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Three-dimensional traveling-wave solutions in plane Couette flow
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Nonlinear three-dimensional time-dependent solution branches are obtained in plane Couette flow modified
by plane Poiseuille flow component. It is found that as the Poiseuille component is added a bréims of
dependensolutions is produced from théme-independensolution branch in plane Couette flow, and that
there exists a second branch of time-dependent solutions in the form of a closed loop inside the primary
time-dependent solution branch. The second branch intersects the line of zero plane Poiseuille flow component
at two points with nonvanishing phase velocity for higher Reynolds numbers, creating shape preserving
nonlinear traveling-wave solutions in plane Couette flg81063-651X%97)00902-1

PACS numbdis): 47.27.Te, 47.20.Ky

In order to understand transition mechanisms from lami- u=U(t,2)i+ VX VX ($K)+ VX (¢K), 2)
nar state to turbulence for the simplest form of shear motion, .
plane Couette flow has been studied a great deal both thefrom Eg. (1), whereU(t,z) is the modification of the mean
retically [1-3] and experimentallyf4—9] in the last few flow through the action of the Reynolds stress, arahd k
years. In experiments, turbulent spots are triggered by injectare the unit vectors ix (the streamwise directiorand z,
ing a liquid jet into a stable laminar state and streamwisaespectively, are solved by the Galerkin projection method
vortex structures are observed. On the theoretical sidg10].
mainly because of the lack of the linear instability mecha- No-slip boundary conditions
nism, this flow had been defying proper nonlinear investiga- .
tions for decades, until Nagafa0] discovered a branch of d=¢'=y=U=0 3
nonlinear time-independent three-dimensional solutions, _ L
known as the Nagata solution, numerically. The solution@re applied ore==+3. _ _
originates from the Taylor vortex flow in a circular Couette ~ Assuming a traveling-wave type of solution propagating
system. Although the accuracy of the Nagata solution ha¥) the_ streamwise directior and, per|0d|c in the spanwise
been improved a great dedll], the stability of the solution ~directiony, we expandg, ¢, andU in the form
is not yet conclusive due to the lack of sufficient computa- o o w0
tional power[12]. However, the existence of the subcritical , _ . _
solution itself is expected to play an important role in the ¢_Zl m;x n;w 3 meexXA[Ma(x=yt) +nBylt(2),
phase space dynamics. Recently, other types of finite ampli- 4
tude steady solutiong2,3] in plane Couette flow are found
numerically by extending a two-dimensional solution branch S
bifurcating from a laminar plane Poiseuille flow to the plane y=2 2 2 b, mreXp[Ma(x—yt)+npy]
Couette flow region. None of the experimental counterparts I

of the finite amplitude steady solutions has been detected yet. Xsin/mw(z+3), (5
As for plane Poiseuille flow, the importance of stream-
wise vortex structures has been recognigEs] in the tran- * *

sition process. Since the Nagata solution does not originate U(z)= 2 cSinXmz+ Z dysin(2k—1)m(z+3), (6)
from the spanwise vortex flow, it is quite natural to extend k=1 k=1
the solution to a mixed flow situation with two Reynolds
numbers:R=U,L/v based on the total translational bound-
ary motionU,, andQ=(G/2p)L?% »? based on the pressure
gradientG imposed along the channel. In the definitions of
the two Reynolds numberg,and v are the density and the
kinematic viscosity of the fluid, respectively, amdis the
whole width of the channel.

The basic flow with the appropriate boundary conditions
on the channel wallg;= =1, is given by the exact solution of
the Navier-Stokes equation for an incompressible fluid:

where @ and B are the wave numbers in theand they
directions andy is the phase velocity. The Chandrasekhar
function f (z) satisfiesf, (+1/2)=f)(+1/2)=0. Because
of the contribution from the symmetric basic velocity profile
for Q#0, the amplitudesa, mn and b, mn are complex in
general, whereas the mean flow distortion componepts
andd, are real.

For numerical purposes we truncate the expansidihs
(5), and(6) so that only those terms satisfying

/+|m|+|n|<N, k<N’ (7
=—-Rz+Q(Z*-%). 1 : :
u(z) 2+Q(z°~3) @ are taken into account. In order to determine the phase ve-
locity v, the real(or imaginary part of one of the amplitudes
The equations for the velocity deviation, is set to zero without losing generalifit4]. The resulting
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FIG. 1. The amplitudec; of the time-
dependent solutions in plane Couette/Poiseuille
flow at R=600. The primary branch is continued
¢ 100 § from Nagata solution ad andB on Q=0. The
' second branch in the form of a loop inside is not
connected to the primary branch. The poifts
andD correspond to the traveling-wave solutions
50 |- b i in plane Couette flow.
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finite system of nonlinear algebraic equations for the ampliphase velocities turn out to be nonzero, corresponding to
tudesa, mn, b,mn: ¢k, andd, and the phase velocity are  three-dimensional traveling-wave solutions in plane Couette
solved by the Newton-Raphson method. flow.

In this paper, a rather low truncation levél,N')=(12,8 Figure 2 shows the continuation of the time-dependent
is taken. Also, the wave number pdiw,B) is limited to  solutions at higher values d® in plane Couette flow, to-
(1.3,2.9, which is situated near the center of the existencegether with the Nagata solution. The time-dependent solu-
region for the steady three-dimensional solutions inde  tions appear suddenly & slightly higher thanR, for the
plane wherR=600[see Fig. &) in [11]]. abrupt bifurcation of the Nagata solution. The phase velocity

We start with the Nagata solution &=600. Both the of the time-dependent solutions is plotted in Fig. 3.
amplitudesd, and the phase velocity depart from zero, as Three-dimensional traveling-wave solutions in plane Cou-
Q is gradually added. The primary time-dependent solutiorette flow are found in the process of extending the three-
branch forQ+0 is connected to the upper and the lowerdimensional steady solutions obtained previously to a region
branches of the Nagata solution @=0. It is found that mixed with plane Poiseuille flow. This process is not simply
there exists a second branch of time-dependent solutions the inverse of those successfully used in finding other types
the form of a closed loop inside the primary branch as showmf steady solution$2,3] in plane Couette flow, where the
in Fig. 1. (The primary branch merges into the second fortwo-dimensional traveling-wave solution branch in plane
R=800. The loop aR=600 in Fig. 1 was actually continued Poiseuille flow is extended to the mixed flow region until it
from the solution on the second branchRat800 by keeping attains either two-dimensional spatially localized steady
Q constan. Note that the loop aR=600 intersects the line flows[2] or a three-dimensional equilibrium stdt&| in the
of Q=0 at the two pointsC andD in Fig. 1, where the plane Couette flow limit with vanishing phase velocity. Since

200 T T T T T 1] T
+
&
150 + ° —
4
+ g}ooo
4 . .
* o © FIG. 2. The amplitudec,; of the nonlinear
e 100 L + o ° 1 three-dimensional solutions in plane Couette flow
. * 0 * (Q=0). Nagata solutions are indicated by the
. ° crosses and new time-dependent solutions are in-
© . .
. 0 dicated by the diamonds.
L I o0 ©
ol {+ . © 09 0 o LERIIN 60 0 O o © o © A
+ 4
+ + + +
0 1 1 1 1 1 1 1
400 500 600 700 800 900 1000 1100 1200

R



55 BRIEF REPORTS 2025

50 T T T T T T T

] FIG. 3. The phase velocity of the time-
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the three-dimensional steady solutions that have been ex- Because of the symmetry of the problem in the plane
tended to the traveling-wave solution in the present analysi€ouette flow limit, the flow with the opposite phase velocity
originate from the streamwise vortex flow and do not possests also a solution. Although the superposition of two
the spanwise vortex structure responsible for the instabilitfraveling-wave solutions propagating in opposite directions
of plane Poiseuille flow, they are structurally independent ofS not permitted in nonlinear analyses, some form of a stand-
those steady solutions originating from plane Poiseuille flowing wave solution might be a possibility. Time periodic flows
This structural independence also holds between thaith a small sqale deV|at|0|_"| from the Nagata solution have
traveling-wave solutions extended by the two processes iR€eN reported in the numerical simulatidr]. In contrast to
the mixed flow region. It would be interesting to see whethet® traveling wave solutions found in the current study, they
the present form of time-dependent solutions exists even i re not shape preserving. Calculations at higher truncation
the plane Poiseuille flow limit. Conventionally, only those evels are under way.

solutions bifurcating primarily at the linear critical Reynolds  The author is grateful for JSP@apan Society for the
numberQ. have been considered in the nonlinear stabilityPromotion of Sciengefor financial support. This work was
analysis of plane Poiseuille flojd4], where the secondary started while he was invited to Tokyo Denki University by
vortex flows are independent of the spanwise direction dedSPS. The hospitality of TDU, especially Professor H Kawai,
duced from the Squire theorem. is much appreciated.
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