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3.6 SU(2)

We used in Sec. 3.4.3 specific matrices (=a specific representation) to 
identify how the generators of SU(2) behave, when put into the Lie 
bracket. We can use this knowledge to find further representations. We 
will arrive again at the representation we started with, which means the 
set of unitary 2× matrices with unit determinant and are then able to see 
that it is just one special case. Before we are going
to tackle this task, we want to take a moment to think about what 
representations we can expect.

3.6.1 The Finite-dimensional Irreducible Representations

of SU(2)

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

 every Hermitian traceless 2 × 2 matrix can be written as a linear 
combination of these  Pauli matrices.

We can put these explicit matrices for the basis generators into the 
Lie bracket, which yields

[σi, σj] = 2iεijkσk, 3.82)(

1
2

where εijk is again the Levi-Civita symbol. To get rid of the nasty 2 it
is conventional to define the generators of SU(2) as Ji ≡ σi. The Lie
algebra then reads

[Ji, Jj] = iεijk Jk (3.83)
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ones we used in Sec. 3.4.3, by linear combination8383 We can always diagonalize one of the
generators. Following the convention
we choose J3 as diagonal and therefore
yielding the basis vectors for our vector
space. Furthermore, it is conventional
to introduce the new operators J± in
the way we do here.

J+ =
1√
2
(J1 + i J2) (3.94)

J− =
1√
2
(J1 − i J2) (3.95)

These new operators obey the following commutation relations, as
you can check by using the commutator relations in Eq. 3.83

[J3, J±] = ±J± (3.96)

[J+, J−] = J3. (3.97)

If we now investigate how these operators act on an eigenvector v of
J3 with eigenvalue84 b we discover something remarkable:84 This means J3v = bv as explained in

appendix C.4.

J3(J±v) = J3(J±v) + J± J3v − J± J3v︸ ︷︷ ︸
=0

= J± J3v︸ ︷︷ ︸
=J±bv

+ J3 J±v − J± J3v︸ ︷︷ ︸
=[J3,J± ]v

=︸︷︷︸
Eq. 3.96

(b ± 1)J±v (3.98)

We conclude that J±v is again an eigenvector, let’s call him w, of J3

with eigenvalue (b ± 1):

J3w = (b ± 1)w with w = J±v. (3.99)

The operators J− and J+ are called raising and lowering or ladder

operators. We can construct more and more eigenvectors of J3 using
the operators the ladder operators J± repeatedly. This process must
come to an end, because eigenvectors with different eigenvalues are
linearly independent and we are dealing with finite-dimensional
representations. This means that the corresponding vector space is
finite-dimensional and therefore we can only find a finite number of
linearly independent vectors.

We conclude there must be an eigenvector with a maximum eigen-
value vmax. After a finite number N of applications of J+ we reach
the maximum eigenvector vmax

vmax = JN
+ v (3.100)

We have
J+vmax = 0, (3.101)
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because vmax is, by definition, the eigenvector with the highest eigen-
value. We call the maximum eigenvalue j := b + N. The same must
be true for the other direction: There must be an eigenvector with
minimum eigenvalue vmin for which the following relation holds

J−vmin = 0 (3.102)

Let us say we reach the minimum after operating M times with J− on
vmax

vmin = JM− vmax. (3.103)

Therefore, vmin has eigenvalue j-M. To go further we need to know
how exactly J± acts on eigenvectors. The computation above shows
that J−vk is, in general, a scalar multiplied by an eigenvector with
eigenvalue k − 1:

J−vk = αkvk−1. (3.104)

If we inspect in detail how J− acts on vmax we get85 the general rule 85 See, for example, page 90 in Matthew
Robinson. Symmetry and the Standard
Model. Springer, 1st edition, August
2011. ISBN 978-1-4419-8267-4

for the scalar factor

αj−k =
1√
2

√
(2j − k)(k + 1) (3.105)

Take note that this scalar factor becomes zero for k = 2j and there-
fore, we have reached the end of the ladder after 2j steps if we start at
the top. Therefore vmin has eigenvalue j − 2j = −j. We conclude that
we have in general 2j + 1 eigenstates with eigenvalues

{−j,−j + 1, . . . , j − 1, j} (3.106)

This is only possible if j is an integer or an half-integer86. Now we 86 Try it with other fractions if you don’t
believe this!know that our vector space V has 2j + 1 dimensions87, because we
87 See, for example, page 189 in Nadir
Jeevanjee. An Introduction to Tensors and
Group Theory for Physicists. Birkhaeuser,
1st edition, August 2011. ISBN 978-
0817647148

have 2j + 1 linearly independent eigenvectors. Those eigenvectors
of J3 span the complete vector space V because J1 and J2 can be ex-
pressed in terms of J+ and J− and therefore take any linear combina-
tion ∑i aivi into a possibly different linear combination ∑i bivi, with
scalar factors ai, bi. Therefore, the span of the eigenvectors of J3 is
a non-zero invariant subspace of V and because we are looking for
irreducible representations they span the complete vector space V.

We can use the construction above to define representations of
SU(2) on a vector space Vj with 2j + 1 dimensions and basis given
by the eigenvectors vk of J3. Furthermore, it’s possible to show that
every irreducible representation of SU(2) must be equivalent to one
of these88. 88 See page 190 in: Nadir Jeevanjee. An

Introduction to Tensors and Group Theory
for Physicists. Birkhaeuser, 1st edition,
August 2011. ISBN 978-0817647148
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3.6.2 The Casimir Operator of SU(2)

As described in Sec. 3.5, we can naturally label representations by
using the Casimir operators89 of the group. SU(2) has exactly one89 Recall that Casimir operators are

defined as operators C, built from the
generators of the group that commute
with every generator X of the group:
[C, X] = 0.

Casimir operator:

J2 := (J1)
2 + (J2)

2 + (J3)
2 (3.107)

that fulfils the defining condition:

[J2, Ji] = 0. (3.108)

We can re-express J2 in terms of J± by using the definition of J± in
Eq. 3.95 and Eq. 3.94:

J2 = J+ J− + J− J+ + (J3)
2

=
1
2
(J1 + i J2)(J1 − i J2) +

1
2
(J1 − i J2)(J1 + i J2) + (J3)

2

=
1
2

(
(J1)

2 − i J1 J2 + i J2 J1 + (J2)
2
)
+

1
2

(
(J1)

2 + i J1 J2 − i J2 J1 + (J2)
2
)

+ (J3)
2

= (J1)
2 + (J2)

2 + (J3)
2 � (3.109)

If we now use90

90 These are just the normalization
constants. If we act with J± onto a
normalized state, the resulting state
will in general not be normalized, too.
Nevertheless, in physics we always
prefer working with normalized states,
for reasons that will become clear in the
following chapters. The derivation is a
bit tedious, but simply starts with

J±vk = cvk±1 where c is the nor-
malization constant in question. The
complete computation can be found
in most books about quantum me-
chanics in the chapter about angular
momentum and angular momentum
ladder operators. If this is new to you,
do not waste too much time here be-
cause the result of this section is not too
important for everything that follows.

J+vk =
1√
2

√
(j + k + 1)(j − k)vk+1 (3.110)

and
J−vk =

1√
2

√
(j + k)(j − k + 1)vk−1 (3.111)

we can compute the fixed scalar value for each representation:

J2vk =

(
1
2
(J+ J− + J− J+) + (J3)

2
)

vk

= J+ J−vk + J− J+vk + k2vk

= J+
1√
2

√
(j + k)(j − k + 1)vk−1 + J−

1√
2

√
(j + k + 1)(j − k)vk+1 + k2vk

=
1√
2

√
(j + k)(j − k + 1)J+vk−1 +

1√
2

√
(j + k + 1)(j − k)J−vk+1 + k2vk

=
1√
2

√
(j + k)(j − k + 1)

1√
2

√
(j + (k − 1) + 1)(j − (k − 1))vk

+
1√
2

√
(j + k + 1)(j − k)

1√
2

√
(j + (k + 1))(j − (k + 1) + 1)vk + k2vk

=
1
2
(j + k)(j − k + 1) +

1
2
(j − k)(j + k + 1)vk + k2vk

= (j2 + j)vk = j(j + 1)vk (3.112)

Now we look at specific examples for the representations. We start,
of course, with the lowest dimensional representations.
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3.6.3 The Representation of SU(2) in one Dimension

The lowest possible value for j is zero. In this case our representation
acts on a 2j + 1 = 2 · 0 + 1 = 1 dimensional vector space. We can
see that this representation is trivial, because the only 1 × 1 matrices
fulfilling the commutation relations of the SU(2) Lie algebra

[Jl , Jm] = iεlmn Jn, are trivially 0. If we exponentiate the generator 0
we always get the transformation U = e0 = 1 which changes nothing
at all.

3.6.4 The Representation of SU(2) in two Dimensions

We now take a look at the next lowest possible value j = 1
2 . This

representation is 2 1
2 + 1 = 2 dimensional. The generator J3 has

eigenvalues 1
2 and 1

2 − 1 = − 1
2 , as can be seen from Eq. 3.106 and is

therefore given by

J3 =
1
2

(
1 0
0 −1

)
, (3.113)

because we choose J3 to be the diagonal generator91. The eigenvec- 91 For SU(2) only one generator is
diagonal, because of the commutation
relations. Furthermore, remember that
we are able to transform the generators
using similarity transformations and
could therefore easily make another
generator diagonal.

tors corresponding to the eigenvalues + 1
2 ,− 1

2 are:

v 1
2
=

(
1
0

)
and v− 1

2
=

(
0
1

)
. (3.114)

We can find the explicit matrix form of the other two generators of
SU(2) in this basis by rewriting them using the ladder operators

J1 =
1√
2
(J− + J+) (3.115)

J2 =
i√
2
(J− − J+), (3.116)

which we get directly from inverting the definitions of J± in Eq. 3.95
and Eq. 3.94. Recall that a basis four the vector space of this represen-
tation is given by the eigenvectors of J3 and we therefore express the
generators J1 and J2 in this basis. In other words: In this basis J1 and
J2 are defined by their action on the eigenvectors of J3. We compute

J1v 1
2
=

1√
2
(J− + J+)v 1

2
=

1√
2
(J−v 1

2
+ J+v 1

2︸ ︷︷ ︸
=0

) =
1√
2

J−v 1
2
=

1
2

v− 1
2
,

(3.117)
where we used that 1

2 is already the maximum value for v 1
2

and

we cannot go higher. The factor 1
2 is the scalar factor we get from

Eq. 3.105. Similarly we get

J1v− 1
2
=

1√
2
(J− + J+)v− 1

2
=

1
2

v 1
2

(3.118)
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Written in matrix form, where our basis is given by v 1
2
= (1, 0)T and

v− 1
2
= (0, 1)T :

J1 =
1
2

(
0 1
1 0

)
. (3.119)

You can check that this matrix has the action on the basis vectors we
derived above92. In the same way, we find92 We derived in Eq. 3.117:

J1v 1
2
= 1

2 v− 1
2

. Using the explicit
matrix form of J1 we get

J1v 1
2
= 1

2

(
0 1
1 0

)(
1
0

)
= 1

2

(
0
1

)
=

1
2 v− 1

2
�.

J2 =
1
2

(
0 −i
i 0

)
. (3.120)

These are the same generators Ji = 1
2 σi, with the Pauli matrices σi,

we found while investigating Lie algebra of SU(2) at the beginning
of this chapter (Eq. 3.81). We can now see that the representation we
used there was exactly this two dimensional representation. Never-
theless, there are many more, for example, in three-dimensions as we
will see in the next section93.93 Again, don’t get confused by the

name SU(2), which we originally de-
fined as the set of unitary 2 × 2 matrices
with unit determinant. Here we mean
the abstract group, defined by the cor-
responding manifold S3 and we are
going to talk about higher dimensional
representations of this group, which
result in, for example, a representation
with 3 × 3 matrices. It would help if
we could give this structure a different
name (For example, using the name of
the corresponding manifold S3), but
unfortunately SU(2) is the conventional
name.

3.6.5 The Representation of SU(2) in three Dimensions

Following the same procedure94 as in two-dimensions, we find:

94 We start again with the diagonal
generator J3, which we can write down
immediately because we know its
eigenvalues (1, 0,−1). Afterwards,
the other two generators J1, J2 can be
derived by their action, where we again
use that we can write them in terms of
J±, on the eigenvectors of J3.

J1 =
1√
2

⎛
⎜⎝0 1 0

1 0 1
0 1 0

⎞
⎟⎠ , J2 =

1√
2

⎛
⎜⎝0 −i 0

i 0 −i
0 i 0

⎞
⎟⎠ , J3 =

⎛
⎜⎝1 0 0

0 −1 0
0 0 0

⎞
⎟⎠

(3.121)
This is the representation of the generators of SU(2) in three di-
mensions. If you’re interested, you can derive the corresponding
representation for the group elements of SU(2) in three dimensions,
by putting these generators into the exponential function. We will
not go any further and deriving even higher dimensional represen-
tations, because at this point we already have everything we need to
understand the most important representations of the Lorentz group.

3.7 The Lorentz Group O(1, 3)

"To arrive at abstraction, it is always necessary to begin with a concrete
reality . . . You must always start with something. Afterward you can
remove all traces of reality."

- Pablo Picasso9595 As quoted in Robert S. Root-Bernstein
and Michele M. Root-Bernstein. Sparks
of Genius. Mariner Books, 1st edition, 8
2001. ISBN 9780618127450 In this section we will use one known representation of the Lorentz

group to derive the corresponding Lie algebra, which is exactly the
same route we followed for SU(2). There we started with explicit
2 × 2 matrices to derive the corresponding Lie algebra. We will find
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that this algebra can be seen to be constructed of two copies of the
Lie algebra of SU(2). This fact can be used to discover further rep-
resentations of the Lorentz group, whereas the well-known vector
representation, which is the representation of the Lorentz group by
4 × 4 matrices acting on four-vectors, will prove to be one of the rep-
resentations. The new representations will provide us with tools to
describe physical systems that cannot be described by the vector rep-
resentation. This shows the power of Lie theory. Using Lie theory we
are able to identify the hidden abstract structure of a symmetry and
by using this knowledge we are able to describe nature at the most
fundamental level with the required tools.

We start with a characterisation of the Lorentz group and its sub-
groups. The Lorentz group is the set of all transformations that pre-
serve the inner product of Minkowski space96 96 This was derived in Chap. 2. Recall

that this definition is analogous to
our definition of rotations and spatial
reflections in Euclidean space, which
preserve the inner product of Euclidean
space.

xμxμ = xμημνxν = (x0)2 − (x1)2 − (x2)2 − (x3)2 (3.122)

where ημν denotes the metric of Minkowski space

ημν =

⎛
⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠ . (3.123)

This is the reason why we call the Lorentz group O(1, 3). The group
O(4) preserves (x0)2 + (x1)2 + (x2)2 + (x3)2. Let’s see what restriction
this imposes. The conventional name for a Lorentz transformation is
Λ (Lambda). For the moment, Λ is just a name and we will derive
now how these transformations look like explicitly. If we transform
xμ → x′μ = Λμ

ν xν, we get the product

xμημνxν → x′σησρx′ρ = (xμΛσ
μ)ησρ(Λ

ρ
νxν)

!
= xμημνxν (3.124)

and because this must hold for arbitrary xμ we conclude

Λσ
μησρΛρ

ν
!
= ημν (3.125)

or written in matrix form97 97 Recall that in order to write the prod-
uct of two vectors in matrix notation,
the left vector is transposed. Therefore
we get here ΛT .

ΛTηΛ !
= η. (3.126)

This is how the Lorentz transformations Λ are defined! If we
take the determinant of the equation and use

det(AB) = det(A)det(B) we get the defining condition

det(Λ)det(η)︸ ︷︷ ︸
=−1

det(Λ) = det(η)︸ ︷︷ ︸
=−1

→ det(Λ)2 !
= 1 (3.127)
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→ det(Λ)
!
= ±1 (3.128)

Furthermore, we get if we look at98 the μ = ν = 0 component in98 We will see in a minute why this is
useful. Eq. 3.125

Λσ
0 ησρΛρ

0
!
= η00︸︷︷︸

=1

→ Λσ
0 ησρΛρ

0 = (Λ0
0)

2 − ∑
i
(Λi

0)
2 !
= 1 (3.129)

and we conclude

Λ0
0

!
= ±

√
1 + ∑

i
(Λi

0)
2. (3.130)

We divide the Lorentz group into four components, depending
on the signs in the Eq. 3.128 and Eq. 3.130. The components that
preserve the orientation99 of the coordinate system are those two99 This means a right-handed coordinate

system stays right-handed and a left-
handed coordinate system stays left-
handed. For the definition of left- and
right-handed coordinate systems have a
look at appendix A.5.

with det(Λ) = +1. Furthermore, if we want to preserve the direction
of time we need to restrict to Λ0

0 ≥ 0, because

x0 = t → x′0 = t′ = Λ0
νxν = Λ0

0t + Λ0
1x1 + Λ0

2x2 + Λ0
3x3, (3.131)

where we can see that, if Λ0
0 ≥ 0, then t′ has the same sign as t. This

component is called SO(1, 3)↑ and we will talk about this subgroup
most of the time. The fancy term for this subgroup is proper100 or-100 This term refers to the fact that

the subgroup SO(1, 3)↑ preserves
orientation/parity.

thochronous101 Lorentz group. The four components of the Lorentz

101 This means that this subgroup
preserves the direction of time.

group are disconnected in the sense that it is not possible to get
a Lorentz transformation of another component just by using the
Lorentz transformations of one component. Other components can be
obtained from SO(1, 3)↑ by using102

102 At least for one representation, these
operators look like this. We will see
later that for different representations,
these operators look quite different.

ΛP =

⎛
⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠ (3.132)

ΛT =

⎛
⎜⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ . (3.133)

ΛP is called the parity operator. A parity transformation is simply a
reflection in a mirror. ΛT is the time-reversal operator.

The complete Lorentz group O(1, 3) can then be seen as the set:

O(1, 3) = {SO(1, 3)↑, ΛPSO(1, 3)↑, ΛTSO(1, 3)↑, ΛPΛTSO(1, 3)↑}
(3.134)
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Therefore, we can restrict our search for representations of the
Lorentz group, to representations of SO(1, 3)↑, because then we only
need to find representations for ΛP and ΛT , to get representations of
the other components.

3.7.1 One Representation of the Lorentz Group

Let’s see how we can use the defining condition of the Lorentz group
(Eq. 3.125) to construct an explicit matrix representation of the al-
lowed transformations. First let’s think a moment about what we are
trying to find. The Lorentz group, when acting on 4-vectors103, is 103 The usual vector space of special

relativity is the real, four-dimensional
Minkowski space R(1,3). We will look
at the representation on this vector
space first, because the Lorentz group
is defined there in the first place, i.e. as
the set of transformations that preserve
the 4 × 4 metric. Equivalently SU(2)
was defined as complex 2 × 2 matrices
in the first place and we tried to learn
as much as possible about SU(2) from
these matrices, in order to derive other
representations later .

given by real 4 × 4 matrices. The matrices must be real, because we
want to know how they act on elements of the real Minkowski space
R(1,3). A generic, real 4 × 4 matrix has 16 parameters. The defining
condition of the Lorentz group, which is in fact 10 conditions104, re-

104 You can see this, by putting a generic
4 × 4 matrix Λ, in ΛTηΛ = η.

stricts this to 6 parameters. In other words, to describe a most general
Lorentz transformation, 6 parameters are needed. Therefore, if we
find 6 linearly independent generators, we have found the complete
Lie algebra of this group. These generators form a basis for this Lie
algebra, which means every other generator can be written as a lin-
ear combination of these basis generators. In addition, we are then
able to compute how these basis generators behave when put into the
Lie bracket and therefore to derive the abstract definition of this Lie
algebra.

First note that the rotation matrices of 3-dimensional Euclidean
space, involving only space and leaving time unchanged, fulfil the
condition in Eq. 3.125. This follows because the spatial part105 of the 105 The spatial part are the components

μ = 1, 2, 3. Commonly this is denoted
by ηij, because Latin indices, like i, j
always run from 1 to 3 and Greek
indices, like μ and ν, run from 0 to 3.

Minkowski metric is proportional to the 3 × 3 identity matrix106 and

106 Recall η11 = η22 = η33 = −1 and
ηij = 0 for i �= j.

therefore for transformations involving only space, we have from
Eq. 3.125 the condition

−RT I3×3R = −RT R !
= −I3×3

→ RT I3×3R = RT R !
= I3×3.

This is exactly the defining condition of O(3). Together with the
condition

det(Λ)
!
= 1

these are the defining conditions of SO(3). We conclude that the
corresponding Lorentz transformation is given by

Λrot =

(
1

R3×3

)
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with the rotation matrices R3×3 cited in Eq. 3.23 and derived in
Sec. 3.4.1. The corresponding generators are therefore analogous
to those we derived for three spatial dimension in Sec. 3.4.1:

Ji =

(
0

J3dim
i

)
. (3.135)

For example, from Eq. 3.65 we now have

J1 =

(
0

J3dim
1

)
=

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎟⎠ . (3.136)

To investigate transformations involving time and space we will
start, as always in Lie theory, with an infinitesimal transformation107107 With the Kronecker delta defined by

δ
μ
ρ = 1 for μ = ρ and δ

μ
ρ = 0 for μ �= ρ.

This means writing the Kronecker
delta in matrix form is just the identity
matrix.

Λμ
ρ ≈ δ

μ
ρ + εKμ

ρ . (3.137)

We put this into the defining condition (Eq. 3.125)

Λμ
ρ ημνΛν

σ
!
= ηρσ

→ (δ
μ
ρ + εKμ

ρ )ημν(δ
ν
σ + εKν

σ)
!
= ηρσ

→��ηρσ + εKμ
ρ ημσ + εKν

σηρν + ε2Kμ
ρ ημνKν

σ︸ ︷︷ ︸
≈0 because ε is infinitesimal →ε2≈0

=��ηρσ

→ Kμ
ρ ημσ + Kν

σηρν = 0 (3.138)

which reads in matrix form108108 Recall that the first index denotes
the row and the second the column.
So far we have been a little sloppy
with first and second index, by writing
them above each other. In fact, we have
Kμ

ρ ≡ Kμ
ρ → (KT)

μ
ρ = K μ

ρ . Matrix
multiplication always works by multi-
plying rows with columns. Therefore
Kν

σηρν = ηρνKν
σ , were the ρ-row of η is

multiplied with the σ-column of K. This
term then is in matrix notation ηK. Fur-
thermore, Kμ

ρ ημσ = Kμ
ρημσ = (KT)

μ
ρ ημσ .

In order to write this index term in
matrix notation we need to use the
transpose of K, because only then we
get a product of the form row times
column. The ρ-row of KT is multiplied
with the σ-column of η. Therefore, this
term is KTη in matrix notation. In index
notation we are free to move objects
around, because for example Kμ

ρ is just
one element of K, i.e. a number.

KTη = −ηK. (3.139)

Now we have the condition for the generators of transformations
involving time and space. A transformation generated by these gen-
erators is called a boost. A boost means a change into a coordinate
system that moves with a different constant velocity compared with
the original coordinate system. We boost the description we have, for
example in frame of reference where the object in question is at rest,
into a frame of reference where it moves relative to the observer. Let’s
go back to the example used in Chap. 2.1: A boost along the x-axis.
Because we know that y′ = y and z′ = z the generator is of the form

Kx =

⎛
⎜⎜⎜⎜⎜⎜⎝

(
a b
c d

)
︸ ︷︷ ︸

≡kx (
0 0
0 0

)

⎞
⎟⎟⎟⎟⎟⎟⎠ (3.140)
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and we only need to solve a 2 × 2 matrix equation. Equation 3.139
reduces to (

a c
b d

)(
−1 0
0 1

)
= −

(
−1 0
0 1

)(
a b
c d

)
,

which is solved by109
109

(
0 1
1 0

)(−1 0
0 1

)
=

(
0 1
−1 0

)
and

−
(−1 0

0 1

)(
0 1
1 0

)
= −

(
0 −1
1 0

)
.

kx =

(
a b
c d

)
=

(
0 1
1 0

)
.

The complete generator for boosts along the x-axis is therefore

Kx =

⎛
⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ (3.141)

and equally we can find the generators for boosts along the y- and
z-axis

Ky =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ Kz =

⎛
⎜⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎟⎠ . (3.142)

Now, we already know from Lie theory how we get from the gen-
erators to finite transformations110 110 Take not that the generators Kx ,Ky

and Kz are already Hermitian: K†
i = Ki .

Therefore, we do not include an extra i
here in the exponent, because then the
generators would be anti-Hermitian.

Λx(φ) = eφKx

For brevity let’s focus again on the exciting part of the generator Kx,
i.e. the upper left 2 × 2 matrix kx, which is defined in Eq. 3.140. We
can then evaluate the exponential function using its series expansion
and that111 k2

x = 1 111 As you can easily check: k2
x =(

0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
, equally

k4
x = 1 etc. for all even exponents and

of course k3
x = kx , k5

x = kx etc. for all
uneven exponents.

Λx(φ) = eφkx =
∞

∑
n=0

φnkn
x

n!
=

∞

∑
n=0

φ2n

(2n)!
k2n

x︸︷︷︸
=1

+
∞

∑
n=0

φ2n+1

(2n + 1)!
k2n+1

x︸ ︷︷ ︸
=kx

=

(
∞

∑
n=0

φ2n

(2n)!

)
I +

(
∞

∑
n=0

φ2n+1

(2n + 1)!

)
kx = cosh(φ)I + sinh(φ)kx

=

(
cosh(φ) 0

0 cosh(φ)

)
+

(
0 sinh(φ)

sinh(φ) 0

)
=

(
cosh(φ) sinh(φ)
sinh(φ) cosh(φ)

)
(3.143)

This computation is analogous to the computation in Sec. 3.4.1,
but observe that the sums here have no factor (−1)n and therefore
these sums are not sin(φ) and cos(φ), but different functions called
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hyperbolic sine sinh(φ) and hyperbolic cosine cosh(φ). The complete
4 × 4 transformation matrix for a boost along the x-axis is therefore

Λx =

⎛
⎜⎜⎜⎝

cosh(φ) sinh(φ) 0 0
sinh(φ) cosh(φ) 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ . (3.144)

Analogously, we can derive the transformation matrices for boosts
along the other axes:

Λy =

⎛
⎜⎜⎜⎝

cosh(φ) 0 sinh(φ) 0
0 1 0 0

sinh(φ) 0 cosh(φ) 0
0 0 0 1

⎞
⎟⎟⎟⎠ (3.145)

Λz =

⎛
⎜⎜⎜⎝

cosh(φ) 0 0 sinh(φ)
0 1 0 0
0 0 1 0

sinh(φ) 0 0 cosh(φ)

⎞
⎟⎟⎟⎠ . (3.146)

An arbitrary boost can be composed by multiplication of these 3
transformation matrices.

3.7.2 Generators of the Other Components of the Lorentz

Group

To understand how the generators for the transformations of the
other components112 of the Lorentz Group look like, we simply have112 Recall that the Lorentz group is in

fact O(1, 3) = {SO(1, 3)↑, ΛPSO(1, 3)↑
, ΛTSO(1, 3)↑, ΛPΛTSO(1, 3)↑} and

we derived in the last section the
generators of SO(1, 3)↑.

to act with the parity operation ΛP and the time reversal operator ΛT

on the matrices Ji, Ki we just derived. In index notation we have113

113 We need two matrices ΛP, one for
each index. This is just the ordinary
transformation behaviour of opera-
tors under changes of the coordinate
system.

(ΛP)
α
α′(ΛP)

β
β′(Ji)

α′β′ =̂︸︷︷︸
switching to matrix notation

ΛP Ji(ΛP)
T = Ji=̂(Ji)

αβ (3.147)

(ΛP)
α
α′(ΛP)

β
β′(Ki)

α′β′ =̂︸︷︷︸
switching to matrix notation

ΛPKi(ΛP)
T = −Ki=̂− (Ki)

αβ, (3.148)

as you can check by brute force computation, using the explicit
matrices derived in the last section. For example

Jx =

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎟⎠ → J′x = ΛP Jx(ΛP)

T = Jx, (3.149)
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because

ΛP Ji(ΛP)
T =

⎛
⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠

T

=

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎟⎠ (3.150)

In contrast,

Kx =

⎛
⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ → K′

x = ΛPKx(ΛP)
T = −Kx, (3.151)

because

ΛP Ji(ΛP)
T =

⎛
⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠

T

= −

⎛
⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ . (3.152)

In conclusion, we have under parity transformations

Ji →︸︷︷︸
P

Ji Ki →︸︷︷︸
P

−Ki (3.153)

This will become useful later, because for different representations
the parity transformations will not be as obvious as in the vector rep-
resentation. Equally we can investigate the time-reversed generators
and the result will be the same, because time-reversal involves only
the first component, which only changes something for the boost
generators Ki

(ΛT)
α
α′(ΛT)

β
β′(Ji)

α′β′ =̂︸︷︷︸
switching to matrix notation

ΛT Ji(ΛT)
T = Ji=̂(Ji)

αβ (3.154)

(ΛT)
α
α′(ΛT)

β
β′(Ki)

α′β′ =̂︸︷︷︸
switching to matrix notation

ΛTKi(ΛT)
T = −(Ki)

αβ, (3.155)
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Or shorter:
Ji →︸︷︷︸

T

Ji Ki →︸︷︷︸
T

−Ki. (3.156)

3.7.3 The Lie Algebra of the Proper Orthochronous Lorentz

Group

Now using the explicit matrix form of the generators114 for SO(1, 3)↑114 See Eq. 3.141 for the boost generators
and Eq. 3.62 for the rotation generators we can derive the corresponding Lie algebra by brute force computa-

tion115
115 The Levi-Civita symbol εijk , is
defined in appendix B.5.5.

[Ji, Jj] = iεijk Jk (3.157)

[Ji, Kj] = iεijkKk (3.158)

[Ki, Kj] = −iεijk Jk (3.159)

where again Ji denotes the generators of rotations and Ki are the
generators of boosts. A general Lorentz transformation is of the form

Λ = ei Jθ+iKΦ (3.160)

Equation 3.158 tells us that the two generator types (Ji and Ki)
do not commute with each other. While the rotation generators are
closed under commutation116, the boost generators are not117. We116 Closed under commutation means

that the commutator [Ji , Jj] = Ji Jj − Jj Ji ,
is again a rotation generator. From
Eq. 3.157 we can see that this is the
case.

117 Eq. 3.159 tells us that the commutator
of two boost generators Ki and Kj isn’t
another boost generator, but a generator
of rotations.

can now define new operators from the old ones that are closed un-
der commutation and commute with each other

N±
i =

1
2
(Ji ± iKi). (3.161)

Working out the commutation relations yields

[N+
i , N+

j ] = iεijk N+
k (3.162)

[N−
i , N−

j ] = iεijk N−
k (3.163)

[N+
i , N−

j ] = 0. (3.164)

These are precisely the commutation relations for the Lie algebra
of SU(2) and we have therefore discovered that the Lie algebra of
SO(1, 3)↑+ consists of two copies of the Lie algebra of SU(2).

This is great news, because we already know how to construct all
irreducible representations of the Lie algebra of SU(2). However the
Lorentz group is, like SO(3), not simply-connected118 and Lie theory118 We will use this simply as a fact here,

because a proof would lead us too far
apart.
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tells us that there is, for groups that aren’t simply connected, no one-
to-one correspondence between the irreducible representations of the
Lie algebra and representations of the corresponding group119. In- 119 This can be quite confusing, but

remember that there is always one
distinguished group that belongs to a
Lie algebra. This group is distinguished
because it is simply connected. If we
derive the irreducible representation
of a Lie algebra, we get, by putting
those Lie algebra elements (= the
generators) in the exponential function,
representations of the simply connected
(= covering) group. Only for the simply
connected group there is a one-to-one
correspondence.

stead, by deriving the irreducible representations of the Lie algebra

of the Lorentz group, we find the irreducible representations of the

covering group of the Lorentz group, if we put the corresponding
generators into the exponential function. Some of these representa-
tions will be representations of the Lorentz group, but we will find
more than that. It is a good thing that we find addition represen-
tations, because we need those representations to describe certain
elementary particles.

For brevity, we will continue to call the representations we will derive,
representations of the Lorentz group instead of representations of the Lie al-
gebra of the Lorentz group or representations of the double cover the Lorentz
group.

Each irreducible representation of the Lie algebra of SU(2) can be
labelled by the scalar value j of the Casimir operator of SU(2). There-
fore, we now know that we can label the irreducible representations
of the covering group120 of the Lorentz group by two integer or half 120 The covering group of the Lorentz

group is SL(2, C), the set of 2 × 2
matrices with unit determinant and
complex entries. The relationship
SL(2, C) → SO(1, 3) is similar to
the relationship SU(2) → SO(3) we
discovered earlier in this text.

integer numbers: j1 and j2. This means we will look at the (j1, j2) rep-
resentations and use the j1, j2 = 0, 1

2 , 1 . . . representations for the two
copies of the SU(2), which we derived earlier.

It is conventional to write the Lorentz algebra in a more compact
way using Mμν, which is defined by

Ji =
1
2

εijk Mjk. (3.165)

Ki = M0i. (3.166)

With this definition the Lorentz algebra reads

[Mμν, Mρσ] = i(ημρ Mνσ − ημσ Mνρ − ηνρ Mμσ + ηνσ Mμρ). (3.167)

Next, we want to take a look at what irreducible representations we
can construct from the Lie algebra of the Lorentz group.

3.7.4 The (0, 0) Representation

The lowest order representation is as for SU(2) trivial, because the
vector space is 1 dimensional for both copies of the Lie algebra of
SU(2). Our generators must therefore be 1 × 1 matrices and the only
1 × 1 matrices fulfilling the commutation relations are trivially 0:

N+
i = N−

i = 0 → eN+
i = eN−

i = e0 = 1 (3.168)
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Therefore, the (0, 0) representation of the Lorentz group acts on ob-
jects that do not change under Lorentz transformations. This repre-
sentation is called the Lorentz scalar representation.

3.7.5 The (1
2 , 0) Representation

In this representation we use the121 2 dimensional representation for121 Recall that the dimension of our vec-
tor space is given by 2j + 1. Therefore
we have here 2 1

2 + 1 = 2 dimensions.
one copy of the SU(2) Lie algebra N+

i , i.e. N+
i = σi

2 and the 1 dimen-
sional representation for the other N−

i , i.e. N−
i = 0 as explained in

the last section. From the definition of N− in Eq. 3.161 we conclude

N−
i =

1
2
(Ji − iKi) = 0 (3.169)

→ Ji = iKi. (3.170)

Furthermore, we can use that we already derived in Sec. 3.6.4 the two
dimensional representation of SU(2):

N+
i =

σi
2

(3.171)

where σi denotes once more the Pauli matrices, which were defined
in Eq. 3.81. On the other hand, we have

N+
i =︸︷︷︸
Eq. 3.161

1
2
(Ji + iKi) =︸︷︷︸

Eq. 3.170

1
2
(iKi + iKi) = iKi (3.172)

Comparing Eq. 3.171 with Eq. 3.172 tells us that

iKi =
σi
2

→ Ki =
σi
2i

=
iσi
2i2

=
−i
2

σi (3.173)

Eq. 3.170 → Ji = iKi =
−i2

2
σi =

1
2

σi. (3.174)

We conclude that a Lorentz rotation in this representation is given by

Rθ = ei�θ�J = ei�θ�σ2 (3.175)

and a Lorentz boost by

Bθ = ei�φ�K = e�φ
�σ
2 . (3.176)

By writing out the exponential function as series expansion we can
easily get the representation of the Lorentz group from the represen-
tation of the generators. For example, rotations about the x-axis e.g.
are given by

Rx(θ) = eiθ J1 = eiθ 1
2 σ1 = 1 +

i
2

θσ1 +
1
2

(
i
2

θσ1

)2
+ . . . (3.177)
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And if we use the explicit matrix form of σ1 as defined in Eq. 3.81,
together with the fact that σ2

1 = 1 we get122 122 The steps are completely analogous
to what we did in Sec. 3.4.1

Rx(θ) =

(
1 0
0 1

)
+

i
2

θ

(
0 1
1 0

)
− 1

2

(
θ

2

)2
(

1 0
0 1

)
+ . . .

=

(
cos( θ

2 ) i sin( θ
2 )

i sin( θ
2 ) cos( θ

2 )

)
. (3.178)

Analogous we can compute the transformation matrix for rotations
around other axes or boosts. One important thing to notice is we
have here complex 2 × 2 matrices, representing the Lorentz trans-
formations. These transformations certainly do not act on the four-
vectors of Minkowski space, because these have 4 components. The
two-component123 objects this representation acts on are called left- 123 We will learn later that these two

components correspond to spin-up and
spin-down states.

chiral spinors124:

124 This name will make more sense
after the definition of right-chiral
spinors. Then we can see that parity
transformations transform a left-chiral
spinor transformation into a right-
chiral spinor transformation and vice
versa. These spinors are often called
left-handed and right-handed, but this
can be confusing, because these terms
correspond originally to a concept
called helicity, which is not the same
as chirality. Recall what the parity
operator does: changing a left-handed
coordinate system into a right-handed
coordinate system and vice versa.
Hence the name.

χL =

(
(χL)1

(χL)2

)
(3.179)

Spinors in this context are two component objects. A possible
definition for left-chiral spinors is that they are objects that transform
under Lorentz transformations according to the ( 1

2 , 0) representation
of the Lorentz group. Take note that this is not just another way to
describe the same thing, because spinors have properties that usual
vectors do not have. For instance, the factor 1

2 in the exponent. This
factor shows us that a spinor125 is after a rotation by 2π not the same,

125 There is much more one can say
about spinors. See, for example, chapter
3.2 in J. J. Sakurai. Modern Quantum
Mechanics. Addison Wesley, 1st edition,
9 1993. ISBN 9780201539295

but gets a minus sign. This is a pretty crazy property, because all
objects we deal with in everyday life are exactly the same after a
rotation by 360◦ = 2π.

"One could say that a spinor is the most basic sort of mathematical
object that can be Lorentz-transformed."

- A. M. Steane126

126 Andrew M. Steane. An introduction
to spinors. ArXiv e-prints, December
20133.7.6 The (0, 1

2) Representation

This representation can be constructed analogous to the ( 1
2 , 0) repre-

sentation but this time we use the 1 dimensional representation for
N+

i , i.e. N+
i = 0 and the two dimensional representation for N−

i , i.e.
N−

i = 1
2 σi . A first guess could be that this representation looks ex-

actly like the ( 1
2 , 0) representation, but this is not the case! This time

we get from the definition of N+ in Eq. 3.161

N+
i =

1
2
(Ji + iKi) = 0 (3.180)
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→ Ji = −iKi. (3.181)

Take notice of the minus sign. Using the two-dimensional representa-
tion of SU(2) for N+, which was derived in Sec. 3.6.4, yields

N−
i =

1
2

σi =
1
2
(Ji − iKi) =︸︷︷︸

Eq. 3.181

1
2
(−iKi − iKi) = −iKi (3.182)

From this we get the (0, 1
2 ) representation of the generators

−iKi =
1
2

σi → Ki =
−1
2i

σi =
−i
2i2

σi =
i
2

σi. (3.183)

And from Eq. 3.181 we get

Ji = −iKi =
1
2

σi. (3.184)

We conclude that in this representation a Lorentz rotation is given by

Rθ = ei�θ�J = ei�θ�σ2 (3.185)

and a Lorentz boost by

Bθ = ei�φ�K = e−�φ�
σ
2 . (3.186)

Therefore, rotations are the same as in the ( 1
2 , 0) representation, but

boosts differ by a minus sign in the exponent. We conclude both
representations act on objects that are similar but not the same. We
call the objects the (0, 1

2 ) representation of the Lorentz group acts on
right-chiral spinors:

χR =

(
(χR)

1

(χR)
2

)
(3.187)

The generic name for left- and right-chiral spinors is Weyl spinors.

3.7.7 Van der Waerden Notation

Now we introduce a notation that makes working with spinors very
convenient. We know that we have two kinds of objects that trans-
form differently and therefore must be distinguished. We will learn
in a moment that they are different, but not too different. In fact,
there is a connection between the objects transforming according to
the ( 1

2 , 0) representation (left-chiral spinors) and the objects trans-
forming according to the (0, 1

2 ) representation (right-chiral spinors).
To be able to describe these different objects using one notation we
introduce the notions of dotted and undotted indices, sometimes
called Van der Waerden notation, after their inventor. This will help
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us to keep track of which object transforms in what way. This will
become much clearer in a minute, as soon as we have set up the full
formalism.

Let’s define that a left-chiral spinor χL has a lower, undotted index

χL = χa (3.188)

and a right-chiral spinor χR has an upper, dotted index

χR = χȧ. (3.189)

Next, we introduce the "spinor metric". The spinor metric enables
us to transform a right-chiral spinor into a left-chiral and vice versa,
but not alone as we will see. We define the spinor metric127 as

127 Take note that this is the Levi-Civita
symbol in two dimensions as defined in
appendix B.5.5.

εab =

(
0 1
−1 0

)
(3.190)

and show that it has the desired properties. Furthermore, we de-
fine128 128 Maybe a short comment on the

strange notation χC
L is in order. The su-

perscript C denotes charge conjugation,
as will be explained in Sec. 3.7.10 in
more detail. Here we see that this op-
eration flips one label, i.e. a left-chiral
spinor becomes right-chiral. Later we
will see this operation flips all labels,
including for example, the electric
charge.

χC
L ≡ εχ�

L (3.191)

where the � denotes complex conjugation. We will now inspect how
χC

L transforms under Lorentz transformations and see that it trans-
forms precisely as a right-chiral spinor. The defining feature of a
right-chiral spinor is its transformation behaviour and therefore we
will conclude that χC

L is a right-chiral spinor. Let us have a look at
how χC

L transforms under boosts, where we use

(−ε)(ε) = 1 (3.192)

and
(ε)σ�

i (−ε) = −σi (3.193)

for each Pauli matrix σi, as you can check. Transforming yields129 129 We use the notation �φ�σ =

∑i σiφi =︸︷︷︸
summation convention

σiφi . The "vector"�σ

shouldn’t be taken too seriously, be-
cause it’s just a shorthand, conventional
notation.

χC
L → χ′C

L = ε(χ′)�L

= ε(e
�φ
2�σχL)

�

= ε(e
�φ
2�σ (−ε)(ε)︸ ︷︷ ︸
=1 see Eq. 3.192

χL)
�

= ε(e
�φ
2�σ

�
(−ε)︸ ︷︷ ︸

Eq. 3.193: =e−
�φ
2�σ

(ε)χ�
L)

= e−
�φ
2�σ εχ�

L︸︷︷︸
=χC

L

= e−
�φ
2�σχC

L , (3.194)
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which is exactly the transformation behaviour of a right-chiral

spinor130. To get to the fifth line, we use the series expansion of e
�φ
2�σ130 The transformation behaviour of

right-chiral spinors under boosts was

derived in Eq. 3.186: Bθ = ei�φ�K = e−�φ�
σ
2 .

Compare this to how left-chiral spinors
transform under boosts, as derived in
Eq. 3.176: Bθ = ei�φ�K = e�φ

�σ
2

and Eq. 3.193 on every term. You can check in the same way that
the behaviour under rotations is not changed by complex conjuga-
tion and multiplication with ε, as it should be, because χL and χR

transform in the same way under rotations:

χC
L → χ′C

L = ε(χ′)�L = ε(e
i�θ
2�σχ)�L = e

i�θ
2�σε(χL)

�. (3.195)

Furthermore, you can check that ε is invariant under all transforma-
tions and that if you want to go the other way round, i.e. transform a
right-chiral spinor into a left-chiral spinor you have to use (-ε).

Therefore, we define in analogy with the tensor notation of special
relativity that our "metric" raises and lowers indices

εχL =︸︷︷︸
written in index notation

εacχc = χa (3.196)

where summation over identical indices is implicitly assumed (Ein-
stein summation convention). Furthermore, we know that if we want
to get χR from χL we need to use complex conjugation as well

χR = εχL
� (3.197)

This means that complex conjugation transforms an undotted index
into a dotted index:

χR = εχL
� = χȧ. (3.198)

Therefore, we can get a lower, dotted index by complex conjugating
χL

χL
� = χa

� = χȧ (3.199)

and an upper, undotted index, by complex conjugating χR

χR
� = (χȧ)� = χa (3.200)

It is instructive to investigate how χȧ and χa transform, because
these objects are needed to construct terms from spinors, which do
not change at all under Lorentz transformations131. From the trans-131 Terms like this are incredibly impor-

tant, because we need them to derive
physical laws that are the same in all
frames of reference. This will be made
explicit in a moment.

formation behaviour of a left-chiral spinor

χL = χa → χ′
a =

(
ei�θ�σ2 +�φ

�σ
2

)b

a
χb (3.201)

we can derive how a spinor with lower, dotted index transforms:

χ�
L = χ�

a = χȧ → χ′̇
a = (χ′

a)
� =

((
ei�θ�σ2 +�φ

�σ
2

)b

a

)�

χ�
b

=

(
e−i�θ �σ�2 +�φ

�σ�
2

)ḃ

ȧ
χḃ (3.202)
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Analogously, we use the transformation behaviour of a right-chiral
spinor:

χR → χ′
R = χ′ȧ =

(
ei�θ�σ2 −�φ�σ2

)ȧ

ḃ
χḃ (3.203)

to derive how a spinor with upper, undotted index transforms:

χ�
R = (χȧ)� = χa → χ′a = (χ′ȧ)� =

((
ei�θ�σ2 −�φ�σ2

)ȧ

ḃ

)�

(χḃ)�

=

(
e−i�θ �σ�2 −�φ �σ�

2

)a

b
χb (3.204)

To be able to write products of spinors that do not change un-
der Lorentz transformations, we need one more ingredient: Recall
how the scalar product of two vectors is defined: �a ·�b = �aT�b. In the
same spirit we mustn’t forget to transpose one of the spinors in a
spinor product. We can see this, because at the moment we have the
complex conjugate of the Pauli matrices σ�

i in the exponent, for ex-

ample, e−i�θ �σ�2 . Together with transposing this becomes the Hermitian
conjugate: σ†

i = (σ�
i )

T , where the symbol † is called "dagger". The
Hermitian conjugate of every Pauli matrix, is again the same Pauli
matrix

σ†
i = (σ�

i )
T = σi, (3.205)

as you can easily check by looking at the explicit form of the Pauli
matrices, as defined in Eq. 3.81.

By comparing Eq. 3.201 with Eq. 3.204 and using Eq. 3.205, we
see that the transformation behaviour of a transposed spinor with
lower, undotted index is exactly the opposite of a spinor with upper,
undotted index. This means a term of the form (χa)Tχa is invariant
(=does not change) under Lorentz transformations, because132 132 As explained in appendix B.5.5, the

symbol δc
b is called Kronecker symbol

and denotes the unit matrix in index
notation. This means δc

b = 1 for b = c
and δc

b = 0 for b �= c.(χa)Tχa → (χ′a)Tχ′
a =

((
e−i�θ �σ�2 −�φ �σ�

2

)a

b
χb

)T (
ei�θ�σ2 +�φ

�σ
2

)c

a
χc

= (χb)T

(
e−i�θ

�(σ�)T
2 −�φ �(σ�)T

2

)a

b

(
ei�θ�σ2 +�φ

�σ
2

)c

a
χc

=︸︷︷︸
Eq. 3.205

(χb)T
(

e−i�θ�σ2 −�φ�σ2
)a

b

(
ei�θ�σ2 +�φ

�σ
2

)c

a︸ ︷︷ ︸
=δc

b

χc

= (χc)Tχc (3.206)

In the same way we can combine an upper, dotted index with a
lower, dotted index as you can verify by comparing Eq. 3.202 with
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Eq. 3.203. In contrast, a term of the form (χȧ)Tχa=̂χT
RχL isn’t invari-

ant under Lorentz transformations, because

χT
RχL = (χȧ)Tχa → (χ′ȧ)Tχ′

a = χḃ
(

ei�θ
�σT
2 −�φ �σT

2

)ȧ

ḃ

(
ei�θ�σ2 +�φ

�σ
2

)c

a︸ ︷︷ ︸
�=δc

b

χc

(3.207)
Therefore a term combining a left-chiral with a right-chiral spinor

is not Lorentz invariant. We conclude, we must always combine an
upper with a lower index of the same type133 in order to get Lorentz133 In this context dotted a

a
or undotted ȧ

ȧ invariant terms. Or formulated differently, we must combine the
complex conjugate of a right-chiral spinor with a left-chiral spinor
χ†

RχL = (χ�
R)

TχL=̂(χa)Tχa, or the complex conjugate of a left-chiral
spinor with a right-chiral spinor χ†

LχR = (χ�
L)

TχR = (χȧ)Tχȧ to
get Lorentz invariant terms. We will use this later, when we look for
invariant terms that we can use to formulate our laws of nature.

In addition, we have now another justification for calling εab the
spinor metric, because the invariant spinor product in Eq. 3.206, can
be written as

χT
a χa =︸︷︷︸

Eq. 3.196

χT
a εabχb. (3.208)

Compare this to how we defined in Eq. 2.31 the invariant product of
Minkowsi space, using the Minkowski metric ημν:

xμyμ = xμημνyν. (3.209)

The spinor metric is indeed what the Minkowski metric is for four-
vectors134.

134 Don’t get confused why we have
no transposition for the four-vectors
here. These equations can be read in
two ways. On the one hand as vector
equations and on the other hand as
component equations. It’s conventional
and sometimes confusing to use the
same symbol xμ for a four-vector
and its components. If we read the
equation as a component equation we
need no transposition. The same is of
course true for our spinor products.
Nevertheless, we have seen above that
we mustn’t forget to transpose and in
order to avoid errors we included the
explicit superscript T, although the
spinor equation here can be read as
component equation that do not need it.
In contrast, for three component vectors
there is a clear distinction using the
little arrow: �a has components ai .

After setting up this notation we can now write the spinor "metric"
with lowered indices

εab =

(
0 −1
1 0

)
(3.210)

because we need135 (−ε) to get from χR to χL. In addition, we can

135 You can check this yourself, but it’s
not very important for what follows.

now write the two transformation operators as one object Λ. For
example, when it has dotted indices we know it multiplies with a
right-chiral spinor and we know which transformation operator to
choose:

χR → χ′
R = χ′ȧ = Λȧ

ḃχḃ =
(

ei�θ�σ2 −�φ�σ2
)ȧ

ḃ
χḃ (3.211)

and analogous for left-chiral spinors

χL → χ′
L = χ′

a = Λ b
a χb =

(
ei�θ�σ2 +�φ

�σ
2

) b

a
χb . (3.212)
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Therefore:

Λ( 1
2 ,0) =

(
ei�θ�σ2 +�φ

�σ
2

)
=̂Λ b

a (3.213)

and

Λ(0, 1
2 )

=
(

ei�θ�σ2 −�φ�σ2
)
=̂Λȧ

ḃ (3.214)

This notation will prove to be very useful because as we have seen
the two different objects χL and χR aren’t so different after all. In fact
we can transform them into each other and a unified notation is the
logical result.

Now we move on to the next irreducible representation, which will
turn out to be an old acquaintance.

3.7.8 The (1
2 , 1

2) Representation

For this representation we use the 2-dimensional representation, for
both copies of the SU(2) Lie algebra136 N+

i and N−
i . This time let’s 136 Mathematically we have

( 1
2 , 1

2 ) = ( 1
2 , 0)⊗ (0, 1

2 )have a look at what kind of object our representation is going to act
on first. The copies will not interfere with each other, because N+

i
and N−

i commute, i.e. [N+
i , N−

j ] = 0. Therefore, our objects will
transform separately under both copies. Let’s name the object we
want to examine v. This object will have 2 indices vḃ

a, each trans-
forming under a separate two-dimensional copy of SU(2). Here the
notation we introduced in the last section comes in handy.

We know from the fact that both indices can take on two values
( 1

2 and − 1
2 ), because each representation is 2 dimensional, that our

object v will have 4 components. Therefore, the objects can be 2 × 2
matrices, but it’s also possible to enforce a four component vector
form, as we will see137. 137 Remember that when we talked

about rotations of the plane we were in
the same situation. The rotation could
be described by complex numbers
acting on complex numbers. Doing
the map to real matrices we had real
matrices acting on real matrices, but
the same action could be described by a
real matrix acting on a column vector.

But first let’s look at the complex matrix choice. A general 2 × 2
matrix has 4 complex entries and therefore 8 free parameters. As
noted above, we only need 4. We can write every complex matrix M
as a sum of a Hermitian (H† = H) and an anti-Hermitian (A† = −A)
matrix: M = H + A. Both Hermitian and anti-Hermitian matrices
have 4 free parameters. In addition, we will see in a moment that our
transformations in this representation always transform a Hermitian
2 × 2 matrix into another Hermitian 2 × 2 matrix and equivalently
an anti-Hermitian matrix into another anti-Hermitian matrix. This
means Hermitian and anti-Hermitian matrices are invariant subsets
and as explained in Sec. 3.5 this means that working with a gen-
eral matrix here, corresponds to having a reducible representation.
Putting these observations together, we conclude that we can assume
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that our irreducible representation acts on Hermitian 2 × 2 matrices.
A basis138 for Hermitian 2 × 2 matrices is given by the σ matri-138 This means that an arbitrary Her-

mitian 2 × 2 matrix can be written
as a linear combination of the form:
a01 + aiσi

ces139 together with the identity matrix.

139 Defined in Eq. 3.81

Instead of examining vḃ
a, we will have a look at vaḃ, because then

we can use the Pauli matrices as defined in Eq. 3.81. Take note that vḃ
a

and vaḃ can be transformed into each other by multiplication with εḃċ

and therefore if you want to work with vḃ
a, you simply have to use the

Pauli matrices that have been multiplied with ε.

If we define σ0 = I2×2 =

(
1 0
0 1

)
, we can write

vaḃ = vνσν
aḃ = v0

(
1 0
0 1

)
+ v1

(
0 1
1 0

)
+ v2

(
0 −i
i 0

)
+ v3

(
1 0
0 −1

)
.

(3.215)
As explained above, we could use140 vḃ

a = vμσ
μ
aċεḃċ instead, which140 This is really just a basis choice and

here we choose the basis that gives
us with our definition of the Pauli
matrices, the transformation behaviour
we derived earlier for vectors.

means we would use the basis (σ̃ḃ)μ = σ
μ
aċεḃċ. We therefore write a

general Hermitian matrix as

vaḃ =

(
v0 + v3 v1 − iv2

v1 + iv2 v0 − v3

)
. (3.216)

Remember that we have learned in the last section that different
indices transform differently. To be specific: A lower dotted index
transforms differently than a lower undotted index.

Now we have a look at how vaḃ transforms and use the transfor-
mation operator for an lower undotted index as derived in Eq. 3.202

v → v′ = v′aḃ =
(

ei�θ�σ2 +�φ
�σ
2

) c

a
vcḋ

((
e−i�θ �σ�2 +�φ

�σ�
2

) ˙d

ḃ

)T

=
(

ei�θ�σ2 +�φ
�σ
2

) c

a
vcḋ

(
e−i�θ

�σ†
2 +�φ

�σ†
2

)ḋ

ḃ

=︸︷︷︸
σ†

i =σi

(
ei�θ�σ2 +�φ

�σ
2

) c

a
vcḋ

(
e−i�θ�σ2 +�φ

�σ
2

)ḋ

ḃ
(3.217)

We can now see that a Hermitian matrix is after such a transforma-
tion still Hermitian, as promised above141

141 Exactly the same computation
shows that an anti-Hermitian matrix
is still anti-Hermitian after such a
transformation. To see this, use in
the last step instead of v†

cḋ
= vcḋ that

v†
cḋ

= −vcḋ.
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(
ei�θ�σ2 +�φ

�σ
2

) c

a
vcḋ

(
e−i�θ�σ2 +�φ

�σ
2

)ḋ

ḃ
→

((
ei�θ�σ2 +�φ

�σ
2

) c

a
vcḋ

(
e−i�θ�σ2 +�φ

�σ
2

)ḋ

ḃ

)†

=︸︷︷︸
(ABC)†=C†B† A†

((
e−i�θ�σ2 +�φ

�σ
2

)ḋ

ḃ

)†

v†
cḋ

((
ei�θ�σ2 +�φ

�σ
2

) c

a

)†

=

(
ei�θ

�σ†
2 +�φ

�σ†
2

)ḋ

ḃ
v†

cḋ

(
e−i�θ

�σ†
2 +�φ

�σ†
2

) c

a

=︸︷︷︸
if v†

cḋ
=vcḋ

(
ei�θ�σ2 +�φ

�σ
2

) c

a
vcḋ

(
e−i�θ�σ2 +�φ

�σ
2

)ḋ

ḃ
�

(3.218)

The explicit computation142 for an arbitrary transformation is long 142 See, for example, page 128 in
Matthew Robinson. Symmetry and
the Standard Model. Springer, 1st edition,
August 2011. ISBN 978-1-4419-8267-4

and tedious so we will look at one specific example. Let’s boost v
along the z-axis143

143 This means �φ = (0, 0, φ)T . Such a
boost is the most easiest because σ3
is diagonal. For boosts along other
axes the exponential series must be
evaluated in detail.

vaḃ → v′aḃ =
(

eφ
σ3
2

)c

a
vcḋ

(
eφ

σ3
2

)ḋ

ḃ

=

(
e

φ
2 0

0 e−
φ
2

)(
v0 + v3 v1 − iv2

v1 + iv2 v0 − v3

)(
e

φ
2 0

0 e−
φ
2

)

=

(
eφ(v0 + v3) v1 − iv2

v1 + iv2 e−φ(v0 − v3)

)
(3.219)

where we have used the fact that σ3 is diagonal144 and that 144 σ3 =

(
1 0
0 −1

)
eA =

(
eA11 0

0 eA22

)
holds for every diagonal matrix. Comparing

the transformed object we computed in Eq. 3.219 with a generic
object v′ yields

v′aḃ =

(
v′0 + v′3 v′1 − iv′2
v′1 + iv′2 v′0 − v′3

)
=

(
eφ(v0 + v3) v1 − iv2

v1 + iv2 e−φ(v0 − v3)

)

This tells us how the components of the transformed object are re-
lated to the untransformed components145 145 We rewrite the equations using

the connection between the hyper-
bolic sine, the hyperbolic cosine
function and the exponential func-
tion e−φ = (cosh (φ)− sinh (φ)) and
eφ = (cosh (φ) + sinh (φ)), which is
conventional in this context. If you are
unfamiliar with these functions you
can either take notice of their defini-
tions: cosh (φ) ≡ 1

2

(
eφ + e−φ

)
and

sinh (φ) ≡ 1
2

(
eφ − e−φ

)
or rewrite the

few equations here in terms of eφ and
e−φ, which is equally good.

→ v′0 + v′3 = eφ(v0 + v3) = (cosh (φ) + sinh (φ)) (v0 + v3)

→ v′0 − v′3 = e−φ(v0 − v3) = (cosh (φ)− sinh (φ)) (v0 − v3).

The addition and subtraction of both equations yields

→ v′0 = cosh(φ)v0 + sinh(φ)v3

→ v′3 = sinh(φ)v0 + cosh(φ)v3 (3.220)
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which is exactly what we get using the 4-vector formalism146146 See 3.146 for the explicit form of the
matrix for a boost along the z-axis. ⎛

⎜⎜⎜⎝
v′0
v′1
v′2
v′3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

cosh(φ) 0 0 sinh(φ)
0 1 0 0
0 0 1 0

sinh(φ) 0 0 cosh(φ)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

v0

v1

v2

v3

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

cosh(φ)v0 + sinh(φ)v3

v1

v2

sinh(φ)v0 + cosh(φ)v3

⎞
⎟⎟⎟⎠ . (3.221)

This is true for arbitrary Lorentz transformations, as you can check
by computing the other possibilities. What we have shown here is
that the ( 1

2 , 1
2 ) representation is the vector representation. We can

simplify our transformation laws by using the enforced vector form,
because multiplying a matrix with a vector is simpler than the multi-
plication of three matrices. Nevertheless, we have seen how the famil-
iar 4-vector is related to the more fundamental spinors. A 4-vector is

a rank-2 spinor, which means a spinor with 2 indices that transforms
according to the ( 1

2 , 1
2 ) representation of the Lorentz group. Further-

more, we can now see that 4-vectors aren’t appropriate to describe

every physical system on a fundamental level, because they aren’t

fundamental. There are physical systems they cannot describe.

We can now understand why some people say that "spinors are
the square root of vectors". This is meant in the same way as vectors
are the square root of rank-2 tensors147. A rank-2 tensor has two147 A rank-2 tensor is simply a matrix

Mμν. vector indices and a vector has two spinor indices. Therefore, the
most basic object that can be Lorentz transformed is indeed a spinor.

When we started our studies of the Lorentz group, we noted that
it consists of four components. These components are connected by
the parity and the time-reversal operator148. Therefore, to be able to148 See Eq. 3.134

describe all transformations that preserve the speed of light, we need
to find the parity and time-reversal transformation for each represen-
tation. In this text will restrict to parity transformations, because it
turns out that nature isn’t always symmetric under parity transfor-
mations, which we will discuss in later chapters. Similar to what we
discuss in the next section it’s possible to derive representations of
the time-reversal operator.

3.7.9 Spinors and Parity

Up to this point, there is no justification for why we called the objects
transforming according to the ( 1

2 , 0) representation left-chiral and
the objects transforming according to the (0, 1

2 ) representation right-
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chiral. After talking a bit about parity transformation, this will make
sense.

Recall that we already know the behaviour of the generators of
the Lorentz group under parity transformations. The result was
Eq. 3.153, which we recite here for convenience

Ji →︸︷︷︸
P

Ji Ki →︸︷︷︸
P

−Ki (3.222)

By looking at the definition of the generators N± in Eq. 3.161, which
we recite here, too

N±
i =

1
2
(Ji ± iKi) (3.223)

we can see that under parity transformations N+ ↔ N−. There-
fore, the (0, 1

2 ) representation of a transformation, becomes the ( 1
2 , 0)

representation of this transformation and vice versa under parity
transformations. This is the reason for talking about left- and right-
chiral spinors149. Just as a right-handed coordinate system changes 149 The conventional name is left- and

right-handed spinors, but this can
be quite confusing, because the no-
tions left-handed and right-handed
are directly related to a concept called
helicity, which is different from chi-
rality. Anyway the name should make
some sense, because something left is
changed into something right under
parity transformations.

into a left-handed coordinate system under parity transformations,
these two representations change into each other.

Rotational transformations look the same for both representations,
but boost transformations differ by a sign and it is easy to make the
above statement explicit:

(Λ�K)( 1
2 ,0) = e�φ�K →︸︷︷︸

P

e−�φ�K = (Λ�K)(0, 1
2 )

(3.224)

(Λ�K)(0, 1
2 )

= e−�φ�K →︸︷︷︸
P

e�φ�K = (Λ�K)( 1
2 ,0). (3.225)

We learn here that if we want to describe a physical system that
is invariant under parity transformations, we will always need right-
chiral and left-chiral spinors. The easiest thing to do is to write them
below each other into a single object called Dirac spinor

Ψ =

(
χL

ξR

)
=

(
χa

ξ ȧ

)
(3.226)

Recalling the generic name for left- and right-chiral spinors is
Weyl spinors, we can say that a Dirac spinor Ψ consists of two Weyl
spinors χL and ξR. Note that we want to stay general here and don’t
assume any a priori connection between χ and ξ. A Dirac spinor of
the form

ΨM =

(
χL

χR

)
(3.227)
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is a special case, called Majorana spinor. A Dirac or Majorana spinor
is not a four-vector, because it transforms completely different. A
Dirac spinor transforms according to the ( 1

2 , 0) ⊕ (0, 1
2 ) representa-

tion150 of the Lorentz group, which means nothing more than writing150 This a reducible representation,
which is obvious because of the
block-diagonal form of the trans-
formation matrix. In contrast, four-
vectors transform according to the
( 1

2 , 1
2 ) = ( 1

2 , 0)⊗ (0, 1
2 ) representation.

the corresponding transformations in block-diagonal form into one
big matrix:

Ψ → Ψ′ = Λ( 1
2 ,0)⊕(0, 1

2 )
Ψ =

(
Λ( 1

2 ,0) 0

0 Λ(0, 1
2 )

)(
χL

ξR

)
. (3.228)

For example, a boost transformation is in this representation

Ψ → Ψ′ =

⎛
⎝e

�φ
2�σ 0

0 e
−�φ
2 �σ

⎞
⎠(

χL

ξR

)
. (3.229)

It is instructive to investigate how Dirac spinors behave under
parity transformations, because once we know how Dirac spinors
transform under parity transformations, we can check if a given
theory is invariant under such transformations. We can’t expect that
a Dirac spinor is after a parity transformation still a Dirac spinor
(an object transforming according to ( 1

2 , 0) ⊕ (0, 1
2 ) representation),

because we know that under parity transformations N+ ↔ N− and
therefore

(
0,

1
2

)
↔︸︷︷︸
P

(
1
2

, 0
)

. (3.230)

We conclude, if a Dirac spinor transforms according to the
( 1

2 , 0)⊕ (0, 1
2 ) representation, the parity transformed object trans-

forms according to the (0, 1
2 )⊕ ( 1

2 , 0) representation.

ΨP → (ΨP)′ = Λ(0, 1
2 )⊕( 1

2 ,0)Ψ
P =

(
Λ(0, 1

2 )
0

0 Λ( 1
2 ,0)

)(
ξR

χL

)
. (3.231)

Therefore

Ψ =

(
χL

ξR

)
→ ΨP =

(
ξR

χL

)
. (3.232)

A parity transformed Dirac spinor contains the same objects ξR, χL

as the untransformed Dirac spinor, only written differently. A parity
transformation does nothing like ξL → ξR, which is a different kind
of transformation we will talk about in the next section.
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3.7.10 Spinors and Charge Conjugation

In Sec. 3.7.7 stumbled upon a transformation, which yields χL → χR

and ξR → ξL. The transformation is χL → χC
L = εχ�

L = χR and
analogously for a right-chiral spinor ξR → ξC

R = (−ε)ξ�R = ξL. This
transformation is not part of the Lorentz group and we are now able
to understand it from a quite different perspective.

Up to this point, we used this transformation merely as a compu-
tational trick in order to raise and lower indices. Now, how does a
Dirac spinor transform under such a transformation? Naively we get:

Ψ =

(
χL

ξR

)
→ Ψ̃ =

(
χC

L
ξC

R

)
=

(
χR

ξL

)
. (3.233)

Unfortunately, this object does not transform like a Dirac spinor151, 151 Unlike for parity transformations,
we have a choice here and we prefer
to keep working with the same kind of
object. The object Ψ̃ can then be seen
as a Dirac spinor that has been parity
transformed and charge conjugated.

which transform under boosts

Ψ → Ψ′ =

⎛
⎝e

�θ
2�σ 0

0 e
−�θ
2 �σ

⎞
⎠(

χL

ξR

)
. (3.234)

The object Ψ̃ we get from the naive operation, transform as

Ψ̃ → Ψ̃′ =

⎛
⎝e−

�θ
2�σ 0

0 e
�θ
2�σ

⎞
⎠(

χL

ξR

)
. (3.235)

This is a different kind of object, because it transforms according to a
different representation of the Lorentz group. Therefore we write

Ψ =

(
χL

ξR

)
→ ΨC =

(
ξC

R
χC

L

)
=

(
ξL

χR

)
, (3.236)

which incorporates the transformation behaviour we observed ear-
lier and transforms like a Dirac spinor. This operation is commonly
called charge conjugation, which can be a little misleading. We know
that this transformation transforms a left-chiral spinor into a right-
chiral, i.e. flips one label we use to describe our elementary parti-
cles152. Later we will learn that this operator flips not only one, but 152 For the more advanced reader: Recall

that each Weyl spinor we are talking
about here, is in fact a two component
object. Later we will define a physical
measurable quantity, called spin, that
is described by 1

2 σ3. The matrix ε, flips
an object with eigenvalue + 1

2 for the
spin operator 1

2 σ3 into an object with
eigenvalue − 1

2 . This is commonly
interpreted as spin flip, which means an
object with spin 1

2 , becomes an object
with spin − 1

2 .

all labels we use to describe fundamental particles. One such label is
electric charge, hence the name charge conjugation, but before we are
able to show this, we need of course to understand first what electric
charge is. Nevertheless, it’s always important to remember that all
labels get flipped, not only electric charge.

We could now go on and derive higher-dimensional representa-
tions of the Lorentz group, but at this point we already have every
finite-dimensional irreducible representation we need for the purpose
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of this text. Nevertheless, there is another representation, the infinite-
dimensional representation, that is especially interesting, because we
need it to transform physical fields.

3.7.11 Infinite-Dimensional Representations

In the last sections, we talked about finite-dimensional representa-
tions of the Lorentz group and learned how we can classify them.
These finite-dimensional representations acted on constant one-, two-
or four-component objects so far. In physics the objects we are deal-
ing with are dynamically changing in space and time, so we need to
understand how such objects transform. So far we have dealt with
transformations of the form

Φa → Φ′
a = Mab(Λ)Φb (3.237)

where Mab(Λ) denotes the matrix of the particular finite-dimensional
representation of the Lorentz transformation Λ. This means Mab(Λ)

is a matrix that acts, for example, on a two-component object like a
Weyl spinor. The result of the multiplication with this matrix is sim-
ply that the components of the object in question get mixed and are
multiplied with constant factors. If our object Φ changes in space and
time, it is a function of coordinates153 Φ = Φ(x) and these coordi-153 Here x is a shorthand notation for all

spacetime coordinates t, x, y, z nates are affected by the Lorentz transformations, too. In general we
have

xμ → Λμ
ν xν, (3.238)

where Λμ
ν denotes the vector representation (= ( 1

2 , 1
2 ) representation)

of the Lorentz transformation in question. We have in this case154154 Most books use the Wigner con-
vention for symmetry operators:
Φa(x) → Mab(Λ)Φb(Λ−1x), but
unfortunately there is at this point no
way to motivate this convention.

Φa(x) → Mab(Λ)Φb(Λx). (3.239)

Our transformation will therefore consist of two parts. One part, rep-
resented by a finite-dimensional representation, acting on Φa and a
second part acting on the coordinates. This second part will act on
an infinite-dimensional155 vector space and we therefore need an

155 Each component of Φ is now a
function of x. The corresponding
operators act on Φa(x), i.e. functions
of the coordinates and the space of
functions is in this context infinite-
dimensional. The reason that the space
of functions is infinite-dimensional
is that we need an infinite number of
basis functions. The expansion of an
arbitrary function in terms of such an
infinite number of basis functions is the
idea behind the Fourier transform as
explained in appendix D.1.

infinite-dimensional representation. The infinite-dimensional repre-
sentation of the Lorentz group is given by differential operators156

156 The symbols ∂ν are a shorthand
notation for the partial derivative ∂

∂ν
.

Minf
μν = i(xμ∂ν − xν∂μ) (3.240)

you can check by straightforward computation that Minf
μν satisfies the

Lorentz algebra (Eq. 3.167) and transforms the coordinates as desired.
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The transformation of the coordinates is now given by157 157 Recall the definition of Mμν in
Eq. 3.165. The components of ωμν can
then be directly related to the usual
rotation angles θi = 1

2 εijkωjk and the
boost parameters φi = ω0i

Φ(Λx) = e−i ωμν

2 Minf
μν Φ(x), (3.241)

where the exponential function is, as usual, understood in terms
of its series expansion. The complete transformation is then a com-
bination of a transformation generated by the finite-dimensional
representation Mfin

μν and a transformation generated by the infinite-
dimensional representation Minf

μν of the generators:

Φa(x) →
(

e−i ωμν

2 Mfin
μν

)b

a
e−i ωμν

2 Minf
μν Φb(x). (3.242)

Because our matrices Mfin
μν are finite-dimensional and constant we can

put the two exponents together

Φa(x) →
(

e−i ωμν

2 Mμν

)b

a
Φb(x) (3.243)

with Mμν = Mfin
μν + Minf

μν . This representation of the generators of the
Lorentz group is called field representation.

We can now talk about a different kind of transformation: transla-

tions, which means transformations to another location in spacetime.
Translations do not result in a mixing of components and therefore,
we need no finite-dimensional representation, but it’s quite easy to
find the infinite-dimensional representation for translations. These
are not part of the Lorentz group, but the laws of nature should be
location independent. The Lorentz group (boosts and rotations) plus
translations is called the Poincare group, which is the topic of the
next section. Nevertheless, we will introduce the infinite-dimensional
representation for this kind of transformation here. For simplicity,
we restrict ourselves to one dimension. In this case an infinitesimal

translation of a function, along the x-axis is given by

Φ(x) → Φ(x + ε) = Φ(x) + ∂xΦ(x)︸ ︷︷ ︸
"rate of change" along the x-axis

ε,

which is, of course, again the first term of the Taylor series expansion.
It is conventional in physics to add an extra −i to the generator and
we therefore define

Pi ≡ −i∂i. (3.244)

With this definition an arbitrary, finite translation is

Φ(x) → Φ(x + a) = e−iai Pi Φ(x) = eai∂i Φ(x)

where ai denotes the amount we want to translate in each direction.
If we write the exponential function as Taylor series158, this equation 158 This is derived in appendix B.4.1.

can simply be seen as the Taylor expansion159 for Φ(x + a). If we
159 As derived in appendix B.3.want to transform to another point in time we use P0 = i∂0, for a

different location we use Pi = −i∂i.
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3.8 The Poincare Group

Let’s move on to the full spacetime symmetry group of nature: the
Poincare group. The Lorentz group includes rotations and boosts.
Further transformations that leave the speed of light invariant are
translations in space and time, because measuring the speed of light
at a different point in spacetime does not change its value. Or equiv-
alently, the speed of light does not depend on the choice of where
we put the origin of the coordinate system we use to describe some
process. When we add these symmetries to the Lorentz group we get
the Poincare group160160 The Poincare group is not the direct,

but the semi-direct, sum of the Lorentz
group and translations, but for the
purpose of this text we can neglect this
technical detail. Poincare group = Lorentz group plus translations

= Rotations plus boosts plus translations (3.245)

The generators of the Poincare group are the generators of the
Lorentz group Ji, Ki plus the generators of translations in Minkowski
space Pμ.

In terms of Ji, Ki and Pμ the algebra reads161161 This is not very enlightening, but
included for completeness.

[Ji, Jj] = iεijk Jk (3.246)

[Ji, Kj] = iεijkKk (3.247)

[Ki, Kj] = −iεijk Jk (3.248)

[Ji, Pj] = iεijkPk (3.249)

[Ji, P0] = 0 (3.250)

[Ki, Pj] = iδijP0 (3.251)

[Ki, P0] = −iPi (3.252)

Because this looks like a huge mess it is conventional to write this in
terms of Mμν, which was defined by

Ji =
1
2

εijk Mjk (3.253)

Ki = M0i. (3.254)
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With Mμν the Poincare algebra reads

[Pμ, Pν] = 0 (3.255)

[Mμν, Pρ] = i(ημρPν − ηνρPμ) (3.256)

and of course again

[Mμν, Mρσ] = i(ημρ Mνσ − ημσ Mνρ − ηνρ Mμσ + ηνσ Mμρ) (3.257)

For this quite complicated group it is very useful to label the rep-
resentations by using the fixed scalar values of the Casimir operators.
The Poincare group has two Casimir operators162 . The first one is: 162 Recall that a Casimir operator is

defined as an operator, constructed
from the generators, that commutes
with all other generators.PμPμ =: m2. (3.258)

We give the scalar value the suggestive name m2, because we will
learn later that it coincides with the mass of particles163. 163 Don’t worry, this will make much

more sense later.

The second Casimir operator is WμWμ with164
164 εμνρσ is the four-dimensional Levi-
Civita symbol, which is defined in
appendix B.5.5.Wμ =

1
2

εμνρσPν Mρσ (3.259)

which is called the Pauli-Lubanski four-vector. In a lengthy com-
putation it can be justified, that in addition to m, we use the number
j ≡ j1 + j2, which is commonly called spin. For the moment this is
just a name. Later we will understand why the name spin is appro-
priate. Exactly as for the Lorentz group, we have one ji for each of
the two165 representations of the SU(2) algebra. 165 Recall that the Lie algebra of the

Lorentz group could be seen to con-
sist of two copies of the Lie algebra of
SU(2). The representations of SU(2)
could be labelled by a number j and
consequently we used for representa-
tions of the double cover of the Lorentz
group two numbers (j1, j2).

For example, the (j1, j2) = (0, 0) representation is called spin 0
representation166. The (j1, j2) = ( 1

2 , 0) and (j1, j2) = (0, 1
2 ) are both

166 j1 + j2 = 0 + 0 = 0

called spin 1
2 representations167 and analogously the (j1, j2) = ( 1

2 , 1
2 )

167 j1 + j2 = 1
2 + 0 = 0 + 1

2 = 1
2

representation is called spin 1 representation168.

168 j1 + j2 = 1
2 + 1

2 = 1

The message to take away is that each representation is labelled
by two scalar values: m and j. m can take on arbitrary values, but j is
restricted to half-integer or integer values.

3.9 Elementary Particles

The labels for the irreducible representations of the Poincare group
are how elementary particles are labelled in physics169: by their 169 Some prefer to say: Elementary parti-

cles are the irreducible representations
of the Poincare group.

mass m and by their spin (= j here). An elementary particle with
given labels m and spin, say j = 1

2 , is described by an object, which
transforms according to the m, spin 1

2 representation of the Poincare
group.
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More labels, called charges, will follow later from internal sym-
metries. These labels are used to define an elementary particle. For
example, an electron is defined by

• mass: 9, 109 · 10−32 kg

• spin: 1
2

• electric charge: 1, 602 · 10−19 C

• weak charge, called weak isospin: − 1
2

• strong charge, called color charge: 0

These labels determine how a given elementary particle behaves
in experiments. The representations we derived in this chapter define
how we can describe them mathematically. An elementary particle
with170170 Remember that in the introductory

remarks about what we can’t derive,
it was said there is no real reason to
stop here after three representations.
We could go on to higher dimensional
representations, but there are no ele-
mentary particles, for example, with
spin 3

2 . Nevertheless, such representa-
tions can be used to describe composite
objects. In addition, there are many
physicists that believe the fundamen-
tal particle mediating gravity, called
graviton, has spin 2 and therefore a
corresponding higher dimensional
representation must be used to describe
it.

• spin 0 is described by an object Φ, called scalar, that transforms
according to the (0, 0), called spin 0 representation or scalar repre-
sentation. For example, the Higgs particle is described by a scalar
field.

• spin 1
2 is described by an object Ψ, called spinor, that transforms

according to the ( 1
2 , 0) ⊕ (0, 1

2 ) representation, called spin 1
2 rep-

resentation or spinor representation. For example, electrons and
quarks are described by spinors.

• spin 1 is described by an object A, called vector, that transforms
according to the ( 1

2 , 1
2 ), called spin 1 representation or vector

representation. For example photons are described by vectors.

This is an incredibly important, deep and beautiful insight, so
again:

What we get from deriving the irreducible representations of the
Poincare group are the mathematical tools we need to describe all

elementary particles. To describe scalar particles, like the Higgs
Boson, we use mathematical objects, called scalars, that transform
according to the spin 0 representation. To describe spin 1

2 particles

like electrons, neutrinos, quarks etc. we use mathematical objects,
called spinors, that transform according to the spin 1

2 representation.
To describe photons or other particles with spin 1 we use objects,
called vectors, transforming according to the spin 1 representation.

An explanation for the very suggestive name spin, will be given
in Sec. 8.5.5, after we talked about how and what we measure in
experiments. We first have to know how we are able to find out if
something is spinning, before we can justify the name spin. At this
point, spin is merely a label.
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Further Reading Tips

• John Stillwell - Naive Lie Theory171 is a very readable, math 171 John Stillwell. Naive Lie Theory.
Springer, 1st edition, 8 2008b. ISBN
9780387782140

orientated introduction to Lie Theory.

• N. Jeevanjee - An Introduction to Tensors and Group Theory for

Physicists172 is a very good introduction, with focus on the usage 172 Nadir Jeevanjee. An Introduction to
Tensors and Group Theory for Physicists.
Birkhaeuser, 1st edition, August 2011.
ISBN 978-0817647148

of Group Theory in physics.

3.10 Appendix: Rotations in a Complex Vector

Space

The concept of transformations that preserve the inner product can
be used with complex vector spaces, too. We want the inner prod-
uct of a vector with itself to be a real number, because by definition
this should result in the squared length of the vector, where a com-
plex number would make little sense. Therefore, the inner product of
complex vector spaces is defined with additional complex conjuga-
tion173 173 Because for z = a + ib we have

z� = a − ib and therefore
z�z = (a + ib)(a − ib) = a2 + b2, which

is real.

a · a = (aT)�a = a†a. (3.260)

The symbol †, called dagger, denotes Hermitian conjugation, which
means complex conjugation and transposing. We see that a trans-
formation that preserves this inner product must fulfil the condition
U†U = 1:

(Ua) · (Ua) = a†U†Ua = a†a (3.261)

Transformations like these form groups that are called U(n), where n
denotes the dimensions of the complex vector space and "U" stands
for unitary. Again the groups SU(n) are called special, because their
elements fulfil the extra condition det(U) = 1.

3.11 Appendix: Manifolds

A manifold M is a set of points if there exists a continuous 1-1 map
from each open neighborhood onto an open set of Rn. In easy words
this means that a manifold M looks locally like the standard Rn. This
map from each open neighborhood of M onto Rn associates with
each point P of M an n-tupel (x1(P), ...xn(P)) where the numbers
x1(P), ...xn(P) are called the coordinates of the point P. Therefore
another way of thinking about a n-dimensional manifold is that it’s
a set, which can be given n independent coordinates ins some neigh-
borhood of any point.
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An example for a manifold is the surface of a sphere. The surface
of the three-dimensional sphere is called two-sphere S2 and is de-
fined as the set of points in R3 for which x2 + y2 + z2 = r holds,
where r is the radius of the sphere. Take note that the surface of the
three-dimensional sphere is two-dimensional, because the definition
involves 3 coordinates and one condition, which eliminates one de-
gree of freedom. That is why it’s called mathematically two-sphere.
To see that the sphere is a manifold we need a map onto R2. This
map is given by the usual spherical coordinates.

Fig. 3.8: Illustration of the map from
one neighborhood of the sphere on to
Rn.

Almost all points on the surface of the sphere can be identified
unambiguously with a coordinate combination of the form (ϕ, θ). Al-
most all! Where is the pole ϕ = 0 mapped to? There is no one-to-one
identification possible, because the pole is mapped to a whole line,
as indicated in the image. Therefore this map does not work for the
complete sphere and we need another map in the neighborhood of
the pole to describe things there. A similar problem occurs for the
map on the semicircle θ = 0. Each point can be mapped in the R2

to θ = 0 and θ = 2π, which is again not a one-to-one map. This
illustrates the fact that for manifolds there is in general not one coor-
dinate system for all points of the manifold, only local coordinates,
which are valid in some neighborhood. This is no problem because
the defining feature of a manifold is that it looks locally like Rn.

The spherical coordinate map is only valid in the open neighbor-
hood 0 < ϕ < π, 0 < θ < 2π and we need a second map to cover
the whole sphere. We can use, for example, a second spherical coor-
dinate system with different orientation, such that the problematic
poles lie at different points for this map and no longer at ϕ = 0. With
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this second map every point of the sphere has a map onto R2 and the
two-sphere can be seen to be a manifold.

A trivial example for a manifold is of course Rn.




