
13
Symmetry groups

13.1 Groups of transformations

Spaces that are symmetrical have a fundamental importance in modern

physics. Why is this? It might be thought that completely exact symmetry

is something that could arise only exceptionally, or perhaps just as some

convenient approximation. Although a symmetrical object, such as a

square or a sphere, has a precise existence as an idealized (‘Platonic’; see

§1.3) mathematical structure, any physical realization of such a thing

would ordinarily be regarded as merely some kind of approximate repre-

sentation of this Platonic ideal, therefore possessing no actual symmetry

that can be regarded as exact. Yet, remarkably, according to the highly suc-

cessful physical theories of the 20th century, all physical interactions

(including gravity) act in accordance with an idea which, strictly speaking,

depends crucially upon certain physical structures possessing a symmetry

that, at a fundamental level of description, is indeed necessarily exact!

What is this idea? It is a concept that has come to be known as a ‘gauge

connection’. That name, as it stands, conveys little. But the idea is an

important one, enabling us to Wnd a subtle (‘twisted’) notion of diVerentia-

tion that applies to general entities on a manifold (entities that are indeed

more general than just those—the p-forms—which are subject to exterior

diVerentiation, as described in Chapter 12). These matters will be the

subject of the two chapters following this one; but as a prerequisite,

we must Wrst explore the basic notion of a symmetry group. This notion also

has many other important areas of application in physics, chemistry, and

crystallography, and also within many diVerent areas of mathematics itself.

Let us take a simple example. What are the symmetries of a square? The

question has two diVerent answers depending upon whether or not we allow

symmetries which reverse the orientation of the square (i.e. for which

the square is turned over). Let us Wrst consider the case in which these

orientation-reversing symmetries are not allowed. Then the square’s sym-

metries are generated from a single rotation through a right angle in the

square’s plane, repeated various numbers of times. For convenience, we can

represent these motions in terms of complex numbers, as we did in
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Chapter 5. We may, if we choose, think of the vertices of the square as

occupying the points 1, i,�1, � i in the complex plane (Fig. 13.1a), and our

basic rotation represented by multiplication by i (i.e. by ‘i�’). The various

powers of i represent all our rotations, there being four distinct ones in all:

i0 ¼ 1, i1 ¼ i, i2 ¼ �1, i3 ¼ �i

(Fig. 13.1b). The fourth power i4 ¼ 1 gets us back to the beginning, so we

have no more elements. The product of any two of these four elements is

again one of them.

These four elements provide us with a simple example of a group. This

consists of a set of elements and a law of ‘multiplication’ deWned between

pairs of them (denoted by juxtaposition of symbols) for which the associa-

tive multiplication law holds

a(bc) ¼ (ab)c,

where there is an identity element 1 satisfying

1a ¼ a1 ¼ a,

and where each element a has an inverse a�1, such that[13.1]

a�1a ¼ aa�1 ¼ 1:

The symmetry operations which take an object (not necessarily a square)

into itself always satisfy these laws, called the group axioms.

i

−i

1

1 −1i −i

−1

CiCC −C −Ci

(b)

(c)

(a)

Fig. 13.1 Symmetry of a square. (a) We may represent the square’s vertices by

the points 1, i, � 1, � i in the complex plane C. (b) The group of non-reflective

symmetries are represented, in C, as multiplication by 1 ¼ i0, i ¼ i1,

�1 ¼ i2, � i ¼ i3, respectively. (c) The reflective symmetries are given, in C, by

C (complex conjugation), Ci, � C, and � Ci.

[13.1] Show that if we just assume 1a ¼ a and a�1a ¼ 1 for all a, together with associativity

a(bc) ¼ (ab)c, then a1 ¼ a and aa�1 ¼ 1 can be deduced. (Hint: Of course a is not the only element

asserted to have an inverse.) Show why, on the other hand, a1 ¼ a, a�1a ¼ 1, and a(bc) ¼ (ab)c

are insuYcient.

§13.1 CHAPTER 13
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Recall the conventions recommended in Chapter 11, where we think of b

acting Wrst and a afterwards, in the product ab. We can regard these as

operations as being performed upon some object appearing to the right.

Thus, we could consider the motion, b, expressing a symmetry of an object

F, as F 7! b(F), which we follow up by another such motion a, giving

b(F) 7! a(b(F)). This results in the combined action F 7! a(b(F)), which

we simply write F 7! ab(F), corresponding to the motion ab. The identity

operation leaves the object alone (clearly always a symmetry) and the

inverse is just the reverse operation of a given symmetry, moving the

object back to where it came from.

In our particular example of non-reXective rotations of the square, we

have the additional commutative property

ab ¼ ba:

Groups that are commutative in this sense are called Abelian, after the

tragically short-lived Norwegian mathematician Niels Henrik Abel.1

Clearly any group that can be represented simply by the multiplication

of complex numbers must be Abelian (since the multiplication of individ-

ual complex numbers always commutes). We saw other examples of this at

the end of Chapter 5 when we considered the general case of a Wnite cyclic

group Zn, generated by a single nth root of unity.[13.2]

Now let us allow the orientation-reversing reXections of our square. We

can still use the above representation of the square in terms of complex

numbers, but we shall need a new operation, which I denote by C, namely

complex conjugation. (This Xips the square over, about a horizontal line; see

§10.1, Fig. 10.1.) We now Wnd (see Fig. 13.1c) the ‘multiplication laws’[13.3]

Ci ¼ (� i)C, C(� 1) ¼ (� 1)C, C(� i) ¼ iC, CC ¼ 1

(where2 I shall henceforth write (� i)C as� iC, etc:): In fact, we can obtain

the multiplication laws for the entire group just from the basic relations[13.4]

i4 ¼ 1, C2 ¼ 1, Ci ¼ i3C,

the group being non-Abelian, as is manifested in the last equation. The

total number of of distinct elements in a group is called its order. The order

of this particular group is 8.

Now let us consider another simple example, namely the group of rota-

tional symmetries of an ordinary sphere. As before, we can Wrst consider the

[13.2] Explain why any vector space is an Abelian group—called an additive Abelian group—

where the group ‘multiplication’ operation is the ‘addition’ operation of the vector space.

[13.3] Verify these relations (bearing in mind that Ci stands for ‘the operation i�, followed by the

operationC, etc.). (Hint:Youcancheck the relationsby just confirmingtheir effectson1and i.Why?)

[13.4] Show this.

Symmetry groups §13.1

249



O(3)

SO(3)
1

Sphere

Subgroup of
non-reflective
symmetries

Space of
reflective

symmetries

Fig. 13.2 Rotational symmetry of a sphere. The entire symmetry group, O(3), is a

disconnected 3-manifold, consisting of two pieces. The component containing the

identity element 1 is the (normal) subgroup SO(3) of non-reflective symmetries of

the sphere. The remaining component is the 3-manifold of reflective symmetries.

case where reXections are excluded. This time, our symmetry group will

have an inWnite number of elements, because we can rotate through any

angle about any axis direction in 3-space. The symmetry group actually

constitutes a 3-dimensional space, namely the 3-manifold denoted by R in

Chapter 12. Let me now give this group (3-manifold) its oYcial name. It is

called3 SO(3), the non-reXective orthogonal group in 3 dimensions. If we

now include the reXections, then we get a whole new set of symmetries—

another 3-manifold’s worth—which are disconnected from the Wrst,

namely those which involve a reversal of the orientation of the sphere.

The entire family of group elements again constitutes a 3-manifold, but

now it is a disconnected 3-manifold, consisting of two separate connected

pieces (see Fig. 13.2). This entire group space is called O(3).

These two examples illustrate two of the most important categories of

groups, the Wnite groups and the continuous groups (or Lie groups; see

§13.6).4 Although there is a great diVerence between these two types of

group, there are many of the important properties of groups that are

common to both.

13.2 Subgroups and simple groups

Of particular signiWcance is the notion of a subgroup of a group. To exhibit

a subgroup, we select some collection of elements within the group which

themselves form a group, using the same multiplication and inversion

§13.2 CHAPTER 13
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operations as in the whole group. Subgroups are important in many

modern theories of particle physics. It tends to be assumed that there is

some fundamental symmetry of Nature that relates diVerent kinds of

particles to one another and also relates diVerent particle interactions to

one another. Yet one may not see this full group acting as a symmetry in

any manifest way, Wnding, instead, that this symmetry is ‘broken’ down to

some subgroup of the original group where the subgroup plays a manifest

role as a symmetry. Thus, it is important to know what the possible

subgroups of a putative ‘fundamental’ symmetry group actually are, in

order that those symmetries that are indeed manifest in Nature might be

able to be thought about as subgroups of this putative group. I shall be

addressing questions of this kind in §§25.5–8, §26.11, and §28.1.

Let us examine some particular cases of subgroups, for the examples that

we have been considering. The non-reXective symmetries of the square con-

stitute a 4-element subgroup {1, i, �1, �i} of the entire 8-element group of

symmetries of the square. Likewise, the non-reXective rotation group SO(3)

constitutes a subgroup of the entire group O(3). Another subgroup of the

symmetries of the square consists of the four elements {1, �1, C, �C}; yet

another has just the two elements {1, �1}.[13.5] Moreover there is always the

‘trivial’ subgroup consisting of the identity alone {1} (and the whole group

itself is, equally trivially, always a subgroup).

All the various subgroups that I have just described have a special

property of particular importance. They are examples of what are called

normal subgroups. The signiWcance of a normal subgroup is that, in an

appropriate sense, the action of any element of the whole group leaves a

normal subgroup alone or, more technically, we say that each element of

the whole group commutes with the normal subgroup. Let me be more

explicit. Call the whole group GG and the subgroup SS. If I select any

particular element g of the group GG, then I can denote by SSg the set

consisting of all elements of SS each individually multiplied by g on the

right (what is called postmultiplied by g). Thus, in the case of the particular

subgroup SS ¼ {1, �1, C, �C}, of the symmetry group of the square, if

we choose g ¼ i, then we obtain SSi ¼ {i, �i, Ci, �Ci}. Likewise, the

notation gS will denote the set consisting of all elements of SS, each

individually multiplied by g on the left (premultiplied by g). Thus, in our

example, we now have iSS ¼ {i, �i, iC, �iC}. The condition for SS to be a

normal subgroup of GG is that these two sets are the same, i.e.

SSg ¼ gSS, for all g in SS:

In our particular example, we see that this is indeed the case (since

Ci ¼ �iC and �Ci ¼ iC), where we must bear in mind that the collection

[13.5] Verify that all these in this paragraph are subgroups (and bear in mind Note 13.4).

Symmetry groups §13.2
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of things inside the curly brackets is to be taken as an unordered set (so that it

does not matter that the elements�iC and iC appear in reverse order in the

collection of elements, when SSi and iSS are written out explicitly).

We can exhibit a non-normal subgroup of the group of symmetries of

the square, as the subgroup of two elements {1, C}. It is non-normal

because {1, C}i ¼ {i, Ci} whereas i{1, C} ¼ {i, �Ci}. Note that this sub-

group arises as the new (reduced) symmetry group if we mark our square

with a horizontal arrow pointing oV to the right (see Fig. 13.3a). We can

obtain another non-normal subgroup, namely {1, Ci} if we mark it,

instead, with an arrow pointing diagonally down to the right (Fig.

13.3b).[13.6] In the case of O(3), there happens to be only one non-trivial

normal subgroup,[13.7] namely SO(3), but there are many non-normal

subgroups. Non-normal examples are obtained if we select some appro-

priate Wnite set of points on the sphere, and ask for the symmetries of the

sphere with these points marked. If we mark just a single point, then

the subgroup consists of rotations of the sphere about the axis joining

the origin to this point (Fig. 13.3c). Alternatively, we could, for example,

mark points that are the vertices of a regular polyhedron. Then the

subgroup is Wnite, and consists of the symmetry group of that particular

polyhedron (Fig. 13.3d).

One reason that normal subgroups are important is that, if a group GG
possesses a non-trivial normal subgroup, then we can break GG down, in a

sense, into smaller groups. Suppose that SS is a normal subgroup of GG.
Then the distinct sets SSg, where g runs through all the elements of GG, turn

(a) (b) (c) (d)

Fig. 13.3 (a) Marking the square of Fig. 13.1 with an arrow pointing to the right,

reduces its symmetry group to a non-normal subgroup {1,C}. (b) Marking it with

an arrow pointing diagonally down to the right yields a different non-normal

subgroup {1,Ci}. (c) Marking the sphere of Fig. 13.2 with a single point reduces its

symmetry to a (non-normal) O(2) subgroup of O(3): rotations about the axis

joining the origin to this point. (d) If the sphere is marked with the vertices of a

regular polyhedron (here a dodecahedron), its group of symmetries is a finite

(non-normal) subgroup of O(3).

[13.6] Check these assertions, and Wnd two more non-normal subgroups, showing that there

are no further ones.

[13.7] Show this. (Hint: which sets of rotations can be rotation-invariant?)

§13.2 CHAPTER 13
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out themselves to form a group. Note that for a given set SSg, the choice of

g is generally not unique; we can have SSg1 ¼ SSg2, for diVerent elements

g1, g2 of GG. The sets of the form SSg, for any subgroup SS, are called cosets

of GG; but when GG is normal, the cosets form a group. The reason for this is

that if we have two such cosets SSg and SSh (g and h being elements of GG)
then we can deWne the ‘product’ of SSg with SSh to be

(SSg) (SSh) ¼ SS(gh),

and we Wnd that all the group axioms are satisWed, provided that SS is

normal, essentially because the right-hand side is well deWned, independ-

ently of which g and h were chosen in the representation of the cosets on

the left-hand side of this equation.[13.8] The resulting group deWned in this

way is called the factor group of GG by its normal subgroup SS. The factor

group of GG by SS is written GG/SS. We can still write GG/SS for the factor space

(not a group) of distinct cosets SSg even when S is not normal.[13.9]

Groups that possess no non-trivial normal subgroups at all are called

simple groups. The group SO(3) is an example of a simple group. Simple

groups are, in a clear sense, the basic building blocks of group theory. It is

thus an important achievement of the 19th and 20th centuries in mathe-

matics that all the Wnite simple groups and all the continuous simple groups

are now known. In the continuous case (i.e. for Lie groups), this was a

mathematical landmark, started by the highly inXuential German mathem-

atician Wilhelm Killing (1847–1923), whose basic papers appeared in

1888–1890, and was essentially completed, in 1894, in one of the most

important of mathematical papers ever written,5 by the superb geometer

and algebraist Élie Cartan (whom we have already encountered in

Chapter 12, and whom we shall meet again in Chapter 17). This classiWca-

tion has continued to play a fundamental role in many areas of mathematics

and physics, to the present day. It turns out that there are four

families, known as Am, Bm, Cm, Dm(for m ¼ 1, 2, 3, . . . ), of respective

dimension m(mþ 2), m(2mþ 1), m(2mþ 1), m(2m� 1), called the classical

groups (see end of §13.10) and Wve exceptional groups known as

E6, E7, E8, F4, G2, of respective dimension 78, 133, 248, 52, 14.

The classiWcation of the Wnite simple groups is a more recent (and even

more diYcult) achievement, carried out over a great many years during the

20th century by a considerable number of mathematicians (with the aid of

computers in more recent cases), being completed only in 1982.6 Again

there are some systematic families and a Wnite collection of exceptional

[13.8] Verify this and show that the axioms fail if SS is not normal.

[13.9] Explain why the number of elements in GG/SS, for any Wnite subgroup SS of GG, is the order

of GG divided by the order of SS.

Symmetry groups §13.2
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Wnite simple groups. The largest of these exceptional groups is referred to

as the monster, which is of order

¼ 808017424794512875886459904961710757005754368000000000:

¼ 246�320�59�76�112�133�17�19�23�29�31�41�47�59�71:

Exceptional groups appear to have a particular appeal for many modern

theoretical physicists. The group E8 features importantly in string theory

(§31.12), while various people have expressed a hope that the huge but

Wnite monster may feature in some future theory.7

The classiWcation of the simple groups may be regarded as a major step

towards the classiWcation of groups generally since, as indicated above,

general groups may be regarded as being built up out of simple groups

(together with Abelian ones). In fact, this is not really the whole story

because there is further information in how one simple group can build

upon another. I do not propose to enter into the details of this matter here,

but it isworth justmentioning the simplestway that this canhappen. If GG and

HHare any two groups, then they can be combined together to form what is

called the product group GG �HH , whose elements are simply pairs (g, h), where

g belongs to GG and h belongs toHH, the rule of group multiplication between

elements (g1, h1) and (g2, h2), of GG �HH , being deWned as

(g1, h1) (g2, h2) ¼ (g1g2, h1h2),

and it is very easy to verify that the group axioms are satisWed. Many of

the groups that feature in particle physics are in fact product groups of

simple groups (or elementary modiWcations of such).[13.10]

13.3 Linear transformations and matrices

In the general study of groups, there is a particular class of symmetry

groups that have been found to play a central role. These are the groups

of symmetries of vector spaces. The symmetries of a vector space are

expressedbythe linear transformationspreserving thevector-spacestructure.

Recall from §11.1 and §12.3 that, in a vector space V, we have, deWning

its structure, a notion of addition of vectors and multiplication of vectors

by numbers. We may take note of the fact that the geometrical picture of

addition is obtained by use of the parallelogram law, while multiplication

by a number is visualized as scaling the vector up (or down) by that

number (Fig. 13.4). Here we are picturing it as a real number, but complex

vector spaces are also allowed (and are particularly important in many

[13.10] Verify that GG �HH is a group, for any two groups GG andHH , and that we can identify the

factor group (GG �HH)=GG withHH.

§13.3 CHAPTER 13

254



w

v

uO
ku

contexts, because of complex magic!), though hard to portray in a dia-

gram. A linear transformation of V is a transformation that takes V to

itself, preserving its structure, as deWned by these basic vector-space

notions. More generally, we can also consider linear transformations

that take one vector space to another.

A linear transformation can be explicitly described using an array

of numbers called a matrix. Matrices are important in many mathe-

matical contexts. We shall examine these extremely useful entities with

their elegant algebraic rules in this section (and in §§13.4,5). In

fact, §§13.3–7 may be regarded as a rapid tutorial in matrix theory

and its application to the theory of continuous groups. The notions

described here are vital to a proper understanding of quantum

theory, but readers already familiar with this material—or else who

prefer a less detailed comprehension of quantum theory when we

come to that—may prefer to skip these sections, at least for the time

being.

To see what a linear transformation looks like, let us Wrst consider the

case of a 3-dimensional vector space and see its relevance to the rotation

group O(3) (or SO(3)), discussed in §13.1, giving the symmetries of the

sphere. We can think of this sphere as embedded in Euclidean 3-space E
3

(this space being regarded as a vector space with respect to the origin O at

the sphere’s centre8) as the locus

x2 þ y2 þ z2 ¼ 1

in terms of ordinary Cartesian coordinates (x, y, z).[13.11] Rotations of the

sphere are now expressed in terms of linear transformation of E
3, but of a

very particular type known as orthogonal which we shall be coming to in

§§13.1,8 (see also §13.1).

General linear transformations, however, would squash or stretch

the sphere into an ellipsoid, as illustrated in Fig. 13.5. Geometrically,

Fig. 13.4 A linear transformation preserves

the vector-space structure of the space on

which it acts. This structure is defined by the

operations of addition (illustrated by the par-

allelogram law) and multiplication by a scalar

l (which could be a real number or, in the case

of a complex vector space, a complex number).

Such a transformation preserves the ‘straight-

ness’ of lines and the notion of ‘parallel’, keep-

ing the origin O fixed.

[13.11] Show how this equation, giving the points of unit distance from O, follows from the

Pythagorean theorem of §2.1.

Symmetry groups §13.3

255



a linear transformation is one that preserves the ‘straightness’ of lines and

the notion of ‘parallel’ lines, keeping the origin O Wxed. But it need not

preserve right angles or other angles, so shapes can be squashed or

stretched, in a uniform but anisotropic way.

Howdowe express linear transformations in termsof the coordinatesx, y,

z? The answer is that each new coordinate is expressed as a (homogeneous)

linear combination of the original ones, i.e. by a separate expression like

ax þ by þ gz, where a, b, and g are constant numbers.[13.12] We have 3

such expressions, one for each of the new coordinates. To write all this in a

compact form, it will be useful to make contact with the index notation of

Chapter 12. For this, we re-label the coordinates as (x1, x2, x3), where

x1 ¼ x, x2 ¼ y, x3 ¼ z

(bearing in mind, again, that these upper indices do not denote

powers see §12.2). A general point in our Euclidean 3-space has co-

ordinates xa, where a ¼ 1, 2, 3. An advantage of using the index

notation is that the discussion applies in any number of dimensions, so

we can consider that a (and all our other index letters) run over

1, 2 , . . . , n, where n is some Wxed positive integer. In the case just con-

sidered, n ¼ 3.

In the index notation, with Einstein’s summation convention (§12.7), the

general linear transformation now takes the form9,[13.13]

xa 7! Ta
b xb:

z

x

y

E
3

E
3

Fig. 13.5 A linear transformation acting on E
3 (expressed in terms of Cartesian

x, y, z coordinates) would generally squash or stretch the unit sphere

x2 þ y2 þ z2 ¼ 1 into an ellipsoid. The orthogonal group O(3) consists of the

linear transformations of E
3 which preserve the unit sphere.

[13.12] Can you explain why? Just do this in the 2-dimensional case, for simplicity.

[13.13] Show this explicitly in the 3-dimensional case.
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Calling this linear transformation T, we see that T is determined by this

set of components Ta
b. Such a set of components is referred to as an n � n

matrix, usually set out as a square—or, in other contexts (see below)

m � n-rectangular—array of numbers. The above displayed equation,

in the 3-dimensional case is then written

x1

x2

x3

0

B

B

@

1

C

C

A

7!

T1
1 T1

2 T1
3

T2
1 T2

2 T2
3

T3
1 T3

2 T3
3

0

B

B

@

1

C

C

A

x1

x2

x3

0

B

B

@

1

C

C

A

,

this standing for three separate relations, starting with x1 7! T1
1x

1

þT1
2x

2 þ T1
3x

3.[13.14]

We can also write this without indices or explicit coordinates,

as x 7! Tx. If we prefer, we can adopt the abstract–index notation

(§12.8) whereby ‘xa 7! Ta
bx

b’ is not a component expression, but actually

represents this abstract transformation x 7! Tx. (When it is important

whether an indexed expression is to be read abstractly or as components,

this will be made clear by the wording.) Alternatively, we can use

the diagrammatic notation, as depicted in Fig. 13.6a. In my descriptions,

the matrix of numbers (Ta
b) or the abstract linear transformation T

will be used interchangeably when I am not concerned with the

technical distinctions between these two concepts (the former depending

upon a speciWc coordinate description of our vector space V, the latter

not).

Let us consider a second linear transformation S, applied following the

application of T. The product R of the two, written R ¼ ST, would have a

component (or abstract–index) description

Ra
c ¼ Sa

b Tb
c

(summation convention for components!).[13.15] The diagrammatic form of

the product ST is given in Fig. 13.6b. Note that, in the diagrammatic

notation, to form a successive product of linear transformations, we string

[13.14] Write this all out in full, explaining how this expresses xa 7! Ta
bx

b.

[13.15] What is this relation between R, S, and T, written out explicitly in terms of the

elements of 3� 3 square arrays of components. You may recognize this, the normal law for

‘multiplication of matrices’, if this is familiar to you.
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xa

Sa
b

Ta
b

δ a
   b

Ua
bxbTa

b

i.e. x Tx

S

T
ST

STUU

I

= =

(a) (b) (c)

Fig. 13.6 (a) The linear transformation xa 7!Ta
bx

b, or written without indices as

x 7!Tx (or read with the indices as abstract, as in §12.8), in diagrammatic form. (b)

Diagrams for linear transformations S, T, U, and their products ST and STU. In a

successive product, we string them in a line downwards. (c) The Kronecker delta da
b,

or identity transformation I, is depicted as a ‘disembodied’ line, so relations

Ta
bd

b
c ¼ Ta

c ¼ da
bT

b
c become automatic in the notation (see also Fig. 12.17).

them in a line downwards. This happens to work out conveniently in the

notation, but one could perfectly well adopt a diVerent convention in

which the connecting ‘index lines’ are drawn horizontally. (Then there

would be a closer correspondence between algebraic and diagrammatic

notations.)

The identity linear transformation I has components that are normally

written da
b (the Kronecker delta—the standard convention being that these

indices are not normally staggered), for which

da
b ¼

1 if a ¼ b,

0 if a 6¼ b,

�

and we have[13.16]

Ta
bd

b
c ¼ Ta

c ¼ da
bT

b
c

giving the algebraic relations TI ¼ T ¼ IT. The square matrix of

components da
b has 1s down what is called the main diagonal,

which extends from the top-left corner to bottom-right. In the case

n ¼ 3, this is
1 0 0

0 1 0

0 0 1

0

@

1

A

In the diagrammatic notation, we simply represent the Kronecker delta by

a ‘disembodied’ line, and the above algebraic relations become automatic

in the notation; see Fig. 13.6c.

[13.16] Verify.
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Those linear transformations which map the entire vector space down to

a region (subspace) of smaller dimension within that space are called

singular.10 An equivalent condition for T to be singular is the existence

of a non-zero vector v such that[13.17]

Ty ¼ 0:

Provided that the transformation is non-singular, then it will have an

inverse,[13.18] where the inverse of T is written T�1, so that

TT�1 ¼ I ¼ T�1T,

as is required of an inverse. We can give the explicit expression for this

inverse conveniently in the diagrammatic notation; see Fig. 13.7, where I

have introduced the useful diagrams for the antisymmetrical (Levi-Civita)

quantities ea...c and 2a...c (with normalization ea���c 2a���c¼ n!) that were

introduced in §12.7 and Fig. 12.18.[13.19]

The algebra of matrices (initiated by the highly proliWc English mathem-

atician and lawyer Arthur Cayley in 1858)11
Wnds a very broad range of

application (e.g. statistics, engineering, crystallography, psychology, com-

puting—not to mention quantum mechanics). This generalizes the algebra

of quaternions and the CliVord and Grassmann algebras studied in

§§11.3,5,6. I use bold-face upright letters (A, B, C, . . . ) for the arrays of

components that constitute actual matrices (rather than abstract linear

transformations, for which bold-face italic letters are being used).

−1

n=

[13.17] Why? Show that this would happen, in particular, if the array of components has an

entire column of 0s or two identical columns. Why does this also hold if there are two identical

rows? Hint: For this last part, consider the determinant condition below.

[13.18] Show why, not using explicit expressions.

[13.19] Prove directly, using the diagrammatic relations given in Fig. 12.18, that this definition

gives TT�1 ¼ I ¼ T�1T.

Fig. 13.7 The inverse T�1 of a

non-singular (n� n) matrix T given

here explicitly in diagrammatic form,

using the diagrammatic form of the

Levi-Civita antisymmetric quantities

ea...c and 2a...c (normalized by

ea...c 2a...c¼ n!) introduced in §12.7

and depicted in Fig. 12.18.
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Restricting attention to n� n matrices for Wxed n, we have a system in

which notions of addition and multiplication are deWned, where the stand-

ard algebraic laws

Aþ B ¼ Bþ A, Aþ (Bþ C) ¼ (Aþ B)þ C, A(BC) ¼ (AB)C,

A(Bþ C) ¼ ABþ AC, (Aþ B)C ¼ ACþ BC

hold. (Each element of Aþ B is simply the sum of the correspond-

ing elements of A and B.) However, we do not usually have the com-

mutative law of multiplication, so that generally AB 6¼ BA. Moreover,

as we have seen above, non-zero n� n matrices do not always have

inverses.

It should be remarked that the algebra also extends to the rectangular

cases of m� n matrices, where m need not be equal to n. However,

addition is deWned between an m� n matrix and a p� q matrix only

when m ¼ p and n ¼ q; multiplication is deWned between them only

when n ¼ p, the result being an m� q matrix. This extended algebra

subsumes products like the Tx considered above, where the ‘column

vector’ x is thought of as being an n� 1 matrix.[13.20]

The general linear group GL(n) is the group of symmetries of an

n-dimensional vector space, and it is realized explicitly as the multiplicative

group of n� n non-singular matrices. If we wish to emphasize that our

vector space is real, and that the numbers appearing in our matrices are

correspondingly real numbers, then we refer to this full linear group as

GL(n,R). We can also consider the complex case, and obtain the com-

plex full linear group GL(n,C). Each of these groups has a normal sub-

group, written respectively SL(n,R) and SL(n,C)—or, more brieXy when

the underlying Weld (see §16.1) R or C is understood, SL(n)—called

the special linear group. These are obtained by restricting the matrices to

have their determinants equal to 1. The notion of a determinant will be

explained next.

13.4 Determinants and traces

What is the determinant of an n� n matrix? It is a single number

calculated from the elements of the matrix, which vanishes if and only if

the matrix is singular. The diagrammatic notation conveniently describes

the determinant explicitly; see Fig. 13.8a. The index-notation form of this is

1

n!
Eab...dTe

aT
f
b . . . Th

deef ...h

[13.20] Explain this, and give the full algebraic rules for rectangular matrices.
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det 1
n!

=

1
n!

= 1
n!

=

(a)

(b)

Fig. 13.8 (a) Diagrammatic notation for det ðTa
bÞ ¼ det T ¼ jTj. (b) Diagram-

matic proof that det (ST) ¼ det S detT. The antisymmetrizing bar can be

inserted in the middle term because there is already antisymmetry in the index

lines that it crosses. See Figs. 12.17, 12.18.

where the quantities Ea...d and ee...h are antisymmetric (Levi-Civita) tensors,

normalized accoring to

Ea...dea...d ¼ n!

for an n-dimensional space (and recall that n! ¼ 1� 2� 3� � � � � n),

where the indices a, . . . , d and e, . . . , h are each n in number.

We can refer to this determinant as det (Ta
b) or det T (or sometimes jTj

or as the array constituting the matrix but with vertical bars replacing the

parentheses). In the particular cases of a 2� 2 and a 3� 3 matrix, the

determinant is given by[13.21]

det
a b

c d

� �

¼ ad� bc,

det

a b c

d e f

g h j

0

@

1

A ¼ aej� afhþ bfg� bdjþ cdh� ceg:

The determinant satisWes the important and rather remarkable relation

detAB ¼ det A detB,

which can be seen to be true quite neatly in the diagrammatic notation (Fig.

13.8b). The key ingredients are the formulae illustrated in Fig. 12.18[13.22]

which, when written in the index notation, look like

[13.21] Derive these from the expression of Fig. 13.8a.

[13.22] Show why these hold.
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Ea...c ef ...h ¼ n! d[a
f � � � d

c]
h

(see §11.6 for the bracket/index notation) and

Eab...cefb...c ¼ (n� 1)! da
f :

We also have the notion of the trace of a matrix (or linear transfor-

mation)

trace T ¼ Ta
a ¼ T1

1 þ T2
2 þ � � � þ Tn

n

(i.e. the sum of the elements along the main diagonal—see §13.3), this

being illustrated diagrammatically in Fig. 13.9. Unlike the case of a deter-

minant, there is no particular relation between the trace of the product AB

of two matrices and the traces of A and B individually. Instead, we have

the relation[13.23]

trace (Aþ B) ¼ trace Aþ traceB:

There is an important connection between the determinant and the trace

which has to do with the determinant of an ‘inWnitesimal’ linear trans-

formation, given by an n� n matrix Iþ eA for which the number e is

considered to be ‘inWnitesimally small’ so that we can ignore its square e2

(and also higher powers e3, e4, etc.). Then we Wnd[13.24]

det (Iþ eA) ¼ 1þ e traceA

(ignoring e2, etc.). In particular, inWnitesimal elements of SL(n), i.e.

elements of SL(n) representing inWnitesimal rotations, being of unit deter-

minant (as opposed to those of GL(n) ), are characterized by the A

in Iþ eA having zero trace. We shall be seeing the signiWcance of

this in §13.10. In fact the above formula can be extended to Wnite

(that is, non-inWnitesimal) linear transformations through the expres-

sion[13.25]

det eA ¼ etrace A,

Trace =

[13.23] Show this.

[13.24] Show this.

[13.25] Establish the expression for this. Hint: Use the ‘canonical form’ for a matrix in terms of

its eigenvalues—as described in §13.5—assuming Wrst that these eigenvalues are unequal (and see

Exercise [13.27]). Then use a general argument to show that the equality of some eigenvalues

cannot invalidate identities of this kind.

Fig. 13.9 Diagrammatic notation for trace T( ¼ Ta
a).
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where ‘eA’ for matrices has just the same deWnition as it has for ordinary

numbers (see §5.3), i.e.

eA ¼ Iþ Aþ 1=2A2 þ 1=6A3 þ 1=24A4 þ � � � :

We shall return to these issues in §13.6 and §14.6.

13.5 Eigenvalues and eigenvectors

Among the most important notions associated with linear transforma-

tions are what are called ‘eigenvalues’ and ‘eigenvectors’. These

are vital to quantum mechanics, as we shall be seeing in §21.5 and

§§22.1,5, and to many other areas of mathematics and applications.

An eigenvector of a linear transformation T is a non-zero complex

vector y which T sends to a multiple of itself. That is to say, there is a

complex number l, the corresponding eigenvalue, for which

Ty ¼ ly, i:e: Ta
bv

b ¼ lva:

We can also write this equation as (T � lI)y ¼ 0, so that, if l is to be an

eigenvalue of T, the quantity T � lI must be singular. Conversely, if

T � lI is singular, then l is an eigenvalue of T. Note that if y is an

eigenvector, then so also is any non-zero complex multiple of y. The

complex 1-dimensional space of these multiples is unchanged by the

transformation T, a property which characterizes v as an eigenvector

(Fig. 13.10).

From the above, we see that this condition for l to be an eigenvalue

of T is
det (T � lI) ¼ 0:

Writing this out, we obtain a polynomial equation[13.26] of degree n in l.
By the ‘fundamental theorem of algebra’, §4.2, we can factorize the

l-polynomial det (T � lI) into linear factors. This reduces the above

equation to
(l1 � l) (l2 � l) (l3 � l) . . . (ln � l) ¼ 0

where the complex numbers l1, l2, l3 , . . . , ln are the various eigen-

values of T. In particular cases, some of these factors may coincide,

in which case we have a multiple eigenvalue. The multiplicity m of an

eigenvalue lr is the number of times that the factor lr � l appears

[13.26] See if you can express the coeYcients of this polynomial in diagrammatic form. Work

them out for n ¼ 1 and n ¼ 2.

Symmetry groups §13.5

263



in the above product. The total number of eigenvalues of T, counted

appropriately with multiplicities, is always equal to n, for an n� n

matrix.[13.27]

For a particular eigenvalue l of multiplicity r, the space of correspond-

ing eigenvectors constitutes a linear space, of dimensionality d, where

1 � d � r. For certain types of matrix, including the unitary, Hermitian,

and normal matrices of most interest in quantum mechanics (see §13.9,

§§22.4,6), we always have the maximum dimensionality d ¼ r (despite the

fact that d ¼ 1 is the most ‘general’ case, for given r). This is fortunate,

because the (more general) cases for which d < r are more diYcult to

handle. In quantum mechanics, eigenvalue multiplicities are referred to

as degeneracies (cf. §§22.6,7).

A basis for an n-dimensional vector space V is an ordered set

e ¼ (e1 , . . . , en) of n vectors e1 , . . . , en which are linearly independent,

which means that there is no relation of the form a1e1 þ � � � þ anen ¼ 0

with a1 , . . . , an not all zero. Every element of V is then uniquely a

linear combination of these basis elements.[13.28] In fact, this property

is what characterizes a basis in the more general case when V can

be inWnite-dimensional, when the linear independence by itself is not

suYcient.

Thus, given a basis e ¼ (e1 , . . . , en), any element x of V can be uniquely

written

x ¼ x1e1 þ x2e2 þ � � � þ xnen

¼ xjej ,

[13.27] Show that det T ¼ l1l2 � � � ln, trace T ¼ l1 þ l2 þ � � � þ ln.

[13.28] Show this.

Fig. 13.10 The action of a

linear transformation T. Its

eigenvectors always constitute

linear spaces through the origin

(here three lines). These spaces

are unaltered by T. (In this

example, there are two (unequal)

positive eigenvalues (outward

pointing arrows) and one nega-

tive one (inward arrows).
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(the indices j not being abstract here) where (x1, x2, . . . , xn) is the ordered

set of components of x with respect to e (compare §12.3). A non-singular

linear transformation T always sends a basis to another basis; moreover, if

e and f are any two given bases, then there is a unique T sending each ea to

its corresponding f j:

Tej ¼ f j:

In terms of components taken with respect to e, the components of the

basis elements e1, e2 , . . . , en themselves are, respectively, (1, 0, 0, . . . , 0),

(0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1). In other words, the components of ej are

(d1
j , d

2
j , d

3
j , . . . , dn

j ).
[13.29] When all components are takenwith respect to the

e basis, we Wnd that T is represented as the matrix (Ti
j), where the compon-

ents of f j in the e basis would be[13.30]

(T1
j, T2

j, T3
j , . . . , Tn

j):

It should be recalled that the conceptual diVerence between a linear

transformation and a matrix is that the latter refers to some basis-

dependent presentation, whereas the former is abstract, not depending

upon a basis.

Now,provided that eachmultiple eigenvalueofT (if thereareany) satisWes

d ¼ r, i.e. its eigenspacedimensionality equals itsmultiplicity, it is possible to

Wnd a basis (e1, e2 , . . . , en) for V, each of which is an eigenvector of T.[13.31]

Let the corresponding eigenvalues be l1, l2 , . . . , ln:

Te1 ¼ l1e1, Te2 ¼ l2e2 , . . . , Ten ¼ lnen:

If, as above, T takes the e basis to the f basis, then the f basis elements are

as above, so we have f 1 ¼ l1e1, f 2 ¼ l2e2 , . . . , f n ¼ lnen. It follows that

T, referred to the e basis, takes the diagonal matrix form

l1 0 . . . 0

0 l2 . . . 0

: : . . .. . . :
0 0 . . . ln

0

B

B

@

1

C

C

A

,

that is T1
1 ¼ l1, T2

2 ¼ l2 , . . . , Tn
n ¼ ln, the remaining components being

zero. This canonical form for a linear transformation is very useful both

conceptually and calculationally.12

[13.29] Explain this notation.

[13.30] Why? What are the components of ei in the f basis?

[13.31] See if you can prove this. Hint: For each eigenvalue of multiplicity r, choose r linearly

independent eigenvectors. Show that a linear relation between vectors of this entire collection

leads to a contradiction when this relation is pre-multiplied by T, successively.
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13.6 Representation theory and Lie algebras

There is an important body of ideas (particularly signiWcant for

quantum theory) called the representation theory of groups. We saw

a very simple example of a group representation in the discussion in

§13.1, when we observed that the non-reXective symmetries of a

square can be represented by complex numbers, the group multiplication

being faithfully represented as actual multiplication of the complex

numbers. However, nothing quite so simple can apply to non-Abelian

groups, since the multiplication of complex numbers is commutative.

On the other hand, linear transformations (or matrices) usually do

not commute, so we may regard it as a reasonable prospect to represent

non-Abelian groups in terms of them. Indeed, we already encountered

this kind of thing at the beginning of §13.3, where we represented the

rotation group O(3) in terms of linear transformations in three dimen-

sions.

As we shall be seeing in Chapter 22, quantum mechanics is all to do

with linear transformations. Moreover, various symmetry groups have

crucial importance in modern particle physics, such as the rotation

group O(3), the symmetry groups of relativity theory (Chapter 18), and

the symmetries underlying particle interactions (Chapter 25). It is not

surprising, therefore, that representations of these groups in particular,

in terms of linear transformations, have fundamental roles to play in

quantum theory.

It turns out that, quantum theory (particularly the quantum Weld theory

of Chapter 26) is frequently concerned with linear transformations of

inWnite-dimensional spaces. For simplicity, however, I shall phrase things

here just for representations by linear transformations in the Wnite-dimen-

sional case. Most of the ideas that we shall encounter apply also in the

case of inWnite-dimensional representations, although there are diVerences

that can be important in some circumstances.

What is a group representation? Consider a group GG. Representation

theory is concerned with Wnding a subgroup of GL(n) (i.e. a multiplicative

group of n� n matrices) with the property that, for any element g in GG,
there is a corresponding linear transformation T(g) (belonging to GL(n))

such that the multiplication law in GG is preserved by the operations of

GL(n), i.e. for any two elements g, h of GG, we have

T(g)T(h) ¼ T(gh):

The representation is called faithful if T(g) is diVerent from T(h) whenever

g is diVerent from h. In this case we have an identical copy of the group GG,
as a subgroup of GL(n).
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In fact, every Wnite group has a faithful representation in GL(n, R),

where n is the order of GG,[13.32] and there are frequently many non-faithful

representations. On the other hand, it is not quite true that every (Wnite-

dimensional) continuous group has a faithful representation in some

GL(n). However, if we are not worried about the global aspects of the

group, then a representation is always (locally) possible.13

There is a beautiful theory, due to the profoundly original Norwegian

mathematician Sophus Lie (1842–1899), which leads to a full treatment

of the local theory of continuous groups. (Indeed, continuous groups

are commonly called ‘Lie groups’; see §13.1.) This theory depends

upon a study of inWnitesimal group elements.14 These inWnitesimal elem-

ents deWne a kind of algebra—referred to as a Lie algebra—which provides

us with complete information as to the local structure of the group.

Although the Lie algebra may not provide us with the full global

structure of the group, this is normally considered to be a matter of lesser

importance.

What is a Lie algebra? Suppose that we have a matrix (or linear

transformation) I þ eA to represent an ‘inWnitesimal’ element a of some

continuous group GG, where e is taken as ‘small’ (compare end of §13.4).

When we form the matrix product of I þ eA and I þ eB to represent the

product ab of two such elements a and b, we obtain

(I þ eA) (I þ eB) ¼ I þ e(Aþ B)þ e2AB

¼ I þ e(Aþ B)

if we are allowed to ignore the quantity e2, as being ‘too small to count’. In

accordance with this, the matrix sum Aþ B represents the group product

ab of two inWnitesimal elements a and b.

Indeed, the sum operation is part of the Lie algebra of the quantities

A, B, . . . . But the sum is commutative, whereas the group GG could well be

non-Abelian, so we do not capture much of the structure of the group if we

consider only sums (in fact, only the dimension of GG). The non-Abelian

nature of GG is expressed in the group commutators which are the expres-

sions[13.33]

a b a�1 b�1:

[13.32] Show this. Hint: Label each column of the representing matrix by a separate element of

the Wnite group GG, and also label each row by the corresponding group element. Place a 1 in any

position in the matrix for which a certain relation holds (Wnd it!) between the element of GG
labelling the row, that labelling the column, and the element of GG that this particular matrix is

representing. Place a 0 whenever this relation does not hold.

[13.33] Why is this expression just the identity group element when a and b commute?
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Let us write this out in terms of I þ eA, etc., taking note of the power

series expression (I þ eA)�1 ¼ I � eAþ e2A2 � e3A3 þ � � � (this series

being easily checked by multiplying both sides by I þ eA). Now it

is e3 that we ignore as being ‘too small to count’, but we keep e2,
whence[13.34]

(I þ eA) (I þ eB) (I þ eA)�1 (I þ eB)�1

¼ (I þ eA) (I þ eB) (I � eAþ e2A2) (I � eB þ e2B2)

¼ I þ e2(AB � BA)

This tells us that if we are to keep track of the precise way in which the

group GG is non-Abelian, we must take note of the ‘commutators’, or Lie

brackets
[A, B] ¼ AB � BA:

The Lie algebra is now constructed by means of repeated application of

the operations þ, its inverse �, and the bracket operation [ , ], where it is

customary also to allow the multiplication by ordinary numbers (which

might be real or complex). The ‘additive’ aspect of the algebra has the

usual vector-space structure (as with quaternions, in §11.1). In addition,

Lie bracket satisfies distributivity, etc., namely

[Aþ B, C ] ¼ [A, C ]þ [B, C ], [lA, B] ¼ l[A, B],

the antisymmetry property

[A, B] ¼ �[B, A],

(whence also [A, C þD] ¼ [A, C ]þ [A,D], [A, lB] ¼ l[A, B]), and an ele-

gant relation known as the Jacobi identity[13.35]

[A, [B, C ] ]þ [B,[C ,A] ]þ [C , [A, B] ] ¼ 0

(a more general form of which will be encountered in §14.6).

We can choose a basis (E1, E2 , . . . , EN ) for the vector space of our

matrices A, B, C, . . . (where N is the dimension of the group GG, if the

representation is faithful). Forming their various commutators [Ea, Eb],

we express these in terms of the basis elements, to obtain relations (using

the summation convention)

[Ea, Eb] ¼ gabwEw:

[13.34] Spell out this ‘order e2’ calculation.

[13.35] Show all this.
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The N3 component quantities gabw are called structure constants for GG.
They are not all independent because they satisfy (see §11.6 for bracket

notation)

gabw ¼ �gbaw, g[ab
xgw]xz ¼ 0,

by virtue of the above antisymmetry and Jacobi identity.[13.36] These

relations are given in diagrammatic form in Fig. 13.11.

It is a remarkable fact that the structure of the Lie algebra for a

faithful representation (basically, the knowledge of the structure constants

gabw) is suYcient to determine the precise local nature of the group

GG. Here, ‘local’ means in a (suYciently small) N-dimensional open

region N surrounding the identity element I in the ‘group manifold’
�
GG

whose points represent the diVerent elements of GG (see Fig. 13.12). In

fact, starting from a Lie group element A, we can construct a correspond-

ing actual Wnite (i.e. non-inWnitesimal) group element by means of

the ‘exponentiation’ operation eA deWned at the end of §13.4. (This

will be considered a little more fully in §14.6.) Thus, the theory of

representations of continuous groups by linear transformations (or by

matrices) may be largely transferred to the study of representations of

Lie algebras by such transformations—which, indeed, is the normal prac-

tice in physics.

This is particularly important in quantum mechanics, where

the Lie algebra elements themselves, in a remarkable way, frequently

have direct interpretations as physical quantities (such as angular

momentum, when the group G is the rotation group, as we shall be seeing

later in §22.8).

The Lie algebra matrices tend to be considerably simpler in structure

than the corresponding Lie group matrices, being subject to linear rather

= 0,   i.e. − − = 0

=    −
cabχ(a)

(b)

Fig. 13.11 (a) Structure constants gabw in diagrammatic form, depicting antisym-

metry in a, b and (b) the Jacobi identity.

[13.36] Show this.

Symmetry groups §13.6

269



I
N

G

than nonlinear restrictions (see §13.10 for the case of the classical groups).

This procedure is beloved of quantum physicists!

13.7 Tensor representation spaces; reducibility

There are ways of building up more elaborate representations of a group

GG, starting from some particular one. How are we to do that? Suppose that

GG is represented by some family TT of linear transformations, acting on an

n-dimensional vector space V. Such a V is called a representation space

for GG. Any element t of GG is now represented by a corresponding

linear transformation T in TT , where T eVects x 7! Tx for each x

belonging to V. In the (abstract) index notation (§12.7) we write this

xa 7! Ta
bx

b, as in §13.3, or in diagrammatic form, as in Fig. 13.6a. Let

us see how we can Wnd other representation spaces for GG, starting from the

given one V.

As a Wrst example, recall, from §12.3, the deWnition of the dual space V*

of V. The elements of V* are defined as linear maps from V to the

scalars. We can write the action of y (in V*) on an element x in V as

yax
a, in the index notation (§12.7). The notation y � x would have been

used earlier (§12.3) for this (y � x ¼ yax
a), but now we can also use the

matrix notation

yx ¼ yax
a,

where we take y to be a row vector (i.e. a 1 � n matrix) and x a column

vector (an n� 1 matrix). In accordance with our transformation x 7! Tx,

now thought of as a matrix transformation, the dual space V* undergoes

the linear transformation

y 7! yS, i:e: ya 7! ybS
b
a,

where S is the inverse of T:

Fig. 13.12 The Lie algebra for a (faith-

ful) representation of a Lie group G (ba-

sically, knowledge of the structure

constants gabw) determines the local

structure of G, i.e. it fixes the structure of

G within some (sufficiently small) open

region N surrounding the identity elem-

ent I, but it does not tell us about the

global nature of G.
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S ¼ T�1, so Sa
bT

b
c ¼ da

c ,

since, if x 7! Tx, we need y 7! yT�1 to ensure that yx is preserved

by 7!.

The use of a row vector y, in the above, gives us a non-standard

multiplication ordering. It is more usual to write things the other

way around, by employing the notation of the transpose AT of a matrix

A. The elements of the matrix AT are the same as those of A, but with rows

and columns interchanged. If A is square (n� n), then so is AT, its

elements being those of A reXected in its main diagonal (see §13.3). If A

is rectangular (m� n), then AT is n�m, correspondingly reXected.

Thus yT is a standard column vector, and we can write the above

y 7! yS as

yT 7! STyT,

since the transpose operation T reverses the order of multiplication:

(AB)T ¼ BTAT. We thus see that the dual space V*, of any repre-

sentation space V is itself a representation space of GG. Note that the

inverse operation �1 also reverses multiplication order, (AB)�1 ¼ B�1

A�1,[13.37] so the multiplication ordering needed for a representation is

restored.

The same kinds of consideration apply to the various vector spaces

of tensors constructed from V; see §12.8. We recall that a tensor Q

of valence [ p
q
] (over the vector space V) has an index description as a

quantity

Q f ...h
a...c ,

with q lower and p upper indices. We can add tensors to other

tensors of the same valence and we can multiply them by scalars;

tensors of Wxed valence [ p
q
] form a vector space of dimension npþq

(the total number of components).[13.38] Abstractly, we think of Q as

belonging to a vector space that we refer to as the tensor product

V* � V* � . . . � V* � V � V � . . . � V

of q copies of the dual space V* and p copies of V (p, q $ 0). (We shall

come to this notion of ‘tensor product’ a little more fully in §23.3.) Recall

the abstract deWnition of a tensor, given in §12.8, as a multilinear function.

[13.37] Why?

[13.38] Why this number?
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This will suYce for our purposes here (although there are certain subtleties

in the case of an inWnite-dimensional V, of relevance to the applications to

many-particle quantum states, needed in §23.8).15

Whenever a linear transformation xa 7! Ta
bx

b is applied to V, this

induces a corresponding linear transformation on the above tensor prod-

uct space, given explicitly by[13.39]

Q f ...h
a...c 7! Sa0

a . . . Sc0
cT

f
f 0 . . . Th

h0Q
f 0...h0

a0...c0 :

All these indices require good eyesight and careful scrutiny, in order

to make sure of what is summed with what; so I recommend the

diagrammatic notation, which is clearer, as illustrated in Fig. 13.13.

We see that each lower index of Q...
... transforms by the inverse

matrix S ¼ T�1 (or, rather, by ST), as with ya and each upper index by T,

as with xa. Accordingly, the space of [ p
q
]-valent tensors over V is also a

representation space for GG, of dimension npþq.

These representation spaces are, however, likely to be what is called

reducible. To illustrate this situation, consider the case of a [ 2
0
]-valent

tensor Qab. Any such tensor can be split into its symmetric part Q(ab) and

its antisymmetric part Q[ab] (§12.7 and §11.6):

Qab ¼ Q(ab) þQ[ab],

, ,
=

−1

Fig. 13.13 The linear transformation xa 7!Ta
bx

b, applied to x in the vector space

V (with T depicted as a white triangle), extends to the dual space V� by use of the

inverse S ¼ T�1 (depicted as a black triangle) and thence to the spaces

V�
N

. . .
N

V�
N

V
N

. . .
N

V of [ p
q
]-valent tensors Q. The case p ¼ 3, q ¼ 2 is

illustrated, with Q shown as an oval with three arms and two legs undergoing

Qab
cde / Sa0

aS
b0

bT
c

c0T
d

d 0T
e

e0Qa0b0
c0d 0e0 .

[13.39] Show this.
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where

Q(ab) ¼ 1
2
(Qab þQba), Q[ab] ¼ 1

2
(Qab �Qba):

The dimension of the symmetric space Vþ is 1
2
n(nþ 1), and that of the

antisymmetric space V� is 1
2
n(n� 1).[13.40] It is not hard to see that, under

the transformation xa 7! Ta
bx

b, so that Qab 7! Ta
cT

b
dQ

cd , the symmetric

and antisymmetric parts transform to tensors which are again, respect-

ively, symmetric, and antisymmetric.[13.41] Accordingly, the spaces Vþ and

V� are, separately, representation spaces for GG. By choosing a basis for V
where the Wrst 1

2
n(nþ 1) basis elements are in Vþ and the remaining

1
2
n(n� 1) are in V�, we obtain our representation with all matrices being

of the n2 � n2 ‘block-diagonal’ form

A O

O B

� �

,

where A stands for a 1
2
n(nþ 1)� 1

2
n(nþ 1) matrix and B for a

1
2
n(n� 1)� 1

2
n(n� 1) matrix, the two Os standing for the appropriate

rectangular blocks of zeros.

A representation of this form is referred to as the direct sum of the

representation given by the A matrices and that given by the B matrices.

The representation in terms of [ 2
0
]-valent tensors is therefore reducible, in

this sense.[13.42] The notion of ‘direct sum’ also extends to any number

(perhaps inWnite) of smaller representations.

In fact there is a more general meaning for the term ‘reducible repre-

sentation’, namely one for which there is a choice of basis for which all the

matrices of the representation can be put in the somewhat more compli-

cated form

A C

O B

� �

,

where A is p� p, B is q� q, and C is p� q, with p, q $ 1 (for Wxed p and

q). Note that, if the representing matrices all have this form, then the A

matrices and the B matrices each individually constitute a (smaller) repre-

sentationofGG.[13.43] If theCmatrices areall zero,weget the earlier casewhere

the representation is the direct sum of these two smaller representations.

A representation is called irreducible if it is not reducible (with C present or

[13.40] Show this.

[13.41] Explain this.

[13.42] Show that the representation space of [ 1
1
]-valent tensors is also reducible. Hint: Split

any such tensor into a ‘trace-free’ part and a ‘trace’ part.

[13.43] ConWrm this.
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not). A representation is called completely reducible if we never get the

above situation (with non-zero C), so that it is a direct sum of irreducible

representations.

There is an important class of continuous groups, known as semi-simple

groups. This extensively studied class includes the simple groups referred

to in §13.2. Compact semi-simple groups have the pleasing property that

all their representations are completely reducible. (See §12.6, Fig. 12.13 for

the deWnition of ‘compact’.) It is suYcient to study irreducible representa-

tions of such a group, every representation being just a direct sum of these

irreducible ones. In fact, every irreducible representation of such a group is

Wnite-dimensional (which is not the case if we allow a semi-simple group to

be non-compact, when representations that are not completely reducible

can also occur).

What is a semi-simple group? Recall the ‘structure constants’ gwab of

§13.6, which specify the Lie brackets and deWne the local structure of the

group GG. There is a quantity of considerable importance known16 as the

‘Killing form’ k that can be constructed from gabw:[13.44]

kab ¼ gazx gbxz ¼ kba:

The diagrammatic form of this expression is given in Fig. 13.14.

The condition for GG to be semi-simple is that the matrix kab be non-

singular.

Someremarksareappropriateconcerningtheconditionofcompactnessof

a semi-simple group. For a given set of structure constants gabw, assuming

thatwe can take them tobe real numbers,we could consider either the real or

the complex Lie algebra obtained from them. In the complex case, we do not

get a compact group GG, but we might do so in the real case. In fact, compact-

ness occurs in the real case when �kba is what is called positive deWnite (the

meaningofwhich termweshall come to in §13.8).ForWxed gabw, in the caseof

a real group GG, we can always construct the complexiWcation CGG (at least

locally) of GG which comes about merely by using the same gabw, but with

complex coeYcients in the Lie algebra. However, diVerent real groups GG
might sometimes give rise to the same17

CGG. These diVerent real groups are

calleddiVerent real formsof thecomplexgroup.Weshallbe seeing important

‘Killing
form’

: = Fig. 13.14 The ‘Killing form’ kab defined from the

structure constants gazx by kab ¼ gazxgbxz.

[13.44] Why does kab ¼ kba?
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instances of this in later chapters, especially in §18.2, where the Euclidean

motions in 4 dimensions and the Lorentz/Poincaré symmetries of

special relativity are compared. It is a remarkable property of any complex

semi-simple Lie group that it has exactly one real form GG which is com-

pact.

13.8 Orthogonal groups

Now let us return to the orthogonal group. We already saw at the begin-

ning of §13.3 how to represent O(3) or SO(3) faithfully as linear trans-

formations of a 3-dimensional real vector space, with ordinary Cartesian

coordinates (x,y,z), where the sphere

x2 þ y2 þ z2 ¼ 1

is to be left invariant (the upper index 2 meaning the usual ‘squared’).

Let us write this equation in terms of the index notation (§12.7), so that we

can generalize to n dimensions. The equation of our sphere can now

be written

gabx
axb ¼ 1,

which stands for (x1)2 þ � � � þ (xn)2 ¼ 1, the components gab being given

by

gab ¼
1 if a ¼ b,

0 if a 6¼ b:

�

In the diagrammatic notation, I recommend simply using a ‘hoop’ for gab,

as indicated in Fig. 13.15a. I shall also use the notation gab (with the same

explicit components as gab) for the inverse quantity (‘inverted hoop’ in Fig.

13.15a):

gab gbc ¼ dc
a ¼ gcbgba:

=
,

,

= =,

gab gab(a)

(b)

Fig. 13.15 (a) The metric gab and its inverse gab in the ‘hoop’ diagrammatic

notation. (b) The relations gab ¼ gba (i:e: gT ¼ g), gab ¼ gba, and gabg
bc ¼ dc

a in

diagrammatic notation.
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The puzzled reader might very reasonably ask why I have introduced

two new notations, namely gab and gab for precisely the same

matrix components that I denoted by da
b in §13.3! The reason has to do

with the consistency of the notation and with what happens when a linear

transformation is applied to the coordinates, according to some replace-

ment

xa 7! tabx
b,

tab being non-singular, so that it has an inverse sa
b:

tabs
b
c ¼ da

c ¼ sa
bt

b
c:

This is formally the same as the type of linear transformation that we

considered in §§13.3,7, but we are now thinking of it in a quite diVerent

way. In those sections, our linear transformation was thought of as active,

so that the vector space V was viewed as being actually moved (over

itself). Here we are thinking of the transformation as passive in that

the objects under consideration—and, indeed, the vector space V itself—

remain pointwise Wxed, but the representations in terms of coordinates are

changed. Another way of putting this is that the basis (e1 , . . . , en) that we

had previously been using (for the representation of vector/tensor quantities

in terms of components18) is to be replaced by some other basis. See

Fig. 13.16.

In direct correspondence with what we saw in §13.7 for the active

transformation of a tensor, we Wnd that the corresponding passive change

in the components Qa...c
p...r of a tensor Q is given by[13.45]

e3

ê3

ê2

ê1

e2

e1
O

V

O

V

Fig. 13.16 A passive transformation in a vector space V leaves V pointwise fixed,

but changes its coordinate description, i.e. the basis e1, e2, . . . , en is replaced by

some other basis (case n ¼ 3 illustrated).

[13.45] Use Note 13.18 to establish this.
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Qa...c
p...r 7! tad � � � tcf Q

d...f
j...l sj

p . . . sl

r
:

Applying this to da
b, we Wnd that its components are completely

unaltered,[13.46] whereas this is not the case for gab. Moreover, after a

general such coordinate change, the components gab will be quite diVerent

from gab (inverse matrices). Thus, the reason for the additional

symbols gab and gab is simply that they can only represent the same

matrix of components as does da
b in special types of coordinate system

(‘Cartesian’ ones) and, in general, the components are just diVerent.

This has a particular importance for general relativity, where the co-

ordinate system cannot normally be arranged to have this special

(Cartesian) form.

A general coordinate change can make the matrix of components gab a

more complicated although not completely general matrix. It retains the

property of symmetry between a and b giving a symmetric matrix. The

term ‘symmetric’ tells us that the square array of components is symmet-

rical about its main diagonal, i.e. gT ¼ g (using the ‘transpose’ notation of

§13.3). In index-notation terms, this symmetry is expressed as either of the

two equivalent[13.47] forms

gab ¼ gba, gab ¼ gba,

and see Fig. 13.15b for the diagrammatic form of these relations.

What about going in the opposite direction? Can any non-singular n� n

real symmetric matrix be reduced to the component form of a Kronecker

delta? Not quite—not by a real linear transformation of coordinates.

What it can be reduced to by such means is this same form except that

there are some terms 1 and some terms �1 along the main diagonal. The

number, p, of these 1 terms and the number, q, of �1 terms is an invariant,

which is to say we cannot get a diVerent number by trying some other real

linear transformation. This invariant (p, q) is called the signature of g.

(Sometimes it is p� q that is called the signature; sometimes one just

writes þ . . .þ� . . .� with the appropriate number of each sign.) In fact,

this works also for a singular g, but then we need some 0s along the main

diagonal also and the number of 0s becomes part of the signature as well

as the number of 1s and the number of �1s. If we only have 1s, so that g is

non-singular and also q ¼ 0, then we say that g is positive-deWnite. A non-

singular g for which p ¼ 1 and q 6¼ 0 (or q ¼ 1 and p 6¼ 0) is called

Lorentzian, in honour of the Dutch physicist H.A. Lorentz (1853–1928),

whose important work in this connection provided one of the foundation

stones of relativity theory; see §§17.6–9 and §§18.1–3.

[13.46] Why?

[13.47] Why equivalent?

Symmetry groups §13.8

277



An alternative characterization of a positive-deWnite matrix A, of con-

siderable importance in certain other contexts (see §20.3, §24.3, §29.3) is

that the real symmetric matrix A satisfy

xTAx > 0

for all x 6¼ 0. In index notation, this is: ‘Aabx
axb > 0 unless the vector xa

vanishes’.[13.48] We say that A is non-negative-deWnite (or positive-semi-

deWnite) if this holds but with $ in place of > (so we now allow

xTAx ¼ 0 for some non-zero x).

Under appropriate circumstances, a symmetric non-singular [ 0
2
]-tensor

gab, is called a metric—or sometimes a pseudometric when g is not

positive deWnite. This terminology applies if we are to use the quantity

ds, deWned by its square ds2 ¼ gabdxadxb, as providing us with some

notion of ‘distance’ along curves. We shall be seeing in §14.7 how

this notion applies to curved manifolds (see §10.2, §§12.1,2), and in §17.8

how, in the Lorentzian case, it provides us with a ‘distance’ measure

which is actually the time of relativity theory. We sometimes refer to the

quantity

jyj ¼ (gabv
avb)

1
2

as the length of the vector y, with index form va.

Let us return to the deWnition of the orthogonal group O(n).

This is simply the group of linear transformations in n dimensions—

called orthogonal transformations—that preserve a given positive-deWnite

g. ‘Preserving’ g means that an orthogonal transformation T has to

satisfy

gabT
a
cT

b
d ¼ gcd :

This is an example of the (active) tensor transformation rule described in

§13.7, as applied to gab (and see Fig. 13.17 for the diagrammatic form of

this equation). Another way of saying this is that the metric form ds2 of the

previous paragraph is unchanged by orthogonal transformations. We can,

if we please, insist that the components gab be actually the Kronecker

delta—this, in eVect, providing the deWnition of O(3) given in §§13.1,3—

but the group comes out the same19 whatever positive-deWnite n� n array

of gab we choose.[13.49]

orthogonal if =

[13.48] Can you conWrm this characterization?

[13.49] Explain why.

Fig. 13.17 T is an orthogonal transformation if

gabT
a
cT

b
d ¼ gcd .

§13.8 CHAPTER 13

278



With the particular component realization of gab as the Kronecker delta,

the matrices describing our orthogonal transformations are those satisfy-

ing[13.50]

T�1 ¼ TT,

called orthogonal matrices. The real orthogonal n� n matrices provide

a concrete realization of the group O(n). To specialize to the non-reXective

group SO(n), we require that the determinant be equal to unity:[13.51]

det T ¼ 1:

We can also consider the corresponding pseudo-orthogonal groups

O(p, q) and SO(p, q) that are obtained when g, though non-singular, is

not necessarily positive deWnite, having the more general signature

(p, q). The case when p ¼ 1 and q ¼ 3 (or equivalently p ¼ 3 and q ¼ 1),

called the Lorentz group, plays a fundamental role in relativity theory, as

indicated above. We shall also be Wnding (if we ignore time-reXections)

that the Lorentz group is the same as the group of symmetries of

the hyperbolic 3-space that was described in §2.7, and also (if we ignore

space reflections) of the group of symmetries of the Riemann sphere, as

achieved by the bilinear (Möbius) transformations as studied in §8.2. It

will be better to delay the explanations of these remarkable facts until our

investigation of the Minkowski spacetime geometry of special relativity

theory (§§18.4,5). We shall also be seeing in §33.2 that these facts have a

seminal signiWcance for twistor theory.

How ‘diVerent’ are the various groups O(p, q), for pþ q ¼ n, for Wxed n?

(The positive-deWnite and Lorentzian cases are contrasted, for n ¼ 2 and

n ¼ 3, in Fig. 13.18.) They are closely related, all having the same dimen-

sion 1
2
n(n� 1); they are what are called real forms of one and the same

complex group O(n, C), the complexiWcation of O(n). This complex group

is deWned in the same way as O(n) (¼ O(n, R)), but where the linear

transformations are allowed to be complex. Indeed, although I have

phrased my considerations in this chapter in terms of real linear trans-

formations, there is a parallel discussion where ‘complex’ replaces ‘real’

throughout. (Thus the coordinates xa become complex and so do the

components of our matrices.) The only essential diVerence, in what has

been said above, arises with the concept of signature. There are complex

linear coordinate transformations that can convert a �1 in a diagonal

realization of gab into a þ1 and vice versa,[13.52] so we do not now have a

[13.50] Explain this.What isT�1 in the pseudo-orthogonal cases (deWned in the next paragraph)?

[13.51] Explain why this is equivalent to preserving the volume form ea...c, i.e. ea...cT
a
p . . . Tc

r ¼
ep...r? Moreover, why is the preservation of its sign suYcient?

[13.52] Why?
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(a) (b)

Fig. 13.18 (a) O(2,0) and O(1,1) are contrasted. (b) O(3,0) and O(1,2) are

similarly contrasted, the ‘unit sphere’ being illustrated in each case. For O(1,2)

(see §§2.4,5, §18.4), this ‘sphere’ is a hyperbolic plane (or two copies of such).

meaningful notion of signature. The only invariant20 of g, in the complex

case, is what is called its rank, which is the number of non-zero terms in its

diagonal realization. For a non-singular g, the rankhas to bemaximal, i.e. n.

When is the diVerence between these various real forms important and

when is it not? This can be a delicate question, but physicists are often

rather cavalier about the distinctions, even though these can be important.

The positive-deWnite case has the virtue that the group is compact, and

much of the mathematics is easier for such situations (see §13.7). Some-

times people blithely carry over results from the compact case to the non-

compact cases (p 6¼ 0 6¼ q), but this is often not justiWed. (For example, in

the compact case, one need only be concerned with representations that

are Wnite-dimensional, but in the non-compact case additional inWnite-

dimensional representations arise.) On the other hand, there are other

situations in which considerable insights can be obtained by ignoring the

distinctions. (We may compare this with Lambert’s discovery of the

formula, in terms of angles, of the area of a hyperbolic triangle, given in

§2.4. He obtained his formula by allowing his sphere to have an imaginary

radius. This is similar to a signature change, which amounts to allowing

some coordinates to have imaginary values. In §18.4, Fig. 18.9, I shall try
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to make the case that Lambert’s approach to non-Euclidean geometry is

perfectly justiWable.)

The diVerent possible real forms of O(n, C) are distinguished by certain

set of inequalities on the matrix elements (such as det T > 0). A feature of

quantum theory is that such inequalities are often violated in physical

processes. For example, imaginary quantities can, in a sense, have a

physically real signiWcance in quantum mechanics, so the distinction be-

tween diVerent signatures can become blurred. On the other hand, it is my

impression that physicists are often somewhat less careful about these

matters than they should be. Indeed, this question will have considerable

relevance for us in our examination of a number of modern theories (§28.9,

§31.11, §32.3). But more of this later. This is the ‘can of worms’ that I

hinted at in §11.2!

13.9 Unitary groups

The group O(n, C) provides us with one way in which the notion of a

‘rotation group’ can be generalized from the real numbers to the complex.

But there is another way which, in certain contexts, has an even greater

signiWcance. This is the notion of a unitary group.

What does ‘unitary’ mean? The orthogonal group is concerned with the

preservation of a quadratic form, which we can write equivalently as

gabx
axb or xTgx. For a unitary group, we use complex linear transform-

ations which preserve instead what is called a Hermitian form (after the

important 19th century French mathematician Charles Hermite

1822–1901).

What is a Hermitian form? Let us Wrst return to the orthogonal case.

Rather than a quadratic form (in x), we could equally have used the

symmetric bilinear form (in x and y)

g(x, y) ¼ gabx
ayb ¼ xTgy:

This arises as a particular instance of the ‘multilinear function’ deWnition

of a tensor given in §12.8, as applied to the 2
0

� �

tensor g (and putting y ¼ x,

we retrieve the quadratic form above). The symmetry of g would then be

expressed as

g(x, y) ¼ g(y, x),

and linearity in the second variable y as

g(x, yþ w) ¼ g(x, y)þ g(x, w), g(x, ly) ¼ lg(x, y):

For bilinearity, we also require linearity in the Wrst variable x, but this now

follows from the symmetry.
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A Hermitian form h(x, y) satisWes, instead, Hermitian symmetry

h(x, y) ¼ h(y, x),

together with linearity in the second variable y:

h(x, yþ w) ¼ h(x, y)þ h(x, w), h(x, ly) ¼ lh(x, y):

The Hermitian symmetry now implies what is called antilinearity in the

Wrst variable:

h(xþ w, y) ¼ h(x, y)þ h(w, y), h(lx, y) ¼ lh(x, y):

Whereas an orthogonal group preserves a (non-singular) symmetric

bilinear form, the complex linear transformations preserving a non-singu-

lar Hermitian form give us a unitary group.

What do such forms do for us? A (not necessarily symmetric) non-

singular bilinear form g provides us with a means of identifying the

vector space V, to which x and y belong, with the dual space V*. Thus, if

y belongs to V, then g(y, ) provides us with a linear map on V, mapping

the element x of V to the number g(y, x). In other words, g(y, ) is

an element of V* (see §12.3). In index form, this element of V* is the

covector vagab, which is customarily written with the same kernel letter

y, but with the index lowered (see also §14.7) by gab, according to

vb ¼ vagab:

The inverse of this operation is achieved by the raising of the index of va by

use of the inverse metric [ 2
0
]-tensor gab:

va ¼ gabvb:

We shall need the analogue of this in the Hermitian case. As before,

each choice of elementy from the vector space V provides uswith an element

h(y, ) of the dual space V*. However, the diVerence is that now h(y, )

depends antilinearly on y rather than linearly; thus h(ly, ) ¼ �llh(y, ).

An equivalent way of saying this is that h(y, ) is linear in �yy, this vector

quantity �yy being the ‘complex conjugate’ of y. We consider these complex-

conjugate vectors to constitute a separate vector space �yy. This viewpoint is

particularly useful for the (abstract) index notation, where a separate

‘alphabet’ of indices is used, say a0, b0, c0, . . . , for these complex-conjugate

elements, where contractions (summations) are not permitted between

primed and unprimed indices. The operation of complex conjugation

interchanges the primed with the unprimed indices. In the index notation,

our Hermitian form is represented as an array of quantities ha0b with one

(lower) index of each type, so
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h(x, y) ¼ ha0b�xxa0yb

(with �xxa0 being the complex conjugate of the element xa), where ‘Hermiti-

city’ is expressed as

ha0b ¼ hb0a

The array of quantities ha0b allows us to lower or raise an index, but it

now changes primed indices to unprimed ones, and vice versa, so it refers

us to the dual of the complex-conjugate space:

�vva ¼ �vva0ha0b, va0 ¼ ha0bv
b:

For the inverses of these operations—where the Hermitian form is as-

sumed non-singular (i.e. the matrix of components hab0 is non-singular)—

we need the inverse hab0 of ha0b

hab0hb0c ¼ da
c , ha0bh

bc0 ¼ dc0

a0 ,

whence[13.53]

�vva0 ¼ �vvbh
ba0 , va ¼ hab0vb0 :

Note that all primed indices can be eliminated using ha0b (and the corres-

ponding inverse hab0) by virtue of the above relations, which can be applied

index-by-index to any tensor quantity. The complex-conjugate space is

thereby ‘identiWed’ with the dual space, instead of having to be a quite

separate space.

The operation of ‘complex conjugation’—usually called Hermitian con-

jugation—which incorporates this identiWcation with the dual into the

notion of complex conjugation (though not commonly written in the

index notation) is of central importance to quantum mechanics, as well

as to many other areas of mathematics and physics (such as twistor theory,

see §33.5). In the quantum-mechanical literature this is often denoted by a

dagger ‘{’, but sometimes by an asterisk ‘*’.

I prefer the asterisk, which is more usual in the mathematical literature, so

I shall use this here—in bold type. The asterisk is appropriate here because it

interchanges the roles of the vector space V and its dual V*. A complex

tensor of valence [ p
q
] (all primed indices having been eliminated, as above) is

mapped by * to a tensor of valence [ q
p
]. Thus, upper indices become lower

and lower indices become upper under the action of *. As applied to scalars,

* is simply the ordinary operation of complex conjugation. The operation *
is an equivalent notion to the Hermitian form h itself.

The most familiar Hermitian conjugation operation (which occurs

when the components ha0b are taken to be the Kronecker delta) simply

[13.53] Verify these relations, explaining the notational consistency of hab0 .
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takes the complex conjugate of each component, reorganizing the

components so as to read upper indices as lower ones and lower indices as

upper ones. Accordingly, the matrix of components of a linear transform-

ation is taken to the transpose of its complex conjugate (sometimes called

the conjugate transpose of the matrix), so in the 2� 2 case we have

a b

c d

� �

* ¼ �aa �cc
�bb �dd

� �

:

A Hermitian matrix is a matrix that is equal to its Hermitian conjugate in

this sense. This concept, and the more general abstract Hermitian operator,

are of great importance in quantum theory.

We note that * is antilinear in the sense

(T þU)* ¼ T* þU*,

(zT)* ¼ �zzT*,

applied to tensors T and U, both of the same valence, and for any complex

number z. The action of * must also preserve products of tensors but,

because of the reversal of the index positions, it reverses the order of

contractions; in particular, when * is applied to linear transformations

(regarded as tensors with one upper and one lower index), the order of

multiplication is reversed:

(LM)* ¼M*L*:

It is very handy, in the diagrammatic notation, to depict such a conjuga-

tion operation as reXection in a horizontal plane. This interchanges upper

and lower indices, as required; see Fig. 13.19.

H
er

m
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ia

n 
co
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ug

at
e

S

S* T* =T*S*
(ST)*

T ST
,

, , , ,

, , ,

,
mirrormirror

Fig. 13.19 The operation of Hermitian conjugation (*) conveniently depicted as

reflection in a horizontal plane. This interchanges ‘arms’ with ‘legs’ and reverses

the order of multiplication: (ST)� ¼ T�S�. The diagrammatic expression for the

Hermitian scalar product hyjwi ¼ y�w is given (so that taking its complex conju-

gate would reflect the diagram on the far right upside-down).
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The operation * enables us to deWne a Hermitian scalar product between

two elements y and w, of V, namely the scalar product of the covector y*

with the vector w (the diVerent notations being useful in diVerent con-

texts):

hy j wi ¼ y*� w ¼ h(y, w)

(and see Fig. 13.19), and we have

hy j wi ¼ hw j yi:

In the particular case w ¼ y, we get the norm of y, with respect to *:

k y k¼ hy j yi:

We can choose a basis (e1, e2 , . . . , en) for V, and then the components ha0b

in this basis are simply the n2 complex numbers

ha0b ¼ h(ea, eb) ¼ hea j ebi,

constituting the elements of a Hermitian matrix. The basis (e1 , . . . , en) is

called pseudo-orthonormal, with respect to *, if

hei j eji ¼
	1 if i ¼ j

0 if i 6¼ j

�

;

in the case when all the + signs are þ, i.e. when each + 1 is just 1, the

basis is orthonormal.

A pseudo-orthonormal basis can always be found, but there are

many choices. With respect to any such basis, the matrix ha0b is

diagonal, with just 1s and �1s down the diagonal. The total number of

1s, p, always comes out the same, for a given *, independently of any

particular choice of basis, and so also does the total number of �1s, q.

This enables us to deWne the invariant notion of signature (p, q) for the

operation *.

If q ¼ 0, we say that * is positive-deWnite. In this case,21 the norm of any

non-zero vector is always positive:[13.54]

y 6¼ 0 implies k y k> 0:

Note that this notion of ‘positive-deWnite’ generalizes that of §13.8 to the

complex case.

A linear transformation T whose inverse is T*, so that

T�1 ¼ T*, i:e: T T* ¼ I ¼ T*T,

[13.54] Show this.
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is called unitary in the case when * is positive-deWnite, and pseudo-unitary

in the other cases.[13.55] The term ‘unitary matrix’ refers to a matrix T

satisfying the above relation when * stands for the usual conjugate trans-

pose operation, so that T�1 ¼T.

The group of unitary transformations in n dimensions, or of (n� n)

unitary matrices, is called the unitary group U(n). More generally, we get

the pseudo-unitary group U(p, q) when * has signature (p, q).22 If the

transformations have unit determinant, then we correspondingly obtain

SU( n) and SU(p, q). Unitary transformations play an essential role

in quantum mechanics (and they have great value also in many pure-

mathematical contexts).

13.10 Symplectic groups

In the previous two sections, we encountered the orthogonal and unitary

groups. These are examples of what are called classical groups, namely the

simple Lie groups other than the exceptional ones; see §13.2. The list of

classical groups is completed by the family of symplectic groups. Symplec-

tic groups have great importance in classical physics, as we shall be seeing

particularly in §20.4—and also in quantum physics, particularly in the

inWnite-dimensional case (§26.3).

What is a symplectic group? Let us return again to the notion of a bilinear

form, but where instead of the symmetry (g(x, y) ¼ g( y, x)) required for

deWning the orthogonal group, we impose antisymmetry

s(x, y) ¼ �s( y, x),

together with linearity

s(x, yþ w) ¼ s(x, y)þ s(x, w), s(x, ly) ¼ ls(x, y),

where linearity in the Wrst variable x now follows from the antisymmetry.

We can write our antisymmetric form variously as

s(x, y) ¼ xasaby
b ¼ xTSy,

just as in the symmetric case, but where sab is antisymmetric:

sba ¼ �sab i:e: ST ¼ �S,

S being the matrix of components of sab. We require S to be non-singular.

Then sab has an inverse sab, satisfying23

[13.55] Show that these transformations are precisely those which preserve the Hermitian

correspondence between vectors v and covectors v�, and that they are those which preserve hab0 .
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sabs
bc ¼ dc

a ¼ scbsba,

where sab ¼ �sba.

We note that, by analogy with a symmetric matrix, an antisymmetric

matrix S equals minus its transpose. It is important to observe that an

n� n antisymmetric matrix S can be non-singular only if n is even.[13.56]

Here n is the dimension of the space V to which x and y belong, and we

indeed take n to be even.

The elements T of GL(n) that preserve such a non-singular antisym-

metric sab (or, equivalently, the bilinear form s), in the sense that

sabT
a
c Tb

d ¼ scd , i:e: TTS T ¼ S,

are called symplectic, and the group of these elements is called a symplectic

group (a group of very considerable importance in classical mechanics, as

we shall be seeing in §20.4). However, there is some confusion in the

literature concerning this terminology. It is mathematically more accurate

to deWne a (real) symplectic group as a real form of the complex symplectic

group Sp( 1
2
n, C), which is the group of complex Ta

b (or T) satisfying the

above relation. The particular real form just deWned is non-compact; but

in accordance with the remarks at the end of §13.7—Sp( 1
2
n, C) being semi-

simple—there is another real form of this complex group which is com-

pact, and it is this that is normally referred to as the (real) symplectic

group Sp( 1
2
n).

How do we Wnd these diVerent real forms? In fact, as with the orthog-

onal groups, there is a notion of signature which is not so well known as in

the cases of the orthogonal and unitary groups. The symplectic group of

real transformations preserving sab would be the ‘split-signature’ case of

signature ( 1
2
n, 1

2
n). In the compact case, the symplectic group has signa-

ture (n, 0) or (0, n).

How is this signature deWned? For each pair of natural numbers p and q

such that pþ q ¼ n, we can deWne a corresponding ‘real form’ of the

complex group Sp( 1
2
n, C) by taking only those elements which are also

pseudo-unitary for signature (p, q)—i.e. which belong to U(p, q) (see

§13.9). This gives24 us the (pseudo-)symplectic group Sp(p, q). (Another

way of saying this is to say that Sp(p, q) is the intersection of Sp( 1
2
n, C)

with U(p, q).) In terms of the index notation, we can deWne Sp(p, q) to be

the group of complex linear transformations Ta
b that preserve both the

antisymmetric sab, as above, and also a Hermitian matrix H of compon-

ents ha0b, in the sense that

�TTa0

b0T
a
bha0a ¼ hb0b,

[13.56] Prove this.
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where H has signature (p, q) (so we can Wnd a pseudo-orthonormal

basis for which H is diagonal with p entries 1 and q entries �1; see

§13.9).25 The compact classical symplectic group Sp( 1
2
n) is my Sp(n, 0)

(or Sp(0, n) ), but the form of most importance in classical physics is

Sp( 1
2
n, 1

2
n).[13.57]

As with the orthogonal and unitary groups, we can Wnd choices of basis

for which the components sab have a particularly simple form. We cannot

now take this form to be diagonal, however, because the only antisym-

metric diagonal matrix is zero! Instead, we can take the matrix of sab to

consist of 2� 2 blocks down the main diagonal, of the form

0 1

�1 0

� �

:

In the familiar split-signature case Sp( 1
2
n, 1

2
n), we can take the real linear

transformations preserving this form. The general case Sp(p, q) is exhibited

by taking, rather than real transformations, pseudo-unitary ones of signa-

ture (p, q).[13.58]

For various (small) values of p and q, some of the orthogonal, unitary,

and symplectic groups are the same (‘isomorphic’) or at least locally the

same (‘locally isomorphic’), in the sense of having the same Lie algebras (cf.

§13.6).26 The most elementary example is the group SO(2), which describes

the group of non-reXective symmetries of a circle, being the same as the

unitary group U(1), the multiplicative group of unit-modulus complex

numbers eiy (y real).[13.59] Of a particular importance for physics is the fact

that SU(2) and Sp(1) are the same, and are locally the same as SO(3) (being

the twofold cover of this last group, in accordance with the twofold nature

of the quaternionic representation of rotations in 3-space, as described in

§11.3). This has great importance for the quantum physics of spin (§22.8). Of

signiWcance in relativity theory is the fact that SL(2, C), being the same as

Sp(1, C), is locally the same as the non-reXective part of the Lorentz group

O(1, 3) (again a twofold cover of it). We also Wnd that SU(1, 1), Sp(1, 1), and

SO(2, 1) are the same, and there are several other examples. Particularly

noteworthy for twistor theory is the local identity between SU(2, 2) and the

non-reXective part of the group O(2, 4) (see §33.3).

The Lie algebra of a symplectic group is obtained by looking for

solutions X of the matrix equation

XTSþ S X ¼ 0, i:e: S X ¼ (S X)T,

[13.57] Find explicit descriptions of Sp(1) and Sp(1, 1) using this prescription. Can you see why

the groups Sp(n, 0) are compact?

[13.58] Show why these two diVerent descriptions for the case p ¼ q ¼ 1
2
n are equivalent.

[13.59] Why are they the same?
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so the inWnitesimal transformation (Lie algebra element) X is simply S�1

times a symmetric n� n matrix. This enables the dimensionality 1
2
n(nþ 1)

of the symplectic group to be directly seen. Note that X has to be trace-free

(i.e. trace X ¼ 0—see §13.4).[13.60] The Lie algebras for orthogonal and

unitary groups are also readily obtained, in terms, respectively, of anti-

symmetric matrices and pure-imaginary multiples of Hermitian matrices,

the respective dimensions being n(n� 1)=2 and n2.[13.61]

We note from §13.4 that, for the transformations to have unit determin-

ant, the trace of the inWnitesimal element X must vanish. This is automatic

in the symplectic case (noted above), and in the orthogonal case the

inWnitesimal elements all have unit determinant.[13.62] In the unitary case,

restriction to SU(n) is one further condition (trace X ¼ 0), so the dimen-

sion of the group is reduced to n2 � 1.

The classical groups referred to in §13.2, sometimes labelled

Am, Bm, Cm, Dm (for m ¼ 1, 2, 3, . . .), are simply the respective groups

SU(mþ 1), SO(2mþ 1), Sp(m), and SO(2m), that we have been examining

in §§13.8–10, and we see from the above that they indeed have respective

dimensionalities m(mþ 2), (2mþ 1), m(2mþ 1), and m(2m� 1), as

asserted in §13.2. Thus, the reader has now had the opportunity to catch

a signiWcant glimpse of all the classical simple groups. As we have seen,

such groups, and some of the various other ‘real forms’ (of their complex-

iWcations) play important roles in physics. We shall be gaining a little

acquaintance with this in the next chapter. As mentioned at the beginning

of this chapter, according to modern physics, all physical interactions are

governed by ‘gauge connections’ which, technically, depend crucially on

spaces having exact symmetries. However, we still need to know what a

‘gauge theory’ actually is. This will be revealed in Chapter 15.

Notes

Section 13.1

13.1. Abel was born in 1802 and died of consumption (tuberculosis) in 1829, aged 26.

The more general non-Abelian (ab 6¼ ba) group theory was introduced by the

even more tragically short-lived French mathematician Evariste Galois

(1811–1832), who was killed in a duel before he reached 21, having been up the

entire previous night feverishly writing down his revolutionary ideas involving

the use of these groups to investigate the solubility of algebraic equations, now

called Galois theory.

Symmetry groups Notes

[13.60] Explain where the equation XTS þ SX ¼ 0 comes from and why SX ¼ (SX)T. Why

does trace X vanish? Give the Lie algebra explicitly. Why is it of this dimension?

[13.61] Describe these Lie algebras and obtain these dimensions.

[13.62] Why, and what does this mean geometrically?
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13.2. We should also take note that ‘–C ’ means ‘take the complex conjugate, then

multiply by �1’, i.e. �C ¼ (�1)C.

13.3. The S stands for ‘special’ (meaning ‘of unit determinant’) which, in the present

context just tells us that orientation-reversing motions are excluded. The O

stands for ‘orthogonal’ which has to do with the fact that the motions that it

represents preserves the ‘orthogonality’ (i.e. the right-angled nature) of coordin-

ate axes. The 3 stands for the fact that we are considering rotations in three

dimensions.

13.4. There is a remarkable theorem that tells us that not only is every continuous

group also smooth (i.e. C0 implies C1, in the notation of §§6.3,6, and even C0

implies C1), but it is also analytic (i.e. C0 implies Co). This famous result, which

represented the solution of what had become known as ‘Hilbert’s 5th problem’,

was obtained by Andrew Mattei Gleason, Deane Montgomery, Leo Zippin, and

Hidehiko Yamabe in 1953; see Montgomery and Zippin (1955). This justiWes the

use of power series in §13.6.

Section 13.2

13.5. See van der Waerden (1985), pp. 166–74.

13.6. See Devlin (1988).

13.7. See Conway and Norton (1972); Dolan (1996).

Section 13.3

13.8. We shall be seeing in §14.1 that a Euclidean space is an example of an aVine

space. If we select a particular point (origin) O, it becomes a vector space.

13.9. In many places in this book it will be convenient—and sometimes essential—to

stagger the indices on a tensor-type symbol. In the case of a linear transform-

ation, we need this to express the order of matrix multiplication.

13.10. This region is a vector space of dimension r (where r < n). We call r the rank of the

matrix or linear transformation T. A non-singular n� n matrix has rank n. (The

concept of ‘rank’ applies also to rectangular matrices.) Compare Note 12.18.

13.11. For a history of the theory of matrices, see MacDuVee (1933).

Section 13.5

13.12. In those degenerate situations where the eigenvectors do not span the whole

space (i.e., some d is less than the corresponding r), we can still Wnd a canonical

form, but we now allow 1s to appear just above the main diagonal, these

residing just within square blocks whose diagonal terms are equal eigenvalues

(Jordan normal form); see Anton and Busby (2003). Apparently Weierstrauss

had (eVectively) found this normal form in 1868, two years before Jordan; See

Hawkins (1977).

Section 13.6

13.13. To illustrate this point, consider SL(n, R) (i.e. the unit-determinant elements of

GL(n, R) itself). This group has a ‘double cover’ ~SL(n, R) (provided that n 
 3)

which is obtained from SL(n, R) in basically the same way whereby we eVectively

found the double cover ~SO(3) of SO(3) when we considered the rotations

of a book, with belt attachment, in §11.3. Thus, ~SO(3) is the group of (non-

reXective) rotations of a spinorial object in ordinary 3-space. In the same way,

we can consider ‘spinorial objects’ that are subject to the more general linear

transformations that allow ‘squashing’ or ‘stretching’, as discussed in §13.3. In

this way, we arrive at the group ~SL(n, R), which is locally the same as SL(n, R),

but which cannot, in fact, be faithfully represented in any GL(m). See Note 15.9.

Notes CHAPTER 13
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13.14. This notion is well deWned; cf. Note 13.4.

Section 13.7

13.15. See Thirring (1983).

13.16. Here, again, we have an instance of the capriciousness of the naming of

mathematical concepts. Whereas many notions of great importance in this

subject, to which Cartan’s name is conventionally attached (e.g. ‘Cartan sub-

algebra, Cartan integer’) were originally due to Killing (see §13.2), what we refer

to as the ‘Killing form’ is actually due to Cartan (and Hermann Weyl); see

Hawkins (2000), §6.2. However, the ‘Killing vector’ that we shall encounter in

§30.6 is actually due to Killing (Hawkins 2000, note 20 on p. 128).

13.17. I am (deliberately) being mathematically a little sloppy in my use of the phrase

‘the same’ in this kind of context. The strict mathematical term is ‘isomorphic’.

Section 13.8

13.18. I have not been very explicit about this procedure up to this point. A basis

e ¼ (e1 , . . . , en) for V is associated with a dual basis—which is a basis

e* ¼ (e1 , . . . , en) for V*—with the property that ei� ej ¼ di
j . The components of

a [ p
q
]-valent tensor Q are obtained by applying the multilinear function of §12.8 to

the various collections of p dual basis elements and q basis elements:

Q f...h
a...c ¼ Q(e f , . . . , eh; ea , . . . , ec).

13.19. See Note 13.3.

13.20. See Note 13.10. The reader may be puzzled about why the Ta
b of §13.5 can have

lots of invariants, namely all its eigenvalues l1, l2, l3 , . . . , ln, whereas gab does

not. The answer lies simply in the diVerence in transformation behaviour

implicit in the diVerent index positioning.

Section 13.9

13.21. Note that, in the positive-deWnite case, (e*
1, e*

2 , . . . , e*
n) is a dual basis to

(e1, e2 , . . . , en), in the sense of Note 13.18.

13.22. The groups U(p, q), for Wxed pþ q ¼ n, as well as GL(n, R), all have the same

complexiWcation, namely GL(n, C), and these can all be regarded as diVerent

real forms of this complex group.

Section 13.10

13.23. We can then use sab and sab to raise and lower indices of tensors, just as with gab

and gab, so va ¼ sabv
b va ¼ sabvb (see §13.8); but, because of the antisymmetry,

we must be a little careful to make the ordering of the indices consistent. Those

readers who are familiar with the 2-spinor calculus (see Penrose and Rindler

1984, vol.1) may notice a slight notational discrepancy between our sab and the

eAB of that calculus.

13.24. I am not aware of a standard terminology or notation for these various real

forms, so the notation Sp(p, q) has been concocted for the present purposes.

13.25. In fact, every element of Sp( 1
2
n, C) has unit determinant, so we do not need an

‘SSp( 1
2
n)’ by analogy with SO(n) and SU(n). The reason is that there is an

expression (the ‘PfaYan’) for Levi-Civita’s e . . . in terms of the sab, which must

be preserved whenever the sab are.

13.26. See Note 13.17.
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