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9
Fourier decomposition and hyperfunctions

9.1 Fourier series

Let us return to the question, raised in §6.1, of what Euler and his

contemporaries might have regarded as an acceptable notion of ‘honest

function’. In §7.1, we settled on the holomorphic (complex-analytic) func-

tions as best satisfying what Euler might well have had in mind. Yet, most

mathematicians today would regard such a notion of a ‘function’ as being

unreasonably restrictive. Who is right? We shall be coming to a very

remarkable answer to this question at the end of this chapter. But Wrst

let us try to understand what the issues are.

In the application of mathematics to problems of the physical world, it

is a frequent requirement that there be a Xexibility that neither the holo-

morphic functions nor their real counterparts—the analytic (i.e. Co-)

functions—appear to possess. Because of the uniqueness of analytic con-

tinuation, as described in §7.4, the global behaviour of a holomorphic

function deWned throughout some connected open region DD of the com-

plex plane, is completely Wxed, once it is known in some small open

subregion of DD: Similarly, an analytic function of a real variable, deWned

on some connected segment RR of the real line R is also completely Wxed

once the function is known in some small open subregion of RR. Such

rigidity seems inappropriate for the realistic modelling of physical systems.

It would be particularly awkward when the propagation of waves is

under consideration. Wave propagation, which includes the sending of

signals via the electromagnetic vibrations of radio waves or light, gains

much of its utility from the fact that information can be transmitted by

such means. The whole point of signalling, after all, is that there must be

the potential for sending a message that might be unexpected by the

receiver. If the form of the signal has to be given by an analytic function,

then there is not the possibility of ‘changing one’s mind’ in the middle of

the message. Any small part of the signal would completely Wx the signal in

its entirety for all time. Indeed, wave propagation is frequently studied in

terms of the question as to how discontinuities, or other deviations from

analyticity, will actually propagate.
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Let us consider waves and ask how such things are described mathemat-

ically. One of the most eVective ways of studying wave forms is through

the procedure known as Fourier analysis. Joseph Fourier was a French

mathematician who lived from 1768 until 1830. He had been concerned

with the question of decomposing periodic vibrations into their compon-

ent ‘sine-wave’ parts. In music, this is basically what is involved in repre-

senting some musical sound in terms of its constituent ‘pure tones’. The

term ‘periodic’ means that the pattern (say of physical displacements of the

object which is vibrating) exactly repeats itself after some period of time,

or it could refer to periodicity in space, like the repeating patterns in a

crystal or on wallpaper or in waves in the open sea. Mathematically, we

say that a function f (say1 of a real variable w) is periodic if, for all w, it

satisWes

f (wþ l) ¼ f (w),

where l is some Wxed number referred to as the period. Thus, if we ‘slide’

the graph of y ¼ f (w) along the w-axis by an amount l, it looks just the

same as it did before (Fig. 9.1a). (The way in which Fourier handled

functions that need not be periodic—by use of the Fourier transform—

will be described in §9.4.)

The ‘pure tones’ are things like sin w or cos w (Fig. 9.1b). These have

period 2p, since

sin (wþ 2p) ¼ sin w, cos (wþ 2p) ¼ cos w,

these relations being manifestations of the periodicity of the single com-

plex quantity eiw ¼ cos wþ i sin w,

ei(wþ2p) ¼ eiw,

which we encountered in §5.3. If we want periodicity l, rather than 2p, then

we can ‘rescale’ the w as it appears in the function, and take ei2pw=l instead

of eiw. The real and imaginary parts cos (2pw=l) and sin (2pw=l) will corres-

pondingly also have period l. But this is not the only possibility. Rather

than oscillating just once, in the period l, the function could oscillate twice,

three times, or indeed n times, where n is any positive integer (see Fig.

9.1c), so we Wnd that each of

ei�2pnw=l , sin
2pnw

l

� �

, cos
2pnw

l

� �

has period l (in addition to having also a smaller period l/n). In music,

these expressions, for n ¼ 2, 3, 4, . . . , are referred to as higher harmonics.

One problem that Fourier addressed (and solved) was to Wnd out how to

express a general periodic function f (w), of period l, as a sum of pure tones.
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Fig. 9.1 Periodic functions. (a) f (w) has period l if f (w)¼ f (wþ l) for all w,
meaning that if we slide the graph of y¼ f (w) along the w-axis by l, it looks just

the same as before. (b) The basic ‘pure tones’ sin w or cos w (shown dotted) have

period l¼2p. (c) ‘Higher harmonic’ pure tones oscillate several times in the period

l; they still have period l, while also having a shorter period (sin 3w is illustrated,

having period l¼2p as well as the shorter period 2p=3).

For each n, there will generally be a diVerent magnitude of that pure tone’s

contribution to the total, and this will depend upon the wave form (i.e. upon

the shape of the graph y ¼ f (w)). Some simple examples are illustrated in

Fig. 9.2. Usually, the number of diVerent pure tones that contribute to f (w)
will be inWnite, however. More speciWcally, what Fourier required was the
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Fig. 9.2 Examples of Fourier decomposition of periodic functions. The wave

form (shape of the graph) is determined by the Fourier coeYcients. The functions

and their individual Fourier components beneath. (a) f (w) ¼ 2
3
þ 2 sin w þ 1

3

cos 2wþ 1
4
sin 2wþ 1

3
sin 3w: ðbÞ f (w) ¼ 1

2
þ sin w� 1

3
cos 2w� 1

4
sin 2w� 1

5
sin 3w:
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collection of coeYcients c, a1, b1, a2, b2, a3, b3, a4, in the decomposition

of f (w) into its constituent pure tones, as given by the expression

f (w) ¼ cþ a1 cosowþ b1 sinowþ a2 cos 2owþ b2 sin 2owþ
a3 cos 3owþ b3 sin 3owþ � � � ,

where, in order to make the expressions look simpler, I have written them

in terms of the angular frequency o (nothing to do with the ‘o’ of §§5.4,5,

§8.1) given by o ¼ 2p=l.
Some readers may well feel that this expression for f (w) still looks

unduly complicated—and such a reader is indeed correct. The formula

actually looks a lot tidier if we incorporate the cos and sin terms together

as complex exponentials eiAw ¼ cosAwþ i sin Aw
� �

, so that

f (w) ¼ � � � þ a�2e
�2iow þ a�1e

�iow þ a0 þ a1e
iow þ a2e

2iow þ a3e
3iow þ � � � ,

where2,[9.1]

an ¼ an þ a�n, bn ¼ ian � ia�n, c ¼ a0

for n ¼ 1, 2, 3, 4, . . . . The expression looks even tidier if we put z ¼ eiow,

and deWne the function F(z) to be just the same quantity as f (w) but now

expressed in terms of the new complex variable z. For then we get

F (z) ¼ � � � þ a�2z
�2 þ a�1z

�1 þ a0z
0 þ a1z

1 þ a2z
2 þ a3z

3 þ � � � ,

where

F (z) ¼ F (eiow) ¼ f (w):

And we can make it look tidier still by using the summation sign
P

, which

here means ‘add together all the terms, for all integer values of r’:

F (z) ¼
X

arz
r:

This looks like a power series (see §4.3), except that there are negative as

well as positive powers. It is called a Laurent series. We shall be seeing the

importance of this expression in the next section.[9.2]

9.2 Functions on a circle

The Laurent series certainly gives us a very economical way of represent-

ing Fourier series. But this expression also suggests an interesting

[9.1] Show this.

[9.2] Show that when F is analytic on the unit circle the coeYcients an, and hence the an, bn,

and c, can be obtained by use of the formula an ¼ (2pi)�1
H

z�n�1F (z) dz.
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Period = l

x

Fig. 9.3 A periodic function of a real variable w may be thought of as deWned on

a circle of circumference l where we ‘wrap up’ the real axis of w into the circle. With

l¼2p, we may take this circle as the unit circle in the complex plane.

alternative perspective on Fourier decomposition. Since a periodic func-

tion simply repeats itself endlessly, we may think of such a function (of a

real variable w) as being deWned on a circle (Fig. 9.3), where the function’s

period l is the length of the circle’s circumference, w measuring distance

around the circle. Rather than simply going oV in a straight line, these

distances now wrap around the circle, so that the periodicity is automatic-

ally taken into account.

For convenience (at least for the time being), I take this circle to be the

unit circle in the complex plane, whose circumference is 2p, and I take the

period l to be 2p. Accordingly,

o ¼ 1, so z ¼ eiw:

(For any other value of the period, all we need to do is to reinstate o by

rescaling the w-variable appropriately.) The diVerent cos and sin terms that

represent the various ‘pure tones’ of the Fourier decomposition are now

simply represented as positive or negative powers of z, namely z�n for the

nth harmonics. On the unit circle, these powers just give us the oscillatory

cos and sin terms that we require; see Fig. 9.4.

We now have this very tidy way of representing the Fourier decom-

position of some periodic function f (w). We think of f (w) ¼ F (z) as

deWned on the unit circle in the z-plane, with z ¼ eiw, and then the

Fourier decomposition is just the Laurent series description of this

function, in terms of a complex variable z. But the advantage is not

just a matter of tidiness. This representation also provides us with deeper

insights into the nature of Fourier series and of the kind of function

that they can represent. More signiWcantly for the eventual purpose of

this book, it has important connections with quantum mechanics and,

therefore, for our deeper understanding of Nature. This comes about

through the magic of complex numbers, for we can also use our Laurent

series expression when z lies away from the unit circle. It turns out that
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this series tells us something important about F(z), for z lying on the

unit circle, in terms of what the series does when z lies oV the unit

circle.

Now, let us recall (from §4.4) the notion of a circle of convergence,

within which a power series converges and outside of which it diverges.

There is a close analogue of this for a Laurent series: the annulus of

convergence. This is the region lying strictly between two circles in

the complex plane, both centred at the origin (see Fig. 9.5a). This is

simple to understand once we have the notion of circle of convergence

for an ordinary power series. The part of the series with positive

powers,3

A
B

z-plane
z = A

Use z

w = B-1

Use

w = 
1
z

(a) (b)

Fig. 9.5 (a) The annulus of convergence for a Laurent series F (z)¼Fþþ a0 þ F�,

where Fþ¼ . . .þ a�2z
�2 þ a�1z

�1, F�¼ a1z
1 þ a2z

2 þ . . . : The radius of conver-

gence for Fþ is A and, in terms of w ¼ z�1, for F� is B�1. (b) The same, on the

Riemann sphere (see Fig. 8.7), where z refers to the extended northern hemisphere

and w (¼ z�1) to the extended southern hemisphere.

Fig. 9.4 On the unit circle,

the real and imaginary parts

of the function zn appear as

nth harmonic cos and sin

waves (the real and imagin-

ary parts of einw, respectively,

where z ¼ eiw). Here, for

n ¼ 5, the real part of z5 is

plotted.
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F� ¼ a1z
1 þ a2z

2 þ a3z
3 þ . . . ,

will have an ordinary circle of convergence, of radius A, say, and that part

of the series converges for all values of z whose modulus is less than A.

With regard to the part of the series with negative powers, that is,

Fþ ¼ � � � þ a�3z
�3 þ a�2z

�2 þ a�1z
�1,

we can understand it as just an ordinary power series in the reciprocal

variable w ¼ 1=z. There will be a circle of convergence in the w-plane, of

radius 1/B, say, and that part of the series will converge for values of w

whose modulus is smaller than 1/B. (We are really talking about the

Riemann sphere here, as described in Chapter 8—see Fig. 8.7, with the

z-coordinate referring to one hemisphere and the w-coordinate referring to

the other. See Fig. 9.5b. We shall explore the Riemann sphere aspect of

this in the next section.) For values of z whose moduli are greater than B,

therefore, the negative-power part of the series will converge. Provided

that B < A, these two convergence regions will overlap, and we get the

annulus of convergence for the entire Laurent series. Note that the whole

Fourier or Laurent series for the function f (w) ¼ F eiw
� �

¼ F (z) is given by

F (z) ¼ Fþ þ a0 þ F�,

where the additional constant term a0 must be included.

In the present situation, we ask for convergence on the unit circle, since

this is where we can have z ¼ eiw for real values of w, and the question of

the convergence of our Fourier series for f (w) is precisely the question

of the convergence of the Laurent series for F(z) when z lies on the unit

circle. Thus, we seem to need B < 1 < A, ensuring that the unit circle

indeed lies within the annulus of convergence. Does this mean that, for

convergence of the Fourier series, we necessarily require the unit circle to

lie within the annulus of convergence?

This would indeed be the case if f (w) is analytic (i.e. Co); for then the

function f (w) can be extended to a function F(z) that is holomorphic

throughout some open region that includes the unit circle.4 But, if f (w) is

not analytic, an interesting question arises. In this case, either the annulus of

convergence shrinks down to become the unit circle itself—which, strictly

speaking, is not allowed for a genuine annulus of convergence, because the

annulus of convergence ought to be an open region, which the unit circle is

not—or else the unit circle becomes the outer or inner boundary of the

annulus of convergence. These questions will be important for us in §§9.6,7.

For the moment, let us not worry about what happens when f (w) in not

analytic, and consider the simpler situation that arises when f (w) is ana-

lytic. Then we have the unit circle in the z-plane strictly contained within a

genuine annulus of convergence for F(z), this being bounded by circles
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(centred at the origin) of radii A and B, with B < 1 < A. The part of

the Laurent series with positive powers, F�, converges for points in the

z-plane whose moduli are smaller than A and the part with negative

powers, Fþ, converges for points in the z-plane whose moduli are greater

thanB, soboth convergewithin the annulus itself (and, in avery trivial sense,

the constant term a0 obviously ‘converges’ for all z). This provides us with a

‘splitting’ of the function F(z) into two parts, one holomorphic inside the

outer circle and the other holomorphic outside the inner circle, these being

deWned, respectively, by the series expressions for F� and Fþ.
There is a (mild) ambiguity about whether the constant term a0 is to be

included with F� or with Fþ in this splitting. In fact, it is better just to live

with this ambiguity. For there is a symmetry between F� and Fþ, which is

made clearer if we adopt the Riemann sphere picture that was alluded to

above (see Fig. 9.5b). This gives us a more complete picture of the

situation, so let us explore this next.

9.3 Frequency splitting on the Riemann sphere

The coordinates z and w (¼ 1=z) give us two patches covering the Riemann

sphere. The unit circle becomes the equator of the sphere and the annulus is

now just a ‘collar’ of the equator. We think of our splitting of F(z) as

expressing it as a sum of two parts, one of which extends holomorphically

into the southern hemisphere—called the positive-frequencypart of F(z)—as

deWned by Fþ(z), together with whatever portion of the constant term we

choose to include, and the other, extending holomorphically into the north-

ern hemisphere—called the negative-frequency part of F(z)—as deWned by

F�(z) and the remaining portion of the constant term. If we ignore the

constant term, this splitting is uniquely determined by this holomorphicity

requirement for the extension into one or other of the two hemispheres.[9.3]

It will be handy, from time to time, to refer to the ‘inside’ and the

‘outside’ of a circle (or other closed loop) drawn on the Riemann sphere by

appealing to an orientation that is to be assigned to the circle. The standard

orientation of the unit circle in the z-plane is given in terms of the direction

of increase of the standard y-coordinate, i.e. anticlockwise. If we reverse

this orientation (e.g. replacing y by �y), then we interchange positive with

negative frequency. Our convention for a general closed loop is to be

consistent with this. The orientation is anticlockwise if the ‘clock face’ is

on the inside of the loop, so to speak, whereas it would be clockwise if the

‘clock face’ were to be placed on the outside of the loop. This serves to

deWne the ‘inside’ and ‘outside’ of an oriented closed loop. Figure 9.6

should clarify the issue.

[9.3] Can you see why?

161

Fourier decomposition and hyperfunctions §9.3



Inside

Outside

This splitting of a function into its positive- and negative-frequency

parts is a crucial ingredient of quantum theory, and most particularly of

quantum Weld theory, as we shall be seeing in §24.3 and §§26.2–4. The

particular formulation that I have given here is not quite the most usual

way that this splitting is expressed, but it has some considerable advan-

tages in a number of diVerent contexts (particularly in twistor theory, for

example; see §33.10). The usual formulation is not so concerned with

holomorphic extensions as with the Fourier expansion directly. The posi-

tive-frequency components are those given by multiples of e�inw, where n is

positive, as opposed to those given by multiples of einw, which are negative-

frequency components. A positive-frequency function is one composed

entirely of positive-frequency components.

However, this description does not reveal the full generality of what is

involved in this splitting. There are many holomorphic mappings of the

Riemann sphere to itself which send each hemisphere to itself, but which

do not preserve the north or south poles (i.e. the points z ¼ 0 or

z ¼ 1).[9.4] These preserve the positive/negative-frequency splitting but

do not preserve the individual Fourier components e�inw or einw. Thus,

the issue of the splitting into positive and negative frequencies (crucial to

quantum theory) is a more general notion than the picking out of individ-

ual Fourier components.

In normal discussions of quantum mechanics, the positive/negative-

frequency splitting refers to functions of time t, and we do not usually

think of time as going round in a circle. But we can use a simple trans-

formation to obtain the full range of t, from the ‘past limit’ t ¼ �1 to the

‘future limit’ t ¼ 1, from a w that goes once around the circle—here I take

w to range between the limits w ¼ �p and w ¼ p (so z ¼ eiw ranges round

the unit circle in the complex plane, in an anticlockwise direction, from the

point z ¼ �1 and back to z ¼ �1 again; see Fig. 9.7). Such a transform-

ation is given by

[9.4] Which are these mappings, explicitly?

Fig. 9.6 An orientation assigned to a closed loop

on the Riemann sphere deWnes its ‘inside’ and

‘outside’ as indicated: this orientation is anti-

clockwise for a ‘clock face’ inside the loop (and

clockwise if outside).
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t = ��

t = 2

t = 1

t

t = 0x

t = −1

Fig. 9.7 In quantum mechanics, positive/negative-frequency splitting refers to

functions of time t, not assumed periodic. The splitting of Fig. 9.5 can still be

applied, for the full range of t (from �1 to¼ þ1) if we use the transformation of

relating t to z(¼ eiw), where we go around unit circle, anticlockwise, from z ¼ �1

and back to z ¼ �1 again, so w goes from �p to p.

t ¼ tan
1

2
w:

The graph of this relationship is given in Fig. 9.8 and a simple geometrical

description is provided in Fig. 9.9.

An advantage of this particular transformation is that it extends holo-

morphically to the entire Riemann sphere, this being a transformation that

we already considered in §8.3 (see Fig. 8.8), which takes the unit circle

(z-plane) into the real line (t-plane):[9.5]

t ¼ z� 1

izþ i
, z ¼ �tþ i

tþ i
:

The interior of the unit circle in the z-plane corresponds to the upper half-

t-plane and the exterior of the z-unit circle corresponds to the lower half-

t-plane. Hence, positive-frequency functions of t are those that extend

holomorphically into the lower half-plane of t and negative-frequency

ones, into the upper half-plane. (There is, however, a signiWcant additional

x = π
x

x = −π

t

[9.5] Show that this gives the same t as above.

Fig. 9.8 Graph of

t ¼ tan w=2.
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t

z = eix

x

1

x1
2

technicality that we have to be careful about how we deal with the point

‘1’ of the t-plane; but this is handled appropriately if we always think in

terms of the Riemann sphere, rather than simply the complex t-plane.)

In standard presentations, however, the notion of ‘positive frequency’ in

terms of a time-coordinate t, is not usually stated in the particular way that

I have just presented it here, but rather in terms of what is called the

Fourier transform of f (w). The answer is actually the same5 as the one that I

have given, but since Fourier transforms are of crucial signiWcance for

quantum mechanics in any case (and also in many other areas), it will be

important to explain here what this transform actually is.

9.4 The Fourier transform

Basically, a Fourier transform is the limiting case of a Fourier series when

the period l of our periodic function f (w) is taken to get larger and larger

until it becomes inWnite. In this inWnite limit, there is no restriction of

periodicity on f (w) at all: it is just an ordinary function.6 This has consider-

able advantages when we are studying wave propagation and the potential

for sending of ‘unexpected’ signals. For then we do not want to insist that

the form of the signal be periodic. The Fourier transform allows us to

consider such ‘one-oV’ signals, while still analysing them in terms of

periodic ‘pure tones’. It achieves this, in eVect, by considering our function

f (w) to have period l!1. As the period l gets larger, the pure-tone

harmonics, having period l/n for some positive integer n, will get closer

and closer to any positive real number we choose. (Recall that any real

number can be approximated arbitrarily closely by rationals, for example.)

What this tells us is that any pure tone of any frequency whatever is now

Fig. 9.9 Geometry of

t ¼ tan w
2
.

164

§9.4 CHAPTER 9



allowed as a Fourier component. Rather than having f (w) expressed as

a discrete sum of Fourier components, we now have f (w) expressed

as a continuous sum over all frequencies, which means that f (w) is now

expressed as an integral (see §6.6) with respect to the frequency.

Let us see, in outline, how this works. First, recall our ‘tidiest’ expres-

sion for the Fourier decomposition of a periodic function f (w), of period l,

as given above:

F (z)¼
X

arz
r, where z¼eiow

(the angular frequencyo being given byo ¼ 2p=l). Let us take the period to

be initially 2p, so o ¼ 1. Now we are going to try to increase the period by

some large integer factor N (whence l ¼ 2pN), so the frequency is reduced

by the same factor (i.e. o ¼ N�1). The oscillatory wave that used to be the

fundamental pure tone now becomes the Nth harmonic with respect to this

new lower frequency. A pure tone that used to be an nth harmonic would

now be an (nN)th harmonic. When we take the limit as N approaches

inWnity, it becomes inappropriate to try to keep track of a particular

oscillatory component by labelling it by its ‘harmonic number’ (i.e. by the

number n), because this number keeps changing. That is to say, it is inappro-

priate to label this oscillatory component by the integer r in the above sum

because a Wxed value of r labels a particular harmonic (r ¼ �n for the nth

harmonic), rather than keeping track of a particular tone frequency. In-

stead, it is r/N that keeps track of this frequency, and we need a new variable

to label this. Bearing in mind the important use that Fourier transforms are

due to be put to in later chapters (see §21.11 particularly), I shall call this

variable ‘p’ which, in the limit when N tends to inWnity, stands for the

momentum7 of some quantum-mechanical particle whose position is meas-

ured by w. In this limit, one may also revert to the conventional use of x in

place of w, if desired, aswe shallWnd that w actually does become the real part

of z in the limit in the following descriptions.

For Wnite N, I write

p ¼ r

N
:

In the limit as N!1, the parameter p becomes a continuous variable

and, since the ‘coeYcients ar’ in our sum will then depend on the continu-

ous real-valued parameter p rather that on the discrete integer-valued

parameter r, it is better to write the dependence of the coeYcients ar on r

by using the standard type of functional notation, say g(p), rather than just

using a suYx (e.g. gp), as in ar. EVectively, we shall make the replacement

ar 7! g(p)
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in our summation
P

arz
r, but we must bear in mind that, as N gets larger,

the number of actual terms lying within some small range of p-values gets

larger (basically in proportion to N, because we are considering fractions

n/N that lie in that range). Accordingly, the quantity g(p) is really a

measure of density, and it must be accompanied by the diVerential quan-

tity dp in the limit as the summation
P

becomes an integral
Ð

. Finally,

consider the term zr in our sum
P

arz
r. We have z ¼ eiow, with o ¼ N�1;

so z ¼ eiw=N . Thus zr ¼ eiw=N ¼ eiwp; so putting these things together, in the

limit as N!1, we get the expression

X

arz
r !

ð1

�1
g(p)eiwpdp

to represent our function f (w). In fact it is usual to include a scaling factor

of (2p)�1=2 with the integral, for then there is the remarkable symmetry that

the inverse relation, expressingg(p) in termsof f (w) has exactly the same form

(apart from a minus sign) as that which expresses f (w) in terms of g(p):

f (w) ¼ (2p)�1=2

ð1

�1
g(p)eiwpdp, g(p) ¼ (2p)�1=2

ð1

�1
f (w)e�iwpdw:

The functions f (w) and g(p) are called Fourier transforms of one another.[9.6]

9.5 Frequency splitting from the Fourier transform

A (complex) function f (w), deWned on the entire real line, is said to be of

positive frequency if itsFourier transformg(p) is zero for allp > 0.Thus, f (w)
is composed only of components of the form eiwp with p < 0. (Euler might

well have worried—see §6.1—about such a g(p), which seems to be a blatant

‘gluing job’ between anon-zero function for p < 0 and simply zero for p > 0.

Yet this seems to be representing a perfectly respectable ‘holomorphic’

property of f (w). Another way of expressing this ‘positive-frequency’ condi-

tion is in terms of the holomorphic extendability of f (w), as we did before for

Fourier series. Now we think of the variable w as labelling the points on the

real axis (so we can take w ¼ x on this axis), where on the Riemann sphere

this ‘real axis’ (including the point ‘w ¼ 1’) is now the real circle (see Fig.

8.9c). This circle divides the sphere into two hemispheres, the ‘outside’ one

being that which is the lower half-plane in the standard picture of the

complex plane. The condition that f (w) be of positive frequency is now

that it extend holomorphically into this outside hemisphere.

There is one issue that requires some care, however, when we compare

these two deWnitions of ‘positive frequency’. This relates to the question of

[9.6] Show (in outline) how to obtain the expression for g(p) in terms of f (w) using a limiting

form of the contour integral expression an ¼ (2pi)�1
H

z�n�1F (z)dz of Exercise [9.2].
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how we treat the point z ¼ 1, since the function f (w) will in general have

some kind of singularity there. In fact, provided that we adopt the ‘hyper-

functional’ point of view that I shall be describing shortly (in §9.7), this

singularity at z ¼ 1 presents us with no essential diYculty. With the

appropriate point of view with regard to ‘f (1)’, it turns out that the two

deWnitions of positive frequency that I gave in the previous paragraph are

in basic agreement with each other.8

For the interested reader, it may be helpful to examine, in terms of the

Riemann sphere, some of the geometry that is involved in our limit of §9.4,

taking us from Fourier series to Fourier transform. Let us return to the

z-plane description that we had been considering earlier, for a function f (w)
of period 2p, where w measures the arc length around a unit-radius circle.

Suppose that we wish to change the period to values larger than 2p, in

successively increasing steps, while retaining the interpretation of w as a

distance around a circle. We can achieve this by considering a sequence of

larger and larger circles, but in order for the limiting procedure to make

geometric sense we shall suppose that the circles are all touching each other

at the starting point w ¼ 0 (see Fig. 9.10a). For simplicity in what follows,

let us choose this point to be the origin z ¼ 0 (rather than z ¼ 1), with

all the circles lying in the lower half-plane. This makes our initial circle,

0

−i

Displaced
unit circle

C = −il
2π

x

(a)

Nega
tiv

e

im
ag

ina
ry

Displaced
unit circle

ax
is

Real
axis

�

−i

0

(b)

Fig. 9.10 Positive-frequency condition, as l!1, where l is the period of f (w).
(a) Start with l ¼ 2p, with f deWned on the unit circle displaced to have its centre

at z ¼ �i. For increasing l, the circle has radius l and centre at C ¼ �il=2p. In

each case wmeasures arc length clockwise. Positive frequency is expressed as f being

holomorphically extendible to the interior of the circle, and in the limit l ¼ 1, to

the lower half-plane. (b) The same, on the Riemann sphere. For Wnite l, the

Fourier series is obtained from a Laurent series about z ¼ �il=2p, but on the

sphere, this point is not the circle’s centre, becoming the point 1 (lying on it) in

the limit l ¼ 1, where the Fourier series becomes the Fourier transform.
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for period l ¼ 2p, the unit circle centred at z ¼ �i, rather than at the

origin. For a period l > 2p, the circle is centred at the point C ¼ �il=2p
in the complex plane, and, in the limit as l!1, we get the real axis

itself (so w ¼ x), the circle’s ‘centre’ having moved oV to inWnity along

the negative imaginary axis. In each case, we now take w to measure

arc length clockwise around the circle (or, in the limiting case, just

positive distance along the real axis), with w ¼ 0 at the origin. Since our

circles now have a non-standard (i.e. clockwise) orientation, their ‘out-

sides’ are their interiors (see §9.3, Fig. 9.6), so our positive frequency

condition refers to this interior. We now have the relation between w and

z expressed as[9.7]

z ¼ il

2p
e�iw � 1
� �

:

For Wnite l, we can express f (w) as a Fourier series by referring to a

Laurent series about the point C ¼ �il=2p. We get the Fourier transform

by taking the limit l!1. For Wnite l, we obtain the condition of positive

frequency as the holomorphic extendability of f (w) into the interior of

the relevant circle; in the limit l!1, this becomes holomorphic extend-

ability into the lower half-plane, in accordance with what has been stated

above.

What happens to the Laurent series in the limit l!1? We shall need

to look at the Riemann sphere to understand what happens in this limit. For

each Wnite value of l, the point C( ¼ il=2p) is the centre of the w-circle, but,

on the Riemann sphere, the point C need be nothing like the centre

of the circle. As l increases, C moves out along the circle on the Riemann

sphere which represents the imaginary axis (see Fig. 9.10b), and the

point C( ¼ �il=2p) looks less and less like the centre of the circle. Finally,

when the limit l ¼ 1 is reached, C becomes the point z ¼ 1 on the Rie-

mann sphere. But when C ¼ 1, we Wnd that it actually lies on the circle

which it is supposed to be the centre of! (This circle is, of course, now the

real axis.) Thus, there is something peculiar (or ‘singular’) about the

taking of a power series about this point—which is to be expected, of

course, because we do not get a sum of individual terms any more, but a

continuous integral.

9.6 What kind of function is appropriate?

Let us now return to the question posed at the beginning of this chapter,

concerning the type of ‘function’ that is appropriate to use. We can raise

[9.7] Derive this expression.
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the following issue: what kind of functions can we represent as Fourier

transforms? It would seem to be inappropriate to restrict attention only to

analytic (i.e to Co�) functions because, as we saw above, the Fourier

transform g(p) of a positive-frequency function f (w)—which can certainly

be analytic—is a distinctly non-analytic ‘gluing job’ of a non-zero function

to the zero function. The relation between a function and its Fourier

transform is symmetrical, so it seems unreasonable to adopt such diVerent

standards for each. As a further point, it was noted above that the behav-

iour of f (w) at the point w ¼ 1 is relevant to the issue of its positive/

negative-frequency splitting, but only in very special circumstances would

f (w) actually be analytic (Co) at 1 (since this would require a precise

matching between the behaviour of f (w) as w! þ1 and as w! �1). In

addition to all this, there is our initial physical motivation, referred to

earlier, for studying Fourier transforms, namely that they allow us to treat

signals which can transmit ‘unexpected’ (non-analytic) messages. Thus, we

must return to the question which confronted us at the beginning of this

chapter: what kind of function should we accept as being an ‘honest’

function?

We recall that, on the one hand, Euler and his contemporaries might

indeed have probably settled for a holomorphic (or analytic) function as

being the kind of thing that they had in mind for a respectable ‘function’;

yet, on the other hand, such functions seem unreasonably restrictive for

many kinds of mathematical and physical problem, including those con-

cerned with wave propagation, so a more general notion is needed. Is

one of these points of view more ‘correct’ than the other? There is prob-

ably a strong prevailing opinion that supporters of the Wrst viewpoint

are ‘old-fashioned’, and that modern concepts lean heavily towards

the second, so that holomorphic or analytic functions are just very special

cases of the general notion of a ‘function’. But is this necessarily the

‘right’ attitude to take? Let us try to put ourselves into an 18th-century

frame of mind.

Enter JosephFourier early in the 19th century.Thosewhobelonged to the

‘analytic’ (‘Eulerian’) school of thought would have received a nasty shock

when Fourier showed that certain periodic functions, such as the square

wave or saw tooth depicted in Fig. 9.11, have perfectly reasonable-looking

Fourier representations! Fourier encountered a great deal of opposition

from the mathematical establishment at the time. Many were reluctant to

accept his conclusions. How could there be a ‘formula’ for the square-wave

function, for example? Yet, as Fourier showed, the series

s(w) ¼ sin wþ 1
3
sin 3wþ 1

5
sin 5wþ 1

7
sin 7wþ � � �

actually sums to a square wave, taking this wave to oscillate between the

constant values 1
4
p and � 1

4
p in the half-period p (see Fig. 9.12).
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x

x

(a)

(b)

Fig. 9.11 Discontinuous periodic functions (with perfectly reasonable-looking

Fourier representations): (a) Square wave (b) Saw tooth.

x

s

Fig. 9.12 Partial sums of the Fourier series s(w) ¼ sin wþ 1
3
sin 3wþ 1

5
sin 5wþ

1
7
sin 7wþ 1

9
sin 9wþ . . . , converging to a square wave (like that of Fig. 9.11a).

Let us consider the Laurent-series description for this, as given above.

We have the rather elegant-looking expression[9.8]

2is(w) ¼ � � � � 1
5
z�5 � 1

3
z�3 � z�1 þ zþ 1

3
z3 þ 1

5
z5 þ � � � ,

where z ¼ eiw. In fact this is an example where the annulus of convergence

shrinks down to the unit circle—with no actual open region left. However,

we can still make sense of things in terms of holomorphic functions if we

split the Laurent series into two halves, one with the positive powers,

giving an ordinary power series in z, and one with the negative powers,

giving a power series in z�1. In fact, these are well-known series, and can

be summed explicitly:[9.9]

[9.8] Show this.

[9.9] Do this, by taking advantage of a power series expansion for log z taken about z ¼ 1,

given towards the end of §7.4.
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S� ¼ zþ 1
3
z3 þ 1

5
z5 þ � � � ¼ 1

2
log

1þ z

1� z

� �

and

Sþ ¼ � � � � 1
5
z�5 � 1

3
z�3 � z�1 ¼ �1

2
log

1þ z�1

1� z�1

� �

,

giving 2is(w) ¼ S� þ Sþ. A little rearrangement of these expressions leads

to the conclusion that S� and �Sþ diVer only by � 1
2
ip, telling us that

s(w) ¼ � 1
4
p.[9.10] But we need to look a little more closely to see why we

actually get a square wave oscillating between these alternative values.

It is a little easier to appreciate what is going on if we apply the

transformation t ¼ (z� 1)=(izþ i), given in §8.3, which takes the interior

of the unit circle in the z-plane to the upper half-t-plane (as illustrated in

Fig. 8.10). In terms of t, the quantity S� now refers to this upper half-

plane and Sþ to the lower half-plane, and we Wnd (with possible 2pi

ambiguities in the logarithms)

S� ¼ �1
2
log tþ 1

2
log i, Sþ ¼ 1

2
log tþ 1

2
log i:

Following the logarithms continuously from the respective starting points

t ¼ i (where S� ¼ 0) and t ¼ �i (where Sþ ¼ 0), we Wnd that along

the positive real t-axis we have S� þ Sþ ¼ þ 1
2
ip, whereas along the nega-

tive real t-axis we have S� þ Sþ ¼ � 1
2
ip.[9.11] From this we deduce that

along the top half of the unit circle in the z-plane we have s(w) ¼ þ 1
4
p,

whereas along the bottom half we have s(w) ¼ � 1
4
p. This shows that the

Fourier series indeed sums to the square wave, just as Fourier had asserted.

What is the moral to be drawn from this example? We have seen that a

particular (periodic) function that is not even continuous, let alone diVer-

entiable (in this case being a C�1-function), can be represented as a

perfectly sensible-looking Fourier series. Equivalently, when we think of

the function as being deWned on the unit circle, it can be represented as a

reasonable-appearing Laurent series, although it is one for which the

annulus of convergence has, in eVect, shrunk down to the unit circle itself.

The positive and the negative half of this Laurent series each sums to a

perfectly good holomorphic function on half of the Riemann sphere. One

is deWned on one side of the unit circle, and the other is deWned on

the other side. We can think of the ‘sum’ of these two functions as

giving the required square wave on the unit circle itself. It is because

of the existence of branch singularities at the two points z ¼ �1 on

[9.10] Show this (assuming that js(w)j < 3p=2).

[9.11] Show this.
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the unit circle that the sum can ‘jump’ from one side to the other, giving the

square wave that arises in this sum. These branch singularities also prevent

the power series on the two sides from converging beyond the unit circle.

9.7 Hyperfunctions

This example is only a very special case, but it illustrates what we must

do in general. Let us ask what is the most general type of function that

can be deWned on the unit circle (on the Riemann sphere) and represented

as a ‘sum’ of some holomorphic function Fþ on the open region lying

to one side of the circle and of another holomorphic function F� on the

open region lying to the other side, just as in the example that we

have been considering. We shall Wnd that the answer to this question

leads us directly to an exotic but important notion referred to as a

‘hyperfunction’.

In fact, it turns out to be more illuminating to think of f as being the

‘diVerence’ between F� and � Fþ. One reason for this is that, in the most

general cases, there may be no analytic extension of either F� or Fþ to the

actual unit circle, so it is not clear what such a ‘sum’ could mean on the

circle itself. However, we can think of the diVerence between

F� and � Fþ as representing the ‘jump’ between these two functions as

their regions of deWnition come together at the unit circle.

This idea of a ‘jump’ between a holomorphic function on one side of a

curve in the complex plane and another holomorphic function on the

other—where neither holomorphic function need extend holomorphically

over the curve itself—actually provides us with a new concept of a ‘func-

tion’ deWned on the curve. This is, in eVect, the deWnition of a hyperfunc-

tion on an (analytic) curve. It is a wonderful notion put forward by the

Japanese mathematician Mikio Sato in 1958,9 although, as we shall shortly

be seeing, Sato’s actual deWnition is considerably more elegant than just

this.10

We do not need to think of a closed curve, like the entire unit circle, for

the deWnition of a hyperfunction, but we can consider some part of a

curve. Indeed, it is more usual to consider hyperfunctions as deWned on

some segment g of the real line. We shall take g to be the segment of the

real line between a and b, where a and b are real numbers with a < b. A

hyperfunction deWned on g is then the jump across g, starting from a

holomorphic function f on an open set RR � (having g as its upper bound-

ary) to a holomorphic function g on an open set RR þ (having g as its lower

boundary) see Fig. 9.13.

Simply to refer to a ‘jump’ in this way does not give us much idea of

what to do with such a thing (and it is not yet very mathematically

precise). Sato’s elegant resolution of these issues is to proceed in a rather
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Complex
plane

c

Fig. 9.13 A hyperfunction on a segment g of the real axis expresses the ‘jump’

from a holomorphic function on one side of g to one on the other.

formally algebraic way, which is actually extrordinarily simple. We merely

represent this jump as the pair ( f, g) of these holomorphic functions, but

where we say that such a pair ( f, g) is equivalent to another such pair

( f0, g0) if the latter is obtained from the former by adding to both f and g

the same holomorphic function h, where h is deWned on the combined

(open) region RR, which consists of RR � and RR þ joined together along

the curve segment g; see Fig. 9.14. We can say

f on R-

g on R+

,
modulo h on Rc

c

Fig. 9.14 A hyperfunction, on a segment g of the real axis, is provided by a pair

of holomorphic functions ( f, g), with f deWned on some open region RR �,

extending downwards from g and g on an open region RR þ, extending upwards

from g. The actual hyperfunction h, on g, is ( f, g) modulo quantities ( fþ h, gþ h),

where h is holomorphic on the union RR of RR �, g, and RR þ.
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( f , g) is equivalent to ( fþ h, gþ h),

where the holomorphic functions f and g are deWned on RR � and RR þ,
respectively, and where h is an arbitrary holomorphic function on the

combined region RR : Either of the above displayed expressions can be

used to represent the same hyperfunction. The hyperfunction itself would

be mathematically referred to as the equivalence class of such pairs, ‘re-

duced modulo’11 the holomorphic functions h deWned on RR. The reader

may recall the notion of ‘equivalence class’ referred to in the Preface, in

connection with the deWnition of a fraction. This is the same general idea—

and no less confusing. The essential point here is that adding h does not

aVect the ‘jump’ between f and g, but h can change f and g in ways that are

irrelevant to this jump. (For example, h can change how these functions

happen to continue away from g into the open regions RR � and RR þ.)
Thus, the jump itself is neatly represented as this equivalence class.

The reader may be genuinely disturbed that this slick deWnition seems to

depend crucially on our arbitrary choices of open regions RR � and RR þ,
restricted merely by their being joined along their common boundary

line g. Remarkably, however, the deWnition of a hyperfunction does not

depend on this choice. According to an astonishing theorem, known as the

excision theorem, this notion of hyperfunction is actually quite independ-

ent of the particular choices of RR � and RR þ; see top three examples of

Fig. 9.15.

(a)

(b)

c

c c
c

cc

Fig. 9.15 The excision theorem tells us that the notion of a hyperfunction is

independent of the choice of open region RR, so long as RR contains the given

curve g. (a) The region RR � �gg may consist of two separate pieces (so we get two

distinct holomorphic functions f and g, as in Fig. 9.14) or (b) the region RR � �gg
may be a single connected piece, in which case f and g are simply two parts of the

same holomorphic function.
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In fact, the excision theorem gives us more than even this. We do not

require that our open region RR be divided into two (namely into

RR � and RR þ) by the removal of g. All we need is that the open region

RR , in the complex plane, must contain the open12 segment g. It may be

that RR � g (i.e. what is left of RR when g is removed from it13) consists

of two separate pieces, just as we have been considering up to this

point, but more generally the removal of g from RR may leave us with

a single connected region, as illustrated in the bottom three examples

of Fig. 9.15. In these cases, we must also remove any internal end-point

a or b, of g, so that we are left with an open set, which I refer to as RR � �gg.
In this more general case, our hyperfunctions are deWned as ‘holo-

morphic functions on RR, reduced modulo holomorphic functions

on RR � �gg’. It is quite remarkable that this very liberal choice

of RR makes no diVerence to the class of ‘hyperfunctions’ that is thereby

deWned.[9.12] The case when a and b both lie within R is useful for integrals

of hyperfunctions, since then a closed contour in R� �gg can be used.

All this applies also to our previous case of a circle on the Riemann

sphere. Here, there is some advantage in taking RR to be the entire Riemann

sphere, because then the functions that we have to ‘mod out by’ are the

holomorphic functions that are global on the entire Riemann sphere, and

there is a theorem which tells us that these functions are just constants.

(These are actually the ‘constants’ a0 that we chose not to worry about

in §9.2.) Thus, modulo constants, a hyperfunction deWned on a circle on

the Riemann sphere is speciWed simply by one holomorphic function on

the entire region on one side of the circle and another function on the

other side. This gives the splitting of an arbitrary hyperfunction on

the circle uniquely (modulo constants) into its positive- and negative-fre-

quency parts.

Let us end by considering some basic properties of hyperfunctions. I

shall use the notation
�

j f , g
�

j to denote the hyperfunction speciWed by the

pair f and g deWned holomorphically on RR � and RR þ, respectively

(where I am reverting to the case where g divides RR into RR � and RR þ.
Thus, if we have two diVerent representations

�

j f , g
�

j and
�

j f0, g0

�

j of the

same hyperfunction, that is,
�

j f , g
�

j ¼
�

j f0, g0

�

j, then f� f0 and g� g0

are both the same holomorphic function h deWned on RR, but restricted

to RR � and RR þ respectively. It is then straightforward to express the sum

of two hyperfunctions, the derivative of a hyperfunction, and the product

of a hyperfunction with an analytic function q deWned on g:

[9.12] Why does ‘holomorphic functions on RR, reduced modulo holomorphic functions on

RR � �gg’ become the deWnition of a hyperfunction that we had previously, when RR � �gg splits into

RR � and RR þ?

Fourier decomposition and hyperfunctions §9.7

175



�

j f , g
�

j þ
�

j f1, g1

�

j ¼
�

j fþ f1, gþ g1

�

j,

d
�

j f , g
�

j
dz

¼
�

j df

dz
,

dg

dz
j
�

,

q
�

j f , g
�

j ¼ ¼
�

jqf , qg
�

j:

where, in the last expression, the analytic function q is extended holomor-

phically into a neighbourhood14 of g.[9.13] We can represent q itself as a

hyperfunction by q ¼
�

jq, 0
�

j ¼
�

j0, � q
�

j, but there is no general product

deWned between two hyperfunctions. The lack of a product is not the fault

of the hyperfunction approach to generalized functions. It is there with all

approaches.15 The fact that the Dirac delta function (referred to in §6.6;

also see below) cannot be squared, for example, causes many quantum

Weld theorists no end of trouble.

Some simple examples of hyperfunctional representations, in the case

when g ¼R, and RR � and RR þ are the upper and lower open complex

half-planes, are the Heaviside step funtion y(x) and the Dirac (-Heaviside)

delta function d(x)( ¼ dy(x)=dx) (see §§6.1,6):

y(x) ¼
�

j 1

2pi
log z,

1

2pi
log z� 1j

�

,

d(x) ¼
�

j 1

2piz
,

1

2piz
j
�

,

where we take the branch of the logarithm for which log 1 ¼ 0. The integral

of the hyperfunction
�

j f , g
�

j over the entire real line can be expressed as the

integral of f along a contour just below the real line minus the integral of g

along a contour just above the real line (assuming these converge), both

from left to right.[9.14] Note that the hyperfunction can be non-trivial even

when f and g are analytic continuations of the same function.

How general are hyperfunctions? They certainly include all analytic

functions. They also include discontinuous functions like y(x) and the

square wave (as our discussions above show), or other C�1-functions

obtained by adding such things together. In fact all C�1-functions are

examples of hyperfunctions. Moreover, since we can diVerentiate a hyper-

function to obtain another hyperfunction, and any C�2-function can be

obtained as the derivative of some C�1-function, it follows that all C�2-

functions are also hyperfunctions. We have seen that this includes the

[9.13] There is a small subtlety here. Sort it out. Hint: Think carefully about the domains of

deWnition.

[9.14] Check the standard property of the delta function that
R

q(x)d(x)dx ¼ q(0), in the case

when q(x) is analytic.

§9.7 CHAPTER 9

176



Dirac delta function. We can diVerentiate again, and then again. Indeed,

any C�n-function is a hyperfunction for any integer n whatever. What

about the C�1-functions, referred to as distributions (see §6.6). Yes, these

also are all hyperfunctions.

The normal deWnition of a distribution16 is as an element of what is

called the dual space of the C1-smooth functions. The concept of a ‘dual

space’ will be discussed in §12.3 (and §13.6). In fact, the dual (in an

appropriate sense) of the space of Cn-functions is the space of C�2�n-

functions for any integer n, and this applies also to n ¼ 1, if we write

�2�1 ¼ �1 and �2þ1 ¼ 1. Accordingly, the C�1-functions

are indeed dual to the C1-functions. What about the dual (C�o) of

the Co-functions? Indeed; with the appropriate deWnition of ‘dual’, these

C�o-functions are precisely the hyperfunctions!

We have come full circle. In trying to generalize the notion of ‘function’ as

far aswecanaway fromtheapparently very restrictivenotionofan ‘analytic’

or ‘holomorphic’ function—the type of function that would have made

Euler happy—we have come round to the extremely general and Xexible

notion of a hyperfunction. But hyperfunctions are themselves deWned, in a

basically very simple way, in terms of the these very same ‘Eulerian’ holo-

morphic functions that we thought we had reluctantly abandoned. In my

view, this is oneof the suprememagical achievementsof complexnumbers.16

If only Euler had been alive to appreciate this wondrous fact!

Notes

Section 9.1

9.1. I am using the greek letter w (‘chi’) here, rather than an ordinary x, which might

have seemed more natural, only because we need to distinguish this variable

from the real part x of the complex number z, which will play an important part

in what follows.

9.2. There is no requirement that f (w) be real for real values of w, that is, for the an,bn,

and c to be real numbers. It is perfectly legitimate to have complex functions of

real variables. The condition that f (w) be real is that a�n be the complex

conjugate of an. Complex conjugates will be discussed in §10.1.

Section 9.2

9.3. The odd-looking notational anomaly of using ‘F�’ for the part of the series with

positive powers and ‘Fþ’ for the part with negative powers springs ultimately

from a perhaps unfortunate sign convention that has become almost universal in

the quantum-mechanical literature (see §§21.2,3 and §24.3). I apologize for this,

but there is nothing that I can reasonably do about it!

9.4. It is a general principle that, for any Co-function f, deWned on a real domain RR,

it is possible to ‘complexify’ RR to a slightly extended complex domain CRR,

called a ‘complex thickening’ of RR, containing RR in its interior, such that f

extends uniquely to a holomorphic function deWned on CRR .
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9.5. See e.g. Bailey et al. (1982).

Section 9.4

9.6. On the other hand, it is usual to impose some requirement that f (w) behaves

‘reasonably’ as w tends to positive or negative inWnity. This will not be of

particular concern for us here and, in any case, with the approach that I am

adopting, the normal requirements would be unnecessarily restrictive.

9.7. In quantum mechanics, there is also a constant quantity �h introduced to Wx the

scaling of p appropriately, in relation to x (see §§21.2,11), but for the moment I

am keeping things simple by taking �h ¼ 1. In fact, �h is Dirac’s form of Planck’s

constant (i.e. h=2p, where h is Planck’s original ‘quantum of action’). The choice

�h ¼ 1 can always be made, by deWning our basic units in a suitable way. See

§27.10.

Section 9.5

9.8. See Bailey et al. (1982).

Section 9.7

9.9. See Sato (1958, 1959, 1960).

9.10. See also Bremermann (1965), although the term ‘hyperfunction’ is not used

explicitly in this work.

9.11. Another aspect of the notion ‘modulo’ will be discussed in §16.1 (and compare

Note 3.17).

9.12. Here ‘open segment’ simply refers to the fact that the actual end-points a and b

are not included in g, so that ‘containing’ g does not imply the containing of a

and b within RR.

9.13. This ‘diVerence’ between sets RR,g is also commonly written RR ng.
9.14. The technical deWnition of ‘neighbourhood of’ is ‘open set containing’.

9.15. For the more standard (‘distribution’) approach to the idea of ‘generalized

function’, see Schwartz (1966); Friedlander (1982); Gel’fand and Shilov (1964);

Trèves (1967); for an alternative proposal, useful in ‘nonlinear’ contexts, and

which shifts the ‘product existence problem to a non-uniqueness problem—see

Colombeau (1983, 1985) and Grosser et al. (2001).

9.16. There are also important interconnections between hyperfunctions and the

holomorphic sheaf cohomology that will be discussed in §33.9. Such ideas play

important roles in the theory of hyperfunctions on higher-dimensional surfaces,

see Sato (1959, 1960) and Harvey (1966).
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