ABSTRACT
GROUP THEORY
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2-1 Definitions and Nomenclature

By a group we mean a sei of elements A, B, C,... such that a form of
group rudtiplication may be defined which associates a third element with
any ordered pair. This multiplication must satisfy the requirements:

1. The product of any two elements is in the set; i.e., the set is closed
under group multiplication.

2. The associative law holds; for example, A(BC) = (4B)C.

3. There is a unit element E such that £E4 = AE = A.

4. There is in the group an inverse A~} to each element A such that
AA = A7'4A = E.
For the present we shall restrict our attention primarily to finite groups.

These contain a finite number # of group elements, where # is said to be the
6
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order of the group. If group multiplication is commutative, so that
AB = BA for all 4 and B, the group is said to be dbelian.

2-2  Nlustrative Examples

An exampie of an Abelian group of infinite order is the set of all positive
and negative integers including zero. In this case, ordinary addition serves
as the group-multiplication operation, zero serves as the unit element, and
—n is the inverse of n. Clearly the set is closed, and the associative law is
obeyed.

An example of 2 non-Abelian group of infinite order is the set of all
n X n matrices with nonvanishing determinants. Here the group-multi-
plication operation is matrix multiplication, and the unit element is the
n X n unit matrix. The inverse mairix of each matrix may be constructed
by the usual methods,! since the matrices are required to have nonvanishing
determinants.

A physically important example of a finite group is the set of covering
operations of a symmetrical object. By a covering operation, we mean a
rotation, reflection, or inversion which would bring the object into a form
indistinguishable from the original one. For example, all rotations about
the center are covering operations of a sphere. In such a group the product
AB means the operation obtained by first performing B, then 4. The unit
operation is no operation at all, or perhaps a rotation through 2=. The
inverse of each operation is physically apparent. For example, the inverse
of a rotation is a rotation through the same angle in the reverse sense about
the same axis. )

As a complete example, which we shall often use for illustrative purposes,
consider the non-Abelian group of order 6 specified by the following group-
multiplication table:
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The meaning of this table is that each entry is the product of the element

labeling the row times the element labeling the column. For example,

AB = ] % BA. This table results, for example, if we take our elements

to be the following six matrices, and if ordinary matrix multiplication is
! See Appendix A and references cited there.
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used as the group-multiplication operation:

~1 V3
0 1 0 — 3
S IR I
0 1 B ] V3 :
3 2
S~ 43 —1 43 =1 -3
T2 2 oy T z. 2
C: 2 D: - F= _
—/3 1 YL \/_3_ -1
2 2 B 2 %

Verification of the table is left as a simple exercise. _ o
The very same muitiplication table couid be obtained by considering

the group elements 4, . . ., F to represent the proper covering operations of

Fig. 2-1. Symmetry axes of equilateral
& ) triangle.

an equilateral triangle as indicated in Fig. 2-1. The ?Iements A', B, anq C
are rotations by = about the axes shown. Element Disa clockwise rotation
by 23 in the plane of the triangle, and F is a counterclockwise rotation
through the same angle. The numbering of the corners destroys the
symmetry so that the position of the triangle can be followed _through
successive operations, If we make the convention th.at we coz‘lsxder.th.e
rotation axes to be kept fixed in space (not rotated with the obJeFt), it is
easy to verify that the multiplication table given above describes this group

as well. _ ‘ _
Two groups obeying the same multiplicationtableare said to be isomorphic.

2-3 Rearrangement Theorem

In the multiplication table in the example above, each cohlxmn or row con-
tains each element once and only once. This rule is true in general and is
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called the rearrangement theorem. Stated more formally, in the sequence
EAA:J AEAk.v ASAh rhey AAAI::

each group element 4, appears exactly once (in the form A,4,). The
elements are merely rearranged by multiplying each by A,.

PROOF: For any A4, and A;, there exists an element 4, = 4,4, in the
group since the group contains inverses and is closed. Since 4.4, = 4,
for this particular A,, A; must appear in the sequence at least once. But
there are 4 elements in the group and 4 terms in the sequence. Hence there
is no opportunity for any element to make more than a single appearance.

2-4 Cyclic Groups
For any group element X, one can form the sequence
XXX XL X"=E

This is called the period of X, since the sequence would simply repeat this
period over and over if it were extended. (Eventually we must find repe-
tition, since the group is assumed to be finite.) The integer n is called
the order of X, and this period clearly forms a group as it stands, although
it need not exhaust all the clements of the group with which we started.
Hence it may be said to form a cyelic group of order n. If it is indeed only
part of a larger group, it is referred to as a cyclic subgroup.* We note that
all cyclic groups must be Abelian.

In our standard example of the triangle, the period of D is D, D*=F,
D®= DF=E. Thus Disof order 3,and D, F, E form a cyclic subgroup
of our entire group of order 6. '

2-5 Subgroups and Cosets

Let & =E, 5, 83, ..., S, be a subgroup of order g of a larger group % of
order 1, We then call the set of g elements EX, 5,X, S,X,...,S5,X a
right coset X if X isnot in &. (If X were in %, & X would simply be the
subgroup & itself, by the rearrangement theorem.) Similarly, we define
the set X% as being a left coset. These cosets cannot be subgroups, since
they cannot include the identity element. In fact, a coset & X contains no
elements in common with the subgroup &.

The proof of this statement is easily given by assuming, on the contrary,
that for some element S, we have S,X = §,, a member of . Then
X = 8,718, which is in the subgroup, and & X is not a coset at all, but just
& itself,

* Although the conce'pt is introduced here in connection with cyclic groups, subgroups
need not be cyclic. Any subset of elements within a group which in itself forms a group
is called a subgroup of the larger group.
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Next we note that two right (or left) cosets of subgroup & in & cither
are identical or have no elements in common. .

PROOF:  Consider two cosets X and &Y. Assume that there exists a
¢common element S, X = S,Y. Then XY~ = 5,75, whichis in . There-
fore $ XY™l =, by the rearrangement theorem. Postmu[ttplymg bf)th
sides by Yleadsto X = &Y. Thus the two cosets are completely identical
if a single common elernent exists.

If we combine the results of the preceding paragraphs, we can prove the
following theorem: The order g of a subgroup must be an J'fztegml divisor of
the order h of the entire group. That is, Afg = 1, where the integer / is called
the index of the subgroup & in . o .

PROOF: Each of the b elements of & must appear either in & or in a coset
& X, for some X. Thus each element must appear in one of the sets
P, F Xy, F Xy, . .., FX,, where we have listed all the distinct cosets of 7
together with % itself. But we have shown that there are no elements
common to any of these collections of g elements. I-{ence it must be
possible to divide the total number of elements / into an integral number of
sets of g each, and consequently & =/ X g. .

As an example, consider the subgroup & = 4, E of our illustrative
group of order 6. The right cosets with B and D are identical, namely,
FR=SD=RBD Also FC=FF=CF We note tha}t, as prow‘zcd
in general, these cosets contain no common elements unless entirely identical
and they contain no elements in commeon with &, Also, the order {2) of
the subgroup is an integral divisor of the order (6) of the group. To
generalize, the order of any cyclic subgroup formed by the period of some
group element must be a divisor of the order of the group.

2-6 Example Groups of Finite Order

1. Groups of order 1. The only example is the group consisting solely
of the identity clement E. ' o

2. Groups of order 2. Again there is only one po§31b111ty, _the_ group
(4, A* = E). This is an Abelian group, and in physical appllca}txons. A
might represent reflection, inversion, or an interchange of two identical
particles. ’ .

3. Groups of order 3. In this case, if we start with two elements 4 and
E, it must be that 42 = B & E. Otherwise, if A* were to equa_l E, then
(4, EY would form a subgroup of order 2 in a group of order 3, which would
violate our theorem.  Thus the only possibility is the cyclic group (4, A* = B,
A®=E).

4. G)roups of order 4. With order 4 we begin to have more than one
possible distinct group-multiplication table of given order. The two
possibilities here are (1) the cyclic group (4, 4% 4% A* = E) and (2) the
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so-called Vierergruppe (A, B, C, E) whose muitiplication table is:

E 4 B C
E | E 4 B C
A A E ¢ B
B | B ¢ E 4
c | ¢ B 4 E

Both these groups are Abelian, and in both cases we can pick out subgroups
of order 2, as allowed by our theorem. A physical example of the cyclic
group of order 4 is provided by the four fold rotations about an axis. On
the other hand, the Vierergruppe is the rotational-symmetry group of a
rectangular solid, if 4, B, C are taken to be the rotations by = about the
three orthogonal symmetry axes.

5. Groups of prime order. These must all be cyclic Abelian groups.
Otherwise the period of some element would have to appear as a subgroup
whose order was a divisor of a prime number, This general result allows
us to note at once that there can be only single groups of order 1, 2, 3, 5,
7,11, 13, ete.

6. Permutation groups (of factorial order). One group of order n! can
always be set up based on all the permutations of » distinguishable things.
(Of course, others, such as a cyclic group, can also be found.) A permuta-
tion can be specified by a symbol such as '

‘1T 2 3 -+ p)

e o R 0

n/

where oy, 0, ..., 00, =1,2,...,n, except for order. The permutation
described by this symbol is one in which the item in position i is shified to
the position indicated in the lower line. Successive permutations form the
group-multiplication operation. As- an example, our standard example
group of order 6 can be viewed as the permutation group of the three

numbered corners of the triangle. The permutations may be expressed in
the above notation as

g 8 12 3 /1
Ee= ) A ..—( ) B:(
1 3 o &

g

(d: w2y 3) [l 2 3 I
gulin o) - A=l 2 B
3 2 1, 3 1 2 2
For example, operator A interchanges corners 1 and 2, whereas D replaces
L'by 3, 2 by 1, and 3 by 2, corresponding to a clockwise rotation by 2/3.

b2
o W r
W o W

L%
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Applying B followed by A leads to

12 Bk 2 3 L 23
B~ _( D
7 1 3\ 3 2 31

which is consistent with the group-multiplication table ?vorked out previously.
Because of the identity of like particles, permutation of them leaves the
Hamiltonian invariant. Accordingly, the permutation group plays an

important role in quantum theory.

(3]

2-7 Conjugate Elements and Class Structure

An element B is said to be conjugate to A if
B=XAX?1 ot A=X'BX
i his is a reciprocal property
where X is some member of the group. Clearly t :
of the pair of elements. Further, if B and C are both conjugate to 4, they

are conjugate to each other.
PROOF: Assume that

B = XAX and C=YAY™?

Then A=¥Y1CY
and B=XYICYY1l= (X Y—l) C( XY"]')"I,
=ZCzZ™!

[In this proof we have used the fact that the inverse of the prodqct _of two
i j f the elements in inverse
roup elements is the product of the inverses o > clement I
1?)rder. This is clearly true, since (RS)(ST'R™Y) = R(SS HR1=RR'= E|]1
The properties of conjugate elements given above allow us to collect a
mutually conjugate elements into what is called a class of elements. The
class including A; is found by forming all products of the form

EAE? = A, A A A7, ..., A4y

Of course, some elements may be found several times by this procedure.
By proceeding in this way, we can divide. all the elements of thc‘gro;:p
among the various distinct classes. Luckily, we may usua.]ly avoid this
rather tedious method by using physical-symmetry canlmderat:ons, as .shown
below. For example, in the group of covering operations of an e'qu1lateral
triangle, the two rotations by 2m/3 form a class, the three rotations by o
form a class, and, as always, the identity element is in a class by ztself.' The
latter follows, since AEA~ = AA~! = E for all 4. Note that E is the
only class which is also a subgroup, since all other classes must lack the
identity element.
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In Abelian groups, each element is in a class by itself, since XAX1 =
AXX 1= 4E = A.

If the group elements are represented by matrices, the traces of all elements
in a class must be the same. This follows, since in this case the operation
of conjugation becomes that of making a similarity transformation, which
leaves the trace invariant.}

Physical interpretation of class structure. In physical applications the
group elements can often be considered to be symmetry operations which
are the covering operations of a symmetrical object. In this case, the
operation B == X~'AX is the net operation obtained by first rotating the
object to some equivalent position by X, next carrying out the operation A,
and then undoing the initial rotation by X~*, Thus B must be an operation
of the same physical sort as A, such as a rotation through the same angle,
but performed about some different (but physically equivalent) axis which is
related to the axis of 4 by the group operation X~1, This is the significance
of operators being in the same class.

As a concrete example, consider the covering operations of the equilateral
triangle indicated in Fig. 2-1. If we consider the conjugation of A4 with D,
we have D7'4D = C. To follow this through in detail, D rotates the
triangle clockwise by 273 so that vertex 2 instead of 3 lies on axis A: next
the rotation by = about the A axis interchanges 1 and 3; finally D1 = F
rotates the triangle back 2m/3 counterclockwise. This sequence leaves
precisely the result of a single rotation by « about axis C, which is an axis
cquivalent to 4 but rotated 27/3 counterclockwise by the symmetry operator
D1,

2-8 Normal Divisors and Factor Groups

If a subgroup & of a larger group ¥ consists entirely of complete classes,
it is cailed an invariant subgroup, or normal divisor. By consisting of com-
plete classes, we mean that, if an element 4 is in ., then all elements Y14
are in &, even when X runs over elements of % which are not in &. Such
a subgroup is called invariant because by the rearrangement theorem it is
unchanged (except for order) by conjugation with any element of %.

To allow a compact discussion, we introduce the notion of a complex
such as X = (K, Ky, ..., K,), which is a collection of group elements
disregarding order. Such a complex can be multiplied by a singfe element
or by another complex. For example,

HX = (KX, KX,..., K, X)
and f@ = (KIR]_, K]_Rg, -aay KlRm, sy Kan)
1 See Appendix A,
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Elements are considered 1o be included only once, regardless of how often
d.

the};;éecgzn:gexestate our argument concisely by treating sets of eleme;t: as
complexes. First, a subgroup is defined by the property of _c]l;zt;e; t ; ;j;
P& = 5. Second, if & is an invariant subgrou?, then X" =, )

all X in the group %. From this it follows that & X‘= X.L‘?, or, in words,
the left and right cosets of an invariant subgroup are }dent1cal. 1) of

In Sec. 2-5 we have shown that there are a finite number (/ —

distinct cosets for any subgroup . We may denote each of t?escﬁ;s f
complex, and if & is an invariant subg{oup, we have, for exam}l) e, emi ;
FK, = K,%. Note that FK, = FK; if K; ancli K; are group ¢ er}{:l hsthe
the lsamc coset, since we are not concerned‘wnh the order ;1) Wh.lc ke
elements of the complex appear. Together with the subgroup &, t 1stsse fo
(I — 1) distinet complexes can themselves be regarded as th(? dem’i‘?ﬁ oe \3
smaller group (of order /== h/g) on a hxghcr level of abstractlon.l - zrn(or
group is called the factor group of & with respect to the norma ' w;s ©
invariant subgroup) .. In this factor group, & forms the unit element.

We can see this by considering
S, = P(FK)= (P, = FK, =
Group multiplication works out as shown in the following example,
A H, = (FKNFK) = KIS FK; = KIS K = S (KK) = (A ;)

where the last expression refers to the complex which is the coset ass§c1'ated
with the product K;K,. The concept of factf?r grousps and normal divisors
i in analyzing the structure of groups.
Wl"lfg::lﬁpf; f:::ln; homo}:norshy. We have alrffady introduced th(_e ?lonct:‘ept
of isomorphy by noting that two groups having thfa same multiplication
table are called jsomorphic. This means that there is a one-to-or}e Bc?rre-
spondence between the elements 4, B, . .. Qf‘ one group and those A", B', . ..
of the other, such that 4B = C implies 4’8" = ¢, and vice versa. .
Two groups are said to be homomorphic if there exists a correspon en;e
between the clements of the two groups of the sort A<—>' Al., Ag . . 3{
this \-Jve mean that, if 4B = C, then the product of any A; ‘w1th any B; wil
be a member of the set ;. In general, a homomorphlslzn isa ma_ny-tfyoEe
correspondence, as indicated here. 1t specializes to an xsom.o{phxsm 1f t le
correspondence is one-to-one.  For example, the group contaming the s:r;'g f:
element E is homomorphic to any other group, since, In view .of th% ac
that ¢ach group element is represente.d by E, group mul-txphcatloﬁ r; ‘:Ifzf
simply to EE = E. A much less trivial example is provided by t e:.f 0 n
morphic relation between any group and one of its factor groups { 1\; P
one). The invariant subgroup & corresponds to ail the members of &,
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and the cosets A, = K, correspond to all members of the coset {including
K; and all other group elements having the same coset, which are just the
members of 27,).  Thus, if & is of order g, there is a g-1o-one correspondence
between the original group elements and the elements of the factor
group.

2-9 Class Multiplication

In this section we consider a different form of multiplication of collections
of group elements in which we do keep track of the number of times an
element appears. That is, # = % implies that each element appears as
often in # asin 2. In this notation

Xx=v 2-1)

where € is any complete class of the group and X is any clement of the
group, (Proor: Each element produced on the left must appear on the
right because they are all conjugate to elements in % and hence are jn % by
the definition of a class. But each element on the left is different, because
of the uniqueness of group multiplication, as is each on the right. These
two statements are consistent only if the two sides of the equation are equal.)

The converse of this theorem is also true: any collection € obeying
(2-1) for all Xin the group is comprised wholly of complete classes. (PROOF:
First subtract all compiete classes from both sides and denote any remainder
by Z. Now consider any element R; of % on the left in Y1#Y — 9.
Since this is assumed true for all X, 2 must by definition include the complete
class of R. Thus % must be composed of complete classes.)

If we now apply the theorem (2-1) to the product of two classes, we have

CE, = X XXG, X
= X HELYX

for all X. Then, upon applying the converse theorem, it follows that
€&; consists of complete classes. This may be expressed formally by
writing

%ﬂi%ﬂf = g Cin (2-2)

where ¢, is the integer telling how often the complete class %, appears in
the product €% .

An an example, in the symmetry group of the triangle whose class
structure we noted earlier, let €, = E; %, = 4, B, C; and €, =D, F.
Then 6.%, = €y; G1%,; = €33 €,6, = 3%, + 3%,; %oy = 2%,



16 GROUP THEORY AND QUANTUM MECHANICS [Chap. 2

EXERCISES

21 Consider the symmetry group of the proper covering operations of a
square (D,). This consists of eight elements:
E = the identity
A, B, C, D = 180° rotations about the corresponding labeled axes in Fig. 2-2
which are considered fixed in space, not on the body

7 | b, Fig. 2-2. Symmeltry axes of square.
I

F, G, H = clockwise rotations in plane of the paper by #/2, =, and 3/2,

respectively

(a) From the geometry, work out the multiplication table of the group; take
advantage of the rearrangement theorem to check your result.

() From the nature of the operations, divide the group elements into classes.
If in doubt, check by using the multiplication table [from {&)] and the definition
of conjugate elements.

{¢) Write down all the subgroups of the complete group. Note that the orders
of the subgroups must be divisors of §. Which of these subgroups are invariant
subgroups (normal divisors)?

{(d) Work out the cosets of the normal divisors.

{€) Work out the group-multiplication tables of the factor groups corresponding
to the nontrivial normal divisors of the group.

(f) Determipe the coefficients ¢,; appearing in all class multiplication products.

2-2  List the symmetries of a general rectangle. Work out the multiplication
table, and divide the elements into classes.

2-3 Use the multiplication table for the symmetry group of the triangle to
verify in several cases the rule for the inverse of a product.

2-4 Consider the group of order (p — 1) obtained by taking as group elements
the integers 1,2,...,{p — 1) and as group multiplication ordinary multiplication
modulo p, where p is 2 prime number. (Modulo p means that m + np is considered
1o be equal to m, where m and  are any integers.)

() Show that this is a group, and work out the multiplication table when p = 7.

(b) Prove in general that 471 = E, for all clements A of the group. In this
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:Ezrgufi sh::in]:;g:(; ;c;n?:t;spx:m?er-theoretical thearem that »? = n(mod p),
(¢) Check the theorem forp=7andn =2,3,5.

genezr-:te l;r:yv; itchglt_ cil]l;lemems in the same class have the same order when used to

. a:fz_ Show that there is a homomorphism between the cyclic groups of order

cement o s imers ot s Bomorpiion. T (e Comespondence of eah

e, cven i e o no bt 7 " OeT vords, prove that 4., =
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