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Abstract

In this work we study the efficiency of a spectral Petrov–Galerkin method for the linear and nonlinear stability analysis of the
pipe or Hagen–Poiseuille flow. We formulate the problem in solenoidal primitive variables for the velocity field and the pressure
term is eliminated from the scheme suitably projecting the equations on another solenoidal subspace. The method is unusual in
being based on Chebyshev polynomials of selected parity for the radial variable, avoiding clustering of the quadrature points near
the origin, satisfying appropriate regularity conditions at the pole and allowing the use of a fast cosine transform if required.
Besides, this procedure provides good conditions for the time marching schemes. For the time evolution, we use semi-implicit
time integration schemes. Special attention is given to the explicit treatment and efficient evaluation of the nonlinear terms via
pseudospectral partial summations. The method provides spectral accuracy and the linear and nonlinear results obtained are in very
good agreement with previous works. The scheme presented can be applied to other flows in unbounded cylindrical geometries.
© 2006 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Spectral methods have been extensively applied for the approximation of solutions of the Navier–Stokes equations
[3,4,8]. So far, collocation or pseudospectral methods have been more popular than Galerkin spectral because they
are easier to formulate and implement. One of the arguments that have been frequently given to encourage the use of
Galerkin instead of collocation methods is that sometimes the former provide banded matrices in the spatial discretiza-
tion of linear operators, which improves the efficiency of the linear solvers in the time integrations. The difficulty of
Galerkin methods lies on their mathematical formulation. In particular, the Navier–Stokes equations in non-Cartesian
geometries make the Galerkin formulation very complex and tedious.

The numerical approximation of pipe flows via spectral or pseudospectral methods is not a new matter. There has
been a long list of contributions regarding this issue in the recent past. Among other works, we should mention the
methods proposed in [2,11,13,14,19,20,24], for example. In [14], a solenoidal Fourier–Jacobi spectral method was
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proposed, elegantly solving the problem of the apparent singularity at the origin since the Jacobi polynomials used in
the radial coordinate automatically satisfied the suitable analyticity conditions at the pole. Besides, the pressure terms
were eliminated from the formulation via projection over a solenoidal space of test functions. The only weakness of
the method proposed in [14] was the lack of a fast transform for the Jacobi polynomials and the clustering of radial
points near the axis, thus considerably reducing the time step size in the time integrations. In a recent work [20],
a Fourier–Chebyshev collocation method was formulated in primitive velocity-pressure variables, where Chebyshev
polynomials of selected parity combined with half radial Gauss–Lobatto grid were used, thus avoiding clustering near
the origin and allowing the use of a fast cosine transform. To the author’s knowledge, this is the first time where the
combination proposed in [20] has been used in Navier–Stokes equations in cylindrical coordinates.

In [18], a spectral solenoidal Petrov–Galerkin scheme was used for the accurate computation of eigenvalues arising
from the linearization of the Navier–Stokes operator of the Hagen–Poiseuille flow. The analysis presented was focused
on the asymptotic behaviour of the leading eigenvalues but the technical details of the spatial discretization and its
efficiency for nonlinear time dependent integrations had to wait until a complete nonlinear formulation of the scheme
was provided and tested.

In this work, a Galerkin method capable of simultaneously dealing with several difficulties arising from the Navier–
Stokes equations in cylindrical unbounded geometries is presented. First, the construction of a solenoidal basis of trial
functions for the velocity field in order to satisfy the incompressibility condition identically. In addition, this basis
has to satisfy suitable physical boundary conditions at the pipe wall and also be analytic in a neighbourhood of the
apparent singularity located at the origin in order to provide spectral accuracy. Second, the obtention of a dual basis of
solenoidal test functions so that the pressure terms cancel out from the scheme once the projection has been carried out.
The result of that projection should lead to inner products involving orthogonal or almost-orthogonal functions so the
resulting discretized operators are banded matrices. Third, devising an optimal quadrature rule in the radial variable
capable of avoiding clustering of points near the center axis and allowing a fast transform in that variable if possible.
Avoiding clustering near the pole should also improve the time step restrictions due to the CFL conditions. Fourth,
developing a pseudospectral algorithm for the efficient computation of the nonlinear terms via partial summation
techniques. Finally, the implementation of the described discretization within a robust time marching scheme capable
of overcoming the difficulties arising from the stiffness of the resulting systems of ODE.

The paper is structured as follows. In Section 2, the nonlinear initial-boundary stability problem is formulated
mathematically. Section 3 is devoted to the detailed formulation of the trial and test solenoidal functions, focusing
on their analyticity and radial symmetry properties. Section 4 describes the projection procedure that leads to the
weak formulation of the problem as a dynamical system of amplitudes. In Section 5, an analysis of the linear stability
of the basic Hagen–Poiseuille flow is presented, mainly focused on detailed explorations regarding the structure of
the eigenmodes, providing accurate numerical tables of eigenvalues to be compared with other spectral schemes.
The time marching algorithm and the efficient computation of the nonlinear terms via pseudospectral collocation
and partial summation techniques are explained in Section 6. The validation of the numerical algorithm for unsteady
computations is provided in Section 7 based on a comparison with previous works and on a comparative performance
analysis between two linearly implicit methods. Finally, Section 8 is devoted to the numerical simulation of a particular
transition to turbulence scenario in pipe flow.

2. Formulation of the problem

We consider the motion of an incompressible viscous fluid of kinematic viscosity ν and density ρ. The fluid is
driven through a circular pipe of radius a and infinite length by a uniform pressure gradient, Π0, parallel to the axis
of the pipe. We formulate the problem in cylindrical coordinates. The velocity of the fluid is prescribed by its radial
(r̂), azimuthal (θ̂ ) and axial (ẑ) components

v = ur̂ + vθ̂ + wẑ = (u, v,w), (1)

where u, v and w depend on the three spatial coordinates (r, θ, z) and time t . The motion of the fluid is governed by
the incompressible Navier–Stokes equations

∂tv + (v · ∇)v = −Π0

ρ
ẑ − ∇p + ν�v, (2)

∇ · v = 0, (3)
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where v is the velocity vector field, satisfying the no-slip boundary condition at the wall,

vpipe wall = 0, (4)

and p is the reduced pressure. A basic steady solution of (2), (3) and (4) is the so-called Hagen–Poiseuille flow

vB = (uB, vB,wB) =
(

0,0,−Π0a
2

4ρν

[
1 −

(
r

a

)2])
, pB = C, (5)

where C is an arbitrary constant. This basic flow is a parabolic axial velocity profile which only depends on the radial
coordinate [1]. The velocity of the fluid attains a maximum value UCL = −Π0a

2/4ρν at the center-line or axis of the
cylinder.

Henceforth, all variables will be rendered dimensionless using a and UCL as space and velocity units, respectively.
The axial coordinate z is unbounded since the length of the pipe is infinite. In what follows, we assume that the flow
is axially periodic with period b. In the dimensionless system, the spatial domain Ω of the problem is

Ω = {
(r, θ, z) | 0 � r � 1, 0 � θ < 2π, 0 � z < Q

}
, (6)

where Q = b/a is the dimensionless length of the pipe, in radii units. In the new variables, the basic flow takes the
form

vB = (uB, vB,wB) = (
0,0,1 − r2). (7)

Finally, the parameter which governs the dynamics of the problem is the Reynolds number

Re = aUCL

ν
. (8)

For the stability analysis, we suppose that the basic flow is perturbed by a solenoidal velocity field vanishing at the
pipe wall

v(r, θ, z, t) = vB(r) + u(r, θ, z, t), ∇ · u = 0, u(r = 1) = 0, (9)

and a perturbation pressure field

p(r, θ, z, t) = pB(z) + q(r, θ, z, t). (10)

On introducing the perturbed fields in the Navier–Stokes equations, we obtain a nonlinear initial-boundary problem
for the perturbations u and q:

∂tu = −∇q + 1

Re
�u − (vB · ∇)u − (u · ∇)vB − (u · ∇)u, (11)

∇ · u = 0, (12)

u(1, θ, z, t) = 0, (13)

u(r, θ + 2πn, z, t) = u(r, θ, z, t), (14)

u(r, θ, z + lQ, t) = u(r, θ, z, t), (15)

u(r, θ, z,0) = u0, ∇ · u0 = 0, (16)

for (n, l) ∈ Z
2, (r, θ, z) ∈ [0,1] × [0,2π) × [0,Q) and t > 0. Eq. (11) describes the nonlinear space-time evolution

of the perturbation of the velocity field. Eq. (12) is the solenoidal condition for the perturbation, and Eqs. (13)–(15)
describe the homogeneous boundary condition for the radial coordinate and the periodic boundary conditions for the
azimuthal and axial coordinates respectively. Finally, Eq. (16) is the initial solenoidal condition for the perturbation
field at t = 0.

3. Trial and test solenoidal bases

This section will deal with the generation of solenoidal bases for our approximation of the vector field u appearing
in (9). We discretize the perturbation u by a spectral approximation uS of order L in z, order N in θ , and order M

in r ,

uS(r, θ, z, t) =
L∑ N∑ M∑

alnm(t)Φ lnm(r, θ, z), (17)

l=−L n=−N m=0
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where Φ lnm are trial bases of solenoidal vector fields of the form

Φ lnm(r, θ, z) = ei(2πlz/Q+nθ)vlnm(r), (18)

satisfying

∇ · Φ lnm = 0 (19)

for l = −L, . . . ,L, n = −N, . . . ,N and m = 0, . . . ,M . The trial bases (18) must satisfy certain regularity conditions
at the origin, be periodic in the axial and azimuthal directions, and satisfy homogeneous boundary conditions at the
wall,

Φ lnm(1, θ, z) = 0, (20)

according to Eqs. (12)–(15).
There are many different ways of obtaining divergence-free fields in polar coordinates [14,17,15]. The solenoidal

condition (19) can be written as(
∂r + 1

r

)
ulnm + in

r
vlnm + il

2π

Q
wlnm = 0, (21)

where

vlnm = ulnmr̂ + vlnmθ̂ + wlnmẑ = (ulnm, vlnm,wlnm). (22)

Eq. (21) introduces a linear dependence between the three components of vlnm, leading to two degrees of freedom. In
what follows, we define

hm(r) = (
1 − r2)T2m(r), gm(r) = (

1 − r2)hm(r), D = d

dr
, D+ = D + 1

r
, k0 = 2π

Q
, (23)

where T2m(r) is the Chebyshev polynomial of degree 2m and r ∈ [0,1], and k0 stands for the fundamental axial
wavenumber in the axial coordinate. Following the regularization rules proposed in [20], we distinguish two cases:

I. Axisymmetric fields (n = 0): The basis is spanned by the elements

Φ
(1)
l0m = eik0lzv(1)

l0m = eik0lz(0, rhm,0), (24)

Φ
(2)
l0m = eik0lzv(2)

l0m = eik0lz
(−ik0lrgm,0,D+[rgm]), (25)

except that if l = 0, the third component of Φ
(2)
lnm is replaced by hm(r).

II. Non-axisymmetric fields (n �= 0): In this case, the basis is spanned by the elements

Φ
(1)
lnm = ei(nθ+k0lz)v(1)

lnm = ei(nθ+k0lz)
(−inrσ−1gm,D

[
rσ gm

]
,0

)
, (26)

Φ
(2)
lnm = ei(nθ+k0lz)v(2)

lnm = ei(nθ+k0lz)
(
0,−ik0lr

σ+1hm, inrσ hm

)
, (27)

where

σ =
{

2 (n even),

1 (n odd).
(28)

The binomial factors (1 − r2) and (1 − r2)2 appearing in hm(r) and gm(r) are responsible for the boundary condi-
tions (20) at the pipe wall to be satisfied. Factors of the form 1 − r or (1 − r)2 would also solve the boundary problem,
but they would violate the parity conditions established by Theorem 1 of [20]. The monomials r , rσ and rσ±1 appear-
ing in Eqs. (24)–(27) enforce the conditions of regularity and parity at the pole. The pure imaginary factors in Φ

(2)
lnm

could be dispensed with, but we leave them in so that the basis functions have a desirable symmetry property: if l and
n are negated, each basis function is replaced by its complex conjugate, i.e.,[

Φ
(1,2)
lnm

]∗ = Φ
(1,2)
−l,−n,m. (29)

The Galerkin scheme is accomplished when projecting the trial functions above described over a suitable dual or
test space of vector fields. We consider the inner product (·,·) as the volume integral over the domain of the pipe:

(a,b) =
Q∫ 2π∫ 1∫

a∗ · br dr dθ dz, (30)
0 0 0
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where ∗ stands for complex conjugate, b belongs to the physical or trial space and a is a solenoidal vector field
belonging to the test or projection space still to be determined. We focus our attention on the radial integration involved
in (30). Since the variable of the Chebyshev polynomials considered in the trial functions is the radius r , we need to
relate that integral to an orthogonal product in the extended domain r ∈ [−1,1]. A straightforward solution is to
assume that

1∫
0

a∗ · br dr = 1

2

1∫
−1

a∗ · br dr. (31)

The previous equation is only true if the integrand a∗ · br is an even function of the radius. This is the crucial
point of the spectral projection in the radial variable. In order to satisfy Eq. (31), the test functions will consist of
even Chebyshev polynomials T2m(r), previously factorized with the Chebyshev weight (1 − r2)−1/2 and suitable
monomials rβ so that the integrand becomes symmetric with respect to the center axis and the integrals can be
computed exactly by using quadrature formulas.

For the test functions Ψ lnm(r, θ, z), we distinguish again two different situations:
I. Axisymmetric fields (n = 0): In this case, the basis is spanned by the elements

Ψ
(1)
l0m = eik0lzṽ(1)

l0m(r) = eik0lz

√
1 − r2

(0,hm,0), (32)

Ψ
(2)
l0m = eik0lzṽ(2)

l0m = eik0lz

√
1 − r2

(−k0ilr2gm,0,D+
[
r2gm

] + r3hm

)
, (33)

except that the third component of the vector in Ψ
(2)
l0m is replaced by rhm(r) if l = 0.

II. Non-axisymmetric fields (n �= 0): In this case, the basis is spanned by the elements

Ψ
(1)
lnm = ei(nθ+k0lz)ṽ(1)

lnm = ei(nθ+k0lz)

√
1 − r2

(
inrβgm,D

[
rβ+1gm

] + rβ+2hm,0
)
, (34)

Ψ
(2)
lnm = ei(nθ+k0lz)ṽ(2)

lnm = ei(nθ+k0lz)

√
1 − r2

(
0,−k0ilrβ+2hm, inrβ+1hm

)
, (35)

except that the third component of the vector in Ψ
(2)
lnm is replaced by r1−βhm(r) if l = 0, where

β =
{

0 (n even),

1 (n odd).
(36)

These vector fields include the Chebyshev factor (1 − r2)−1/2 and suitable monomials so that the symmetrization rule
(31) holds. Therefore, the products between the test and trial functions can be exactly calculated via Gauss–Lobatto
quadrature, leading to banded matrices. Since the test and trial functions are not the same, this projection procedure is
usually known as Petrov–Galerkin scheme.

In the radial coordinate, we consider the Gauss–Lobatto points

rk = − cos

(
πk

Mr

)
, k = 0, . . . ,Mr, (37)

where we will assume that Mr is odd and of suitable order so that the quadratures are exact. The spectral differentiation
matrix is given by

(Dr )ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 + 2M2
r )/6 i = j = Mr,

−(1 + 2M2
r )/6 i = j = 0,

− ri
2(1−r2

i )
i = j ; 0 < i < Mr,

(−1)i+j cj i �= j,

(38)
ci (rj −ri )
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where cj = 1 for 0 < j < Mr and c0 = cMr = 2 [3,25]. The radial, azimuthal and axial components of the trial

functions Φ
(1,2)
lnm are either even or odd functions of r . Therefore, we only need to consider the positive part of the grid

r+
k = − cos

(
πk

Mr

)
, k = Mr + 1

2
, . . . ,Mr . (39)

For arbitrary even, fe(r), or odd, fo(r), functions satisfying

fe(rk) = fe(rMr−k), fo(rk) = −fo(rMr−k), k = 0, . . . ,
Mr − 1

2
, (40)

the differentiation matrices which provide the first derivatives(
dfe

dr

)
r=r+

i

= (
D

e
r

)
ij

fe(r
+
j ),

(
dfo

dr

)
r=r+

i

= (
D

0
r

)
ij

fo(r
+
j ), (41)

are obtained from the Chebyshev matrix (38):

(
D

e
r

)
ij

= (Dr )ij + (Dr )iMr−j , i, j = Mr + 1

2
, . . . ,Mr, (42)

and (
D

0
r

)
ij

= (Dr )ij − (Dr )iMr−j , i, j = Mr + 1

2
, . . . ,Mr . (43)

For the periodic azimuthal and axial coordinates, we use standard equispaced grids

(zi, θj ) =
(

Q

Lz

i,
2π

Nθ

j

)
, (i, j) = [0,Lz − 1] × [0,Nθ − 1], (44)

where we assume that Nθ and Lz are odd, and we make use of the standard Fourier matrix [8] for the differentiation
of fields with respect to those variables.

4. Dynamical system of amplitudes

The spectral Petrov–Galerkin scheme is accomplished by substituting expansion (17) in (11) and projecting over
the set of test vector fields (32)–(33) and (34)–(35)

(Ψ lnm, ∂tuS) =
(

Ψ lnm,
1

Re
�uS − (vB · ∇)uS − (uS · ∇)vB − (uS · ∇)uS

)
, (45)

for l = −L, . . . ,L, n = −N, . . . ,N and m = 0, . . . ,M . We have not included the pressure term ∇q of (11) in the
projection scheme (45). One of the advantages of our method is that the pressure term is cancelled in the projection,
i.e.,

(Ψ lnm,∇q) = 0; (46)

see [4] or [14], for example.
Once the projection has been carried out, the spatial dependence has been eliminated from the problem and a

nonlinear dynamical system for the amplitudes alnm is obtained. Symbolically, this system reads

A
lnm
pqr ȧpqr = B

lnm
pqrapqr − blnm(a, a), (47)

where we have used the convention of summation with respect to repeated subscripts. The discretized operator A

appearing in (47) is the projection

A
lnm
pqr = (Ψ lnm,Φpqr ) = 2πQδl

pδn
q

1∫
ṽ∗
lnm · vpqrr dr, (48)
0
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where δi
j is the Kronecker symbol. The inner product (48) reveals another advantage of the Galerkin scheme. Due to

the linearity of the time differentiation operator ∂t and the Fourier orthogonality in the periodic variables, the axial
and azimuthal modes decouple. The operator B in (47),

B
lnm
pqr =

(
Ψ lnm,

1

Re
�Φpqr − (vB · ∇)Φpqr − (Φpqr · ∇)vB

)
, (49)

satisfies the same orthogonality properties in the periodic variables. As a result, those operators A
lnm
pqr and B

lnm
pqr with

different axial indices (l �= p) or different azimuthal ones (n �= q) are identically zero. The remaining operators with
l = p and n = q have a banded structure due to the orthogonality properties of the shifted Chebyshev basis used in the
radial variable. In Fig. 2 we have represented the sparse structure of both operators for the particular case l = p = 1
and n = q = 1. A clever reordering of the vector of coefficients makes A and B collapse into a single band structure.
The quadratic form blnm(a, a) appearing in (47) corresponds to the projection of the nonlinear convective term(

Ψ lnm, (uS · ∇)uS
)
. (50)

For computational efficiency, this term has to be calculated via a pseudospectral method. The details of this computa-
tion will be analyzed later. Finally, the initial value problem is prescribed by the coefficients alnm(0) representing the
initial vector field u0

S given by

alnm(t = 0) = (
Ψ lnm,u0

S

)
. (51)

5. Linear stability

The stability of very small perturbations added to the basic flow is dictated by the linearized equation

A
lnm
pqr ȧpqr = B

lnm
pqrapqr , (52)

obtained from (47), where we have neglected the nonlinear advective term. Therefore, since the problem is linear,
we can decouple the eigenvalue analysis for each independent azimuthal-n and axial-l wavenumbers associated with
the ei(nθ+kz) normal mode, where k = lk0. For a fixed axial and azimuthal periodicity, the spectrum is given by the
eigenvalues of the operator L = A

−1
B,

La = λa, (53)

where the operators A and B are the matrices (48) and (49) corresponding to the axial-azimuthal mode (n, l) under
study, λ is an eigenvalue of the spectrum of L, and a is its associated eigenvector

a = (
a

(1)
1 , . . . , a

(1)
M , a

(2)
1 , . . . , a

(2)
M

)T
, (54)

where we have omitted the axial and azimuthal subscripts for simplicity.
The convergence and reliability of the spectral method have been checked. For this purpose, some of the results

reported here have been compared with previous works. For example, in Table 1, the convergence of the least stable
eigenvalue has been tested for Re = 9600, n = 1 and k = 1, a case previously studied by other authors [14,20].
For Re = 3000, the spectra for different values of k and n have been computed in order to make comparisons with
a first comprehensive linear stability analysis carried out in [22]. Our code provided spectral accuracy in all the
computed cases. In Tables 2 and 3, the spectra of the 10 rightmost eigenvalues have been listed for (k = 1, n = 0,1)

and (k = 1, n = 2,3), respectively, following Schmid and Henningson’s former study.
The same computation has been done for streamwise-independent perturbations (k = 0) and for different values of

the azimuthal mode n (see Table 4). To the author’s knowledge, numerical tables of streamwise-independent modes
have not been reported previously. Mathematically, the case k = 0 needs a special treatment. In fact, the limit k → 0
does not coincide with this case. In our formulation, this phenomenon can be understood looking at the boundary
conditions which must be satisfied by the radial velocity over the wall. For k �= 0, the radial velocity, as well as its first
derivative, must vanish over the wall. For k = 0 the boundary conditions change abruptly.

Our formulation in solenoidal primitive vector fields allows to obtain the explicit expression of a first integral of the
perturbation field, i.e., a manifold over which the fluid particles lie on for all t . The obtention of a closed form of these
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Table 1
Convergence test for Re = 9600, k = 1 and n = 1, following [14] and [20]

M size λ1

20 42 × 42 −0.0229 + i0.950
30 62 × 62 −0.0231707 + i0.9504813
40 82 × 82 −0.02317079576 + i0.950481396669
50 102 × 102 −0.023170795764 + i0.950481396670

Leonard & Wray (1982) λ1 = −0.023170795764 + i0.950481396668

Priymak & Miyazaki (1998) λ1 = −0.023170795765 + i0.950481396670

M is the number of Chebyshev polynomials used in our spectral approximation, size is the dimen-
sion of the discretization matrices appearing in Fig. 2 and λ1 stands for the rightmost eigenvalue.
The reported figures are those which apparently converged at M = 60.

Table 2
Rightmost eigenvalues for Re = 3000, k = 1 and n = 0,1, following [22]

n = 0 n = 1

−0.0519731112828 + i0.9483602220505 −0.041275644693 + i0.91146556762
−0.0519731232053 + i0.948360198487 −0.0616190180049 + i0.370935092697
−0.103612364039 + i0.896719200867 −0.088346025188 + i0.958205542989
−0.103612889227 + i0.8967204441 −0.0888701566 + i0.8547888174
−0.112217160388 + i0.4123963342099 −0.1168771535871 + i0.216803862997
−0.121310028246 + i0.2184358147279 −0.137490337 + i0.7996994696
−0.155220165293 + i0.8450717997117 −0.14434614486 + i0.91003730954
−0.155252667198 + i0.845080668126 −0.1864329862 + i0.7453043578
−0.2004630477669 + i0.3762423600255 −0.195839466 + i0.5493115826
−0.20647681141 + i0.79378412983 −0.198646109 + i0.8607494634

The reported figures are apparently converged at M = 54.

Table 3
Same as Table 2 for n = 2,3

n = 2 n = 3

−0.060285689559 + i0.88829765875 −0.08325397694 + i0.86436392104
−0.08789898037 + i0.352554927087 −0.105708407362 + i0.346401953386
−0.1088383407 + i0.8328933609 −0.116877921343 + i0.2149198697617
−0.112001616152 + i0.939497219531 −0.1323924331 + i0.8097468023
−0.1155143802215 + i0.215491816529 −0.136035459528 + i0.91671917468
−0.15810861 + i0.778584987 −0.182036372 + i0.7558793156
−0.167294045951 + i0.8906185726 −0.190639836903 + i0.8674136555
−0.20759146658 + i0.725077139 −0.2127794121 + i0.37123649827
−0.20931432998 + i0.37502653759 −0.23181786 + i0.70300722
−0.2214747313 + i0.8409753749 −0.244111241 + i0.551731632

stream functions is possible because of the (θ, z) invariance transformation induced by the normal mode analysis. The
normal mode ei(nθ+kz) is invariant under spiral transformations of the form:

dz

dθ
= −n

k
. (55)

We define a spiral variable ζ
.= nθ + kz, so that the solenoidal condition

∇ · v = 1

r
∂r (rvr ) + 1

r
∂θvθ + ∂zvz = 0

can be expressed as

∂r(rvr ) + ∂ζ [nvθ + rkvz] = 0, (56)
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Table 4
Same as Tables 2, 3 for k = 0, n = 0,1,2,3

n = 0 n = 1 n = 2 n = 3

−0.0019277286542 −0.00489399021 −0.0087915387 −0.0135688219
−0.004893990214 −0.0087915388 −0.01356882195 −0.01919431362
−0.0101570874478 −0.0164061521 −0.0236166663 −0.03175919084
−0.01640615210723 −0.0236166663 −0.03175919085 −0.040809265355
−0.0249623355969 −0.03449981796 −0.04500690295 −0.0564651499
−0.034499817965 −0.045006902955 −0.05646514994 −0.06885660345
−0.0463467614754 −0.059173588937 −0.0729733963 −0.087733618
−0.0591735889378 −0.072973396381 −0.08773361808 −0.103440753288
−0.07431076787255 −0.090427218091 −0.1075183721 −0.1255751331
−0.0904272180909 −0.107518372097 −0.12557513314 −0.14458704546

where we have used the differentiation rules

∂θ = (∂θ ζ )∂ζ = n∂ζ , ∂z = (∂zζ )∂ζ = k∂ζ .

Eq. (56) defines implicitly a first integral Θ(r, ζ ) satisfying

∂ζ Θ = −rvr , (57)

and

∂rΘ = nvθ + rkvz. (58)

A straightforward integration of (58) leads to the explicit expression of Θ for cases I and II described in Section 3.
The physical vector field is a real object obtained from solving the eigenvalue problem (53) associated with the normal
mode ei(nθ+kz) and its conjugated:

u = 2�
{

ei(kz+nθ)

M∑
m=0

a(1)
m v(1)

m + a(2)
m v(2)

m

}
, (59)

where the subscripts l and n have been omitted for simplicity. From Eqs. (24)–(27) and (58) we can obtain explicit
expressions for the first integral Θ :

I. Axisymmetric fields (n = 0):

Θ(r, θ, z) = 2kr2�
{

eikz
M∑

m=0

a(2)
m gm(r)

}
, (60)

except that Θ is a constant if k = 0.
II. Non-axisymmetric fields (n �= 0):

Θ(r, θ, z) = 2nrσ �
{

ei(kz+nθ)
M∑

m=0

a(1)
m gm(r)

}
, (61)

for all k.
In Fig. 3 we have represented the spectrum of eigenvalues computed for Re = 3000, n = 1 and k = 1. Three

different branches are clearly identified; wall modes branch (WM), center modes branch (CM) and mean modes branch
(MM) [7,6]. In order to have a qualitative idea of the dynamics associated with each one of the three branches, we
have plotted the velocity field v computed from (59) and the first integral obtained from (61) in Fig. 4, for the three
selected eigenvalues in Fig. 3. In particular, we have represented the eigenfunctions corresponding to the wall, center
and mean eigenvalues previously shown in Fig. 3. The pictures corresponding to the center and wall modes shown in
Fig. 4 have recently appeared in [6].



A. Meseguer, F. Mellibovsky / Applied Numerical Mathematics 57 (2007) 920–938 929
6. Nonlinear unsteady computations

6.1. Overview

The spectral spatial discretization of the Navier–Stokes equations leads to a stiff system of ODEs [3,9,10], char-
acterized by the presence of modes with vastly different time-scales. This pathology leads to stability problems in
the time discretization, in particular when explicit time integration schemes are used. The development of numerical
algorithms for the solution of stiff systems is an active research area where new methodologies appear frequently. In
spectral discretization of nonlinear PDEs, the more standard procedures are based on semi-implicit, also called lin-
early implicit methods, where the linear part is integrated implicitly and the nonlinear terms are treated explicitly. In a
recent work [5], Exponential Time Differencing (ETD) schemes were proved to be more efficient for some stiff PDES,
in comparison with standard linearly implicit, integrating factor or splitting methods. Nevertheless, ETD methods lead
to technical complications when the domain of the problem has no periodicity or when the linearized operator L ap-
pearing in Eq. (53) is (or is close to be) singular. For moderately high Reynolds numbers, the ill-conditioning of the
linearized Navier–Stokes operator and the radial-Chebyshev spectral interpolation make the ETD scheme not feasible
for practical purposes.

Second- and fourth-order linearly implicit time integration schemes have been tested for unsteady computations
of transitional regimes in pipe flow. In particular, implicit Backward Differences, combined with modified Adams–
Bashforth polynomial extrapolation (also termed AB2BD2 and AB4BD4 in [5]), have been used. It is well known that
BD4 method may lead to stability problems [9]. Nevertheless, we found AB4BD4 as the best scheme for this particular
problem.

6.2. Linearly implicit time integration

Let �t be the time step and t (k) = k�t , k = 0,1,2, . . . , the time array where we approximate our amplitudes
a(t)1 from the original system (47). In our notation, a(k) = a(t(k)) is the approximation of a(t) at t = t (k) and b(k) is
the nonlinear quadratic form appearing in (47) evaluated at t (k), i.e., b(k) = b(a(k), a(k)). The second order AB2BD2
method is given by the iteration

(3A − 2�tB)a(k+1) = A
(
4a(k) − a(k−1)

) − 2�t
(
2b(k) − b(k−1)

)
, (62)

for k � 1, see [5], whereas the fourth-order AB4BD4 scheme is

(25A − 12�tB)a(k+1) = A
(
48a(k) − 36a(k−1) + 16a(k−2) − 3a(k−3)

)
− �t

(
48b(k) − 72b(k−1) + 48b(k−2) − 12b(k−3)

)
, (63)

for k � 3. In both schemes, the initial value a(0) is prescribed by the initial condition (51), and the first unknown
amplitudes, a(1) for (62) or a(1,2,3) for (63), are obtained by means of a fourth-order Runge–Kutta explicit method.

The nonlinear explicit contributions b(k) appearing in (62) and (63) must be efficiently computed in advance by
means of a de-aliased pseudospectral or collocation method. The main goal is to compute the term

blnm = (
Ψ lnm, (uS · ∇)uS

) =
Q∫

0

2π∫
0

1∫
0

Ψ ∗
lnm · (uS · ∇)uSr dr dθ dz, (64)

where uS is given by the known coefficients a(k) appearing in expansion (17), at a previous stage in time. The standard
procedure for the computation of the nonlinear advective term is summarized in the diagram of Fig. 1.

Basically, once the coefficients alnm (top left of the diagram) of uS are known, we evaluate uS in the physical space
(top arrow going from left to right in the diagram). The gradient of the vector field, ∇uS, and the convective product,
(uS · ∇)uS , are also computed in the physical space (vertical arrows downwards, on the right). Finally, the physical

1 To avoid cumbersome notation, we temporarily suppress the subscripts corresponding to the spatial discretization.
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Fig. 1. Pseudospectral computation of nonlinear terms. The abbreviations FFT, IFFT and MM stand for Fast Fourier Transform, Inverse Fast Fourier
Transform and Matrix Multiplication, respectively.

Fig. 2. Sparse structure of operators A
lnm
pqr and B

lnm
pqr for l = p = 1 and n = q = 1, with M = 32 radial modes.

product is projected onto the dual Fourier–Chebyshev space (bottom arrow, from right to left). The first stage of the
algorithm is to evaluate the sum (17)

uS =
L∑

l=−L

N∑
n=−N

M∑
m=0

alnm(t)Φ lnm(r, θ, z) =
L∑

l=−L

N∑
n=−N

M∑
m=0

alnmei(nθ+k0lz)vlnm(r) (65)

over the three-dimensional grid

(rk, θj , zi) =
(

cos

(
πk

2Md

)
,

2π

Nd

j,
Q

Ld

i

)
, (66)

for k = 0, . . . ,Md −1, j = 0, . . . ,Nd −1 and i = 0, . . . ,Ld −1. The values Md , Nd and Ld are the numbers of radial,
azimuthal and axial points, respectively, needed to de-alias the computation up to the spectral order of uS. For coarse
grid computations, the convolution sums which appear when evaluating the nonlinear terms may generate low aliased
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Fig. 3. Spectrum of eigenvalues for Re = 3000, n = 1, k = 1. The labelled dots WM (wall mode), CM (center mode) and MM (mean mode) are the
eigenvalues whose associated eigenfunctions have been plotted in Fig. 4.

modes [4]. A similar problem arises in the non-periodic (radial) direction, although in this case it is related to a poorly
resolved quadrature. In this method, aliasing is removed by means of Orszag’s 3

2 -rule, imposing

Ld � 3

2
(2L + 1), Nd � 3

2
(2N + 1), Md � 3M, (67)

in order to eliminate aliased modes up to order (L,N,M). Direct evaluation of (65) over each point of the grid (66)
would require O(LMN) operations. Overall, the total computation of uS would imply a total number of operations of
order O(L2N2M2). Nevertheless, we can substantially reduce the number of operations by means of Partial Summa-
tion technique [3], where uS (u for simplicity) is evaluated over the radial grid rk :

uk(θ, z) = u(rk, θ, z) =
L∑

l=−L

N∑
n=−N

ei(nθ+k0lz)
M∑

m=0

alnmvlnm(rk)︸ ︷︷ ︸
α

(k)
ln

, k ∈ [0,Md − 1]. (68)

The sum for the radial modes in (68) has been underbraced and identified by the coefficients α
(k)
ln , that require

O(M2LN) operations to be computed. The second step is the evaluation of uk(θ, z) over the azimuthal grid

ujk(z) = u(rk, θj , z) =
L∑

l=−L

eilk0z
N∑

n=−N

M∑
m=0

alnmeinθj vlnm(rk)

︸ ︷︷ ︸
β

(jk)

, (j, k) ∈ [0,Nd − 1] × [0,Md − 1], (69)
l
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Fig. 4. Eigenmodes corresponding to the three selected eigenvalues of Fig. 3.

taking advantage of the pre-computed α
(k)
ln coefficients,

β
(jk)
l =

N∑
n=−N

einθj

M∑
m=0

alnmvlnm(rk) =
N∑

n=−N

einθj α
(k)
ln , (70)

that requires O(N2ML) operations. Finally, ujk(z) over the axial grid zi is computed using the same procedure, i.e.,

uijk = u(rk, θj , zi) =
L∑

l=−L

eik0lzi β
(jk)
l , (i, j, k) ∈ [0,Ld − 1] × [0,Nd − 1] × [0,Md − 1]. (71)

Overall, the computational cost needed for the previous three stages is O(LNM(L+N +M)), and it can be further im-
proved by using the FFT in z and FCT (Fast Cosine Transform) in r , leading to an optimal cost of O(LNM ln(LNM))
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operations per time step. Computation of (uS · ∇)uS in the physical space is carried out by using standard Fourier
Differentiation matrices [8] in the axial and azimuthal coordinates, whereas differentiation matrices D

e,o
r defined in

(43)–(42) are used in the radial direction. Finally, partial summation techniques are used again to efficiently inverse-
transform of [(uS · ∇)uS]ijk leading to the nonlinear term blnm appearing in (47).

7. Validation of the numerical scheme

7.1. Convergence analysis

The spatial convergence of the spectral Petrov–Galerkin method has already been tested in Section 5 and also in
[17] via a linear asymptotic eigenvalue analysis, providing spectral accuracy in all cases studied. For the nonlinear
unsteady computations, the same initial value problem has been solved by means of the two different linearly implicit
schemes AB2BD2 and AB4BD4. In both cases, the same spectral resolution in space, the same initial condition for
the amplitudes and the same total integration time have been considered for consistency. In particular, the initial
perturbation that we considered for our convergence tests is a two-dimensional streamwise independent field of the
form

u0
S = u0

2D = A2Deiθ (−if1(r), f2(r),0
) + c.c., (72)

where f1(r) = 1 − 2r2 + r4, f2(r) = 1 − 6r2 + 5r4, c.c. stands for complex conjugate and A2D is a real constant such
that ε(u0

S) = ε0, where ε(u) is the normalized energy of an arbitrary perturbation,

ε(u) = 1

2EHP

Q∫
0

dz

2π∫
0

dθ

1∫
0

r dr u∗ · u, (73)

with respect to the energy of the basic Hagen–Poiseuille flow, EHP = πQ/6. The initial condition (72) consists of a
pair of streamwise vortices of azimuthal number n = 1 that only perturb the radial and the azimuthal components of
the basic regime. This perturbation has streamwise invariance in time, due to its orthogonality with respect to the axial
base flow. Thus, the initial condition ensures that uS(t) preserves its streamwise symmetry for all t . In Fig. 5(a) we
have plotted a z-cnst. cross section of the perturbation field u0

S, and the basic parabolic profile of the Hagen–Poiseuille
flow has been represented in Fig. 5(b). Finite amplitude perturbations of the form (72) are of special interest in the
nonlinear stability analysis of shear flows. Streamwise vortices are particularly efficient in triggering transition due to
the usually termed lift-up effect, advecting slow axial flow to high speed regions and vice versa [12,21,23,26]. This
mechanism modulates the axial parabolic flow in a new transient profile, usually termed streak, which contains saddle
points, thus being potentially unstable with respect to three-dimensional infinitesimal disturbances [6,7,23].

Fig. 5. (a) Initial perturbation field u0
S prescribed by amplitudes given in (72). (b) Contour level curves of the axial speed corresponding to the

parabolic Hagen–Poiseuille flow.
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Fig. 6. Typical evolution of the energy of a two-dimensional streamwise perturbation.

Fig. 7. Modulated axial speed (uS + vB)z contours corresponding to the time integration plotted in Fig. 6.

As an example, Fig. 6 shows the evolution of the energy ε(t) associated with the two-dimensional perturbation
prescribed in Eq. (72) for Re = 3000 and with initial energy ε(u0

S) = ε0 = ε(0) = 10−2. The structure of the modulated
axial flow has been represented in Fig. 7 at some selected instants of time, labeled with white circles in Fig. 6. This run
was carried out using AB4BD4 with M × N = 25 × 15 radial × azimuthal modes (equivalent to Mr × Nθ = 26 × 31
collocation points), with �t = 0.01 and a total integration time T = 200. The evolution of this kind of perturbations
was originally considered in [26], where hybrid 2nd order finite differences scheme in r combined with a spectral
Fourier method in θ was used. Low spatial resolution simulations based on the present spectral method were also
provided in [16]. In both cases the agreement with former computations is very good. In Fig. 7 it is clearly observed
the formation of streaks. The first important feature of this transient flow is the presence of saddle points in its profile.
The second is that this transient regime is almost steady, as we observe more clearly from the curve in Fig. 6.

A time-convergence test has been carried out by comparing the accuracy of the solution for the AB2BD2 and
AB4BD4 schemes, always based on the same kind of perturbations described before. All the runs have been based on
the same initial condition (72), for Re = 2500, M = 10, N = 10 and a total time T = 50. Fig. 8 captures the essential
features of the convergence of the two different time marching schemes, representing the absolute L2-norm error of
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Fig. 8. Absolute error (74) for the two different time marching schemes. The two curves represent the error obtained for the same initial value
problem and with the same spatial resolution.

the Fourier coefficients a�t
lnm(T ) obtained at the end of the run with respect to the “exact” ones, a

�t0
lnm(T ), obtained

with a much smaller reference time step �t0 = 10−4,∥∥ε(�t)
∥∥2

2 =
∑
l,n,m

∣∣a�t
lnm(T ) − a

�t0
lnm(T )

∣∣2
. (74)

Fig. 8 reveals a faster (and better) convergence of the fourth order scheme in front of the second order one. In fact,
for �t < 10−2, the AB2BD2 scheme is still converging with an absolute error of order 10−6, whereas the AB4BD4 has
already achieved the accuracy dictated by the spatial resolution. When using AB2BD2, �t should still be decreased
nearly by two orders of magnitude to get that precision. The computational time required for every time step is
essentially the same for both schemes and this has been the main motivation to use the fourth order scheme in our
computations. Nevertheless, AB4BD4 requires a bit more memory storage and this factor must be considered by the
user.

As mentioned in the introduction, one of the novelties of the presented method is the use of half Gauss–Lobatto
grid in the radial coordinate. The use of standard mappings, x = 2r − 1, identifying the radial domain r ∈ [0,1] with
the Cartesian interval x ∈ [−1,1] is a common practice in spectral methods in cylindrical coordinates [14,15,19,22].
The clustering of quadrature points near the wall, i.e., r = 1 or x = +1 is justified by the presence of boundary
layers and strong gradients of the physical variables in that region, being necessary to resolve the physical phenomena
within those small scales. However, the accumulation of radial points near the center axis has no physical justification
unless remarkable variations of the flow speed take place in a neighbourhood of the pole. This is not the case in the
Hagen–Poiseuille problem, where the axial profile is smooth and exhibits a maximum at r = 0.

Wherever semi-implicit time marching schemes are used, the time step size �t is conditioned by the advective time
scale, τmax = dh/cmax, where d is a typical length scale of the problem, cmax is the advection speed and h is the grid
size [3]. A straightforward geometrical analysis of the radial-azimuthal clustering in a standard collocation scheme
x = 2r − 1 leads to

h ∼ 1

M2N
, (75)

where M is the number of radial points, clustered near the origin via the asymptotic behaviour of the Gauss–Lobatto
distribution, 1 − cos(π/M) ∼ π2/2M2, and N is the number of azimuthal points, leading to an arclength clustering
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Fig. 9. �tmax as a function of the number of radial and azimuthal modes.

proportional to N−1. Provided that the order of maximum speed of the flow is O(cmax) ∼ 1 and the typical length of
the problem is the nondimensional pipe radius, O(d) = 1, the advective restriction (75) leads to τmax ∼ O(N−1M−2),
whereas the asymptotic radial clustering given by (39) provides a milder accumulation ratio near the pole

r+
(M+3)/2 − r+

(M+1)/2 = − cos

(
π(M + 1)

2M

)
∼ π

2M
, (76)

leading to a less restrictive limit τmax ∼ O(N−1M−1). The dependence �tmax(N,M) has been explored within the
range (N,M) ∈ [7,19] × [12,28], for Re = 2500 and a total time of integration T = 100, starting with the same
initial condition prescribed in (72). The maximum time step �tmax has been plotted against M and N in Fig. 9. The
behaviour of �tmax(N) for fixed M is the same as in other integration schemes (Fig. 9, right), whereas a remarkable
improvement can be observed in Fig. 9, on the left, where �tmax(M) for fixed N has been represented. Only two-
dimensional perturbations have been included at t = 0, thus reducing the exploration to streamwise-independent
dynamics. Although we have just focused our analysis on the radial-azimuthal clustering effect, the density of points
in the axial coordinate will also affect the maximum time step size, the limitations being the same as in any other
equispaced spectral scheme.

8. Transition to turbulence

This section is devoted to a performance analysis of the presented numerical solver in capturing the essential
features of transitional pipe turbulence. The study of fully developed turbulence is out of the scope of the present
work.

As mentioned in previous section, two-dimensional streaks might be destabilized by three-dimensional infinites-
imal disturbances. This mechanism is just one possible scenario of transition to turbulence in shear flows and it is
usually referred to as streak breakdown [16,21,23,26]. In order to obtain a streak breakdown, three-dimensional dis-
turbances of a suitable axial periodicity must be added to the two-dimensional perturbation. The new initial condition
is:

u0
S = u0

2D + u0
3D, (77)

where u0
2D is the same perturbation described in (72), and u0

3D is a three-dimensional disturbance of the form

u0
3D =

∑ ∑
Aln

3Dvln + c.c., (78)

l=5,6,7 n=0,1
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Fig. 10. Energies ε2D(t) and ε3D(t) as a function of time, exhibiting the streak breakdown mechanism of transition to turbulence.

where the fields vln are

vln =
{

eik0lz(0, f3(r),0) (n = 0),

ei(k0lz+nθ)(−inf1(r), f2(r),0) (n = 1),
(79)

with f3(r) = r(1−r2). In this case, k0 must be suitably chosen so an optimal range of axial wave numbers kl = lk0 are
initially activated. In previous works [16,26], it has been proved that the optimal range of axial periodicities depends
on the initial amplitude of the two-dimensional perturbation and the Reynolds number. A comprehensive exploration
is not the aim of this analysis, so a particular case has been considered to test fully three-dimensional unsteady tran-
sitional dynamics. In particular, some axial wave numbers within the range k ∈ [1.5,2.2] have been excited at t = 0.
As in previous section, the bulk of the initial energy is mainly assigned to the two-dimensional component of the per-
turbation so that ε2D

0 ∼ 10−3, whereas the amplitudes Aln
3D, for n = 0,±1 and k±5,±6,±7 = 1.5625,1.875,2.1875, are

uniformly activated leading to a much smaller total three-dimensional energy ε3D
0 ∼ 1 × 10−7. This is accomplished

by choosing k0 = 0.3125 and L = 16, so that medium-long wavelengths dynamics are also captured, leading to a pipe
length Q = 2π/k0 ∼ 20. Overall, the computations reported here have been carried out with L = 16, N = 16 and
M = 32, equivalent to a Mr × Nθ × Lz = 33 × 33 × 33-radial × azimuthal × axial grid. The fixed length of the pipe
and the number of axial modes fix the maximum axial wavenumber to kmax = 5.0. It is well known that high axial-
azimuthal frequencies require a considerable number of radial modes to be resolved [20]. Nevertheless, transitional
dynamics are strongly dominated by low or medium axial wavenumbers, the high frequencies being only important
once fully developed turbulence has been established.

For Re = 5012, Fig. 10 shows a typical example of the evolution of the energies ε2D(t) and ε3D(t) = ε(u3D(t)) as-
sociated with the two-dimensional and three-dimensional perturbations, respectively. The sudden exponential growth
of ε3D(t) is due to the inviscid instability. The computation shown in Fig. 10 covered T = 600 nondimensional time
units, with a time step �t = 10−3 and using the AB4BD4 scheme. The nearly 6 × 105 time steps required about 80
hours on a 3.0 GHz AMD Athlon CPU.

9. Conclusions

A solenoidal spectral Petrov–Galerkin formulation for the spatial discretization of incompressible Navier–Stokes
equations in unbounded cylindrical geometries has been formulated and implemented within a high order linearly
implicit time marching scheme. The spatial discretization identically satisfies the incompressibility condition and
the pressure terms are eliminated in the projection. The solenoidal fields satisfy suitable regularity conditions at the
pole and radial clustering is avoided by using half Gauss–Lobatto meshpoints and modified Chebyshev polynomials
of selected parity, thus allowing fast transform in the radial coordinate. The resulting radial-azimuthal mesh leads
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to less restrictive explicit time marching conditions. For the efficient evaluation of the nonlinear term, dealiased
partial summation techniques have been formulated. The spatial discretization has been proven to converge spectrally
in all linear cases studied. For unsteady nonlinear computations, modified AB2BD2 and AB4BD4 linearly implicit
schemes have been used, the last proven to be more convenient for this particular problem. Different spatio-temporal
convergence analysis have been provided and the time evolution of streamwise vortices has been studied as a test
case. Streamwise streaks have been computed and their structure and energy distribution is almost identical to the
ones formerly computed by other authors using different discretization schemes. Transitional dynamics to turbulence
has been computed by means of the usually termed streak breakdown scenario, and the streamwise dependent modes
that destabilize the streaks have axial periodicities within the interval predicted by former studies.
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