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Abstract

The connection between anomalous scaling of structure functions (intermittency) and

numerical methods for turbulence simulations is discussed. It is argued that the com-

putational work for direct numerical simulations (DNS) of fully developed turbulence

increases as Re
4, and not as Re

3 expected from Kolmogorov’s theory, where Re is

a large-scale Reynolds number. Various relations for the moments of acceleration

and velocity derivatives are derived. An infinite set of exact constraints on dynam-

ically consistent subgrid models for Large Eddy Simulations (LES) is derived from the

Navier-Stokes equations, and some problems of principle associated with existing LES

models are highlighted.
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1 Background

The theory of turbulence and the development of calculation methods for high-Reynolds-

number flows became an active research topic around the beginning of the twentieth century.

This effort yielded many important results of general interest in statistical physics. For in-

stance, Kolmogorov’s work [1]-[3] on turbulence theory formulated the scaling ideas for the

first time, and Kraichnan [4] proposed the mode coupling approach. However, the “turbu-

lence problem”, lacking a small parameter characterizing the strong nonlinear interactions,

has turned out to be remarkably difficult—and it remains so today.

The revolutionary realization of Osborne Reynolds that turbulence theory is a subject

of statistical hydrodynamics rather than classical hydrodynamics, led almost hundred years

ago to various elegant and useful phenomenological models based on ideas of kinetic the-

ory (Prandtl [5], Richardson [6], Kolmogorov [3]), which strongly impacted the engineering

profession. These heuristic semi-empirical models, based on low-order closures of various

perturbation expansions, had a somewhat limited range of success and needed adjustable

parameters, often varying from flow to flow. Nevertheless, the role of these models was—

and still is—so immense that one can hardly imagine processes in mechanical and chemical

engineering, aerodynamics and meteorology which do not have their input.

With the advent of powerful computers, the possibility of accurate numerical simulations,

directly based on the Navier-Stokes equations, became a reality. Since the introduction of

spectral methods in the end of sixties [7]-[8], direct numerical simulations (DNS) have become

a new tool to attack the “turbulence problem”. A strategic goal of the DNS has been to

complement expensive and complicated physical experiments, and their dream is to dispense

with them altogether.

The computational power required for DNS is estimated on the basis of Kolmogorov’s

phenomenology that describes turbulent fluctuations filling the interval of wavenumbers

1/L ≪ k ≪ 1/ηK , where L and ηK = LRe−
3
4 are the integral and dissipation scales,

respectively, and Re = urmsL/ν is the Reynolds number based on L and the root-mean-

square velocity urms. If we assume that the velocity fluctuations on scales r << ηK are
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highly damped and cannot contribute to the inertial range dynamics, the effective number

of degrees of freedom [9] is then (L/ηK)3 = Re9/4. This is the minimum number of grid

points required in DNS for a cubic box of linear dimension L. The required number of time

steps in the computation is usually proportional to the spatial grid points, so the total com-

putational work increases as Re3. This means that a mere doubling of the Reynolds number

requires almost an order of magnitude increase of computational work.

The accuracy of numerical methods is traditionally estimated as follows. The dissipation

contribution to the equation for turbulent kinetic energy is given by

E = −νu · ∂2u

∂x2
i

= −ν limr→η
∂2

∂r2
ui(x)ui(x + r) = ν limr→η

1

2

∂2

∂r2
S2,0(r) ∝ νE 2

3 ηξ2−2,

where the order of magnitude estimate in the last step comes from Kolmogorov’s phenomenol-

ogy. For this case, ξ2 = 2/3 and we have ηK = (ν3

E )
1
4 . We then have the familiar estimate

ηK ≈ LRe−
3
4 , mentioned earlier. Thus, to accurately describe the flow, one has to simply

account for fluctuations on the scales r ≥ ηK by choosing the computational mesh size to be

∆ = aηK ≈ aLRe−
3
4 , (1)

where a = const = O(1). On this mesh, the velocity derivative is defined as

u(x + ∆) − u(x)

∆
=

∂u(x)

∂x
+

∑

n=2

1

n!

∂nu(x)

∂xn
∆n−1. (2)

Now, in Kolmogorov’s turbulence, (∂xu)rms =
√

(∂xu)2 ≈ ( ERe
urmsL

)
1
2 = O(Re

1
2 ), and, since

∂nu(x)
∂xn ≈ ∂xu(x)/ηn−1

K , using the mesh size ∆ from the relation (1), we arrive at the estimate

1

n!
(
∂nu(x)

∂xn
)rms∆

n−1 ≈ 1

n!
(∂xu)rms(

∆

ηK
)n−1 ≈ an−1

n!
Re

1
2 . (3)

The relation (3) is essentially the basis for all numerical finite difference schemes used for the

DNS of turbulence [9]. Indeed, we see that if a < 1, the first-order finite difference accurately

represents the velocity derivatives.

In spectral simulations of isotropic and homogeneous turbulence, one prescribes a suitable

number of the Fourier modes to represent the velocity field. Usually, this number is chosen on

the basis of the magnitude of the expected Kolmogorov scale ηK or the largest wavenumber
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kmax = 2π/ηK . In the state-of-the-art simulations [10],[11], the cut-off is usually chosen such

that kmax =
√

2N/3 on a grid of size N3.

In summary, the principal elements of Kolmogorov’s phenomenology which have enabled

these traditional estimates are the following: (a) the scaling exponents of the structure

functions Sn,0 ∝ rξn are given by the Kolmogorov values ξn = n/3; (b) the mean dissipation

rate E = ν(∂iuj)2 is constant and O(1), as are the moments of the dissipation rate En for all

n; if the latter were not the case, one can define different Kolmogorov scales on the basis of

different moments of E ; and (c) the “skewness” factors (∂xu)n/(∂xu)2
n
2 = O(1), independent

of the Reynolds number; for, if this were not so, one can again define different Kolmogorov

scales through odd moments of different order.

The main point of the present paper is that there is a need to reexamine the traditional

estimates in the light of modern developments in turbulent theory and experiment. We

concentrate on isotropic and homogeneous turbulence but expect that the considerations

hold for more general flows as well.

2 Results for Intermittent Turbulence

We are interested in the Navier-Stokes dynamics of incompressible fluids. In 1941, Kolo-

mogorov derived the few exact relation of turbulence theory, presented here for an arbitrary

space dimensionality d, as
1

rd+1

∂

∂r
rd+1S3,0 = (−1)d 12

d
E ,

giving S3,0 = − 12
d(d+2)

Er and S3,0/S1,2 = 3. A dimensional generalization of this result, with-

out however the analytical support, yields the Kolomogorov’s (normal) scaling ξn = n/3.

Recently [12],[13], some additional exact consequences of the Navier-Stokes equations have

been derived. In combination with recent experimental results, we consider their conse-

quences for intermittent turbulence.

a. Dissipation scale as a random field We consider the moments of velocity difference

(also called structure functions). Choosing the displacement vector r parallel to the “x-axis”,

we can define the structure functions Sn,m(r) = (u(x + ri) − u(x))n(v(x + ri) − v(x))n ≡
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(δru)m(δrv)n, where u and v are the components of velocity vector parallel and normal the

x-axis, respectively. In the inertial range the velocity structure functions are Re-independent;

that is, if the displacement r belongs to the interval η ≪ r ≪ L, then Sn,m(r) do not involve

any information about the dissipation scale.

Modern experiments have revealed that Kolmogorov’s result ξn = n/3 is almost cer-

tainly incorrect and that ξn is a concave function of n—or the ratio ξn/n is a decreasing

function of the moment number n. (See for example Refs. [14] for reviews and Ref. [15]

for the most recent data.) Further, the form of structure functions is given by S2n(r) =

(u(x + r) − u(x))2n ≈ (2n−1)!!(ǫL)
2n
3 ( r

L
)ξ2n . The factor (2n−1)!!, ensuring Gaussian statis-

tics at the integral scale L, is a subject of a forthcoming paper, but it suffices here to say

here that it has been recently verified in experiments and numerical simulations [16]. On

the other hand, in the limit r → 0, the analytic structure function is approximately equal to

S2n(r) ≈ (∂xu(0))2nr2n. Combining the two, we can define a natural dissipation scale of the

2nth-order structure function [17]-[18] as

η2n = ((∂xu)2n)
1

ξ2n−2n ((2n − 1)!!ǫ
2n
3 L

2n
3
−ξn)

1
2n−ξ2n . (4)

According to (4), the dissipation scales, which are expressed in terms of the moments of

velocity derivatives, define a random field η. By a random field we mean here that the value

of the length scale η depends on the order of the moment considered. It will be shown

below that (4) is an approximation to a more accurate representation. Similar ideas were

proposed earlier in Refs. [19]-[21] within the framework of multifractal theories. Writing

i2n = [(2n − 1)!!]
1

2n−ξ2n , and using the Stirling formula (n ≫ 1), one obtains i2n ≈ ( n
2e

)
3
4 for

ξn = n/3. This means that the effect of the factor (2n − 1)!! can be safely neglected. For

anomalous exponents ξn < n/3, this factor is even closer to unity and does not modify the

conclusions obtained below.

b. Dissipation anomaly If the velocity field is differentiable, we obtain S3(r) ∝ r3 and

∂rS3(r) → 0 in contradiction with the Kolmogorov relation. This implies that the velocity

field is singular in the limit of ν → 0 and r → 0 (in that order), leading to the so-called

dissipation anomaly. Here we first reproduce some details of Polyakov’s derivation [22] of the

dissipation anomaly for turbulence governed by Burgers equation and then outline similar
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procedure for the Navier-Stokes equations. Consider the one-dimensional Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (5)

for which the energy balance reads as

1

2

∂u2

∂t
+

1

3

∂

∂x
u3 = νu(x)

∂2u

∂x2
.

Introducing x± = x± y
2
, so that, 1

2
∂

∂x±
= ± ∂

∂y
, we can represent the energy balance equation

as

limy→0[
∂u(x+)u(x−)

∂t
+

1

2

∂

∂x+

u(x+)2u(x−)+
1

2

∂

∂x−
u(x−)2u(x+) = ν(

∂2

∂x2
+

+
∂2

∂x2
−

)u(x+)u(x−))].

(6)

We also have the identities:

∂

∂y
(u(x+) − u(x−))3 =

1

2
[
∂u(x+)3

∂x+
+

∂u(x−)3

∂x−
] − 3

2
[
∂u(x+)2u(x−)

∂x+
+

∂u(x−)2u(x+)

∂x−
], (7)

and

ν[u(x+)
∂2u(x−)

∂x2
−

+ u(x−)
∂2u(x+)

∂x2
+

] = ν[(u(x+) − u(x−))
∂2

∂y2
(u(x+) − u(x−))] + D, (8)

where D, the dissipation contribution to the energy balance, is given by

D = ν[u(x+)
∂2

∂x2
+

u(x+) + u(x−)
∂2

∂x2
−

u(x−)]. (9)

Substituting these identities into the equation (6) and taking account of the fact that

limy→0
∂u(x±)3

∂x±
= ∂u(x)3

∂x
, so that in the limit y → 0 all non-singular terms disappear by virtue

of the energy equation (5), we are left with the balance between the singular (anomalous)

contributions

lim
y→0

1

6

∂

∂y
(u(x+) − u(x−))3 = ν[(u(x+) − u(x−))

∂2

∂y2
(u(x+) − u(x−))]. (10)

This is Polyakov’s expression for the dissipation anomaly derived for the Burgers equation

[22]. Averaging (10) gives the exact relation (δyu)3 = −12Ey where the dissipation rate

E = ν(∂u
∂x

)2.
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We are interested in the Navier-Stokes dynamics of incompressible fluids, for which the

energy balance equation (with the density ρ = 1) is written as

1

2

∂u2

∂t
+

1

2
u · ∇u2 = −∇p · u + νu · ∂2u

∂x2
i

,

and that for the scalar product u(x + y

2
) · u(x − y

2
) ≡ u(+) · u(−) can be written as

∂u(+) · u(−)

∂t
+ u(+) · ∂

∂x+
u(+) · u(−) + u(−) · ∂

∂x−
u(−) · u(+) =

−∂p(+)

∂x+,i
ui(−) − ∂p(−)

∂x−,i
ui(+) + ν[u(−) · ∂2

∂x2
+,j

u(+) + u(+) · ∂2

∂x2
−,j

u(−)]. (11)

It is clear that in the limit y → 0, for which x± → x, this equation gives the energy balance.

Following Polyakov’s procedure outlined above, let us consider the two identities:

∂

∂yi
(ui(+) − ui(−))(uj(+) − uj(−))2 =

1

2

∂

∂x+,i
ui(+)u2

j(+) +
1

2

∂

∂x+,i
ui(+)u2

j(−) − ∂

∂x+,i
ui(+)uj(+)uj(−) +

1

2

∂

∂x−,i
ui(−)u2

j(−) +
1

2

∂

∂x−,i
ui(−)u2

j(+) − ∂

∂x−,i
ui(+)uj(−)uj(+) (12)

and

ui(+)
∂2

∂x2
−,j

ui(−) + ui(−)
∂2

∂x2
+,j

ui(+) =

−4(ui(+) − ui(−))
∂2

∂y2
j

(ui(+) − ui(−)) + ui(+)
∂2

∂x2
+,j

ui(+) +

ui(−)
∂2

∂x2
−,j

ui(−). (13)

Similar identities for the pressure terms can be written easily. Substituting them into (11)

and, as in the case of Burgers equation considered above, accounting for the energy balance,

one has

limy→0[−
∂

∂yi
(ui(+) − ui(−))(uj(+) − uj(−))2 +

1

2
(

∂

∂x+,i
ui(+)uj(−)2 +

∂

∂x−,i
ui(−)uj(+)2) =

−4ν(ui(+) − ui(−))
∂2

∂y2
j

(ui(+) − ui(−)) + (
∂p(+)

∂x+
− ∂p(−)

∂x−
) · (u(+) − u(−))].(14)

This equation can be written in a compact form as

limy→0[−
∂

∂yi
δui|δyu|2 +

1

2
(

∂

∂x+,i
ui(+)uj(−)2 +

∂

∂x−,i
ui(−)uj(+)2) = −2δyu · δya],
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where a = −∇p+ν∇2u is the Lagrangian acceleration. The equation (14) is exact. Choosing

the displacement vector along one of the coordinate axes and averaging (14), one obtains

∂

∂y
δu|δu|2 = 8δui

∂2

∂y2
δui = 2(δyui)∂2

x(δyui) = −4

3
E ,

where δyu = δyu ·y/y. The pressure terms in and the second contribution to the left side of

(14) disappeared by the averaging procedure. In general, we can choose a sphere of radius

y << R → 0 around a point x and average (14) over this sphere. This causes the all

scalar-velocity contributions to (14) disappear and the resulting equation can be perceived

as a local form of the 4/3 Kolmogorov law. This fact has been realized before. Introducing

the angular averaging, Robert and Duchon [23] and Eyink [24] locally expressed the relation

(14) in terms of longitudinal and transverse velocity differences. We are interested in the

order of magnitude estimates (see below), and restrict ourselves to (14).

c. Relations between the moments In the isotropic and homogeneous turbulence, the

Navier-Stokes equations lead to the following exact relations for structure functions. They

were derived in [12] and [13] and experimentally investigated in some detail in Ref. [25]; see

also Ref. [26]. The relations for different values of n are

∂S2n,0

∂r
+

d − 1

r
S2n,0 =

(2n − 1)(d − 1)

r
S2n−2,2 + (2n − 1)δrax(x)(δru)2n−2. (15)

Similar equations for all structure functions Sn,m can easily be obtained from the equation

for generating functions derived in [12].

d. The closure problem Equation (15), which includes both velocity and Lagrangian

acceleration increments, is not closed and cannot be solved unless the relation between

acceleration and velocity differences is established. It has been proposed in Ref. [17] that the

local expression (14) written for the displacement magnitudes corresponding to the bottom

of inertial range, i.e. in the limit y → η → 0 can be used as a closure. At the present time,

this can be done only approximately. Since at the values of displacement y ≪ η → 0, the

difference δyu ≈ ∂u(0)
∂x

y, we can modify the lim operation in (14) as

lim
y→0

≈ lim
y→η→0

, (16)
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leading to the order-of-magnitude estimate

limy→ηA
∂(δyu)3

∂y
+ B

∂

∂y
δyu(δyv)2 ∝ νδyu

∂2

∂y2
δyu − ∂δyp(x)

∂y
δyu ≈ δηuδηax, (17)

where A and B are undetermined constants. On extrapolating to the dissipation scale η

where all terms in the right side of (18) are of the same order, we derive the estimate [17] as

ν ≈ ηδηu ≡ η(u(x + η) − u(x)). (18)

The relation (18) tells us that each velocity fluctuation δηu is dissipated on its ‘own’ dissi-

pation scale η and the local value of the Reynolds number Rel = O(1). This allows a simple

physical interpretation that the dissipation processes at all levels n happen on “quasi-laminar

structures” where the inertial and viscous terms are of the same order. In general, the higher

the moment order, the more the intense events contribute, and the smaller the value of the

corresponding dissipation scale.

e. Dissipation scales and moments of derivatives The theory gives for the moments

of Lagrangian acceleration a = −∇p + ν∇2u the result that

ax ≈ δηu

τη
≈ (δηu)2

η
≈ (δηu)3

ν
= (δηu)3 Re

urmsL
, (19)

where the turn-over time τη ≈ η/δηu.

Below we will mainly discuss the equations for even-order structure functions, for which,

if the displacement r is in the inertial range, the dissipation contribution to the increment

of Lagrangian acceleration is negligibly small [17],[18]. For this case, we have

∂S2n,0

∂r
+

d − 1

r
S2n,0 =

(2n − 1)(d − 1)

r
S2n−2,2 − (2n − 1)δrpx(δru)2n−2, (20)

where px = ∂xp(x) and d denotes, as before, the space dimensionality.

The relation (15) is valid for all magnitudes of displacement r ≪ L, including r →
η. Below, to simplify the notation, we will omit the subscript x in the x-component of

acceleration ax. In this limit, treating (19) as a = limr→η(δru)3/ν and substituting it in (15)

gives S2n(r)
r

≈ S2n+1(r)
ν

. On a scale r = η2n, writing Sn,0 ∝ Anηξn
n , equation (15) gives

ηn ∝ LRe
1

ξn−ξn+1−1 . (21)
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For Kolmogorov turbulence with ξn = n/3 the formula (21) reads, as expected, as ηn ≡
ηK = LRe−

3
4 which is n-independent. In intermittent turbulence, where the exponents can

be well-described [12],[17] by the relation ξn ≈ 0.383∗n/(1+0.05n), the relation (21) defines

the Reynolds-number-dependent dissipation scales. As n → ∞, ηn → LRe−1. Thus, to

resolve all fluctuations including the strongest, the computational work need to increase as

Re4, as already noted in Ref. [27]. In general, in the limit n → ∞, the relation (21) can be

written as

ηn ≈ LRe
− 1

dξn
dn

+1 ,

so one may get a somewhat different estimate for the computational work than Re4, but

the principal conclusion is inescapable that intermittency makes DNS more expensive than

previously thought.

Using the relations (18), (20) and (21), obtained by balancing various terms in the exact

dynamic equations (14), (15), we can develop the multi-scaling algebra. For example,

a2n ≈ (
Re

urmsL
)2nS6n(η6n) ∝ (

Re

urmsL
)2nηξ6n

6n ≈ (
u2

rms

L
)2nRea2n , (22)

with a2n = 2n + ξ6n

ξ6n−ξ6n+1−1
. With ξ6 = 2 and ξ7 = 7/3, we recover Yaglom’s result [28]

a2 ≈ u
9
2
rms√

ν
. The intermittency corrections are readily found from (22). Recent experiments

by Reynolds et al. [29] have lent strong support to this result. The formula (22) shows

that the second moment of Lagrangian acceleration is expressed in terms of the sixth-order

structure function evaluated on its dissipation scale η6. To extract information about the

fourth moment a4, we should have accurate data on S12(η12) which is very difficult to obtain

in high-Reynolds-number flows.

The moments of velocity derivatives are evaluated easily. In accordance with (18), we

have

(∂xu)2n ≈ (
δηu

η
)2n ≈ (

(δηu)2

ν
)2n ≈ Red2n , (23)

where d2n = 2n + ξ4n

ξ4n−ξ4n+1−1
.

It is important to stress that the first equality in (23) involves the averaging over two

random fields u and η. To perform this averaging, we have to either know the joint probability

p(u, η, r) or use the functional relation between the fields given by (18). This leads to the

10



second equation in (23) and the final result. Since (∂xu)2 ∝ Re, the relation (3) leads to a

new relation between exponents

2ξ4 = ξ5 + 1

which agrees extremely well with experimental data. The relation (23) differs from proposals

reviewed in Ref. [14].

f. The role of the fluctuations of the dissipation scale Let us reexamine the relation

(4). In the limit r → 0, the velocity field is analytic and can be expanded by Taylor series

so that ∂u
∂x

≈ δru/r. This gives (∂u
∂x

r)2n ≈ S2n(r). When r → η → 0, we have to evaluate the

mean of the ratio (δηu/η)2n which is not a trivial task, since we are dealing here with the

ratio of two random fields—unless the relation (18), which expresses the dissipation scale in

terms of velocity field, is used. If, however, we incorrectly assume that the dissipation scale

fluctuations are independent of those of the velocity field and neglect the step leading to the

last equations in the right hand side of (23), it is possible to write the moments of velocity

derivative as

(∂xu)2n ≈ (
δηu

η
)2n ≈ S2n(η2n)/η2n

2n ∝ Rep2n , (24)

where p2n = ξ2n−2n
ξ2n−ξ2n+1−1

. Equating expressions (23) and (24), we have

ξ2n − 2n

ξ2n − ξ2n+1 − 1
= 2n +

ξ4n

ξ4n − ξ4n+1 − 1
, (25)

subject to the constraints ξ0 = 0 and ξ3 = 1. The only solution to (25) is ξn = n/3. Since

equation (25) is based on the first equality (23), which in general is incorrect, we can conclude

that the source of anomalous scaling in hydrodynamic turbulence is the fluctuation of the

dissipation scale field η, which itself is strongly correlated the velocity field fluctuations via

expression (18). This does not preclude a different situation from arising in other forms of

turbulence, e.g., scalar turbulence generated by white-noise forcing [30].

It follows that (∂u
∂x

)2 = limr→η2

∂u(x)
∂x

∂u(x′)
∂x′ = − limr→η2

∂2

∂r2 u(x)u(x′) ∝ (2 − ξ2)η
ξ2−2
2 . The

higher-order derivatives are evaluated in a similar way to yield

(
∂nu

∂xn
)rms = limr→η2

√

∂2n

∂r2n
S2(r) ≈ η

ξ2−2n

2
2 ≈ Re

ξ2−2n

2(ξ2−2) = Re
1
2 Re

n−1
ξ2−2 . (26)
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3 Implications for Numerical Methods

According to experimental data (see Refs. [25,15] for recent results), the exponent ξ2 ≈
0.70−0.71 > 2/3 and as n → ∞, the terms in the expansion (2) for simulating the “typical”

velocity derivatives can be estimated via

(
∂nu

∂xn
)rms∆

n−1 ∝ Re
1
2 Reγ(n−1), (27)

with γ = (−3
4
− 1

ξ2−2
)) > 0. For ξ2 ≈ 0.71, we find γ ≈ 0.025. The accuracy of the numerical

method in calculating the most intense velocity fluctuations can be estimated if, in the limit

n → ∞, the expression

(
∂u

∂x
)2n

1
2n

(
∆

η2n
)n−1 ∝ Re

1
2 Re

n+1
4 (28)

is used instead of (∂xu)rms. In the above equation, the mesh size ∆ is defined by (1) and the

expressions (23) for the moments of velocity derivative have been used. We see that when

the Reynolds number is large, the high-order derivatives in the expression (2) dominate.

This means that the DNS based on the mesh equal to the Kolmogorov scale becomes quite

inaccurate. It is easy to check that accurate simulations of the largest fluctuations requires

the resolution of the smallest scales which are O(1/Re). This means that the computational

resolution scales as Re3 and the computational work grows as Re4.

In Refs. [19], it has argued that the intermittent nature of turbulence makes the size of

the attractor smaller than the conventionally estimated, so the computational power needed

becomes correspondingly smaller than the conventional estimate—not larger as just claimed.

The rationale is roughly that the “interesting” parts of the flow occupy small volumes of

space so any reasonable computational effort that focuses on those volumes is likely to be

less expensive. This is also the spirit of adaptive meshing [31]. Even if the interesting parts of

a turbulent flow are not space-filling, as discussed at length in Ref. [20], we do not yet know

how to track them efficiently in hydrodynamics turbulence. We also do not know if the part

of the flow that contains the less interesting parts can be computed with greater economy.

Nevertheless, it must be said that the present estimates apply to uniform meshing, which has

been the most successful of the computing schemes until now. It should also be mentioned
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that there is a specific suggestion [32] on the most singular structure in turbulence, which

yields Re3.6, which is slightly different from Re4 estimated in this paper.

4 Dynamic Constraints on Sub-Grid Models for LES

If the Reynolds number is large, the computational work involved in the numerical simulation

of a flow is huge. It is interesting that at about the same time that DNS came into being,

the idea of the Large Eddy Simulations (LES) was proposed by Deardorff [33]. The idea is

very simple. Consider the Navier-Stokes equations

∂tu + ui∂iu = −∇p + ν∂2u; ∂iui = 0. (29)

We choose the mesh size ∆ and define the so-called “sub-grid” velocity fluctuations u>(k) 6= 0

for k ≥ π/∆. The Fourier-transform of velocity field is defined as

u(k) = u<(k) + u>(k), (30)

so that

u>(x) =
∫

|k|> 2π
∆

eik·xu>(k)d3k; u<(x) =
∫

|k|≤ 2π
∆

eik·xu<(k)d3k. (31)

The goal is to obtain the correct equation for the resolved scales u<(k) 6= 0 in the interval

0 ≤ k ≤ π/∆. We decompose the field and write the equation for only the resolved scales as

∂tu
< + u<

i · ∂iu
< = SG −∇p< + ν∂2u<, (32)

where, for this particular formulation, the subgrid contribution is SG = −u<
i · ∂iu

> − u>
i ·

∂iu
< − u>

i · ∂iu
>. The LES equations are considered a success if the large-scale velocity

fields (i.e., for k ≤ 1/∆) given by the Navier-Stokes equations (30) and by a model (33) are

identical or close enough for all Reynolds numbers.

There is, however, one problem. To derive the equation of motion containing only the

resolved fields, one has to express all contributions to SG, involving the sub-grid velocity

fluctuations u>, in terms of u<, which is basically equivalent to solution of the proverbial

“turbulence problem”. The model equation (33) is written in a generic form, but a similar

13



difficulty arises if, instead of the Fourier-space decomposition introduced above, the filtering

or any other kind is used.

The accurate LES model must satisfy the following dynamic constraints. The method

developed in the Ref. [17] can be literally applied to the Navier-Stokes equations with an

arbitrary right hand side and, defining the coarse-grained structure functions S<
n,0(r) =

(δru<)n, we obtain, from (21), the result

∂S<
2n,0

∂r
+

d − 1

r
S<

2n,0 =
(2n − 1)(d − 1)

r
S<

2n−2,2 + (2n − 1)(δr(SGx) − δrp<
x )(δru<)2n−2. (33)

The large-scale velocity fields obtained from DNS and LES can be identical Sn,0(r) = S<
n,0(r)

if and only if

(δr(SGx) − δrp<
x )(δru<)2n−2 = −δrpx(δru)2n−2. (34)

Similar constraints, coming from the equations for various structure functions Sn,m can

be readily obtained. It is impossible to demand equality of two random fields u and u<

obtained from two different equations. The only criterion we can impose is that of statistical

equality or, equivalently, constraint on all moments, namely S<
n (r) = Sn(r). The relations

(34), reflecting this necessary condition of the LES validity, must be satisfied.

We wish to stress that these constraints are not dissimilar to SLES
n,m ≈ S<

n,m, often implied

in the literature. Here SLES
n,m (r) are the structure functions evaluated from the velocity field

obtained from LES. The velocity increment can be written as δru =
∫

u(k)eikx(eikr − 1), so

that

S2 ∝
∫

E(k)(1 − cos kr)dk.

It is easy to see that if r << L, where L is the integral scale, and the energy spectrum

decreases with k fast enough, the main contribution to the integral comes from the range

where kr ≈ 1. Thus the structure functions Sn,0(r) probe structures on the scales of the

order r and cannot differ strongly from the one obtained from the filtered field.

Various model considerations, leading to expressions for SG, have been suggested in the

last forty years. Consider the example that follows from Kolmogorov’s theory. If the role

of the small scale fluctuations in the large-scale dynamics can be expressed in terms of

effective viscosity νSG, then νSG ≈ (ǫ∆4)
1
3 . Then, dropping the averaging sign (quite an
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assumption!) and substituting a simple estimate coming from the energy balance, namely,

ǫ = νSGS<
ijS

<
ij ≡ νSGS2

ij , we derive the Smagorinsky formula [34] given by νSG = α
√

S<
ijS

<
ij∆

2,

where α = O(1). It is important that the resolved rate of strain is evaluated in terms of

velocity differences on the computational mesh

S<
ij (x) =

1

2
(
u<

i (x + ∆j) − u<
i (x)

∆j
+

u<
j (x + ∆i) − u<

j (x)

∆i
), (35)

where i, j = 1, 2, 3. In this approximation, the Reynolds stress τij = −uiuj ≈ νSij ≈ νSGS<
ij .

Equation (36) with the model for SG defines a closed set of equations which can be used

for LES. The analytically evaluated coefficient from Yakhot and Orszag [35] gives α ≈ 0.2,

while the so-called dynamic method [36] gives something different. In all approaches, since

the large-scale fields δru
< and δru are statistically independent upon Reynolds number, the

parameter α = O(Re0). Thus, this simple model is

SG ≈ a∆2∇|S<
ij |∇u< = O(1). (36)

Examining the relations (34) and (36), an interesting conclusion can be reached. If

∆ ≪ r, one can assume statistical independence of all velocity differences δru
< and δ∆u<.

Since SG given by (34) and (35) depends on the velocity differences defined on the mesh size

∆ as

δrSG(δru<)2n−2 ≈ δrSG (δru<)2n−2 = 0, (37)

we see that the Smagorinsky model satisfies the dynamic constraints, provided the pressure

gradient differences in the filtered and unfiltered fields are close to each other. The validity

of the dynamic Smagorinsky models in the range k << 1/∆ has been verified by large eddy

simulations (A. Oberai, private communication 2005). However, as r → ∆, δrSG, δrpx and

δru
< are strongly correlated and, as a result, the model becomes invalid. This consideration

is applicable to all low-order closures.

This intrinsic failure of all existing LES models at scales comparable to the computa-

tional mesh is well-known. At sufficiently low Reynolds numbers, LES give accurate results.

However, with increase of Re the quality of the simulations deteriorates starting from the

vicinity of the cut-off, propagating toward the larger scales. At this point one is forced to
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increase the resolution. The reasons for this failure can be qualitatively understood as fol-

lows. Consider LES at a relatively low Re on a fixed mesh ∆/L1 = γ1 where L1 is an integral

scale of this particular simulation. Now increase the length scale of the flow L2 >> L1, thus

increasing the Reynolds number. If, in the first case, the number of the cascade steps for

the energy flux to reach the mesh scale was say n1, that in the second simulation is equal

to n2 >> n1. Since the intermittency and deviation from the close-to-Gaussian statistics,

experimentally observed at the integral scale, grows with the number of cascade steps, the

contribution from the very strong velocity fluctuations at the “dissipation” scale ∆ increases.

As a result, the low order models that are successful in the close to Gaussian situations break

down. In another scenario, let us increase the Reynolds number by increasing the mean ve-

locity while keeping both the energy injection scale and the mesh size ∆ constant. In this

situation, the top of the “inertial” range will move into the range of scales which are larger

than ∆, thus again invalidating the LES.

A recent paper by Kang et al. [37] has demonstrated that, at the scales close to those of

the mesh size, the probability density function p(δru) computed from LES was quite close

to a Gaussian while the experimental PDF showed broader tails, typical of intermittency.

This means that the contributions from strong velocity fluctuations obtained from LES are

underpredicted. Since the intermittent effects becomes stronger with increasing Reynolds

number, we expect this difference to grow, thus invalidating the LES if the mesh size is

also not modified. A very interesting example is given by the LES of the flow in a simple

cavity reported by Larcheveque et al. [38]. It was shown that to correctly reproduce the

experimental data on pressure fluctuations in a frequency range 100 ≤ f ≤ 2000Hz, the

optimal cut-off of the large eddy simulations corresponded to ∆f = 100KHz. With decrease

of ∆f , the quality of the results rapidly deteriorated. The present theory explains the failure

of LES schemes with fixed mesh to describe the high Reynolds number flows as originating

from the failure of low-order models in an all-important range r ≈ ∆, this range being

responsible for the energy cascade dissipation. At the present time, it is not clear how many

constraints (35) must be satisfied to achieve accurate LES, but we believe that the number

must grow with the Reynolds number.
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5 Conclusions

For many years, intermittency and anomalous scaling in three-dimensional turbulence were

considered major challenges for theorists. Recent developments of the multifractal theory

and its dynamic formulation led to description of intermittency in terms of an infinite number

of dissipation scales (ultraviolet cut-offs). It was shown that strong velocity fluctuations are

dissipated on scales that are much smaller than that estimated from Kolomogorov’s theory.

In this paper, we have attempted to make a connection between the theory of anomalous

scaling and numerical methods.

One conclusion that follows from this connection is that to simulate all fluctuations,

including the strongest ones, the computational demands scale as Re4, and not as Re3 as

traditionally deduced according to the Kolmogorov theory. To achieve the full DNS of tur-

bulence, including the strongest small-scale velocity fluctuations, one has to use resolutions

high enough to produce an analytic interval of structure functions, where Sn ≈ ∂xu(0))nrn.

Analyzing the results of various numerical state-of-the-art DNS, we have discovered that this

criterion is satisfied only for n ≤ 4. This is not sufficient to accurately simulate the velocity

derivatives.

A second comment concerns the Large Eddy Simulations. An infinite number of dynamic

constraints on a correct subgrid model has been derived from the exact relations for structure

functions. Due to the Galilean invariance, the subgrid scales cannot influence the advective

term in the Navier-Stokes equations, provided the subgrid scale ∆/r → 0. However, it is

clear from analyzing the equations of Section 4 that the subgrid model cannot be reduced

to a low-order viscosity expression, but must include high-order nonlinear contributions that

do not vanish at the scales close to the mesh size.

Thus, while accurate DNS are possible if the resolution requirements are met and powerful

enough computers are available. However, due to the basic theoretical problems, derivation

of an accurate and theoretically justified subgrid model, valid at very high Reynolds numbers,

remains a major challenge.

It is worth pointing out that we have considered homogeneous and isotropic turbulence.
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The situation with wall flows is even more complex. There, turbulence is mainly produced in

the vicinity of the wall where acceleration and turbulence production are highly intermittent.

Recent DNS by Lee et al. [39] have demonstrated strong intermittency and the Reynolds

number dependence of the few first moments of Lagrangian acceleration near the wall, sharply

peaking at the reduced normalized distance y+ ≈ 2.5. At present, we do not know how to

model this near-wall phenomenon that is largely responsible for turbulence production.

We wish to conclude on a “positive” note. The fact that the structure functions S2n ≈
(2n − 1)!!( r

L
)ξ2n means that the velocity distribution is close to the Gaussian near r = L,

and the intermittency is weak or nonexistent. It follows that simple, semi-qualitative re-

summations of the expansions in powers of the dimensionless rate-of-strain are much less

problematic there. Thus, the derivation of the VLES or time-dependent RANS appears to

have a brighter future.
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