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Abstract

Efficient numerical algorithms for the continuation of periodic orbits of high-dimensional dissipative dynamical

systems, and for analyzing their stability are presented. They are based on shooting, Newton–Krylov and Arnoldi

methods. A thermal convection fluid dynamics problem, which has a rich bifurcation diagram due to symmetries, has

been used as test. After a pseudo-spectral discretization of the equations a system of dimension O(104) has been ob-

tained. The efficiency of the algorithms, which allows the unfolding of a complex diagram of periodic orbits, makes the

methods suitable for the study of large nonlinear dissipative partial differential equations.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The study of any dynamical system involves the computation of its invariant manifolds (fixed points,

periodic orbits, homo and heteroclinic orbits, invariant tori, etc.), and the study of their persistence and

changes of stability when the parameters on which the problem depends are varied. Unstable manifolds

must also be calculated because they may drive the dynamics of the system or give rise to stable solutions as

will be seen in the examples shown here. Some of these tasks are now almost routinely performed for low-

dimensional problems. Many researchers in dynamical systems have benefited from the availability of
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continuation and bifurcation packages such as AUTO [7], CONTENT [16], DSTOOL [9], etc. Due to the

small size of the systems they are designed for, they implement direct solvers for the linear problems in-

volved in the computations (linear algebraic systems and eigenvalue problems). The extension to high-
dimensional problems is not straightforward, the main obstacle being the computational cost of the linear

algebra. The development of modern linear algebra techniques, many of them based on Krylov or Arnoldi

methods [28,30], allow the study of large systems such as those in computational fluid dynamics. This is the

case of some works that have appeared in the last years, most of them dealing with the computation of

steady states in fluid flows or reaction-diffusion problems. Inexact Newton–Krylov methods are used to find

the fixed points and the Arnoldi method to study their stability [2,8,21,23]. The main difficulty is always to

achieve a fast convergence of the linear solvers (GMRES [31] in many cases). Preconditioning is then

mandatory and its nature depends on how space variables are discretized. For spectral discretizations in
incompressible fluid problems, [8] suggest the use of the Stokes operator as preconditioner. This is the

method employed, for example, in [23]. The use of preconditioners based on finite differences or elements

within a spectral method is also a possibility. This approach is involved because the equations defining the

system must be discretized in two distinct ways. In the case of finite differences or finite elements,

incomplete LU decompositions provide reliable preconditioners [25,29,32].

Continuations of periodic orbits in large-scale dissipative systems have also been performed in a few

problems ([22,40] for instance) of moderate dimension, which, in some cases, can still be integrated in time

with library routines for stiff systems of ordinary differential equations. These studies use the Newton–
Picard algorithm described in [22], which is based on a modification of the recursive projection method

(RPM) [33]. More recently [38,39,41], a limited memory Broyden method has also been employed to

compute periodic orbits for high-dimensional systems. In this work, we present an alternative to those

methods. We apply Newton–Krylov techniques to obtain the fixed points of a Poincar�e map. Because of the

dissipative nature of the problems the methods are addressed to, their Floquet multipliers are clustered

around the origin. Therefore, there are two main differences with the computation of fixed points. There is

no need for preconditioning the iterative solver for the linear systems at each Newton’s iteration, and there

is no need to make shift-invert or Cayley transformations [24] to find the spectra. In this sense it is easier to
compute periodic orbits than steady solutions as only a time stepping code is needed. The evaluation of the

functions involved is, obviously, much more expensive because it implies the time integration of the

equations over a period of the orbit.

We apply these algorithms to compute a complex bifurcation diagram of periodic orbits and to study

their stability in a non-trivial fluid dynamics problem of dimension O(104). Specifically, we consider thermal

convection in a bidimensional cylindrical annular domain driven by a difference of temperature externally

imposed on its boundaries.

The layout of the paper is as follows. In Section 2 we describe the continuation method used to find the
periodic orbits and to study their stability, including the arguments that justify the good convergence

properties observed in the applications. In Section 3 we introduce the problem to which the method has

been applied, the spatial discretization and the time integration algorithm employed. The results obtained

are presented in Section 4. Discussion on the efficiency of the numerical method is done in Section 5. Fi-

nally, the paper closes in Section 6 with a summary of the results and a brief description of some possible

extensions.
2. Continuation method for periodic orbits

Consider a finite dimensional autonomous dynamical system with governing equations

B _x ¼ f ðx; kÞ ¼ LðkÞxþ Qðx; xÞ þ F ; ð1Þ
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with ðx; kÞ 2 U � Rn � R, and where LðkÞ and Q are linear and quadratic operators respectively with

Qð0; 0Þ ¼ 0 and DxQð0; 0Þ ¼ 0, F is a constant forcing term, and B a constant linear operator. We also

suppose that the dependence of the problem on k, which may be any of the governing parameters of the
problem, is of the form

LðkÞ ¼ L1 þ kL2; ð2Þ

where L1 and L2 are linear operators independent of k.
Although the method here described is of general applicability, the calculation of the derivatives of

the right hand side of (1), needed to integrate its first variational equations, are trivial in this

particular form. Many reaction-diffusion, and fluid mechanics problems can be formulated in this

way. The operators LðkÞ and Q could be the discretized versions of the continuous operators of a

system of partial differential equations (PDE). B might be singular if, for instance, an incompressible
velocity–pressure formulation of the Navier–Stokes equations is employed giving rise to a differential–

algebraic system, or invertible in the case of streamfunction or scalar potential formulations. Even

these latter constitute differential–algebraic systems depending on how the boundary conditions are

implemented.

Periodic orbits of (1) are obtained as fixed points of a Poincar�e map on a section R, which for simplicity

is taken as a hyperplane. If xr is a point close to an initial periodic orbit, and xr is such that the hyperplane

R given by

gðxÞ ¼ xT
r ðx� xrÞ ¼ 0; ð3Þ

is transverse to the flow of (1), the Poincar�e map, P : V � R ! R, is defined as

P ðx; kÞ ¼ uðtðxÞ; x; kÞ; ð4Þ

where x 2 V;uðt; x; kÞ is the solution of (1) with initial condition x ¼ uð0; x; kÞ, tðxÞ is the minimal time

verifying tðxÞ > 0 and z ¼ uðtðxÞ; x; kÞ 2 R, with xT
rotuð0; x; kÞ and xT

rotuðtðxÞ; z; kÞ having the same sign.

The particular form of computing tðxÞ and uðtðxÞ; x; kÞ depends on the time integration method used. The

periodic orbits are then given by

x� P ðx; kÞ ¼ 0; x 2 R: ð5Þ

To solve these equations the hyperplane R must be parametrized. Let xrk be a non-vanishing component

of xr. It can be selected, for instance, verifying jxrkj ¼ maxi¼1;...;n jxrij. Let Rk be the projection of R onto

Rn�1, Rk : R ! Rn�1, defined by

Rkðx1; . . . ; xk�1; xk; xkþ1; . . . ; xnÞ ¼ ðx1; . . . ; xk�1; xkþ1; . . . ; xnÞ;

�x ¼ RkðxÞ, and Ek the map, Ek : R
n�1 ! R, defined by

Ekðx1; . . . ; xk�1; xkþ1; . . . ; xnÞ ¼ x1; . . . ; xk�1; xrk

 
� �xT

r ð�x� �xrÞ
xrk

; xkþ1; . . . ; xn

!
;

with �xr ¼ RkðxrÞ and �xr ¼ RkðxrÞ. These maps are diffeomorphisms and verify Rk sEk ¼
IRn�1 ;Ek sRk ¼ IR;DRkðxÞ ¼ Rk, and

DEkð�xÞðu1; . . . ; uk�1; ukþ1; . . . ; unÞ ¼ u1; . . . ; uk�1;

 
� �xT

r�u
xrk

; ukþ1; . . . ; un

!

if �u ¼ ðu1; . . . ; uk�1; ukþ1; . . . ; unÞ.
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If we now define �P ð�x; kÞ ¼ RkðP ðEkð�xÞ; kÞÞ then D�x
�P ð�x; kÞ ¼ RkðD�xP ðx; kÞDEkð�xÞÞ with x ¼ Ekð�xÞ, and the

fixed points of �P , verifying

�x� �P ð�x; kÞ ¼ 0; �x 2 Rn�1; ð6Þ

are in one-to-one correspondence with those of P by the map x ¼ Ekð�xÞ.
Predictor-corrector parameter and pseudo-arclength continuation methods [14] are used to study the

dependence of the solutions of (6) on the parameter k. Second degree polynomial extrapolation with respect

to the arclength, s, is used as predictor and Newton’s method as corrector. They admit a unified formu-

lation by adding the equation

nð�x; kÞ � hxT
�x ð�x� �x0Þ þ ð1� hÞxkðk� k0Þ ¼ 0; ð7Þ

ð�x0; k0Þ being the predicted point along the curve of solutions. In the case of parameter continuation

h ¼ 0;xk 6¼ 0; and k0 is the value of the parameter for the next solution. In the case of pseudo-arclength

continuation, ðx�x;xkÞ is an approximation to the tangent to the curve of solutions ð�xðsÞ; kðsÞÞ, which can
also be approximated by extrapolation, and 06 h6 1 is a parameter that controls the relative weight of �x
and k in Eq. (7). A widely-used technique is ð�x0; k0Þ ¼ ð�x1; k1Þ þ Dsðx�x;xkÞ, where Ds is the desired incre-

ment in the arclength, and ð�x1; k1Þ the last point found. In this case (7) with h ¼ 1=2 is equivalent to the

original formulation of pseudo-arclength, xT
�x ð�x� �x1Þ þ xkðk� k1Þ ¼ Ds.

The system that determines a unique solution is then

�x� �P ð�x; kÞ ¼ 0; nð�x; kÞ ¼ 0; �x 2 Rn�1; ð8Þ

and the linear system to be solved at each Newton’s iteration, ð�xiþ1; kiþ1Þ ¼ ð�xi; kiÞ þ ðD�xi;DkiÞ, is

I � D�x
�P ð�xi; kiÞ �Dk

�Pð�xi; kiÞ
hxT

�x ð1� hÞxk

 !
D�xi

Dki

� �
¼ ��xi þ �P ð�xi; kiÞ

�nð�xi; kiÞ

 !
: ð9Þ

In the case of parameter continuation Dki ¼ 0 and there is no need of Dk
�P in (9).

The linear system (9) is solved iteratively by matrix-free methods that only require the computation of
matrix–vector products. Therefore a procedure to compute products of the form DxP ðx; kÞDxi or

DxPðx; kÞDxi þ DkPðx; kÞDki must be available. For systems of the form (1), they can be obtained, with

minor modifications of the time stepping codes employed to integrate them, from a first variational

equation. For the system

B _x ¼ f ðx; kÞ ¼ ðL1 þ kL2Þxþ Qðx; xÞ þ F ; ð10Þ
_k ¼ 0; ð11Þ

with initial condition ðxi; kiÞ, the first variational equation is

B _y ¼ Dxf ðx; kÞy þ Dkf ðx; kÞl ¼ ðL1 þ kL2Þy þ lL2xþ Qðx; yÞ þ Qðy; xÞ; ð12Þ
_l ¼ 0; ð13Þ

with initial condition (Dxi;Dki). The term Dkf ðx; kÞl must be included in (12) only if pseudo-arclength

continuation is used.

If Dx is tangent to R;xT
rDx ¼ 0, then, from the application of the implicit function theorem to the

identity gðuðtðxÞ; x; kÞÞ ¼ 0 and the definition of P ðx; kÞ, we obtain

DxP ðx; kÞDxþ DkP ðx; kÞDk ¼ u� xT
ru

xT
r z

z; ð14Þ
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where u ¼ DxuðtðxÞ; x; kÞDxþ DkuðtðxÞ; x; kÞDk can be obtained as u ¼ ûðtðxÞ; x; kÞ, with ûðt; x; kÞ solution
of (12) with initial condition yð0Þ ¼ Dx; l ¼ Dk. Here z denotes the tangent to uðt; x; kÞ at P ðx; kÞ. It can be

obtained from the linear equation Bz ¼ f ðPðx; kÞ; kÞ if B is invertible or, in any case, by interpolation if a
multistep time integration method is used. From (14) it is clear that xT

r ðDxP ðx; kÞDxþ DkP ðx; kÞDkÞ ¼ 0. See

[34] for more details about the computation of the differentials of Poincar�e maps and for the case of an

arbitrary hypersurface g.
Each evaluation of DxP ðx; kÞDxi þ DkP ðx; kÞDki requires the integration of the 2n-dimensional system of

equations (10) and (12). Because matrix-free methods are employed, only this system must be integrated in

time instead of one of dimension n2 þ n when the whole first variationals are employed to solve (9) with

direct methods. The value of DxP ðx; kÞDxi þ DkP ðx; kÞDki could be computed by finite differences, but the

cost is the same because two integrations of (10) are needed. Furthermore the variational estimate of the
differential is more accurate than the one obtained by numerical differencing. This implies that if finite

differences are employed, the convergence of Newton’s method may worsen.

We use GMRES [31] (generalized minimum residual method) to solve all the linear systems. GMRES is

an iterative projection method. Given an initial guess y0 to the solution of the linear system of equations

Ay ¼ b, this class of methods generate a sequence of approximations ym which satisfies two conditions

ym 2 y0 þKm and b� Aym ? Lm; ð15Þ

that determine each particular projection method. Km and Lm are two m-dimensional linear subspaces.

With these two conditions, ym minimizes the Euclidean norm of the residual, b� Aym, over all the vectors in
y0 þKm. In the particular case of GMRES, Lm ¼ AKm and Km is the Krylov subspace

Km ¼ fr0;Ar0;A2r0; . . . ;Am�1r0g, where r0 ¼ b� Ay0 (see [28] for implementation details). To prevent the

dimension of the subspaces from growing, thus making the method impractical, it is limited to a maximum

M . If GMRES does not converge to the desired accuracy in M iterations, the method is restarted using the

latest approximation found as initial guess y0 giving rise to the restarted generalized minimum residual

method GMRES(M).

The method described above will only be efficient if the convergence of GMRES is fast enough.

The following result (see [30]) can be used to show that, with the particular form of the spectrum of
DxPðx; kÞ for a dissipative system, the number of iterations needed is much less than the dimension of

the system.

Proposition 1. Suppose that a matrix A is diagonalized as A ¼ V KV �1, where K ¼ diagfk1; . . . ; kng is the

diagonal matrix of eigenvalues, Pm is the set of polynomials of degree at most m, and j2ðV Þ ¼ jjV �1jj2jjV jj2 is
the norm-2 condition number of V. Then at the m-th step of GMRES

jjb� Aymjj2
jjb� Ay0jj2

6j2ðV Þ inf
p2Pm
pð0Þ¼1

sup
i¼1;...;n

jpðkiÞj: ð16Þ

This result implies that, if there are polynomials of low degree m, which are small enough on the spectrum

of A, i.e., j2ðV Þ supi¼1;...;n jpðkiÞj < e, then the residual is reduced at least by a factor e after a low number of

iterations m.
Consider now the linear systems of the form

ðI � DxP ðx; kÞÞDx ¼ �xþ P ðx; kÞ; ð17Þ

solved in parameter continuation and where, from now on, we drop the over-bars. We can suppose, without

loss of generality, that the eigenvalues, li, of DxP ðx; kÞ have been ordered by non-increasing modulus, so

that jl1j ¼ maxi¼1;...;n jlij. The eigenvalues of I � DxP ðx; kÞ are 1� li. They are clustered around z ¼ 1 and
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are different from zero if the system (1) is derived from the discretization of a dissipative system of PDE’s

and x is near a regular solution of (5). Therefore, the next proposition, which follows from the principle of

the maximum modulus, provides an upper bound for the right hand side of (16).

Proposition 2. Let l1; . . . ; lk be the eigenvalues of DxP ðx; kÞ verifying jlij > d with a fixed

d < 1;D ¼ maxi¼1;...;n jlij and d ¼ mini¼1;...;k j1� lij. Then the polynomial qðzÞ ¼ ð�1Þkþpðz� 1ÞpQ
i¼1;...;kðz� 1þ liÞ=ð1� liÞ verifies q(0)¼ 1 and supi¼1;...;n jqð1� liÞj < dpS, with S ¼ supjz�1j¼dQ
i¼1;...;k jz� 1þ lij=j1� lij. Moreover, S < ðdþ DÞk=dk.

By using (16) it follows that jjb� Aymjj2=jjb� Ay0jj2 < e if d and p chosen so that dpS < e=j2ðV Þ, i.e.,

m ¼ k þ p > k þ log
j2ðV ÞS

e

� �
= logð1=dÞ: ð18Þ

Therefore, if the number of GMRES iterations is larger than m, the residual is reduced, at least, by a
factor e. A rough estimation of m can be obtained by using that S < ðdþ DÞk=dk. The value of D indicates

how unstable the orbit is, and d how near singular I � DxP ðx; kÞ is. Suppose we are looking for not very

unstable orbits, so that D < 10, and x is not very near a bifurcation, d > 10�2 for instance, that we want to

reduce the residual by e ¼ 10�6 and that V is far from normal, as could be expected for large scale dissi-

pative nonlinear PDE, j2ðV Þ ¼ 1020 for instance. Let us take d ¼ 0:1 and suppose that then k � 40 (as in

some of the spectra we have computed). Therefore we could expect to need, approximately, m ¼ 200 it-

erations to have jjb� Aymjj2=jjb� Ay0jj2 < e. This a low value for m for a high-dimensional system. If the

spectrum in Fig. 10, in which k ¼ 40 eigenvalues have modulus greater that d ¼ 0:15, is used to estimate S,
we find that S < 4580 and m ¼ 88. In practice we have found that these are conservative lower bounds for

m, and fewer iterations are needed to solve the linear systems. As j2ðV Þ and the distribution of the ei-

genvalues are not known, a priori, some experiments must be performed to determine good values for the

maximal dimension M of Km. An example will be given later.

The above argument only applies to parameter continuation. With pseudo-arclength continuation the

spectrum of the matrix in (9) instead of I � DxP ðx; kÞ must be considered. We have calculated its dominant

eigenvalues for the example in Section 3 at several points of the bifurcation diagram. We have always

observed very small perturbations of those of I � DxP ðx; kÞ, except for the appearance of a single new ei-
genvalue that does not affect the reasoning. The consequence is that we have not observed slower con-

vergences in the case of pseudo-arclength continuation. It is also possible to use compactness arguments on

the continuous operators involved to show that both I � DxPðx; kÞ and the matrix in (9) have spectra of the

kind described above.

Inexact Newton’s methods, like those we use, are known to converge if the residual of the linear system

to be solved at each Newton’s iteration is kept sufficiently small [6]. They can retain quadratic convergence

with a suitable selection of the tolerance for the residual. This has been the case in all our computations

except, of course, in the neighborhood of bifurcation points. No particular difficulty has been found near
turning points.

Summarizing, we can expect to have convergence of the Newton–Krylov method when it is applied to

find zeros of x� P ðxÞ, with P any map with its multipliers at the fixed point clustered around the origin. In

Section 6 we show how to use this fact to compute also steady solutions of (1).

Once the periodic orbits have been obtained, we study their stability by computing their dominant

Floquet multipliers by subspace iteration, or by the implicitly restarted Arnoldi iteration [19], using the

ARPACK library [20] (see also [1] or [10] for similar computations of Floquet multipliers in another hy-

drodynamic problem). This also requires the integration of the 2n-dimensional system (10) and (12). This
differs from the method described in [22]. The use of Newton–Picard provides simultaneously the solution
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and its stability. With the algorithm we describe, the branches of solutions can be calculated in a first stage,

and later use a bisection method along the branch to detect possible bifurcations, if it is needed. This

implies studying the stability of only a few solutions in a separate process.
3. The test problem: thermal convection in an annulus

To test the method, the two-dimensional nonlinear thermal convection of a Boussinesq fluid in an an-

nulus, with constant inward radial gravity and heated from the inside, is considered. Its physical interest

arises from the study of large-scale motions generated by radial temperature gradients in geophysical and

astrophysical processes (see [27,26] for details). The nonlinear dynamics of the two-dimensional vortices
also provides a simple fluid dynamical system highly attractive from the point of view of bifurcation theory,

because it is large enough to provide a rich spatio-temporal dynamics.

The two-dimensional domain has inner and outer radii Ri and Ro. The three non-dimensional parameters

of the problem are the radius ratio, g ¼ Ri=Ro, the Prandtl number, r ¼ m=j, and the Rayleigh number,

Ra ¼ aDTgd3=jm, with m; a and j the kinematic viscosity, the thermal expansion coefficient, and the thermal

diffusivity of the fluid respectively, g a constant radial gravity, DT the temperature difference between both

boundaries, and d the radii difference. Almost all the results shown in this section correspond to

g ¼ 0:3; r ¼ 0:025, and Ra is taken as the continuation parameter. The values of DT , d and d2=j are taken
as temperature, length and time units, respectively. With this scaling the inner and outer radii are

ri ¼ g=ð1� gÞ and ro ¼ 1=ð1� gÞ. From now on, u and T will be respectively the non-dimensional velocity

and temperature fields. The conduction steady state uc ¼ 0, TcðrÞ ¼ Ti þ lnðr=riÞ= ln g is a solution for any

value of Ra.
The velocity field u is written in terms of a streamfunction, W, as u ¼ r� ðWêzÞ, where êz the unit

upward vertical vector. Let us define the azimuthal average operator

Phgðt; r; hÞ ¼ ð2pÞ�1

Z 2p

0

gðt; r; hÞdh:

By separating the mean flow f ðt; rÞ ¼ Phuhðt; r; hÞ from W, the preceding expression of u can be written as

u ¼ f êh þr� ðwêzÞ, with Phwðt; r; hÞ ¼ 0.

The equations for f , w and the perturbation of the conduction state temperature, H ¼ T � Tc, are

I 0 0

0 I 0

0 0 D

0
@

1
Aot

f
H
w

0
@

1
A ¼

r~D 0 0

0 D �ðr2 ln gÞ�1
oh

0 rr�1Raoh rDD

0
@

1
A f

H
w

0
@

1
A

þ
Ph½Dwohw�=r

Jðw;HÞ � f ohH=r
ð1� PhÞJðw;DwÞ þ ~Df ohw=r � f ohDw=r

0
@

1
A; ð19Þ

where D ¼ ðor þ 1=rÞor þ ð1=r2Þo2hh, ~D ¼ orðor þ 1=rÞ, and Jðh; gÞ ¼ ðorhohg � orgohhÞ=r. With this formu-

lation, the no-slip boundary conditions for the velocity become f ¼ w ¼ orw ¼ 0, and the temperature

perturbation is H ¼ 0, on both boundaries. See [26] for details.

A simple inspection reveals that the system is O(2)-equivariant under arbitrary rotations of angle h0,

Rh0 : ðf ;H;wÞðr; hÞ ! ðf ;H;wÞðr; hþ h0Þ ð20Þ

and reflections with respect to diameters h ¼ h0,

fh0 : ðf ;H;wÞðr; hÞ ! ð�f ;H;�wÞðr; 2h0 � hÞ: ð21Þ
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These symmetries are responsible for the large number of bifurcations found in the problem.

We use spectral methods [4] to discretize (19); w and H are approximated by Fourier expansions in h

w ¼ wðt; r; hÞ ¼ i
XN=2

n¼�N=2

n6¼0

wnðt; rÞeinh;
H ¼ Hðt; r; hÞ ¼
XN=2

n¼�N=2

Hnðt; rÞeinh;

wnðt; rÞ and Hnðt; rÞ being polynomials of degree L in r that verify the boundary conditions. The unknowns

of the problem are the values of f ðt; rÞ;wnðt; rÞ and Hnðt; rÞ on the mesh of Gauss–Lobatto points

rj ¼ ri þ ð1� cosðpj=LÞÞ=2, with j ¼ 1; . . . ; L� 1 for f and Hn, and j ¼ 2; . . . ; L� 2 for wn. The total
number is then ðL� 1ÞðN þ 2Þ þ ðL� 3ÞN .

The truncation parameters L and N have been chosen to minimize the computational cost, but keeping

the relevant features of the problem well resolved. In the results shown, L� N ¼ 32� 192 for a total of

11,582 unknowns. By using only the time integration code and comparing with resolutions 32� 256 and

48� 192, we have found differences below 0.2% for the worst resolved frequency of the quasi-periodic

solutions obtained above Ra ¼ 18; 000 (see Table 1 in [27]). With the same truncations, we have also es-

timated differences below 0.5% in the Rayleigh numbers of the bifurcation points between stable solutions

up to Ra ¼ 21; 000 used as a test. In addition, for a periodic orbit at Ra ¼ 17; 194 computed by parameter
continuation with truncations 32� 192 and 64� 256, the frequency difference is below 0.1%. For this so-

lution, Fig. 1 shows the exponential decay of the coefficients of H and w when Hn and wn are expanded in

Chebyshev polynomials, i.e., Hnðt; rÞ ¼
PL

l¼0 Hl;nðtÞTlðxÞ with x ¼ 2ðr � riÞ � 1. The maximum resolution

employed has been 64� 256, giving a total of 31,870 unknowns. The algorithms still work properly, but the

CPU time needed to integrate the equations increases considerably due to the need of reducing the time step

in order to keep the stability of the numerical integration scheme employed, and due to the increase in the

cost of the evaluation of the nonlinear terms and of the solution of the linear systems in (24).

The nonlinear terms of the equations are evaluated by using trigonometric interpolation and FFT
techniques for the azimuthal operators, and matrix–matrix products to evaluate radial operators. These
Table 1

Integration coefficients of the BDF-extrapolation formulae

Coefficients Order

1st (c0 ¼ 1) 2nd (c0 ¼ 3=2) 3rd (c0 ¼ 11=6) 4th (c0 ¼ 25=12) 5th (c0 ¼ 137=60) 6th (c0 ¼ 147=60)

a0 1 2 3 4 5 6

a1 0 )1/2 )3/2 )3 )5 )15/2
a2 0 0 1/3 4/3 10/3 20/3

a3 0 0 0 )1/4 )5/4 )15/4
a4 0 0 0 0 1/5 6/5

a5 0 0 0 0 0 )1/6

b0 1 2 3 4 5 6

b1 0 )1 )3 )6 )10 )15
b2 0 0 1 4 10 20

b3 0 0 0 )1 )5 )15
b4 0 0 0 0 1 6

b5 0 0 0 0 0 )1
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Fig. 1. Decay of the expansion in Chebyshev and Fourier coefficients of a periodic solution at Ra ¼ 17; 194. See its location in the

bifurcation diagram of Fig. 4.
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products are performed by the ATLAS [42] version of the DGEMM routine of the BLAS library [18],

optimized for Pentium processors (all computations have been performed on Pentium IV PC’s at 1.8 GHz).

For time integration, backward differentiation formulae (BDF) for the linear part of (19) and extrapolation

formulae for the nonlinear terms are used [13]. The BDF-extrapolation formulae, with a fixed time step, Dt,
for the system

B _u ¼ LuþNðuÞ; ð22Þ

where L and N are linear and nonlinear operators respectively, are

1

Dt
B c0u

nþ1

 
�
Xk�1

i¼0

aiun�i

!
¼
Xk�1

i¼0

biNðun�iÞ þLunþ1; ð23Þ

or rearranging,

c0
Dt

B
�

�L
�
unþ1 ¼ B

1

Dt

Xk�1

i¼0

aiun�i

 !
þ
Xk�1

i¼0

biNðun�iÞ: ð24Þ
Fig. 2. Time evolution of a symmetric cycle at Ra ¼ 17; 761 showing the spatio-temporal symmetries of the solution. Upper row:

Contour plots of the stream function. Lower row: Contour plots of the temperature. See the location of the solution in the bifurcation

diagram of Fig. 4.
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The coefficients ai, bi and c0 are listed in Table 1. We have always used the fourth order formula in the

computations shown. Each time step involves one evaluation of the nonlinear terms, one of the left hand

side operator B, and the solution of a linear system with matrix ðc0=DtÞB�L, which, in our case, is block

diagonal.

Two different methods have been employed to find the starting values u1; . . . ; ukþ1 needed to apply (24); a

fourth order Runge–Kutta scheme with a smaller time step, or a procedure involving increasing time steps

and orders. We have not found significant differences in precision or CPU time between the two methods.
Fig. 3 shows a numerical study of the precision that can be obtained with this integration scheme for the

test problem. It shows the dependence of the relative difference,

jjuDt � uref jj2
jjuref jj2

;
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on Dt. We denote as uDt the solution calculated with time step Dt, and uref is a reference solution obtained

with Dt ¼ 10�5. The initial condition for both is taken on a periodic solution of the system with Ra ¼ 8000

(see its location in the bifurcation diagram of Fig. 4), and the total time integration is twice the period of the
orbit. Each curve corresponds to the integration with a different order of the BDF-extrapolation formulae,

and the order obtained is used to label them. The results shown have been obtained by initializing the

integration with a fourth order Runge–Kutta method. It can be seen that below Dt ¼ 8� 10�5 the prop-

agation of the rounding errors, generated mainly in the evaluation of the nonlinear terms and in the ini-

tialization process, do not allow us to obtain relative errors below 10�10. It must be pointed out that the

matrix of the derivatives in the radial direction, and some formulae employed to apply the boundary

conditions, are prone to cancellation errors, and that the code employs the 3/2-rule dealiasing technique in

the azimuthal coordinate.
In this particular problem, the solutions of x ¼ P ðxÞ are determined up to an azimuthal rotation.

Therefore a phase condition must be added to obtain a determinate system of equations. For this purpose

one of the equations is replaced by a condition that selects the solution closest to a previous reference

solution xref . It is easy to see that this condition can be written as the linear equation xTrefohx ¼ 0. It is similar

to the phase condition used in some continuation codes for periodic orbits to fix the initial point on the

orbit [15].

The periodic orbits we have found in this problem are known as direction reversing travelling waves [17]

(DRTW), or as symmetric cycles (S-cycles) in the dynamical systems context, i.e., they have the following
spatio-temporal symmetry

Hðt; r; hÞ ¼ Hðt þ T=2; r; 2h0 � hÞ;
f ðt; rÞ ¼ �f ðt þ T=2; rÞ;
wðt; r; hÞ ¼ �wðt þ T=2; r; 2h0 � hÞ;

ð25Þ

where T is the period of the orbit, and h0 is fixed by the initial conditions. For these periodic orbits the

evolution by half a period in time is equivalent to the reflection defined in (21) with respect to a certain

diameter. This can be seen in Fig. 2. It shows the time evolution of a S-cycle obtained at Ra ¼ 17; 761, for
which h0 � p=2. See also [27] for shadowgraph space-time plots.

As f changes sign each half period (25), the net mass flow defined as

1

Ro � Ri

Z Ro

Ri

uhðt; r; hÞdr ¼
1

Ro � Ri

Z Ro

Ri

f ðt; rÞdr ð26Þ

changes sign twice per period. Therefore, the approximation to the zero net mass flow condition,PL
j¼0 wjf ðt; rjÞ ¼ 0, where the wj are the weights of the Gauss–Lobatto quadrature formulae, has been used

to define the hyperplane R on which the Poincar�e map is taken. Consequently, there has been no need to

change the hyperplane during the continuation, as might be required when periodic orbits without sym-

metries are sought.
4. Results

Before presenting the results we want to stress that the main goal of this paper is the presentation of a

method to efficiently compute periodic orbits for Navier–Stokes flows. The reader interested in a more

complete bifurcation diagram, in the attractors for the range of Ra studied or in the coexistence of at-

tractors for a fixed Ra, can find this information in [27]. Still many details are missing, mainly concerning

the continuation of unstable tori.
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Fig. 4 shows the branches of the periodic orbits we have found in the test problem. A weighted amplitude

A ¼
X4
n¼0

wnjHnðrpÞj

of the first five azimuthal modes of the temperature perturbation, at the time at which the net mass flow

vanishes on R, versus the Rayleigh number has been plotted. In A, rp is a fixed radial point, and the weights,

wn, are selected to clearly distinguish the different branches. Solutions related by the spatial symmetries

broken at the bifurcations correspond to the same points in the diagram. Beside each branch we indicate the

number of multipliers outside the unit circle. If all of them are real we use a single number. When there are

complex pairs we indicate the total number of unstable multipliers by the first number followed by the
number of those real.

The main branch is labeled n ¼ 4 because only the azimuthal Fourier coefficients of w and H with

subscripts n which are multiple of 4 are non-zero. It bifurcates from a stable steady solution through a Hopf

bifurcation, after the spatial interaction of steady n ¼ 2 and n ¼ 4 modes described in [27]. The isotropy

group of these steady solutions (the group of transformations that leave them invariant) is generated by a

reflection by a diameter and a rotation of p=2. Fig. 5 shows one of them at Ra ¼ 6300. In this and all the

following figures, the leftmost plot corresponds to the contour plot of w, the centre one to the isotherms,

and the rightmost to the lines of constant H. For the periodic solutions (Figs. 6, 7 and 9), the plots show the
data when they cross the Poincar�e section.

The periodic orbits are no longer reflection symmetric (see Fig. 6 as example), and consequently [17] are

DRTWs that oscillate back and forth in the azimuthal direction without net drift. For this type of solution,

the spatio-temporal symmetry (25) could have been used to halve the time needed to compute each orbit,

but we have always integrated the whole period, because we are describing a general methodology, and we

did not know in advance that all the bifurcations between branches of periodic orbits were going to break

only spatial symmetries in the range of Ra considered. Information about the origin and the physical

behavior of these solutions can be found in [27].
All the periodic solutions of the test problem have a l ¼ þ1 multiplier due to the invariance under

rotations of the equations. It has been removed in all the plots of the spectra shown, and because it never

crosses the unit circle, it is not considered in the following count of the critical multipliers. It is known [15]

that S-cycles cannot experience period doubling bifurcations through simple l1 ¼ �1 multipliers. In

agreement with this result, only bifurcations with l1 ¼ þ1 or l1;2 ¼ e�ih0 were found. The turning points

and the branching points of periodic orbits have been marked with full circles; the other intersections are

due to the graphical representation. The D4 symmetry forces the second point on the n ¼ 4 branch to be

double, and two other points are very close to non-generic real double +1 bifurcations. This is so in the
bifurcation marked with a cross on the smallest loop of Fig. 4, and in the second bifurcation point on the

n ¼ 2 branch. In both cases, two complex-conjugate multipliers of diminishing frequency become real very
Fig. 5. Contour plots of the streamfunction, the temperature and the temperature perturbation for a steady solution at Ra ¼ 6300.



Fig. 6. Contour plots of the streamfunction, the temperature and the temperature perturbation; (a, b, c) for the stable pure n ¼ 4

branch of DRTW at Ra ¼ 10; 200, and (f, g, h) for the stable subharmonic DRTW at Ra ¼ 10; 225. (d, e) Dominant eigenfunction of

the first multiplier that crosses the unit circle at Ra ¼ 10; 210. (d) corresponds to the contour plot of the streamfunction and (e) to that

of the temperature perturbation.
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near the unit circle (l1;2 ¼ 0:996 and l1;2 ¼ 0:994, respectively). By increasing Ra, one of them grows and

crosses the unit circle while the other moves back. By slightly moving another parameter of the problem, for

instance the radius ratio, the complex multipliers would become real exactly on the unit circle. The dif-

ference between the two transitions is the symmetry group of the periodic orbits that bifurcate. In the

diagram, there are, moreover, two Neimark–Sacker bifurcations in the interval of Ra considered. They are

indicated with asterisks at Ra ¼ 10; 785 and Ra ¼ 18; 683.
The detailed description of all the bifurcations is beyond the scope of this paper; nevertheless we have

selected some of them to show the accuracy obtained in the solutions and in their spectra. As an example of
the spatial structure of the solutions, we display in Fig. 6 the first symmetry breaking bifurcation, and in

Fig. 7 some samples of solutions on the most unstable branches at higher parameter values.

The pure n ¼ 4 DRTWs that appear at Ra ¼ 6897 maintain a Rp=2-invariance;

Hðt; r; hÞ ¼ Hðt; r; hþ p=2Þ; wðt; r; hÞ ¼ wðt; r; hþ p=2Þ;

but they are no longer reflection symmetric as can be seen in the plots of Fig. 6(a)–(c). The n ¼ 4 DRTW is

stable up to Ra ¼ 10; 210, where it loses stability in a subharmonic pitchfork bifurcation of periodic orbits.



Fig. 7. Contour plots of the streamfunction, the temperature and the temperature perturbation; (a, b, c) for a solution on the n ¼ 4

branch at Ra ¼ 15; 800; (d, e, f) for a solution on the n ¼ 2 branch at Ra ¼ 17; 761, and (g, h, i) for a solution with no spatial sym-

metries at Ra ¼ 17; 194. Their locations are marked with an arrow in Fig. 4.
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This is a symmetry breaking bifurcation that reduces the spatial Z4 isotropy group to Z2, where Z4 and Z2

are generated by rotations of p=2 and p, respectively. The symmetric branches of the pitchfork bifurcation

are related by a rotation of p=2. The change of symmetry can be observed in the dominant eigenfunction of

Fig. 6(d) and (e), and in the stable subharmonic n ¼ 2 DRTW of Fig. 6(f)–(h), if it is carefully observed. In
the plots of the eigenfunction the isotherms are omitted.

Fig. 7 shows a sample of the most unstable solutions found with r ¼ 0:025 and g ¼ 0:3. All of them have

three unstable multipliers and they are on three different branches. Their locations at Ra ¼ 15; 800, 17,761
and 17,194 are indicated with arrows in Fig. 4. Their isotropy groups of spatial symmetries are Z4, Z2 and

trivial, respectively, as can be seen better in the contour plots of the streamfunction. In addition, their

leading multipliers are displayed in Fig. 8, where the dotted line is the unit circle. In Fig. 8(a) the leading

multiplier is double.

The spectrum of the Neimark–Sacker bifurcation, indicated in Fig. 4 with an asterisk at Ra ¼ 18; 683, is
in agreement with the results computed with the time evolution code. By decreasing Ra with this code, we

have found a saddle-node bifurcation of tori at Ra � 18; 440. We believe that this stable branch of tori is

connected with the periodic orbits we have computed through the Neimark–Sacker bifurcation, because of

the agreement between the frequency determined from the dominant unstable multiplier and the second

frequency of the quasi-periodic solutions calculated. The results indicate that at the bifurcation point, a
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branch of unstable quasi-periodic solutions appears. This branch becomes stable through a bifurcation (or

bifurcations) we have not studied because our present codes do not allow to compute invariant unstable

tori. This is an example of an attractor connected through unstable manifolds to other attractors. The main
n ¼ 4 branch of periodic orbits, which is stable up to Ra ¼ 10; 210 bifurcates also from a steady solution

connected to the trivial conductive solution by unstable fixed points [27].

Calculations with different values of the radius ratio g have also been performed to check if the method

still works efficiently for more unstable orbits. We show in Fig. 9 a solution for g ¼ 0:19 and Ra ¼ 20; 000.
As can be seen in Fig. 10 it has seven unstable multipliers, including a double complex conjugate pair. We

have not found any significant change in the computational cost to obtain these more unstable solutions.
5. Efficiency

Table 2 displays the number of iterations of Newton’s and GMRES methods needed to refine a periodic

solution at Ra ¼ 17; 194 (see Fig. 4 to locate it in the bifurcation diagram and Fig. 8 to see its leading

multipliers). The initial condition had components xið1þ eui), x being a previous refined solution and u a

random vector satisfying juij < 1, and the value of the parameter k was kept fixed. Stopping criterion for

Newton’s method was jjxðnþ1Þ � xðnÞjj2=jjxðnþ1Þjj2 < 10�8 and jjxnþ1 � P ðxnþ1Þjj2 < 10�8. The dimension of the

Krylov subspace was 60, but could have been 51 with the same results, or 34 for e6 10�5 without need of
restarting. The number of iterations needed by GMRES decrease as Newton’s method approaches the

solution. This is a common feature with Newton–Krylov methods, when GMRES is started with a zero

initial guess.

Good initial conditions for Newton’s method must always be provided to have efficient continuations,

but in the case of continuation of periodic orbits this is especially important. We recall that the most ex-

pensive calculation during the continuation is the evaluation of DPðx; kÞv at each GMRES iteration.

Therefore, the predictor should use high-order extrapolation from previous solutions or small parameter or

pseudo-arclength steps. The highest suitable extrapolation order depends not only on estimates on the
extrapolation error, but also on bounds on the errors in the previous solutions used in the extrapolation.

Finding the optimum between computing many solutions at low cost or fewer solutions at higher com-

putational effort is not an easy task, especially if this must be done automatically. The total number of

GMRES iterations used to find a solution, not only the number of Newton’s iterations, should be used to

control the arclength step.

Fig. 11(b)–(e) show the total number of GMRES iterations needed to compute each solution along the

portion of branches displayed in Fig. 11(a) (compare this plot with Fig. 4). B1 is an n ¼ 4 branch, i.e., only a

quarter of the unknowns are non-zero. A system of dimension 2942 could have been solved, although we
did not made use of this particular characteristic. Along B2 and B3, all the unknowns are non-zero. B2 is a

regular arc without bifurcations and there are two turning points on B3, which ends at a bifurcation point.

With this selection we explore all possible scenarios in the bifurcation diagram.
Table 2

Number of Newton’s and GMRES iterations when computing the solution of Fig. 7 (g)–(i) at Ra ¼ 17; 194

e Newton iterations GMRES iterations CPU time (s)

10�4 6 51, 48, 49, 47, 27, 1 12,004

10�5 3 34, 12, 1 2779

10�6 2 30, 1 1845

10�7 2 17, 1 1184

10�8 2 9, 1 780
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In all these calculations, the time step used was 10�4, and the stopping criterion for Newton’s method

was

jjðx; kÞðnþ1Þ � ðx; kÞðnÞjjw=jjðx; kÞ
ðnþ1Þjjw < 10�7; and ð27Þ
jjðxðnþ1Þ � P ðxnþ1; kðnþ1ÞÞ; nðxðnþ1Þ; kðnþ1ÞÞÞjjw < 10�7 ð28Þ

with jjðz; lÞjjw ¼ ðjjzjj22 þ ðwjljÞ2Þ1=2 a weighted norm.

Four cases have been considered. Fig. 11(b) corresponds to branch B1 calculated by using parameter

continuation and a fixed parameter step size of 200. For this branch the mean of the total number of

GMRES iterations is 17. Branch B2 was calculated with both parameter (Fig. 11(c)) and pseudo-arclength

(Fig. 11(d)) continuation. The average number of evaluations of DPðx; kÞv was very similar for both cases;

41 and 44, respectively. B3 was only computed by pseudo-arclength continuation (Fig. 11(e)) due to the
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presence of the turning points. The mean number of GMRES iterations increased up to 52. This branch is

more expensive to compute because the solutions change significantly through the turning points and there

are multipliers near +1 along all the curve.
The CPU times to complete each of these calculations were 22.2, 37.5, 38.8 and 100 h, respectively. Each

evaluation of DP ðx; kÞv took between 50 and 170 s depending on the branch considered. Then the CPU time

to compute each periodic orbit in the diagram of Fig. 4 varied from 10 to 90 min.

To obtain the 40 leading Floquet multipliers shown in Fig. 10, 100 evaluations of DPðx; kÞv were re-

quired when using the ARPACK library. This is more than has been usually required to obtain the in-

formation needed to study the bifurcations and complete the diagram of Fig. 4. Only the calculation of the

first 12 multipliers was used to detect the bifurcations, and each spectra needed between 40 and 80 matrix–

vector products (i.e., time integrations of system (12)) depending strongly on the separation between the
required eigenvalues and the rest of them, and on the dimension of the Krylov subspace.
6. Conclusions and perspectives

We have shown that the Newton–Krylov method, applied to find fixed points of Poincar�e maps of high-

dimensional dissipative systems, provides an efficient, easy to implement, and robust tool to compute pe-

riodic orbits. A complicated bifurcation diagram of periodic orbits, most of them unstable, for a system of
dimension 11,582 has been obtained. Comparison with the Newton–Picard method is not easy because, in

the method we use, finding the cycles and studying their stability are separate processes. The Newton–

Picard method requires the computation of a good basis of the invariant subspace corresponding to the

leading eigenvalues. This is an expensive task even using the most sophisticated versions of subspace it-

eration or Arnoldi methods, but the stability of the solution is also obtained. By using the Newton–Krylov

method we retain the quadratic convergence of the Newton’s iterations except, of course, near bifurcation

points. This is important to minimize the number of evaluations of the differential of the Poincar�e map

where almost all the computing time is spent. But surely, the main advantage of using the Newton–Krylov
method is its simplicity when compared with other options.

The procedure described in this paper might also be used to find steady solutions of (1). The technique

which is usually employed is to apply Newton’s method

xiþ1 ¼ xi þ Dxi; ð29Þ
Dxf ðxi; kÞDxi ¼ �f ðxi; kÞ; ð30Þ

to the equation f ðx; kÞ ¼ LðkÞxþ Qðx; xÞ þ F ¼ 0, and to apply a matrix-free iterative method to solve the
linear system, preconditioned with LðkÞ�1

or approximations to this operator (see [3,5,23]), i.e.,

ðI þ LðkÞ�1ðQðxi; �Þ þ Qð�; xiÞÞÞDxi ¼ �LðkÞ�1f ðxi; kÞ ð31Þ

This procedure can be satisfactory near x ¼ 0, where the matrix

I þ LðkÞ�1ðQðxi; �Þ þ Qð�; xiÞÞ

is a small perturbation of the identity. Far away from x ¼ 0, the iterative method to solve (30) might fail to

converge. As stated in the introduction, if finite differences or finite elements are employed, an incomplete

LU decomposition can be used as preconditioner to accelerate the convergence. In the case of spectral

methods it is not easy to find good preconditioners. Finite differences or finite elements versions of the

problem have been successfully used as preconditioners but the coding becomes more complicated. We
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suggest a simple, although in general more expensive approach, that can be used when other possibilities

fail.

Let uðt; x; kÞ be the solution of (1) with initial condition x; T a positive real number, and define now
P ðx; kÞ ¼ uðT ; x; kÞ. If x0 is a fixed point of f ; f ðx0; k0Þ ¼ 0 then x0 � P ðx0; k0Þ ¼ 0. The equation

x� Pðx; kÞ ¼ 0 can be solved by the Newton–Krylov method. Now, as in the case of periodic orbits, if the

initial system is dissipative, the spectrum of the matrix I � DxPðx; kÞ is clustered around z ¼ 1. The products

DxPðx; kÞv are calculated by using (14), but replacing tðxÞ by T . T is a parameter which must be selected to

make convergence fast. It should not be large if the fixed point x0 is very unstable. If it is stable, the method

can be seen as an acceleration of the time evolution toward the steady state. If x0 is unstable, it is an

stabilization method very close in spirit to the condensation method of Jarausch and Mackens [11], or the

RPM of Shroff and Keller [33]. It has been used to complete some of the branches of steady solutions in the
annular problem [27]. Other invariant manifolds could also be computed by using the same ideas here

described. In particular we are interested in extending the techniques employed in [35] and [12] to compute

invariant tori for, at least, moderate-dimensional problems.

It is known that simple shooting might not work for very unstable periodic orbits [37]; then multiple

shooting should be used. Its implementation, with the method described in this work, is quite straight-

forward. Even if the solutions are not very unstable, multiple shooting could be used with each shoot

computed in parallel on a different processor. Almost all the CPU time is spent in time integrations;

therefore, this seems the only way of using parallelism efficiently, on computers with relatively slow
communications between processors as in Beowulf clusters. None of the periodic orbits calculated in this

paper has required the use of multiple shooting.

We have only used GMRES to solve the linear systems but other possibilities, BICGSTAB(l) [36] for

instance, could be considered. They could improve the convergence and reduce the storage requirements.

For branches of periodic orbits along which there are always multipliers very close to +1, the convergence

of the iterative linear solvers could be improved by using information on the leading eigenpairs to build a

preconditioner. Some of these issues are now being studied.
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