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A periodic-like solution in channel flow

By SADAYOSHI TOH 1 AND TOMOAKI ITANO 2

1Department of Physics and Astronomy, Graduate School of Science, Kyoto University,
Kyoto 606-8502, Japan

2Department of Aeronautics and Astronautics, Graduate School of Engineering,
Kyoto University, Kyoto 606-8501, Japan

(Received 17 May 2002 and in revised form 26 December 2002)

We search channel flow for unsteady solutions for different Reynolds numbers and
configurations by extending a shooting method which was previously used to obtain
a travelling-wave solution. A general initial condition is considered. A periodic-like
solution to the incompressible Navier–Stokes equations in a minimal flow unit is
found. One cycle of the solution consists of two typical intervals: a single-streak
period and a double-streak period. The solution seems to be periodic; however, it
cannot be distinguished from a heteroclinic cycle which consists of two heteroclinic
orbits connecting two single-streak solutions, because the solution is tracked only for
one and half periods.

1. Introduction
The relationship between finite-amplitude and turbulent solutions in phase space

has recently attracted attention through research on wall turbulence (see Nagata
1990; Ehrenstein & Koch 1991; Clever & Busse 1997; Waleffe 1998). Schmiegel
(1999) suggested that the investigation of global bifurcations in phase space sheds
some light on the mechanism of the transition from laminar to turbulent states.
Recently, Kawahara & Kida (2001) educed a saddle-like periodic solution in Couette
flow and found that it is embedded within a turbulent attractor. In research on
Couette flow, we can expect that knowledge about finite-amplitude solutions will
contribute much to the understanding of turbulence.

On the other hand, in the case of channel flow, the number of works on such
solutions is still only a few (see Jiménez & Simens 2001; Waleffe 2001). Difficulties
in finding such exact solutions directly and numerically result from the fact that
turbulent channel flow has near-wall and outer regions; to describe many degrees of
freedom contained in the outer region procedures to find solutions directly such as the
Newton–Raphson method require high resolution, i.e. a large amount of computer
resources. Besides, the accumulation of any digit errors will disturb the convergence
of solutions significantly.

We adopted a different type of procedure to find a non-trivial solution, i.e. a
travelling-wave solution (TWS) in our previous work (Itano & Toh 2001, hereafter
referred to as IT01), which does not require such a large amount of computer
resources but can only be applied to the case where a finite-amplitude solution has
single unstable mode. In this paper, we shall extend the procedure and show a
time-dependent solution obtained with it.

This solution appears to be a limit cycle in a phase space of channel flow, because
the period of the solution converges with time. On the other hand, it has been shown
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(Holmes, Lumley & Berkooz 1996) that if a system has a special symmetry, O(2),
which corresponds to a reflection and translation symmetry in the spanwise direction
in the case of channel flow, then a stable heteroclinic cycle can exist. In fact, our
solution seems to be the heteroclinic cycle of a simplified model of near-wall turbulence
introduced by Aubry et al. (1988). We, however, cannot determine whether the
time-dependent solution is a limit cycle or a heteroclinic cycle because we tracked the
solution only for one and half periods, which requires a large amount of CPU time.
Therefore, we call our time-dependent solution a ‘periodic-like’ solution in this paper.

2. Numerical method
We will first address the numerical method to simulate channel flow. The

incompressible Navier–Stokes equations are solved using the code of Kim, Moin
& Moser (1987). Time marching is performed with a second-order Adams–Bashforth
scheme for the convective terms and the Crank–Nicolson implicit scheme for the
viscous terms. A Chebyshev-tau method in the wall-normal direction and a pseudo-
spectral method in the streamwise and spanwise directions are used for spatial dis-
cretization. For dealiasing, the 1/2 phase shift scheme is adopted for both spatial
discretizations. The flow field is expanded in 32 × 32 Fourier modes in the periodic
directions (x: streamwise and z: spanwise) and 65 Chebyshev polynomials in the
wall-normal direction (y: wall-normal). The no-slip boundary condition is imposed
at the top (y = +h) and bottom (y = −h) walls, where h is the channel half-width.

Flow is driven by constant streamwise mass flux Q. We define the characteristic
velocity Uc as 3Q/4h; for laminar Poiseuille flow Uc is the centreline velocity. The
Reynolds number based on Uc, h and the kinematic viscosity ν is kept constant at the
value 3000. The friction Reynolds number Reτ = uτh/ν is 130, where uτ =

√
〈∂yu〉ν

and 〈∂yu〉 is long-time-averaged velocity gradient on the walls. The streamwise and
spanwise extents of the computational box are Lx = π and Lz = 0.4π, respectively, or
420+ and 170+ in wall units. This system is a somewhat large ‘minimal’ flow unit, thus
two pairs of high- and low-speed streaks, with spanwise extent less than 100+ coexist
frequently (see Jiménez & Moin 1991). In this sense, the system is in competition;
the two pairs compete with each other. When one of the two defeats the other, the
low-speed streak can develop strongly extending its height to the centre region.

Hereafter, we introduce several quantities to describe the state of channel flow.
Quasi-two-dimensional (Q2D) and three-dimensional components of velocity are

defined as uQ2D(y, z, t) = (1/Lx)
∫ Lx

0
u(x, t) dx and u3D(x, t) = u(x, t) − uQ2D(y, z, t),

respectively. Note that the Q2D component is not purely two-dimensional, because
its streamwise velocity is not necessarily zero. Originally, this decomposition was
proposed to study the self-sustaining process in plane Couette flow by Waleffe (1998).
We also introduce the norm of each component of velocity per unit horizontal surface,
defined as follows:

Ej (u) =
1

hLxLz

∫
V

[u(x)]2j dv, (2.1)

where j = x, y, z,
∫

V
(·) dv =

∫ Lx

0

∫ +h

−h

∫ Lz

0
(·) dx dy dz and [v]j means the j th component

of vector v. We define unit energy and time as E◦ = U 2
c h and t◦ = h/Uc, respectively.

3. Procedure to educe finite-amplitude solutions
To obtain the unstable TWS, we have introduced a shooting method in which we

adjust one parameter, the norm of the three-dimensional component of the initial
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condition. In this paper we search for a periodic solution by the shooting method; we
try to keep the numerical solution close to a real periodic solution by adjusting the
shooting parameter at the initial time. However, the original shooting method failed
to solve for the periodic solution, because the period is quite long. Thus, we would
require more than double precision to be used in the method. Here we improve the
original shooting method by separating the total shooting period into intervals or
substeps. In each interval, a separate shooting parameter is introduced and is adjusted
to keep the numerical solution close to the relevant part of the periodic solution. In
this sense, the numerically obtained solution is at most piecewise continuous.

The improved shooting method consists of the initial and shooting substeps. In the
initial step, at the time t = t0 we set the Q2D and three-dimensional velocity fields
uQ2D

0 and u3D
0 to satisfy the following conditions:

∇ · uQ2D
0 = ∇ · u3D

0 = 0, (3.1)

1

Lz

∫ +h

−h

∫ Lz

0

[
uQ2D

0

]
x
dy dz = Q, (3.2)

uQ2D
0 (x) = u3D

0 (x) = 0 at y = ±h. (3.3)

In the ith shooting substep (i = 1, 2, . . .), at the starting time ti−1 the initial condition
ui(x, ti−1) is set using the velocity field obtained at the time ti−1 in the former step,
ui−1(x, ti−1) as follows:

u(x, ti−1) = uQ2D
i−1 (x, ti−1) + fiu3D

i−1(x, ti−1), (3.4)

where fi is the ith shooting parameter, and uQ2D
i−1 (x, ti−1) and u3D

i−1(x, ti−1) are the
Q2D and three-dimensional components of ui−1(x, ti−1). Then, by means of DNS, we
advance the flow field u(x, t) until t = ti from the initial field u(x, ti−1).

Here, the fitting parameter fi is determined as ui(x, t) is kept on the basin boundary
of the turbulent state for ti−1 � t < ti . Henceforth, we denote the basin boundary by
B. For almost all the values of fi , the solution eventually reaches either the laminar
or turbulent state. Thus the periodic solution on B seems to be hyperbolic in the
whole phase space, while it is stable on B. The interval ti − ti−1 is selected so that the
parameter fi is determined up to 13 decimal places and the solution ui is converged in
this interval. In fact, we have taken fi to satisfy the following condition by advancing
the flow until t = ti + δt:

El < Ey(u3D(ti + δt)) < Et, (3.5)

where δt is set to be much larger than the time scale on which solutions escape from
B (see figure 1). The constants El and Et are the thresholds of Ey for the escape
of the numerical solution to the laminar and the turbulent states respectively. In
the present simulation, Ey(u3D) is numerically less than 10−14 for the laminar state,
while it fluctuates around 10−3 for the turbulent state. Therefore, in this paper, we set
El = 2 × 10−7E◦, Et = 2 × 10−5E◦, and δt = 200t◦. This procedure guarantees that
the solution is kept close to the real solution at least for ti−1 � t � ti .

As initial velocity fields for the initial step, we adopt the following:

[
uQ2D

0 (x)
]

=

(
1 − y2, −∂Ψ

∂z
,
∂Ψ

∂y

)
,

[
u3D

0 (x)
]

=

(
0, 0, −∂Φ

∂y

)
, (3.6)

where Ψ (y, z) = F (y) sin(2πz/Lz), Φ(x, y) = F (y) sin(2πx/Lx) and F (y) =
A(exp (cm(−y − 1))−1)2(exp (cp(y − 1))−1)2. Hereafter we use A = 1×10−10, cm = 1,
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Figure 1. Typical trajectories in the first and second shooting substeps. The dotted and dashed
lines at each step are the trajectories obtained with fi slightly larger and smaller than that
of the finally obtained solution (the thick line) which is also superimposed for reference. The
lines labelled Et/E

◦ and El/E
◦ indicate the thresholds for detecting the escape of a solution

to the turbulent and laminar states, resepctively.

cp = −6. The Q2D field uQ2D
0 consists of laminar Poiseuille flow and a vortex pair of

streamwise vorticity with positive and negative sign. Their vorticity is approximately
localized around y ≈ −0.8h. At the early stage, they are dissipated by viscosity while
a single low-speed streak is produced (at z ≈ Lz/2) between the vortex pair. On the
other hand, the three-dimensional field u3D

0 plays the role of an initial disturbance
which keeps u(t) from being attracted to the laminar state in the shooting substeps.

Although we assume that the subsequent fragmentary solutions obtained in each
substep are connected at t = ti (i = 0, 1, . . .), the overall solution is not a
‘solution’ governed by the Navier–Stokes equations in the strict sense because of
its discontinuity. However, we consider that an exact solution exists on B and can be
approximated by our piecewise continuous solution. This is illustrated in a schematic
view (figure 2). The fact that fi nearly equals 1 for i � 2 (see table 1) suggests that
the exact solution can be approximated by our solution with reasonable accuracy.
Hereafter, this piecewise continuous solution is referred as the ‘chain solution’. The
chain solution consists of several ‘chains’, i.e. its parts solved in the shooting substeps.
It is noted that the phase space is not as simple as in figure 2 because the dimension
of the real phase space is comparable to the number of effective degrees of freedom
used in DNS.

4. Results
We first examine the evolution of the energy input and output of the channel. The

energy equation for channel flow is

dE

dt
= F − D, (4.1)

where

E =
1

2hLxLz

∫
V

‖u‖2 dv, F =
−1

hLxLz

∫
V

∂pux

∂x
dv, D =

1

hLxLz

∫
V

ν‖ω‖2 dv.
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i ti/t◦ ti+1/t◦ fi

1 0 400 0.1923084300000
2 400 1000 0.9976730218680
3 1000 1600 0.9995608923211
4 1600 2200 0.9997185682085
5 2200 2800 0.9999493218349
6 2800 3400 0.9970611283536
7 3400 4000 0.9999113533069
8 4000 4600 0.9994596024291
9 4600 5100 0.9971752409579

10 5100 5700 0.9999670511936

Table 1. fi at the ith step.

Q2D

Laminar
(attractor)

Basin boundary

3D

Exact solution on basin boundary

(t = t1)
(t = t2)

Turbulent attractor

Figure 2. Schematic view of the phase space in which we obtained a periodic-like solution.
The factor fi of the three-dimensional velocity component of the chain solution (thick dashed
line) is adjusted at t = ti(i = 1, 2, . . .) so that it is close to an exact solution (solid line) on the
basin boundary between the laminar and turbulent attractors. As a result, we find that this
exact solution shows a kind of periodicity.

Figure 3 shows the evolution of dE/dt of the chain solution, where the ten chains are
represented by different types of lines. It is easy to see that the intervals for F < D

are shorter than those for F > D; the kinetic energy of the system is dissipated
quickly in the former, while it is recovered gradually in the latter. For convenience,
we label six intervals in which dE/dt is positive: T1 for 423 < t/t◦ < 1914, T2 for
2012 < t/t◦ < 2089, T3 for 2491 < t/t◦ < 3633, T4 for 3730 < t/t◦ < 3807, T5 for
4209 < t/t◦ < 5350, and T6 for 5448 < t/t◦ < 5525.

Note that two peaks seen in T2, T4 and T6 in the figure are strikingly similar. This
similarity suggests that the chain solution is attracted towards a periodic solution as
time increases. In order to make the periodicity of the chain solution clearer, we show
the evolution in the (F, D)-plane in figure 4. In the figure, the chain solution orbits
in the clockwise direction with time, travelling through more than two orbits. It
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Figure 3. Evolution of dE/dt (thick solid and thick dashed lines) and Ex,n (n = 1, 2)
(long-dashed and dash-dotted lines) for the chain solution. Line type for dE/dt is changed
at the discontinuous times ti(i = 1, 2, . . .). The thick horizontal lines labelled Ti indicate the
periods in which dE/dt is positive.
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Figure 4. Plot of the trajectory of the chain solution on the (F,D)-plane normalized by their
laminar values; solid line: transient time 0 < t/t◦ < 423, thick solid line: close to periodic
solution 423 < t/t◦ < 4600. Dashed line corresponds to F/Flaminar = D/Dlaminar. Flaminar and
Dlaminar are the energy input and dissipation of laminar Poiseuille flow, respectively.
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Figure 5. Evolution of Reynolds stress in the chain solution. Shaded region indicates
〈uv〉 (y, t) < −0.0001. 〈uv〉 varies from −0.0029 to 0.00001. Contour levels are −0.0001,
−0.0002, −0.0004, −0.0008, −0.0016, −0.0032, −0.0064, −0.0128, −0.0256.

should be noted that the solution’s speed around the orbit is not constant. In fact, the
chain solution spends a relatively long time near the two typical points, P1 and P2 in
figure 4. These two points in the (F, D)-plane correspond to two kinds of relatively
steady states in the physical space: single-streak and double-streak states respectively,
which will be described later in this section.

An analysis of Reynolds stress provides further evidence for the periodicity of the
chain solution (see figure 5). Reynolds stress gives a measure of the momentum flux
due to the turbulence in the channel. We define Reynolds stress integrated over the
horizontal plane, as follows:

〈uv〉(y, t) =
1

LxLz

∫ Lx

0

∫ Lz

0

[u(x, t)]x[u(x, t)]y dx dz, (4.2)

which is henceforth referred to as Reynolds stress in this paper. It seems that, in
intervals such as F < D, the large amount of energy dissipation is associated with
the sudden increase of Reynolds stress in the lower region −h < y < 0.

Next, we confirm the closeness of the chain solution to a periodic solution. In
the physical space, the periodic solution can travel in both x- and z-directions in
each period. The phase velocities cx and cz of the TWS obtained in IT01 have been
estimated as cx ≈ 0.7Uc and cz ≈ 0.001Uc. Such a translational invariance could
make the confirmation of the periodicity in the phase space difficult. Accordingly, we
numerically estimate the translation vector in the horizontal plane, δx = δxex + δzez,
that minimizes the norm Ej of the difference field, defined as follows:

δu(t1, t2, x, δx) = u(t1, x) − u(t2, x − δx). (4.3)

Moreover, to evaluate the difference, we introduce the relative error

Êj (t1, t2) =
minδx,δzEj (δu(x, δx, t1, t2))

Ej (u(x, t1))
(4.4)

for j = x, y, z. We calculate Êy of the difference field between the velocity field at two
times separated by half a period, about 1700t◦. For t1 = 2500.00t◦ and t2 = 4191.61t◦,
the minimum relative error is obtained for (δx, δz) = (0.383060Lx, 0.500000Lz):
Êy = 7 × 10−7. Within this numerical accuracy, we conclude that the chain solution
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Figure 6. Snapshots of the streamwise vortex and streak in the whole channel at typical
times (a) t = 800t◦ in T1, (b) t = 1990t◦ between T1 and T3, (c) t = 2500t◦ in T3. Light
grey isosurfaces represent [u]x/Uc = 0.4. Quasi-streamwise vortices with positive (black) and
negative (grey) streamwise vorticity are represented by isosurfaces of Q/((Uc/h)2) = 0.005.
The second invariant Q is defined as 1

2

∑
i,j (WijWij − SijSij ), where Sij and Wij are symmetric

and antisymmetric parts of the velocity gradient tensor ∂ui/∂xj , respectively.

is periodic, taking the translational invariance into account. Because the function
travels in the streamwise direction without much change in its form over a relatively
long time, δx continuously increases as t2 increases. On the other hand, δz is almost
equal to Lz/2 and we find that this value is the same for t2 in both of the intervals
T1 and T5. We have also calculated the minimum of the difference between the fields
at t1 = 2500.00t◦ and t2 ≈ 800t◦. In this case, the relative error, Êy , is of order 10−4

and δz = 0.500001Lz. This suggests that the chain solution gets close to the periodic
solution as the number of the shooting substeps increases. Note that the solutions at
the three times considered above, t = 800.00t◦, 2500.00t◦ and 4191.61t◦ differ only
in phase in the z-direction by π; the solutions at t = 800.00t◦ and t = 4191.61t◦ are
the same but the solution at t = 2500.00t◦ is shifted by π in z. This means that the
periodic solution consist of two cycles that differ in the phase of z by π.

Next, we focus on the temporal evolution of the chain solution in the physical
space. One of the most interesting characteristics of the present chain solution is the
evolution of the number of “streaks”, which emerge only near the lower wall. Streaks
and quasi-streamwise vortices are typical coherent structures in wall turbulence, which
are often defined by some ensemble-averaging method in experimental or numerical
studies (see Schoppa & Hussain 2002). Streaks correspond to low-speed regions
elongated in the streamwise direction. They are often observed to be flanked by
staggered vortices riding over them. Since these vortices are dominated by streamwise
vorticity, they are called quasi-streamwise vortices.

In the intervals T1, T3 and T5, both a single (low-speed) streak and a single pair of
quasi-streamwise vortices with positive and negative vorticity are found in the lower
region −h < y < 0 (see figure 6a, c). As mentioned above, the streak and vortex pair
in T3 are shifted by half in z relative to those in T1 and T5. These coherent states travel
downstream with almost constant speed without changing their shapes significantly.
In fact, the typical time scale of a bursting process in the turbulent state is O(10t◦),
which is far shorter than the period of the chain solution. On the other hand, around
T2, T4 and T6, we can find two definite streaks and two pairs of quasi-streamwise
vortices (see figure 6b). Figure 3 displays the evolution of Ex,1 and Ex,2, which are
the energies of the modes with kz = 1 and kz = 2, and defined as follows:

Ex,n =
1

hLxLz

∫
V

∣∣[u]kz=2πn/Lz

x

∣∣2 dv. (4.5)
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In a relatively small domain such as the present minimal flow, the number of
dominant streaks is closely related to the suffix n of the dominant mode energy, Ex,n.
Additionally, the contribution of the upper region 0 < y < +h to Ex,n is smaller than
that of the lower region, because there is no structure in the upper region. Therefore,
a comparison among Ex,n shows the change of the number of streaks in the lower
region. From figure 3, we can roughly but quantitatively see that two streaks coexist
in T2, T4 and T6, while one streak exists in T1, T3 and T5.

5. Concluding remarks
We have obtained a periodic-like solution using an extended shooting method.

Although the solution is piecewise continuous, we have confirmed that the periodicity
holds to within a 10−2% relative error. This periodic-like solution consists of a single-
streak state and a double-streak state; the former seems to correspond to a saddle
point, strictly speaking a travelling wave. Moreover, there exist two single-streak states
that differ only in phase in the z-direction by π. This means that the periodic-like
solution goes through single-streak states twice before it closes its period, that is, in
figure 4 only half of the period is shown.

It is interesting that our periodic-like solution is similar to a heteroclinic cycle
obtained by means of a simplified model of near-wall turbulence by Aubry et al.
(1988), although their approach is completely different from ours. Their cycle connects
two fixed points which correspond to quiescent streak states, and differ only in the
phase of z by half a wavelength in real space, like our single-streak solutions. As
mentioned in the Introduction, a reflection and translation symmetry in the spanwise
directiction, which holds in channel flow, makes a heteroclinic cycle structurally stable.
Although a heteroclinic cycle has an infinite period, any piecewise approximation to
it, like ours, would have an apparent period depending entirely on the approximation
error. Of course, even if a system has this symmetry, a heteroclinic cycle can still be
structurally unstable and a periodic solution, which might be close to the heteroclinic
cycle, can emerge through a global bifurcation. Thus, we cannot conclude whether
the periodic-like solution is a heteroclinic cycle or an exact periodic solution. Indeed,
in both cases, the two single-streak states might be saddle points, even on B.

We cannot find these saddle points by means of our shooting method, because
disturbances in two unstable directions cannot be removed by one shooting parameter.
The single-streak state closely resembles the TWS obtained in IT01. We have inferred
that since the TWS is a saddle point and stable on B, it can be obtained by the
shooting method. However, we note that in IT01 the TWS was calculated using a
shooting method on just a single time interval. The computational restrictions this
method imposes may not allow us to conclude convergence to the TWS. To confirm
the existence of the TWS, we applied the present procedure to the TWS obtained in
IT01. Within the first three shooting substeps, it was observed that the single-streak
state regarded as the TWS goes through the double-streak state to the other single-
streak state, and that the flow loses a spanwise drift. Thus it is probable that in IT01
we have found part of the periodic-like solution and regarded it as the TWS.

The initial condition (3.6) is quite general and can be applied to different
configurations and Reynolds numbers, because it does not depend directly on any
DNS data. Initial conditions should be close enough to the basin boundary of the
turbulent attractor, and also in the basin of the solution that will be shot. In IT01
we selected one snapshot satisfying such conditions through a long time series, which
may not be efficient when we try to find solutions in other cases. The flow field
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(3.6) consists of the laminar Poiseuille flow, one streamwise vortex pair and the
three-dimensional disturbance. This flow is enough to create a single Q2D streak that
develops into one of the TWS or periodic-like solutions associated with TWS through
three-dimensional instability on the basin boundary of the turbulent attractor. We
are trying to find such solutions for several Reynolds numbers.

The escape processes from the single-streak and double-streak states are quite
similar to bursting processes observed in real turbulence as seen in the evolution of
the Reynolds stress. In real turbulence, as discussed in IT01, an orbit would go close to
the basin boundary of the turbulent attractor along the stable manifold of the periodic-
like solution and then escape along the unstable one. This suggests that the bursting
process can be understood by examining the periodic-like solution. Moreover, the
recursive nature of the bursting process may also be explained qualitatively. However,
the periodic-like solution is confined in the inner layer without exciting the outer
layer. We infer that the inner and outer layers are separated dynamically, and some
coupling mechanism is required to sustain turbulence in the outer layer. We intend to
investigate this issue further in the future.

This work has been partially supported by Grant-in-Aid for Science Research
on Priority Areas (B) from the Ministry of Education, Culture, Sports, Science and
Technology of Japan. The authors would like to express their cordial thanks to
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