Appendix A

A brief history of chaos

Laws of attribution

1. Arnol’d’s Law: everything that is discovered is
named after someone else (including Arnol'd’s
law)

2. Berry’s Law: sometimes, the sequence of an-
tecedents seems endless. So, nothing is discovered
for the first time.

3. Whiteheads's Law: Everything of importance has
been said before by someone who did not discover
it.

— Sir Michael V. Berry
Writing a history of anything is a reckless undertaking, ezsglly a history of
something that has preoccupied at one time or other anyusetionker from
ancient Sumer to today’s Hong Kong. A mathematician, to sakexample, might
see it this way: “History of dynamical systems.!Nevertheless, here comes yet
another very imperfect attempt.

A.1 Chaosisborn

I'll maybe discuss more about its history when | learn
more about it.

— Maciej Zworski
(R. Mainieri and P. Cvitanovi€)

TRYING to PREDICT the motion of the Moon has preoccupied astronomers since
antiquity. Accurate understanding of its motion was imaottfor deter-
mining the longitude of ships while traversing open seas.

Kepler's Rudolphine tables had been a great improvement réwious ta-
bles, and Kepler was justly proud of his achievements. Heenirothe introduc-
tion to the announcement of Kepler’s third ladarmonice MundiLinz, 1619) in
a style that would not fly with the contemporaPhysical Review Lettersditors:

What | prophesied two-and-twenty years ago, as soon as dwised
the five solids among the heavenly orbits—what | firmly bedtlong before
I had seen Ptolemyldarmonics-what | had promised my friends in the title
of this book, which I named before | was sure of my discovetyatgixteen
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years ago, | urged as the thing to be sought-that for whicingfTycho
Brahé, for which | settled in Prague, for which | have deddtee best part
of my life to astronomical contemplations, at length | haveught to light,
and recognized its truth beyond my most sanguine expenatiti is not
eighteen months since | got the first glimpse of light, thremths since
the dawn, very few days since the unveiled sun, most adneir@bbaze
upon, burst upon me. Nothing holds me; | will indulge my sdcdiery; |
will triumph over mankind by the honest confession that Iéatolen the
golden vases of the Egyptians to build up a tabernacle for oy fér away
from the confines of Egypt. If you forgive me, | rejoice; if yave angry, |
can bear it; the die is cast, the book is written, to be reddeemow or in
posterity, | care not which; it may well wait a century for ader, as God
has waited six thousand years for an observer.

Then came Newton. Classical mechanics has not stood stile Slewton.
The formalism that we use today was developed by Euler andabgg. By the
end of the 1800’s the three problems that would lead to themaif chaotic
dynamics were already known: the three-body problem, thedsc hypothesis,
and nonlinear oscillators.

A.1.1 Three-body problem

Bernoulli used Newton’s work on mechanics to derive thggdliorbits of Kepler
and set an example of how equations of motion could be solyadtbgrating.
But the motion of the Moon is not well approximated by an eipvith the Earth
at a focus; at least thetects of the Sun have to be taken into account if one wants
to reproduce the data the classical Greeks already podseBselo that one has
to consider the motion of three bodies: the Moon, the Earid,the Sun. When
the planets are replaced by point particles of arbitrarysessthe problem to be
solved is known as the three-body problem. The three-bodplem was also
a model to another concern in astronomy. In the Newtonianeiefdthe solar
system it is possible for one of the planets to go from antalliprbit around the
Sun to an orbit that escaped its dominion or that plunged righ it. Knowing

if any of the planets would do so became the problem of thelisyadif the solar
system. A planet would not meet this terrible end if solartesysconsisted of
two celestial bodies, but whether such fate could befallhm three-body case
remained unclear.

After many failed attempts to solve the three-body problaatural philoso-
phers started to suspect that it was impossible to integféie usual technique for
integrating problems was to find the conserved quantitisantties that do not
change with time and allow one to relate the momenta andiposiat diferent
times. The first sign on the impossibility of integrating tineee-body problem
came from a result of Bruns that showed that there were ncecesd quantities
that were polynomial in the momenta and positions. Brunsultedid not pre-
clude the possibility of more complicated conserved qtiasti This problem was
settled by Poincaré and Sundman in two vet§jedent ways I, 2].

In an attempt to promote the journAtta MathematicaMittag-Leffler got
the permission of the King Oscar Il of Sweden and Norway taldisth a mathe-
matical competition. Several questions were posed (aifihdloe king would have
preferred only one), and the prize of 2500 kroner would gbédatest submission.
One of the questions was formulated by Weierstrass:
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Given a system of arbitrary mass points that attract eadr atttording
to Newton’s laws, under the assumption that no two points es#fide, try
to find a representation of the coordinates of each point aiassin a
variable that is some known function of time and for all of whwalues the
series converges uniformly.

This problem, whose solution would considerably extend under-
standing of the solar system, ...

Poincaré’s submission won the prize. He showed that ceedeguantities that
were analytic in the momenta and positions could not exigi. sfow that he
introduced methods that were very geometrical in spiri¢ ithportance of state
space flow, the role of periodic orbits and their cross sastidhe homoclinic
points.

The interesting thing about Poincaré’s work was that itrdtisolve the prob-
lem posed. He did not find a function that would give the camatis as a function
of time for all times. He did not show that it was impossiblthei, but rather that
it could not be done with the Bernoulli technique of findingomserved quantity
and trying to integrate. Integration would seem unlikelgnir Poincaré’s prize-
winning memoir, but it was accomplished by the Finnish-b8medish mathe-
matician Sundman. Sundman showed that to integrate the-bugy problem
one had to confront the two-body collisions. He did that bimg them go away
through a trick known as regularization of the collision rifield. The trick is not
to expand the coordinates as a function of tiimbut rather as a function offt.
To solve the problem for all times he used a conformal map angtrip. This
allowed Sundman to obtain a series expansion for the ccatelinvalid for all
times, solving the problem that was proposed by Weirstraisel King Oscar II's
competition.

The Sundman’s series are not used today to compute thettnagscof any
three-body system. That is more simply accomplished by migademethods or
through series that, although divergent, produce betteenical results. The con-
formal map and the collision regularization mean that thieesere &ectively in

the variable 1- e V. Quite rapidly this gets exponentially close to one, the ra-
dius of convergence of the series. Many terms, more ternmsghg one has ever
wanted to compute, are needed to achieve numerical comarg&hough Sund-
man’s work deserves better credit than it gets, it did nat liyp to Weirstrass’s
expectations, and the series solution did not “considgrektend our understand-
ing of the solar system.” The work that followed from Poireedid.

A.1.2 Ergodic hypothesis

The second problem that played a key role in development abtah dynamics

was the ergodic hypothesis of Boltzmann. Maxwell and Bo#tumhad combined
the mechanics of Newton with notions of probability in ortieicreate statistical
mechanics, deriving thermodynamics from the equationsexfhranics. To eval-
uate the heat capacity of even a simple system, Boltzmannchathke a great
simplifying assumption of ergodicity: that the dynamicgdtem would visit every

part of the phase space allowed by conservation laws ecofédlg. This hypoth-

esis was extended to other averages used in statisticalameshand was called
the ergodic hypothesis. It was reformulated by Poincaréatothat a trajectory
comes as close as desired to any phase space point.
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Proving the ergodic hypothesis turned out to be vefialilt. By the end of
twentieth century it has only been shown true for a few systamd wrong for
quite a few others. Early on, as a mathematical necessiyrthof of the hypoth-
esis was broken down into two parts. First one would showtti@mechanical
system was ergodic (it would go near any point) and then onddashow that it
would go near each point equally often and regularly so tmatcomputed aver-
ages made mathematical sense. Koopman took the first stepving the ergodic
hypothesis when he realized that it was possible to refataui using the recently
developed methods of Hilbert spacé&s [This was an important step that showed
that it was possible to take a finite-dimensional nonlineablem and reformu-
late it as a infinite-dimensional linear problem. This doesmake the problem
easier, but it does allow one to use d&elient set of mathematical tools on the
problem. Shortly after Koopman started lecturing on hishmé von Neumann
proved a version of the ergodic hypothesis, giving it theustaf a theorem/]].
He proved that if the mechanical system was ergodic, thendhmputed averages

. . . Chapter ??
would make sense. Soon afterwards Birfiublished a much stronger version
of the theorem.

A.1.3 Nonlinear oscillators

The third problem that was very influential in the developmefithe theory of
chaotic dynamical systems was the work on the nonlineallascs. The prob-
lem is to construct mechanical models that would aid our tstdeding of phys-
ical systems. Lord Rayleigh came to the problem throughriterest in under-
standing how musical instruments generate sound. In theafioximation one
can construct a model of a musical instrument as a lineallatsci But real in-
struments do not produce a simple tone forever as the lineglator does, so
Lord Rayleigh modified this simple model by adding frictiomdamore realistic
models for the spring. By a clever use of negative frictioncheated two basic
models for the musical instruments. These models have rhared pure tone
and decay with time when not stroked. In his boke Theory of SounHord
Rayleigh introduced a series of methods that would provee@eéneral, such as
the notion of a limit cycle, a periodic motion a system goeseigardless of the
initial conditions.

A.2 Chaosgrowsup

(R. Mainieri)

The theorems of von Neumann and Birlkhon the ergodic hypothesis were
published in 1912 and 1913. This line of enquiry developad/mdirections. One
direction took an abstract approach and considered dy@systems as trans-
formations of measurable spaces into themselves. Couldassify these trans-
formations in a meaningful way? This lead Kolmogorov to thiedaduction of the
concept of entropy for dynamical systems. With entropy agrehical invariant
it became possible to classify a set of abstract dynamicesys known as the
Bernoulli systems. The other line that developed from tigedic hypothesis was
in trying to find mechanical systems that are ergodic. An @igsystem could
not have stable orbits, as these would break ergodicity. nSi888 Hadamard
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published a paper with a playful title of ‘... billiards '.where he showed that
the motion of balls on surfaces of constant negative curgatieverywhere un-
stable. This dynamical system was to prove very useful amdd taken up by
Birkhoff. Morse in 1923 showed that it was possible to enumerate thies af
a ball on a surface of constant negative curvature. He d&lhiintroducing a
symbolic code to each orbit and showed that the number oftpessodes grew
exponentially with the length of the code. With contribuatsoby Artin, Hedlund,
and H. Hopf it was eventually proven that the motion of a balasurface of con-
stant negative curvature was ergodic. The importance sfrdsult escaped most
physicists, one exception being Krylov, who understood #physical billiard
was a dynamical system on a surface of negative curvatutrgyithuthe curvature
concentrated along the lines of collision. Sinai, who wasfttst to show that a
physical billiard can be ergodic, knew Krylov's work well.

The work of Lord Rayleigh also received vigorous developmérprompted
many experiments and some theoretical development by vaRae Dufing,
and Hayashi. They found other systems in which the nonliosaillator played
a role and classified the possible motions of these systerhgs cbncreteness
of experiments, and the possibility of analysis was too meictemptation for
Mary Lucy Cartwrightand J.E. Littlewood ], who set out to prove that many
of the structures conjectured by the experimentalists aerdretical physicists
did indeed follow from the equations of motion. Birkfithad found a ‘remark-
able curve’ in a two dimensional map; it appeared to be néierdintiable and it
would be nice to see if a smooth flow could generate such a ciitve work of
Cartwright and Littlewood lead to the work of Levinson, whiio turn provided
the basis for the horseshoe construction of S. Smale.

In Russia, Lyapunov paralleled the methods of Poincaré iaitidted the
strong Russian dynamical systems schébl Andronov carried on with the study
of nonlinear oscillators and in 1937 introduced togetheéhwiontryagin the no-
tion of coarse systems. They were formalizing the undedéatgngarnered from
the study of nonlinear oscillators, the understanding thahy of the details on
how these oscillators work do nafact the overall picture of the state space: there
will still be limit cycles if one changes the dissipation @riag force function by
a little bit. And changing the system a little bit has the ¢@dvantage of elim-
inating exceptional cases in the mathematical analysisrgeosystems were the
concept that caught Smale’s attention and enticed him ttystynamical systems.

chapter 12

A.3 Chaoswith us

(R. Mainieri)
In the fall of 1961 Steven Smale was invited to Kiev where hé¢ Araol'd,
Anosov, Sinai, and Novikov. He lectured there, and spentt afldime with
Anosov. He suggested a series of conjectures, most of whiatsév proved
within a year. It was Anosov who showed that there are dynalnsigstems for
which all points (as opposed to a non—wandering set) admihyiperbolic struc-
ture, and it was in honor of this result that Smale named thgsims Axiom-A.
In Kiev Smale found a receptive audience that had been tirddoout these prob-
lems. Smale’s result catalyzed their thoughts and indiatehain of developments
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that persisted into the 1970’s.

Smale collected his results and their development in th& ¥86iew article
on dynamical systems, entitled “erentiable dynamical systems’][ There are )

. . . L .. ., Chapter 12
many great ideas in this paper: the global foliation of iresairsets of the map into
disjoint stable and unstable parts; the existence of a Glooseand enumeration
and ordering of all its orbits; the use of zeta functions tmgtdynamical systems.
The emphasis of the paper is on the global properties of thardical system, on
how to understand the topology of the orbits. Smale’s acctakes you from a
local differential equation (in the form of vector fields) to the glotmdological
description in terms of horseshoes.

The path traversed from ergodicity to entropy is a little enconfusing. The
general character of entropy was understood by Weiner, e&imed to have spo-
ken to Shannon. In 1948 Shannon published his results onmiattmon theory,
where he discusses the entropy of the shift transformatiolmogorov went
far beyond and suggested a definition of the metric entro@nadrea preserving
transformation in order to classify Bernoulli shifts. Theggestion was taken by
his student Sinai and the results published in 1959. In 1960liR connected
these results to measure-theoretical notions of entrofwe rext step was pub-
lished in 1965 by Adler and Palis, and also Adler, Konheim Avdrew; these
papers showed that one could define the notion of topologitibpy and use it
as an invariant to classify continuous maps. In 1967 Anosal Sinai applied
the notion of entropy to the study of dynamical systems. I$ wathe context
of studying the entropy associated to a dynamical systeSimai introduced
Markov partitions in 1968.

Markov partitions allow one to relate dynamical systems statistical me-
chanics; this has been a very fruitful relationship. It adusasure notions to the
topological framework laid down in Smale’s paper. Markovtjpans divide the
state space of the dynamical system into nice little boxatsrttap into each other.
Each box is labeled by a code and the dynamics on the state spgas the codes
around, inducing a symbolic dynamics. From the number okebaxeeded to
cover all the space, Sinai was able to define the notion obpytof a dynamical
system. In 1970 Bowen came up independently with the sanas,iddthough
there was presumably some flow of information back and foefiore these pa-
pers got published. Bowen also introduced the importantepinof shadowing of
chaotic orbits. We do not know whether at this point the retet with statistical
mechanics were clear to everyone. They became expliciteimitrk of Ruelle.
Ruelle understood that the topology of the orbits could leeified by a symbolic
code, and that one could associate an ‘energy’ to each drbé.energies could
be formally combined in a ‘partition function’ to generatestinvariant measure
of the system.

After Smale, Sinai, Bowen, and Ruelle had laid the foundestiof the statisti-
cal mechanics approach to chaotic systems, research tirséatlying particular
cases. The simplest case to consider is 1-dimensional rii&pstopology of the
orbits for parabola-like maps was worked out in 1973 by Melis, Stein, and
Stein [B]. The more general 1-dimensional case was worked out in b9 RGilnor
and Thurston in a widely circulated preprint, whose extendersion eventually
got published in 19889.

A lecture of Smale and the results of Metropolis, Stein, at&inSnspired
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Feigenbaum to study simple maps. This lead him to the disg@mf¢he universal-
ity in quadratic maps and the application of ideas from fiblelbry to dynamical
systems. Feigenbaum’s work was the culmination in the stidydimensional
systems; a complete analysis of a nontrivial transitiorhos. Feigenbaum intro-
duced many new ideas into the field: the use of the renorntigiizgroup which
led him to introduce functional equations in the study ofayical systems, the
scaling function which completed the link between dynairggatems and statis-
tical mechanics, and the presentation functions whichridesthe dynamics of
scaling functions.

The work in more than one dimension progressed very slowdyisustill far
from completed. The first result in trying to understand thygotogy of the or-
bits in two dimensions (the equivalent of Metropolis, Steind Stein, or Milnor
and Thurston’s work) was obtained by Thurston. Around 19&6r$ton was giv-
ing lectures “On the geometry and dynamics dfebmorphisms of surfaces.”
Thurston’s techniques exposed in that lecture have not bppled in physics,
but much of the classification that Thurston developed caolb@ined from the
notion of a ‘pruning front’ formulated independently by @Gnovic.

Once one develops an understanding of the topology of thsata dynam-
ical system, one needs to be able to compute its propertiaslleRhad already
generalized the zeta function introduced by Artin and Mdz0}, so that it could
be used to compute the average value of observables. Tiwaildy with Ruelle’s
zeta function is that it does not converge very well. Stgriut from Smale’s
observation that a chaotic dynamical system is dense wigh af periodic orbits,
Cvitanovi¢ used these orbits as a skeleton on which to atalthe averages of
observables, and organized such calculations in termspadlyaconverging cy-
cle expansions. This convergence is attained by using trestorbits used as a
basis for shadowing the longer orbits.

This account is far from complete, but we hope that it willhgét a sense of
perspective on the field. It is not a fad and it will not die &mg soon.

A.4 Periodic orbit theory

Pure mathematics is a branch of applied mathematics.

— Joe Keller, after being asked to define applied
mathematics

(P. Cvitanovi€)

The history of periodic orbit theory is rich and curious;eatadvances are equally
inspired by more than a century of developments in threeragpaubjects: 1.
classical chaotic dynamigsnitiated by Poincaré and put on its modern footing
by Smale }], Ruelle [L1], and many others, Zjuantum theorynitiated by Bohr,
with the modern ‘chaotic’ formulation by Gutzwillerl?, 13], and 3. analytic
number theorynitiated by Riemann and formulated as a spectral problei@dly
berg [L4, 15]. Following different lines of reasoning and driven byfdrent mo-
tivations, the three separate roads all arriveate formulas zeta functionsand
spectral determinants

The fact that these fields are all related is far from obvi@ums even today
the practitioners tend to cite papers only from their subegity. In Gutzwiller’s
words [L3], “The classical periodic orbits are a crucial steppinghetn the un-
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derstanding of quantum mechanics, in particular when thassical system is
chaotic. This situation is very satisfying when one thinkBoincaré who empha-
sized the importance of periodic orbits in classical megtsarut could not have
had any idea of what they could mean for quantum mechanics s&hof energy
levels and the set of periodic orbits are complementarydh ether since they are
essentially related through a Fourier transform. Suchatiosl had been found
earlier by the mathematicians in the study of the Laplacig@rator on Rieman-
nian surfaces with constant negative curvature. This I&ktberg’s trace formula
in 1956 which has exactly the same form, but happens to ba.exaposteriori
one can say that zeta functions arise in both classical aadtagon mechanics be-
cause the dynamical evolution can be described by the astibnear evolution
(or transfer) operators on infinite-dimensional vectorcgsa The spectra of these
operators are given by the zeros of appropriate deterngn@e way to evalu-
ate determinants is to expand them in terms of traces, lq@@let tr (log £). In
this way the spectrum of an evolution operator becomesectlat its traces, i.e.
periodic orbits. A deeper way of restating this is to obsd¢hat the trace formu-
las perform the same role in all of the above problems; thiaggd¢he spectrum
of lengths (local dynamics) to the spectrum of eigenvalggsb@l eigenstates),
and for nonlinear geometries they play a role analogouseamtie that Fourier
transform plays for the circle.

Distant history is easily sanitized and mythologized. As approach the
present, our vision is inevitably more myopic; for venftdient accounts cov-
ering the same recent history, see V. Balddi [(a mathematician’s perspective),
and M. V. Berry [L7] (a quantum chaologist’s perspective). We are gratefuhiyr
comments from the reader that would help make what followsafed balanced.

M. Gutzwiller was the first to demonstrate that chaotic dyitaris built upon
unstable periodic orbits in his 1960’s work on the quaniiratof classically
chaotic quantum systems, where the ‘Gutzwiller trace fdangives the semi-
classical quantum spectrum as a sum over classical peroldits [18, 19, 20,
17]. Equally important was D. Ruelle’s 1970’s work on hyperbatystems,
where ergodic averages associated with natural invarigaisores are expresse(%a 19
as weighted sums on the infinite set of unstable periodidsdmbedded in the 0
underlying chaotic set?[l, 27]. This idea can be traced back to the followin

section 19.1

exercise 4.1

chapter 34

i - . k19.2
sources: 1. the foundational 1967 revied, where S. Smale proposed as “a wild "
idea in this direction” a (technically incorrect, but priestt) zeta function over
periodic orbits, 2. the 1965 Artin-Mazur zeta function fauating periodic or- chapter 15

bits [10], and 3. the 1956 Selberg number-theoretic zeta function®femann
surfaces of constant curvatur/]. That one couldcomputeusing these infinite
sets was not clear at all. Ruell&l] never attempted explicit computations, and
Gutzwiller only attempted to implement summations ovesaimbpic Kepler pe-
riodic orbits by treating them as Ising model configuratipag] (In retrospect,
Gutzwiller was lucky; it turns out that the more periodic itslone includes, the
worse convergence one gefsl]).

For a long time the convergence of such sums bedeviled tléitaers, un-
til the mathematically rigorous spectral determinantshgserbolic deterministic
flows, and the closely related semiclassicaly exact Gulizmdleta functions were
recast in terms of highly convergerycle expansiondJnder these circumstances,
a relatively few short periodic orbits lead to highly acderng time averages of
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quantities measured in chaotic dynamics and of spectraufmtgm systems. The
idea, in a nutshell, is that long orbits are shadowed by shorbits, and theth
term in a cycle expansion is thefitirence between the shorter cycles estimate of
the periodn-cycles’ contribution and the exaatcycles sum. For unstable, hy-
perbolic flows, this dterence falls & exponentially or super-exponentiallg(].
Contrary to what some literature says, cycle expansionsi@more ‘clever re-
summations’ than the Plemelj-Smithies cumulant evalnatioa determinant is a
‘resummation’, and their theory is considerably more reasg than what prac-
titioners of quantum chaos fear: there is no ‘abscissa dflates convergence’,
there is no ‘entropy barrier’, and the exponential proéfern of cycles is not the
problem.

Cvitanovit derived ‘cycle expansions’ in 1986-87, in dfod to prove that chapter 20
the mode-locking dimension for critical circle maps diseed by Jensen, Bak
and Bohr P5] is universal; the same kind of periodic orbits are invohedhe
Hénon map, but now in renormalization ‘time’. The symbalignamics of the
Hénon attractor (the pruning front conjectuf&]) is coded by transition graphs,
topological entropy is given by roots of their determinafiisis observation led to
the study of convergence of spectral determinants for bisttrete-time (iterated
maps) and continuous-time deterministic flows (both ODEs RBES). Cycle
expansions thus arose not from temporal dynamics, but ftodies of scalings in
period-doubling and cycle-map renormalizatiofs, 28, 29]. This work was done
in collaboration with R. Artuso (PhD 1987-1989), G. Gunaeatand E. Aurell
(PhD 1984-1989), and it was written under the watchful eypasfot Gaspar in
Fundacad de Faca, Porto Seguro, as two Reagycling of strange sepapers $0,
27]: 1. Cycle expansionandll. Applications The main lesson was that one should
never split theory and applications into papers numberadllig part 1l, which
covers many interesting results, has barely been glandedaatyone.

The first published paper on these developments was Auerttaah [31]
Exploring chaotic motion through periodic orbisubmitted March 1987). Here
only a ‘level sum’ approximation2(0.41),

chapter K

chapter 15

chapter 23

section 22.4
e N

1= 3 e, = — (A1)
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to the trace formula is presented asrdin order estimate of the leading Perron-
Frobenius eigenvalugy), and applied to the Hénon attractor (Eq. (4) of the above
paper). (Theexactweight of an unstable prime periodic orlgt(for level sum
(18.7)) had been conjectured by Kaddhand Tang $7] in 1984.) Even as it
was written, the heuristics of this paper was rendered ebsdly the exact cycle
expansions, and yet, mysteriously, this might be one of thetroited periodic
orbits papers.

The first attempt to make cycle expansions accessible ty @erson was
condensed intd?hys. Rev. Lettelnvariant measurement of strange sets in terms
of cycles(submitted March 1988)3[3]. However, the two long papers by Artuso
et al.[30, 27] are a better read.

Several applications of the new methodology are worth maitg. One was
the accurate calculation of the leading dozen eigenvaltidseqeriod-doubling
operator P7, 28, 34]. Another breakthrough was the cycle expansion of determin

istic transport coficients 35, 36, 37], such as dtusion constants withowny chapter 25
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probabilistic assumptions. The classical Boltzmann equador the evolution of
1-particle density is based d@tosszahlansatzhe assumption that velocities of
colliding particles are not correlated. In periodic orlhieory all correlations are
included in cycle averaging formulas, such as the cycle sipa for a particle
diffusing chaotically across a spatially-periodic array.

Physicists tend to obsess about matters weightier thatiiigrmaps, so Cvi-
tanovic and Eckhardt showed that cycle expansions repeoguantum resonances
of Eckhardt’s 3-disk scattereB§] to rather impressive accurac$] (submitted
February 1989). Gaspard and Rice published a lovely tipbfarticles (submit-
ted September 1988) about the same 3-disk system (classéraiclassical and
quantum scatteringyp, 41, 42]. In 1992 P. E. Rosenqvisf43, 44], in his PhD
thesis, combined the magic of spectral determinants weh gymmetry factor-
izations p3, 45] to take cycle expansions to ridiculous accuracy; for eXamp
periodic orbits up to 10 bounces determine the classicapescate for a 3-disk
pinball to be

v = 0.4103384077693464893384613078192.

Try to extract this from a direct numerical simulation, orog-log plot of level
sums A.1)! Prior to cycle expansions, the best accuracy that GaspaddRice
achieved by applying Markov approximations to the specteérminant{ (] was
1 significant digit,y ~ 0.45.

A 3-disk billiard is exceptionally nice, uniformly hyperho repeller. More
often than not, good symbolic dynamics for a given flow iseithot available,
or its grammar is not finite, or the convergence of cycle exjuas is #ected
by non-hyperbolic regions of state space. In those casasdtions such as theC hapter 24
stability cutgf of Dahlqvist and Russberd§, 47] and Dettmann and Morrisg ]
might be helpful. The idea is to truncate the cycle expankiomcluding only the
shadowing combinations of pseudo-cyclps, p2 - - -, pk} such thatAp, - - - Ap,| <
Amax With the cutdf Amax equal to or smaller than the most unstalilgin the
data set.

Itis pedagogically easier to motivate sums over periodiit®by starting with
discrete time dynamical systems, but most flows of physitarést are continu-
ous in time. The weighted averages of periodic orbits forticoous time flows
were introduced by Bowen, who treated them as Poincar&oeestispensions
weighted by the ‘time ceiling’ function, and were incorp@e into dynamical
zeta functions by Parry and Pollicottq] and Ruelle §0]. For people steeped
in quantum mechanics it all looked very unfamiliar, so in 19®vitanovi¢ and
Eckhardt reformulated spectral determinants for contisuime flows along the
lines of Gutzwiller's derivation of the semi-classicaldesformula p1]. As a con- chapter 18
sequence, quantum mechaniciafs, 52, 53] tend to cite this paper as the first
paper on cycle expansions.

2D billiards are only toys, but quantization of helium is synebt just a game.
By implementing cycle expansions in 1991, the group of Digfetgen obtained
a surprisingly accurate helium spectruml[55] from a small set of its shortest
cycles. This happened 50 years after old quantum theorydiked o do so and
20 years after Gutzwiller first introduced his quantizatidichaotic systemslip].

section 20.6

The Copenhagen group gave many conference and seminaakalks cycle
expansions. In December 1986, Cvitanovic presentedtsssuithe periodic-orbit
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description of the topology of Lozi and Hénon attractorsl &#me periodic-orbit
computation of associated dynamical averages, at the mgeeti ‘Chaos and
Related Nonlinear Phenomena: Where do we go from Hefdis meeting was
organized by Moshe Shapiro and Itamar Procaccia and heleikibutz Kiryat
Anavim. A great meeting, and Celso Grebogi was in the audien®fter the
“Where do we go from here?”’meeting, the Maryland group wrote a series of
papers on unstable periodic orbits, or ‘UPQOSs’. In the firgtgrgb6], Unstable
periodic orbits and the dimensions of multifractal chaagitractor (submitted
September 1987), the focus was on fractal dimensions oftichatiractors, as
was the fashion in the late 1980's. They prove that the ntaemasureoy of
a mixing hyperbolic attractor is given by the limit of a sumeouhe unstable
periodic pointsx; of long periodn, embedded in a chaotic attractor. Each periodic
point is weighted by the inverse of the product of its peodibit's expanding
Floguet multipliersA, Eq. (14) in their paper:

section 12.4

remark 5.1

, 1
poMs) = lim - > = Xj€Ms. (A2)

xjeFixfn !

This is an approximate level sum formula for natural measargpecial case of
(A.1), with leading Perron-Frobenius eigenvalsie= 0 (no escape), angd = 0
(observable=1). The first paper does cite Auerbaehal. [31], in which the
same approximate level sum seems to have been publishdukefiirst time. Ever
since then, various cyclist teams cite exclusively thein@apers and some of the
mathematicians of the 1970’s.

So you have now written a paper that uses periodic orbits.t\§lume to cite?
Work by Sinai-Bowen-Ruelle is smarter and more profouna tha vast majority
of ‘chaos’ publications from the 1980s on. If you are not aijucomputing any-
thing using periodic orbits and are reluctant to refer tentacontributions, you
can safely credit Ruelle’?p, 11] for deriving the dynamical (or Ruelle) zeta func-
tion, and Gutzwiller for formulating semiclassical quaation as a Zeta function
over unstable periodic orbits ?, 13]. There are no cycle expansions in these pa-
pers or in Bowen’s work (see, for example, the descriptiorsirholarpedia.ony
If you have computed something using sums weighted by perimtbit weights,
cite the first paper that introduced them, as well as a usgftibtdate reference,
which in this case isChaosBook.org. Do not faint because this webbook is
available on (gasp!) the internet - it's third millenniunmdshaving a continuously
updated, hyperlinked and reliable reference has its \drtue

Depending on the context, one should also cite 1) Zoldi are@side 7] for
being the second to determine unstable periodic orbits¢i#i¥em) for Kuramoto-
Sivashinsky, on a domain larger than what was studied inTéf, 2) Lopezet
al. [59] for being the first to determine relative periodic orbitaispatio-temporal
PDE (complex Landau-Ginzburg), and 3) Kazantsey for being the first to de-
termine periodic orbits in a weather model, and for his \emeal method for find-
ing periodic orbits. We love these authors, but not for ttescape-time weight-|
ing’.

While derivations of A.1) by Kadandtf and Tang 1984 and Auerbaeh al.
1987 were heuristic, Grebogi, Ott and Yorke 1987 pro%e2) by taking the
n — oo limit. In actual computations it would be madness to attetonpake such
limit, as longer and longer periodic orbits are exponelytidlore and more un-

remark 20.1
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stable, exponentially growing in number, and non-comgatahnd the natural
measuregg is everywhere singular, with support on a fractal set, wihni— oo
limit even more impossible to compute. And why would one tdiie limit? The
whole point of cycle expansions is that it is smarter to corm@veragesvithout
constructingog.

Taking a limit to obtain a proof is good mathematics, but atistical mechan-
ics a partition function is not a limit of anything; it is thelf sum of all states.
Likewise, its ergodic theory cousin, the spectral deteemins not a long-time
limit; it is the exact sum over all periodic orbits. Cycle aexjgions were intro-
duced in a non-rigorous manner, on purpasd:[the exposition was meant not to
frighten a novice, innocent of Borel measurablé Q sets. This was set right inChaloter -
the elegant PhD thesis of H. H Rugh’s in 1992e correlation spectrum for hy-
perbolic analytic mapg60], which proves that the zeros of spectral determinants
are indeed the Ruelle-Pollicott resonancés (2, 63]. The proof is well within
mathematicians’ comfort zone, so they tend to cite Rughfsepas the paper on
‘Fredholm determinants’, and, as always, throw in “a serigeérothendieck” for
good measurelfs, 64], without citing earlier papers on cycle expansions.

If you intend to determine and use periodic orbits, hereastlessage: Heuris-
tic ‘level sums’ are approximations to the exact trace fdasthat are derived
here, in ChaosBook, and Gaspard monogréiifj vith no more dfort than the
heuristic approximations), not smart for computationstdaconvergence is ob-
tained by utilizing the shadowing that is built into the eixeycle expansions of
dynamical zeta functions and spectral determinants. GCgxfmnsions ar@ot
heuristic, in classical deterministic dynamics they exactexpansions in the un-
stable periodic orbits33, 30, 27]; in quantum mechanics and stochastic mechan-
ics they are semi-classically exact. So why would one pfanit of a heuristic
sum such asA.2) to the exact spectral determinant, convergent exact qﬁerioSection o4
orbits sums, and exact periodic orbits formulas for dynaaverages of observ- '
ables? It is not even wrong. Perhaps if one is very fond of Bmkeaps [6],
which, being piecewise linear, have no cycle expansionature terms, one does
not appreciate the shadowing cancelations built into tleetspl determinants and
their cycle expansions. That might be the reason why lingakéers stop at the
level sum A.2).

A.5 Dynamicist’svision of turbulence

The key theoretical concepts that form the basis of dyndntieories of tur-
bulence are rooted in the work of Poincaré, Hopf, Smale,llRu&utzwiller
and Spiegel. In Poincaré’s 1889 analysis of the three-tpydiplem (7], he in-
troduced the geometric approach to dynamical systems atldodwethat lie at
the core of the theory developed here: qualitative topolofgstate space flows,
Poincaré sections, key roles played by equilibria, péciocbits, heteroclinic con-
nections, and their staljlenstable manifolds.

In a seminal 1948 papeb§], Ebehardt Hopf visualized the function space
of allowable Navier-Stokes velocity fields as an infiniteadnsional state space,
parameterized by viscosity, boundary conditions and eatdorces, with instan-
taneous state of a flow represented by a point in this statespaminar flows
correspond to equilibrium points, globally stable fofiguently large viscosity.
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As the viscosity decreases (as the Reynolds number ingedaebulent states
set in, represented by chaotic state space trajectorieqf'sHobservation that
viscosity causes a contraction of state space volumes uhdeaction of dy-
namics led to his key conjecture: that long-term, typicalbserved solutions of
the Navier-Stokes equations lie on finite-dimensional fiadals embedded in the
infinite-dimensional state space of allowed states. Hap&sifold, known today
as the ‘inertial manifold,’ is well-studied in the matheimatof spatio-temporal
PDEs. lts finite dimensionality for non-vanishing ‘visdgsiparameter has been
rigorously established in certain settings by Foias anthibotators §9]. Hopf
presciently noted that “the geometrical picture of the pHémw is, however, not
the most important problem of the theory of turbulence. @&ggr importance is
the determination of the probability distributions asat®il with the phase flow”.
Hopf’s call for understanding probability distributionssaciated with the phase
flow has indeed proven to be a key challenge, one in which digaisystems the-
ory has made the greatest progress in the last half centuparticular, the Sinai-
Ruelle-Bowen ergodic theory of ‘natural’ or SRB measures layed a critical
role in understanding dissipative systems with chaotiatei [7, 70, 71, 11].

Hopf noted “[t]he great mathematicalfficulties of these important problems
are well known and at present the way to a successful attatikeom seems hope-
lessly barred. However, there is no doubt that many chaistitefeatures of the
hydrodynamical phase flow occur in a much larger class oflaimroblems gov-
erned by non-linear space-time systems. In order to gaighhito the nature
of hydrodynamical phase flows we are, at present, forced doafivdl to treat sim-
plified examples within that class.” Hopf’s call for geomeistate space analysis
of simplified models first came to fulfillment with the influ@dtLorenz’s trunca-
tion [72] of the Rayleigh-Bénard convection state space. The PiOptogonal
Decomposition (POD) models of boundary-layer turbulenaaipht this type of
analysis closer to physical hydrodynamics;,[74]. Further significant progress
has proved possible for systems such as the 1-spatial diomeldsramoto-Siva-
shinsky flow [/5, 76], which is a paradigmatic model of turbulent dynamics, as
well as one of the most extensively studied spatially exgéendi/namical systems.

Today, as we hope to have convinced the reader, with modenputation and
experimental insights, the way to a successful attack orfuthéNavier-Stokes
problem is no longer “hopelessly barred.” We address thdestge in a way
Hopf could not divine, employing methodology developedyowithin the past
two decades, explained in depth in this book.

Hopf, however, to the best of our knowledge, never suggesiadturbulent
flow should be analyzed in terms of ‘recurrent flows’, i.e.dhperiodic solutions
of the defining PDEs. The story so far goes like this: in 19603ptgel was
Robert Kraichnais research associate. Kraichnan told him, “Flow followsg-r
ular solution for a while, then another one, then switcheariother one; that's
turbulence.” It was not too clear, but Kraichnan’s visiortwbulence moved Ed.
In 1962 Spiegel and Derek Moore investigated a set of 3raramlavection equa-
tions which seemed to follow one periodic solution, thenthen and continued
going from periodic solution to periodic solution. Ed toleiek, “This is turbu-
lence!” and Derek said “This is wonderful!” He gave a lectateCaltech in 1964
and came back very angry. They pilloried him there. “Why is tarbulence?”
they kept asking and he could not answer, so he expunged tite‘tnrdoulence’

example 2.2

chapter 26
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from their 1966 paper/[/] on periodic solutions. In 1970 Spiegel met Kraichnan
and told him, “This vision of turbulence of yours has beenyveseful to me.”
Kraichnan said: “That wasn't my vision, that was Hopf’s visi’ What Hopfac-
tually said and where he said it remains deeply obscure to this estyTdhere are
papers that lump him together with Landau, as the ‘Landapfddncorrect the-
ory of turbulence, a proposal to deploy incommensuratguescies as building
blocks of turbulence. This was Landau’s guess and was tlysomel that could be
implemented at the time.

The first paper to advocate a periodic orbit description diulent flows is
thus the 1966 Spiegel and Moore papeér,[78]. Thirty years later, in 1996
Christianseret al.[79] proposed (in what is now the gold standard for exemplary
ChaosBook.org/projects) that the periodic orbit theory be applied to infinite-
dimensional flows, such as the Navier-Stokes, using the ridora-Sivashinsky
model as a laboratory for exploring the dynamics close tmtiset of spatiotem-
poral chaos. The main conceptual advance in this initi@yfevas the demonstra-
tion that the high-dimensional (16-64 mode Galérkin tatiuns) dynamics of this
dissipative flow can be reduced to an approximately 1-diioeasPoincaré return
maps — f(s), by choosing the unstable manifold of the shortest petiodbit as
the intrinsic curvilinear coordinate from which to measuoear recurrences. For
the first time for any nonlinear PDE, some 1,000 unstableod&riorbits were
determined numerically. What was novel about this workatFaynamics on a
strange attractor embedded in a high-dimensional spacessantially reduced
to 1-dimensional dynamics. Second, the solutions foundiged both aguali-
tative descriptiorand highly accuratguantitative prediction$or the given PDE
with the given boundary conditions and system parameteesgal

How is it possible that the theory originally developed fowldimensional
dynamical systems can work in the-dimensional PDE state spaces? For dis-
sipative flows the number of unstable, expanding directisnsften finite and
even low-dimensional; perturbations along tkeof contracting directions heal
themselves, and play only a minor role in cycle weights - bahe long-time dy-
namics is €ectively finite dimensional. For a more precise stateme,Ginelli
et al.[80].

The 1996 project went as far as one could with methods and at@tign re-
sources available, until 2002, when new variational methwere introduceddl,
82, 83]. Considerably more unstable, higher-dimensional regiimeve become
accessibled4]. Of course, nobody really cares about Kuramoto-Sivaslyins is
only a model; it was not until the full Navier-Stokes caldidas of Eckhardt, Ker-
swell and collaborators3f, 86, 87] that the fluid dynamics community started to
appreciate that thdynamical(as opposed tetatistica) analysis of wall-bounded
flows is now feasibleqg].

A.6  Gruppenpest

How many Tylenols should | take with this?... (never took
group theory, still need to be convinced that there is any
use to this beyond mind-numbing formalizations.)

— Fabian Walé&e, forced to read chaptér
If you are not fan of chapte® “Flips, slides and turns,” and its elaborations,
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you are not alone. Or, at least, you were not alone in the 193G is when the
articles by two young mathematical physicists, Eugene Wigmd Johann von
Neumann §9], and Wigner’s 1931 Gruppentheorig(] startedDie Gruppenpest
that plagues us to this very day.

According to John BaeZ)[], the American physicist John Slater, inventor of
the ‘Slater determinant,” is famous for having dismissemligs as unnecessary to
physics. He wrote:

“It was at this point that Wigner, Hund, Heitler, and Weyl er&d the picture
with their ‘Gruppenpest:’ the pest of the group theory [aliy the correct trans-
lation is ‘the group plague’] ... The authors of the ‘Gruppest’ wrote papers
which were incomprehensible to those like me who had notietiugroup the-
ory... The practical consequences appeared to be neglidibt everyone felt that
to be in the mainstream one had to learn about it. |1 had what body describe
as a feeling of outrage at the turn which the subject had takéhwas obvious
that a great many other physicists were disgusted as | hat e the group-
theoretical approach to the problem. As | heard later, there remarks made
such as ‘Slater has slain the ‘Gruppenpest”. | believe thaither piece of work
| have done was so universally popular.”

A. John Coleman writes ilGroups and Physics - Dogmatic Opinions of a
Senior Citizen $2]: “The mathematical elegance and profundity of Weyl's book
[Theory of Groups and QM] was somewhat traumatic for the Bhegpeaking
physics community. In the preface of the second edition B0l @fter a visit to
the USA, Weyl wrote, “It has been rumored that the ‘grouppesfradually being
cut out of quantum physics. This is certainly not true in scafathe rotation and
Lorentz groups are concerned; ...." In the autobiography. &f. Slater, published
in 1975, the famous MIT physicist described the “feeling atrage” he and other
physicists felt at the incursion of group theory into phgsit the hands of Wigner,
Weyl et al. In 1935, when Condon and Shortley published thigily influential
treatise on the “Theory of Atomic Spectra”, Slater was wydwralded as having
“slain the Gruppenpest”. Pages 10 and 11 of Condon and 8ertreatise are
fascinating reading in this context. They devote three gragzhs to the role of
group theory in their book. First they say, “We manage to deha without
it” This is followed by a lovely anecdote. In 1928 Dirac gaxeseminar, at
the end of which Weyl protested that Dirac had said he woul#emm® use of
group theory but that in fact most of his arguments were agptins of group
theory. Dirac replied, “l said that | would obtain the resultithout previous
knowledge of group theory!” Mackey, in the article refertedoreviously, argues
that what Slater and Condon and Shortley did was to renamgetierators of the
Lie algebra of SO(3) as “angular momenta” and create thenfpéhat what they
were doing was physics and not esoteric mathematics.”

From AIP Wigner interview AIP: “In that circle of people you were working
with in Berlin, was there much interest in group theory as tifne?” WIGNER:
“No. On the opposite. Schrodinger coined the expressiGnppenpest’ must
be abolished.” “It is interesting, and representative efrélations between math-
ematics and physics, that Wigner's paper was originallynsttbd to a Springer
physics journal. It was rejected, and Wigner was seekingyaiph journal that
might take it when von Neumann told him not to worry, he woudd igj into the
Annals of Mathematics. Wigner was happy to accept fisrg93].”
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A.7 Death of the Old Quantum Theory

In 1913 Otto Stern and Max Theodor Felix von Laue went
up for a walk up the Uetliberg. On the top they sat down
and talked about physics. In particular they talked about
the new atom model of Bohr. There and then they made
the ‘Uetli Schwur:’ If that crazy model of Bohr turned out
to be right, then they would leave physics. It did and they
didn't.
— A. Pais,Inward Bound: of Matter and Forces in
the Physical World
One afternoon in May 1991, Dieter Wintgen is sitting in hisae at the Niels Bohr
Institute beaming with the unparalleled glee of a boy whojhascommitted a
major mischief. The starting words of the manuscript he basgenned are

The failure of the Copenhagen School to obtain a reasonable .

Wintgen was 34 years old at the time, a $Byrkind of guy, always wearing san-
dals and holed out jeans, the German flavor of a 90’s left wiagel mountain
climber. He worked around the clock with his students Gréd@gomer and Klaus
Richter to complete the work that Bohr himself would haveelbio have seen
done back in 1916: a ‘planetary’ calculation of the heliuractpum.

Never mind that the ‘Copenhagen School’ refers not to theqalhtum the-
ory, but to something else. The old quantum theory was naytegaall; it was a
set of rules bringing some order to a set of phenomena whitbddegic of clas-
sical theory. The electrons were supposed to describetplgnerbits around the
nucleus; their wave aspects were yet to be discovered. Turmelédions seemed
obscure, but Bohr's answer for the once-ionized helium tdrbgen ratio was
correct to five significant figures and hard to ignore. The aldrum theory
marched on, until by 1924 it reached an impasse: the heliwentspn and the
Zeeman #&ect were its death knell.

Since the late 1890’s it had been known that the helium gp@ctonsists of
the orthohelium and parahelium lines. In 1915 Bohr suggetiat the two kinds
of helium lines might be associated with two distinct shagfesbits (a suggestion
that turned out to be wrong). In 1916 he got Kramers to workheproblem, and
he wrote to Rutherford, “I have used all my spare time in tisé taonths to make
a serious attempt to solve the problem of ordinary heliunctspm .. .| think
really that at last | have a clue to the problem.” To otherezgiues he wrote that
“the theory was worked out in the fall of 1916” and of havingaibed a “partial
agreement with the measurements.” Nevertheless, the Batmmerfeld theory,
while by and large successful for hydrogen, was a disastendatral helium.
Heroic dforts of the young generation, including Kramers and Heisembwere
of no avail.

For a while Heisenberg thought that he had the ionizatioemitl for he-
lium, which he had obtained by a simple perturbative scher®wrote enthu-
siastic letters to Sommerfeld and was drawn into a collgtmravith Max Born
to compute the spectrum of helium using Born’s systematitugeative scheme.
To a first approximation, they reproduced the earlier catoohs. The next level
of corrections turned out to be larger than the computéece The concluding
paragraph of Max Born’s classic “Vorlesungen tUber Atomhagtk” from 1925
sums it up in a somber toné4]:



APPENDIX A. A BRIEF HISTORY OF CHAOS 688

(...) the systematic application of the principles of theugum theory

(...) gives results in agreement with experiment only irsthoases where
the motion of a single electron is considered; it fails evethie treatment
of the motion of the two electrons in the helium atom.

This is not surprising, for the principles used are not yeadinsistent.
(...) A complete systematic transformation of the cladsizachanics into
a discontinuous mechanics is the goal towards which thetgoatheory
strives.

That year Heisenberg fared a bout of hay fever, and the old quantum theory
was dead. In 1926 he gave the first quantitative explanatidhechelium spec-
trum. He used wave mechanics, electron spin and the Pallistxc principle,
none of which belonged to the old quantum theory. As a repldhetary orbits
of electrons were cast away for nearly half a century.

Why did Pauli and Heisenberg fail with the helium atom? It wasthe fault
of the old quantum mechanics, but rather it reflected thek ¢d understanding of
the subtleties of classical mechanics. Today we know wlest thissed in 1913-
24, the role of conjugate points (topological indices) glafassical trajectories
was not accounted for, and they had no idea of the importahpermdic orbits
in nonintegrable systems.

Since then the calculation for helium using the methods efdid quantum
mechanics has been fixed. Leopold and Perci¥dlddded the topological indices
in 1980, and in 1991 Wintgen and collaborato?g, [55] understood the role of
periodic orbits. Dieter had good reasons to gloat; whiler#is¢ of us were prepar-
ing to sharpen our pencils and supercomputers in order twapip the dreaded
3-body problem, they just went ahead and did it. What it t@sid-much else—is
described in this book.

Oneis also free to ponder what quantum theory would looktbkiay if all this
was worked out in 1917. In 1994 Predrag Cvitanovi¢ gavelaiteSeattle about
helium and cycle expansions to—inter alia—Hans Bethe, whed it so much that
after the talk he pulled Predrag aside and they trotted @velans’ secret place:
the best lunch on campus (Business School). Predrag askéolild quantum
mechanics look dierent if in 1917 Bohr and Krameget al. figured out how to
use the helium classical 3-body dynamics to quantize héfium

Bethe was very annoyed. He responded with an exasperatied indBethe
Deutschinglish (if you have ever talked to him, you can doubiee over your-
self):

“It would not matter at all!”
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Commentary

Remark A.1 Notion of global foliations.  For each paper cited in dynamical systems
literature, there are many results that went into its dgymlent. As an example, take the
notion of global foliations that we attribute to Smale. As#&a we can trace the idea, it
goes back to René Thom; local foliations were already ugéthdlamard. Smale attended
a seminar of Thom in 1958 or 1959. In that seminar Thom wasaéxiplg his notion of
transversality. One of Thom'’s disciples introduced Smaldtazilian mathematician
Peixoto. Peixoto (who had learned the results of the AndréPantryagin school from
Lefschetz) was the closest Smale had ever come until thdretdndronov-Pontryagin
school. It was from Peixoto that Smale learned about stratstability, a notion that got
him enthusiastic about dynamical systems, as it blendebwitbl his topological back-
ground. It was from discussions with Peixoto that Smale lgetdroblems in dynamical
systems that lead him to his 1960 paper on Morse inequalities next year Smale pub-
lished his result on the hyperbolic structure of the non-deaimg set. Smale was not the
first to consider a hyperbolic point, Poincaré had alreaalyedthat; but Smale was the
first to introduce a global hyperbolic structure. By 1960 &mweas already lecturing on
the horseshoe as a structurally stable dynamical systeflmawiinfinity of periodic points
and promoting his global viewpoint. (R. Mainieri)

Remark A.2 Levels of ergodicity.  In the mid 1970’s A. Katok and Ya.B. Pesin tried
to use geometry to establish positive Lyapunov exponeni¥Katok and J.-M. Strelcyn
carried out the program and developed a theory of generamdigal systems with sin-
gularities. They studied uniformly hyperbolic systemsgasng as Anosov’s), but with
sets of singularities. Under iterations a dense set of pdiits the singularities. Even
more important are the points that never hit the singulaety In order to establish some
control over how they approach the set, one looks at trajestthat approach the set by
some givere", or faster.

Ya.G. Sinai, L. Bunimovich and N.I. Chernov studied the getmof billiards in a
very detailed way. A. Katok and Ya.B. Pesin’s idea was muclemobust: look at the
discontinuity set, take anneighborhood around it. Given that the Lebesgue measure is
€* and the stability grows not faster than (distaficé). Katok and J.-M. Strelcyn proved
that the Lyapunov exponent is non-zero.

In mid 1980’s Ya.B. Pesin studied the dissipative case. Nwsvgroblem has no
invariant Lebesgue measure. Assuming uniform hypertgligiith singularities, and
tying together Lebesgue measure and discontinuities, aee ¢ghat the stability grows
not faster than (distanck)Ya.B. Pesin proved that the Lyapunov exponent is non-zero,
and that SRB measure exists. He also proved that the Loreazahd Byelikh attractors
satisfy these conditions.

In the systems that are uniformly hyperbolic, all troubléniglifferentials. For the
Hénon attractor, already theffirentials are nonhyperbolic. The points do not separate
uniformly, but the analogue of the singularity set can bewigtd by excising the regions
that do not separate. Hence there are 3 levels of ergodieragst

1. Anosov flow

2. Anosov flow+ singularity set: For the Hamiltonian systems the genersé ésa
studied by A. Katok and J.-M. Strelcyn, and the billiardsechg Ya.G. Sinai and
L. Bunimovich. The dissipative case is studied by Ya.B. Resi

3. Hénon case: The first proof was given by M. Benedicks anddrleson §6, 97,
98]. A more readable proof is given in M. Benedicks and L.-S. Mg(P9].

(based on Ya.B. Pesin’'s comments)
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Remark A.3 Einsteindidit?  The first hint that chaos is afoot in quantum mechanics
was given in a note by A. Einstein()(J. The total discussion is a one sentence remark.
Einstein being Einstein, this one sentence has been deeuffedest to give him the
credit for being the pioneer of quantum chas§,[L01]. We asked about the paper two
people from that era, Sir Rudolf Peierls and Abraham Paigh@&ehad any recollection
of the 1917 article. However, Theo Geisel has unearthedexerte that shows that
in early 20s Born did have a study group meeting in his houaegtudied Poincaré’s
Méchanique Célesteés[]. In 1954 Fritz Reiche, who had previously followed Einstei
as professor of physics in Breslau (now Wroclaw, Poland)nted out to J.B. Keller
that Keller's geometrical semiclassical quantization aasicipated by the long forgotten
paper by A. Einstein]00. In this way an important paper written by the physicist who
at the time was the president of German Physical Societytl@dhost famous scientist
of his time, came to be referred to for the first time by Kellel, 41 years later. But
before lan Percival included the topological phase, andd¥mand students recycled the
Helium atom, knowing Méchanique Céleste was not enougiotoplete Bohr’s original
program.

Remark A.4 Berry-Keating conjecture. A very appealing proposal in the context
of semiclassical quantization is due to M. Berry and J. Kepfi 07. The idea is to im-
prove cycle expansions by imposing unitarity as a funclieqaation ansatz. The cycle
expansions that they use are the same as the original onasbhaesabove {0, but the
philosophy is quite dferent; the claim is that the optimal estimate for low eigéumes of
classically chaotic quantum systems is obtained by takiageal part of the cycle expan-
sion of the semiclassical zeta function, ctitat the appropriate cycle length. M. Sieber,
G. Tanner and D. Wintgen, and P. Dahlqvist find that their micakresults support this
claim; F. Christiansen and P. Cvitanovi¢ do not find any emik in their numerical re-
sults. The usual Riemann-Siegel formulas exploit the de#lity of the Riemann and
other zeta functions, but there is no evidence of such symrfmtgeneric Hamiltonian
flows. Also from the point of hyperbolic dynamics discussbdw, proposal in its cur-
rent form belongs to the category of crude cycle expansittigsgycles are cutfbby a
single external criterion, such as the maximal cycle timigh wo regard for the topology
and the curvature corrections. While the functional equmationjecture is not in its final
form yet, it is very intriguing and fruitful research insafion.

The real life challenge are generic dynamical flows, whichdither of extreme ide-

alized settings, Smale horseshoe on one end, and the Riezatfumction on the other.

Remark A.5 Sources. The tale of appendiR.7, aside from a few personal recollec-
tions, is in large part lifted from Abraham Pais’ accountthef demise of the old quantum
theory [LO3 104, as well as Jammer’s accourit(q. In August 1994 Dieter Wintgen
died in a climbing accident in the Swiss Alps.
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