
ABSTRACT 
: GROUP THEORY 

2-1 Definitions and Nomenclature 

By a group we mean a set of elements A, B, C, . . . such that a form of 
group mul~iplicurion may be defined which associates a third element with 
any ordered pair. This multiplication must satisfy the requirements: 

1. The product of any two elements is in the set; i.e., the set is closed 
under group multiplication. 

2. The ossociatim law holds; for example, A(BC) = (AB)C. 
3. There is a unit element E such that EA = AE = A. 
4. There is in the group an inverse A-' to each element A  such that 

AA-' = A-'A = E. 

For the present we shall restrict our attention primarily to finite groups. 
These contain a finite number h of group elements, where h is said to be the 
6 
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order of the group. If group multiplication is commutative, so that 
A B  = BA for all A  and B, the group is said to be Abelian. 

2-2 Illustrative Examples 

An example of an Abelian group of infinite order is the set of all positive 
and negative integers including zero. In this case, ordinary addition serves 
as the groupmultiplication operation, zero serves as fhe unit element, and 
-n is the inverse of n. Clearly the set is closed, and the associative law is 
obeyed. 

An example of a non-Abelian group of infinite order is the set of all 
n x n matrices with nonvanishing determinants. Here the groupmulti- 
plication operation is matrix multiplication, and the unit element is the 
n X n unit matrix. The inverse matrix of each matrix may be constmcted 
by the usual methods,' since the matrices are required to have nonvanishing 
determinants. 

A physically important example of a finite group is the set of covering 
operations of a symmetrical object. By a covering operation, we mean a 
rotation, reflection, or inversion which would bring the object into a form 
indistinguishable from the original one. For example, all rotations about 
the center are covering operations of a sphere. In  such a group the product 
AB means the operation obtained by first performing B, then A. The unit 
operation is no operation a t  all, or  perhaps a rotation through 277. The 
inverse of each operation is physically apparent. For example, the inverse 
of a rotation is a rotation through the same angle in the reverse sense about 
the same axis. 

As a complete example, which we shall often use for illustrative purposes, 
consider the non-Abelian group of order 6 specified by the following group- 
multiplication table: 

I E A B C D F  

A  A E D F B C  
B I B F E D c A  

C D F E A B  
D C A B F E  

F 1 F B C A E D  

The meaning of this table is that each entry is the product of the element 
labeling the row times the element labeling the column. For example, 
A B  = D # BA. This table results, for example, if we take our elements 
to be the following six matrices, and if ordinary matrix multiplication is 

' See Appendix A and references cited there. 



8 GROUP THEORY AND QUANTUM MECHANICS [Chap .Z 

used as the group-multiplication operation: 
1-1 dT\ 

Verification of the table is left as a simple exercise. 
The very same multiplication table could be obtained by considering 

the group elements A, . . . , F to represent the proper covering operations of 

an equilateral triangle as indicated in Fig. 2-1. The elements A, B, and C 
are rotations by rr about the axes shown. Element D is a clockwise rotation 
by 2713 in the plane of the triangle, and F is a counterclockwise rotation 
through the same angle. The numbering of the corners destroys the 
symmetry so that the position of the triangle can be followed through 
successive operations. If we make the convention that we consider the 
rotation axes to be kept fixed in space (not rotated with the object), it is 
easy to verify that the multiplication table given above describes this group 
as well. 

Two groups obeying the samemultiplicationtableare said to be isomorphic. 

Rearrange 

: multiplier 
-=rL -l...n. 

:ment Theorem 

ition table in the example above, each column or row con- -.... ,,. ,.,.,.dnt once and only once. This rule is true in general and is 
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called the rearrangement theorem. Stated more formally, in the sequence 

EAk, AxAk, A d , .  . . , AaAa, 

each group element A, appears exactly once (in the form A,A1). The 
elements are merely rearranged by multiplying each by A,. 

PROOF: For any A, and A,, there exists an element A, = A,A;'in the 
group since the group contains inverses and is closed. Since AJ,  = A, 
for this particular A, A< must appear in the sequence at least once. But 
there are h elements in the group and h terms in the skquence. Hence there 
is no opportunity for any element to make more than a single appearance. 

2-4 Cyclic Groups 

For any group element X, one can form the sequence 

X, x e ,  XS, . . . , X"-', X" = E 
This is called the period of X, since the sequence would simply repeat this 
period over and over if it were extended. (Eventually we must find repe- 
tition, since the group is assumed to  be finite.) The integer n is called 
the order of X, and this period clearly forms a group as it stands, although 
it  need not exhaust all the elements of the group with which we started 
Hence it may be said to form a cyclic group of order n. If it is indeed only 
part of a larger group, it is referred to  as a cyclic subgr~up.' We note that 
all cyclic groups must be Abelian. 

In our standard example of the triangle, the period of D is D, D2 = F, 
D3 = DF = E. Thus D is of order 3, and D, F, E form a cyclic subgroup 
of our entire group of order 6. 

2-5 Subgroups and Cosets 

Let 9' = E, S,, S,, . . . , So be a subgroup of order g of a larger group 9 of 
order h. We then call the set of g elements EX, Sex ,  S a x , .  . . , S,X a 
right coset 9'X if X is not in 9. (If X were in 9 ,  Y X  would simply be the 
subgroup 9' itself, by the rearrangement theorem.) Similarly, we define 
the set X 9  as being a left coset. These cosets cannot be subgroups, since 
they cannot include the identity element. In fact, a coset Y X  contains no 
elements in common with the subgroup 9. 

The proof of this statement is easily given by assuming, on the contrary, 
that for some element S, we have S,X = S,, a member of 9. Then 
X = S;-'S,, which is in the subgroup, and Y X i s  not a coset at all, but just 
9 itself. 

Although the concipt is introduced here in connection with cyclic grou s , s u b p p s  
need not be cyclic. Any subset of elements within a group which in itself &mu agroup 
is called a subgroup of the larger group. 
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Next we note that two right (or left) cosets of subgroup Y in 9 cither 
are identical or have no elements in common. 

PROOF: Consider two cosets SPX and Y Y .  Assume that there exists a 
common element S,X = S, Y. Then XY-I = St-IS,, which is in Y. There- 
fore SXY-' = 9, by the rearrangement theorem. Postmultiplying both 
sides by Y leads to Y X  = Y Y. Thus the two cosets are completely identical 
if a single common element exists. 

If we combine the results of the preceding paragraphs, we can prove the 
following theorem: The order g o f a  subgroup must be an integral divisor of 
the order h ofrhe enrire group. That is, h/g = I where the integer I is called 
the index of the subgroup 9 in 9. 

PROOF: Each of  the h elements of 9 must appear either in Y or in a coset 
YX, for some X. Thus each element must appear in one of the sets 
9, Y X , ,  9 X 3 ,  . . . , Y X , ,  where we have listed all the distinct cosets of 9' 
together with Y itself. But we have shown that there are no elements 
common t o  any of these collections of g elements. Hence it must be 
possible to divide the total number of elements h into an integral number of 
sets of  g each, and consequently h = I x g. 

As an example, consider the subgroup SP = A, E of our illustrative 
group of order 6 .  The right cosets with B  and D are identical, namely, 
Y B  = SPD = B, D. Also Y C  = Y F  = C, F. We note that, as proved 
in general, these cosets contain no common elements unless entirely identical 
and they contain no elements in common with 9'. Also, the order (2) of 
the subgroup is an integral divisor of the order (6) of the group. To 
generalize, the order of any cyclic subgroup formed by the period of some 
group element must be a divisor of the order of the group. 

2-6 Example Groups of Finite O r d e r  

1. Croups of order 1. The only example is the group consisting solely 
of the identity element E. 

2. Groups of order 2. Again there is only one possibility, the group 
(A, AZ = E). This is an Abelian group, and in physical applications A 
might represent reflection, inversion, or an interchange of two identical 
particles. 

3. Groups of order 3. In this case, if we start with two elements A and 
E, it must be that A2 = B f E. Otherwise, if A? were to equal E, then 
(A, E )  would form a subgroup of order 2 in a group of order 3, which would 
violate our theorem. Thus the only possibility is thecyclic group (A, A' = B, 
A3 = E). 

4. Groups of order 4.  With order 4 we begin to have more than one 
possible distinct group-multiplication table of given order. The two 
possibilities here are (1) the cyclic group ( A ,  A*, As, A4 = E) and (2) the 
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so-called Yierergruppe (A, B, C,  E)  whose multipAcation table is: 
I 

E A B C  

E 
A A E C B  
B I B C E A  
C C B A E  

Both these groups are Abelian, and in both cases we can pick out subgroups 
of order 2, as allowed by our theorem. A physical example of the cyclic 
group of order 4 is provided by the four fold rotations about an axis. On 
the other hand, the Vierergruppe is the rotational-symmetry group of a 
rectangular solid, if A, B, C are taken to be the rotations by T about the 
three orthogonal symmetry axes. 

5. Groups of prime order. These must all be cyclic Abelian groups. 
Otherwise the period of some element would have to appear as a subgroup 
whose order was a divisor of a prime number. This general result allows 
us to note a t  once that there can be only single groups of order 1, 2, 3, 5, 
7, 11. 13. etc. . . 

6. Permutation groups (of factoriai order). One group of order n! can 
always be set up based on all the permutations of n distinguishable things. 
(Of course, others, such as a cyclic group, can also be found.) A permuta- 
tion can be specified by a symbol such as 

where a,, a,, . . . , a,  = 1,2,. . . , n, except for order. The permutation 
described by this symbol is one m which the item in position i is shifted to 
the position indicated in the lower line. Successive permutations form the 
groupmultiplication operation. As. an example, our standard example 
group of order 6 can be viewed as the permutation group of the three 

I numbered comers of the triangle. The permutations may be expressed in 
I the above notation as 

For example, operator A interchanges corners 1 and 2, whereas D replaces 
1 by 3, 2 by 1, and 3 by 2, corresponding to a clockwise rotation by 2 ~ 1 3 .  
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Applying B followed by A leads to 

which is consistent with the group-multiplication table worked out previously. 
Because of the identity of like particles, permutation of them leaves the 

Hamiltonian invariant. Accordingly, the permutation group plays an 
important role in quantum theory. 

2-7 Conjugate Elements and Class ~truchrre 

An element B is said to be conjugate to A if 

B = XAX-' or A = X-'BX 

where Xis some member of the group. Clearly this is a reciprocal property 

of the pair of elements. Further, if B and C are both conjugate to A, they 
are conjugate to each other. 

PROOF: Assume that 

B = XAX-1 and C = YAY-' 

Then A = Y-ICY 

and B = XY-1CYX-1 = (XY-l)C(XY-3". 

= zcz-' 
[In this proof we have used the fact that the inverse of the product of two 
group elements is the product of the inverses of the elements in inverse 
order. This is clearly true, since (RS)(S-'R-') = R(SS")R" = R R '  = E.1 

Theproperties of conjugate elements given above allow us to collect all 
mutually conjugate elements into what is called a class of elements. The 
class including A, is found by formingall products of the form 

EA,E-I = A,, AIA,A,-I,. . . , A,A,A,-' 

Of course, some elements may be found several times by this procedure. 
By proceeding in this way, we can divide all the elements of the group 
among the various distinct classes. Luckily, we may usually avoid this 
rather tedious method by using physical-symmetry considerations, as shown 
below. For example, in the group of covering operations of an equilateral 
triangle, the two rotations by 2 ~ 1 3  form a class, the three rotations by ir 
form a class, and, as always, the identify element is in a class by itse5 The 
latter follows, since AEA-' = AA-' = E for all A. Note that E is the 
only class which is also a subgroup, since all other classes must lack the 
identity element. 
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I In Abelian groups, each element is in a class' by itself, since XAX-1 = 

AXX-' = AE = A. 
If the group elements are represented by matrices, the traces of all elements 

in a class must be the same. This follows, since in this case ths operation 
of conjugation becomes that of making a similarity transformation, which 
leaves the trace invariant.' 

Physical interpretation of class structure. In physical applications the 
group elements can often be considered to be symmety operations which 
are the covering operations of a symmetrical object. In this case, the 
operation B = X-'AX is the net operation obtained by first rotating the 
object to some equivalent position by X, next carrying out the operation A, 
and then undoing the initial rotation by X-'. Thus B must be an operation 
of the same physical sort as A ,  such as a rotation through the same angle, 
but performed about some different (but physically equivalent) axis which is 
related to the axis of A by the group operation X-'. This is the significance 
of operators being in the same class. 

As a concrete example, consider the covering operations of the equilateral 
triangle indicated in Fig. 2-1. If we consider the conjugation of A with D,  
we have D-'AD = C. To follow this through in detail, D rotates the 
triangle clockwise by 2n13 so that vertex 2 instead of 3 lies on axis A ;  next 
the rotation by T about the A axis interchanges 1 and 3; finally D-' = F 
rotates the triangle back 243  counterclockwise. This sequence leaves 
precisely the result of a single rotation by n about axis C, which is an axis 
equivalent to A but rotated 2 ~ / 3  counterclockwise by the symmetry operator 
D-'. 

2-8 Normal Divisors and Factor Groups 

If a subgroup Y of a larger group 9 consists entirely of complete classes, 
it is called an inuarianr subgroup, or  normai diuisor. By consisting of com- 
plete classes, we mean that, if an element A is in 9, then all elements X-'AX 
are in Y ,  even when X runs over elements of 9 which are not in 9. Such 
a subgroup is called invariant because by the rearrangement theorem it is 
unchanged (except for order) by conjugation with any element of 9. 

To allow a compact discussion, we introduce the notion of a complex 
such as % = (Kl, K,, . . . , K,), which is a collection of group elemens 
disregarding order. Such a complex can be multiplied by a single element 
or by another complex. For example, 

1 and y@ = 7KlRl, KIR,, . . . , KIR,, . . . , K,R,) 

' See Appendix A. 
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Elements are considered to be included only once, regardless of how often 
they are generated. 

We can now state our argument concisely by treating sets of elements as 
complexes. First, a subgroup is defined by the property of closure, that is, 
YY = Y. Second, if Y is an inuariant subgroup, then X-'YX = Y, for 
all X in the group 8. From this it follows that Y X  = XY, or, in words, 
the left and &htcosets of an invariant subgroup are identical. 

In Sec. 2-5 we have shown that there are a finite number (1 - I) of 
distinct cosets for any subgroup 5". We may denote each of these as a 

complex, and if Y is an invariant subgroup, we have, for example, %, = 
YK,  = K,Y. Note that YKi = Y K j  if K, and K, are group elements in 
the samc coset, since we are not concerned with the order in which the 
elements of the complex appear. Together with the subgroup Y, this set of 
(i - 1) distinct complexes can themselves be regarded as the elements of a 
smaller group (of order I = h/g) on a higher level of abstraction. This new 
group is called the factor group of 8 with respect to the normal divisor (or 
invariant subgroup) 9'. In this factor group, 9' forms the unit element. 
We can see this by considering 

YX, = Y(YKi) = (YY)K, = YK, = .Ti 

Group multiplication works out as shown in the following example, 

.%,X, = (YK,)(S"Kj) = K,YYK, = K,YKj = Y(KtKj) = (X3%,) 

where the last expression refers to the complex which is the coset associated 
with the product K,KP The concept of factor groups and normal divisors 
will prove useful in analyzing the structure of groups. 

Isomorphy and homomorphy. We have already introduced the concept 
of isomorphy by noting that two groups having the same multiplication 
table are called isomorphic. This means that there is a one-to-one corre- 
spondence between the elements A, B ,  . . . of one group and those A', B', . . . 
of the other, such that AB = C implies ,419 = C',  and vice versa. 

Two groups are said to be homomorphic if there exists a correspondence 
between the clements of the two groups of the sort A o  A;,  A;, . . . . BY 
this we mean that, if AB = C,  then the product of any A: with any B; will 
be a member of the set CL. In general, a homomorphism is a many-to-one 
correspondence, as indicated here. I t  specializes to an isomorphism if the 
correspondence is one-to-one. For example, the group containing the single 
element E is homomorphic to any other group, since, in view of the fact 
that each group element is represented by E, group multiplication reduces 
simply to EE = E. A much less trivial example is provided by the homo- 
morphic relation between any group and one of its factor groups (if it has 
one). The invariant subgroup Y corresponds to all the members of 9, 
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and the cosets X, = YK* correspond to all members of the coset (including 
K, and all other group elements having the same coset, which are just the 
members of Z,). Thus, i f 9  is of orderg, there is ag-to-one correspondence 
between the original group elements and the elements of the factor 
group. 

2-9 Class Multiplication 

In this section we consider a different form of multiplication of collections 
of group elements in which we do keep track of the number of times an 
element appears. That is, 9 = Z implies that each element appears as 
often in .% as in .T. In this notation 

X-'QX = Q (2-1) 

where %' is any complete class of the group and X is any elcment of the 
group. (PROOF: Each element produced on the left must appearon the 
right because they are all conjugate to elements in Q and hence are in Q by 
the definition of a class. But each element on the left is different, because 
of the uniqueness of group multiplication, as is each on the right. These 
two statements are consistent only if the two sides of the equation are equal.) 

The converse of this theorem is also true: any collection Q obeying 
(2-1) for all Xin the group is comprised wholly of complete classes. (PROOF: 
First subtract all complete classes from both sides and denote any remainder 
by 92. Now considcr any element Ri of W on the left in X- '9X= 9. 
Since this is assumed true for all X, W must by definition include the complete 
class of R. Thus D must be composed of complete classes.) 

If we now apply the theorem (2-1) to the product of two classes, we have 

vivj = X-'u?,XX-lD,X 

= x-'(D<Q3)x 

for all X. Then, upon applying the converse theorem, it follows that 
V$Vj consists of complete classes. This may be expressed formally by 
writing 

Vi%', = 2 CijkVk 
k (2-2) 

where c, is the integer telling how often the complete class Q* appears in 
the product 4,VP 

An an example, in the symmetry group of the triangle whose class 
structure we noted earlier, let Vi = E ;  Q2 = A, B, C ;  and Dz = D, F. 
Then VIP2 = e2; VIP3 = V3; V2(6, = 3V1 + 3P3; %V3 = 2Vv 
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2-1 Consider the symmetry group of the proper covering operations of a 
souare (Dl). This consists of eieht elements: 
- 3 - - ~ -  ~ -' 

E = the identity 
A, B, C, D = 180" rotations about the corresponding labeled axes in Fig. 2-2 
which are considered fixed in space, not on the body 

F, G, H = clockwise rotations in plane of the paper by -12, n, and 3-12, 
respectively 

(a) From the geometry, work out the multiplication table of the group; take 
advantage of the rearrangement theorem to check your result. 

(b)  From the nature of the operations, divide the group elements into classes. 
If in doubt, check by using the multiplication table [from (a)] and the definition 
of conjugate elements. 

(c) Write down all the subgroups of the complete group. Note that the orders 
of the subgroups must be divisors of 8. Which of these subgroups are invariant 
subgroups (normal divisors)? 

( d )  Work out the cosets of the normal divisors. 
(e) Work out the group-multiplication tables of the factor groups corresponding 

to the nontrivial normal divisors of the group. 
(f) Determine the coefficients c,?, appearing in all class multiplication products. 
2-2 List the symmetries of a general rectangle. Workout the multiplicatiori 

table, and divide the elements into classes. 
2-3 Use the multiplication table for the symmetry group of the triangle to 

verify in several cases the rule for the inverse of a product. 
2-4 Consider the group of order @ - 1) obtained by taking as group elements 

the integers 1,2, .  . . ,(p - 1) and as group multiplication ordinary multiplication 
modulop, wherep is aprime number. (Modulop means that rn + np is considered 
to be equal to m, where rn and n are any integers.) 

(a) Show that this is a group, and work out the multiplication table whenp = 7. 
(b) Prove in general that A w l  = E, for all elements A of the group. In this 

ABSTRACT GROUP THEORY 17 

way you have proved Fcrmat's number-theoretical theorem that nV = "(modp), 
where n is an integer andp  is a prime. 

(c) Check the theorem forp  = 7 and n = 2, 3,5. 
2-5 Prove that all elements in the same class have the same order when used to 

generate a cyclic group. 
2-6 Show that there is a homomorphism between the cyclic groups of order 

4 and 2. 
2-7 Prove that a group is Abelian if, and only if, the correspondence of each 

element to its inverse forms an isomorphism. 
2-8 Prove that c,, = c,,, in Eq. (2-2). In other words, prove that VdV, = 

V,V,, even if the group is not Abelian. 
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