnosing chaos. In sect. 1.3.1 we have stated that a deterministic
system exhibits ‘chaos’ if its orbits are locally unstable (positive Lyapunov exponent) and
globally mixing (positive entropy). In sect. 6.2 we shall define Lyapunov exponents and
discuss their evaluation, but already at this point it would be handy to have a few quick nu-
merical methods to diagnose chaotic dynamics. Laskar’s frequency analysis method [ 34]
is useful for extracting quasi-periodic and weakly chaotic regions of state space in Hamil-
tonian dynamics with many degrees of freedom. For pointers to other numerical methods,
see ref. [35].

Remark 2.5 High-dimensional flows and their visualizations. Dynamicist’s vision
of turbulence was formulated by Eberhard Hopf in his seminal 1948 paper [ 4], see ap-
pendix A.5 Much about high-dimensional state spaces is counterintuitive. The literature

appendix A.5
on why the expectation value of the angle between any two high-dimensional vectors
picked at random is 90o is mostly about spikey spheres: see the draft of the Hopcroft and
Kannan [36] book and Ravi Kannan’s course; lecture notes by Hermann Flaschka on
Some geometry in high-dimensional spaces; Wegman and Solka [37] visualizations of
high-dimensional data; Spruill paper [38]; a lively mathoverflow.org thread on “Intuitive
crutches for higher dimensional thinking.”

The ‘good’ coordinates, introduced in ref. [ 39] and described here are akin in spirit
to the low-dimensional projections of the POD modeling [40], in that both methods aim
to capture key features and dynamics of the system in just a few dimensions. But the
method described here is very different from POD in a key way: we construct basis sets
from exact solutions of the fully-resolved dynamics rather than from the empirical eigen-
functions of the POD. Exact solutions and their linear stability modes (a) characterize the
spatially-extended states precisely, as opposed to the truncated expansions of the POD, (b)
allow for different basis sets and projections for different purposes and different regions of
state space, (c) our low-dimensional projections are not meant to suggest low-dimensional
ODE models; they are only visualizations, every point in these projections is still a point
the full state space, and (d) the method is not limited to Fourier mode bases.

(J.F. Gibson and P. Cvitanović)

Remark 2.6 Dynamical systems software: J.D. Meiss [41] has maintained for
many years Sci.nonlinear FAQ which is now in part superseded by the SIAM Dynami-
cal Systems website www.dynamicalsystems.org. The website glossary contains most
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of Meiss’s FAQ plus new ones, as well as an up-to-date software list [42] with links
to DSTool, xpp, AUTO, etc.. Springer on-line Encyclopaedia of Mathematics main-
tains links to dynamical systems software packages on eom.springer.de/D/d130210.htm.
Kuznetsov [43] Appendix D.9 gives an exhaustive overview of software available in 2004.
(see also remark 15.1)
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2.6 Examples

10. Try to leave out the part that readers tend to skip.
— Elmore Leonard’s Ten Rules of Writing.

The reader is urged to study the examples collected at the ends of chapters. If
you want to return back to the main text, click on [click to return] pointer on the
margin.

Example 2.1 A 2-dimensional vector field v(x): A simple example of a flow is
afforded by the unforced Duffing system

ẋ(t) = y(t)

ẏ(t) = −0.15 y(t) + x(t) − x(t)3 (2.21)

plotted in figure 2.4. The velocity vectors are drawn superimposed over the configura-
tion coordinates (x(t), y(t)) of state spaceM, but they belong to a different space, the
tangent bundle TM.

Example 2.2 Lorenz strange attractor: Edward Lorenz arrived at the equation

ẋ = v(x) =

⎡⎢⎢⎢⎢⎢⎢⎣
ẋ
ẏ
ż

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
σ(y − x)
ρx − y − xz

xy − bz

⎤⎥⎥⎥⎥⎥⎥⎦ (2.22)

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed σ = 10, b = 8/3,
and varied the “Rayleigh number” ρ. For 0 < ρ < 1 the equilibrium EQ0 = (0, 0, 0) at the
origin is attractive. At ρ = 1 it undergoes a pitchfork bifurcation into a pair of equilibria
at

remark 2.3

xEQ1,2 = (±√b(ρ − 1),±√b(ρ − 1), ρ − 1) , (2.23)

We shall not explore the Lorenz flow dependence on the ρ parameter in what follows,
but here is a brief synopsis: the EQ0 1-dimensional unstable manifold closes into a
homoclinic orbit at ρ = 13.56 . . .. Beyond that, an infinity of associated periodic orbits
are generated, until ρ = 24.74 . . ., where EQ1,2 undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice
σ = 10, b = 8/3, ρ = 28 . For these parameter values the long-time dynamics is confined
to the strange attractor depicted in figure 2.5, and the positions of its equilibria are
marked in figure 11.2. (continued in example 3.4)

click to return: p. 42

Example 2.3 Rössler strange attractor: The Duffing flow of figure 2.4 is bit of a
bore–every orbit ends up in one of the two attractive equilibrium points. Let’s construct
a flow that does not die out, but exhibits a recurrent dynamics. Start with a harmonic
oscillator

ẋ = −y , ẏ = x . (2.24)
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The solutions are reit, re−it, and the whole x-y plane rotates with constant angular
velocity θ̇ = 1, period T = 2π. Now make the system unstable by adding

ẋ = −y , ẏ = x + ay , a > 0 , (2.25)

or, in radial coordinates, ṙ = ar sin2 θ, θ̇ = 1+ (a/2) sin 2θ. The plane is still rotating with
the same average angular velocity, but trajectories are now spiraling out. Any flow in
the plane either escapes, falls into an attracting equilibrium point, or converges to a limit
cycle. Richer dynamics requires at least one more dimension. In order to prevent the
trajectory from escaping to ∞, kick it into 3rd dimension when x reaches some value c
by adding

ż = b + z(x − c) , c > 0 . (2.26)

As x crosses c, z shoots upwards exponentially, z � e(x−c)t. In order to bring it back,
start decreasing x by modifying its equation to

ẋ = −y − z .

Large z drives the trajectory toward x = 0; there the exponential contraction by e−ct

kicks in, and the trajectory drops back toward the x-y plane. This frequently studied
example of an autonomous flow is called the Rössler flow

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c) , a = b = 0.2 , c = 5.7 (2.27)

(for definitiveness, we fix the parameters a, b, c in what follows). The system is as
exercise 2.8

simple as they get–it would be linear, were it not for the sole bilinear term zx. Even for
so ‘simple’ a system the nature of long-time solutions is far from obvious.

There are two repelling equilibrium points (2.8):

x± = (
1
2
± 1

2

√
1 − 4ab/c2)(c,−c/a, c/a)

x− ≈ (ab/c,−b/c, b/c) , x+ ≈ (c,−c/a, c/a)

(x−, y−, z−) = ( 0.0070, −0.0351, 0.0351 )

(x+, y+, z+) = ( 5.6929, −28.464, 28.464 ) (2.28)

One is close to the origin by construction. The other, some distance away, exists be-
cause the equilibrium condition has a 2nd-order nonlinearity.

To see what solutions look like in general, we need to resort to numerical in-
tegration. A typical numerically integrated long-time trajectory is sketched in figure 2.6
(see also figure 14.10). Trajectories that start out sufficiently close to the origin seem
to converge to a strange attractor. We say ‘seem’ as there exists no proof that such
an attractor is asymptotically aperiodic–it might well be that what we see is but a long
transient on a way to an attractive periodic orbit. For now, accept that figure 2.6 and
similar figures in what follows are examples of ‘strange attractors.’

The Rössler flow is the simplest flow which exhibits many of the key aspects of
chaotic dynamics; we shall use it and the 3-pinball (see chapter 9) systems through-
out ChaosBook to motivate introduction of Poincaré sections, return maps, symbolic
dynamics, cycle expansions, and much else. Rössler flow is integrated in exercise 2.7,
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its equilibria are determined in exercise 2.8, its Poincaré sections constructed in ex-
ercise 3.1, and the corresponding return Poincaré map computed in exercise 3.2. Its
volume contraction rate is computed in exercise 4.3, its topology investigated in exer-
cise 4.4, the shortest Rössler flow cycles are computed and tabulated in exercise 7.1,
and its Lyapunov exponents evaluated in exercise 6.4. (continued in exercise 2.8 and
example 3.3) (R. Paškauskas)

click to return: p. 42
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The exercises that you should do have underlined titles. The rest (smaller type)
are optional. Difficult problems are marked by any number of *** stars.

Exercises

2.1. Orbits do not intersect. An orbit in the state spaceM
is the set of points one gets by evolving x ∈ M forwards
and backwards in time:

Mx = {y ∈ M : f t(x) = y for t ∈ R} .
Show that if two trajectories intersect, then they are the
same curve.

2.2. Evolution as a group. The trajectory evolution f t is
a one-parameter semigroup, where (2.4)

f t+s = f t ◦ f s .

Show that it is a commutative semigroup.

In this case, the commutative character of the semi-
group of evolution functions comes from the commuta-
tive character of the time parameter under addition. Can
you think of any other semigroup replacing time?

2.3. Almost ODE’s.

(a) Consider the point x on R evolving according
ẋ = eẋ . Is this an ordinary differential equation?

(b) Is ẋ = x(x(t)) an ordinary differential equation?

(c) What about ẋ = x(t + 1) ?

2.4. All equilibrium points are fixed points. Show that
a point of a vector field v where the velocity is zero is a
fixed point of the dynamics f t.

2.5. Gradient systems. Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an
auxiliary function, the ‘potential’ φ

ẋ = −∇φ(x)

where x ∈ Rd, and φ is a function from that space to the
reals R.

(a) Show that the velocity of the particle is in the di-
rection of most rapid decrease of the function φ.

(b) Show that all extrema of φ are fixed points of the
flow.

(c) Show that it takes an infinite amount of time for
the system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gradient
systems.

2.6. Runge-Kutta integration. Implement the fourth-
order Runge-Kutta integration formula (see, for exam-
ple, ref. [?]) for ẋ = v(x):

xn+1 = xn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(δτ5)

k1 = δτ v(xn) , k2 = δτ v(xn + k1/2)

k3 = δτ v(xn + k2/2)

k4 = δτ v(xn + k3) .

If you already know your Runge-Kutta, program what
you believe to be a better numerical integration routine,
and explain what is better about it.

2.7. Rössler flow. Use the result of exercise 2.6 or some
other integration routine to integrate numerically the
Rössler flow (2.27). Does the result look like a ‘strange
attractor’?

2.8. Equilibria of the Rössler flow.

(a) Find all equilibrium points (xq, yq, zq) of the
Rössler system (2.27). How many are there?

(b) Assume that b = a. As we shall see, some surpris-
ingly large, and surprisingly small numbers arise
in this system. In order to understand their size,
introduce parameters

ε = a/c , D = 1 − 4ε2 , p± = (1 ± √D)/2 .

Express all the equilibria in terms of (c, ε,D, p±),
expand to the first order in ε, and evaluate for
a = b = 0.2, c = 5.7 in (2.27). In the case stud-
ied ε ≈ 0.03, so these estimates are quite accurate.
(continued in exercise 3.1)

(Rytis Paškauskas)

2.9. Can you integrate me? Integrating equations nu-
merically is not for the faint of heart. It is not always
possible to establish that a set of nonlinear ordinary
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differential equations has a solution for all times and
there are many cases were the solution only exists for
a limited time interval, as, for example, for the equation
ẋ = x2 , x(0) = 1 .

(a) For what times do solutions of

ẋ = x(x(t))

exist? Do you need a numerical routine to answer
this question?

(b) Let’s test the integrator you wrote in exercise 2.6.
The equation

ẍ = x (2.29)

with initial conditions x(0) = 2 and ẋ = 0 has the
solution x(t) = e−t(1 + e2 t) . Can your integrator
reproduce this solution for the interval t ∈ [0, 10]?
Check your solution by plotting the error as com-
pared to the exact result.

(c) Test your integrator for

ẍ = −x (2.30)

with the same initial conditions and integration in-
terval.

(d) Now we will try something a little harder. The
equation is going to be third order

...
x +0.6ẍ + ẋ − |x| + 1 = 0 ,

which can be checked–numerically–to be chaotic.
For initial conditions, we will always use ẍ(0) =
ẋ(0) = x(0) = 0 . Can you reproduce the re-
sult x(12) = 0.8462071873 (all digits are sig-
nificant)? Even though the equation being inte-
grated is chaotic, the time intervals are not long
enough for the exponential separation of trajecto-
ries to be noticeable (the exponential growth fac-
tor is ≈ 2.4).

(e) Determine the time interval for which the solution
of ẋ = x2, x(0) = 1 exists.

2.10. Classical collinear helium dynamics. In order to ap-
ply periodic orbit theory to quantization of helium we
shall need to compute classical periodic orbits of the he-
lium system. In this exercise we commence their evalu-
ation for the collinear helium atom (8.8)

H =
1
2

p2
1 +

1
2

p2
2 −

Z
r1
− Z

r2
+

1
r1 + r2

.

The nuclear charge for helium is Z = 2. Colinear he-
lium has only 3 degrees of freedom and the dynamics
can be visualized as a motion in the (r1, r2), ri ≥ 0 quad-
rant. In (r1, r2)-coordinates the potential is singular for
ri → 0 nucleus-electron collisions. These 2-body col-
lisions can be regularized by rescaling the coordinates,

with details given in sect. B.2. In the transformed coor-
dinates (x1, x2, p1, p2) the Hamiltonian equations of mo-
tion take the form

Ṗ1 = 2Q1

⎡⎢⎢⎢⎢⎣2 − P2
2

8
− Q2

2(1 +
Q2

2

R4
)

⎤⎥⎥⎥⎥⎦
Ṗ2 = 2Q2

⎡⎢⎢⎢⎢⎣2 − P2
1

8
− Q2

1(1 +
Q2

1

R4
)

⎤⎥⎥⎥⎥⎦
Q̇1 =

1
4

P1Q2
2 , Q̇2 =

1
4

P2Q2
1 . (2.31)

where R = (Q2
1 + Q2

2)1/2.

(a) Integrate the equations of motion by the fourth or-
der Runge-Kutta computer routine of exercise 2.6
(or whatever integration routine you like). A
convenient way to visualize the 3-dimensional
state space orbit is by projecting it onto the 2-
dimensional (r1(t), r2(t)) plane. (continued in ex-
ercise 3.4)

(Gregor Tanner, Per Rosenqvist)

2.11. In high dimensions any two vectors are (nearly) or-
thogonal. Among humble plumbers laboring with ex-
tremely high-dimensional ODE discretizations of fluid
and other PDEs, there is an inclination to visualize the
∞-dimensional state space flow by projecting it onto a
basis constructed from a few random coordinates, let’s
say the 2nd Fourier mode along the spatial x direction
against the 4th Chebyshev mode along the y direction.
It’s easy, as these are typically the computational de-
grees of freedom. As we will now show, it’s easy but
not smart, with vectors representing the dynamical states
of interest being almost orthogonal to any such random
basis.

Suppose your state space M is a real 10 247-
dimensional vector space, and you pick from it two vec-
tors x1, x2 ∈ M at random. What is the angle between
them likely to be?

By asking for ‘angle between two vectors’ we have im-
plicitly assumed that there exist is a dot product

x1
� · x2 = ‖ x1 ‖ ‖ x2 ‖ cos(θ12) ,

so let’s make these vectors unit vectors,
����� x j

����� = 1 .
When you think about it, you would be hard put to
say what ’uniform probability’ would mean for a vec-
tor x ∈ M = R10 247, but for a unit vector it is obvious:
probability that x direction lies within a solid angle dΩ
is dΩ/(unit hyper-sphere surface).

So what is the surface of the unit sphere (or, the total
solid angle) in d dimensions? One way to compute it is
to evaluate the Gaussian integral

Id =

∫ ∞
−∞

dx1 · · · dxd e−
1
2 (x2

1+···+x2
d) (2.32)
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in cartesian and polar coordinates. Show that

(a) In cartesian coordinates Id = (2π)d/2 .

(b) Recast the integrals in polar coordinate form. You
know how to compute this integral in 2 and 3
dimensions. Show by induction that the surface
S d−1 of unit d-ball, or the total solid angle in even
and odd dimensions is given by

S 2k =
2(2π)k

(2k − 1)!!
, S 2k+1 =

2πk+1

k!
.(2.33)

(c) Show, by examining the form of the integrand in
the polar coordinates, that for arbitrary, perhaps
even complex dimension d ∈ C

S d−1 = 2πd/2/Γ(d/2) .

In Quantum Field Theory integrals over 4-
momenta are brought to polar form and evaluated
as functions of a complex dimension parameter d.
This procedure is called the ‘dimensional regular-
ization’.

(d) Check your formula for d = 2 (1-sphere, or the
circle) and d = 3 (2-sphere, or the sphere).

(e) What limit does S d does tend to for large d? (Hint:
it’s not what you think. Try Sterling’s formula).

So now that we know the volume of a sphere, what is a
the most likely angle between two vectors x1, x2 picked
at random? We can rotate coordinates so that x1 is
aligned with the ‘z-axis’ of the hypersphere. An angle
θ then defines a meridian around the ‘z-axis’.

(f) Show that probability P(θ)dθ of finding two vec-
tors at angle θ is given by the area of the merid-
ional strip of width dθ, and derive the formula for
it:

P(θ) =
1√
π

Γ(d/2)
Γ((d − 1)/2)

.

(One can write analytic expression for this in
terms of beta functions, but it is unnecessary for
the problem at hand).

(g) Show that for large d the probability P(θ) tends
to a normal distribution with mean θ = π/2 and
variance 1/d.

So, in d-dimensional vector space the two random vec-
tors are nearly orthogonal, within accuracy of θ = π/2±
1/d.

If you are a humble plumber, and the notion of a vector
space is some abstract hocus-pocus to you, try thinking
this way. Your 2nd Fourier mode basis vector is some-
thing that wiggles twice along your computation do-
main. Your turbulent state is very wiggly. The product
of the two functions integrated over the computational
domain will average to zero, with a small leftover. We
have just estimated that with dumb choices of coordinate
bases this leftover will be of order of 1/10 247, which is
embarrassingly small for displaying a phenomenon of
order ≈ 1.

Several intelligent choices of coordinates for state space
projections are described in Gibson et al. [48] and the
web tutorial ChaosBook.org/tutorials.

Sara A. Solla and P. Cvitanović
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