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By drawing more diagrams [e.g., 2d scales as N(1/N 4)N*, with the three
factors coming from the quartic coupling, the propagators, and the sum over colors,
respectively], you can convince yourself that planar diagrams dominate in the large
N limit, all scaling as N. For a challenge, try to prove it. Evidently, there is a
topological flavor to all this.

The reduction to planar diagrams is a vast simplification but there are still an
infinite number of diagrams. At this stage in our mastery of field theory, we still
can’t solve large N QCD. (As I started writing this book, there were tantalizing
clues, based on insight and techniques developed in string theory, that a solution
of large N QCD might be within sight. As I now go through the final revision, that
hope has faded.)

The double-line formalism has a natural interpretation. Group theoretically, the
matrix gauge potential A’ transforms justlike 3'q; (but assuredly we are not saying
that the gluon is a quark-antiquark bound state) and the two lines may be thought of
as describing a quark and an antiquark propagating along, with the arrows showing
the direction in which color is flowing.

Random matrix theory

There is a much simpler theory, structurally similar to large N QCD, that actually
can be solved. I am referring to random matrix theory.

Exaggerating a bit, we can say that quantum mechanics consists of writing
down a matrix known as the Hamiltonian and then finding its eigenvalues and
eigenvectors. In the early 1950s, when confronted with the problem of studying
the properties of complicated atomic nuclei, Eugene Wigner proposed that instead
of solving the true Hamiltonian in some dubious approximation we might generate
large matrices randomly and study the distribution of the eigenvalues—a sort of
statistical quantum mechanics. Random matrix theory has since become a rich
and flourishing subject, with an enormous and growing literature and applications
to numerous areas of theoretical physics and even to pure mathematics (such as
operator algebra and number theory.)? It has obvious applications to disordered
condensed matter systems and less obvious applications to random surfaces and
hence even to string theory. Here I will content myself with showing how 't Hooft’s
observation about planar diagrams works in the context of random matrix theory.

Let us generate N by N hermitean matrices ¢ randomly according to the
probability

Pg) = -;-e'”“ V@ 7

2 For a glimpse of the mathematical literature, see D. Voiculescu, ed., Free Probability
Theory. '
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with V () a polynomial in ¢. For example, let V (p) = 2m?p? + g¢4 The nor-
malization [ DgP(p) = 1 fixes
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The limit N — oo is always understood.

As in Chapter V1.7 we are interested in p(E), the density of eigenvalues of ¢.
To make sure that you understand what is actually meant, let me describe what
we would do were we to evaluate p(E) numerically. For some large integer N,
we would ask the computer to generate a hermitean matrix ¢ with the probability
P () and then to solve the eigenvalue equation v = Ev. After this procedure had
been repeated many times, the computer could plot the distribution of eigenvalues
in a histogram that eventually approaches a smooth curve, called the density of
eigenvalues p(E).

We already developed the formalism to compute p(E) in (V1.7.1): Compute
the real analytic function G(z) = ((1/N) tr[1/z — ¢]) and p(E) = —(1/7) lim
Im G(E + i¢). The average (- - -) is taken with the probability P(¢): e
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You see that my choice of notation, ¢ for the matrix and V () = jm?¢? + g¢*
as an example, is meant to be provocative. The evaluation of Z is just like the
evaluation of a path integral, but for an action S(p) = N tr V() that does not
involve [ d“x. Random matrix theory can be thought of as a quantum field theory
in (0 + 0)-dimensional spacetime!

Various field theoretic methods, such as Feynman diagrams, can all be applied
to random matrix theory. But life is sweet in (0 + 0)-dimensional spacetime: There
is no space, no time, no energy, and no momentum and hence no integral to do in
evaluating Feynman diagrams.

The Wigner semicircle law

Let us see how this works for the simple case V (¢) = jm?p? (we can always
absorb m into ¢ but we won’t). Instead of G(z), it is slightly easier to calculate
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The last equality follows from invariance under unitary transformations:

P(p) = P(UTpU) @)
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Do the Gaussian integral
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Setting k = [ and summing, we find the n = 1 term in (5) is equal to (1/z3)a§(1/m2).

Just as in any field theory we can associate a Feynman diagram with each of the
terms in (3). For the n = 1 term, we have Figure VI1.4.3. The matrix character of ¢
lends itself naturally to ’t Hooft’s double-line formalism and thus we can speak of
quark and gluon propagators with a good deal of ease. The Feynman rules are given
in Figure VIL.4.4. We recognize g as the gluon field and (6) as the gluon propagator.
Indeed, we can formulate our problem as follows: Given the bare quark propagator
1/z, compute the true quark propagator G (z) with all interaction effects taken into
account.
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Figure VIL4.4
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Figure VIL4.5

Letus now look at the n = 2 termin (5) 1/2° < ¢} op¢f ¢ >, which we represent
in Figure VIL4.5a. With a bit of thought you can see that the index i can be
contracted with k, [, or j, thus giving rise to Figures VIL4.5b, c, d. Summing
over color indices, just as in QCD, we see that the planar diagrams in 5b and 5d
dominate the diagram in Sc by a factor N 2, We can take over 't Hooft’s observation
that planar diagrams dominate.
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Incidentally, in this example, you see how large N is essential, allowing us to
get rid of nonplanar diagrams. After all, if I ask you to calculate the density of
eigenvalues for say N =7 you would of course protest saying that the general
formula for solving a degree-7 polynomial equation is not even known.

The simple example in Figure VII.4.5 already indicates how all possible dia-
grams could be constructed. In 5b the same “unit” is repeated, while in 5d the same
“unit” is nested inside a more basic diagram. A more complicated example is shown
in 5e. You can convince yourself that for N = oo all diagrams contributing to G(z)
can be generated by either “nesting” existing diagrams inside an overarching gluon
propagator or “repeating” an existing structure over and over again. Translate the
preceding sentence into two equations: “Repeat” (see Figure VIL.4.6a),
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and “nest” (see Figure VII.4.6b),
2@ = —5G(@) ®
m

Combining these two equations we obtain a simple quadratic equation for G(z)
that we can immediately solve to obtain
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Figure VIL4.6
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Figure VIL4.7
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(From the definition of G (z) we see that G(z) — 1/z forlarge z and thus we choose
the negative root.) We immediately deduce that

p(E) = Ve — B (10)
Ta

where a2 = 4/m?. This is a famous result known as Wigner’s semicircle law.

The Dyson gas

I hope that you are struck by the elegance of the large N planar diagram approach.
But you might have also noticed that the gluons do not interact. It is as if we have
solved quantum electrodynamics while we have to solve quantum chromodynam-
ics. What if we have to deal with V (p) = 1m2¢? + go*? The g¢* term causes the
gluons to interact with each other, generating horrible diagrams such as the one in
_ Figure VIL4.7. Clearly, diagrams proliferate and as far as I know nobody has ever
been able to calculate G(z) using the Feynman diagram approach.

Happily, G(z) can be evaluated using another method known as the Dyson gas
approach. The key is to write

e=U'AU an

where A denotes the N by N diagonal matrix with diagonal elements equal to A;,
i=1,..., N.Change the integration variable in (3) from ¢ to U and A:

Z= f du f (Tda;) JeV 2 V00 (12)

_with J the Jacobian. Since the integrand does not depend on U we can throw
away the integral over U It just gives the volume of the group SU(N). Does this
remind you of chapter VIL1? Indeed, in (11) U corresponds to the unphysical
gauge degrees of freedom—the relevant degrees of freedom are the eigenvalues
{*;}. As an exercise you can use the Faddeev-Popov method to calculate J.



